Clinical development of novel therapeutics for castratic

Ca-A Cancer Journal for Clinicians 62, 299-308 DOI: 10.3322/caac.21141

Citation Report

#	Article	IF	CITATIONS
1	CSTT1 and GSTM1 polymorphisms and prostate cancer risk in Asians: a systematic review and meta-analysis. Tumor Biology, 2013, 34, 2539-2544.	0.8	24
2	Cell mates: paracrine and stromal targets for prostate cancer therapy. Nature Reviews Urology, 2013, 10, 441-451.	1.9	32
3	Targeting the Adrenal Gland in Castration-Resistant Prostate Cancer: A Case for Orteronel, a Selective CYP-17 17,20-Lyase Inhibitor. Current Oncology Reports, 2013, 15, 105-112.	1.8	22
4	PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34, 6976-6991.	5.7	121
6	Androgen receptors in early and castration resistant prostate cancer: friend or foe?. Hormones, 2013, 12, 224-235.	0.9	13
7	Is Metastatic Prostate Cancer Changing, and How Will We Know It? It's Time for Standard Nomenclature for Nonosseous Metastases in Clinical Trials of Patients with Metastatic Castration Resistant Prostate Cancer. European Urology, 2014, 66, 184-185.	0.9	2
8	Enzalutamide (Xtandi) for Patients With Metastatic, Resistant Prostate Cancer. Annals of Pharmacotherapy, 2014, 48, 530-537.	0.9	11
9	Clinical pharmacology and regulatory consequences of GnRH analogues in prostate cancer. European Journal of Clinical Pharmacology, 2014, 70, 791-798.	0.8	18
10	Accumulation of Trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Prostate Cancer due to Androgen-Induced Expression of Amino Acid Transporters. Molecular Imaging and Biology, 2014, 16, 756-764.	1.3	33
11	Antiproliferative Mechanism of Action of the Novel Taxane Cabazitaxel as Compared with the Parent Compound Docetaxel in MCF7 Breast Cancer Cells. Molecular Cancer Therapeutics, 2014, 13, 2092-2103.	1.9	68
12	Targeting the relaxin hormonal pathway in prostate cancer. International Journal of Cancer, 2015, 137, 2287-2295.	2.3	18
13	The hallmarks of castration-resistant prostate cancers. Cancer Treatment Reviews, 2015, 41, 588-597.	3.4	89
14	Molecular landscape of prostate cancer: Implications for current clinical trials. Cancer Treatment Reviews, 2015, 41, 761-766.	3.4	53
15	Docetaxel in combination with octreotide shows synergistic apoptotic effect by increasing SSTR2 and SSTR5 expression levels in prostate and breast cancer cell lines. Cancer Chemotherapy and Pharmacology, 2015, 75, 1273-1280.	1.1	11
16	Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate, 2015, 75, 957-968.	1.2	69
17	mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Molecular Carcinogenesis, 2015, 54, 1086-1095.	1.3	53
18	Jungermannenone A and B induce ROS- and cell cycle-dependent apoptosis in prostate cancer cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 814-824.	2.8	22
19	Survival among patients with advanced renal cell carcinoma in the pretargeted versus targeted therapy eras. Cancer Medicine, 2016, 5, 169-181.	1.3	82

#	Article	IF	CITATIONS
20	Identification of mutations, gene expression changes and fusion transcripts by whole transcriptome RNAseq in docetaxel resistant prostate cancer cells. SpringerPlus, 2016, 5, 1861.	1.2	15
21	Induction of Neuroendocrine Differentiation in Prostate Cancer Cells by Dovitinib (TKI-258) and its Therapeutic Implications. Translational Oncology, 2017, 10, 357-366.	1.7	31
22	Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways. Cellular Physiology and Biochemistry, 2017, 42, 2582-2592.	1.1	7
23	Combination of sorafenib and enzalutamide as a potential new approach for the treatment of castration-resistant prostate cancer. Cancer Letters, 2017, 385, 108-116.	3.2	15
24	Dissecting major signaling pathways in prostate cancer development and progression: Mechanisms and novel therapeutic targets. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 16-27.	1.2	35
25	Small-Molecule Activators of Protein Phosphatase 2A for the Treatment of Castration-Resistant Prostate Cancer. Cancer Research, 2018, 78, 2065-2080.	0.4	60
26	First-Line Treatment of Hormone-Sensitive Metastatic Prostate Cancer: Is There a Single Standard of Care?. Journal of Clinical Oncology, 2018, 36, 1060-1061.	0.8	12
27	Dual-Modified siRNA-Loaded Liposomes for Prostate Cancer Therapy. Springer Reference Technik, 2018, , 1-16.	0.0	0
28	The efficacy and safety comparison of docetaxel, cabazitaxel, estramustine, and mitoxantrone for castration-resistant prostate cancer: A network meta-analysis. International Journal of Surgery, 2018, 56, 133-140.	1.1	9
29	Integrative proteomic and phosphoproteomic profiling of prostate cell lines. PLoS ONE, 2019, 14, e0224148.	1.1	14
30	CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition. Cell Communication and Signaling, 2019, 17, 118.	2.7	64
31	Deubiquitinating enzyme USP33 restrains docetaxel-induced apoptosis via stabilising the phosphatase DUSP1 in prostate cancer. Cell Death and Differentiation, 2020, 27, 1938-1951.	5.0	37
32	Dual-Modified siRNA-Loaded Liposomes for Prostate Cancer Therapy. Biomaterial Engineering, 2021, , 293-308.	0.1	0
33	The inhibitory effect of melatonin on human prostate cancer. Cell Communication and Signaling, 2021, 19, 34.	2.7	20
34	Anti-Tumoral Effect of the Non-Nucleoside DNMT Inhibitor RG108 in Human Prostate Cancer Cells. Current Pharmaceutical Design, 2014, 20, 1803-1811.	0.9	48
35	Defining Clinical Endpoints in Castration-Resistant Prostate Cancer. Current Clinical Urology, 2014, , 187-199.	0.0	0
37	The Rationale for Optimal Combination Therapy With Sipuleucel-T for Patients With Castration-resistant Prostate Cancer. Reviews in Urology, 2014, 16, 122-30.	0.9	5
38	Untargeted metabolomics reveals alterations in the metabolic reprogramming of prostate cancer cells by double-stranded DNA-modified gold nanoparticles. , 2022, 135, 212745.		4

CITATION REPORT

#	Article	IF	CITATIONS
39	Circ_0004087 interaction with SND1 promotes docetaxel resistance in prostate cancer by boosting the mitosis error correction mechanism. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	21
40	Analysis of regulating activities of 5′-epiequisetin on proliferation, apoptosis, and migration of prostate cancer cells in vitro and in vivo. Frontiers in Pharmacology, 0, 13, .	1.6	Ο

CITATION REPORT