Immunotherapy of cancer in 2012

Ca-A Cancer Journal for Clinicians 62, 309-335 DOI: 10.3322/caac.20132

Citation Report

#	Article	IF	CITATIONS
1	Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	67
2	Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Human Vaccines and Immunotherapeutics, 2012, 8, 1152-1155.	1.4	15
3	Functional Avidity: A Measure to Predict the Efficacy of Effector T Cells?. Clinical and Developmental Immunology, 2012, 2012, 1-14.	3.3	101
4	Bioinformatics for cancer immunology and immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 1885-1903.	2.0	40
5	Comparative analysis of cancer vaccine settings for the selection of an effective protocol in mice. Journal of Translational Medicine, 2013, 11, 120.	1.8	18
6	The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncology, 2013, 9, 925-927.	1.1	30
7	Charged particle therapy—optimization, challenges and future directions. Nature Reviews Clinical Oncology, 2013, 10, 411-424.	12.5	346
8	Cancer Genome Landscapes. Science, 2013, 339, 1546-1558.	6.0	6,507
9	Melanoma risk loci as determinants of melanoma recurrence and survival. Journal of Translational Medicine, 2013, 11, 279.	1.8	30
10	Applications of systems biology in cancer immunotherapy: from target discovery to biomarkers of clinical outcome. Expert Review of Clinical Pharmacology, 2013, 6, 387-401.	1.3	17
11	Translating sperm protein 17 as a target for immunotherapy from the bench to the bedside in the light of cancer complexity. Tissue Antigens, 2013, 81, 116-118.	1.0	1
12	Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opinion on Biological Therapy, 2013, 13, 847-861.	1.4	110
13	Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Review of Vaccines, 2013, 12, 285-295.	2.0	55
14	Targeted cancer immunotherapy. Current Opinion in Pharmacology, 2013, 13, 504-510.	1.7	30
16	Therapeutic Dendritic Cell-Based Cancer Vaccines: The State of the Art. Critical Reviews in Immunology, 2013, 33, 489-547.	1.0	36
17	Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer. BioMed Research International, 2013, 2013, 1-11.	0.9	21
18	Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro-Oncology, 2013, 15, 1160-1172.	0.6	88
19	Combining conventional chemotherapy and γδT cell-based immunotherapy to target cancer-initiating cells. Oncolmmunology, 2013, 2, e25821.	2.1	37

#	Article	IF	CITATIONS
20	Targeting of Antigens to B Lymphocytes via CD19 as a Means for Tumor Vaccine Development. Journal of Immunology, 2013, 190, 5588-5599.	0.4	26
21	Immune-Mediated Adverse Events Associated with Ipilimumab CTLA-4 Blockade Therapy: The Underlying Mechanisms and Clinical Management. Scientifica, 2013, 2013, 1-19.	0.6	186
22	Targeting the fetal acetylcholine receptor in rhabdomyosarcoma. Expert Opinion on Therapeutic Targets, 2013, 17, 127-138.	1.5	8
23	HEPA and PARSE. Oncolmmunology, 2013, 2, e23249.	2.1	2
24	Tremelimumab: a review of development to date in solid tumors. Immunotherapy, 2013, 5, 215-229.	1.0	55
25	Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. British Journal of Cancer, 2013, 109, 2665-2674.	2.9	209
26	Modifying tumor-associated macrophages. Oncolmmunology, 2013, 2, e26620.	2.1	17
27	Evolutionary dynamics of cancer in response to targeted combination therapy. ELife, 2013, 2, e00747.	2.8	516
28	Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice. International Journal of Oncology, 2013, 43, 2023-2030.	1.4	12
29	Ocular side effects of biological agents in oncology: what should the clinician be aware of?. OncoTargets and Therapy, 2013, 7, 69.	1.0	24
30	Chemotherapy Sensitizes Colon Cancer Initiating Cells to Vγ9Vδ2 T Cell-Mediated Cytotoxicity. PLoS ONE, 2013, 8, e65145.	1.1	41
31	How to detour Treg cells in T cell-based antitumor immune therapy. OncoTargets and Therapy, 2013, 6, 1243.	1.0	2
32	The nature of activatory and tolerogenic dendritic cell-derived signal II. Frontiers in Immunology, 2013, 4, 53.	2.2	91
33	Immunocytokines: a review of molecules in clinical development for cancer therapy. Clinical Pharmacology: Advances and Applications, 2013, 5, 29.	0.8	59
34	Immune suppression and evasion in patients with head and neck cancer. Advances in Cellular and Molecular Otolaryngology, 2013, 1, 21809.	0.4	3
35	Pancreatic Cancer Fostered Immunosuppression Privileges Tumor Growth and Progression. Journal of Clinical & Cellular Immunology, 2014, 05, .	1.5	3
36	Tumor cell lysates as immunogenic sources for cancer vaccine design. Human Vaccines and Immunotherapeutics, 2014, 10, 3261-3269.	1.4	126
37	CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. , 2014, 2, 46.		52

#	Article	IF	Citations
38	Evaluation of response to immunotherapy: new challenges and opportunities for PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2090-2092.	3.3	14
39	Guillain-Barré syndrome and severe infection following chemotherapy for peripheral T-cell lymphoma: A case report. Oncology Letters, 2014, 8, 2695-2698.	0.8	4
40	Target Therapy in Hematological Malignances: New Monoclonal Antibodies. International Scholarly Research Notices, 2014, 2014, 1-16.	0.9	6
41	Systemic treatments for metastatic cutaneous melanoma. The Cochrane Library, 2014, , .	1.5	12
42	Sipuleucel-T and immunotherapy in the treatment of prostate cancer. Expert Opinion on Biological Therapy, 2014, 14, 709-719.	1.4	8
43	Class II Transactivator-Induced MHC Class II Expression in Pancreatic Cancer Cells Leads to Tumor Rejection and a Specific Antitumor Memory Response. Pancreas, 2014, 43, 1066-1072.	0.5	14
44	Intraperitoneal Oxidative Stress in Rabbits with Papillomavirus-Associated Head and Neck Cancer Induces Tumoricidal Immune Response That Is Adoptively Transferable. Clinical Cancer Research, 2014, 20, 4289-4301.	3.2	19
45	Practicing Pathology in the Era of Big Data and Personalized Medicine. Applied Immunohistochemistry and Molecular Morphology, 2014, 22, 1-9.	0.6	47
46	Intraperitoneal oxidative stress as an oncolytic immunomodulator?. OncoImmunology, 2014, 3, e955347.	2.1	1
47	Interference of therapeutic monoclonal immunoglobulins in the investigation of M-proteins. Clinical Chemistry and Laboratory Medicine, 2014, 52, e235-7.	1.4	13
48	Immune Response in Thyroid Cancer: Widening the Boundaries. Scientifica, 2014, 2014, 1-20.	0.6	22
49	Immune Checkpoint Blockade in Cancer Treatment: A Double-Edged Sword Cross-Targeting the Host as an "lnnocent Bystander― Toxins, 2014, 6, 914-933.	1.5	62
50	Silencing B7-H1 enhances the anti-tumor effect of bladder cancer antigen-loaded dendritic cell vaccine in vitro. OncoTargets and Therapy, 2014, 7, 1389.	1.0	14
51	Cancer Immunoprevention: A New Approach to Intercept Cancer Early. Cancer Prevention Research, 2014, 7, 1067-1071.	0.7	24
52	A personalized view on cancer immunotherapy. Cancer Letters, 2014, 352, 113-125.	3.2	63
53	Adenovirus-mediated overexpression of gamma interferon in murine bone marrow-derived dendritic cells affects their viability and activity. Asian Pacific Journal of Tropical Disease, 2014, 4, S353-S359.	0.5	1
54	The Yin and Yang of Toll-like receptors in cancer. Oncogene, 2014, 33, 3485-3495.	2.6	266
55	Patterns of Recurrence and Survival After Lymphadenectomy in Melanoma Patients: Clarifying the Effects of Timing of Surgery and Lymph Node Tumor Burden. Annals of Surgical Oncology, 2014, 21, 292-299.	0.7	28

		CITATION I	Report	
#	Article		IF	CITATIONS
56	Adoptive Immunotherapy for Cancer or Viruses. Annual Review of Immunology, 2014, 32,	189-225.	9.5	240
57	Prognostic relevance of cancer-associated fibroblasts in human cancer. Seminars in Cance 2014, 25, 61-68.	er Biology,	4.3	215
58	Tumor-induced perturbations of cytokines and immune cell networks. Biochimica Et Biopl Reviews on Cancer, 2014, 1845, 182-201.	nysica Acta:	3.3	235
59	Bioinformatics for cancer immunotherapy target discovery. Cancer Immunology, Immuno 63, 1235-1249.	therapy, 2014,	2.0	25
60	Immuno-oncology Comes of Age—Introduction. Seminars in Oncology, 2014, 41, S1-S2		0.8	6
61	Primer on Immuno-Oncology and Immune Response. Clinical Journal of Oncology Nursing 311-317.	, 2014, 18,	0.3	10
62	Portal blood – A new source of dendritic cells for pancreatic cancer vaccine. Pancreatol 409-410.	ogy, 2014, 14,	0.5	4
63	DNA Nanostructureâ€Based Imaging Probes and Drug Carriers. ChemMedChem, 2014, 9,	2013-2020.	1.6	25
64	The role of the inflammatory microenvironment in thyroid carcinogenesis. Endocrine-Relat 2014, 21, R85-R103.	ted Cancer,	1.6	83
65	Infusions of Allogeneic Natural Killer Cells as Cancer Therapy. Clinical Cancer Research, 20 3390-3400.	14, 20,	3.2	86
66	Ultrasound induced cancer immunotherapy. Advanced Drug Delivery Reviews, 2014, 72, 1	44-153.	6.6	103
67	Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the ant immune response. Biomaterials, 2014, 35, 814-824.	i-tumor	5.7	256
68	Clinical use of dendritic cells for cancer therapy. Lancet Oncology, The, 2014, 15, e257-e2	267.	5.1	565
69	Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Chemistry, 2014, 2, 105.	Frontiers in	1.8	147
70	A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combine AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. Journal of Immunoth 311-320.	d With the erapy, 2015, 38,	1.2	10
71	Nonâ€elinical safety evaluation of single and repeated intramuscular administrations of № Cancer Immunotherapeutic in rabbits and cynomolgus monkeys. Journal of Applied Toxico 717-728.		1.4	12
72	Epithelial ovarian cancer stem-like cells expressing α-gal epitopes increase the immunoge tumor associated antigens. BMC Cancer, 2015, 15, 956.	nicity of	1.1	8
73	Induction of Potent Antitumor Immunity by Sustained Release of Cationic Antigen from a Hydrogel with Adjuvant Activity. Advanced Functional Materials, 2015, 25, 5758-5767.	DNAâ€Based	7.8	79

#	Article	IF	CITATIONS
74	Neoadjuvant Therapy for Melanoma: A Promising Therapeutic Approach and an Ideal Platform in Drug Development. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e535-e542.	1.8	8
75	Using MRI to evaluate and predict therapeutic success from depot-based cancer vaccines. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15048.	1.8	7
76	Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS ONE, 2015, 10, e0123340.	1.1	47
77	Which Metrics Are Appropriate to Describe the Value of New Cancer Therapies?. BioMed Research International, 2015, 2015, 1-9.	0.9	19
78	Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers, 2015, 7, 1959-1982.	1.7	32
79	Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?. Annals of Oncology, 2015, 26, 1813-1823.	0.6	219
80	Methotrexate, Doxorubicin, and Cisplatin (MAP) Plus Maintenance Pegylated Interferon Alfa-2b Versus MAP Alone in Patients With Resectable High-Grade Osteosarcoma and Good Histologic Response to Preoperative MAP: First Results of the EURAMOS-1 Good Response Randomized Controlled Trial. Journal of Clinical Oncology, 2015, 33, 2279-2287.	0.8	329
81	Efficient delivery of antigen to DCs using yeast-derived microparticles. Scientific Reports, 2015, 5, 10687.	1.6	31
82	Comparison of Clinical Outcome of Stage I Non-Small Cell Lung Cancer Treated Surgically Or with Stereotactic Radiotherapy: Results From Propensity Score Analysis. Annals of Oncology, 2015, 26, i18.	0.6	1
83	Yam storage protein dioscorins modulate cytokine gene expression in BALB/c and C57BL/6 lymphocytes. Food and Agricultural Immunology, 2015, 26, 909-923.	0.7	4
84	Dendritic cell-based vaccine research against cancer. Expert Review of Clinical Immunology, 2015, 11, 213-232.	1.3	28
85	Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β. Cancer Research, 2015, 75, 1265-1274.	0.4	26
86	Using chemo-drugs or irradiation to break immune tolerance and facilitate immunotherapy in solid cancer. Cellular Immunology, 2015, 294, 54-59.	1.4	74
87	Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochemical Journal, 2015, 465, 295-303.	1.7	38
88	Cloning and Expression of a Novel Target Fusion Protein and its Application in Anti-Tumor Therapy. Cellular Physiology and Biochemistry, 2015, 35, 1877-1891.	1.1	2
89	Immunotherapy in Cancer: A Combat between Tumors and the Immune System; You Win Some, You Lose Some. Frontiers in Immunology, 2015, 6, 127.	2.2	51
90	Cancer Immunotherapy Confers a Global Benefit. , 2015, , 1-39.		0
91	Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 2015, 9, 6918-6933.	7.3	327

# 92	ARTICLE Biological Therapy of Cancer. , 2015, , 561-593.	IF	CITATIONS
93	The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment. Oncologist, 2015, 20, 812-822.	1.9	198
94	Cancer-Testis Antigens and Immunotherapy in the Light of Cancer Complexity. International Reviews of Immunology, 2015, 34, 143-153.	1.5	27
95	Comparison of clinical outcome of stage I non-small cell lung cancer treated surgically or with stereotactic radiotherapy: Results from propensity score analysis. Lung Cancer, 2015, 87, 283-289.	0.9	68
96	Immunomodulatory therapy in refractory/recurrent ovarian cancer. Taiwanese Journal of Obstetrics and Gynecology, 2015, 54, 143-149.	0.5	3
97	Engineering monocyte-derived dendritic cells to secrete interferon-α enhances their ability to promote adaptive and innate anti-tumor immune effector functions. Cancer Immunology, Immunotherapy, 2015, 64, 831-842.	2.0	27
98	Toward a Cancer Drug of Fungal Origin. Medicinal Research Reviews, 2015, 35, 937-967.	5.0	59
99	Anthracyclines potentiate anti-tumor immunity: A new opportunity for chemoimmunotherapy. Cancer Letters, 2015, 369, 331-335.	3.2	72
100	Toward improved effectiveness of bladder cancer immunotherapy. Immunotherapy, 2015, 7, 1039-1042.	1.0	4
101	Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 2015, 67, 731-753.	7.1	129
102	Major histocompatibility complex class I expression impacts on patient survival and type and density of immune cells in biliary tract cancer. British Journal of Cancer, 2015, 113, 1343-1349.	2.9	54
103	TLR7/8 agonists promote NK–DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma. Cancer Letters, 2015, 369, 298-306.	3.2	44
104	Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. Journal of Drug Targeting, 2015, 23, 656-671.	2.1	32
105	Advances in the understanding of cancer immunotherapy. BJU International, 2015, 116, 321-329.	1.3	28
106	Lymphatic and blood vasculature in primary cutaneous melanomas of the scalp and neck. Head and Neck, 2015, 37, 1596-1602.	0.9	12
107	T cellâ€based targeted immunotherapies for patients with multiple myeloma. International Journal of Cancer, 2015, 136, 1751-1768.	2.3	10
108	Immune Checkpoint Blockade Therapy: Merits and Demerits. Journal of Clinical & Experimental Dermatology Research, 2016, 7, .	0.1	0
109	NK Cells in Antitumor Immunity. , 2016, , 487-492.		0

#	Article	IF	CITATIONS
110	From the era of ineffective tumor vaccines to a future with effective immunotherapy. Journal of Thoracic Disease, 2016, 8, 1916-1917.	0.6	0
111	Induced Pluripotent Stem Cell as a New Source for Cancer Immunotherapy. Genetics Research International, 2016, 2016, 1-9.	2.0	9
112	Exploiting the Immunogenic Potential of Cancer Cells for Improved Dendritic Cell Vaccines. Frontiers in Immunology, 2015, 6, 663.	2.2	74
113	Immune response-associated gene analysis of 1,000 cancer patients using whole-exome sequencing and gene expression profiling—Project HOPE— . Biomedical Research, 2016, 37, 233-242.	0.3	12
114	Adoptive immunotherapy combined chemoradiotherapy for non-small-cell lung cancer. Anti-Cancer Drugs, 2016, 27, 433-438.	0.7	4
115	A meta-analysis reveals prognostic role of programmed death ligand-1 in Asian patients with non-small cell lung cancer. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 313-320.	1.0	4
116	The present status and future prospects of peptide-based cancer vaccines. International Immunology, 2016, 28, 319-328.	1.8	104
117	Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Review of Vaccines, 2016, 15, 1327-1336.	2.0	79
118	Nanoencapsulated budesonide in self-stratified polyurethane-polyurea nanoparticles is highly effective in inducing human tolerogenic dendritic cells. International Journal of Pharmaceutics, 2016, 511, 785-793.	2.6	14
119	Toll-like receptors targeting technology for the treatment of lymphoma. Expert Opinion on Drug Discovery, 2016, 11, 1047-1059.	2.5	5
120	Melittin-MIL-2 fusion protein as a candidate for cancer immunotherapy. Journal of Translational Medicine, 2016, 14, 155.	1.8	35
121	Evaluation of 29 indicators for the prognosis of advanced non-small cell lung cancer with cytokine-induced killer cell therapy combined with chemotherapy. Experimental and Therapeutic Medicine, 2016, 11, 1601-1610.	0.8	7
122	High-throughput identification of monoclonal antibodies after compounding by UV spectroscopy coupled to chemometrics analysis. Analytical and Bioanalytical Chemistry, 2016, 408, 5915-5924.	1.9	11
123	Targeting Tumor-Infiltrating B Cells in Cutaneous T-Cell Lymphoma. Journal of Clinical Oncology, 2016, 34, e110-e116.	0.8	22
124	Dendritic cell vaccine and cytokine-induced killer cell therapy for the treatment of advanced non-small cell lung cancer. Oncology Letters, 2016, 11, 2605-2610.	0.8	24
125	Pegfilgrastim Enhances the Antitumor Effect of Therapeutic Monoclonal Antibodies. Molecular Cancer Therapeutics, 2016, 15, 1238-1247.	1.9	11
126	Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Reports, 2016, 15, 171-180.	2.9	83
127	Chimeric Antigen Receptor T-Cell Therapy for the Community Oncologist. Oncologist, 2016, 21, 608-617.	1.9	75

#	Article	IF	CITATIONS
128	Application of Magnesium Pyrophosphate–Based Sponge-Like Microparticles to Enhance the Delivery Efficiency and Adjuvant Effects of Polyriboinosinic-Polyribocytidylic Acid in Immune Cells. Journal of Pharmaceutical Sciences, 2016, 105, 766-772.	1.6	6
129	Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. Oncolmmunology, 2016, 5, e1129483.	2.1	125
130	Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S. Human Cell, 2016, 29, 58-66.	1.2	14
131	Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 2016, 8, 4-31.	1.4	40
132	The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochimica Et Biophysica Sinica, 2016, 48, 75-81.	0.9	30
133	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	1.7	46
134	Immunologic approaches to cancer prevention—current status, challenges, and future perspectives. Seminars in Oncology, 2016, 43, 161-172.	0.8	35
135	From DNA Damage to Nucleic Acid Sensing: A Strategy to Enhance Radiation Therapy. Clinical Cancer Research, 2016, 22, 20-25.	3.2	67
136	Tricking the balance: NK cells in anti-cancer immunity. Immunobiology, 2017, 222, 11-20.	0.8	163
137	Specific immunotherapy in hepatocellular cancer: A systematic review. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 339-351.	1.4	6
138	Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy, 2017, 9, 273-280.	1.0	19
139	DNA vaccines for prostate cancer. , 2017, 174, 27-42.		36
140	Immune Checkpoint Inhibition in Hepatocellular Carcinoma: Basics and Ongoing Clinical Trials. Oncology, 2017, 92, 50-62.	0.9	180
141	Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis, 2017, 20, 205-215.	3.7	59
142	Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. Journal of Controlled Release, 2017, 256, 26-45.	4.8	41
143	A novel antigen delivery system induces strong humoral and CTL immune responses. Biomaterials, 2017, 134, 51-63.	5.7	26
144	Immunological effects of vaccines combined with granulocyte colony-stimulating factor on a murine WEHI-3 leukemia model. Oncology Letters, 2017, 13, 2323-2329.	0.8	0
145	Procyanidin, a kind of biological flavonoid, induces protective anti-tumor immunity and protects mice from lethal B16F10 challenge. International Immunopharmacology, 2017, 47, 251-258.	1.7	14

#	ARTICLE	IF	CITATIONS
146	The use of immunotherapy in the treatment of melanoma. Journal of Hematology and Oncology, 2017, 10, 88.	6.9	89
147	Dendritic Cells. , 2017, , 171-181.		0
148	Recognizing and managing on toxicities in cancer immunotherapy. Tumor Biology, 2017, 39, 101042831769454.	0.8	27
149	Coupling of Immunostimulants to Live Cells through Metabolic Glycoengineering and Bioorthogonal Click Chemistry. Bioconjugate Chemistry, 2017, 28, 1151-1165.	1.8	10
150	Cell-based immunotherapy with cytokine-induced killer (CIK) cells: From preparation and testing to clinical application. Human Vaccines and Immunotherapeutics, 2017, 13, 1379-1387.	1.4	32
151	Current Trends in Cancer Therapy. , 2017, , 1-24.		7
152	Antihistamines as promising drugs in cancer therapy. Life Sciences, 2017, 172, 27-41.	2.0	47
153	Tumor microenvironment and systemic disease: a dual target in medical oncology (also in the case of) Tj ETQq1 1	0,784314 1.4	rgBT /Over
154	Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure inhibit prostate tumor growth in TRAMP mice. OncoImmunology, 2017, 6, e1362528.	2.1	15
155	Neoadjuvant combination therapy with trastuzumab in a breast cancer patient with synchronous rectal carcinoma: a case report and biomarker study. Pteridines, 2017, 28, 233-241.	0.5	3
156	Tumor Immuno-Environment in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, 2017, 1036, 1-18.	0.8	31
157	Concentrations of neopterin, kynurenine and tryptophan in wound secretions of patients with breast cancer and malignant melanoma: a pilot study. Pteridines, 2017, 28, 205-211.	0.5	1
159	Nivolumab as Programmed Death-1 (PD-1) Inhibitor for Targeted Immunotherapy in Tumor. Journal of Cancer, 2017, 8, 410-416.	1.2	176
160	Altered Leukocyte Sphingolipid Pathway in Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 2521.	1.8	6
161	The Smac Mimetic BV6 Improves NK Cell-Mediated Killing of Rhabdomyosarcoma Cells by Simultaneously Targeting Tumor and Effector Cells. Frontiers in Immunology, 2017, 8, 202.	2.2	18
162	Targeting Neoantigens for Personalised Immunotherapy. BioDrugs, 2018, 32, 99-109.	2.2	11
163	A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. Cell Death and Disease, 2018, 9, 379.	2.7	15
164	Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy. Nano Letters, 2018, 18, 3250-3258.	4.5	255

# 165	ARTICLE Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	IF 4.6	Citations
166	Systemic treatments for metastatic cutaneous melanoma. The Cochrane Library, 2020, 2020, CD011123.	1.5	136
167	Neoadjuvant treatment for malignant and metastatic cutaneous melanoma. The Cochrane Library, 0, , .	1.5	4
168	ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Agents targeting) Tj ETQq1 1 0.784 Clinical Microbiology and Infection, 2018, 24, S83-S94.	1314 rgBT 2.8	lOverlock
169	Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy, 2018, 20, 134-148.	0.3	43
170	Immune Modulation Therapy and Imaging: Workshop Report. Journal of Nuclear Medicine, 2018, 59, 410-417.	2.8	23
171	Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. Journal of Immunotherapy, 2018, 41, 169-180.	1.2	8
172	Using <scp>MRI</scp> cell tracking to monitor immune cell recruitment in response to a peptideâ€based cancer vaccine. Magnetic Resonance in Medicine, 2018, 80, 304-316.	1.9	30
173	Polyactin A is a novel and potent immunological adjuvant for peptide-based cancer vaccine. International Immunopharmacology, 2018, 54, 95-102.	1.7	14
174	Systemic Therapy for Advanced Urothelial Carcinoma: Current Standards and Treatment Considerations. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 342-353.	1.8	20
175	Chemotherapy combined with dendritic cell vaccine and cytokine-induced killer cells in the treatment of colorectal carcinoma: a meta-analysis. Cancer Management and Research, 2018, Volume 10, 5363-5372.	0.9	10
176	Mesothelinâ€ʿtargeted second generation CARâ€ʿT cells inhibit growth of mesothelinâ€ʿexpressing tumors inzvivo. Experimental and Therapeutic Medicine, 2019, 17, 739-747.	0.8	21
177	Current Options and Future Directions in Immune Therapy for Glioblastoma. Frontiers in Oncology, 2018, 8, 578.	1.3	21
178	The Application of Nanoparticle-Based Drug Delivery Systems in Checkpoint Blockade Cancer Immunotherapy. Journal of Immunology Research, 2018, 2018, 1-13.	0.9	17
179	NCI 8628: A randomized phase 2 study of zivâ€aflibercept and highâ€dose interleukin 2 or highâ€dose interleukin 2 alone for inoperable stage III or IV melanoma. Cancer, 2018, 124, 4332-4341.	2.0	15
180	The Combined Use of Melatonin and an Indoleamine 2,3-Dioxygenase-1 Inhibitor Enhances Vaccine-Induced Protective Cellular Immunity to HPV16-Associated Tumors. Frontiers in Immunology, 2018, 9, 1914.	2.2	26
181	Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 2018, 12, 5121-5129.	7.3	505
182	Does intensified chemotherapy increase survival outcomes of osteosarcoma patients? A meta-analysis. Journal of Bone Oncology, 2018, 12, 54-60.	1.0	13

#	Article	IF	CITATIONS
183	Tolerogenic Dendritic Cells as a Promising Antigen-Specific Therapy in the Treatment of Multiple Sclerosis and Neuromyelitis Optica From Preclinical to Clinical Trials. Frontiers in Immunology, 2018, 9, 1169.	2.2	59
184	Immune Profiling of Cancer Patients Treated with Immunotherapy: Advances and Challenges. Biomedicines, 2018, 6, 76.	1.4	10
185	Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Frontiers in Oncology, 2018, 8, 192.	1.3	96
186	Urothelial carcinoma: the evolving landscape of immunotherapy for patients with advanced disease. Research and Reports in Urology, 2018, Volume 10, 7-16.	0.6	22
187	New Hopes for Plasma-Based Cancer Treatment. Plasma, 2018, 1, 150-155.	0.7	35
188	Synthetic vaccine particles for durable cytolytic T lymphocyte responses and anti-tumor immunotherapy. PLoS ONE, 2018, 13, e0197694.	1.1	17
189	It is finally time for adjuvant therapy in melanoma. Cancer Treatment Reviews, 2018, 69, 101-111.	3.4	37
190	Effects of Influenza Derived Peptide on CD8 T Cell Responses to MHC Class I-Restricted Human Telomerase Reverse Transcriptase (hTERT)-Derived Peptide. International Journal of Peptide Research and Therapeutics, 2019, 25, 413-418.	0.9	1
191	Neoadjuvant therapy of locally/regionally advanced melanoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986695.	1.4	21
192	Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine, 2019, 46, 54-65.	2.7	31
193	Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. Bioconjugate Chemistry, 2019, 30, 2115-2126.	1.8	23
194	Phase I Clinical Trial Using Autologous Ex Vivo Expanded NK Cells and Cytotoxic T Lymphocytes for Cancer Treatment in Vietnam. International Journal of Molecular Sciences, 2019, 20, 3166.	1.8	15
195	Advanced Nanotechnology Leading the Way to Multimodal Imagingâ€Guided Precision Surgical Therapy. Advanced Materials, 2019, 31, e1904329.	11.1	135
196	A Reappraisal of Thymosin Alpha1 in Cancer Therapy. Frontiers in Oncology, 2019, 9, 873.	1.3	36
197	Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Frontiers in Pharmacology, 2019, 10, 1184.	1.6	50
198	PDâ€1/PDâ€L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the Pl3K/Akt/mTOR signalling pathway. Cell Proliferation, 2019, 52, e12571.	2.4	94
199	Aging, Cancer and Immunity. Journal of Cancer, 2019, 10, 3021-3027.	1.2	48
200	In vitro activation and maturation of human mononuclear phagocytes by stimulation with liposomes coated with a neoglycolipid containing α1–3, α1–6-mannotriose. Glycoconjugate Journal, 2019, 36, 185-197	,1.4	6

#	Article	IF	CITATIONS
201	Target therapies in recurrent or metastatic head and neck cancer: state of the art and novel perspectives. A systematic review. Critical Reviews in Oncology/Hematology, 2019, 139, 41-52.	2.0	7
202	Applied nuclear physics at the new high-energy particle accelerator facilities. Physics Reports, 2019, 800, 1-37.	10.3	46
203	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
204	Assisting anti-PD-1 antibody treatment with a liposomal system capable of recruiting immune cells. Nanoscale, 2019, 11, 7996-8011.	2.8	7
205	Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1801320.	3.9	43
206	Decitabine enhances tumor recognition by T cells through upregulating the MAGE-A3 expression in esophageal carcinoma. Biomedicine and Pharmacotherapy, 2019, 112, 108632.	2.5	19
207	The prognostic landscape of interactive biological processes presents treatment responses in cancer. EBioMedicine, 2019, 41, 120-133.	2.7	6
208	Preliminary report of a novel formulation of clinical-grade, fully matured, tumor-associated peptide-loaded dendritic cells for cancer immunotherapy. Translational Medicine Communications, 2019, 4, .	0.5	2
209	Cancer Cell Membrane-Coated Nanoparticles for Cancer Management. Cancers, 2019, 11, 1836.	1.7	149
210	Scientific Rationale for Combination Immunotherapy of Hepatocellular Carcinoma with Anti-PD-1/PD-L1 and Anti-CTLA-4 Antibodies. Liver Cancer, 2019, 8, 413-426.	4.2	40
211	Immune Checkpoint Inhibitors. , 2019, , 1-17.		2
212	E3611—A Randomized Phase II Study of Ipilimumab at 3 or 10 mg/kg Alone or in Combination with High-Dose Interferon-α2b in Advanced Melanoma. Clinical Cancer Research, 2019, 25, 524-532.	3.2	8
213	Current and Emerging Targets in Immunotherapy for Osteosarcoma. Journal of Oncology, 2019, 2019, 1-8.	0.6	79
214	Biomarkers and pathways of chemoresistance and chemosensitivity for personalized treatment of pancreatic adenocarcinoma. Pharmacogenomics, 2019, 20, 113-127.	0.6	9
215	Tumor Lysate‣oaded Lipid Hybrid Nanovaccine Collaborated with an Immune Checkpoint Antagonist for Combination Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1800837.	3.9	20
216	Harnessing radiation to improve immunotherapy: better with particles?. British Journal of Radiology, 2020, 93, 20190224.	1.0	53
217	Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5, 1.	7.1	1,354
218	Oncogenic signaling pathways associated with immune evasion and resistance to immune checkpoint inhibitors in cancer. Seminars in Cancer Biology, 2020, 65, 51-64.	4.3	63

	CITATION R	EPORT	
#	Article	IF	CITATIONS
219	Overview of Current Progress in Immune Checkpoint Inhibitor Therapy for Advanced Hepatocellular Carcinoma. Technology in Cancer Research and Treatment, 2020, 19, 153303382094748.	0.8	3
220	Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. Journal of Autoimmunity, 2020, 115, 102546.	3.0	13
221	Immunotherapy for Renal Cell Carcinoma. , 0, , .		0
223	Dual-Antigen-Loaded Hepatitis B Virus Core Antigen Virus-like Particles Stimulate Efficient Immunotherapy Against Melanoma. ACS Applied Materials & Interfaces, 2020, 12, 53682-53690.	4.0	20
224	Immuno-Oncotherapeutic Approaches in Advanced Hepatocellular Carcinoma. Vaccines, 2020, 8, 447.	2.1	19
225	Carbon Ion Radiobiology. Cancers, 2020, 12, 3022.	1.7	104
226	Application of atomic force microscope in diagnosis of single cancer cells. Biomicrofluidics, 2020, 14, 051501.	1.2	6
227	Mechanistic target of rapamycin in the tumor microenvironment and its potential as a therapeutic target for pancreatic cancer. Cancer Letters, 2020, 485, 1-13.	3.2	10
228	Safety and Long-Term Outcome of Intratumoral Injection of OK432-Stimulated Dendritic Cells for Hepatocellular Carcinomas After Radiofrequency Ablation. Translational Oncology, 2020, 13, 100777.	1.7	17
229	Targeting Inhibition of Foxp3 by MMP2/9 Sensitive Short Peptide Linked P60 Fusion Protein 6(P60â€MMPs) to Enhance Antitumor Immunity. Macromolecular Bioscience, 2020, 20, 2000098.	2.1	5
230	Targeting immune checkpoints: Building better therapeutic puzzle in pancreatic cancer combination therapy. European Journal of Cancer Care, 2020, 29, e13268.	0.7	4
231	Cancer immunotherapy: dawn of the death of cancer?. International Reviews of Immunology, 2020, 39, 205-222.	1.5	5
232	Upregulated immuno-modulator PD-L1 in malignant peripheral nerve sheath tumors provides a potential biomarker and a therapeutic target. Cancer Immunology, Immunotherapy, 2020, 69, 1307-1313.	2.0	6
233	Photodynamic Therapy-Based Dendritic Cell Vaccination Suited to Treat Peritoneal Mesothelioma. Cancers, 2020, 12, 545.	1.7	27
234	The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534.	6.0	221
235	Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials, 2020, 235, 119795.	5.7	65
236	Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sciences, 2020, 254, 117580.	2.0	91
237	Peptide gels for controlled release of proteins. Therapeutic Delivery, 2020, 11, 193-211.	1.2	14

#	Article	IF	CITATIONS
238	LCP1 is a prognostic biomarker correlated with immune infiltrates in gastric cancer. Cancer Biomarkers, 2021, 30, 105-125.	0.8	7
239	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	11.1	233
240	Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells. Cancer Immunology, Immunotherapy, 2021, 70, 1451-1464.	2.0	23
241	Prognostic significance of serum inflammation indexes in different Lauren classification of gastric cancer. Cancer Medicine, 2021, 10, 1103-1119.	1.3	17
242	Recent Advances in Lipid-Based Nanovesicular Delivery Systems for Melanoma Therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2021, 38, 1-38.	1.2	7
243	Dendritic cell-based immunotherapies and their potential use in colorectal cancer immunotherapy. Journal of Microscopy and Ultrastructure, 2022, 10, 107.	0.1	4
244	Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncology Reports, 2021, 45, 824-834.	1.2	6
245	Cancer Testis Antigens and Immunotherapy: A new Dawn. E3S Web of Conferences, 2021, 251, 02033.	0.2	0
246	Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiation Research, 2021, 195, 403-411.	0.7	3
247	Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. International Journal of Nanomedicine, 2021, Volume 16, 2389-2404.	3.3	17
248	A Supramolecular "Trident―for Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2100729.	7.8	29
249	An Immune Model to Predict Prognosis of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy Based on Support Vector Machine. Frontiers in Oncology, 2021, 11, 651809.	1.3	3
250	Identification of prognostic alternative splicing events related to the immune microenvironment of hepatocellular carcinoma. Molecular Medicine, 2021, 27, 36.	1.9	7
251	Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers, 2021, 13, 1781.	1.7	17
252	Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies. Frontiers in Immunology, 2021, 12, 609762.	2.2	23
253	Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nature Communications, 2021, 12, 2041.	5.8	207
254	Knockout of immunotherapy prognostic marker genes eliminates the effect of the anti-PD-1 treatment. Npj Precision Oncology, 2021, 5, 37.	2.3	4
255	Current status of cancer immunotherapy with immune checkpoint inhibitors. Journal of the Korean Medical Association, 2021, 64, 326-331.	0.1	1

#	Article	IF	CITATIONS
256	The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma. International Journal of Particle Therapy, 2021, 8, 3-13.	0.9	10
257	Immunomodulatory mAbs as Tools to Investigate on Cis-Interaction of PD-1/PD-L1 on Tumor Cells and to Set Up Methods for Early Screening of Safe and Potent Combinatorial Treatments. Cancers, 2021, 13, 2858.	1.7	12
258	Identification of CD8+ T Cell-Related Genes: Correlations with Immune Phenotypes and Outcomes of Liver Cancer. Journal of Immunology Research, 2021, 2021, 1-17.	0.9	8
260	Comprehensive Analysis of the Value of SMYD Family Members in the Prognosis and Immune Infiltration of Malignant Digestive System Tumors. Frontiers in Genetics, 2021, 12, 699910.	1.1	4
261	Albumin Nanostructures for Nucleic Acid Delivery in Cancer: Current Trend, Emerging Issues, and Possible Solutions. Cancers, 2021, 13, 3454.	1.7	16
262	Active Ingredients from Euodia ruticarpa Steam Distilled Essential Oil Inhibit PC-3 Prostate Cancer Cell Growth via Direct Action and Indirect Immune Cells Conditioned Media In Vitro. Current Issues in Molecular Biology, 2021, 43, 996-1018.	1.0	4
263	Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines, 2021, 9, 1075.	1.4	46
264	Characterization of m6A-Related Genes Landscape in Skin Cutaneous Melanoma to Aid Immunotherapy and Assess Prognosis. International Journal of General Medicine, 2021, Volume 14, 5345-5361.	0.8	7
265	Clickable amino acid derivative tuned self-assembly of antigen and adjuvant for cancer immunotherapy. Journal of Controlled Release, 2021, 337, 306-316.	4.8	4
266	Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. BioMed Research International, 2021, 2021, 1-14.	0.9	92
267	Therapeutic efficacy of cancer vaccine adjuvanted with nanoemulsion loaded with TLR7/8 agonist in lung cancer model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102415.	1.7	16
269	H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathogens, 2017, 13, e1006757.	2.1	94
270	Immuno-oncology: new possibilities of drug therapy for solid tumors. Onkologiya Zhurnal Imeni P A Gertsena, 2017, 6, 74.	0.0	3
271	Immunotherapy: incorporation in the evolving paradigm of renal cancer management and future prospects. Oncotarget, 2017, 8, 17313-17327.	0.8	31
272	A pilot study of peptide vaccines for VEGF receptor 1 and 2 in patients with recurrent/progressive high grade glioma. Oncotarget, 2018, 9, 21569-21579.	0.8	20
273	Using lymph node swelling as a potential biomarker for successful vaccination. Oncotarget, 2016, 7, 35655-35669.	0.8	11
274	Neopterin as a biomarker of immune response in cancer patients. Annals of Translational Medicine, 2017, 5, 280-280.	0.7	42
275	Identification of Aberrantly Expressed Genes in Murine Glioblastoma During Radiotherapy via Bioinformatic Data Mining. OncoTargets and Therapy, 2020, Volume 13, 3839-3851.	1.0	3

#	Article	IF	CITATIONS
276	Human Papillomavirus Induced Cervical and Oropharyngeal Cancers: From Mechanisms to Potential Immuno-therapeutic Strategies. Current Drug Metabolism, 2020, 21, 167-177.	0.7	4
277	Translational Peptide-associated Nanosystems: Promising Role as Cancer Vaccines. Current Topics in Medicinal Chemistry, 2015, 16, 291-313.	1.0	2
278	Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside. Caspian Journal of Internal Medicine, 2017, 8, 228-238.	0.1	15
279	Immune Response Checkpoint Inhibitors: New Risks of a New Class of Antitumor Agents. Safety and Risk of Pharmacotherapy, 2020, 8, 9-22.	0.1	10
280	Trained Immunity for Personalized Cancer Immunotherapy: Current Knowledge and Future Opportunities. Frontiers in Microbiology, 2019, 10, 2924.	1.5	23
281	Mechanisms of immune response regulation in lung cancer. Translational Lung Cancer Research, 2014, 3, 15-22.	1.3	46
282	The past, present and future of immunotherapy against tumor. Translational Lung Cancer Research, 2015, 4, 253-64.	1.3	34
283	New era in cancer immunotherapy: Twenty years to the discovery of monoclonal antibodies harnessing the immune system to eradicate tumors. Advances in Bioscience and Biotechnology (Print), 2013, 04, 34-37.	0.3	1
285	MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas. , 2021, 9, e002451.		13
286	Dendritic Cells. , 2013, , 1-11.		0
287	Approaches to Immunologic Monitoring of Clinical Trials. , 2013, , 663-694.		0
289	Cost and response criteria are the new challenges. Community Oncology, 2013, 10, 371-376.	0.2	0
290	Immune Surveillance and Cancer Pathogenesis. , 2015, , 9-20.		0
293	Immunotherapy as an Optimal Manner in Cancer Treatment (Review Article). Biosciences, Biotechnology Research Asia, 2014, 11, 1167-1178.	0.2	1
294	Novel Therapies on the Horizon. Pediatric Oncology, 2015, , 265-291.	0.5	0
295	Clinical Applications of Induced Pluripotent Stem Cells in Cancer. Pancreatic Islet Biology, 2016, , 131-158.	0.1	0
296	Molecular Therapeutics. , 2017, , 235-261.		0
297	Phenotypic features of generated dendritic cells in patients with pancreatic cancer immunotherapy. ScienceRise: Medical Science, 2017, .	0.0	0

# 298	ARTICLE Tumor-Promoting/Associated Inflammation and the Microenvironment: A State of the Science and New Horizons. , 0, , 473-510.	IF	Citations 0
299	Immunotherapy Through the Years. Journal of the Advanced Practitioner in Oncology, 2017, 8, .	0.2	14
300	Treatment Effect of Tuftsin and Antigen Peptide Combined with Immune Cells on Colorectal Cancer. Medical Science Monitor, 2019, 25, 5465-5472.	0.5	3
301	Immunotherapy in Oncology. , 2020, , 3-6.		0
302	Nivolumab in real-life clinical practice. Issledovaniâ I Praktika V Medicine, 2019, 6, 84-91.	0.1	2
304	Cancer Immunotherapy Confers a Global Benefit. , 2020, , 1-48.		0
305	Ethical Considerations in Cancer Immunotherapy. , 2021, , 637-641.		0
306	The Rationale for Optimal Combination Therapy With Sipuleucel-T for Patients With Castration-resistant Prostate Cancer. Reviews in Urology, 2014, 16, 122-30.	0.9	5
307	Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale Journal of Biology and Medicine, 2014, 87, 491-518.	0.2	40
308	The Role of Checkpoint Inhibition in Non-Small Cell Lung Cancer. Ochsner Journal, 2017, 17, 379-387.	0.5	6
309	Immunotherapy Through the Years. Journal of the Advanced Practitioner in Oncology, 2017, 8, 747-753.	0.2	8
310	Scrophularia Atropatana Extract Reverses TP53 Gene Promoter Hypermethylation and Decreases Survivin Antiapoptotic Gene Expression in Breast Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2018, 19, 2599-2605.	0.5	3
311	Transdermal Drug Delivery: A Step towards Treatment of Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2022, 17, 253-267.	0.8	6
312	Immunotherapy for cancer treatment. , 2022, , 269-286.		0
313	Anticancer Activity of Urease Mimetic Cobalt (III) Complexes on A549-Lung Cancer Cells: Targeting the Acidic Microenvironment. Pharmaceutics, 2022, 14, 211.	2.0	3
314	Advances in antitumor nanomedicine based on functional metal–organic frameworks beyond drug carriers. Journal of Materials Chemistry B, 2022, 10, 676-699.	2.9	12
315	THBS2 is Closely Related to the Poor Prognosis and Immune Cell Infiltration of Gastric Cancer. Frontiers in Genetics, 2022, 13, 803460.	1.1	10
316	Combination drug delivery approaches for cancer therapy. , 2022, , 213-237.		1

#	Article	IF	CITATIONS
317	Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy. Immune Network, 2022, 22, e2.	1.6	53
318	CSHâ€Responsive Metal–Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy. Small, 2022, 18, e2107732.	5.2	31
319	Genesis and Mechanism of Some Cancer Types and an Overview on the Role of Diet and Nutrition in Cancer Prevention. Molecules, 2022, 27, 1794.	1.7	24
320	Role of hormones in the pregnancy and sexâ€specific outcomes to infections with respiratory viruses*. Immunological Reviews, 2022, 308, 123-148.	2.8	10
321	Prognostic significance of serum inflammation indices for different tumor infiltrative pattern types of gastric cancer. World Journal of Gastrointestinal Oncology, 2022, 14, 897-919.	0.8	1
324	Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nature Biomedical Engineering, 2022, 6, 898-909.	11.6	79
325	miR-1258 Enhances the Anti-Tumor Effect of Liver Cancer Natural Killer (NK) Cells by Stimulating Toll-Liker Receptor (TLR)7/8 to Promote Natural Killer (NK)-Dendritic Cell (DC) Interaction. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1241-1246.	0.0	1
326	Tumour-Natural Killer and CD8 T Cells Interaction Model with Delay+. Mathematics, 2022, 10, 2193.	1.1	2
327	Neutrophils: New Critical Regulators of Glioma. Frontiers in Immunology, 0, 13, .	2.2	9
328	La biotecnologÃa en la salud humana: el hito de los anticuerpos monoclonales. Ambiociencias, 0, , 12-33.	0.0	0
329	Application of the CRISPR/Cas9 Gene-editing System and Its Participation in Plant and Medical Science. , 2022, 23, .		1
330	Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance. Current Medicinal Chemistry, 2023, 30, 3335-3355.	1.2	4
332	An improved cell line-derived xenograft humanized mouse model for evaluation of PD-1/PD-L1 blocker BMS202-induced immune responses in colorectal cancer. Acta Biochimica Et Biophysica Sinica, 2022, 54, 1497-1506.	0.9	2
333	Ginsenosides: Allies of gastrointestinal tumor immunotherapy. Frontiers in Pharmacology, 0, 13, .	1.6	3
334	Near-Infrared Light-Activated Dual Targeting with Peptide-Conjugated Mesoporous Silica Nanoparticles for Multimodal Anticancer Therapy. ACS Applied Nano Materials, 2022, 5, 17105-17122.	2.4	7
336	Harnessing the Tumor Microenvironment for Cancer Immunotherapy. , 2022, , 1-25.		1
338	Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. Journal of Translational Medicine, 2022, 20, .	1.8	11
339	A novel hypoxia-related genes signature for prognosis and immunotherapeutic sensitivity in uterine carcinosarcoma patients. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2022, 181, .	0.0	0

#	Article	IF	CITATIONS
340	Differentiation and Immunological Function of MDSC-Derived Dendritic Cells. Global Medical Genetics, 2022, 09, 290-299.	0.4	0
341	Development of therapeutic vaccines for the treatment of diseases. Molecular Biomedicine, 2022, 3, .	1.7	11
342	Effects of lymphopenia on survival in proton therapy with chemotherapy for non-small cell lung cancer. Journal of Radiation Research, 2023, 64, 438-447.	0.8	0
343	Neoadjuvant treatment for stage III and IV cutaneous melanoma. The Cochrane Library, 2023, 2023, .	1.5	1
344	Bacillus Calmette-Guérin pneumonitis after intravesical instillation: Report of two cases and a review of the literature. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 0, , .	0.2	0
345	An evaluation of the suitability, readability, quality, and usefulness of online resources for patients with cancer receiving immunotherapy. Patient Education and Counseling, 2023, 110, 107640.	1.0	1
346	Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomedicine and Pharmacotherapy, 2023, 159, 114257.	2.5	14
347	Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Molecular Cancer, 2023, 22, .	7.9	9
348	A mechanistic analysis of spontaneous cancer remission phenomenon: identification of genomic basis and effector biomolecules for therapeutic applicability. 3 Biotech, 2023, 13, .	1.1	0
349	Preâ€Induced ICD Membraneâ€Coated Carrierâ€Free Nanoparticles for the Personalized Lung Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	2
350	Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine. Cells, 2023, 12, 1001.	1.8	19
351	Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. , 2023, 40, .		0
352	Immunotherapeutic and their immunological aspects: Current treatment strategies and agents. National Journal of Maxillofacial Surgery, 2022, 13, 322.	0.1	1
353	Strategies for Cancer Targeting: Novel Drug Delivery Systems Opportunities and Future Challenges. Biological and Medical Physics Series, 2023, , 1-42.	0.3	0
354	Recent advances and future challenges of tumor vaccination therapy for recurrent glioblastoma. Cell Communication and Signaling, 2023, 21, .	2.7	7
355	A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy. Chemosensors, 2023, 11, 245.	1.8	1
356	NIR-II Imaging and Sandwiched Plasmonic Biosensor for Ultrasensitive Intraoperative Definition of Tumor-Invaded Lymph Nodes. Nano Letters, 2023, 23, 4039-4048.	4.5	7
361	Cancer Stem Cell as a Target for Immunotherapeutic Approach. , 2023, , 185-198.		0

#	Article	IF	CITATIONS
370	Immunotherapy for Non-small Cell Lung Cancer. , 2023, , 1-25.		0
374	Cell membrane-coated biomimetic nanomedicines: productive cancer theranostic tools. Biomaterials Science, 2024, 12, 863-895.	2.6	0
379	Role of Medicinal Plants Against Cancer. Advances in Medical Diagnosis, Treatment, and Care, 2024, , 185-215.	0.1	0