Comprehensive H₂/O₂ kinetic

International Journal of Chemical Kinetics 44, 444-474 DOI: 10.1002/kin.20603

Citation Report

#	Article	IF	CITATIONS
1	Verification, Validation, and Testing of Kinetic Mechanisms of Hydrogen Combustion in Fluid-Dynamic Computations. ISRN Mechanical Engineering, 2012, 2012, 1-11.	0.9	7
2	On the extinction characteristics of alcohol droplet combustion under microgravity conditions – A numerical study. Combustion and Flame, 2012, 159, 3208-3223.	5.2	31
3	Uncertainty propagation of chemical kinetics parameters and binary diffusion coefficients in predicting extinction limits of hydrogen/oxygen/nitrogen non-premixed flames. Combustion Theory and Modelling, 2012, 16, 1029-1052.	1.9	21
4	Effects of N2O addition on the ignition of H2–O2 mixtures: Experimental and detailed kinetic modeling study. International Journal of Hydrogen Energy, 2012, 37, 15393-15405.	7.1	53
5	Effect of binary diffusion and chemical kinetic parameter uncertainties in simulations of premixed and non-premixed laminar hydrogen flames. Combustion and Flame, 2012, 159, 3522-3529.	5.2	19
6	Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	1.1	23
7	lgnition and kinetic modeling of methane and ethane fuel blends with oxygen: A design of experiments approach. Combustion and Flame, 2013, 160, 1153-1167.	5.2	117
8	An experimental and kinetic modeling study of 2-methyltetrahydrofuran flames. Combustion and Flame, 2013, 160, 2729-2743.	5.2	60
9	An experimental and kinetic modelling study of n-butyl formate combustion. Combustion and Flame, 2013, 160, 2680-2692.	5.2	11
10	Direct In Situ Quantification of HO ₂ from a Flow Reactor. Journal of Physical Chemistry Letters, 2013, 4, 872-876.	4.6	42
11	Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	1.1	25
12	Accelerating Reactive-Flow Simulations Using Graphics Processing Units. , 2013, , .		1
13	Development of a reduced biodiesel surrogate model for compression ignition engine modeling. Proceedings of the Combustion Institute, 2013, 34, 401-409.	3.9	54
14	A comparative study of the chemical kinetic characteristics of small methyl esters in diffusion flame extinction. Proceedings of the Combustion Institute, 2013, 34, 821-829.	3.9	78
15	Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Physical Review E, 2013, 88, 033005.	2.1	64
16	A quantitative explanation for the apparent anomalous temperature dependence of OH + HO2= H2O + O2 through multi-scale modeling. Proceedings of the Combustion Institute, 2013, 34, 547-555.	3.9	73
17	Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures. Combustion and Flame, 2013, 160, 2654-2668.	5.2	95
18	An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 2013, 160, 995-1011.	5.2	589

#	Article	IF	CITATIONS
19	Effect of pressure on structure and extinction of near-limit hydrogen counterflow diffusion flames. Proceedings of the Combustion Institute, 2013, 34, 881-886.	3.9	33
20	On the influence of singlet oxygen molecules on characteristics of HCCI combustion: A numerical study. Combustion Theory and Modelling, 2013, 17, 579-609.	1.9	29
21	Modelling of OH production in cold atmospheric-pressure He–H ₂ O plasma jets. Plasma Sources Science and Technology, 2013, 22, 035015.	3.1	44
22	Homogeneous combustion of fuel-lean syngas mixtures over platinum at elevated pressures and preheats. Combustion and Flame, 2013, 160, 155-169.	5.2	38
23	Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel. Combustion and Flame, 2013, 160, 17-30.	5.2	95
24	Uncertainty assessment of species measurements in acetone counterflow diffusion flames. Proceedings of the Combustion Institute, 2013, 34, 813-820.	3.9	33
25	Laminar Flame Speeds and Flame Instabilities of Pentanol Isomer–Air Mixtures at Elevated Temperatures and Pressures. Energy & Fuels, 2013, 27, 1141-1150.	5.1	53
26	Influence of gas compression on flame acceleration in the early stage of burning in tubes. Combustion and Flame, 2013, 160, 97-111.	5.2	78
27	Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-diluted Hydrogen/Oxygen Mixture in a Shock Tube. , 2013, , .		12
28	An analysis of the explosion limits of hydrogen-oxygen mixtures. Journal of Chemical Physics, 2013, 138, 134305.	3.0	64
29	Investigation of Subgrid Closure Models for Finite-Rate Scramjet Combustion. , 2013, , .		27
30	Detonation Initiation and Shock-Flame Interaction in Hydrogen-Air Mixtures. , 2013, , .		0
31	Discontinuous Galerkin Method for Compressible Viscous Reacting Flow. , 2013, , .		2
32	Consistent Conditional Moment Closure Modelling of a Lifted Turbulent Jet Flame Using the Presumedl ² -PDF Approach. Journal of Combustion, 2014, 2014, 1-25.	1.0	7
33	Spatially Resolved Water Measurements in a Scramjet Combustor Using Diode Laser Absorption. Journal of Propulsion and Power, 2014, 30, 1551-1558.	2.2	29
35	Diode Laser Absorption Sensor for Combustion Progress in a Model Scramjet. Journal of Propulsion and Power, 2014, 30, 550-557.	2.2	19
36	Large Eddy Simulation of Supercritical Mixing and Combustion for Rocket Applications. , 2014, , .		5
37	Large-Eddy Simulations of a Dual-Mode Scramjet Combustor: Operating Point "A" of University of Virginia's Scramjet Experiments. , 2014, , .		4

#	Article	IF	CITATIONS
38	Turbulence / Chemistry Interactions in a Ramp-Stabilized Supersonic Hydrogen-Air Diffusion Flame. , 2014, , .		8
39	Time Dependent Measurements of Species Formation in Nanosecond-Pulsed Plasma Discharges in C2H4/O2/Ar Mixtures. , 2014, , .		6
40	Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor. , 2014, , .		6
41	The READY program: Building a global potential energy surface and reactive dynamic simulations for the hydrogen combustion. Journal of Computational Chemistry, 2014, 35, 1330-1337.	3.3	4
42	Direct numerical simulation of bluff-body-stabilized premixed flames. , 2014, , .		0
43	High fidelity radiative heat transfer models for high-pressure laminar hydrogen–air diffusion flames. Combustion Theory and Modelling, 2014, 18, 607-626.	1.9	18
44	A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi. Combustion and Flame, 2014, 161, 711-724.	5.2	54
45	Effects of flow-field and mixture inhomogeneities on the ignition dynamics in continuous flow reactors. Combustion and Flame, 2014, 161, 2317-2326.	5.2	9
46	Laminar burning velocity of lean H2–CO mixtures at elevated pressure using the heat flux method. International Journal of Hydrogen Energy, 2014, 39, 1485-1498.	7.1	58
47	Laminar burning velocities of rich near-limiting flames of hydrogen. International Journal of Hydrogen Energy, 2014, 39, 1874-1881.	7.1	19
48	An improved kinetic mechanism for 3-pentanone pyrolysis and oxidation developed using multispecies time histories in shock-tubes. Combustion and Flame, 2014, 161, 1135-1145.	5.2	23
49	Kinetic interactions between hydrogen and carbon monoxide oxidation over platinum. Combustion and Flame, 2014, 161, 332-346.	5.2	47
50	New insights into the peculiar behavior of laminar burning velocities of hydrogen–air flames according to pressure and equivalence ratio. Combustion and Flame, 2014, 161, 2235-2241.	5.2	48
51	Recent progress and challenges in exploiting graphics processors in computational fluid dynamics. Journal of Supercomputing, 2014, 67, 528-564.	3.6	74
52	A review of hydrogen and natural gas addition in diesel HCCI engines. Renewable and Sustainable Energy Reviews, 2014, 32, 739-761.	16.4	120
53	Simulation of turbulent explosion of hydrogen–air mixtures. International Journal of Hydrogen Energy, 2014, 39, 9562-9572.	7.1	26
54	Comparison of multireference configuration interaction potential energy surfaces for HÂ+ÂO2Â→ÂHO2: the effect of internal contraction. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	21
55	Recent advances in understanding of flammability characteristics ofÂhydrogen. Progress in Energy and Combustion Science, 2014, 41, 1-55.	31.2	318

#	Article	IF	CITATIONS
56	Uncertainty-quantification analysis of the effects of residual impurities on hydrogen–oxygen ignition in shock tubes. Combustion and Flame, 2014, 161, 1-15.	5.2	64
57	An updated detailed reaction mechanism for syngas combustion. RSC Advances, 2014, 4, 4564-4585.	3.6	8
58	Mechanism optimization based on reaction rate rules. Combustion and Flame, 2014, 161, 405-415.	5.2	97
59	Modeling and simulation of hydrogen combustion in engines. International Journal of Hydrogen Energy, 2014, 39, 1122-1136.	7.1	152
60	Evaluation of Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A Case Study for Lowâ€Temperature Dimethyl Ether Oxidation. International Journal of Chemical Kinetics, 2014, 46, 662-682.	1.6	43
61	Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. International Journal of Hydrogen Energy, 2014, 39, 20242-20254.	7.1	17
62	Pressure-Coupled Responses of LOX Droplet Vaporization and Combustion in High-Pressure Hydrogen Environments. Combustion Science and Technology, 2014, 186, 1191-1208.	2.3	8
63	Assessment of Chemical Kinetic Modeling for Silane/Hydrogen Mixtures in Hypersonic Applications. AIAA Journal, 2014, 52, 2213-2222.	2.6	7
64	Quantitative atomic hydrogen measurements in premixed hydrogen tubular flames. Combustion and Flame, 2014, 161, 2924-2932.	5.2	24
65	Determination of the Rate Constant for the OH(X ² Î) + OH(X ² Î) → H ₂ O + O(³ P) Reaction Over the Temperature Range 295 to 701 K. Journal of Physical Chemistry A, 2014, 118, 38-54.	2.5	21
66	Large-Eddy/Reynolds-Averaged Navier–Stokes Simulations of Reactive Flow in Dual-Mode Scramjet Combustor. Journal of Propulsion and Power, 2014, 30, 558-575.	2.2	63
67	Pressure dependence of mass burning rates in diluent premixed flames of H2/O2 at high pressures. Journal of Mechanical Science and Technology, 2014, 28, 1125-1133.	1.5	1
68	A detailed numerical study of NOx kinetics in low calorific value H2/CO syngas flames. International Journal of Hydrogen Energy, 2014, 39, 17358-17370.	7.1	22
69	Effects of H2S addition on hydrogen ignition behind reflected shock waves: Experiments and modeling. Combustion and Flame, 2014, 161, 23-36.	5.2	33
70	Uncertainties in interpretation of high pressure spherical flame propagation rates due to thermal radiation. Combustion and Flame, 2014, 161, 147-153.	5.2	74
71	A comparison of literature models for the oxidation of normal heptane. Combustion and Flame, 2014, 161, 1984-1992.	5.2	10
72	A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 2014, 161, 866-884.	5.2	153
73	Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs. Journal of Computational Physics, 2014, 256, 854-871.	3.8	55

			2
#	ARTICLE	IF	CITATIONS
74	Comparison of the performance of several recent hydrogen combustion mechanisms. Combustion and Flame, 2014, 161, 2219-2234.	5.2	144
75	Radiation-induced uncertainty in laminar flame speed measured from propagating spherical flames. Combustion and Flame, 2014, 161, 2815-2824.	5.2	166
76	Interpreting chemical kinetics from complex reaction–advection–diffusion systems: Modeling of flow reactors and related experiments. Progress in Energy and Combustion Science, 2014, 44, 19-39.	31.2	87
77	Advances and challenges in laminar flame experiments and implications for combustion chemistry. Progress in Energy and Combustion Science, 2014, 43, 36-67.	31.2	434
78	Experimental and Kinetic Studies of Acetylene Flames at Elevated Pressures. , 2014, , .		5
79	On the Role of Translational Nonequilibrium for Hydrogen Air Plasma Assisted Ignition. , 2015, , .		0
80	Accurate transport properties for H–CO and H–CO2. Journal of Chemical Physics, 2015, 143, 054303.	3.0	7
81	Modelling of Transient Stretched Laminar Flame Speed of Hydrogen-air Mixtures Using Combustion Kinetics. Energy Procedia, 2015, 66, 137-140.	1.8	0
82	LES Model Assessment for High Speed Combustion using Mesh-Sequenced Realizations. , 2015, , .		5
83	Application of the Optimized Decoupling Methodology for the Construction of a Skeletal Primary Reference Fuel Mechanism Focusing on Engine-Relevant Conditions. Frontiers in Mechanical Engineering, 2015, 1, .	1.8	53
84	Computational Fluid Dynamics Simulations of a GO2/GH2 Single Element Combustor. Journal of Propulsion and Power, 2015, 31, 1707-1714.	2.2	25
85	Effect of hydrogen addition on the counterflow ignition of n-butanol at atmospheric and elevated pressures. International Journal of Hydrogen Energy, 2015, 40, 16618-16633.	7.1	10
86	Sensitivity Analysis of Auto-Ignition Simulation at Gas Turbine Operating Conditions. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	5
87	4D Data Assimilation for Large Eddy Simulation of High Speed Turbulent Combustion. , 2015, , .		1
88	Large-Eddy Simulation of Autoignition-Dominated Supersonic Combustion. , 2015, , .		1
89	High temperature oxidation of formaldehyde and formyl radical: A study of 1,3,5-trioxane laminar burning velocities. Proceedings of the Combustion Institute, 2015, 35, 687-694.	3.9	29
90	Hetero-/homogeneous combustion of syngas mixtures over platinum at fuel-rich stoichiometries and pressures up to 14 bar. Proceedings of the Combustion Institute, 2015, 35, 2223-2231.	3.9	25
91	Key parameters governing the precessing vortex core in reacting flows: An experimental and analytical study. Proceedings of the Combustion Institute, 2015, 35, 3347-3354.	3.9	77

#	Article	IF	CITATIONS
92	Experimental and kinetic studies of acetylene flames at elevated pressures. Proceedings of the Combustion Institute, 2015, 35, 721-728.	3.9	78
93	Experimental and modeling study of the effect of elevated pressure on lean high-hydrogen syngas flames. Proceedings of the Combustion Institute, 2015, 35, 655-662.	3.9	42
94	Influence of the double bond position on the oxidation of decene isomers at high pressures and temperatures. Proceedings of the Combustion Institute, 2015, 35, 333-340.	3.9	26
95	Quantitative measurements of HO 2 /H 2 O 2 and intermediate species in low and intermediate temperature oxidation of dimethyl ether. Proceedings of the Combustion Institute, 2015, 35, 457-464.	3.9	61
96	Minor-species structure of premixed cellular tubular flames. Proceedings of the Combustion Institute, 2015, 35, 1107-1114.	3.9	17
97	Determination of burning velocities from spherically expanding H 2 /air flames. Proceedings of the Combustion Institute, 2015, 35, 711-719.	3.9	57
98	Dominant chemical source and reaction modes in lean premixed H 2 /air flames. Proceedings of the Combustion Institute, 2015, 35, 787-794.	3.9	4
99	On the Rational Interpretation of Data on Laminar Flame Speeds and Ignition Delay Times. Combustion Science and Technology, 2015, 187, 27-36.	2.3	19
100	Plasma assisted combustion: Dynamics and chemistry. Progress in Energy and Combustion Science, 2015, 48, 21-83.	31.2	852
101	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code. , 2015, , .		1
101 102	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80.	1.9	1
101 102 103	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code., 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076.	1.9	1 2 55
101 102 103 104	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453.	1.9 5.2 5.2	1 2 55 206
101 102 103 104	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898.	1.9 5.2 5.2 5.2	1 2 55 206 110
101 102 103 104 105	Implementation of Thermochemistry and Chemical Kinetics in a GPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898. 1-, 2- and 3-Pentanol combustion in laminar hydrogen flames – A comparative experimental and modeling study. Combustion and Flame, 2015, 162, 3197-3209.	1.9 5.2 5.2 5.2 5.2	1 2 55 206 110 32
 101 102 103 104 105 106 107 	Implementation of Thermochemistry and Chemical Kinetics in a CPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898. 1., 2- and 3-Pentanol combustion in laminar hydrogen flames – A comparative experimental and modeling study. Combustion and Flame, 2015, 162, 3197-3209. Development of a skeletal mechanism for diesel surrogate fuel by using a decoupling methodology. Combustion and Flame, 2015, 162, 3785-3802.	1.9 5.2 5.2 5.2 5.2 5.2	1 2 55 206 110 32
 101 102 103 104 104 105 106 107 108 	Implementation of Thermochemistry and Chemical Kinetics in a CPU-based CFD Code. , 2015, , . Combustion mechanism of ultralean rotating counterflow twin premixed flame. Combustion Theory and Modelling, 2015, 19, 57-80. Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076. On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure. Combustion and Flame, 2015, 162, 2442-2453. The effect of temperature on the adiabatic burning velocities of diluted hydrogen flames: A kinetic study using an updated mechanism. Combustion and Flame, 2015, 162, 1884-1898. 1., 2- and 3-Pentanol combustion in laminar hydrogen flames – A comparative experimental and modeling study. Combustion and Flame, 2015, 162, 3197-3209. Development of a skeletal mechanism for diesel surrogate fuel by using a decoupling methodology. Combustion and Flame, 2015, 162, 3197-3209. Stretch and Curvature Effects on NO Emission of H ₂ /Air Diffusion Flames. Combustion Flames. Combustion Science and Technology, 2015, 187, 1520-1541.	1.9 5.2 5.2 5.2 5.2 5.2 2.3	1 2 55 206 110 32 162 4

#	Article	IF	CITATIONS
110	Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	25
111	Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. Journal of Physical Chemistry A, 2015, 119, 7095-7115.	2.5	37
112	Adjoint-based sensitivity analysis of flames. Combustion Theory and Modelling, 2015, 19, 29-56.	1.9	26
113	Combustion simulations with accurate transport properties for reactive intermediates. Combustion and Flame, 2015, 162, 2480-2486.	5.2	17
114	Effects of radiation on the uncertainty of flame speed determination using spherically propagating flames with CO/CO2/H2O dilutions at elevated pressures. International Journal of Heat and Mass Transfer, 2015, 86, 820-825.	4.8	22
115	A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates. Combustion and Flame, 2015, 162, 1193-1213.	5.2	71
116	Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combustion and Flame, 2015, 162, 1623-1637.	5.2	276
117	H ₂ /air autoignition: The nature and interaction of the developing explosive modes. Combustion Theory and Modelling, 2015, 19, 382-433.	1.9	46
118	Vibrational non-equilibrium in the hydrogen–oxygen reaction. Comparison with experiment. Combustion Theory and Modelling, 2015, 19, 131-158.	1.9	7
119	Rate Coefficient Determinations for H + NO ₂ → OH + NO from High Pressure Flow Reactor Measurements. Journal of Physical Chemistry A, 2015, 119, 7792-7801.	2.5	9
120	Chemical Kinetic Influences of Alkyl Chain Structure on the High Pressure and Temperature Oxidation of a Representative Unsaturated Biodiesel: Methyl Nonenoate. Journal of Physical Chemistry A, 2015, 119, 7559-7577.	2.5	20
121	DSMC Simulation of Non-Premixed Combustion of H2/O2in a Y-shaped Microchannel. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 31-62.	2.6	7
122	Development of a RANS and LES/RANS Flow Solver for High-Speed Engine Flowpath Simulations. , 2015, ,		9
123	Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy. Optics Express, 2015, 23, 7217.	3.4	16
124	Detailed Simulations of Weak-to-Strong Ignition of a H2/O2/Ar Mixture in Shock-Tubes. , 2015, , 209-214.		2
125	Non-Equilibrium Plasma-Assisted Flow Reactor Studies of Highly Diluted Reactive Mixtures. , 2015, , .		4
126	Plasma assisted combustion: kinetic studies and new combustion technology. , 2015, , .		1
127	Numerical and Experimental Investigation of Nanosecond-Pulsed Plasma Activated C2H4/O2/Ar Mixtures in a Low Temperature Flow Reactor. , 2015, , .		2

ARTICLE IF CITATIONS # Maximum stretched flame speeds of laminar premixed counter-flow flames at variable Lewis number. 128 5.2 23 Combustion and Flame, 2015, 162, 3324-3332. Vibrational CARS thermometry and one-dimensional simulations in laminar H 2 /air counter-flow 129 7.1 diffusion flames. International Journal of Hydrogen Energy, 2015, 40, 10662-10672. Understanding low-temperature first-stage ignition delay: Propane. Combustion and Flame, 2015, 162, 130 5.2122 3658-3673. On the role of â€⁻hotâ€[™] atoms in plasma-assisted ignition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140343. Plasma Assisted Combustion Mechanism for Small Hydrocarbons., 2015,,. 132 1 Combustion kinetic model uncertainty quantification, propagation and minimization. Progress in Energy and Combustion Science, 2015, 47, 1-31. 31.2 238 Numerical study of unstable hydrogen/air flames: Shape and propagation speed. Proceedings of the 134 3.9 52 Combustion Institute, 2015, 35, 1087-1095. Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proceedings of the Combustion Institute, 2015, 35, 2181-2189. 3.9 58 Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. 136 3.9 145 Proceedings of the Combustion Institute, 2015, 35, 589-596. Studies of premixed and non-premixed hydrogen flames. Combustion and Flame, 2015, 162, 1078-1094. 5.2 Uncertainty analysis of the kinetic model prediction for high-pressure H 2 /CO combustion. 138 47 3.9 Proceedings of the Combustion Institute, 2015, 35, 617-624. Structural analysis of combustion mechanisms. Journal of Mathematical Chemistry, 2015, 53, 86-110. 1.5 Computational analysis of re-ignition and re-initiation mechanisms of guenched detonation waves 140 3.9 27 behind a backward facing step. Proceedings of the Combustion Institute, 2015, 35, 1963-1972. In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor. Proceedings of the Combustion Institute, 2015, 35, 3505-3512. 141 Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. 142 3.9 164 Proceedings of the Combustion Institute, 2015, 35, 663-670. Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic 143 3.9 modeling. Proceedings of the Combustion Institute, 2015, 35, 553-560. Development of an Ethanol Combustion Mechanism Based on a Hierarchical Optimization Approach. 144 1.6 77 International Journal of Chemical Kinetics, 2016, 48, 423-441. Harnessing the Combined Power of Theoretical and Experimental Data through Multiscale 146 Informatics. International Journal of Chemical Kinetics, 2016, 48, 212-235.

ARTICLE IF CITATIONS The role of spontaneous waves in the deflagration-to-detonation transition in submillimetre 147 1.9 42 channels. Combustion Theory and Modelling, 2016, 20, 1068-1087. Learning the mechanisms of chemical disequilibria. Journal of Chemical Physics, 2016, 145, 084112. 148 A Systematically Updated Detailed Kinetic Model for CH₂O and CH₃OH 149 5.1 25 Combustion. Energy & amp; Fuels, 2016, 30, 6709-6726. Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen–air diffusion flame. Combustion and Flame, 2016, 174, 152-165. Quantum Scattering Calculations of Transport Properties for the H–N₂ and 151 2.5 8 H〓CH₄ Collision Pairs. Journal of Physical Chemistry A, 2016, 120, 7793-7799. An ignition delay time and kinetic study of 2-methyltetrahydrofuran at high temperatures. Fuel, 2016, 6.4 186, 758-769. Construction of one-step H2/O2 reaction mechanism for predicting ignition and its application in 153 7.1 31 simulation of supersonic combustion. International Journal of Hydrogen Energy, 2016, 41, 19191-19206. Combustion stability and hetero-/homogeneous chemistry interactions for fuel-lean hydrogen/air 154 5.2 mixtures in platinum-coated microchannels. Combustion and Flame, 2016, 173, 370-386. Laminar flame characteristics and kinetic modeling study of methanol-isooctane blends at elevated 155 33 6.4 temperatures. Fuel, 2016, 184, 836-845. Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation, Part 2: NOx in High Hydrogen Content Fuel Combustion at Elevated Pressure. Energy & amp; Fuels, 2016, 30, 5.1 34 7691-7703. Sub- or Supercritical? A flamelet analysis of high pressure rocket propellant injection., 2016, , . 157 14 Relationship between ignition delay time and cell size of H2-Air detonation. International Journal of Hydrogen Energy, 2016, 41, 11900-11908. High-pressure oxidation of methane. Combustion and Flame, 2016, 172, 349-364. 159 5.2 157 The effects of water addition on the laminar flame speeds of CO/H2/O2/H2O mixtures. International 7.1 Journal of Hydrogen Energy, 2016, 41, 10976-10985. Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. 161 5.285 Combustion and Flame, 2016, 171, 112-118. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames. Combustion Science and Technology, 2016, 188, 1182-1198. Reaction of hydrogen atoms with singlet delta oxygen (O₂(<i>a</i>¹î"_g)). Is everything completely clear?. Journal Physics 163 2.8 8 D: Applied Physics, 2016, 49, 485202. An accurate multi-channel multi-reference full-dimensional global potential energy surface for the lowest triplet state of H2O2. Physical Chemistry Chemical Physics, 2016, 18, 29825-29835. 164 2.8

#	Article	IF	CITATIONS
165	Application of the Evolution-Variable Manifold Approach to Cavity-Stabilized Ethylene Combustion. , 2016, , .		2
166	Improved 4D Data Assimilation for Large-Eddy Simulation of High-Speed Turbulent Combustion. , 2016, ,		3
167	Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. International Journal of Hydrogen Energy, 2016, 41, 13261-13280.	7.1	42
168	On colliding spherical flames: Morphology, corner dynamics, and flame-generated vorticity. Combustion and Flame, 2016, 167, 444-451.	5.2	0
169	Laminar flame speeds of lean high-hydrogen syngas at normal and elevated pressures. Fuel, 2016, 181, 958-963.	6.4	23
170	Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach. International Journal of Chemical Kinetics, 2016, 48, 407-422.	1.6	122
171	Effects of heterogeneous–homogeneous interaction on theÂhomogeneous ignition in hydrogen-fueled catalytic microreactors. International Journal of Hydrogen Energy, 2016, 41, 11441-11454.	7.1	17
172	Nanosecond Pulsed Plasma Activated C2H4/O2/Ar Mixtures in a Flow Reactor. Journal of Propulsion and Power, 2016, 32, 1240-1252.	2.2	38
173	Parallel On-the-fly Adaptive Kinetics for Non-equilibrium Plasma Discharges of C2H4/O2/Ar Mixture. , 2016, , .		14
174	Major Species Investigation of Non-Premixed Cellular Tubular Flame. , 2016, , .		0
174 175	Major Species Investigation of Non-Premixed Cellular Tubular Flame. , 2016, , . Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor. , 2016, , .		0
174 175 176	Major Species Investigation of Non-Premixed Cellular Tubular Flame., 2016,,. Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor., 2016,,. A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism., 2016,,.		0 4 0
174 175 176 177	Major Species Investigation of Non-Premixed Cellular Tubular Flame., 2016,,. Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor., 2016,,. A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism., 2016,,. An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 2016, 141, 214-230.	3.8	0 4 0 45
174 175 176 177 178	 Major Species Investigation of Non-Premixed Cellular Tubular Flame. , 2016, , . Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor. , 2016, , . A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism. , 2016, , . An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 2016, 141, 214-230. Experimental and theoretical studies of laminar flame speed of CO/H 2 in O 2 /H 2 O atmosphere. International Journal of Hydrogen Energy, 2016, 41, 3272-3283. 	3.8	0 4 0 45 43
174 175 176 177 178 179	 Major Species Investigation of Non-Premixed Cellular Tubular Flame. , 2016, , . Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor. , 2016, , . A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism. , 2016, , . An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 2016, 141, 214-230. Experimental and theoretical studies of laminar flame speed of CO/H 2 in O 2 /H 2 O atmosphere. International Journal of Hydrogen Energy, 2016, 41, 3272-3283. Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combustion and Flame, 2016, 164, 319-328. 	3.8 7.1 5.2	0 4 0 45 43 62
174 175 176 177 178 179 180	 Major Species Investigation of Non-Premixed Cellular Tubular Flame., 2016, ,. Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor., 2016, ,. A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism., 2016, ,. An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 2016, 141, 214-230. Experimental and theoretical studies of laminar flame speed of CO/H 2 in O 2 /H 2 O atmosphere. International Journal of Hydrogen Energy, 2016, 41, 3272-3283. Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combustion and Flame, 2016, 164, 319-328. Reactive symbol sequences for a model of hydrogen combustion. Physical Chemistry Chemical Physics, 2016, 18, 2810-2817. 	3.8 7.1 5.2 2.8	0 4 0 45 43 62 12
174 175 176 177 178 179 180	 Major Species Investigation of Non-Premixed Cellular Tubular Flame., 2016, ,. Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor., 2016, ,. A Smart CSP Method and Correlated Dynamic Adaptive Chemistry and Transport Algorithm for Computationally Efficient Modeling with A Detailed Mechanism., 2016, ,. An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chemical Engineering Science, 2016, 141, 214-230. Experimental and theoretical studies of laminar flame speed of CO/H 2 in O 2 /H 2 O atmosphere. International Journal of Hydrogen Energy, 2016, 41, 3272-3283. Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combustion and Flame, 2016, 164, 319-328. Reactive symbol sequences for a model of hydrogen combustion. Physical Chemistry Chemical Physics, 2016, 18, 2810-2817. Numerical study of laminar flame speed of fuel-stratified hydrogen/air flames. Combustion and Flame, 2016, 163, 394-405. 	3.8 7.1 5.2 2.8 5.2	0 4 0 45 43 62 12 37

#	Article	IF	CITATIONS
183	Kinetic modeling and sensitivity analysis of plasma-assisted oxidation in a H2/O2/Ar mixture. Combustion and Flame, 2016, 164, 239-249.	5.2	28
184	A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames. Combustion and Flame, 2016, 163, 220-240.	5.2	66
185	Effectiveness of Xenon as a Fire Suppressant Under Microgravity Combustion Environment. Combustion Science and Technology, 2016, 188, 145-165.	2.3	7
186	Three-dimensional direct numerical simulations of turbulent fuel-lean H2/air hetero-/homogeneous combustion over Pt with detailed chemistry. Proceedings of the Combustion Institute, 2017, 36, 4355-4363.	3.9	10
187	Reaction class-based frameworks for heterogeneous catalytic systems. Proceedings of the Combustion Institute, 2017, 36, 4329-4338.	3.9	8
188	Major species measurements and simulation of partially-premixed, cellular, tubular H2-air flames. , 2017, , .		2
189	Automated Generation of Chemical Mechanisms for Predicting Extinction Strain Rates with Applications in Flame Stabilization and Combustion Instabilitie. , 2017, , .		4
190	Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber. International Journal of Hydrogen Energy, 2017, 42, 10501-10512.	7.1	17
191	Mechanism of Plasma-Assisted Ignition for H2 and C1-C5 Hydrocarbons. , 2017, , .		8
192	Seven questions about supercritical fluids - towards a new fluid state diagram. , 2017, , .		33
193	Effect of Translational Nonequilibrium and "Hot―Atoms Reactions on Active Species Production in High-Voltage Pulsed Discharges. , 2017, , .		0
194	Numerical framework for transcritical real-fluid reacting flow simulations using the flamelet progress variable approach. , 2017, , .		16
195	Numerical Simulation of Supersonic Premixed Turbulent Combustion. , 2017, , .		7
196	Hybrid Multi-Timescale and G-Scheme Method for Efficient Modeling with Detailed Chemical Kinetics. , 2017, , .		0
197	OH and CH ₂ O Laser-Induced Fluorescence Measurements for Hydrogen Flames and Methane, <i>n</i> -Butane, and Dimethyl Ether Weak Flames in a Micro Flow Reactor with a Controlled Temperature Profile. Energy & Fuels, 2017, 31, 2298-2307.	5.1	14
198	Comparative study of the simulation ability of various recent hydrogen combustion mechanisms in HCCI engines using stochastic reactor model. International Journal of Hydrogen Energy, 2017, 42, 11911-11925.	7.1	11
199	Investigation on the oxidation chemistry of methanol in laminar premixed flames. Combustion and Flame, 2017, 180, 20-31.	5.2	45
200	pyJac: Analytical Jacobian generator for chemical kinetics. Computer Physics Communications, 2017, 215, 188-203.	7.5	55

#	Article	IF	CITATIONS
201	lgnition in an Atomistic Model of Hydrogen Oxidation. Journal of Physical Chemistry A, 2017, 121, 1686-1692.	2.5	7
202	An investigation of GPU-based stiff chemical kinetics integration methods. Combustion and Flame, 2017, 179, 312-324.	5.2	15
203	Microkinetic Mechanisms for Partial Oxidation of Methane over Platinum and Rhodium. Journal of Physical Chemistry C, 2017, 121, 9442-9453.	3.1	22
204	Kinetic interplay between hydrogen and carbon monoxide in syngas-fueled catalytic micro-combustors. International Journal of Hydrogen Energy, 2017, 42, 12681-12695.	7.1	10
205	Experimental Design for Discrimination of Chemical Kinetic Models for Oxy-Methane Combustion. Energy & Fuels, 2017, 31, 5533-5542.	5.1	17
206	Wall-Modeled Large-Eddy Simulation of Autoignition-Dominated Supersonic Combustion. AIAA Journal, 2017, 55, 2410-2423.	2.6	25
207	Chemical kinetics and CFD analysis of supercharged micro-pilot ignited dual-fuel engine combustion of syngas. Fuel, 2017, 203, 591-606.	6.4	14
208	Quantification of combustion regime transitions in premixed turbulent DME flames. Combustion and Flame, 2017, 182, 248-268.	5.2	27
209	Characteristics of Methanol Hydrothermal Combustion: Detailed Chemical Kinetics Coupled with Simple Flow Modeling Study. Industrial & Engineering Chemistry Research, 2017, 56, 5469-5478.	3.7	26
210	Effect of turbulence–chemistry interactions on chemical pathways for turbulent hydrogen–air premixed flames. Combustion and Flame, 2017, 176, 191-201.	5.2	35
211	High-order discontinuous Galerkin method for applications to multicomponent and chemically reacting flows. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 486-499.	3.4	16
212	Assessing the predictions of a NO x kinetic mechanism on recent hydrogen and syngas experimental data. Combustion and Flame, 2017, 182, 122-141.	5.2	168
213	X-ray diffraction data-assisted structure searches. Computer Physics Communications, 2017, 213, 40-45.	7.5	30
214	On the role of the termolecular reactions 2O ₂ + H ₂ â†' 2HO ₂ and 2O ₂ + H ₂ + H ₂ in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers. Physical Chemistry Chemical Physics 2017, 19, 2175-2185	2.8	20
215	Effects of Initiation Radius Selection and Lewis Number on Extraction of Laminar Burning Velocities from Spherically Expanding Flames. Combustion Science and Technology, 2017, , 1-26.	2.3	2
216	Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism. Combustion and Flame, 2017, 186, 45-64.	5.2	61
217	Numerical Investigation on Flame Stabilization in DLR Hydrogen Supersonic Combustor with Strut Injection. Combustion Science and Technology, 2017, 189, 2154-2179.	2.3	50
218	Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion. , 2017, , .		3

#	Article	IF	CITATIONS
219	Impact of Gaseous Chemistry in H ₂ –O ₂ –N ₂ Combustion over Platinum at Fuel-Lean Stoichiometries and Pressures of 1.0–3.5 bar. Energy & Fuels, 2017, 31, 11448-11459.	5.1	10
220	Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion. Scientific Reports, 2017, 7, 11545.	3.3	32
221	Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combustion and Flame, 2017, 185, 63-74.	5.2	38
222	Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion. Journal of Chemical Physics, 2017, 147, 034108.	3.0	10
223	Full Scale Detached Eddy Simulation of Transverse Hydrogen Jet in Supersonic Combustion. , 2017, , .		0
224	Non-monotonic behaviors of laminar burning velocities of H2/O2/He mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy, 2017, 42, 22036-22045.	7.1	18
225	Challenges and perspectives of combustion chemistry research. Science China Chemistry, 2017, 60, 1391-1401.	8.2	15
226	Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry. Nature Chemistry, 2017, 9, 1078-1082.	13.6	85
227	Reaction of H ₂ with O ₂ in Excited Electronic States: Reaction Pathways and Rate Constants. Journal of Physical Chemistry A, 2017, 121, 9599-9611.	2.5	15
228	A comprehensive study of light hydrocarbon mechanisms performance in predicting methane/hydrogen/air laminar burning velocities. International Journal of Hydrogen Energy, 2017, 42, 17260-17274.	7.1	47
229	A Flamelet Model with Heat-Loss Effects for Predicting Wall-Heat Transfer in Rocket Engines. , 2017, , .		11
230	Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena. Progress in Energy and Combustion Science, 2017, 63, 1-78.	31.2	180
231	Impact of Infinite Thin Flame Approach on the Evaluation of Flame Speed using Spherically Expanding Flames. Energy Technology, 2017, 5, 1055-1063.	3.8	10
232	Monte Carlo simulation of the effect of "hot―atoms on active species kinetics in combustible mixtures excited by high-voltage pulsed discharges. Combustion and Flame, 2017, 176, 181-190.	5.2	8
233	Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renewable and Sustainable Energy Reviews, 2017, 69, 50-58.	16.4	111
234	From theoretical reaction dynamics to chemical modeling of combustion. Proceedings of the Combustion Institute, 2017, 36, 77-111.	3.9	199
235	Dual timestepping methods for detailed combustion chemistry. Combustion Theory and Modelling, 2017, 21, 329-345.	1.9	7
236	Modeling the kinetics of the Shockless Explosion Combustion. Combustion and Flame, 2017, 175, 16-26.	5.2	29

#	Article	IF	CITATIONS
237	Laminar flame speeds and kinetic modeling of H2/O2/diluent mixtures at sub-atmospheric and elevated pressures. Proceedings of the Combustion Institute, 2017, 36, 491-498.	3.9	23
238	Evaluating Mixture Rules for Multi-Component Pressure Dependence: H + O2 (+M) = HO2 (+M). Proceedings of the Combustion Institute, 2017, 36, 245-253.	3.9	34
239	Effects of radiation absorption on spherical flame propagation and radiation-induced uncertainty in laminar flame speed measurement. Proceedings of the Combustion Institute, 2017, 36, 1129-1136.	3.9	47
240	Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 2017, 36, 2735-2742.	3.9	89
241	Assessment of Vibrational Non-Equilibrium Effect on Detonation Cell Size. Combustion Science and Technology, 2017, 189, 841-853.	2.3	48
242	Experimental and numerical study of H2-air non-premixed cellular tubular flames. Proceedings of the Combustion Institute, 2017, 36, 1595-1602.	3.9	8
243	Structure of premixed H2/O2/Ar flames at 1–5 atm studied by molecular beam mass spectrometry and numerical simulation. Proceedings of the Combustion Institute, 2017, 36, 1233-1240.	3.9	23
245	Application of OH(2,0) Band Excitation Planar Laser-Induced Fluorescence to High-Pressure H ₂ /O ₂ Jet Flames for Rocket Combustion. Transactions of the Japan Society for Aeronautical and Space Sciences, 2017, 60, 116-123.	0.7	5
246	Chemical Kinetics and Computational Fluid-Dynamics Analysis of H ₂ /CO/CO ₂ /CH ₄ Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine. , 0, , .		2
247	Numerical Simulations of the Flame of a Single Coaxial Injector. International Journal of Aerospace Engineering, 2017, 2017, 1-11.	0.9	8
248	Surface Assisted Combustion of Hydrogen-Oxygen Mixture in Nanobubbles Produced by Electrolysis. Energies, 2017, 10, 178.	3.1	13
249	Nonadiabatic Flamelet Formulation for Predicting Wall Heat Transfer in Rocket Engines. AIAA Journal, 2018, 56, 2336-2349.	2.6	36
250	Automatic generation of a kinetic skeletal mechanism for methane-hydrogen blends with nitrogen chemistry. International Journal of Hydrogen Energy, 2018, 43, 3330-3341.	7.1	15
251	Automated Reaction Mechanism Generation Including Nitrogen as a Heteroatom. International Journal of Chemical Kinetics, 2018, 50, 243-258.	1.6	23
252	Kinetics of autoignition: a simple intuitive interpretation and its relation to the Livengood–Wu integral. Physical Chemistry Chemical Physics, 2018, 20, 10762-10769.	2.8	15
253	Numerical study of hydrogen–oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun. International Journal of Hydrogen Energy, 2018, 43, 5405-5414.	7.1	9
254	Turbulent Combustion Simulations with High-Performance Computing. Energy, Environment, and Sustainability, 2018, , 73-97.	1.0	4
255	Effects of content of hydrogen on the characteristics of co-flow laminar diffusion flame of hydrogen/nitrogen mixture in various flow conditions. International Journal of Hydrogen Energy, 2018 43 3015-3033	7.1	8

#	Article	IF	CITATIONS
256	Modeling study of the anti-knock tendency of substituted phenols as additives: an application of the reaction mechanism generator (RMG). Physical Chemistry Chemical Physics, 2018, 20, 10637-10649.	2.8	35
257	Numerical Investigation of Supercritical Combustion of H ₂ –O ₂ . Energy & Fuels, 2018, 32, 3851-3868.	5.1	2
258	On the consistency of state vectors and Jacobian matrices. Combustion and Flame, 2018, 193, 257-271.	5.2	9
259	A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry. Journal of Computational Physics, 2018, 368, 47-68.	3.8	11
260	Representing Model Inadequacy: A Stochastic Operator Approach. SIAM-ASA Journal on Uncertainty Quantification, 2018, 6, 457-496.	2.0	27
261	Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration. Computers and Fluids, 2018, 173, 73-79.	2.5	52
262	Analysis of Hydrogen/Air Turbulent Premixed Flames at Different Karlovitz Numbers Using Computational Singular Perturbation. , 2018, , .		9
263	Effects of steam dilution on laminar flame speeds of H2/air/H2O mixtures at atmospheric and elevated pressures. International Journal of Hydrogen Energy, 2018, 43, 7538-7549.	7.1	30
264	Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	1.1	16
265	Development of a new skeletal mechanism for decalin oxidation under engine relevant conditions. Fuel, 2018, 212, 41-48.	6.4	11
266	New insights into the shock tube ignition of H2/O2 at low to moderate temperatures using high-speed end-wall imaging. Combustion and Flame, 2018, 187, 11-21.	5.2	74
267	Direct numerical simulation of turbulent channel-flow catalytic combustion: Effects of Reynolds number and catalytic reactivity. Combustion and Flame, 2018, 187, 52-66.	5.2	10
268	Controllability and reachability of reactions with temperature and inflow control. Fuel, 2018, 211, 906-911.	6.4	11
269	Recent progress in gasoline surrogate fuels. Progress in Energy and Combustion Science, 2018, 65, 67-108.	31.2	302
270	Uncertainty reduction in laminar flame speed extrapolation for expanding spherical flames. Combustion and Flame, 2018, 189, 155-162.	5.2	34
271	Application of reactingCentralFOAM for modeling processes in combustion test chamber. AIP Conference Proceedings, 2018, , .	0.4	0
272	The effect of the composition of elementary chemical reactions and the uncertainty of the rate constants on the accuracy of calculating the rate of hydrogen oxidation. Journal of Physics: Conference Series, 2018, 1111, 012021.	0.4	0
273	Numerical Study on NOx Reduction in Pulse Detonation Combustion by Using Steam Injection Decoupled From Detonation Development. Journal of Engineering for Gas Turbines and Power, 2018, 140	1.1	8

#	Article	IF	CITATIONS
274	Generalized flame surface density transport conditional on flow topologies for turbulent H2-air premixed flames in different regimes of combustion. Numerical Heat Transfer; Part A: Applications, 2018, 74, 1353-1367.	2.1	1
275	Using SIMD and SIMT vectorization to evaluate sparse chemical kinetic Jacobian matrices and thermochemical source terms. Combustion and Flame, 2018, 198, 186-204.	5.2	6
276	Optimization of scramjet performance with different fuel injection techniques and flame holder cavities. Acta Astronautica, 2018, 152, 908-919.	3.2	41
277	On the Influence of Fuel Stratification and its Control on the Efficiency of the Shockless Explosion Combustion Cycle. , 2018, , .		3
278	The Formation of OH*(2Σ+) Radical in the Reaction of Hydrogen with Oxygen behind a Shock Wave in Nonequilibrium Conditions. Kinetics and Catalysis, 2018, 59, 545-552.	1.0	4
279	Numerical Study on NOx Reduction in Pulse Detonation Combustion by Using Steam Injection Decoupled From Detonation Development. , 2018, , .		0
280	Pressure effects on radiative heat transfer in hydrogen/air turbulent diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 220, 172-179.	2.3	13
281	Mechanisms performance and pressure dependence of hydrogen/air burner-stabilized flames. Mathematical Modelling of Natural Phenomena, 2018, 13, 51.	2.4	8
282	The unimportance of the reaction H2 + N2O ⇆ H2O + N2: A shock-tube study using H2O time historio ignition delay times. Combustion and Flame, 2018, 196, 478-486.	es and 5.2	18
283	H2/CO/air premixed and partially premixed flame structure at different pressures based on reaction limit analysis. Science Bulletin, 2018, 63, 1260-1266.	9.0	2
284	Explosion limits of hydrogen–oxygen mixtures from nonequilibrium critical points. Physical Chemistry Chemical Physics, 2018, 20, 15746-15752.	2.8	7
285	Experimental study on superheated steam generation by the reaction of high humidity hydrogen and oxygen in a model internal combustion steam generator. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1153-1160.	2.3	1
286	Effects of Soret diffusion on premixed flame propagation under engine-relevant conditions. Combustion and Flame, 2018, 194, 175-179.	5.2	19
287	Turbulent scalar fluxes in H ₂ -air premixed flames at low and high Karlovitz numbers. Combustion Theory and Modelling, 2018, 22, 1033-1048.	1.9	27
288	Computational fluid dynamics modeling of the combustion and emissions characteristics in high-temperature catalytic micro-combustors. Applied Thermal Engineering, 2018, 141, 711-723.	6.0	12
289	State space parameterization of explosive eigenvalues during autoignition. Combustion and Flame, 2018, 196, 182-196.	5.2	1
290	Self-acceleration and global pulsation in hydrodynamically unstable expanding laminar flames. Combustion and Flame, 2018, 194, 419-425.	5.2	38
291	Large Eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames. International Journal of Heat and Fluid Flow, 2018, 72, 151-160.	2.4	11

#	Article	IF	CITATIONS
292	A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures. Progress in Energy and Combustion Science, 2018, 68, 197-267.	31.2	329
293	Numerical investigation of oblique detonations induced by a finite wedge in a stoichiometric hydrogen-air mixture. Fuel, 2018, 234, 502-507.	6.4	38
294	Full-scale Improved Delayed Detached Eddy Simulation of Transverse Hydrogen Jet in Supersonic Combustion. , 2018, , .		1
295	Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications. Energies, 2018, 11, 1575.	3.1	2
296	Formation of ultra-lean comet-like flame in swirling hydrogen–air flow. Combustion and Flame, 2018, 196, 314-324.	5.2	5
297	Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides. Energy & Fuels, 2018, 32, 10202-10217.	5.1	220
298	Wall-Modeled Large Eddy Simulation of Supersonic Combustion using Flamelet/Progress-Variable Modeling. , 2018, , .		1
299	Laser absorption spectroscopy for high temperature H 2 O time-history measurement at 2.55 μm during oxidation of hydrogen. Chinese Physics B, 2018, 27, 074213.	1.4	1
300	Modeling Study of High Temperature Pyrolysis of Natural Gas. Industrial & Engineering Chemistry Research, 2018, 57, 7404-7420.	3.7	14
302	Development of an optimization methodology for formulating both jet fuel and diesel fuel surrogates and their associated skeletal oxidation mechanisms. Fuel, 2018, 231, 361-372.	6.4	29
303	Automated Chemical Kinetic Modeling via Hybrid Reactive Molecular Dynamics and Quantum Chemistry Simulations. Journal of Chemical Information and Modeling, 2018, 58, 1343-1355.	5.4	25
304	Evaluation of the reactivity of ultra-lean PRF/air mixtures by weak flames in a micro flow reactor with a controlled temperature profile. Combustion Science and Technology, 2018, 190, 1950-1970.	2.3	4
305	An optimization method for formulating model-based jet fuel surrogate by emulating physical, gas phase chemical properties and threshold sooting index (TSI) of real jet fuel under engine relevant conditions. Combustion and Flame, 2018, 193, 192-217.	5.2	36
306	Surface Density Function statistics in hydrogen-air flames for different turbulent premixed combustion regimes. Combustion Science and Technology, 2018, 190, 1988-2002.	2.3	11
307	Evaluation of heat release indicators in lean premixed H2/Air cellular tubular flames. Proceedings of the Combustion Institute, 2019, 37, 2029-2036.	3.9	4
308	Least Squares Minimization Closure Models for LES of Turbulent Combustion. Flow, Turbulence and Combustion, 2019, 102, 699-733.	2.6	5
309	Direct numerical simulations of turbulent catalytic and gas-phase combustion of H2/air over Pt at practically-relevant Reynolds numbers. Proceedings of the Combustion Institute, 2019, 37, 5489-5497.	3.9	8
310	Concerning shock-tube ignition delay times: An experimental investigation of impurities in the H2/O2 system and beyond. Proceedings of the Combustion Institute, 2019, 37, 259-266.	3.9	19

#	Article	IF	CITATIONS
311	Modeling of large-scale under-expanded hydrogen jet fires. Proceedings of the Combustion Institute, 2019, 37, 3943-3950.	3.9	11
312	Detonation initiation from shock and material interface interactions in hydrogen-air mixtures. Proceedings of the Combustion Institute, 2019, 37, 3513-3520.	3.9	15
313	Developing detailed chemical kinetic mechanisms for fuel combustion. Proceedings of the Combustion Institute, 2019, 37, 57-81.	3.9	228
314	Automated computational thermochemistry for butane oxidation: A prelude to predictive automated combustion kinetics. Proceedings of the Combustion Institute, 2019, 37, 363-371.	3.9	62
315	Computational realization of multiple flame stabilization modes in DLR strut-injection hydrogen supersonic combustor. Proceedings of the Combustion Institute, 2019, 37, 3685-3692.	3.9	38
316	Laminar flame propagation in supercritical hydrogen/air and methane/air mixtures. Proceedings of the Combustion Institute, 2019, 37, 1733-1739.	3.9	24
317	Measurement and simulation of partially-premixed cellular tubular flames. Proceedings of the Combustion Institute, 2019, 37, 2021-2028.	3.9	4
318	Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames. Proceedings of the Combustion Institute, 2019, 37, 1879-1886.	3.9	60
319	Automated chemical resonance generation and structure filtration for kinetic modeling. International Journal of Chemical Kinetics, 2019, 51, 760-776.	1.6	4
320	Analysis of the environmental factors influence on the efficiency of photovoltaic systems. IOP Conference Series: Materials Science and Engineering, 2019, 552, 012033.	0.6	5
321	Investigation of the Effect of Hydrogen and Methane on Combustion of Multicomponent Syngas Mixtures using a Constructed Reduced Chemical Kinetics Mechanism. Energies, 2019, 12, 2442.	3.1	13
322	Initiation of oblique detonation waves induced by a blunt wedge in stoichiometric hydrogen-air mixtures. Aerospace Science and Technology, 2019, 92, 676-684.	4.8	25
323	Molecular diffusion and phase stability in high-pressure combustion. Combustion and Flame, 2019, 210, 302-314.	5.2	13
324	Variation in Flame Temperature with Burner Stabilization in 1D Premixed Dimethyl Ether/Air Flames Measured by Spontaneous Raman Scattering. Energy & Fuels, 2019, 33, 11976-11984.	5.1	2
325	Thermal-chemical instability of weakly ionized plasma in a reactive flow. Journal Physics D: Applied Physics, 2019, 52, 484001.	2.8	29
326	Analysis of flame stabilization to a thermo-photovoltaic micro-combustor step in turbulent premixed hydrogen flame. Fuel, 2019, 257, 115989.	6.4	42
327	Numerical Investigation of Gaseous Hydrogen and Liquid Oxygen Combustion under Subcritical Condition. Energy & amp; Fuels, 2019, 33, 9249-9271.	5.1	3
328	Experimental and kinetic modeling investigation on laminar flame propagation of CH4/CO mixtures at various pressures: Insight into the transition from CH4-related chemistry to CO-related chemistry. Combustion and Flame, 2019, 209, 481-492.	5.2	20

#	Article	IF	CITATIONS
329	Computer-Generated Kinetics for Coupled Heterogeneous/Homogeneous Systems: A Case Study in Catalytic Combustion of Methane on Platinum. Industrial & Engineering Chemistry Research, 2019, 58, 17682-17691.	3.7	26
330	Application of dynamic zone flamelet model to a GH2/GO2 rocket combustor. , 2019, , .		3
331	Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process. Fluids, 2019, 4, 146.	1.7	14
332	Non-monotonic behavior of flame instability of 1,3-butadiene/O2/He mixture up to 1.5â€ ⁻ MPa. Fuel, 2019, 255, 115749.	6.4	10
333	Validation of LES for High-Pressure Gaseous H2-O2 Coaxial Jet Flame: Comparison with PLIF Measurements. , 2019, , .		1
334	Effects of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures. International Journal of Hydrogen Energy, 2019, 44, 23429-23435.	7.1	35
335	Large Eddy Simulation of Supersonic Combustion using the Flamelet/Progress-Variable Approach and the Evolution-Variable Manifold Approach. , 2019, , .		3
336	Investigation of influence of detailed chemical kinetics mechanisms for hydrogen on supersonic combustion using large eddy simulation. International Journal of Hydrogen Energy, 2019, 44, 5007-5019.	7.1	35
337	Automatic generation of reaction mechanisms. Computer Aided Chemical Engineering, 2019, , 259-294.	0.5	14
338	Detailed kinetics of fossil and renewable fuel combustion. Computer Aided Chemical Engineering, 2019, , 363-443.	0.5	18
339	Uncertainty quantification and minimization. Computer Aided Chemical Engineering, 2019, 45, 723-762.	0.5	6
340	Anab initiobased full-dimensional potential energy surface for OH + O2⇄ HO3and low-lying vibrational levels of HO3. Physical Chemistry Chemical Physics, 2019, 21, 13766-13775.	2.8	10
341	Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. Fuel, 2019, 252, 496-503.	6.4	33
342	Kinetic study on hydrogen oxidation in supercritical H2O/CO2 mixtures. Fuel Processing Technology, 2019, 193, 123-130.	7.2	15
343	Efficient time-stepping techniques for simulating turbulent reactive flows with stiff chemistry. Computer Physics Communications, 2019, 243, 81-96.	7.5	44
344	A Bayesian approach to calibrating hydrogen flame kinetics using many experiments and parameters. Combustion and Flame, 2019, 205, 305-315.	5.2	14
345	Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combustion and Flame, 2019, 205, 269-277.	5.2	59
346	The effect of dilution on the diffusive-thermal instability of the rich premixed hydrogen deflagration. International Journal of Hydrogen Energy, 2019, 44, 11153-11160.	7.1	7

#	Article	IF	CITATIONS
347	Construction of a Reduced PODE ₃ /Nature Gas Dual-Fuel Mechanism under Enginelike Conditions. Energy & Fuels, 2019, 33, 3504-3517.	5.1	11
349	Role of ozone doping in the explosion limits of hydrogen-oxygen mixtures: Multiplicity and catalyticity. Combustion and Flame, 2019, 205, 7-10.	5.2	29
350	High pressure study of H oxidation and its interaction with NO. International Journal of Hydrogen Energy, 2019, 44, 6325-6332.	7.1	9
351	Prediction of half reaction length for H2O2Ar detonation with an extended vibrational nonequilibrium Zel'dovich ⴒvon Neumann ⴒDöring (ZND) model. International Journal of Hydrogen Energy, 2019, 44, 7667-7674.	7.1	12
352	Efficiency of application of various layout arrangements of oil-gas burners in thermal power plant boilers. IOP Conference Series: Materials Science and Engineering, 2019, 552, 012008.	0.6	7
353	Reaction Kinetics of Active Species from an Atmospheric Pressure Plasma Jet Irradiated on the Flowing Water Surface — Effect of Gas-drag by the Sliding Water Surface —. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 535-540.	0.3	Ο
354	Relationship between cellular morphology and self-acceleration in lean hydrogen-air expanding flames. International Journal of Hydrogen Energy, 2019, 44, 31531-31543.	7.1	11
355	Effect of ignition energy on the uncertainty in the determination of laminar flame speed using outwardly propagating spherical flames. Proceedings of the Combustion Institute, 2019, 37, 1615-1622.	3.9	21
356	Cellular instability in LeÂ<Â1 turbulent expanding flames. Proceedings of the Combustion Institute, 2019, 37, 2611-2618.	3.9	21
357	Progress in non-intrusive laser-based measurements of gas-phase thermoscalars and supporting modeling near catalytic interfaces. Progress in Energy and Combustion Science, 2019, 70, 169-211.	31.2	47
358	Investigation of the turbulent flame structure and topology at different Karlovitz numbers using the tangential stretching rate index. Combustion and Flame, 2019, 200, 155-167.	5.2	35
359	Detailed Chemistry Investigation of Hydrogen and Hydrocarbon Based Fuel Mixture for Detonation Engine. , 2019, , .		0
360	Detonation onset in a thermally stratified constant volume reactor. Proceedings of the Combustion Institute, 2019, 37, 3529-3536.	3.9	17
361	Parallel chemistry acceleration algorithm with ISAT table-size control in the application of gaseous detonation. Shock Waves, 2019, 29, 523-535.	1.9	1
362	On the Influence of Fuel Stratification and Its Control on the Efficiency of the Shockless Explosion Combustion Cycle. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	1
363	Effects of Reaction Progress Variable Definition on the Flame Surface Density Transport Statistics and Closure for Different Combustion Regimes. Combustion Science and Technology, 2019, 191, 1276-1293.	2.3	10
364	On autoignition mode under variable thermodynamic state of internal combustion engines. International Journal of Engine Research, 2020, 21, 856-865.	2.3	13
365	Effect of N2 dilution and preheat temperature on combustion dynamics of syngas in a reverse-flow combustor. Experimental Thermal and Fluid Science, 2020, 110, 109926.	2.7	15

#	Article	IF	CITATIONS
366	Numerical studies on autoignition and detonation development from a hot spot in hydrogen/air mixtures. Combustion Theory and Modelling, 2020, 24, 245-261.	1.9	20
367	Investigation of hydrogen oxidation in supercritical H2O/CO2 mixtures using ReaxFF molecular dynamics simulation. Journal of Supercritical Fluids, 2020, 155, 104661.	3.2	22
368	1D study of the detonation phenomenon and its influence on the interior ballistics of the combustion light gas gun. Defence Technology, 2020, 16, 341-347.	4.2	2
369	Evaluation of Flame Area Based on Detailed Chemistry DNS of Premixed Turbulent Hydrogen-Air Flames in Different Regimes of Combustion. Flow, Turbulence and Combustion, 2020, 104, 403-419.	2.6	30
370	StanShock: a gas-dynamic model for shock tube simulations with non-ideal effects and chemical kinetics. Shock Waves, 2020, 30, 425-438.	1.9	16
371	A quasi-direct numerical simulation solver for compressible reacting flows. Computers and Fluids, 2020, 213, 104718.	2.5	11
372	A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers. Combustion and Flame, 2020, 222, 370-382.	5.2	22
373	Experimental and kinetic study of laminar flame characteristics of H2/O2/diluent flame under elevated pressure. International Journal of Hydrogen Energy, 2020, 45, 32508-32520.	7.1	12
374	Effects of data point number on laminar flame speed extrapolation. Fuel, 2020, 278, 118265.	6.4	7
375	Theoretical Investigations of Rate Coefficients for H + O3and HO2+ O Reactions on a Full-Dimensional Potential Energy Surface. Journal of Physical Chemistry A, 2020, 124, 6427-6437.	2.5	16
376	Investigation of novel scaling criteria on a reverse-flow combustor. Energy, 2020, 206, 118156.	8.8	3
377	Wave structure of oblique detonation disturbed by an expansion wave from a bended tunnel. Applied Thermal Engineering, 2020, 180, 115856.	6.0	8
378	On the application of dynamic zone flamelet model to large eddy simulation of supersonic hydrogen flame. International Journal of Hydrogen Energy, 2020, 45, 21940-21955.	7.1	13
379	Applicability of extrapolation relations for curvature and stretch rate dependences of displacement speed for statistically planar turbulent premixed flames. Combustion Theory and Modelling, 2020, 24, 1021-1038.	1.9	9
380	Review on Mechanisms and Kinetics for Supercritical Water Oxidation Processes. Applied Sciences (Switzerland), 2020, 10, 4937.	2.5	40
381	Assessment of engineering gas radiative property models in high pressure turbulent jet diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107169.	2.3	20
382	Construction of a compact skeletal mechanism for acetone–n–butanol–ethanol (ABE)/diesel blends combustion in engines using a decoupling methodology. Fuel Processing Technology, 2020, 209, 106526.	7.2	20
383	Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10Âatm. Combustion and Flame, 2020, 220, 368-377.	5.2	79

#	ARTICLE Dynamics and kinetics of the OH + HO ₂ → H ₂ O + O ₂ (¹ Î'' _g) reaction on a global full-dimensional singlet-state potential energy	IF 2.8	CITATIONS
385	Surface. Physical Chemistry Chemical Physics, 2020, 22, 26330-26339.	7.1	11
386	An alternative architecture of the Humphrey cycle and the effect of fuel type on its efficiency. Energy Science and Engineering, 2020, 8, 3702-3716.	4.0	10
387	Development of a Detailed Kinetic Model for Hydrogen Oxidation in Supercritical H ₂ O/CO ₂ Mixtures. Energy & Fuels, 2020, 34, 15379-15388.	5.1	18
388	Evaluation of the Influence of Radiation on a GH2/GO2 Rocket Combustor. , 2020, , .		1
389	On the kinetics and dynamics of the H + O2 (3Σg, â^1Δg) => OH + H reaction. AIP Conference Proceedings, 2020, , .	0.4	1
390	The efficiency of gas combustion in TGM-84B boilers with a different number of burners. IOP Conference Series: Materials Science and Engineering, 2020, 791, 012018.	0.6	1
391	Understanding and Representing the Distinct Kinetics Induced by Reactive Collisions of Rovibrationally Excited Ephemeral Complexes across Reactive Collider Mole Fractions and Pressures. Journal of Physical Chemistry A, 2020, 124, 10937-10953.	2.5	4
392	Quantification of fuel chemistry effects on burning modes in turbulent premixed flames. Combustion and Flame, 2020, 218, 134-149.	5.2	4
393	DNS of Lean Hydrogen Turbulent Premixed Flames at High Karlovitz Number Conditions. , 2020, , .		Ο
394	Benchmarking the Performance of the ReaxFF Reactive Force Field on Hydrogen Combustion Systems. Journal of Physical Chemistry A, 2020, 124, 5631-5645.	2.5	28
395	TimeScale Analysis, Numerical Simulation and Validation of Flame Acceleration, and DDT in Hydrogen–Air Mixtures. Combustion Science and Technology, 2021, 193, 2217-2240.	2.3	11
396	On transition to self-similar acceleration of spherically expanding flames with cellular instabilities. Combustion and Flame, 2020, 215, 364-375.	5.2	35
397	Influence of viscous boundary layer on initiation zone structure of two-dimensional oblique detonation wave. Aerospace Science and Technology, 2020, 104, 106019.	4.8	12
398	A virtual laboratory to support chemical reaction engineering courses using real-life problems and industrial software. Education for Chemical Engineers, 2020, 33, 36-44.	4.8	27
399	Single-head detonation propagation in a partially obstructed channel. Combustion and Flame, 2020, 215, 283-294.	5.2	7
400	On H2–O2 oxidation in several bath gases. International Journal of Hydrogen Energy, 2020, 45, 8151-8167.	7.1	22
401	On the ambiguity of premixed flame thickness definition of highly pre-heated mixtures and its implication on turbulent combustion regimes. Combustion Theory and Modelling, 2020, 24, 573-588.	1.9	3

#	Article	IF	CITATIONS
402	A New Detailed Ethanol Kinetic Mechanism at Engine-Relevant Conditions. Energy & Fuels, 2020, 34, 3691-3708.	5.1	16
403	Coupled reaction mechanism reduction for the hetero-/homogeneous combustion of syngas over platinum. Combustion and Flame, 2020, 214, 37-46.	5.2	7
404	Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes. Journal of Thermal Science, 2020, 29, 853-867.	1.9	8
405	Critical Issues of Chemical Kinetics in MILD Combustion. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	11
406	A DNS study of the impact of gravity on spherically expanding laminar premixed flames. Combustion and Flame, 2020, 216, 412-425.	5.2	16
407	Experimental and numerical study of the effect of elevated pressure on laminar burning velocity of lean H2/CO/O2/diluents flames. Fuel, 2020, 273, 117753.	6.4	16
408	A Methane Mechanism for Oxy-Fuel Combustion: Extinction Experiments, Model Validation, and Kinetic Analysis. Flow, Turbulence and Combustion, 2021, 106, 499-514.	2.6	5
409	Local statistics of laminar expanding flames subjected to Darrieus–Landau instability. Proceedings of the Combustion Institute, 2021, 38, 1993-2000.	3.9	8
410	Quantitative oxygen atom measurements in lean, premixed, H2 tubular flames. Proceedings of the Combustion Institute, 2021, 38, 1833-1841.	3.9	3
411	Homogeneous ignition of H2/CO/O2/N2 mixtures over palladium at pressures up to 8†bar. Proceedings of the Combustion Institute, 2021, 38, 6583-6591.	3.9	8
412	Formation of stabilized oblique detonation waves in a combustor. Combustion and Flame, 2021, 223, 423-436.	5.2	33
413	Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration. Computers and Fluids, 2021, 215, 104787.	2.5	27
414	Single-phase instability of intermediate flamelet states in high-pressure combustion. Fuel, 2021, 288, 119736.	6.4	4
415	Spontaneous initiation and development of hydrogen–oxygen detonation with ozone sensitization. Proceedings of the Combustion Institute, 2021, 38, 3575-3583.	3.9	14
416	Improvement of H2/O2 chemical kinetic mechanism for high pressure combustion. International Journal of Hydrogen Energy, 2021, 46, 5799-5811.	7.1	14
417	Hydrogen oxidation near the second explosion limit in a flow reactor. Proceedings of the Combustion Institute, 2021, 38, 243-250.	3.9	4
418	Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures. Fuel, 2021, 286, 119458.	6.4	18
419	An experimental and numerical investigation of the catalytic-rich/gaseous-lean combustion of H2/CO/air mixtures at 8â€bar. Proceedings of the Combustion Institute, 2021, 38, 5443-5451.	3.9	8

#	Article	IF	CITATIONS
420	A new LES approach to trans-critical mixing and combustion processes in high-pressure liquid-injectant engines. Proceedings of the Combustion Institute, 2021, 38, 3107-3129.	3.9	5
421	Calibrating the chemical-diffusive model using the detonation cell data. , 2021, , .		1
422	An integrated CO-DACT and adaptive analytical Jacobian (AAJ) method for efficient and robust modeling of complex combustion chemistry. , 2021, , .		0
423	Study on initiation mode of oblique detonation induced by a finite wedge. Physics of Fluids, 2021, 33, .	4.0	14
424	Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture. Journal of Fluid Mechanics, 2021, 913, .	3.4	33
425	A Full-Dimensional Potential Energy Surface and Dynamics of the Multichannel Reaction between H and HO ₂ . Journal of Physical Chemistry A, 2021, 125, 1540-1552.	2.5	7
426	Effects of hydrocarbon impurities, vibrational relaxation, and boundary-layer-induced pressure rise on the ignition of H2–O2‒Ar mixtures behind reflected shock waves. International Journal of Hydrogen Energy, 2021, 46, 9580-9594.	7.1	3
427	Research of operation the parameters in the boiler TGMP-204HL at burning gas. IOP Conference Series: Materials Science and Engineering, 2021, 1089, 012008.	0.6	1
428	Lean Operation of a Pulse Detonation Combustor by Fuel Stratification. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	2
429	Role of cellular wavelengths in self-acceleration of lean hydrogen-air expanding flames under turbulent conditions. International Journal of Hydrogen Energy, 2021, 46, 10494-10505.	7.1	5
430	Dissipation and dilatation rates in premixed turbulent flames. Physics of Fluids, 2021, 33, 035112.	4.0	16
431	Unsteady Effects on NOx Measurements in Pulse Detonation Combustion. Flow, Turbulence and Combustion, 2021, 107, 781-809.	2.6	4
432	A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low mach numbers. International Journal of Hydrogen Energy, 2021, 46, 10984-10994.	7.1	22
433	Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models. Progress in Energy and Combustion Science, 2021, 83, 100886.	31.2	89
434	Modeling the displacement speed in the flame surface density method for turbulent premixed flames at high pressures. Physics of Fluids, 2021, 33, .	4.0	5
435	Self-turbulization in cellularly unstable laminar flames. Journal of Fluid Mechanics, 2021, 917, .	3.4	14
436	Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF. Combustion and Flame, 2021, 226, 248-259.	5.2	18
437	Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 18678-18696.	7.1	50

#	Article	IF	CITATIONS
438	Data-driven subfilter modelling of thermo-diffusively unstable hydrogen–air premixed flames. Combustion Theory and Modelling, 2021, 25, 1064-1085.	1.9	8
439	Reconstruction model for heat release rate based on artificial neural network. International Journal of Hydrogen Energy, 2021, 46, 19599-19616.	7.1	8
440	An efficient approach to achieve flame acceleration and transition to detonation. Physics of Fluids, 2021, 33, .	4.0	9
441	NNH mechanism in low-NOx hydrogen combustion: Experimental and numerical analysis of formation pathways. Fuel, 2021, 292, 120186.	6.4	18
442	Oxidation and pyrolysis of methyl propyl ether. International Journal of Chemical Kinetics, 2021, 53, 915-938.	1.6	15
443	Two-dimensional temperature in a detonation channel using two-color OH planar laser-induced fluorescence thermometry. Combustion and Flame, 2021, 228, 259-276.	5.2	18
444	Dynamical investigations of the O(³ P) + H ₂ O reaction at high collision energies on an accurate full-dimensional potential energy surface. Molecular Physics, 2021, 119, .	1.7	1
445	Kinetic Modeling of API Oxidation: (1) The AIBN/H ₂ O/CH ₃ OH Radical "Soupâ€. Molecular Pharmaceutics, 2021, 18, 3037-3049.	4.6	12
446	Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study. Nuclear Engineering and Technology, 2021, , .	2.3	1
447	Oblique detonation waves induced by two symmetrical wedges in hydrogen-air mixtures. Fuel, 2021, 295, 120615.	6.4	44
448	Atomistic simulations of syngas oxy-combustion in supercritical CO2. Journal of CO2 Utilization, 2021, 49, 101554.	6.8	5
449	Pulsating and cellular instabilities of hydrogen–oxygen detonations with ozone sensitization. Physics of Fluids, 2021, 33, .	4.0	14
450	Theoretical and Experimental Study of 3-Pentanol Autoignition: Ab Initio Calculation, Shock Tube Experiments, and Kinetic Modeling. Journal of Physical Chemistry A, 2021, 125, 5976-5989.	2.5	3
451	Modeling of Ignition and Combustion of a Coflowing Hydrogen Jet in a Supersonic Air Flow. Combustion, Explosion and Shock Waves, 2021, 57, 398-407.	0.8	5
452	Assessment of Extrapolation Relations of Displacement Speed for Detailed Chemistry Direct Numerical Simulation Database of Statistically Planar Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2022, 108, 489-507.	2.6	7
453	Skeletal model reduction with forced optimally time dependent modes. Combustion and Flame, 2022, 235, 111684.	5.2	7
454	A chemical-diffusive model for simulating detonative combustion with constrained detonation cell sizes. Combustion and Flame, 2021, 230, 111417.	5.2	14
455	Oblique Detonation Initiation by an Instantaneous Energy Source in High-Speed Wedge Flows. AIAA Journal, 0, , 1-6.	2.6	2

#	Axiforced mixture properties for accurate laminar flame speed measurement from spherically expanding flames: Application to H <mml:math altimg="sil_syg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:< th=""><th>IF</th><th>CITATIONS</th></mml:<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	IF	CITATIONS
456	/> <mml:mn>2</mml:mn> /O <mml:math xmlns:mnl="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>/N<mml:math< td=""><td>5.2</td><td>10</td></mml:math<></mml:math 	5.2	10
457	xmlns:nml="http://www.w3.org/1998/Ma Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process. International Journal of Hydrogen Energy, 2021, 46, 31467-31488.	7.1	165
458	Combustion Characteristics of Premixed Hydrogen Fueled Spark Ignition Engine. , 0, , .		2
459	A fast approach for unsteady compressor performance simulation under boundary condition caused by pressure gain combustion. Applied Thermal Engineering, 2021, 196, 117223.	6.0	8
460	Numerical Modeling of Combustion and Detonation in Aqueous Foams. Energies, 2021, 14, 6233.	3.1	3
461	Predictions of flame acceleration, transition to detonation, and detonation propagation using the Chemical-Diffusive Model. Combustion and Flame, 2022, 235, 111705.	5.2	11
462	Statistics of local and global flame speed and structure for highly turbulent H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>/air premixed flames. Combustion and Flame, 2021, 232, 111523.</mml:math 	5.2	21
463	Experimental study of flame evolution, frequency and oscillation characteristics of steam diluted micro-mixing hydrogen flame. Fuel, 2021, 301, 121078.	6.4	13
464	Experimental and low-dimensional numerical study on the application of conventional NOx reduction methods in pulse detonation combustion. Combustion and Flame, 2021, 233, 111593.	5.2	4
465	Deep-learning accelerated calculation of real-fluid properties in numerical simulation of complex flowfields. Journal of Computational Physics, 2021, 444, 110567.	3.8	18
466	A robust one-dimensional approach for the performance evaluation of turbines driven by pulsed detonation combustion. Energy Conversion and Management, 2021, 248, 114784.	9.2	5
467	A study on autoignition characteristics of H2-O2 mixtures with diluents of Ar/N2 in rapid compression machine for argon power cycle engines. Fuel, 2021, 303, 121291.	6.4	11
468	Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames. Combustion and Flame, 2021, 234, 111647.	5.2	2
469	Computational comparison of the conventional diesel and hydrogen direct-injection combustion engines. Fuel, 2022, 307, 121909.	6.4	26
470	Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proceedings of the Combustion Institute, 2021, 38, 2013-2021.	3.9	13
471	A comparison of entrainment velocity and displacement speed statistics in different regimes of turbulent premixed combustion. Proceedings of the Combustion Institute, 2021, 38, 2985-2992.	3.9	6
472	Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion. Applied Energy, 2018, 228, 42-56.	10.1	14
473	Measurements of laminar burning velocity and Markstein length in outwardly-propagating spherical SNG-air premixed flames at elevated pressures. Fuel, 2020, 275, 117952.	6.4	3

#	Article	IF	CITATIONS
474	Numerical modeling of ignition enhancement using repetitive nanosecond discharge in a hydrogen/air mixture I: calculations assuming homogeneous ignition. Journal Physics D: Applied Physics, 2021, 54, 065501.	2.8	5
475	Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis. Physical Review Fluids, 2016, 1, .	2.5	36
476	Self-acceleration and global pulsation in expanding laminar H2â^'O2â^'N2 flames. Physical Review Fluids, 2019, 4, .	2.5	13
477	Surface heat loss and chemical kinetic response in deflagration-to-detonation transition in microchannels. Physical Review Fluids, 2020, 5, .	2.5	14
478	Dynamic evolution of a transient supersonic trailing jet induced by a strong incident shock wave. Physical Review Fluids, 2020, 5, .	2.5	15
479	Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures. Kerntechnik, 2016, 81, 655-661.	0.2	2
480	Vibrational Nonequilibrium in the Hydrogen-Oxygen Reaction at Different Temperatures. Journal of Modern Physics, 2014, 05, 1806-1829.	0.6	6
482	Kinetic Analysis on Spontaneous Combustion of Pressurized Hydrogen in Tubes. ACS Omega, 2021, 6, 26509-26518.	3.5	4
483	Effects of surface species and homogeneous reactions on rates and selectivity in ethane oxidation on oxide catalysts. AICHE Journal, 2021, 67, e17483.	3.6	5
484	Hydrogen and Ethane Plasma Assisted Ignition by NS discharge behind Reflected Shock Wave. , 2014, , .		0
485	Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors. International Letters of Chemistry, Physics and Astronomy, 0, 66, 133-142.	0.0	0
486	The Correlation Between Detonation Cell Size and Ignition Delay Time. , 2017, , 431-434.		0
488	Part Load Control for a Shockless Explosion Combustion Cycle. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2019, , 135-150.	0.3	2
489	Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector. Journal of the Korean Society of Propulsion Engineers, 2018, 22, 72-83.	0.2	2
490	Effects of CO ₂ Dilution and CH ₄ Addition on Laminar Burning Velocities of Syngas at Elevated Pressures: An Experimental and Modeling Study. Energy & Fuels, 2021, 35, 18733-18745.	5.1	5
491	A theoretical criterion on the initiation type of oblique detonation waves. Acta Astronautica, 2022, 190, 342-348.	3.2	8
492	Local flame displacement speeds of hydrogen-air premixed flames in moderate to intense turbulence. Combustion and Flame, 2022, 236, 111812.	5.2	14
493	An empirical characteristic scaling model for freely-propagating lean premixed hydrogen flames. Combustion and Flame, 2022, 237, 111805.	5.2	21

			~	
	ΙΤΔΤΙ	ON	REDUBT	
<u> </u>	$\square \land \square$		KLI OKI	

ARTICLE IF CITATIONS Detailed Modeling of Supercritical Jets and Flames., 2020, , 571-630. 0 494 Design of a Model Combustor for Studying the Combustion Characteristics of O2/H2 Flames at Supercritical Conditions. Transactions of the Korean Hydrogen and New Energy Society, 2020, 31, 96-104. Numerical Simulation of the Ram Combustor for High-Mach Integrated Control Experiment (HIMICO). 496 Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 0 0.2 2021, 19, 865-873. Study of the Constraint Selection Through ASVDADD Method for Rate-Controlled Constrained-Equilibrium Modeling on Ethanol Oxidation Without PLOG Reactions. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, . Numerical modeling of ignition enhancement by repetitive nanosecond discharge in a hydrogen/air 498 2.8 2 mixture II: forced ignition. Journal Physics D: Applied Physics, 2021, 54, 065502. Numerical study of synthetic spherically expanding flames for optimization of laminar flame speed experiments. Fuel, 2022, 310, 122367. 499 6.4 On jet-wake flame stabilization in scramjet: A LES/RANS study from chemical kinetic and 500 4.8 14 fluid-dynamical perspectives. Aerospace Science and Technology, 2022, 120, 107255. Numerical Simulation of the Process of Combustion of a Stoichiometric Hydrogen-Oxygen Mixture in 0.4 a Steam Generator. French-Ukrainian Journal of Chemistry, 2021, 9, 34-51. A Comprehensive Kinetic Modeling Study of Hydrogen Combustion with Uncertainty Quantification. 502 0.4 0 SSRN Electronic Journal, 0, , . Intrinsic instabilities in premixed hydrogen flames: Parametric variation of pressure, equivalence ratio, and temperature. Part 1 - Dispersion relations in the linear regime. Combustion and Flame, 2022, 5.2 240, 111935. HȮ2Â+ÂHÈ®2: High level theory and the role of singlet channels. Combustion and Flame, 2022, 243, 111975. 504 5.2 23 Intrinsic instabilities in premixed hydrogen flames: parametric variation of pressure, equivalence ratio, and temperature. Part 2 – Nonâ€linear regime and flame speed enhancement. Combustion and 5.2 Flame, 2022, 240, 111936. 2D Euler Modeling of Rotating Detonation Combustion in Preparation for Turbomachinery Matching. 506 4 2022,,. Quasiclassical study of a termolecular reaction: Application to the HO2 collisional stabilization 2.5 process. Computational and Theoretical Chemistry, 2022, 1209, 113614. Numerical simulation on the spontaneous ignition of high-pressure hydrogen release through a tube 508 9 7.1 at different burst pressures. International Journal of Hydrogen Energy, 2022, 47, 10431-10440. CARNOT: a Fragment-Based Direct Molecular Dynamics and Virtual–Reality Simulation Package for 509 Reactive Systems. Journal of Chemical Theory and Computation, 2022, 18, 1297-1313. Computational optimization of a hydrogen direct-injection compression-ignition engine for jet mixing 510 2.38 dominated nonpremixed combustion. International Journal of Engine Research, 2022, 23, 754-768. Theoretical studies of real-fluid oxidation of hydrogen under supercritical conditions by using the 5.2 virial equation of state. Combustion and Flame, 2022, 243, 111945.

#	Article	IF	CITATIONS
512	Experimental and Numerical Study of the Laminar Burning Velocity and Pollutant Emissions of the Mixture Gas of Methane and Carbon Dioxide. International Journal of Environmental Research and Public Health, 2022, 19, 2078.	2.6	1
513	Optimizing Hydrogen Kinetics for Zero-Carbon Emission Transport Technologies. , 2022, , .		1
514	Study of turbulent flame characteristics of water vapor diluted hydrogen-air micro-mixing combustion. Renewable Energy, 2022, 189, 1194-1205.	8.9	3
515	Synthesis gas as a fuel for internal combustion engines in transportation. Progress in Energy and Combustion Science, 2022, 90, 100995.	31.2	44
516	Pulsating propagation and extinction of hydrogen detonations in ultrafine water sprays. Combustion and Flame, 2022, 241, 112086.	5.2	9
517	A comprehensive kinetic modeling study of hydrogen combustion with uncertainty quantification. Fuel, 2022, 319, 123705.	6.4	9
518	An optimized kinetic model for H <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> /CO combustion in CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> diluent at</mml:math>	5.2	9
519	A reaction mechanism for ozone dissociation and reaction with hydrogen at elevated temperature. Fuel, 2022, 322, 124138.	6.4	19
520	Study on initiation mechanism of oblique detonation induced by blunt bump on wedge surface. Fuel, 2022, 323, 124314.	6.4	10
521	Applying machine learning techniques to predict detonation initiation from hot spots. Energy and Al, 2022, 9, 100163.	10.6	1
522	Role of ozone addition on premixed hydrogen/oxygen flames: Multi-zone structure and multi-regime dynamics. Combustion and Flame, 2022, 242, 112188.	5.2	4
523	Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45Âbar BMEP. Energy Conversion and Management, 2022, 264, 115698.	9.2	8
524	Numerical study on initiation of oblique detonation wave by hot jet. Applied Thermal Engineering, 2022, 213, 118679.	6.0	7
525	Structure and Dynamics of the Combustion Front of a Lean Hydrogen-Air Mixture in a Flow-Through Reactor. Russian Journal of Physical Chemistry B, 2022, 16, 294-299.	1.3	4
526	Alignment statistics of pressure Hessian with strain rate tensor and reactive scalar gradient in turbulent premixed flames. Physics of Fluids, 2022, 34, .	4.0	4
527	Non premixed operation strategies for a low emission syngas fuelled reverse flow combustor. Energy, 2022, 254, 124332.	8.8	6
529	Exploring the controlling mechanisms for gradient evolution in unsteady detonation flows. Physics of Fluids, 2022, 34, .	4.0	3
530	Comparative Heat and Mass Transfer in a Rotating Detonation Engine Model. , 2022, , .		0

#	Article	IF	CITATIONS
531	Detailed kinetics for anisole oxidation under various range of operating conditions. Fuel, 2022, 325, 124907.	6.4	1
532	Synergistic interactions of thermodiffusive instabilities and turbulence in lean hydrogen flames. Combustion and Flame, 2022, 244, 112254.	5.2	43
533	Conditioned structure functions in turbulent hydrogen/air flames . Physics of Fluids, 0, , .	4.0	5
534	Manifold-informed state vector subset for reduced-order modeling. Proceedings of the Combustion Institute, 2023, 39, 5145-5154.	3.9	12
535	The initiation characteristics of oblique detonation waves induced by a curved surface. Aerospace Science and Technology, 2022, 128, 107743.	4.8	6
536	Numerical Simulation of Gaseous Detonation Performance and Wall Reflection Effect of Acetylene-Rich Fuel. Energies, 2022, 15, 4985.	3.1	Ο
537	Near wall effects on the premixed head-on hydrogen/air flame. Combustion and Flame, 2022, 244, 112267.	5.2	4
538	Flame fingers and interactions of hydrodynamic and thermodiffusive instabilities in laminar lean hydrogen flames. Proceedings of the Combustion Institute, 2023, 39, 1525-1534.	3.9	8
539	Recent advances in low-gradient combustion modelling of hydrogen fuel blends. Fuel, 2022, 328, 125265.	6.4	9
540	Strong flame acceleration and detonation limit of hydrogen-oxygen mixture at cryogenic temperature. Proceedings of the Combustion Institute, 2023, 39, 2967-2977.	3.9	3
541	Cost function for low-dimensional manifold topology assessment. Scientific Reports, 2022, 12, . The NHs mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.3	11
542	altimg="si3.svg"> <mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> /NO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>/O<mml:math< td=""><td>5.2</td><td>23</td></mml:math<></mml:math 	5.2	23
543	Real gas effect on steady planar detonation and uncertainty quantification. Combustion and Flame, 2022, 245, 112318.	5.2	13
544	Effects of wedge-angle change on the evolution of oblique detonation wave structure. Physics of Fluids, 2022, 34, .	4.0	9
545	Flame acceleration and transition to detonation in non-uniform hydrogen-air mixtures in an obstructed channel with different obstacle arrangements. Fire Safety Journal, 2022, 133, 103660.	3.1	6
546	The behavior of the propagating velocity of rotating detonation waves and counter-rotating shock waves in a hollow combustor. Acta Astronautica, 2022, 200, 371-387.	3.2	13
547	A fully coupled, fully implicit simulation method for unsteady flames using Jacobian approximation and Flame, 2022, 245, 112362.	5.2	3
548	Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture. Combustion and Flame, 2022, 245, 112369.	5.2	4

#	Article	IF	CITATIONS
549	Flame acceleration and deflagration-to-detonation transition in a channel with continuous triangular obstacles: Effect of equivalence ratio. Chemical Engineering Research and Design, 2022, 167, 576-591.	5.6	11
550	Community Analysis of Bifurcation Maps of Diluted Hydrogen Combustion in WSRs. SSRN Electronic Journal, 0, , .	0.4	0
551	On Accelerative Propagation of Premixed Hydrogen/Air Laminar and Turbulent Expanding Flames. SSRN Electronic Journal, 0, , .	0.4	0
552	Wave Structure of Heterogeneous Detonations at High Operating Pressures. Combustion Science and Technology, 0, , 1-26.	2.3	1
553	Numerical Simulation of Autoignition Characteristics of Lean Hydrogen–Air Mixtures. Russian Journal of Physical Chemistry B, 2022, 16, 686-692.	1.3	5
554	Flame–turbulence interactions during flame acceleration using solid and fluid obstacles. Physics of Fluids, 2022, 34, .	4.0	9
555	Numerical Study of the Detonation Structure in Rich Acetylene-Air Mixtures. Combustion Science and Technology, 0, , 1-23.	2.3	1
556	Accelerating turbulent reacting flow simulations on many-core/GPUs using matrix-based kinetics. Proceedings of the Combustion Institute, 2022, , .	3.9	0
557	Flame Acceleration and DDT in a Channel with Continuous Triangular Obstacles: Effect of Blockage Ratio. Combustion Science and Technology, 0, , 1-21.	2.3	1
558	Inefficient intramolecular vibrational energy redistribution for the H + HO2 reaction and negative internal energy dependence for its rate constant. Frontiers in Physics, 0, 10, .	2.1	1
559	Thermoacoustic response of fully compressible counterflow diffusion flames to acoustic perturbations. Proceedings of the Combustion Institute, 2023, 39, 4711-4719.	3.9	1
560	Turbulent premixed hydrogen/air flame-wall interaction with heterogeneous surface reactions. Proceedings of the Combustion Institute, 2023, 39, 2189-2197.	3.9	4
561	Ignition limit and shock-to-detonation transition mode of n-heptane/air mixture in high-speed wedge flows. Proceedings of the Combustion Institute, 2023, 39, 4771-4780.	3.9	2
562	Role of Surface Reactions in Hydrogen–Oxygen Explosion Limits. Energy & Fuels, 2022, 36, 12729-12736.	5.1	8
563	RMG Database for Chemical Property Prediction. Journal of Chemical Information and Modeling, 2022, 62, 4906-4915.	5.4	27
564	On the understanding of a cryogenic two-phase LOX/GH2 flame: Parametric sensitivity, characteristic scaling and phase instability. International Journal of Hydrogen Energy, 2023, 48, 350-365.	7.1	1
565	Effects of thermal expansion on moderately intense turbulence in premixed flames. Physics of Fluids, 2022, 34, .	4.0	3
566	A numerical study of the rapid deflagration-to-detonation transition. Physics of Fluids, 2022, 34, .	4.0	6

#	Article	IF	CITATIONS
567	Diffusive effects of hydrogen on pressurized lean turbulent hydrogen-air premixed flames. Combustion and Flame, 2022, 246, 112423.	5.2	11
568	Influence of operating pressure on combustion and heat transfer in pressurized oxy-fuel combustion evaluated by numerical modeling. International Journal of Heat and Mass Transfer, 2023, 201, 123616.	4.8	2
569	Modeling Formic Acid Combustion. Energy & amp; Fuels, 2022, 36, 14382-14392.	5.1	2
570	Detonation simulations in supersonic flow under circumstances of injection and mixing. Proceedings of the Combustion Institute, 2023, 39, 2895-2903.	3.9	3
571	Facilitated ignition and detonation initiation of hydrogen-oxygen mixtures by ozone doping. Combustion and Flame, 2022, 246, 112474.	5.2	4
572	Prediction of propagating flames under high-pressure conditions with real-fluid combustion modeling. Proceedings of the Combustion Institute, 2022, , .	3.9	0
573	Reaction kinetics for high pressure hydrogen oxy-combustion in the presence of high levels of H2O and CO2. Combustion and Flame, 2023, 247, 112498.	5.2	4
574	Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences, 2023, 136, 100876.	12.1	19
575	Role of temperature-gradient steepness on development of hydrogen-oxygen detonation with ozone sensitization. Combustion and Flame, 2023, 248, 112546.	5.2	1
576	Supersonic combustion heat flux in a rotating detonation engine. Acta Astronautica, 2023, 203, 226-245.	3.2	3
577	Research on the behavior of CO2 on hydrogen-fueled Wankel rotary engine performance. Fuel, 2023, 335, 127036.	6.4	2
578	Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: A computational study. Fuel, 2023, 335, 127042.	6.4	15
579	Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors. International Letters of Chemistry, Physics and Astronomy, 0, 66, 133-142.	0.0	0
580	Using Ammonia as Future Energy: Modelling of Reaction Mechanism for Ammonia/Hydrogen Blends. Journal of Physics: Conference Series, 2022, 2361, 012012.	0.4	1
581	Comparative Study of Spark-Ignited and Pre-Chamber Hydrogen-Fueled Engine: A Computational Approach. Energies, 2022, 15, 8951.	3.1	8
582	Heterogeneous and Combined Heterogeneous/Homogeneous Combustion Modeling of SOFC Off-Gases. Journal of Physical Chemistry A, 2023, 127, 316-328.	2.5	2
583	Effects of density ratio and differential diffusion on flame accelerative propagation of H2/O2/N2 mixtures. International Journal of Hydrogen Energy, 2023, 48, 9071-9081.	7.1	3
584	Analysis of pressure oscillations and wall heat flux due to hydrogen auto-ignition in a confined domain. Physics of Fluids, 2023, 35, .	4.0	4

#	Article	IF	CITATIONS
585	Resolving Discrepancies between State-of-the-Art Theory and Experiment for HO ₂ + HO ₂ via Multiscale Informatics. Journal of Physical Chemistry A, 0, , .	2.5	3
586	Evaluation of finite difference based asynchronous partial differential equations solver for reacting flows. Journal of Computational Physics, 2023, , 111906.	3.8	1
587	Determination of Unstretched Laminar Burning Velocity by Simultaneous Measurements of Flame Radius and Pressure-Time Trace Using Constant Volume Method. Combustion Science and Technology, 0, , 1-23.	2.3	0
588	Multi-Resolution Analysis of Subgrid Turbulence / Chemistry Interactions in a Supersonic Hydrogen-Air Diffusion Flame. , 2023, , .		1
589	Investigation of Geometric RDC Dependencies Using a Fast Reactive Euler Solver. , 2023, , .		0
590	Unsteady RANS Simulations with Uncertainty Quantification of Spray Combustor Under Liquid Rocket Engine Relevant Conditions. , 2023, , .		5
591	Generalized description and extrapolation of extinction stretch rates from spherically expanding flames. Proceedings of the Combustion Institute, 2023, , .	3.9	0
592	On the role of HNNO in NO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si20.svg"><mml:msub><mml:mrow></mml:mrow><mml:mtext>x</mml:mtext></mml:msub></mml:math> formation. Proceedings of the Combustion Institute, 2023, 39, 551-560.	3.9	3
593	Hydrogen, the zero carbon fuel. , 2023, , 149-178.		0
594	Kinetic study of plasma assisted oxidation of H2 for an undiluted rich mixture. Combustion and Flame, 2023, 250, 112638.	5.2	4
595	Simulation of the effects of dilution gas for the formation of CJ plane during the oblique detonation. Numerical Heat Transfer; Part A: Applications, 2024, 85, 761-784.	2.1	0
596	A shock-tube and modeling study of syngas ignition delay times in rich CO2 environment at elevated pressures. Combustion and Flame, 2023, 251, 112695.	5.2	0
597	Adaptive simulations of flame acceleration and detonation transition in subsonic and supersonic mixtures. Aerospace Science and Technology, 2023, 136, 108205.	4.8	3
598	A wide range experimental and kinetic modeling study of the oxidation of 2,3-dimethyl-2-butene: Part 1. Combustion and Flame, 2023, 251, 112731.	5.2	0
599	Revisit flame chemistry of propene at elevated pressures: Insight into pressure effects on chemical structure and laminar flame propagation. Combustion and Flame, 2023, 251, 112725.	5.2	2
600	Experimental study of H2/air turbulent expanding flames over wide equivalence ratios: Effects of molecular transport. Fuel, 2023, 341, 127652.	6.4	3
601	Assessment of the application of oxygen enrichment in the hydrogen-fueled Wankel rotary engine. Fuel, 2023, 341, 127732.	6.4	6
602	Local manifold learning and its link to domain-based physics knowledge. Applications in Energy and Combustion Science, 2023, 14, 100131.	1.5	2

		CITATION REPORT	
#	Article	IF	Citations
603	Normal and knocking combustion of hydrogen: A numerical study. Fuel, 2023, 344, 128093.	6.4	5
604	The effects of steam dilution on flame structure and stability for a H2/air micromix burner. Jour the Energy Institute, 2023, 107, 101188.	nal of 5.3	4
605	Understanding multi-regime detonation development for hydrogen and syngas fuels. Physics o 2023, 35, .	f Fluids, 4.0	5
606	Experimental support for a new NOx formation route via an HNNO intermediate. Combustion a Flame, 2023, 257, 112632.	and 5.2	3
607	Modelling of acetaldehyde and acetic acid combustion. Combustion Theory and Modelling, 20. 536-557.	23, 27, 1.9	2
608	Influence of nonthermal termolecular reactions on the optimization and uncertainty quantifica of a hydrogen combustion model. Combustion and Flame, 2023, , 112702.	tion 5.2	Ο
609	Open-Source Energy, Entropy, and Exergy 0D Heat Release Model for Internal Combustion Eng Energies, 2023, 16, 2514.	ines. 3.1	2
610	Numerical Study of Unstable Shock-Induced Combustion with Different Chemical Kinetics and Investigation of the Instability Using Modal Decomposition Technique. Aerospace, 2023, 10, 2	92. 2.2	3
611	Backscatter of scalar variance in turbulent premixed flames. Journal of Fluid Mechanics, 2023, 9	960, . 3.4	2
612	Butyl Acetate Pyrolysis and Combustion Chemistry: Mechanism Generation and Shock Tube Experiments. Journal of Physical Chemistry A, 2023, 127, 3231-3245.	2.5	3
613	A comparative study of chlorine and bromine species addition on the explosion limits of hydrogen-oxygen mixtures. International Journal of Hydrogen Energy, 2023, 48, 32125-32136.	7.1	2
614	Thermodiffusively-unstable lean premixed hydrogen flames: Phenomenology, empirical modellin thermal leading points. Combustion and Flame, 2023, 253, 112811.	ng, and 5.2	10
615	The influence of methyl butyrate and n-butanol on the laminar burning characteristics of RP-3: experimental and kinetic modeling study. Fuel, 2023, 349, 128713.	An 6.4	3
616	Transmission of hydrogen detonation across a curtain of dilute inert particles. Combustion and Flame, 2023, 254, 112834.	5.2	5
617	Identification of multi-regime detonation development for hydrocarbon fuels. Combustion and 2023, 255, 112864.	Flame, 5.2	0
618	On the critical initiation of planar detonation in Noble-Abel and van der Waals gas. Combustion Flame, 2023, 255, 112890.	n and 5.2	2
619	Effects of temperature and pressure fluctuations on exergy loss characteristics of hydrogen auto-ignition processes. International Journal of Hydrogen Energy, 2023, 48, 38484-38495.	7.1	3
620	An optimized model for ammonia/syngas combustion. Reaction Chemistry and Engineering, 20 2071-2085.	23, 8, 3.7	1

#	Article	IF	CITATIONS
621	Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations. Aerospace, 2023, 10, 443.	2.2	2
623	Discontinuity in cubic equations of state: Impact of attraction term mixing rule on combustion simulation. International Journal of Hydrogen Energy, 2024, 51, 848-860.	7.1	0
624	Application of hydrogen mechanisms in combustion simulation of DLR scramjet combustor and their effect on combustion performance. Fuel, 2023, 349, 128659.	6.4	0
625	Computational study of hydrogen engine combustion strategies: Dual-Fuel compression ignition with Port- and Direct-Injection, Pre-Chamber Combustion, and Spark-Ignition. Fuel, 2023, 350, 128801.	6.4	6
626	Characterisation of non-premixed, swirl-stabilised, wet hydrogen/air flame using large eddy simulation. Fuel, 2023, 350, 128710.	6.4	1
627	Explosion limit of hydrogen/oxygen mixture with water vapor addition. International Journal of Hydrogen Energy, 2024, 50, 772-781.	7.1	0
628	Reaction Kinetics of Hydrogen Combustion. Green Energy and Technology, 2023, , 65-92.	0.6	0
629	Spherically expanding flame simulations using Cantera coupled to an unsteady Lagrangian formulation. International Journal of Hydrogen Energy, 2024, 51, 948-960.	7.1	1
630	Community analysis of bifurcation maps of diluted hydrogen combustion in well stirred reactors. International Journal of Hydrogen Energy, 2023, , .	7.1	0
631	Experimental measurements of ultra-lean hydrogen ignition delays using a rapid compression machine under internal combustion engine conditions. Fuel, 2024, 355, 129431.	6.4	1
632	Acceleration of supersonic/hypersonic reactive CFD simulations via heterogeneous CPU-GPU supercomputing. Computers and Fluids, 2023, , 106041.	2.5	1
633	The Reaction of Muonium with Hydrogen Peroxide in Aqueous Solution. ChemPhysChem, 2023, 24, .	2.1	0
634	Experimental Combustion Analysis in a Gasoline Baseline Hydrogen-Fueled Internal Combustion Engine at Ultra-Lean Conditions. , 0, , .		0
635	Modelling cellular structure of detonation waves in hydrogen-air mixtures. International Journal of Hydrogen Energy, 2024, 49, 495-509.	7.1	3
636	Numerical Analysis of Hydrogen Injection and Mixing in Wankel Rotary Engines. , 0, , .		2
637	The effect of O3 addition on the one-dimensional pulsating detonation instability in ar-diluted H2/O2 mixtures. AIP Conference Proceedings, 2023, , .	0.4	0
638	Numerical investigation on the initiation of oblique detonation waves in stoichiometric methane–air mixtures. Physics of Fluids, 2023, 35, .	4.0	0
639	Direct detonation initiation in hydrogen/air mixture: effects of compositional gradient and hotspot condition. Journal of Fluid Mechanics, 2023, 970, .	3.4	1

#	Article	IF	CITATIONS
640	On flame speed enhancement in turbulent premixed hydrogen-air flames during local flame-flame interaction. Combustion and Flame, 2023, 257, 113017.	5.2	0
642	Autoignition of two-phase n-heptane/air mixtures behind an oblique shock: Insights into spray oblique detonation initiation. Combustion and Flame, 2023, 256, 112992.	5.2	0
643	Critical Decay Time Model for Direct Detonation Initiation Energy in Gaseous Mixtures. Journal of Propulsion and Power, 0, , 1-17.	2.2	1
644	Effects of ozone addition on direct detonation initiation in hydrogen/oxygen mixtures. Combustion and Flame, 2023, 257, 113052.	5.2	1
645	Experiment and simulation of hydrogen oxidation in a high-pressure turbulent flow reactor. Fuel, 2024, 357, 129714.	6.4	0
646	On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames. Energy, 2023, 283, 129106.	8.8	0
647	Assessment of a hydrogen-fueled swirling trapped-vortex combustor using large-eddy simulation. Fuel, 2024, 357, 129847.	6.4	1
648	Effect of the β-hydroxy group on ester reactivity: Combustion kinetics of methyl hexanoate and methyl 3-hydroxyhexanoate. Combustion and Flame, 2023, 258, 113071.	5.2	0
649	Evolution and Control of Oblique Detonation Wave Structure in Unsteady Inflow. AIAA Journal, 2023, 61, 4808-4820.	2.6	0
650	Reduced-order modeling with reconstruction-informed projections. Combustion and Flame, 2024, 259, 113119.	5.2	0
651	Are differential diffusion effects of importance when burning hydrogen under elevated pressures and temperatures?. International Journal of Hydrogen Energy, 2024, 49, 1048-1058.	7.1	2
652	Predicting the explosion limits of hydrogen-oxygen-diluent mixtures using machine learning approach. International Journal of Hydrogen Energy, 2024, 50, 1306-1313.	7.1	0
653	Pore-scale resolved simulation of quenching, acceleration, and transition to detonation of hydrogen explosions by metal foams. Combustion and Flame, 2024, 259, 113118.	5.2	1
654	Multi-objective optimization design of shock-focusing detonation initiator. Acta Astronautica, 2024, 214, 240-252.	3.2	2
655	A simplified chemical model for RBCC engines operating in ejector mode. Combustion and Flame, 2024, 260, 113211.	5.2	0
656	Automated Generation of a Compact Chemical Kinetic Model for <i>n</i> -Pentane Combustion. ACS Omega, 2023, 8, 49098-49114.	3.5	1
658	Automatic mechanism generation for the combustion of advanced biofuels: A case study for diethyl ether. International Journal of Chemical Kinetics, 2024, 56, 233-262.	1.6	0
659	Parametric Influence on Rotating Detonation Combustion: Insights from Fast Reactive Euler Simulations. AIAA Journal, 0, , 1-13.	2.6	2

#	Article	IF	CITATIONS
660	A numerical study of hetero-homogeneous ignition of hydrogen/air mixture over platinum. International Journal of Hydrogen Energy, 2024, 56, 432-440.	7.1	0
661	Effect of ozone addition on oblique detonations in hydrogen-air mixtures. Applied Thermal Engineering, 2024, 240, 122292.	6.0	0
662	Molecular dynamics simulation of the inhibition effects of inert gases (Ar/He/N ₂) on hydrogen oxidation. International Journal of Green Energy, 0, , 1-11.	3.8	0
663	Development of two diesel surrogates focusing on the soot emission under engine-like conditions. International Journal of Green Energy, 0, , 1-13.	3.8	0
664	NO measurements in high temperature hydrogen flames: The crucial role of the hydrogen oxidation chemistry for accurate NO predictions. Combustion and Flame, 2024, 261, 113279.	5.2	0
665	Comparative analysis and optimisation of hydrogen combustion mechanism for laminar burning velocity calculation in combustion engine modelling. International Journal of Hydrogen Energy, 2024, 56, 880-893.	7.1	0
666	Numerical investigation of detonation initiation in a modeled rotating detonation engine. Physics of Fluids, 2024, 36, .	4.0	0
667	Reduced mechanisms for methanol oxidation under hydrothermal flames using a directed relation graph with sensitivity analysis and error propagation. Canadian Journal of Chemical Engineering, 2024, 102, 2256-2276.	1.7	Ο
668	Infinitely Fast Heterogeneous Catalysis Model for Premixed Hydrogen Flame-Wall Interaction. Combustion and Flame, 2024, 261, 113328.	5.2	0
669	Flow Reactor Oxidation of Ammonia–Hydrogen Fuel Mixtures. Energy & Fuels, 2024, 38, 3369-3381.	5.1	0
670	Multi-Resolution Analysis for Assessment of Subgrid Turbulence / Chemistry Interactions in Supersonic Combustion. , 2024, , .		0
671	Understanding extinction of stretched premixed hydrogen-air flames using the tangential stretching rate. , 2024, , .		0
672	Turbulent Combustion Model for Hydrogen Jet in a Supersonic Crossflow. , 2024, , .		0
673	Modeling spallation of carbon materials in hypersonic flows. , 2024, , .		0
674	Exploring the chemical kinetic effects on the direct detonation initiation in H ₂ -O ₂ -Ar mixtures. Combustion Theory and Modelling, 0, , 1-26.	1.9	0
676	A reduced kinetic model for the oxidation of supercritical ethanol/gasoline surrogate blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46, .	1.6	0
677	Numerical Investigation of Partially Premixed Flames Under Transcritical Conditions. AIAA Journal, 2024, 62, 1854-1863.	2.6	0
678	Combustion chemistry acceleration with DeepONets. Fuel, 2024, 365, 131212.	6.4	1

#	Article	IF	CITATIONS
679	A new rapid deflagration-to-detonation transition in a short smooth tube. Physics of Fluids, 2024, 36, .	4.0	0
680	The effect of finite molecular volume on the propagation of unsteady spherical flame front. Combustion and Flame, 2024, 263, 113404.	5.2	0
681	Interactions between sinusoidal-shaped walls and chemical reactions for fuel-lean methane/air mixtures in meso-scale reactors. Thermal Science and Engineering Progress, 2024, 50, 102527.	2.7	0
682	Impact of wall heat transfer modelling in large-eddy simulation of hydrogen knocking combustion. International Journal of Hydrogen Energy, 2024, 62, 405-417.	7.1	0