Enhanced formation of aerenchyma and induction of a adventitious roots of <i>Zea nicaraguensis</i> contribute as compared with maize (<i>Zea mays</i> ssp. <i>mays

Plant, Cell and Environment 35, 1618-1630 DOI: 10.1111/j.1365-3040.2012.02513.x

Citation Report

#	Article	IF	CITATIONS
1	Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiology, 2012, 160, 1698-1709.	2.3	358
2	Screening of candidate genes associated with constitutive aerenchyma formation in adventitious roots of the teosinte Zea nicaraguensis. Plant Root, 2012, 6, 19-27.	0.3	7
3	Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. Plant and Soil, 2013, 370, 447-460.	1.8	48
4	Identification of Major QTL for Waterlogging Tolerance Using Genome-Wide Association and Linkage Mapping of Maize Seedlings. Plant Molecular Biology Reporter, 2013, 31, 594-606.	1.0	43
5	Root responses to flooding. Current Opinion in Plant Biology, 2013, 16, 282-286.	3.5	236
6	Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta, 2013, 238, 969-982.	1.6	69
7	Characterization and expression analysis of dirigent family genes related to stresses in Brassica. Plant Physiology and Biochemistry, 2013, 67, 144-153.	2.8	56
8	Aerenchyma formation in crop species: A review. Field Crops Research, 2013, 152, 8-16.	2.3	200
9	Morpho-anatomical adaptations to waterlogging by germplasm accessions in a tropical forage grass. AoB PLANTS, 2013, 5, .	1.2	30
10	Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, 2013, 64, 1193-1208.	2.4	207
11	Does suberin accumulation in plant roots contribute to waterlogging tolerance?. Frontiers in Plant Science, 2013, 4, 178.	1.7	54
12	Mesophytic Root Responses to O2. Journal of Natural Resources and Life Sciences Education, 2013, 42, 28-32.	0.8	0
13	Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Functional Plant Biology, 2014, 41, 187.	1.1	24
14	Hypocotyl adventitious root organogenesis differs from lateral root development. Frontiers in Plant Science, 2014, 5, 495.	1.7	122
15	Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of <scp><i>L</i></scp> <i>otus japonicus</i> . Plant, Cell and Environment, 2014, 37, 2278-2293.	2.8	26
16	Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany, 2014, 65, 261-273.	2.4	180
17	Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Science, 2014, 215-216, 76-83.	1.7	35
18	Adaptive plasticity of Laguncularia racemosa in response to different environmental conditions: integrating chemical and biological data by chemometrics. Ecotoxicology, 2014, 23, 335-348.	1.1	24

ATION REDO

#	Article	IF	CITATIONS
19	Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn. Journal of Plant Nutrition and Soil Science, 2014, 177, 733-740.	1.1	11
20	Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 2014, 65, 4795-4806.	2.4	83
21	Plant tolerance of flooding stress – recent advances. Plant, Cell and Environment, 2014, 37, 2211-2215.	2.8	90
22	Morphoâ€anatomical traits of root and nonâ€enzymatic antioxidant system of leaf tissue contribute to waterlogging tolerance in <i>Brachiaria</i> grasses. Grassland Science, 2015, 61, 243-252.	0.6	13
23	Physiological responses of Medicago truncatula growth under prolonged hypoxia stress. African Journal of Agricultural Research Vol Pp, 2015, 10, 3073-3079.	0.2	1
24	Genetic and Molecular Characterization of Submergence Response Identifies Subtol6 as a Major Submergence Tolerance Locus in Maize. PLoS ONE, 2015, 10, e0120385.	1.1	66
25	Gas Transport and Exchange through Wetland Plant Aerenchyma. Soil Science Society of America Book Series, 2015, , 177-196.	0.3	2
26	Mechanisms of morphological adaptation of roots to waterlogging in gramineous plants. Root Research, 2015, 24, 23-35.	0.1	1
27	Leafâ€ s hape remodeling: programmed cell death in fistular leaves of <i><scp>A</scp>llium fistulosum</i> . Physiologia Plantarum, 2015, 153, 419-431.	2.6	14
28	Physiological and Molecular Mechanisms of Flooding Tolerance in Plants. , 2015, , 227-242.		6
29	Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient. Ecotoxicology, 2015, 24, 1659-1667.	1.1	33
30	Plant Breeding for Flood Tolerance: Advances and Limitations. , 2015, , 43-72.		2
31	Flood adaptive traits and processes: an overview. New Phytologist, 2015, 206, 57-73.	3.5	539
32	Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 2015, 16, 237-251.	7.7	796
33	Radial oxygen loss and physical barriers in relation to root tissue age in species with different types of aerenchyma. Functional Plant Biology, 2015, 42, 9.	1.1	32
34	Root and Shoot Responses of Summer Maize to Waterlogging at Different Stages. Agronomy Journal, 2016, 108, 1060-1069.	0.9	45
35	Mechanisms of waterlogging tolerance in wheat – a review of root and shoot physiology. Plant, Cell and Environment, 2016, 39, 1068-1086.	2.8	229
36	Ethyleneâ€dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Plant, Cell and Environment, 2016, 39, 2145-2157.	2.8	65

#	Article	IF	CITATIONS
37	De novo assembly of Zea nicaraguensis root transcriptome identified 5 261 full-length transcripts. Journal of Integrative Agriculture, 2016, 15, 1207-1217.	1.7	1
39	Plant responses to flooding stress. Current Opinion in Plant Biology, 2016, 33, 64-71.	3.5	254
40	Phenological variations, yield differences and free proline accumulation in rice under alternate inundation and suspension of irrigation in Central Thailand. Paddy and Water Environment, 2016, 14, 387-401.	1.0	1
41	Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize. Field Crops Research, 2016, 188, 96-104.	2.3	52
42	Root xylem CO2 flux: an important but unaccounted-for component of root respiration. Trees - Structure and Function, 2016, 30, 343-352.	0.9	18
43	Structural features of Phalaris arundinacea in the Jianghan Floodplain of the Yangtze River, China. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 229, 100-106.	0.6	19
44	Evaluation of root porosity and radial oxygen loss of disomic addition lines of Hordeum marinum in wheat. Functional Plant Biology, 2017, 44, 400.	1.1	9
45	Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves. Plant Cell Reports, 2017, 36, 815-827.	2.8	30
46	Mapping water, oxygen, and pH dynamics in the rhizosphere of young maize roots. Journal of Plant Nutrition and Soil Science, 2017, 180, 336-346.	1.1	26
47	Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 233, 90-98.	0.6	22
48	Anatomical and biochemical characterisation of a barrier to radial O2 loss in adventitious roots of two contrasting Hordeum marinum accessions. Functional Plant Biology, 2017, 44, 845.	1.1	28
49	Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. Plant, Cell and Environment, 2017, 40, 3002-3017.	2.8	59
50	RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports, 2017, 7, 10950.	1.6	49
51	Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. Plant Physiology, 2017, 175, 412-423.	2.3	87
52	Cell wall changes during the formation of aerenchyma in sugarcane roots. Annals of Botany, 2017, 120, 693-708.	1.4	31
53	Acclimation of Salix triandroides cuttings to incomplete submergence is reduced by low light. Aquatic Ecology, 2017, 51, 321-330.	0.7	6
54	A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte <i>Zea nicaraguensis</i> is located on the shortâ€arm of chromosome 3. Plant, Cell and Environment, 2017, 40, 304-316.	2.8	58
55	Aerenchyma formation in the initial development of maize roots under waterlogging. Theoretical and Experimental Plant Physiology, 2017, 29, 165-175.	1.1	8

#	ARTICLE	IF	CITATIONS
56	Bulked Segregant RNA-seq Reveals Differential Expression and SNPs of Candidate Genes Associated with Waterlogging Tolerance in Maize. Frontiers in Plant Science, 2017, 8, 1022.	1.7	46
57	Rice HRZ ubiquitin ligases are crucial for the response to excess iron. Physiologia Plantarum, 2018, 163, 282-296.	2.6	35
58	Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. Journal of Forestry Research, 2018, 29, 1049-1059.	1.7	30
59	Waterlogging affects plant morphology and the expression of key genes in tef (<i>Eragrostis tef</i>). Plant Direct, 2018, 2, e00056.	0.8	24
60	Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain, China. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 239, 87-97.	0.6	22
61	Regulation of Root Traits for Internal Aeration and Tolerance to Soil Waterlogging-Flooding Stress. Plant Physiology, 2018, 176, 1118-1130.	2.3	218
63	Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology, 2018, 227, 20-30.	1.6	48
64	Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Frontiers in Plant Science, 2018, 9, 886.	1.7	211
65	Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. International Journal of Biological Macromolecules, 2018, 116, 676-682.	3.6	28
66	Improving Flooding Tolerance of Crop Plants. Agronomy, 2018, 8, 160.	1.3	85
67	Histological Observation of Primary and Secondary Aerenchyma Formation in Adventitious Roots of Syzygium kunstleri (King) Bahadur and R.C.Gaur Grown in Hypoxic Medium. Forests, 2019, 10, 137.	0.9	9
68	QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. Journal of Experimental Botany, 2019, 70, 6475-6487.	2.4	29
69	Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Molecular Biology Reports, 2019, 46, 6381-6389.	1.0	18
70	Î ³ -Aminobutyric Acid Promotes Chloroplast Ultrastructure, Antioxidant Capacity, and Growth of Waterlogged Maize Seedlings. Scientific Reports, 2019, 9, 484.	1.6	59
71	Morphological Changes and Expressions of AOX1A, CYP81D8, and Putative PFP Genes in a Large Set of Commercial Maize Hybrids Under Extreme Waterlogging. Frontiers in Plant Science, 2019, 10, 62.	1.7	25
72	The control of endopolygalacturonase expression by the sugarcane RAV transcription factor during aerenchyma formation. Journal of Experimental Botany, 2019, 70, 497-506.	2.4	24
73	Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis. Annals of Botany, 2019, 123, 691-705.	1.4	30
74	Drought-Induced Modifications on the Outer Part of the Root (OPR) and Root Endodermis of Selected Rice Genotypes. Journal of Crop Science and Biotechnology, 2019, 22, 131-138.	0.7	1

	Сіт	Citation Report	
#	Article	IF	CITATIONS
75	Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions. Annals of Botany, 2019, 124, 1019-1032.	1.4	19
76	Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of Echinochloa. Frontiers in Plant Science, 2019, 10, 254.	1.7	32
77	Air Pollution: Role in Climate Change and Its Impact on Crop Plants. , 2019, , 211-247.		8
78	A group VII ethylene response factor gene, <i>ZmEREB180</i> , coordinates waterlogging tolerance in maize seedlings. Plant Biotechnology Journal, 2019, 17, 2286-2298.	4.1	91
79	Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic–terrestrial transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 27-34.	0.6	19
80	Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS ONE, 2019, 14, e0212059.	1.1	23
81	Root Cortex Provides a Venue for Gas-Space Formation and Is Essential for Plant Adaptation to Waterlogging. Frontiers in Plant Science, 2019, 10, 259.	1.7	56
82	Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. Plants, 2019, 8, 501.	1.6	13
83	Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions. Journal of Plant Research, 2020, 133, 49-56.	1.2	8
84	Tolerance level of several hybrid maize genotypes to waterlogging stress. IOP Conference Series: Earth and Environmental Science, 2020, 484, 012002.	0.2	0
85	Hypoxia-Responsive Class III Peroxidases in Maize Roots: Soluble and Membrane-Bound Isoenzymes. International Journal of Molecular Sciences, 2020, 21, 8872.	1.8	8
86	Radial oxygen loss is correlated with nitrogen nutrition in mangroves. Tree Physiology, 2020, 40, 1548-1560.	1.4	15
87	Some Accessions of Amazonian Wild Rice (Oryza glumaepatula) Constitutively Form a Barrier to Radia Oxygen Loss along Adventitious Roots under Aerated Conditions. Plants, 2020, 9, 880.	1.6	20
88	Properties of root water transport in canola (Brassica napus) subjected to waterlogging at the seedling, flowering and podding growth stages. Plant and Soil, 2020, 454, 431-445.	1.8	13
89	The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Environmental Pollution, 2020, 264, 114736.	3.7	54
90	Dynamics of radial oxygen loss in mangroves subjected to waterlogging. Ecotoxicology, 2020, 29, 684-690.	1.1	8
91	Tolerant mechanisms to O2 deficiency under submergence conditions in plants. Journal of Plant Research, 2020, 133, 343-371.	1.2	40
92	Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress. Plant and Soil, 2020, 452, 547-568.	1.8	37

#	Article	IF	CITATIONS
93	High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions. Plant Physiology and Biochemistry, 2020, 150, 171-179.	2.8	18
94	Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in <i>Zea nicaraguensis</i> and a chromosome segment introgression line in maize. New Phytologist, 2021, 229, 94-105.	3.5	35
95	Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. International Journal of Molecular Sciences, 2021, 22, 1088.	1.8	61
96	Resistance to Abiotic Stress: Theory and Applications in Maize Breeding. , 2021, , 105-151.		1
97	Root length is proxy for high-throughput screening of waterlogging tolerance in Urochloa spp. grasses. Functional Plant Biology, 2021, 48, 411.	1.1	8
98	A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science, 2021, 71, 40-50.	0.9	28
99	The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of <i>Urochloa humidicola</i> . Journal of Experimental Botany, 2021, 72, 3279-3293.	2.4	16
100	Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions. Scientific Reports, 2021, 11, 4520.	1.6	5
101	Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Science, 2021, 304, 110823.	1.7	30
102	Genetic analysis of three maize husk traits by QTL mapping in a maize-teosinte population. BMC Genomics, 2021, 22, 386.	1.2	4
103	Opportunities for Improving Waterlogging Tolerance in Cereal Crops—Physiological Traits and Genetic Mechanisms. Plants, 2021, 10, 1560.	1.6	27
104	The Physiological Basis of Genotypic Variations in Low-Oxygen Stress Tolerance in the Vegetable Sweet Potato. Russian Journal of Plant Physiology, 0, , 1.	0.5	0
105	Physiological behavior of Campomanesia xanthocarpa O. Berg. seedlings under flooding and shading. Semina:Ciencias Agrarias, 2021, 42, 3149-3166.	0.1	1
106	Subsurface drainage and subirrigation for increased corn production in riverbottom soils. Agronomy Journal, 2021, 113, 4865-4874.	0.9	4
107	Nitric oxide signaling in plants during flooding stress. , 2022, , 241-260.		3
108	Wild relatives of plants as sources for the development of abiotic stress tolerance in plants. , 2022, , 471-518.		13
109	The versatile GABA in plants. Plant Signaling and Behavior, 2021, 16, 1862565.	1.2	132
111	Aerenchyma Formation in Plants. Plant Cell Monographs, 2014, , 247-265.	0.4	55

#	ARTICLE	IF	CITATIONS
112	Plant Internal Oxygen Transport (Diffusion and Convection) and Measuring and Modelling Oxygen Gradients. Plant Cell Monographs, 2014, , 267-297.	0.4	30
113	Biogenesis of Adventitious Roots and Their Involvement in the Adaptation to Oxygen Limitations. Plant Cell Monographs, 2014, , 299-312.	0.4	5
115	Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 2021, 229, 42-49.	3.5	134
116	Abiotic Stress in Plants. , 2019, , 1-46.		5
117	Waterlogging tolerance and capacity for oxygen transport in Brachypodium distachyon (Bd21). Plant Root, 2014, 8, 5-12.	0.3	8
118	A barrier to radial oxygen loss enables wetland plants to grow under waterlogged conditions. Root Research, 2016, 25, 47-62.	0.1	3
120	DNA Marker-Assisted Selection Approach for Developing Flooding-Tolerant Maize. Japan Agricultural Research Quarterly, 2016, 50, 175-182.	0.1	14
122	Plants Under Waterlogged Conditions: An Overview. , 2018, , 335-376.		0
123	Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. Journal of Experimental Botany, 2022, 73, 636-645.	2.4	7
124	Radial Oxygen Loss from Plant Roots—Methods. Plants, 2021, 10, 2322.	1.6	11
125	Formation of a barrier to radial oxygen loss in L-type lateral roots of rice. Plant Root, 2020, 14, 33-41.	0.3	5
126	Brassicaceae Plants Response and Tolerance to Waterlogging and Flood. , 2020, , 311-335.		0
128	Investigation on genotype-by-environment interaction and stable maize (Zea mays L.) hybrids across soil moisture conditions. Vegetos, 2021, 34, 951-958.	0.8	0
129	Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. Molecular Plant, 2022, 15, 45-64.	3.9	23
130	Photosynthetic and Morphological Responses of Sacha Inchi (Plukenetia volubilis L.) to Waterlogging Stress. Plants, 2022, 11, 249.	1.6	12
131	Hypoxia tolerance of four millet species is attributable to constitutive aerenchyma formation and root hair development of adventitious roots. Plant Production Science, 2022, 25, 157-171.	0.9	4
132	Expressing the sunflower transcription factor HaHB11 in maize improves waterlogging and defoliation tolerance. Plant Physiology, 2022, 189, 230-247.	2.3	7
133	Physiology of Plant Responses to Water Stress and Related Genes: A Review. Forests, 2022, 13, 324.	0.9	58

#	Article	IF	CITATIONS
134	A quantitative review of soybean responses to waterlogging: agronomical, morpho-physiological and anatomical traits of tolerance. Plant and Soil, 2022, 475, 237-252.	1.8	21
135	A novel 3D Xâ€ray computed tomography (CT) method for spatioâ€temporal evaluation of waterloggingâ€induced aerenchyma formation in barley. The Plant Phenome Journal, 2022, 5, .	1.0	6
136	Combinational Variation Temperature and Soil Water Response of Stomata and Biomass Production in Maize, Millet, Sorghum and Rice. Plants, 2022, 11, 1039.	1.6	4
140	Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. , 2022, 15, .		12
141	Effects of different water conditions on the biomass, root morphology and aerenchyma formation in bermudagrass (Cynodon dactylon (L.) Pers). BMC Plant Biology, 2022, 22, .	1.6	3
142	Phenotyping for waterlogging tolerance in crops: current trends and future prospects. Journal of Experimental Botany, 2022, 73, 5149-5169.	2.4	23
143	Advances in research and utilization of maize wild relatives. Chinese Science Bulletin, 2022, 67, 4370-4387.	0.4	1
144	The Pyramiding of Three Key Root Traits Aid Breeding of Flood-Tolerant Rice. Plants, 2022, 11, 2033.	1.6	2
145	Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell, 2023, 35, 67-108.	3.1	48
146	Genomic Selection for Enhanced Stress Tolerance in Maize. , 2022, , 121-160.		0
147	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	1.8	20
148	A quantitative trait locus conferring flood tolerance to deepwater rice regulates the formation of two distinct types of aquatic adventitious roots. New Phytologist, 2023, 238, 1403-1419.	3.5	7
149	Response of White Cabbage (Brassica oleracea var. capitata) to Single and Repeated Short-Term Waterlogging. Agronomy, 2023, 13, 200.	1.3	3
150	Evolutionary trend of plant community and adaptive strategies of dominant plants in the water-level-fluctuation zone of the Three Gorges Reservoir. Hupo Kexue/Journal of Lake Sciences, 2023, 35, 553-563.	0.3	0
152	SOIL WATERLOGGING STRESS COMPENSATED BY ROOT SYSTEM ADAPTATION IN A POT EXPERIMENT WITH SWEET CORN ZEA MAYS VAR. SACCHARATE. , 2022, , .		0
153	Subsurface aeration mitigates organic material mulching-induced anaerobic stress via regulating hormone signaling in Phyllostachys praecox roots. Frontiers in Plant Science, 0, 14, .	1.7	0
154	Plant responses to limited aeration: Advances and future challenges. Plant Direct, 2023, 7, .	0.8	2
155	Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation. Frontiers in Plant Science, 0, 14	1.7	3

	CITATION	CITATION REPORT		
			0	
#	Article	IF	CITATIONS	
164	Management of Crops in Water-Logged Soil. Disaster Resilience and Green Growth, 2023, , 233-275.	0.2	0	