Prototype Selection for Nearest Neighbor Classification

IEEE Transactions on Pattern Analysis and Machine Intelligenc 34, 417-435

DOI: 10.1109/tpami.2011.142

Citation Report

#	Article	IF	CITATIONS
1	Low-loss high-numerical-aperture optical fibre fabricated by v.a.d. method. Electronics Letters, 1979, 15, 680.	1.0	12
2	The design of high performance dual modulus divider-by prescaler. , 2006, , 60.		0
3	A Design Methodology for Decimation Filters in Sigma Delta A/D Converters. , 2009, , 453-456.		3
4	On-demand numerosity reduction for object learning. , 2011, , .		1
5	Fast and Accurate k-Nearest Neighbor Classification Using Prototype Selection by Clustering. , 2012, , .		12
6	A case study on the application of instance selection techniques for Genetic Fuzzy Rule-Based Classifiers. , 2012, , .		3
7	Competence Enhancement for Nearest Neighbor Classification Rule by Ranking-Based Instance Selection. , 2012, , .		2
8	Efficient dataset size reduction by finding homogeneous clusters. , 2012, , .		13
9	Multi-selection of instances: A straightforward way to improve evolutionary instance selection. Applied Soft Computing Journal, 2012, 12, 3590-3602.	7.2	22
10	Integrating a differential evolution feature weighting scheme into prototype generation. Neurocomputing, 2012, 97, 332-343.	5.9	23
11	On-demand Data Numerosity Reduction for Learning Artifacts. , 2012, , .		5
12	A genetic algorithm based clustering approach for improving off-line handwritten digit classification. , 2012, , .		3
13	Spectral Graph Optimization for Instance Reduction. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1169-1175.	11.3	11
14	A Fast Hybrid k-NN Classifier Based on Homogeneous Clusters. International Federation for Information Processing, 2012, , 327-336.	0.4	1
15	Integrating Instance Selection, Instance Weighting, and Feature Weighting for Nearest Neighbor Classifiers by Coevolutionary Algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 1383-1397.	5.0	51
16	A Co-evolutionary Framework for Nearest Neighbor Enhancement: Combining Instance and Feature Weighting with Instance Selection. Lecture Notes in Computer Science, 2012, , 176-187.	1.3	1
17	On the use of data filtering techniques for credit risk prediction with instance-based models. Expert Systems With Applications, 2012, 39, 13267-13276.	7.6	22
18	Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, 2012, , .	1.3	4

#	Article	IF	CITATIONS
19	Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Information Sciences, 2012, 186, 73-92.	6.9	102
20	A study on the application of instance selection techniques in genetic fuzzy rule-based classification systems: Accuracy-complexity trade-off. Knowledge-Based Systems, 2013, 54, 32-41.	7.1	25
21	Evolutionary computation for supervised learning. , 2013, , .		0
22	Artificial Neural Networks and Machine Learning – ICANN 2013. Lecture Notes in Computer Science, 2013, , .	1.3	8
23	FRPS: A Fuzzy Rough Prototype Selection method. Pattern Recognition, 2013, 46, 2770-2782.	8.1	49
24	A fast prototype reduction method based on template reduction and visualization-induced self-organizing map for nearest neighbor algorithm. Applied Intelligence, 2013, 39, 564-582.	5.3	11
25	A scalable approach to simultaneous evolutionary instance and feature selection. Information Sciences, 2013, 228, 150-174.	6.9	42
26	On Structuring Multiple Grouping Hypotheses in Generic Object Detection. , 2013, , .		O
27	On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection. Soft Computing, 2013, 17, 223-238.	3.6	30
28	Largeâ€scale data mining using geneticsâ€based machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3, 37-61.	6.8	59
29	Dynamic classifier selection for One-vs-One strategy: Avoiding non-competent classifiers. Pattern Recognition, 2013, 46, 3412-3424.	8.1	85
30	Vibrodiagnostics of gearboxes using NBV-based classifier: A pattern recognition approach. Mechanical Systems and Signal Processing, 2013, 38, 5-22.	8.0	16
31	EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition, 2013, 46, 3460-3471.	8.1	317
32	Weighted Data Gravitation Classification for Standard and Imbalanced Data. IEEE Transactions on Cybernetics, 2013, 43, 1672-1687.	9.5	90
33	Knowledge-based instance selection: A compromise between efficiency and versatility. Knowledge-Based Systems, 2013, 47, 65-76.	7.1	18
34	Genetic algorithms in feature and instance selection. Knowledge-Based Systems, 2013, 39, 240-247.	7.1	189
35	The fundamental theory of optimal "Anti-Bayesian―parametric pattern classification using order statistics criteria. Pattern Recognition, 2013, 46, 376-388.	8.1	22
36	Imputing missing values from low quality data by NIP tool. , 2013, , .		2

#	Article	IF	CITATIONS
37	ATISA: Adaptive Threshold-based Instance Selection Algorithm. Expert Systems With Applications, 2013, 40, 6894-6900.	7.6	22
38	Theory and Practice of Natural Computing. Lecture Notes in Computer Science, 2013, , .	1.3	1
39	Improving MLP Neural Network Performance by Noise Reduction. Lecture Notes in Computer Science, 2013, , 133-144.	1.3	9
40	An instance selection algorithm for regression and its application in variance reduction. , 2013, , .		11
41	AIB2., 2013,,.		2
42	A new probabilistic active sample selection algorithm for class imbalance problem. International Journal of Knowledge Engineering and Soft Data Paradigms, 2013, 4, 85.	0.0	0
43	Numerosity Reduction for Resource Constrained Learning. Journal of Information Processing, 2013, 21, 329-341.	0.4	2
44	Image-Based Coral Reef Classification and Thematic Mapping. Remote Sensing, 2013, 5, 1809-1841.	4.0	89
45	A texture analysis approach to supervised face segmentation. , 2014, , .		1
47	An evolutionary multi-objective approach for prototype generation. , 2014, , .		5
48	Training Neural Networks on Noisy Data. Lecture Notes in Computer Science, 2014, , 131-142.	1.3	16
49	Ensemble based classification using small training sets : A novel approach. , 2014, , .		5
50	A New Nearest Neighbor Classification Algorithm Based on Local Probability Centers. Mathematical Problems in Engineering, 2014, 2014, 1-14.	1.1	2
51	Choosing instance selection method using meta-learning. , 2014, , .		4
52	An Analysis of Instance Selection for Neural Networks to Improve Training Speed. , 2014, , .		4
53	Simultaneous generation of prototypes and features through genetic programming. , 2014, , .		8
54	An exemplarâ€based learning approach for detection and classification of malicious network streams in honeynets. Security and Communication Networks, 2014, 7, 352-364.	1.5	3
55	Ensembles of Instance Selection Methods based on Feature Subset. Procedia Computer Science, 2014, 35, 388-396.	2.0	20

#	ARTICLE	IF	Citations
56	A prototype optimization method for nearest neighbor classification by gravitational search algorithm. , 2014, , .		2
57	Nearest neighbor classification method based on the mutual information distance measure. , 2014, , .		0
58	Evolutionary Multi-Objective Approach for Prototype Generation and Feature Selection. Lecture Notes in Computer Science, 2014, , 424-431.	1.3	5
59	Test Point Specific k Estimation for kNN Classifier. , 2014, , .		9
60	Adaptive training set reduction for nearest neighbor classification. Neurocomputing, 2014, 138, 316-324.	5.9	7
61	Towards high dimensional instance selection: An evolutionary approach. Decision Support Systems, 2014, 61, 79-92.	5.9	19
62	Addressing imbalanced classification with instance generation techniques: IPADE-ID. Neurocomputing, 2014, 126, 15-28.	5.9	48
63	Efficient \$\$k\$\$ k -NN classification based on homogeneous clusters. Artificial Intelligence Review, 2014, 42, 491-513.	15.7	3
64	Evolutionary instance selection for text classification. Journal of Systems and Software, 2014, 90, 104-113.	4.5	24
65	Naive Bayes for value difference metric. Frontiers of Computer Science, 2014, 8, 255-264.	2.4	16
66	Efficient classification of multi-labeled text streams by clashing. Expert Systems With Applications, 2014, 41, 5431-5450.	7.6	23
67	Fuzzy nearest neighbor algorithms: Taxonomy, experimental analysis and prospects. Information Sciences, 2014, 260, 98-119.	6.9	103
68	LMIRA: Large Margin Instance Reduction Algorithm. Neurocomputing, 2014, 145, 477-487.	5.9	14
69	A novel prototype generation technique for handwriting digit recognition. Pattern Recognition, 2014, 47, 1002-1010.	8.1	27
70	A first attempt on evolutionary prototype reduction for nearest neighbor one-class classification. , 2014, , .		3
71	Host load prediction in cloud based on classification methods. Journal of China Universities of Posts and Telecommunications, 2014, 21, 40-46.	0.8	9
72	Improved pseudo nearest neighbor classification. Knowledge-Based Systems, 2014, 70, 361-375.	7.1	56
73	An improved artificial immune recognition system with the opposite sign test for feature selection. Knowledge-Based Systems, 2014, 71, 126-145.	7.1	26

#	Article	IF	CITATIONS
74	Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers. Pattern Recognition, 2014, 47, 3941-3948.	8.1	28
75	Prototype reduction based on Direct Weighted Pruning. Pattern Recognition Letters, 2014, 36, 22-28.	4.2	10
76	On the characterization of noise filters for self-training semi-supervised in nearest neighbor classification. Neurocomputing, 2014, 132, 30-41.	5.9	81
77	On the use of meta-learning for instance selection: An architecture and an experimental study. Information Sciences, 2014, 266, 16-30.	6.9	14
78	Optimizing human action recognition based on a cooperative coevolutionary algorithm. Engineering Applications of Artificial Intelligence, 2014, 31, 116-125.	8.1	19
79	An optimized nearest prototype classifier for power plant fault diagnosis using hybrid particle swarm optimization algorithm. International Journal of Electrical Power and Energy Systems, 2014, 58, 257-265.	5.5	16
80	Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing Journal, 2014, 22, 511-517.	7.2	61
81	One-Class Classification based on searching for the problem features limits. Expert Systems With Applications, 2014, 41, 7182-7199.	7.6	12
82	"Anti-Bayesian―parametric pattern classification using order statistics criteria for some members of the exponential family. Pattern Recognition, 2014, 47, 40-55.	8.1	15
83	Text Categorization Based on Dissimilarity Representation and Prototype Selection. , 2015, , .		2
84	Fuzzy Rough Set Prototype Selection for Regression. , 2015, , .		0
85	Multimode process monitoring using prototype-based Gaussian mixture model. , 2015, , .		1
86	Using training set selection methods to improve text mining on market prediction via news headlines. , $2015, , .$		0
87	Prototype selection based on multi-objective optimisation and partition strategy. International Journal of Sensor Networks, 2015, 17, 163.	0.4	3
88	FHC: an adaptive fast hybrid method for k-NN classification. Logic Journal of the IGPL, 2015, 23, 431-450.	1.5	4
89	A fast and flexible instance selection algorithm adapted to non-trivial database sizes. Intelligent Data Analysis, 2015, 19, 631-658.	0.9	0
90	On mining incomplete medical datasets: Ordering imputation and classification. Technology and Health Care, 2015, 23, 619-625.	1.2	0
91	Reducing the Response Time for Activity Recognition Through use of Prototype Generation Algorithms. Lecture Notes in Computer Science, 2015, , 313-318.	1.3	0

#	Article	IF	Citations
94	Pattern classification using a new border identification paradigm: The nearest border technique. Neurocomputing, 2015, 157, 105-117.	5.9	4
95	Decremental Sparse Modeling Representative Selection for prototype selection. Pattern Recognition, 2015, 48, 3714-3727.	8.1	32
96	Noise reduction in regression tasks with distance, instance, attribute and density weighting. , 2015, , .		1
97	Theoretical and Empirical Criteria for the Edited Nearest Neighbour Classifier. , 2015, , .		1
98	Prototypes selection based on similarity relations for classification problems. , 2015, , .		2
99	Reducing the complexity in genetic learning of accurate regression TSK rule-based systems. , 2015, , .		6
100	Tackling temporal pattern recognition by vector space embedding. , 2015, , .		1
101	Evolutionary Adaptive Self-Generating Prototypes for imbalanced datasets. , 2015, , .		1
102	Distributed fuzzy rough prototype selection for Big Data regression., 2015,,.		5
103	Prototype Selection on Large and Streaming Data. Lecture Notes in Computer Science, 2015, , 671-679.	1.3	2
104	Novel data condensing method using a prototype \times^3 s front propagation algorithm. Engineering Applications of Artificial Intelligence, 2015, 39, 181-197.	8.1	4
105	Improving kNN multi-label classification in Prototype Selection scenarios using class proposals. Pattern Recognition, 2015, 48, 1608-1622.	8.1	60
106	Fusing Sorted Random Projections for Robust Texture and Material Classification. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25, 482-496.	8.3	18
107	Pattern Matching based Classification using Ant Colony Optimization based Feature Selection. Applied Soft Computing Journal, 2015, 31, 91-102.	7.2	37
108	Reducing Time Complexity of SVM Model by LVQ Data Compression. Lecture Notes in Computer Science, 2015, , 687-695.	1.3	2
109	Case-based maintenance: Structuring and incrementing the case base. Knowledge-Based Systems, 2015, 88, 165-183.	7.1	11
110	An efficient data preprocessing approach for large scale medical data mining. Technology and Health Care, 2015, 23, 153-160.	1.2	10
111	A survey of fingerprint classification Part II: Experimental analysis and ensemble proposal. Knowledge-Based Systems, 2015, 81, 98-116.	7.1	40

#	ARTICLE	IF	Citations
112	Learning to detect representative data for large scale instance selection. Journal of Systems and Software, 2015, 106, 1-8.	4.5	27
113	Cumulative attribute relation regularization learning for human age estimation. Neurocomputing, 2015, 165, 456-467.	5.9	11
114	Simultaneous instance and feature selection and weighting using evolutionary computation: Proposal and study. Applied Soft Computing Journal, 2015, 37, 416-443.	7.2	41
115	Combining nearest neighbour classifiers based on small subsamples for big data analytics. , 2015, , .		O
116	Evolutionary undersampling for imbalanced big data classification. , 2015, , .		38
117	IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering. Pattern Recognition, 2015, 48, 1878-1889.	8.1	58
118	Three new instance selection methods based on local sets: A comparative study with several approaches from a bi-objective perspective. Pattern Recognition, 2015, 48, 1523-1537.	8.1	87
119	MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing, 2015, 150, 331-345.	5.9	204
120	Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets. Integrated Computer-Aided Engineering, 2015, 22, 21-39.	4.6	31
121	Data Preprocessing in Data Mining. Intelligent Systems Reference Library, 2015, , .	1.2	541
123	DRCW-OVO: Distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems. Pattern Recognition, 2015, 48, 28-42.	8.1	74
124	Large symmetric margin instance selection algorithm. International Journal of Machine Learning and Cybernetics, 2016, 7, 25-45.	3.6	16
125	Stimuli-Magnitude-Adaptive Sample Selection for Data-Driven Haptic Modeling. Entropy, 2016, 18, 222.	2.2	9
126	Optimal prototype selection for speech emotion recognition using fuzzy k-important nearest neighbour. International Journal of Communication Networks and Distributed Systems, 2016, 17, 103.	0.4	1
127	Data preprocessing issues for incomplete medical datasets. Expert Systems, 2016, 33, 432-438.	4.5	24
128	Instance selection of linear complexity for big data. Knowledge-Based Systems, 2016, 107, 83-95.	7.1	59
129	From Big Data to Smart Data with the K-Nearest Neighbours Algorithm. , 2016, , .		11
130	A survey on pre-processing techniques: Relevant issues in the context of environmental data mining. Al Communications, 2016, 29, 627-663.	1.2	43

#	ARTICLE	IF	CITATIONS
131	Recognition of Activities in Resource Constrained Environments; Reducing the Computational Complexity. Lecture Notes in Computer Science, 2016, , 64-74.	1.3	1
132	An approach to sample selection from big data for classification. , 2016, , .		3
133	A Prototype Selection Algorithm Based on Extended Near Neighbor and Affinity Change. , 2016, , .		2
134	Comparison of Multi-objective Evolutionary Algorithms for prototype selection in nearest neighbor classification. , 2016, , .		1
135	Instance Selection by Identifying Relevant Events Using Domain Knowledge and Minimal Human Involvement. , 2016, , .		0
136	EMOPG+FS: Evolutionary multi-objective prototype generation and feature selection. Intelligent Data Analysis, 2016, 20, S37-S51.	0.9	3
137	Induction of decision trees by looking to data sequentially and using error correction rule. , 2016, , .		0
138	Prototype Selection for k-Nearest Neighbors Classification Using Geometric Median. , 2016, , .		2
139	Multi-class texture analysis in colorectal cancer histology. Scientific Reports, 2016, 6, 27988.	3.3	305
140	Machine Intelligence and Big Data in Industry. Studies in Big Data, 2016, , .	1.1	0
141	FRULER: Fuzzy Rule Learning through Evolution for Regression. Information Sciences, 2016, 354, 1-18.	6.9	38
142	Natural neighbor: A self-adaptive neighborhood method without parameter K. Pattern Recognition Letters, 2016, 80, 30-36.	4.2	149
143	Authentication of Smartphone Users Using Behavioral Biometrics. IEEE Communications Surveys and Tutorials, 2016, 18, 1998-2026.	39.4	141
144	Improving nearest neighbor classification using Ensembles of Evolutionary Generated Prototype Subsets. Applied Soft Computing Journal, 2016, 44, 75-88.	7.2	10
145	Information Selection and Data Compression RapidMiner Library. Studies in Big Data, 2016, , 135-145.	1.1	1
146	Exploring Performance of Instance Selection Methods in Text Sentiment Classification. Advances in Intelligent Systems and Computing, 2016, , 167-179.	0.6	27
147	On the suitability of Prototype Selection methods for kNN classification with distributed data. Neurocomputing, 2016, 203, 150-160.	5.9	14
148	Combining instance selection for better missing value imputation. Journal of Systems and Software, 2016, 122, 63-71.	4.5	45

#	Article	IF	CITATIONS
149	Reducing Dimensionality to Improve Search in Semantic Genetic Programming. Lecture Notes in Computer Science, 2016, , 375-385.	1.3	5
150	Big data mining with parallel computing: A comparison of distributed and MapReduce methodologies. Journal of Systems and Software, 2016, 122, 83-92.	4.5	66
151	Risk Sensitive Reinforcement Learning Scheme Is Suitable for Learning on a Budget. Lecture Notes in Computer Science, 2016, , 202-210.	1.3	0
153	EPRENNID: An evolutionary prototype reduction based ensemble for nearest neighbor classification of imbalanced data. Neurocomputing, 2016, 216, 596-610.	5.9	16
154	Weighted natural neighborhood graph: an adaptive structure for clustering and outlier detection with no neighborhood parameter. Cluster Computing, 2016, 19, 1385-1397.	5.0	19
155	Evolutionary undersampling for extremely imbalanced big data classification under apache spark. , 2016, , .		49
156	Combining Prototype Selection with Local Boosting. IFIP Advances in Information and Communication Technology, 2016, , 94-105.	0.7	0
157	A concept-drift perspective on prototype selection and generation. , 2016, , .		3
158	Instance Reduction for Time Series Classification by Exploiting Representative Characteristics using k-means. Lecture Notes in Computer Science, 2016, , 217-229.	1.3	0
159	Big data preprocessing: methods and prospects. Big Data Analytics, 2016, 1, .	2.2	319
160	Applying SPEA2 to prototype selection for nearest neighbor classification. , 2016, , .		4
161	Recognizing debit card fraud transaction using CHAID and K-nearest neighbor: Indonesian Bank case. , 2016, , .		6
162	Instance selection for regression: Adapting DROP. Neurocomputing, 2016, 201, 66-81.	5.9	25
163	On the Relation Between kNNÂAccuracy and Dataset Compression Level. Lecture Notes in Computer Science, 2016, , 541-551.	1.3	1
164	Efficient editing and data abstraction by finding homogeneous clusters. Annals of Mathematics and Artificial Intelligence, 2016, 76, 327-349.	1.3	6
165	Instance Selection Optimization for Neural Network Training. Lecture Notes in Computer Science, 2016, , 610-620.	1.3	3
166	Kernel sparse modeling for prototype selection. Knowledge-Based Systems, 2016, 107, 61-69.	7.1	4
167	Instance selection for regression by discretization. Expert Systems With Applications, 2016, 54, 340-350.	7.6	24

#	ARTICLE	IF	CITATIONS
168	Editing training data for multi-label classification with the k-nearest neighbor rule. Pattern Analysis and Applications, 2016, 19, 145-161.	4.6	51
169	RHC: a non-parametric cluster-based data reduction for efficient \$\$k\$\$ k -NN classification. Pattern Analysis and Applications, 2016, 19, 93-109.	4.6	32
170	Reducing noise impact on MLP training. Soft Computing, 2016, 20, 49-65.	3.6	20
171	PGGP: Prototype Generation via Genetic Programming. Applied Soft Computing Journal, 2016, 40, 569-580.	7.2	13
172	Weighted Reward–Punishment Editing. Pattern Recognition Letters, 2016, 75, 48-54.	4.2	3
173	Dissimilarity-Based Sparse Subset Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 2182-2197.	13.9	110
174	3D spatial pyramid: descriptors generation from point clouds for indoor scene classification. Machine Vision and Applications, 2016, 27, 263-273.	2.7	2
175	A Nearest Neighbor Classifier Employing Critical Boundary Vectors for Efficient On-Chip Template Reduction. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1094-1107.	11.3	11
176	Fusion of instance selection methods in regression tasks. Information Fusion, 2016, 30, 69-79.	19.1	32
177	Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowledge-Based Systems, 2016, 98, 1-29.	7.1	204
178	Keypoint selection for efficient bag-of-words feature generation and effective image classification. Information Sciences, 2016, 329, 33-51.	6.9	34
179	Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: Experimental evaluation and support vector analysis. Applied Soft Computing Journal, 2016, 38, 10-22.	7.2	38
180	Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Applied Soft Computing Journal, 2016, 38, 714-726.	7.2	206
181	Hierarchical distance learning by stacking nearest neighbor classifiers. Information Fusion, 2016, 29, 14-31.	19.1	8
182	MOPG: a multi-objective evolutionary algorithm for prototype generation. Pattern Analysis and Applications, 2017, 20, 33-47.	4.6	18
183	Selecting promising classes from generated data for an efficient multi-class nearest neighbor classification. Soft Computing, 2017, 21, 6183-6189.	3.6	3
184	Discriminant deep belief network for high-resolution SAR image classification. Pattern Recognition, 2017, 61, 686-701.	8.1	127
185	An experimental study on rank methods for prototype selection. Soft Computing, 2017, 21, 5703-5715.	3.6	7

#	Article	IF	CITATIONS
186	Selection of effective training instances for scalable automatic image annotation. Multimedia Tools and Applications, 2017, 76, 9643-9666.	3.9	3
187	Prototype generation on structural data using dissimilarity space representation. Neural Computing and Applications, 2017, 28, 2415-2424.	5.6	16
188	A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing, 2017, 239, 39-57.	5.9	326
189	Prototype selection to improve monotonic nearest neighbor. Engineering Applications of Artificial Intelligence, 2017, 60, 128-135.	8.1	22
190	A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Information Sciences, 2017, 394-395, 38-52.	6.9	146
191	Parallel MCNN (pMCNN) with Application to Prototype Selection on Large and Streaming Data. Journal of Artificial Intelligence and Soft Computing Research, 2017, 7, 155-169.	4.3	19
192	An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 2017, 251, 26-34.	5.9	231
193	Combining dissimilarity spaces for text categorization. Information Sciences, 2017, 406-407, 87-101.	6.9	15
194	MR-DIS: democratic instance selection for big data by MapReduce. Progress in Artificial Intelligence, 2017, 6, 211-219.	2.4	24
195	Efficient temporal pattern recognition by means of dissimilarity space embedding with discriminative prototypes. Pattern Recognition, 2017, 64, 268-276.	8.1	16
196	Learning from examples with data reduction and stacked generalization. Journal of Intelligent and Fuzzy Systems, 2017, 32, 1401-1411.	1.4	8
197	An Evolutionary Multiobjective Model and Instance Selection for Support Vector Machines With Pareto-Based Ensembles. IEEE Transactions on Evolutionary Computation, 2017, 21, 863-877.	10.0	54
198	Multi-class sentiment classification: The experimental comparisons of feature selection and machine learning algorithms. Expert Systems With Applications, 2017, 80, 323-339.	7.6	168
199	NMC: nearest matrix classification $\hat{a} \in A$ new combination model for pruning One-vs-One ensembles by transforming the aggregation problem. Information Fusion, 2017, 36, 26-51.	19.1	18
200	Training set selection for monotonic ordinal classification. Data and Knowledge Engineering, 2017, 112, 94-105.	3.4	8
201	Graph construction using adaptive Local Hybrid Coding scheme. Neural Networks, 2017, 95, 91-101.	5.9	18
202	A new Centroid-Based Classification model for text categorization. Knowledge-Based Systems, 2017, 136, 15-26.	7.1	26
203	Simultaneous instance and feature selection for improving prediction in special education data. Data Technologies and Applications, 2017, 51, 278-297.	0.8	1

#	Article	IF	Citations
204	Analyzing different prototype selection techniques for dynamic classifier and ensemble selection. , $2017, \dots$		9
205	A first attempt on global evolutionary undersampling for imbalanced big data. , 2017, , .		13
206	Online pruning of base classifiers for Dynamic Ensemble Selection. Pattern Recognition, 2017, 72, 44-58.	8.1	54
207	Instance reduction for time series classification using MDL principle. Intelligent Data Analysis, 2017, 21, 491-514.	0.9	3
208	Continuous adaptation of multi-camera person identification models through sparse non-redundant representative selection. Computer Vision and Image Understanding, 2017, 156, 66-78.	4.7	9
209	Hopâ€byâ€Hop Congestion Avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing, 2017, 223, 63-76.	5.9	44
210	Hybrid Classification System for Uncertain Data. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2783-2790.	9.3	74
211	Representative Selection with Structured Sparsity. Pattern Recognition, 2017, 63, 268-278.	8.1	45
212	An efficient instance selection algorithm to reconstruct training set for support vector machine. Knowledge-Based Systems, 2017, 116, 58-73.	7.1	108
213	Learning efficient and interpretable prototypes from data for nearest neighbor classification method. , 2017, , .		1
214	Robust and Scalable Column/Row Sampling from Corrupted Big Data. , 2017, , .		4
215	Prototype reduction algorithms comparison in nearest neighbor classification for sensor data: Empirical study. , 2017, , .		11
216	Increasing speed of genetic algorithm-based instance selection. , 2017, , .		1
217	LSIS: Large scale instance selection algorithm for big data. , 2017, , .		0
218	Online Summarization via Submodular and Convex Optimization. , 2017, , .		34
219	Neighborhood Criterion Analysis for Prototype Selection Applied in WSN Data., 2017,,.		9
220	Relevance Image Sampling from Collection Using Importance Selection on Randomized Optimum-Path Trees. , 2017, , .		0
221	A comparison of fuzzy approaches for training a humanoid robotic football player., 2017,,.		O

#	Article	IF	CITATIONS
222	Data reduction through kernel sparse coding. , 2017, , .		0
223	I3GO+ at RICATIM 2017: A semi-supervised approach to determine the relevance between images and text-annotations., 2017,,.		0
224	Ensemble Classifier Approach in Breast Cancer Detection and Malignancy Grading - A Review. International Journal of Managing Public Sector Information and Communication Technologies, 2017, 8, 17-26.	0.3	1
225	An improved decoding algorithm based on min-max for NB-LDPC codes. , 2017, , .		0
226	Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography. Biomedical Optics Express, 2017, 8, 4206.	2.9	39
227	A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS. Sustainability, 2017, 9, 813.	3.2	30
228	Learning Global-Local Distance Metrics for Signature-Based Biometric Cryptosystems. Cryptography, 2017, 1, 22.	2.3	2
229	Instance Selection for Classifier Performance Estimation in Meta Learning. Entropy, 2017, 19, 583.	2.2	12
230	Analysis of imbalanced data set problem: The case of churn prediction for telecommunication. Artificial Intelligence Research, 2017, 6, 93.	0.3	14
231	A taxonomic look at instance-based stream classifiers. Neurocomputing, 2018, 286, 167-178.	5.9	7
232	Combining three strategies for evolutionary instance selection for instance-based learning. Swarm and Evolutionary Computation, 2018, 42, 160-172.	8.1	15
233	Local sets for multi-label instance selection. Applied Soft Computing Journal, 2018, 68, 651-666.	7.2	24
234	Edited nearest neighbour for selecting keyframe summaries of egocentric videos. Journal of Visual Communication and Image Representation, 2018, 52, 118-130.	2.8	18
235	Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers. SAR and QSAR in Environmental Research, 2018, 29, 187-212.	2.2	6
236	CHI-PG: A fast prototype generation algorithm for Big Data classification problems. Neurocomputing, 2018, 287, 22-33.	5 . 9	16
237	A multi-objective evolutionary approach to training set selection for support vector machine. Knowledge-Based Systems, 2018, 147, 94-108.	7.1	30
238	Prototype selection for dynamic classifier and ensemble selection. Neural Computing and Applications, 2018, 29, 447-457.	5.6	30
239	A fast classification strategy for SVM on the large-scale high-dimensional datasets. Pattern Analysis and Applications, 2018, 21, 1023-1038.	4.6	3

#	Article	IF	CITATIONS
240	Increasing the speed of fuzzy kâ€nearest neighbours algorithm. Expert Systems, 2018, 35, e12254.	4.5	8
241	Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation. Pattern Recognition, 2018, 74, 531-543.	8.1	82
242	Quantitative steganalysis of spatial LSB based stego images using reduced instances and features. Pattern Recognition Letters, 2018, 105, 39-49.	4.2	24
243	Dynamic classifier selection: Recent advances and perspectives. Information Fusion, 2018, 41, 195-216.	19.1	283
244	Exploring the effect of data reduction on Neural Network and Support Vector Machine classification. Neurocomputing, 2018, 280, 101-110.	5.9	26
245	Asymmetric learning vector quantization for efficient nearest neighbor classification in dynamic time warping spaces. Pattern Recognition, 2018, 76, 349-366.	8.1	16
246	Improving the Performance of an Associative Classifier by Gamma Rough Sets Based Instance Selection. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32, 1860009.	1.2	7
247	Evolutionary under-sampling based bagging ensemble method for imbalanced data classification. Frontiers of Computer Science, 2018, 12, 331-350.	2.4	55
248	Feature Weighting for Improved Classification of Anuran Calls. , 2018, , .		2
249	New Method for Exemplar Selection and Application to VANET Experimentation. , $2018, , .$		1
250	A clustering-based hybrid approach for dual data reduction. International Journal of Intelligent Engineering Informatics, 2018, 6, 468.	0.1	6
251	Finite-Time Trajectory Tracking Control Without Payload-Swing Feedback for Overhead Crane Systems Subject to Uncertain Dynamics. , 2018, , .		2
252	Multi-Objective Evolutionary Instance Selection for Regression Tasks. Entropy, 2018, 20, 746.	2.2	12
253	Prototype Selection Using Self-Organizing-Maps and Entropy for Overlapped Classes and Imbalanced Data. , 2018, , .		2
254	Data Set Partitioning in Evolutionary Instance Selection. Lecture Notes in Computer Science, 2018, , 631-641.	1.3	1
255	Sparsity induced prototype learning via <mml:math altimg="si208.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>nml::::::::::::::::::::::::::::::::::::</td><td>/mml:mi><m< td=""></m<></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nml::::::::::::::::::::::::::::::::::::	/mml:mi> <m< td=""></m<>
256	Prototype-based classification and error analysis under bootstrapping strategy. International Journal of Data Mining, Modelling and Management, 2018, 10, 293.	0.1	2
257	Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques. , 2018, , .		35

#	Article	IF	Citations
258	A new variant of Fuzzy K-Nearest Neighbor using Interval Type-2 Fuzzy Logic., 2018,,.		6
260	Eye Blink Pattern Controlled System Using Wearable EEG Headband. , 2018, , .		1
261	Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning. Expert Systems With Applications, 2018, 109, 114-130.	7.6	15
262	Natural neighborhood graph-based instance reduction algorithm without parameters. Applied Soft Computing Journal, 2018, 70, 279-287.	7.2	21
263	Pruning strategies for nearest neighbor competence preservation learners. Neurocomputing, 2018, 308, 8-20.	5.9	1
264	Outlier Removal in Model-Based Missing Value Imputation for Medical Datasets. Journal of Healthcare Engineering, 2018, 2018, 1-9.	1.9	22
265	Evolving Spiking Neural Networks for online learning over drifting data streams. Neural Networks, 2018, 108, 1-19.	5.9	60
266	Identifying stealth malware using CPU power consumption and learning algorithms. Journal of Computer Security, 2018, 26, 589-613.	0.8	9
267	Performance Comparison of Prototype Selection Based on Edition Search for Nearest Neighbor Classification. , $2018, \ldots$		3
268	CNN Training with Graph-Based Sample Preselection: Application to Handwritten Character Recognition. , $2018, \ldots$		6
269	An ensemble-based method for the selection of instances in the multi-target regression problem. Integrated Computer-Aided Engineering, 2018, 25, 305-320.	4.6	8
270	Deep Learning for Math Knowledge Processing. Lecture Notes in Computer Science, 2018, , 271-286.	1.3	8
271	Discriminative Prototype Set Learning for Nearest Neighbor Classification., 2018, , 468-476.		0
272	A k-nearest neighbors based approach applied to more realistic activity recognition datasets. Journal of Ambient Intelligence and Smart Environments, 2018, 10, 247-259.	1.4	2
273	FIRE-DES++: Enhanced online pruning of base classifiers for dynamic ensemble selection. Pattern Recognition, 2019, 85, 149-160.	8.1	40
274	Instance reduction for one-class classification. Knowledge and Information Systems, 2019, 59, 601-628.	3.2	21
275	Lithofacies and stratigraphy prediction methodology exploiting an optimized nearest-neighbour algorithm to mine well-log data. Marine and Petroleum Geology, 2019, 110, 347-367.	3.3	25
276	Instance selection based on boosting for instance-based learners. Pattern Recognition, 2019, 96, 106959.	8.1	19

#	ARTICLE	IF	CITATIONS
277	Improving the combination of results in the ensembles of prototype selectors. Neural Networks, 2019, 118, 175-191.	5.9	9
278	Trimmed Robust Loss Function for Training Deep Neural Networks with Label Noise. Lecture Notes in Computer Science, 2019, , 215-222.	1.3	9
279	Extensions to rank-based prototype selection in k-Nearest Neighbour classification. Applied Soft Computing Journal, 2019, 85, 105803.	7.2	21
280	A Neighbor Prototype Selection Method Based on CCHPSO for Intrusion Detection. Security and Communication Networks, 2019, 2019, 1-9.	1.5	0
281	Adaptive geometric median prototype selection method for k-nearest neighbors classification. Intelligent Data Analysis, 2019, 23, 855-876.	0.9	3
282	Evolutionary prototype selection for multi-output regression. Neurocomputing, 2019, 358, 309-320.	5.9	19
283	German solar power generation data mining and prediction with transparent open box learning network integrating weather, environmental and market variables. Energy Conversion and Management, 2019, 196, 354-369.	9.2	12
284	Tree-based space partition and merging ensemble learning framework for imbalanced problems. Information Sciences, 2019, 503, 1-22.	6.9	12
285	Fast Algorithm for Prototypes Selectionâ€"Trust-Margin Prototypes. Lecture Notes in Computer Science, 2019, , 583-594.	1.3	1
286	EEkNN: k-Nearest Neighbor Classifier with an Evidential Editing Procedure for Training Samples. Electronics (Switzerland), 2019, 8, 592.	3.1	2
287	Methods to Edit Multi-label Training Sets Using Rough Sets Theory. Lecture Notes in Computer Science, 2019, , 369-380.	1.3	1
288	Minimizing the Misclassification Rate of the Nearest Neighbor Rule Using a Two-stage Method. , 2019, , .		0
289	Predicting the Tensile Behaviour of Cast Alloys by a Pattern Recognition Analysis on Experimental Data. Metals, 2019, 9, 557.	2.3	31
290	PAS3-HSID: a Dynamic Bio-Inspired Approach for Real-Time Hot Spot Identification in Data Streams. Cognitive Computation, 2019, 11, 434-458.	5.2	4
291	Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections. Applied Soft Computing Journal, 2019, 80, 414-424.	7.2	7
292	Transparent open-box learning network provides auditable predictions for coal gross calorific value. Modeling Earth Systems and Environment, 2019, 5, 395-419.	3.4	20
293	Trimmed categorical crossâ€entropy for deep learning with label noise. Electronics Letters, 2019, 55, 319-320.	1.0	55
294	Sensitivity analysis and optimization capabilities of the transparent open-box learning network in predicting coal gross calorific value from underlying compositional variables. Modeling Earth Systems and Environment, 2019, 5, 753-766.	3.4	11

#	Article	IF	CITATIONS
295	Seeing All From a Few: ell_{1} -Norm-Induced Discriminative Prototype Selection. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 1954-1966.	11.3	11
296	Label noise filtering techniques to improve monotonic classification. Neurocomputing, 2019, 353, 83-95.	5.9	8
297	Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing, 2019, 341, 168-182.	5.9	50
298	Instance selection improves geometric mean accuracy: a study on imbalanced data classification. Progress in Artificial Intelligence, 2019, 8, 215-228.	2.4	45
299	Optimal training and test sets design for machine learning. Turkish Journal of Electrical Engineering and Computer Sciences, 0, , 1534-1545.	1.4	15
300	A Big Data Approach for Health Data Information Retrieval. , 2019, , .		0
301	Methodology for Monitoring the Behavior of the Visual System. , 2019, , .		1
302	Approach to Assessing Quality Indicators. , 2019, , .		2
304	Small Objects Detection with Multi-layer Laser Radar Based on Projection Dimensionality Reduction. , 2019, , .		1
305	FPGA Chaotic Memory Indexing Image Steganography. , 2019, , .		1
306	An Efficient Viterbi Algorithm for Combined MSK Demodulation and Gold Code Despreading. , 2019, , .		0
307	Towards Secure Network Coding Enabled Mobile Small Cells. , 2019, , .		1
308	Improving the Transmission Efficiency of Copper Plate Coils for Wireless Power Transmission Using Magnetic Flux Path Control Technology. , 2019, , .		2
309	Source Reconstruction in Near Field Scanning using Inverse MoM for RFI Application. , 2019, , .		4
310	Study on the fiber optic EFPI ultrasonic transducer with a beam-supported membrane structure for PD measurement. , 2019, , .		2
311	Automatic Big Data Acquisition of Electrical Parameters in Wide Bandgap Devices. , 2019, , .		1
312	Innovation in Educational Process of Computer Networks. , 2019, , .		1
313	A Method for Identifying eHealth Applications Using Side-Channel Information. , 2019, , .		3

#	Article	IF	Citations
314	Cascade Control and Stability Analysis of Spacecraft Formation. , 2019, , .		1
315	ICMIM 2019 Sponsoring Societies., 2019,,.		0
316	GPS/GLONASS Data Fusion and Outlier Elimination to Improve the Position Accuracy of Receiver. , 2019, , .		1
317	Seamless Transition Between Dual Operating Modes of A Single-Phase Quasi-Z-Source Inverter. , 2019, , .		0
318	Joint Selection of Central and Extremal Prototypes Based on Kernel Minimum Enclosing Balls. , 2019, , .		4
319	Power Allocation Schemes for Implant Nodes in Cooperative Wireless Body Area Networks. , 2019, , .		0
320	An Interactive LiDAR to Camera Calibration. , 2019, , .		18
321	Comparison of the molecular descriptors efficiency in modeling the structure-activity relationship. , 2019, , .		2
322	Enabling Agile Software-Defined and NFV based Energy-Efficient Operations in TWDM-PON. , 2019, , .		3
323	Approximate Adder Tree Synthesis for FPGAs. , 2019, , .		1
324	A Four-Position Calibration Method of Inconsistent Angles between Units of TRUSINS., 2019,,.		0
325	Set-based Design in Agile Development: Developing a Banana Sorting Module - A Practical Approach. , 2019, , .		2
326	Wavelet Singularity Analysis for CAP Sleep Delineation. , 2019, , .		3
327	Rail Defect Detection using Matrix Pencil Method-Based Radar Target Identification. , 2019, , .		0
328	On Fusing Multiple Instance Selection Results. , 2019, , .		0
329	Chirps for radar based on reciprocal time, essential discontinuities and chaotic generators. , 2019, , .		0
330	Optimal Power Transmission of Offshore Wind Farms with Droop Based Control Strategies of Multi-terminal HVDC Systems. , 2019, , .		0
331	Organizing Network Management Logic with Circular Economy Principles. , 2019, , .		2

#	Article	IF	CITATIONS
332	A Preliminary Approach for the Exploitation of Citizen Science Data for Fast and Robust Fuzzy k-Nearest Neighbour Classification. , 2019, , .		O
333	On Dissimilarity Representation and Transfer Learning for Offline Handwritten Signature Verification. , 2019, , .		2
334	Running Event Visualization using Videos from Multiple Cameras. , 2019, , .		4
335	The Effect of Parallelism on Data Reduction. , 2019, , .		0
336	Unsupervised prototype reduction for data exploration and an application to air traffic management initiatives. EURO Journal on Transportation and Logistics, 2019, 8, 467-510.	2.2	1
337	Intelligence in Embedded Systems: Overview and Applications. Advances in Intelligent Systems and Computing, 2019, , 874-883.	0.6	10
338	An Instance Selection Algorithm Based on ReliefF. International Journal on Artificial Intelligence Tools, 2019, 28, 1950001.	1.0	8
339	Data preprocessing in predictive data mining. Knowledge Engineering Review, 2019, 34, .	2.6	80
340	Under-sampling class imbalanced datasets by combining clustering analysis and instance selection. Information Sciences, 2019, 477, 47-54.	6.9	203
341	An accelerator for support vector machines based on the local geometrical information and data partition. International Journal of Machine Learning and Cybernetics, 2019, 10, 2389-2400.	3.6	4
342	Intelligent System for Identification of Wheelchair User's Posture Using Machine Learning Techniques. IEEE Sensors Journal, 2019, 19, 1936-1942.	4.7	20
343	Multiple Empirical Kernel Learning with Majority Projection for imbalanced problems. Applied Soft Computing Journal, 2019, 76, 221-236.	7.2	8
344	Transforming big data into smart data: An insight on the use of the kâ€nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1289.	6.8	88
345	Hybrid local boosting utilizing unlabeled data in classification tasks. Evolving Systems, 2019, 10, 51-61.	3.9	3
346	Geometric Structural Ensemble Learning for Imbalanced Problems. IEEE Transactions on Cybernetics, 2020, 50, 1617-1629.	9.5	84
347	Bioimage-Based Prediction of Protein Subcellular Location in Human Tissue with Ensemble Features and Deep Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1966-1980.	3.0	16
348	Time series classification using local distance-based features in multi-modal fusion networks. Pattern Recognition, 2020, 97, 107024.	8.1	26
349	Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 2020, 184, 106587.	4.2	63

#	Article	IF	CITATIONS
350	Bakken Stratigraphic and Type Well-Log Learning Network for Transparent Prediction and Rigorous Data Mining. Natural Resources Research, 2020, 29, 1329-1349.	4.7	4
351	German country-wide renewable power generation from solar plus wind mined with an optimized data matching algorithm utilizing diverse variables. Energy Systems, 2020, 11, 1003-1045.	3.0	4
352	A Training Data Set Cleaning Method by Classification Ability Ranking for the \$k\$-Nearest Neighbor Classifier. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1544-1556.	11.3	34
353	Transforming Device Fingerprinting for Wireless Security via Online Multitask Metric Learning. IEEE Internet of Things Journal, 2020, 7, 208-219.	8.7	15
354	Bakken stratigraphic and type well log learning network exploited to predict and data mine shear wave acoustic velocity. Journal of Applied Geophysics, 2020, 173, 103936.	2.1	5
355	NearCount: Selecting critical instances based on the cited counts of nearest neighbors. Knowledge-Based Systems, 2020, 190, 105196.	7.1	10
356	Dissimilarity-based representations for one-class classification on time series. Pattern Recognition, 2020, 100, 107122.	8.1	18
357	Multiple Partial Empirical Kernel Learning with Instance Weighting and Boundary Fitting. Neural Networks, 2020, 123, 26-37.	5.9	2
358	TSSweb: a Web Tool for Training Set Selection. , 2020, , .		1
359	A Hybrid Surrogate Model for Evolutionary Undersampling in Imbalanced Classification. , 2020, , .		2
360	Training set selection and swarm intelligence for enhanced integration in multiple classifier systems. Applied Soft Computing Journal, 2020, 95, 106568.	7.2	8
361	A New Under-Sampling Method to Face Class Overlap and Imbalance. Applied Sciences (Switzerland), 2020, 10, 5164.	2.5	25
362	O (m log m) instance selection algorithmsâ€"RR-DROPs. , 2020, , .		3
364	Improving $\langle i\rangle k\langle i\rangle$ Nearest Neighbors and Na \tilde{A} ve Bayes Classifiers Through Space Transformations and Model Selection. IEEE Access, 2020, 8, 221669-221688.	4.2	2
365	kNN Prototyping Schemes for Embedded Human Activity Recognition with Online Learning. Computers, 2020, 9, 96.	3.3	19
366	A fast instance selection method for support vector machines in building extraction. Applied Soft Computing Journal, 2020, 97, 106716.	7.2	14
367	IMMIGRATE: A Margin-Based Feature Selection Method with Interaction Terms. Entropy, 2020, 22, 291.	2.2	0
369	Summarizer: Fuzzy Rule-Based Classification Systems for Vertical and Horizontal Big Data. , 2020, , .		1

#	Article	IF	CITATIONS
370	Integrating Feature and Instance Selection Techniques in Opinion Mining. International Journal of Data Warehousing and Mining, 2020, 16, 168-182.	0.6	5
371	Insights Into Efficient k-Nearest Neighbor Classification With Convolutional Neural Codes. IEEE Access, 2020, 8, 99312-99326.	4.2	15
372	ProLSFEO-LDL: Prototype Selection and Label- Specific Feature Evolutionary Optimization for Label Distribution Learning. Applied Sciences (Switzerland), 2020, 10, 3089.	2.5	8
373	Data Reduction in the String Space for Efficient kNN Classification Through Space Partitioning. Applied Sciences (Switzerland), 2020, 10, 3356.	2.5	9
374	Big Data Preprocessing. , 2020, , .		42
375	Fast Head Pose Estimation via Rotation-Adaptive Facial Landmark Detection for Video Edge Computation. IEEE Access, 2020, 8, 45023-45032.	4.2	7
376	Artificial Intelligence and Radio Networks. IEEE Wireless Communications, 2020, 27, 2-3.	9.0	0
377	Experimental Study on Displacement Damage Effects of Anode-Short MOS-Controlled Thyristor. IEEE Transactions on Nuclear Science, 2020, 67, 508-517.	2.0	9
378	Design and Performance Analysis Results of Iron-Core Type MgB ₂ and HTS Magnets for Large-Scale Superconducting Induction Heaters. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4.	1.7	6
379	An Optimization Framework for Collaborative Control of Power Loss and Voltage in Distribution Systems With DGs and EVs Using Stochastic Fuzzy Chance Constrained Programming. IEEE Access, 2020, 8, 49013-49027.	4.2	14
380	Comparison of Instance Selection and Construction Methods with Various Classifiers. Applied Sciences (Switzerland), 2020, 10, 3933.	2.5	9
381	Globalized Multiple Balanced Subsets With Collaborative Learning for Imbalanced Data. IEEE Transactions on Cybernetics, 2022, 52, 2407-2417.	9.5	7
382	Country-wide German hourly wind power dataset mined to provide insight to predictions and forecasts with optimized data-matching machine learning. Renewable Energy Focus, 2020, 34, 69-90.	4.5	8
383	Ranking-based instance selection for pattern classification. Expert Systems With Applications, 2020, 150, 113269.	7.6	19
384	Dual-Receiver Wearable 6.78 MHz Resonant Inductive Wireless Power Transfer Glove Using Embroidered Textile Coils. IEEE Access, 2020, 8, 24630-24642.	4.2	42
385	High-Efficiency Pulse Width Modulation-Based Wireless Laser Power Transmission Step-Down System. IEEE Photonics Journal, 2020, 12, 1-14.	2.0	2
386	Biologically Inspired Techniques in Many-Criteria Decision Making. Learning and Analytics in Intelligent Systems, 2020, , .	0.6	1
387	Convergence analysis of accelerated proximal extra-gradient method with applications. Neurocomputing, 2020, 388, 288-300.	5.9	5

#	Article	IF	CITATIONS
388	Predicting Stability of a Decentralized Power Grid Linking Electricity Price Formulation to Grid Frequency Applying an Optimized Data-Matching Learning Network to Simulated Data. Technology and Economics of Smart Grids and Sustainable Energy, 2020, 5, 1.	2.6	8
389	AISAC: An Artificial Immune System for Associative Classification Applied to Breast Cancer Detection. Applied Sciences (Switzerland), 2020, 10, 515.	2.5	11
390	Prototype Classifiers and the Big Fish: The Case of Prototype (Instance) Selection. IEEE Systems, Man, and Cybernetics Magazine, 2020, 6, 49-56.	1.4	2
391	Prototype Selection Method Based on the Rivality and Reliability Indexes for the Improvement of the Classification Models and External Predictions. Journal of Chemical Information and Modeling, 2020, 60, 3009-3021.	5.4	3
392	Research on Indoor Navigation System of UAV Based on LIDAR. , 2020, , .		11
393	Artificial intelligence models to generate visualized bedrock level: a case study in Sweden. Modeling Earth Systems and Environment, 2020, 6, 1509-1528.	3.4	30
394	Randomly Elected Blockchain System based on Grouping Verifiers for Efficiency and Security. , 2020, , .		2
395	A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections. Information Fusion, 2021, 65, 50-57.	19.1	25
396	Semi-supervised classification via simultaneous label and discriminant embedding estimation. Information Sciences, 2021, 546, 146-165.	6.9	24
398	Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 188-201.	8.1	119
399	EUSC: A clustering-based surrogate model to accelerate evolutionary undersampling in imbalanced classification. Applied Soft Computing Journal, 2021, 101, 107033.	7.2	21
400	Proposed big data architecture for facial recognition using machine learning. AIMS Electronics and Electrical Engineering, 2021, 5, 68-92.	1.5	8
402	Prototype Generation for Multi-label Nearest Neighbours Classification. Lecture Notes in Computer Science, 2021, , 172-183.	1.3	2
403	Instance Selection-Based Surrogate-Assisted Genetic Programming for Feature Learning in Image Classification. IEEE Transactions on Cybernetics, 2023, 53, 1118-1132.	9.5	10
404	A cheaper Rectified-Nearest-Feature-Line-Segment classifier based on safe points. , 2021, , .		1
405	A Brief Review on Instance Selection Based on Condensed Nearest Neighbors for Data Classification Tasks. Lecture Notes in Electrical Engineering, 2021, , 313-324.	0.4	0
406	Improving the Accuracy of Nearest-Neighbor Classification Using Principled Construction and Stochastic Sampling of Training-Set Centroids. Entropy, 2021, 23, 149.	2.2	0
407	Joint Label Inference and Discriminant Embedding. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4413-4423.	11.3	7

#	Article	IF	CITATIONS
408	Instance-Based Classification Through Hypothesis Testing. IEEE Access, 2021, 9, 17485-17494.	4.2	1
409	An instance selection algorithm for fuzzy K-nearest neighbor. Journal of Intelligent and Fuzzy Systems, 2021, 40, 521-533.	1.4	9
411	Bitcoin Theft Detection Based on Supervised Machine Learning Algorithms. Security and Communication Networks, 2021, 2021, 1-10.	1.5	8
412	IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF. Signal and Data Processing, 2021, 17, 49-66.	0.1	2
413	Large-Scale Instance Selection using Center of Principal Components. , 2021, , .		0
414	Instance selection in medical datasets: A divide-and-conquer framework. Computers and Electrical Engineering, 2021, 90, 106957.	4.8	8
415	Optimal 1-NN prototypes for pathological geometries. PeerJ Computer Science, 2021, 7, e464.	4.5	2
416	Guarantees on nearest-neighbor condensation heuristics. Computational Geometry: Theory and Applications, 2021, 95, 101732.	0.5	0
417	Data reduction based on NN-kNN measure for NN classification and regression. International Journal of Machine Learning and Cybernetics, 2022, 13, 765-781.	3.6	7
418	Semantics of Voids within Data: Ignorance-Aware Machine Learning. ISPRS International Journal of Geo-Information, 2021, 10, 246.	2.9	4
419	Data cleaning issues in class imbalanced datasets: instance selection and missing values imputation for one-class classifiers. Data Technologies and Applications, 2021, ahead-of-print, .	1.4	3
420	Efficient Retrieval of Music Recordings Using Graph-Based Index Structures. Signals, 2021, 2, 336-352.	1.9	1
421	Accessing Imbalance Learning Using Dynamic Selection Approach in Water Quality Anomaly Detection. Symmetry, 2021, 13, 818.	2.2	10
422	Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction. Journal of Business Research, 2021, 130, 200-209.	10.2	29
423	Knowledge graph summarization impacts on movie recommendations. Journal of Intelligent Information Systems, 2022, 58, 43-66.	3.9	17
424	Quad division prototype selection-based k-nearest neighbor classifier for click fraud detection from highly skewed user click dataset. Engineering Science and Technology, an International Journal, 2022, 28, 101011.	3.2	10
425	Dimensionality analysis in machine learning failure detection models. A case study with LNG compressors. Computers in Industry, 2021, 128, 103434.	9.9	6
426	Practical selection of representative sets of RNA-seq samples using a hierarchical approach. Bioinformatics, 2021, 37, i334-i341.	4.1	0

#	Article	IF	Citations
427	Soft-Label Dataset Distillation and Text Dataset Distillation. , 2021, , .		19
428	FDR2-BD: A Fast Data Reduction Recommendation Tool for Tabular Big Data Classification Problems. Electronics (Switzerland), 2021, 10, 1757.	3.1	3
429	One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes. , 2021, , .		0
430	Filtering-Based Instance Selection Method for Overlapping Problem in Imbalanced Datasets. J, 2021, 4, 308-327.	0.9	4
431	Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-point Search Metaheuristics. Ingenieria E Investigacion, 2021, 41, e79308.	0.4	0
432	k-Nearest Neighbour Classifiers - A Tutorial. ACM Computing Surveys, 2022, 54, 1-25.	23.0	267
433	Detection of the bacteria concentration level in pasteurized milk by using two different artificial multisensory methods. Sensing and Bio-Sensing Research, 2021, 33, 100428.	4.2	13
434	A multi-granularity locally optimal prototype-based approach for classification. Information Sciences, 2021, 569, 157-183.	6.9	12
435	Efficient <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -nearest neighbor search based on clustering and adaptive <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> values. Pattern Recognition, 2022, 122, 108356.	8.1	29
436	Towards Visual Semantics. SN Computer Science, 2021, 2, 1.	3.6	5
437	Efficient and decision boundary aware instance selection for support vector machines. Information Sciences, 2021, 577, 579-598.	6.9	19
438	Evidential instance selection for K-nearest neighbor classification of big data. International Journal of Approximate Reasoning, 2021, 138, 123-144.	3.3	20
439	Class-weighted neural network for monotonic imbalanced classification. International Journal of Machine Learning and Cybernetics, 2021, 12, 1191-1201.	3.6	5
440	Firefly algorithm for instance selection. Procedia Computer Science, 2021, 192, 2269-2278.	2.0	1
441	Application of Artificial Neural Networks in the Problems of the Patient's Condition Diagnosis in Medical Monitoring Systems. Advances in Intelligent Systems and Computing, 2020, , 173-185.	0.6	4
442	Data Reduction for Big Data. , 2020, , 81-99.		2
443	A Local Search with a Surrogate Assisted Option for Instance Reduction. Lecture Notes in Computer Science, 2020, , 578-594.	1.3	1
444	Improving Invoice Allocation in Accounting—An Account Recommender Case Study Applying Machine Learning. Lecture Notes in Information Systems and Organisation, 2020, , 137-153.	0.6	2

#	Article	IF	CITATIONS
446	EHC: Non-parametric Editing by Finding Homogeneous Clusters. Lecture Notes in Computer Science, 2014, , 290-304.	1.3	5
447	Bagging of Instance Selection Algorithms. Lecture Notes in Computer Science, 2014, , 40-51.	1.3	11
449	Instance Selection. Intelligent Systems Reference Library, 2015, , 195-243.	1.2	10
450	Improved Learning Rule for LVQ Based on Granular Computing. Lecture Notes in Computer Science, 2015, , 54-63.	1.3	5
451	Exemplar Selection Using Collaborative Neighbor Representation. Lecture Notes in Computer Science, 2015, , 439-450.	1.3	3
452	Improving Writer Identification Through Writer Selection. Lecture Notes in Computer Science, 2015, , 168-175.	1.3	2
453	Instance Selection and Outlier Generation to Improve the Cascade Classifier Precision. Lecture Notes in Computer Science, 2017, , 151-170.	1.3	3
454	Prototype Discriminative Learning for Face Image Set Classification. Lecture Notes in Computer Science, 2017, , 344-360.	1.3	4
455	Optimization of Evolutionary Instance Selection. Lecture Notes in Computer Science, 2017, , 359-369.	1.3	6
457	Obtaining Pareto Front in Instance Selection with Ensembles and Populations. Lecture Notes in Computer Science, 2018, , 438-448.	1.3	3
459	A Simple Noise-Tolerant Abstraction Algorithm for Fast k-NN Classification. Lecture Notes in Computer Science, 2012, , 210-221.	1.3	4
460	Instance Selection with Neural Networks for Regression Problems. Lecture Notes in Computer Science, 2012, , 263-270.	1.3	17
461	Improving SMOTE with Fuzzy Rough Prototype Selection to Detect Noise in Imbalanced Classification Data. Lecture Notes in Computer Science, 2012, , 169-178.	1.3	11
463	On the k-Nearest Neighbor Classifier with Locally Structural Consistency. Lecture Notes in Electrical Engineering, 2014, , 269-277.	0.4	6
464	OWA-FRPS: A Prototype Selection Method Based on Ordered Weighted Average Fuzzy Rough Set Theory. Lecture Notes in Computer Science, 2013, , 180-190.	1.3	13
465	An Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets. Lecture Notes in Computer Science, 2013, , 262-269.	1.3	28
467	A Novel Genetic Algorithm Approach to Simultaneous Feature Selection and Instance Selection. , 2020, , .		8
468	Self-Representation Based Unsupervised Exemplar Selection in a Union of Subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1.	13.9	7

#	ARTICLE	IF	CITATIONS
469	CenEEGs. ACM Transactions on Knowledge Discovery From Data, 2020, 14, 1-25.	3.5	15
470	Instance Selection in the Performance of Gamma Associative Classifier. Research in Computing Science, 2015, 105, 117-125.	0.1	1
471	iBTune. Proceedings of the VLDB Endowment, 2019, 12, 1221-1234.	3.8	49
472	Information Capacity Database in the Rating Model on the Basis of Polish and Italian Real Estate Markets. Real Estate Management and Valuation, 2016, 24, 40-51.	0.6	3
473	Instance Selection Techniques in Reduction of Data Streams Derived from Medical Devices. Przeglad Elektrotechniczny, 2017, 1, 117-120.	0.2	4
474	Data Exploration with Selection of Representative Regions: Formulation, Axioms, Methods, and Consistency. SSRN Electronic Journal, 0, , .	0.4	2
475	Efficient data abstraction using weighted IB2 prototypes. Computer Science and Information Systems, 2014, 11, 665-678.	1.0	3
476	Correcting the hub occurrence prediction bias in many dimensions. Computer Science and Information Systems, 2016, 13, 1-21.	1.0	3
477	Ensembles of instance selection methods: A comparative study. International Journal of Applied Mathematics and Computer Science, 2019, 29, 151-168.	1.5	10
478	Self-Supervised Deep Low-Rank Assignment Model for Prototype Selection. , 2018, , .		7
479	Mastering Big Data in the Digital Age. Advances in Data Mining and Database Management Book Series, 0, , 104-129.	0.5	16
480	Data Selection for Neural Networks. Schedae Informaticae, 0, 1/2016, .	0.1	4
481	Prototype Selection and Generation with Minority Classes Preservation. , 2021, , .		0
482	Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor. Sensors, 2021, 21, 6652.	3.8	16
483	SPMS-ALS: A Single-Point Memetic structure with accelerated local search for instance reduction. Swarm and Evolutionary Computation, 2022, 69, 100991.	8.1	5
484	Normalization and outlier removal in class center-based firefly algorithm for missing value imputation. Journal of Big Data, 2021, 8, .	11.0	5
485	A Prototype Selection Algorithm Using Fuzzy k-Important Nearest Neighbor Method. Lecture Notes in Electrical Engineering, 2013, , 997-1001.	0.4	0
486	A Genetic Tuned Fuzzy Classifier Based on Prototypes. , 2013, , .		0

#	Article	IF	CITATIONS
487	Support Rough Sets for decision-making., 2013,,.		0
488	Salience-Based Prototype Selection for K-Nearest Neighbor Classification in Multiple-Instance Learning. Lecture Notes in Computer Science, 2013, , 40-47.	1.3	O
489	Using Dominant Sets for k-NN Prototype Selection. Lecture Notes in Computer Science, 2013, , 131-140.	1.3	3
490	Applying General-Purpose Data Reduction Techniques for Fast Time Series Classification. Lecture Notes in Computer Science, 2013, , 34-41.	1.3	O
491	Instance Selection Using Two Phase Collaborative Neighbor Representation. Lecture Notes in Computer Science, 2014, , 121-128.	1.3	1
493	Multi Threshold FRPS: A New Approach to Fuzzy Rough Set Prototype Selection. Lecture Notes in Computer Science, 2014, , 83-91.	1.3	0
494	"Real-time―Instance Selection for Biomedical Data Classification. Lecture Notes in Computer Science, 2014, , 394-404.	1.3	0
495	Noise Detection and Learning Based on Current Information. Computacion Y Sistemas, 2014, 18, .	0.3	0
496	IRDDS: Instance reduction based on Distance-based decision surface. Journal of Artificial Intelligence & Data Mining, 2015, 3, .	0.1	0
497	Applying Prototype Selection and Abstraction Algorithms for Efficient Time-Series Classification. Springer Series in Bio-/neuroinformatics, 2015, , 333-348.	0.1	0
498	Using Growing Neural Gas in Prototype Generation for Nearest Neighbor Classifiers. Lecture Notes in Computer Science, 2015, , 276-283.	1.3	1
499	An Interval Valued K-Nearest Neighbors Classifier. , 0, , .		4
500	Classification based on Neighborhood from Datasets with Low Quality Data. , 0, , .		0
501	Prototype based Classification by Generating Multidimensional Spheres per Class Area. Journal of the Korea Society of Computer and Information, 2015, 20, 21-28.	0.0	0
503	Efficient Support Vector Machine Classification Using Prototype Selection and Generation. IFIP Advances in Information and Communication Technology, 2016, , 328-340.	0.7	0
504	Multithreading Incremental Learning Scheme for Embedded System to Realize a High-Throughput. Lecture Notes in Computer Science, 2016, , 204-213.	1.3	0
506	Prototype-Based Classification Using Class Hyperspheres. KIPS Transactions on Software and Data Engineering, 2016, 5, 483-488.	0.1	0
507	A Scheme of Template Selection and Updating for Palmprint Authentication Systems. Lecture Notes in Computer Science, 2017, , 250-258.	1.3	1

#	Article	IF	CITATIONS
508	Generating Fixed-Size Training Sets for Large and Streaming Datasets. Lecture Notes in Computer Science, 2017, , 88-102.	1.3	1
509	Unsupervised Prototype Reduction for Data Exploration and An Application to Air Traffic Management Initiatives. SSRN Electronic Journal, 0, , .	0.4	0
510	A Study of Prototype Selection Algorithms forÂNearest Neighbour in Class-Imbalanced Problems. Lecture Notes in Computer Science, 2017, , 335-343.	1.3	1
511	Learning a Sparse Database for Patch-Based Medical Image Segmentation. Lecture Notes in Computer Science, 2017, , 47-54.	1.3	2
512	A More Realistic K-Nearest Neighbors Method and Its Possible Applications to Everyday Problems. , 2017, , .		2
513	On Fast Sample Preselection for Speeding up Convolutional Neural Network Training. Lecture Notes in Computer Science, 2018, , 65-75.	1.3	0
514	A First Attempt on Monotonic Training Set Selection. Lecture Notes in Computer Science, 2018, , 277-288.	1.3	1
515	Data Compression Measures for Meta-Learning Systems. , 0, , .		0
516	Comparison of Prototype Selection Algorithms Used in Construction of Neural Networks Learned by SVD. International Journal of Applied Mathematics and Computer Science, 2018, 28, 719-733.	1.5	2
517	An Efficient Scheme for Prototyping kNN in the Context of Real-Time Human Activity Recognition. Lecture Notes in Computer Science, 2019, , 486-493.	1.3	1
518	A Self-generating Prototype Method Based on Information Entropy Used for Condensing Data in Classification Tasks. Lecture Notes in Computer Science, 2019, , 195-207.	1.3	0
519	Variable Reduction-based Prediction through Modified Genetic Algorithm. International Journal of Advanced Computer Science and Applications, 2019, 10, .	0.7	4
520	Principal Sample Analysis for Data Ranking. Lecture Notes in Computer Science, 2019, , 579-583.	1.3	1
521	Instance Selection for the Nearest Neighbor Classifier: Connecting the Performance to the Underlying Data Structure. Lecture Notes in Computer Science, 2019, , 249-256.	1.3	1
522	Characterization of Handwritten Signature Images in Dissimilarity Representation Space. Lecture Notes in Computer Science, 2019, , 192-206.	1.3	1
523	Fast Tree-Based Classification via Homogeneous Clustering. Lecture Notes in Computer Science, 2019, , 514-524.	1.3	0
524	Improving Data Reduction by Merging Prototypes. Lecture Notes in Computer Science, 2019, , 20-32.	1.3	0
525	Instance Ranking and Numerosity Reduction Using Matrix Decomposition and Subspace Learning. Lecture Notes in Computer Science, 2019, , 160-172.	1.3	2

#	ARTICLE	IF	CITATIONS
526	EVALUATION OF HARDNESS IN CAST IRON: HOW SIMPLE IT IS !. Proceedings on Engineering Sciences, 2019, 1, 418-422.	0.4	0
527	Rank-Based Variable Minimization Using Clustering Algorithm. International Journal of Machine Learning and Computing, 2019, 9, 575-580.	0.6	0
528	The Cosine Similarity Technique for Removing the Redundancy Sample. , 2019, , .		0
529	Developing Prediction System for Solar Power Plant Using Machine Learning Algorithms. Bitlis Eren Aœniversitesi Fen Bilimleri Dergisi, 2020, 9, 747-755.	0.5	O
530	Ensemble Classification Approach for Cancer Prognosis and Prediction. Learning and Analytics in Intelligent Systems, 2020, , 120-135.	0.6	0
532	A Hybrid Instance Selection Method Based on Convex Hull and Nearest Neighbor. , 2020, , 3-13.		O
533	Anomaly Detection and Prototype Selection Using Polyhedron Curvature. Lecture Notes in Computer Science, 2020, , 238-250.	1.3	0
534	Large-Scale Instance Selection Using a Heterogeneous Value Difference Matrix. Smart Innovation, Systems and Technologies, 2021, , 465-479.	0.6	O
535	An investigation into the effects of label noise on Dynamic Selection algorithms. Information Fusion, 2022, 80, 104-120.	19.1	1
537	Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification. IEEE Access, 2021, 9, 152098-152114.	4.2	5
538	Efficient Incremental Instance-based Learning Algorithms for Open World Malware Classification. , 2021, , .		0
539	A Large-Scale $ k $ -Nearest Neighbor Classification Algorithm Based on Neighbor Relationship Preservation. Wireless Communications and Mobile Computing, 2022, 2022, 1-11.	1.2	4
540	Fine-Tuning Fuzzy KNN Classifier Based on Uncertainty Membership for the Medical Diagnosis of Diabetes. Applied Sciences (Switzerland), 2022, 12, 950.	2.5	26
541	Fast data reduction by space partitioning via convex hull and MBR computation. Pattern Recognition, 2022, 126, 108553.	8.1	8
542	Exploration of Topic Classification in the Tourism Field with Text Mining Technology—A Case Study of the Academic Journal Papers. Sustainability, 2022, 14, 4053.	3.2	7
543	K-nearest neighbors rule combining prototype selection and local feature weighting for classification. Knowledge-Based Systems, 2022, 243, 108451.	7.1	19
544	Weighted Ensemble with one-class Classification and Over-sampling and Instance selection (WECOI): An approach for learning from imbalanced data streams. Journal of Computational Science, 2022, 61, 101614.	2.9	20
545	Instance Selection Based on Linkage Trees. , 2021, , .		O

#	Article	IF	CITATIONS
547	Locust Mayfly Optimization-Tuned Neural Network for Al-Based Pruning in Chess Game. International Journal of Image and Graphics, 0 , , .	1.5	2
548	Towards hybrid over- and under-sampling combination methods for class imbalanced datasets: an experimental study. Artificial Intelligence Review, 2023, 56, 845-863.	15.7	10
549	Exploiting second-order dissimilarity representations for hierarchical clustering and visualization. Data Mining and Knowledge Discovery, 0, , .	3.7	0
550	Bagging-based instance selection for instance-based classification. , 2020, 2608, 769-783.		1
551	Generalized Undersampling of Center Points Based on Granular Ball. , 2022, , .		1
552	Attribute and Case Selection for NN Classifier through Rough Sets and Naturally Inspired Algorithms. Computacion Y Sistemas, 2014, 18, .	0.3	O
554	Efficient anomaly detection through surrogate neural networks. Neural Computing and Applications, 2022, 34, 20491-20505.	5.6	4
555	Target-class guided sample length reduction and training set selection of univariate time-series. Applied Intelligence, 0, , .	5.3	O
556	Integrating Feature and Instance Selection Techniques in Opinion Mining., 2022,, 800-815.		0
557	Using quantum amplitude amplification in genetic algorithms. Expert Systems With Applications, 2022, 209, 118203.	7.6	12
558	Accelerated pattern search with variable solution size for simultaneous instance selection and generation. , 2022, , .		1
559	Feature space partition: a local–global approach for classification. Neural Computing and Applications, 2022, 34, 21877-21890.	5.6	1
561	Hybrid data selection with preservation rough sets. Soft Computing, 2022, 26, 11197-11223.	3.6	2
562	Two-dimensional Dataset Reduction in Data-Driven Fault Detection for IoT-based Cyber Physical Systems., 2022,,.		O
563	Sınıflar Arası Kenar Payını Genişletmek İçin Yeni Bir Örnek Seçim Algoritması. Journal of Intellig Systems Theory and Applications, 2022, 5, 119-126.	gent 0.6	1
564	A nearest neighbor multiple-point statistics method for fast geological modeling. Computers and Geosciences, 2022, 167, 105208.	4.2	6
565	Rethinking Semantic Segmentation: A Prototype View., 2022,,.		103
566	Quantum Mating Operator: A New Approach to Evolve Chromosomes in Genetic Algorithms. , 2022, , .		3

#	Article	IF	CITATIONS
567	Chronic obstructive pulmonary disease prediction using Internet of things-spiro system and fuzzy-based quantum neural network classifier. Theoretical Computer Science, 2023, 941, 55-76.	0.9	6
568	Unsupervised instance selection via conjectural hyperrectangles. Neural Computing and Applications, 2023, 35, 5335-5349.	5.6	1
569	Instance and Feature Selection Using Fuzzy Rough Sets: A Bi-Selection Approach for Data Reduction. IEEE Transactions on Fuzzy Systems, 2023, 31, 1981-1994.	9.8	8
570	HAKA: HierArchical Knowledge Acquisition in a sign language tutor. Expert Systems With Applications, 2023, 215, 119365.	7.6	1
571	Credit Scoring with Drift Adaptation Using Local Regions of Competence. SN Operations Research Forum, 2022, 3, .	1.0	0
572	Fast prototype selection algorithm based on adjacent neighbourhood and boundary approximation. Scientific Reports, 2022, 12, .	3.3	0
573	Fast Training Set Size Reduction Using Simple Space Partitioning Algorithms. Information (Switzerland), 2022, 13, 572.	2.9	1
574	Hybrid fly optimization tuned artificial neural network for Al-based chess playing system. Multimedia Tools and Applications, 0, , .	3.9	0
575	Instance selection using oneâ€versusâ€all and oneâ€versusâ€one decomposition approaches in multiclass classification datasets. Expert Systems, 2023, 40, .	4.5	0
576	Uncertainty Based Optimal Sample Selection for Big Data. IEEE Access, 2023, 11, 6284-6292.	4.2	0
577	Data reduction via multi-label prototype generation. Neurocomputing, 2023, 526, 1-8.	5.9	2
578	Parallel Instance Filtering for Malware Detection. , 2022, , .		0
579	Quick continual kernel learning on bounded memory space based on balancing between adaptation and forgetting. Evolving Systems, 0, , .	3.9	0
580	A stochastic approximation approach to fixed instance selection. Information Sciences, 2023, 628, 558-579.	6.9	1
581	Fast instance selection method for SVM training based on fuzzy distance metric. Applied Intelligence, 0, , .	5.3	0
582	A Comparative Survey of Instance Selection Methods applied to Non-Neural and Transformer-Based Text Classification. ACM Computing Surveys, 2023, 55, 1-52.	23.0	2
583	Sampling Algorithms for Unsupervised Prototype Selection., 2022,,.		0
584	A Robot for Artistic Painting in Authentic Colors. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	3.4	10

#	ARTICLE	IF	CITATIONS
585	A Fast andÂEfficient Algorithm forÂFiltering theÂTraining Dataset. Lecture Notes in Computer Science, 2023, , 504-512.	1.3	0
586	Analogy-based classifiers: An improved algorithm exploiting competent data pairs. International Journal of Approximate Reasoning, 2023, 158, 108923.	3.3	0
587	Survey onÂKNN Methods inÂData Science. Lecture Notes in Computer Science, 2022, , 379-393.	1.3	4
588	Uniform-in-phase-space data selection with iterative normalizing flows. Data-Centric Engineering, 2023, 4, .	2.3	O
589	Prototype generation method using a growing self-organizing map applied to the banking sector. Neural Computing and Applications, 0, , .	5.6	0
590	Very fast variations of training set size reduction algorithms for instance-based classification. , 2023, , .		0
591	An Accelerator for Semi-Supervised Classification with Granulation Selection. Electronics (Switzerland), 2023, 12, 2239.	3.1	1
592	Exploring the potential of prototype-based soft-labels data distillation for imbalanced data classification. , 2022, , .		0
593	Condensed Nearest Neighbour Rules for Multi-Label Datasets. , 2023, , .		2
594	Multiscale Prototype Contrast Network for High-Resolution Aerial Imagery Semantic Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	6.3	0
595	Unsupervised Learning Method for Better Imputation of Missing Values. Communications in Computer and Information Science, 2023, , 25-34.	0.5	0
596	An Optimized Spectral Clustering Algorithm for Better Imputation of Medical Datasets (OISSC). Lecture Notes in Networks and Systems, 2023, , 599-612.	0.7	0
597	Simulation and Reconstruction of Runoff in the High-Cold Mountains Area Based on Multiple Machine Learning Models. Water (Switzerland), 2023, 15, 3222.	2.7	3
598	kNN Classification: a review. Annals of Mathematics and Artificial Intelligence, 0, , .	1.3	1
599	Prototype Selection for Multilabel Instance-Based Learning. Information (Switzerland), 2023, 14, 572.	2.9	0
600	Empirical Evaluation of Machine Learning Performance in Forecasting Cryptocurrencies. Journal of Advances in Information Technology, 2023, 14, 639647.	2.9	1
601	Style Projected Clustering for Domain Generalized Semantic Segmentation., 2023,,.		1
602	LRP-GUS: A Visual Based Data Reduction Algorithm forÂNeural Networks. Lecture Notes in Computer Science, 2023, , 337-349.	1.3	0

#	Article	IF	CITATIONS
603	Instance-based learning with prototype reduction for real-time proportional myocontrol: a randomized user study demonstrating accuracy-preserving data reduction for prosthetic embedded systems. Medical and Biological Engineering and Computing, 0, , .	2.8	0
604	Bug Resolution Prediction for Open-Source Software Using Ensembles of Instance Selection Algorithms. , 2023, , .		0
605	Fault distance estimation for transmission lines with dynamic regressor selection. Neural Computing and Applications, 0 , , .	5.6	0
607	Class Representatives Selection in Non-metric Spaces for Nearest Prototype Classification. Lecture Notes in Computer Science, 2023, , 111-124.	1.3	0
608	ProtoTransfer: Cross-Modal Prototype Transfer for Point Cloud Segmentation. , 2023, , .		0
609	Predicting user demographics based on interest analysis in movie dataset. Multimedia Tools and Applications, 0, , .	3.9	0
610	D-AE: A Discriminant Encode-Decode Nets forÂData Generation. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 96-114.	0.3	0