DORA: Dynamic Optimal Random Access for Vehicle-to

IEEE Journal on Selected Areas in Communications 30, 792-803 DOI: 10.1109/jsac.2012.120513

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Optimal Random Access for Vehicle-to-Roadside Communications. , 2011, , .		7
2	On the Uplink MAC Performance of a Drive-Thru Internet. IEEE Transactions on Vehicular Technology, 2012, 61, 1925-1935.	6.3	52
3	Modeling and Analysis of DSA-Based Vehicle-to-Infrastructure Communication Systems. IEEE Transactions on Intelligent Transportation Systems, 2013, 14, 1186-1196.	8.0	14
4	Impact of location heterogeneity on random walk mobility models. , 2013, , .		0
5	Vehicular networking: A survey on spectrum access technologies and persisting challenges. Vehicular Communications, 2015, 2, 125-149.	4.0	49
6	QoS Schemes for Charging Plug-in Electric Vehicles in a Smart Grid Environment. Power Systems, 2015, , 241-265.	0.5	2
7	Modeling and Performance Analysis of Medium Access Control Schemes for Drive-Thru Internet Access Provisioning Systems. IEEE Transactions on Intelligent Transportation Systems, 2015, 16, 3238-3248.	8.0	18
8	SWIMMING: Seamless and Efficient WiFi-Based Internet Access from Moving Vehicles. IEEE Transactions on Mobile Computing, 2015, 14, 1085-1097.	5.8	24
9	Power Allocation Based on Finite-Horizon Optimization for Data Transmission in Vehicle-to-Roadside Communications. Wireless Personal Communications, 2015, 81, 1177-1197.	2.7	0
10	Maximum-Utility Scheduling for Multimedia Transmission in Drive-Thru Internet. IEEE Transactions on Vehicular Technology, 2016, 65, 2649-2658.	6.3	44
11	WAVE 4 V2G: Wireless access in vehicular environments for Vehicle-to-Grid applications. Vehicular Communications, 2016, 3, 31-42.	4.0	20
12	An SMDP-Based Prioritized Channel Allocation Scheme in Cognitive Enabled Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 7925-7933.	6.3	54
13	Engineering a Game Theoretic Access for Urban Vehicular Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 4602-4615.	6.3	26
14	Deep reinforcement learning-based scheduling for roadside communication networks. , 2017, , .		47
15	A Game Theoretic Approach to Parked Vehicle Assisted Content Delivery in Vehicular Ad Hoc Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 6461-6474.	6.3	107
16	A Reinforcement Learning Technique for Optimizing Downlink Scheduling in an Energy-Limited Vehicular Network. IEEE Transactions on Vehicular Technology, 2017, 66, 4592-4601.	6.3	66
17	On efficient admission control utilizing cloud compression in drive-thru vehicular networks. , 2017, ,		0
18	Fuzzy logic-based integrity-oriented file transfer for highway vehicular communications. Eurasip Journal on Wireless Communications and Networking, 2018, 2018, .	2.4	11

TATION PEDO

#	Article	IF	CITATIONS
19	Multiobjective Network Opportunistic Access for Group Mobility in Mobile Internet. IEEE Systems Journal, 2018, 12, 1024-1033.	4.6	9
20	Utility maximization for multi-vehicle multimedia dissemination in vehicular ad hoc networks. International Journal of Distributed Sensor Networks, 2018, 14, 155014771880671.	2.2	3
21	Scheduling the Operation of a Connected Vehicular Network Using Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 1669-1682.	8.0	57
22	A Game Theoretic Scheme for Optimal Access Control in Heterogeneous Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 4590-4603.	8.0	34
23	SMDP-Based Prioritized Channel Allocations in Vehicular Ad Hoc Networks. , 2019, , .		0
24	Stackelberg-Game-Based Mechanism for Opportunistic Data Offloading Using Moving Vehicles. IEEE Access, 2019, 7, 166435-166450.	4.2	21
25	An Intelligent Vehicle Control System for Enhancing Road Safety Using Optimal Visible Light Communication Network. Journal of Optical Communications, 2023, 44, 81-94.	4.7	1
26	Deployment and Dimensioning of Fog Computing-Based Internet of Vehicle Infrastructure for Autonomous Driving. IEEE Internet of Things Journal, 2019, 6, 149-160.	8.7	63
27	Utility Based Data Computing Scheme to Provide Sensing Service in Internet of Things. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 337-348.	4.6	69
28	MDP-Based Task Offloading for Vehicular Edge Computing Under Certain and Uncertain Transition Probabilities. IEEE Transactions on Vehicular Technology, 2020, 69, 3296-3309.	6.3	77
29	Dynamic V2I/V2V Cooperative Scheme for Connectivity and Throughput Enhancement. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1236-1246.	8.0	20
30	Reservation Service: Trusted Relay Selection for Edge Computing Services in Vehicular Networks. IEEE Journal on Selected Areas in Communications, 2020, 38, 2734-2746.	14.0	31
31	Throughput of CDM-Based Random Access With SINR Capture. IEEE Transactions on Vehicular Technology, 2020, 69, 15046-15056.	6.3	3
32	A Distributed Channel Access Scheme for Vehicles in Multi-Agent V2I Systems. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 1297-1307.	7.9	7
33	Towards Efficient NDN Framework for Connected Vehicle Applications. IEEE Access, 2020, 8, 60850-60866.	4.2	12
34	UAV-Assisted Content Delivery in Intelligent Transportation Systems-Joint Trajectory Planning and Cache Management. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5155-5167.	8.0	68
35	LSTM-Based Channel Access Scheme for Vehicles in Cognitive Vehicular Networks With Multi-Agent Settings. IEEE Transactions on Vehicular Technology, 2021, 70, 9132-9143.	6.3	9
36	A Survey of Abnormal Traffic Information Detection and Transmission Mechanisms in VSNs. International Journal of Distributed Sensor Networks, 2014, 10, 582761.	2.2	7

CITATION REPORT

	Сітатіоі	n Report		
#	Article	IF	Citations	
37	Game Approach for Handover Scheme Based on Road-section in VANET. Journal of Computers, 2014, 9, .	0.4	0	
38	Seamless Access Internet using Wi fi in Dynamic Vehicles. International Journal of Engineering and Computer Science, 0, , .	0.2	0	
39	Vehicle Communications for Infotainment Applications. , 2020, , 1-18.		0	
40	Reputation Based Content Delivery in Information Centric Vehicular Networks. Wireless Networks, 2021, , 29-47.	0.5	2	
41	VQ-CSMA: Throughput-Optimal Low-Delay Random Access. IEEE Wireless Communications Letters, 2022, 11, 1303-1307.	5.0	3	
42	Spectrum Access Allocation in Vehicular Networks With Intermittently Interrupted Channels. IEEE Wireless Communications Letters, 2022, 11, 1151-1155.	5.0	0	
43	Time or Reward: Digital-twin Enabled Personalized Vehicle Path Planning. , 2021, , .		3	
44	Vehicle Communications for Infotainment Applications. , 2022, , 705-722.		1	
45	Data Synchronization for Vehicular Digital Twin Network. , 2022, , .		1	
46	SEAL: A Strategy-Proof and Privacy-Preserving UAV Computation Offloading Framework. IEEE Transactions on Information Forensics and Security, 2023, 18, 5213-5228.	6.9	6	