Biosynthesis of polyhydroxyalkanoates containing 2-hy carbon source by metabolically engineered Escherichia

Applied Microbiology and Biotechnology 93, 273-283 DOI: 10.1007/s00253-011-3530-x

Citation Report

#	Article	IF	CITATIONS
1	Metabolic engineering: enabling technology of a bio-based economy. Current Opinion in Chemical Engineering, 2012, 1, 355-362.	3.8	19
2	Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnology Advances, 2012, 30, 1196-1206.	6.0	150
3	Synthetic biology devices as tools for metabolic engineering. Biochemical Engineering Journal, 2012, 65, 82-89.	1.8	21
4	Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2013, 36, 885-892.	1.7	113
5	Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97, 3301-3307.	1.7	40
6	Microbial production of lactateâ€containing polyesters. Microbial Biotechnology, 2013, 6, 621-636.	2.0	29
7	Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Applied Microbiology and Biotechnology, 2013, 97, 8011-8021.	1.7	38
8	Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metabolic Engineering, 2013, 16, 42-47.	3.6	140
9	Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metabolic Engineering, 2013, 20, 20-28.	3.6	63
10	Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. Journal of Biotechnology, 2013, 165, 93-98.	1.9	38
11	Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnology Advances, 2013, 31, 1200-1223.	6.0	181
12	One-Pot Microbial Production, Mechanical Properties, and Enzymatic Degradation of Isotactic P[(<i>R</i>)-2-hydroxybutyrate] and Its Copolymer with (<i>R</i>)-Lactate. Biomacromolecules, 2013, 14, 1913-1918.	2.6	37
13	Biosynthesis and Thermal Properties of PHBV Produced from Levulinic Acid by Ralstonia eutropha. PLoS ONE, 2013, 8, e60318.	1.1	44
14	Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnology Letters, 2013, 35, 1631-1637.	1.1	17
15	Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Applied Microbiology and Biotechnology, 2014, 98, 3923-3931.	1.7	34
16	Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. Journal of Biotechnology, 2014, 180, 52-65.	1.9	121
17	Engineering the diversity of polyesters. Current Opinion in Biotechnology, 2014, 29, 24-33.	3.3	122
18	Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Applied Microbiology and Biotechnology, 2014, 98, 95-104.	1.7	76

#	Article	IF	CITATIONS
19	Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology (United Kingdom), 2014, 160, 2341-2351.	0.7	127
20	Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochemistry, 2014, 49, 25-32.	1.8	52
21	Synthetic Biology of Hydrophobic Polymer Production. Springer Protocols, 2015, , 53-63.	0.1	1
23	A simple model for Lutz and Bujard's controllable promoters and its application for analyzing a simple genetic oscillator. In Silico Biology, 2015, 12, 69-82.	0.4	0
24	Advanced Biotechnology: Metabolically Engineered Cells for the Bioâ€Based Production of Chemicals and Fuels, Materials, and Healthâ€Care Products. Angewandte Chemie - International Edition, 2015, 54, 3328-3350.	7.2	255
25	Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresource Technology, 2015, 181, 283-290.	4.8	42
26	Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Applied Microbiology and Biotechnology, 2015, 99, 2131-2145.	1.7	37
27	Optimized Transformation of Newly Constructed Escherichia coli-Clostridia Shuttle Vectors into Clostridium beijerinckii. Applied Biochemistry and Biotechnology, 2015, 177, 226-236.	1.4	6
28	Development of Low-Carbon-Driven Bio-product Technology Using Lignocellulosic Substrates from Agriculture: Challenges and Perspectives. Current Sustainable/Renewable Energy Reports, 2015, 2, 145-154.	1.2	16
29	Metabolic engineering of <i>Ralstonia eutropha</i> for the production of polyhydroxyalkanoates from sucrose. Biotechnology and Bioengineering, 2015, 112, 638-643.	1.7	62
30	Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha. Metabolic Engineering, 2015, 27, 38-45.	3.6	29
31	Biosynthesis of poly(2â€hydroxyisovalerateâ€coâ€lactate) by metabolically engineered <i>Escherichia coli</i> . Biotechnology Journal, 2016, 11, 1572-1585.	1.8	25
32	Efficient Biosynthesis of (<i>R</i>)―or (<i>S</i>)â€2â€Hydroxybutyrate from <scp>l</scp> â€Threonine through a Synthetic Biology Approach. Advanced Synthesis and Catalysis, 2016, 358, 2923-2928.	2.1	15
33	Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Microbial Cell Factories, 2016, 15, 95.	1.9	66
34	Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols, 2016, , .	0.1	2
35	Biosynthesis of polyhydroxyalkanoates containing hydroxyl group from glycolate in Escherichia coli. AMB Express, 2016, 6, 29.	1.4	21
36	Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 2016, 39, 555-563.	1.7	4
37	Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metabolic Engineering, 2016, 35, 1-8.	3.6	37

ARTICLE IF CITATIONS # Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli. 38 1.4 25 Biotechnology and Bioprocess Engineering, 2016, 21, 169-174. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia 9.4 coli. Nature Biotechnology, 2016, 34, 435-440. High molecular weight DNA assembly <i>in vivo</i> for synthetic biology applications. Critical 40 5.126 Reviews in Biotechnology, 2017, 37, 277-286. Engineering the xyloseâ€catabolizing Dahms pathway for production of poly(d â€lactate―co â€glycolate) and poly(d â€lactate―co â€glycolate―co ―d â€2â€hydroxybutyrate) in Escherichia coli. Microbial Biotechnology 2017, 10, 1353-1364. Synthetic Biology of Polyhydroxyalkanoates (PHA). Advances in Biochemical 42 0.6 33 Engineering/Biotechnology, 2017, 162, 147-174. Response Surface Methodology Approach for Optimization of Extrusion Process of Production of Poly (Hydroxyl Butyrate-Co-Hydroxyvalerate) /Tapioca Starch Blends. International Journal of Food Engineering, 2017, 13, . Biosynthesis of 2â€Hydroxyacidâ€Containing Polyhydroxyalkanoates by Employing butyrylâ€CoA Transferases in Metabolically Engineered <i>Escherichia coli</i>. Biotechnology Journal, 2017, 12, 44 1.8 18 1700116. T7 <scp>RNA</scp> polymeraseâ€driven inducible cell lysis for <scp>DNA</scp> transfer from 2.0 <i>Escherichia coli</i> to <i>Bacillus subtilis</i>. Microbial Biotechnology, 2017, 10, 1797-1808. Microbial synthesis of a novel terpolyester P(<scp>LA</scp>â€<i>co</i>â€3<scp>HB</scp>â€<i>co</i>â€3<scp>HP</scp>) from lowâ€cost substrates. 2.0 46 24 Microbial Biotechnology, 2017, 10, 371-380. Bioplastics Biotechnology., 2017, , 551-567. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the 49 11.1 300 Assembly of Smart Materials. Advanced Materials, 2018, 30, e1704847. Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, 2018, 0.6 Synthesis of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Blends from 51 Activated Sludge by Manipulating Octanoic Acid and Nonanoic Acid as Carbon Sources. Journal of 2.4 9 Agricultural and Food Chemistry, 2018, 66, 11043-11054. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications – Review. International Journal of Biological Macromolecules, 2018, 120, 1294-1305. 3.6 Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering 53 1.6 91 and Translational Medicine, 2019, 5, 128-154. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. International Journal of Biological Macromolecules, 2019, 138, 370-378. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods in 55 0.4 13 Enzymology, 2019, 627, 125-162. Systems Metabolic Engineering Strategies for Nonâ€Natural Microbial Polyester Production. 1.8 Biotechnology Journal, 2019, 14, 1800426.

CITATION REPORT

#	Article	IF	CITATIONS
60	Material and Methods of Bacterial Sensing in the Process of Pharmaceutical Biomanufacturing. ACS Symposium Series, 2019, , 141-154.	0.5	0
61	Yeasts as Microbial Factories for Production of Recombinant Human Interferon Alpha 2b of Therapeutic Importance. ACS Symposium Series, 2019, , 41-56.	0.5	0
62	Bacterial Cell Surface Display. ACS Symposium Series, 2019, , 81-108.	0.5	3
63	Functional Oligosaccharides: Production and Action. ACS Symposium Series, 2019, , 155-180.	0.5	5
64	Sequestering of CO ₂ to Value-Added Products through Various Biological Processes. ACS Symposium Series, 2019, , 261-284.	0.5	2
65	Microbial Biofilm Membranes for Water Remediation and Photobiocatalysis. ACS Symposium Series, 2019, , 321-351.	0.5	10
67	Cyanobacterial Cell Factories for Improved Carotenoid Biosynthesis through a Synthetic Biology Approach. ACS Symposium Series, 2019, , 23-39.	0.5	6
68	Advances in Plant Based Biologics. ACS Symposium Series, 2019, , 57-79.	0.5	1
69	Synthetic Biology and Metabolic Engineering Approaches for Improved Production and Recovery of Bacterial Polyhydroxyalkanoates. ACS Symposium Series, 2019, , 181-207.	0.5	3
70	Electrospinning: An Efficient Biopolymer-Based Micro- and Nanofibers Fabrication Technique. ACS Symposium Series, 2019, , 209-241.	0.5	18
71	Functional Approach for the Development and Production of Novel Extreme Biocatalysts. ACS Symposium Series, 2019, , 1-22.	0.5	3
72	Rational Design of Next-Generation Therapeutic Antibodies Using Protein Engineering Tools. ACS Symposium Series, 2019, , 109-139.	0.5	2
73	New Trends in the Biomanufacturing of Green Surfactants: Biobased Surfactants and Biosurfactants. ACS Symposium Series, 2019, , 243-260.	0.5	13
74	Characteristics and Applications of Biodiesels and Design of Reactors for Their Industrial Manufacture. ACS Symposium Series, 2019, , 285-320.	0.5	Ο
75	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	3.6	138
76	Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metabolic Engineering, 2020, 58, 82-93.	3.6	136
77	Synergy of valine and threonine supplementation on poly(2-hydroxybutyrate-block-3-hydroxybutyrate) synthesis in engineered Escherichia coli expressing chimeric polyhydroxyalkanoate synthase. Journal of Bioscience and Bioengineering, 2020, 129, 302-306.	1.1	9
78	What Has Been Trending in the Research of Polyhydroxyalkanoates? A Systematic Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 959.	2.0	26

#	Article	IF	CITATIONS
79	Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal, 2020, 15, e1900489.	1.8	92
80	Biosynthesis and characterization of poly(3-hydroxybutyrate-co-2-hydroxyalkanoate) with different comonomer fractions. Polymer Degradation and Stability, 2020, 178, 109193.	2.7	7
81	Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. Advanced Materials, 2020, 32, e1907138.	11.1	65
82	Evolution of polyhydroxyalkanoate synthesizing systems toward a sustainable plastic industry. Polymer Journal, 2021, 53, 67-79.	1.3	32
83	Cascade biocatalysis for production of enantiopure (S)-2-hydroxybutyric acid using recombinant Escherichia coli with a tunable multi-enzyme-coordinate expression system. Systems Microbiology and Biomanufacturing, 2021, 1, 234-244.	1.5	5
84	Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS). International Journal of Biological Macromolecules, 2021, 174, 449-456.	3.6	19
85	Rational engineering of the Plasmodium falciparum l-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. International Journal of Biological Macromolecules, 2021, 179, 71-79.	3.6	5
87	Creating biotransformation of volatile fatty acids and octanoate as co-substrate to high yield medium-chain-length polyhydroxyalkanoate. Bioresource Technology, 2021, 331, 125031.	4.8	11
88	Established and Emerging Producers of PHA: Redefining the Possibility. Applied Biochemistry and Biotechnology, 2021, 193, 3812-3854.	1.4	12
89	Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Bioresource Technology, 2021, 340, 125693.	4.8	50
90	Microbial polyesters: synthesis and applications. , 2021, , 515-555.		0
91	Efficient bio-production of citramalate using an engineered Escherichia coli strain. Microbiology (United Kingdom), 2018, 164, 133-141.	0.7	25
92	Escherichia coli Flagellar Genes as Target Sites for Integration and Expression of Genetic Circuits. PLoS ONE, 2014, 9, e111451.	1.1	17
93	Combining Genes from Multiple Phages for Improved Cell Lysis and DNA Transfer from Escherichia coli to Bacillus subtilis. PLoS ONE, 2016, 11, e0165778.	1.1	3
94	Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli from Sucrose. KSBB Journal, 2014, 29, 443-447.	0.1	3
95	Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases. KSBB Journal, 2016, 31, 27-32.	0.1	8
96	Recent advances in the microbial synthesis of lactate-based copolymer. Bioresources and Bioprocessing, 2021, 8, .	2.0	4
97	A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. International Journal of Biological Macromolecules, 2021, 192, 978-998.	3.6	13

#	Article	IF	CITATIONS
99	Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics. Applied Chemistry for Engineering, 2014, 25, 134-141.	0.2	1
100	Bioplastics Biotechnology. , 2018, , 1-17.		О
102	Biosynthesis of diverse α,ï‰-diol-derived polyhydroxyalkanoates by engineered Halomonas bluephagenesis. Metabolic Engineering, 2022, 72, 275-288.	3.6	13
103	Versatile aliphatic polyester biosynthesis system for producing random and block copolymers composed of 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates using the sequence-regulating polyhydroxyalkanoate synthase PhaCAR. Microbial Cell Factories, 2022, 21, 84.	1.9	7
104	Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
105	Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives. Bioresource Technology, 2022, 360, 127575.	4.8	25
106	A review on microbial synthesis of lactate-containing polyesters. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	1
107	Environmental Sustainability with Polyhydroxyalkanoates (PHA) as Plastic Alternatives. Environmental Contamination Remediation and Management, 2022, , 17-49.	0.5	Ο
110	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499.	1.5	0