Cell-free synthetic biology: Thinking outside the cell

Metabolic Engineering 14, 261-269 DOI: 10.1016/j.ymben.2011.09.002

Citation Report

#	Article	IF	CITATIONS
1	An <i>E. coli</i> Cell-Free Expression Toolbox: Application to Synthetic Gene Circuits and Artificial Cells. ACS Synthetic Biology, 2012, 1, 29-41.	1.9	381
2	Cell-Free Biosystems for Biomanufacturing. Advances in Biochemical Engineering/Biotechnology, 2012, 131, 89-119.	0.6	22
3	Synthetic in vitro circuits. Current Opinion in Chemical Biology, 2012, 16, 253-259.	2.8	58
4	Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Research, 2012, 40, 3763-3774.	6.5	113
5	Multiplexed <i>in Vivo</i> His-Tagging of Enzyme Pathways for <i>in Vitro</i> Single-Pot Multienzyme Catalysis. ACS Synthetic Biology, 2012, 1, 43-52.	1.9	87
6	Ensemble Bayesian Analysis of Bistability in a Synthetic Transcriptional Switch. ACS Synthetic Biology, 2012, 1, 299-316.	1.9	53
7	Genome Replication, Synthesis, and Assembly of the Bacteriophage T7 in a Single Cell-Free Reaction. ACS Synthetic Biology, 2012, 1, 408-413.	1.9	134
8	Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microbial Cell Factories, 2012, 11, 120.	1.9	76
9	Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry. Current Opinion in Biotechnology, 2012, 23, 672-678.	3.3	54
10	Constructing the electricity–carbohydrate–hydrogen cycle for a sustainability revolution. Trends in Biotechnology, 2012, 30, 301-306.	4.9	49
11	Synthetic biology: Emerging methodologies to catalyze the metabolic engineering design cycle. Metabolic Engineering, 2012, 14, 187-188.	3.6	4
12	Transforming biochemical engineering with cellâ€free biology. AICHE Journal, 2012, 58, 5-13.	1.8	104
13	Crowded genes perform differently. Nature Nanotechnology, 2013, 8, 545-546.	15.6	4
14	In situ computation of cell identity. Nature Nanotechnology, 2013, 8, 546-548.	15.6	5
15	Transforming Synthetic Biology with Cell-Free Systems. , 2013, , 277-301.		6
16	Future Trends in Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	1
17	Nucleic acids for the rational design of reaction circuits. Current Opinion in Biotechnology, 2013, 24, 575-580.	3.3	48
18	Engineering Microbial Biosensors. Methods in Microbiology, 2013, 40, 119-156.	0.4	21

#	Article	IF	CITATIONS
19	Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, 2013, , .	0.6	4
20	Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production. Microbial Cell Factories, 2013, 12, 91.	1.9	8
21	Unbiased Tracking of the Progression of mRNA and Protein Synthesis in Bulk and in Liposome onfined Reactions. ChemBioChem, 2013, 14, 1963-1966.	1.3	39
22	Applications of cellâ€free protein synthesis in synthetic biology: Interfacing bioâ€machinery with synthetic environments. Biotechnology Journal, 2013, 8, 1292-1300.	1.8	15
23	Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol. AMB Express, 2013, 3, 69.	1.4	11
24	Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology <i>inAvivo</i> and <i>inAvitro</i> . New Phytologist, 2013, 200, 27-43.	3.5	194
25	<i>In vitro</i> integration of ribosomal RNA synthesis, ribosome assembly, and translation. Molecular Systems Biology, 2013, 9, 678.	3.2	140
26	Cell-free protein synthesis: the state of the art. Biotechnology Letters, 2013, 35, 143-152.	1.1	41
27	Linking Genotype and Phenotype in Protein Synthesizing Liposomes with External Supply of Resources. ACS Synthetic Biology, 2013, 2, 186-193.	1.9	58
28	Biosynthesis "debugged†Novel bioproduction strategies. Engineering in Life Sciences, 2013, 13, 4-18.	2.0	51
29			
	Self-Assembly of Synthetic Metabolons through Synthetic Protein Scaffolds: One-Step Purification, Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110.	1.9	128
30		1.9 3.3	128 88
30 31	Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine		
	Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Current Opinion in Biotechnology, 2013, 24, 1089-1093. Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 2013,	3.3	88
31	 Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Current Opinion in Biotechnology, 2013, 24, 1089-1093. Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 2013, 17, 310-316. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry, 2013, 15, 	3.3 2.8	88 153
31 32	 Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Current Opinion in Biotechnology, 2013, 24, 1089-1093. Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 2013, 17, 310-316. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry, 2013, 15, 1708. An in silico modeling toolbox for rapid prototyping of circuits in a biomolecular 	3.3 2.8	88 153 148
31 32 33	 Co-immobilization, and Substrate Channeling. ACS Synthetic Biology, 2013, 2, 102-110. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Current Opinion in Biotechnology, 2013, 24, 1089-1093. Protein engineering of enzymes for process applications. Current Opinion in Chemical Biology, 2013, 17, 310-316. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry, 2013, 15, 1708. An in silico modeling toolbox for rapid prototyping of circuits in a biomolecular & amp;#x201C;breadboard&#x201D; system. , 2013, Cellulosic Carbon Fibers with Branching Carbon Nanotubes for Enhanced Electrochemical Activities 	3.3 2.8 4.6	88 153 148 20

ARTICLE IF CITATIONS # Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for 37 6.5 161 synthetic biology. Nucleic Acids Research, 2013, 41, 3471-3481. Cell-free Biosystems in the Production of Electricity and Bioenergy. Advances in Biochemical Engineering/Biotechnology, 2013, 137, 125-152. In Vitro Multienzymatic Reaction Systems for Biosynthesis. Advances in Biochemical 39 0.6 18 Engineering/Biotechnology, 2013, 137, 153-184. Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression 280 System for Synthetic Biology. Journal of Visualized Experiments, 2013, , e50762. Statistical Experimental Design Guided Optimization of a One-Pot Biphasic Multienzyme Total Synthesis 41 1.1 37 of Amorpha-4,11-diene. PLoS ONE, 2013, 8, e79650. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems. Frontiers in Bioengineering and Biotechnology, 2014, 2, 66. Evaluation of poly(dimethylsiloxane) microreactors for pattern size miniaturization of 43 0.8 4 microintaglio-printing-based protein microarray. Japanese Journal of Applied Physics, 2014, 53, 06JL04. Thrombin-Mediated Transcriptional Regulation Using DNA Aptamers in DNA-Based Cell-Free Protein 44 28 Synthesis. ACS Synthetic Biology, 2014, 3, 340-346. A synthetic biochemistry system for the <i>in vitro</i> production of isoprene from glycolysis 3.1 46 61 intermediates. Protein Science, 2014, 23, 576-585. Natural products – learning chemistry from plants. Biotechnology Journal, 2014, 9, 326-336. 1.8 Cell-Free Synthesis of the H-Cluster: A Model for the In Vitro Assembly of Metalloprotein Metal 21 48 0.4 Centers. Methods in Molecular Biology, 2014, 1122, 49-72. Alternative fermentation conditions for improved Escherichia coli-based cell-free protein synthesis for proteins requiring supplemental components for proper synthesis. Process Biochemistry, 2014, 49, 49 1.8 26 217-222. Direct Polymerization of Proteins. ACS Synthetic Biology, 2014, 3, 353-362. 50 1.9 49 Integration of biological parts toward the synthesis of a minimal cell. Current Opinion in Chemical Biology, 2014, 22, 85-91. 2.8 106 Developmental strategies and regulation of cell-free enzyme system for ethanol production: a 52 1.7 34 molecular prospective. Applied Microbiology and Biotechnology, 2014, 98, 9561-9578. 9.15 Synthetic Biology Approaches for Organic Synthesis., 2014, , 390-420. Annexation of a High-Activity Enzyme in a Synthetic Three-Enzyme Complex Greatly Decreases the 54 1.9 47 Degree of Substrate Channeling. ACS Synthetic Biology, 2014, 3, 380-386. Gene Circuit Performance Characterization and Resource Usage in a Cell-Free "Breadboard― ACS 174 Synthetic Biology, 2014, 3, 416-425.

#	Article	IF	CITATIONS
56	Enzyme control on a chip. Nature Nanotechnology, 2014, 9, 571-572.	15.6	2
57	Computational Design of Nucleic Acid Feedback Control Circuits. ACS Synthetic Biology, 2014, 3, 600-616.	1.9	92
58	A stable lithium metal interface. Nature Nanotechnology, 2014, 9, 572-573.	15.6	36
60	A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. , 2014, , .		0
61	Cell-free Protein Synthesis from a Release Factor 1 Deficient <i>Escherichia coli</i> Activates Efficient and Multiple Site-specific Nonstandard Amino Acid Incorporation. ACS Synthetic Biology, 2014, 3, 398-409.	1.9	133
62	Evaluating fermentation effects on cell growth and crude extract metabolic activity for improved yeast cell-free protein synthesis. Biochemical Engineering Journal, 2014, 91, 140-148.	1.8	19
63	Immobilized Synthetic Pathway for Biodegradation of Toxic Recalcitrant Pollutant 1,2,3-Trichloropropane. Environmental Science & Technology, 2014, 48, 6859-6866.	4.6	54
64	In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metabolic Engineering, 2014, 24, 70-77.	3.6	87
65	The emerging age of cellâ€free synthetic biology. FEBS Letters, 2014, 588, 2755-2761.	1.3	75
67	Emergent Properties of Dense DNA Phases toward Artificial Biosystems on a Surface. Accounts of Chemical Research, 2014, 47, 1912-1921.	7.6	36
68	Lyophilized <i>Escherichia coli</i> -based cell-free systems for robust, high-density, long-term storage. BioTechniques, 2014, 56, 186-193.	0.8	95
69	Advances in Pathway Engineering for Natural Product Biosynthesis. ChemCatChem, 2015, 7, 3078-3093.	1.8	16
70	Work of the OECD in Industrial Biotechnology for the Biennium 2015–2016. Industrial Biotechnology, 2015, 11, 295-300.	0.5	1
71	Creating a completely "cellâ€free―system for protein synthesis. Biotechnology Progress, 2015, 31, 1716-1719.	1.3	30
72	Synthetic biology for pharmaceutical drug discovery. Drug Design, Development and Therapy, 2015, 9, 6285.	2.0	66
73	Preparation of amino acid mixtures for cell-free expression systems. BioTechniques, 2015, 58, 40-43.	0.8	44
75	Analytics for Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2015, 3, 135.	2.0	79
76	Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models. Processes, 2015, 3, 138-160.	1.3	16

#	Article	IF	CITATIONS
77	Synthetic Biology: Computational Modeling Bridging the Gap between In Vitro and In Vivo Reactions. Current Synthetic and Systems Biology, 2015, 03, .	0.3	2
78	The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities. Applied Microbiology and Biotechnology, 2015, 99, 1119-1130.	1.7	46
79	Investigation of end processing and degradation of premature tRNAs and their application to stabilization of in vitro transcripts in wheat germ extract. Organic and Biomolecular Chemistry, 2015, 13, 1008-1012.	1.5	6
80	Engineering of Ribosomal Shunt-Modulating Eukaryotic ON Riboswitches by Using a Cell-Free Translation System. Methods in Enzymology, 2015, 550, 109-128.	0.4	7
81	Characterizing and Alleviating Substrate Limitations for Improved <i>in vitro</i> Ribosome Construction. ACS Synthetic Biology, 2015, 4, 454-462.	1.9	31
82	Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription–Translation (TX-TL) Systems. ACS Synthetic Biology, 2015, 4, 503-515.	1.9	154
83	Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Current Opinion in Chemical Biology, 2015, 25, 27-35.	2.8	68
84	Conceptual and methodological advances in cell-free directed evolution. Current Opinion in Structural Biology, 2015, 33, 1-7.	2.6	23
85	Energizing eukaryotic cellâ€free protein synthesis with glucose metabolism. FEBS Letters, 2015, 589, 1723-1727.	1.3	30
86	Hazards, Risks, and Low Hazard Development Paths of Synthetic Biology. Risk Engineering, 2015, , 173-195.	0.7	3
87	Generating Effective Models and Parameters for RNA Genetic Circuits. ACS Synthetic Biology, 2015, 4, 914-926.	1.9	45
88	An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microbial Cell Factories, 2015, 14, 39.	1.9	36
89	A Simple Protein Synthesis Model for the PURE System Operation. Bulletin of Mathematical Biology, 2015, 77, 1185-1212.	0.9	30
90	New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renewable and Sustainable Energy Reviews, 2015, 47, 117-132.	8.2	93
91	Improving Cellâ€Free Protein Synthesis through Genome Engineering of <i>Escherichia coli</i> Lacking Release Factor 1. ChemBioChem, 2015, 16, 844-853.	1.3	77
92	High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Scientific Reports, 2015, 5, 8663.	1.6	307
93	High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4964-4969.	3.3	200
94	Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metabolic Engineering, 2015, 32, 133-142.	3.6	91

ARTICLE IF CITATIONS # Balancing the bioeconomy: supporting biofuels and bio-based materials in public policy. Energy and 15.6 60 95 Environmental Science, 2015, 8, 3063-3068. Metabolic engineering of Escherichia coli for the production of phenylpyruvate derivatives. 3.6 24 Metabolic Engineering, 2015, 32, 55-65. Cellâ€free metabolic engineering: Biomanufacturing beyond the cell. Biotechnology Journal, 2015, 10, 97 270 1.8 69-82. Automated Design of Programmable Enzyme-Driven DNA Circuits. ACS Synthetic Biology, 2015, 4, 735-745. 98 A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system. 99 3.6 80 Metabolic Engineering, 2015, 27, 29-37. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnology Advances, 2015, 33, 1467-1483. 6.0 101 Synthetic Biology. Risk Engineering, 2015, , . 0.7 2 Sustainable Digital Environments: What Major Challenges Is Humankind Facing?. Sustainability, 2016, 8, 1.6 726. Cellâ€free protein synthesis enables high yielding synthesis of an active multicopper oxidase. 103 1.8 54 Biotechnology Journal, 2016, 11, 212-218. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 1.9 34 2016, 226, 8-13. <i>n</i>-butanol: challenges and solutions for shifting natural metabolic pathways into a viable 106 12 0.7 microbial production. FEMS Microbiology Letters, 2016, 363, fnw070. Expression of moloney murine leukemia virus reverse transcriptase in a cell-free protein expression 1.1 system. Biotechnology Letters, 2016, 38, 1203-1211. Biosynthesis of therapeutic natural products using synthetic biology. Advanced Drug Delivery 108 6.6 52 Reviews, 2016, 105, 96-106. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. New Biotechnology, 2016, 33, 480-487. 109 2.4 56 Synthetic biology platform technologies for antimicrobial applications. Advanced Drug Delivery 110 39 6.6 Reviews, 2016, 105, 35-43. Solid-Binding Peptides: Immobilisation Strategies for Extremophile Biocatalysis in Biotechnology. 2.4 Grand Challenge's in Biology and Biotechnology, 2016, , 637-674. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synthetic and 113 1.8 23 Systems Biotechnology, 2016, 1, 195-206. Development of a Bacillus subtilis cell-free transcription-translation system for prototyping 114 regulatory elements. Metabolic Engineering, 2016, 38, 370-381.

# 115	ARTICLE Synthetic Biology: Culture and Bioethical Considerations. , 2016, , 3-34.	IF	CITATIONS
116	Cell-Free Mixing of <i>Escherichia coli</i> Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis. ACS Synthetic Biology, 2016, 5, 1578-1588.	1.9	130
117	Tools and applications in synthetic biology. Advanced Drug Delivery Reviews, 2016, 105, 20-34.	6.6	46
118	A synthetic pathway for the fixation of carbon dioxide in vitro. Science, 2016, 354, 900-904.	6.0	478
119	Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science, 2016, 354, 904-908.	6.0	241
120	A molecular nanodevice for targeted degradation of mRNA during protein synthesis. Scientific Reports, 2016, 6, 20733.	1.6	5
121	A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metabolic Engineering, 2016, 36, 116-126.	3.6	204
122	Scaling up of renewable chemicals. Current Opinion in Biotechnology, 2016, 38, 112-122.	3.3	84
123	Coupling carboxylic acid reductase to inorganic pyrophosphatase enhances cell-free in vitro aldehyde biosynthesis. Biochemical Engineering Journal, 2016, 109, 19-27.	1.8	28
124	Metabolic engineering of synthetic cell-free systems: Strategies and applications. Biochemical Engineering Journal, 2016, 105, 391-405.	1.8	56
125	Establishing a high yielding <i>streptomyces</i> â€based cellâ€free protein synthesis system. Biotechnology and Bioengineering, 2017, 114, 1343-1353.	1.7	106
126	Enzymatic process optimization for the in vitro production of isoprene from mevalonate. Microbial Cell Factories, 2017, 16, 8.	1.9	17
127	Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products. Computational and Structural Biotechnology Journal, 2017, 15, 161-167.	1.9	46
128	An in vitro synthetic biology platform for the industrial biomanufacturing of myoâ€inositol from starch. Biotechnology and Bioengineering, 2017, 114, 1855-1864.	1.7	121
129	Smallâ€Moleculeâ€Induced and Cooperative Enzyme Assembly on a 14â€3â€3 Scaffold. ChemBioChem, 2017, 18 331-335.	, 1.3	21
130	An <i>In Vitro</i> Enzyme System for the Production of <i>myo</i> -Inositol from Starch. Applied and Environmental Microbiology, 2017, 83, .	1.4	41
131	Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System. ACS Synthetic Biology, 2017, 6, 1656-1662.	1.9	16
132	Cell-free synthetic biology for <i>in vitro</i> prototype engineering. Biochemical Society Transactions, 2017, 45, 785-791.	1.6	37

# 133	ARTICLE <i>In Vitro</i> Metabolic Engineering of Amorpha-4,11-diene Biosynthesis at Enhanced Rate and Specific Yield of Production. ACS Synthetic Biology, 2017, 6, 1691-1700.	lF 1.9	Citations 23
134	Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity. Metabolic Engineering, 2017, 42, 145-156.	3.6	96
135	Recent advancements in bioreactions of cellular and cell-free systems: A study of bacterial cellulose as a model. Korean Journal of Chemical Engineering, 2017, 34, 1591-1599.	1.2	52
136	Artificial cell mimics as simplified models for the study of cell biology. Experimental Biology and Medicine, 2017, 242, 1309-1317.	1.1	91
137	Microbial Resources for Global Sustainability. , 2017, , 77-101.		1
138	Multi-dimensional studies of synthetic genetic promoters enabled by microfluidic impact printing. Lab on A Chip, 2017, 17, 2198-2207.	3.1	20
139	Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion. ACS Nano, 2017, 11, 6739-6745.	7.3	21
140	Ligand-responsive upregulation of 3′ CITE-mediated translation in a wheat germ cell-free expression system. Molecular BioSystems, 2017, 13, 314-319.	2.9	13
141	Synthetic Biology—The Synthesis of Biology. Angewandte Chemie - International Edition, 2017, 56, 6396-6419.	7.2	141
142	Synthetische Biologie – die Synthese der Biologie. Angewandte Chemie, 2017, 129, 6494-6519.	1.6	11
143	Advanced water splitting for green hydrogen gas production through complete oxidation of starch by in vitro metabolic engineering. Metabolic Engineering, 2017, 44, 246-252.	3.6	36
144	Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synthetic and Systems Biotechnology, 2017, 2, 208-218.	1.8	35
145	Recent advances in production of 5-aminolevulinic acid using biological strategies. World Journal of Microbiology and Biotechnology, 2017, 33, 200.	1.7	46
146	Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Analytical Chemistry, 2017, 89, 11443-11451.	3.2	21
147	Simultaneously Enhancing the Stability and Catalytic Activity of Multimeric Lysine Decarboxylase CadA by Engineering Interface Regions for Enzymatic Production of Cadaverine at High Concentration of Lysine. Biotechnology Journal, 2017, 12, 1700278.	1.8	30
148	Computational design of biological circuits: putting parts into context. Molecular Systems Design and Engineering, 2017, 2, 410-421.	1.7	19
149	Synthesis of Infectious Bacteriophages in an E. coli- based Cell-free Expression System. Journal of Visualized Experiments, 2017, , .	0.2	23
150	Deacidification of grass silage press juice by continuous production of acetoin from its lactate via an immobilized enzymatic reaction cascade. Bioresource Technology, 2017, 245, 1084-1092.	4.8	9

		CITATION REPORT		
#	Article		IF	Citations
151	Development of SimCells as a novel chassis for functional biosensors. Scientific Report	s, 2017, 7, 7261.	1.6	24
152	Bacterial cell-free expression technology to inÂvitro systems engineering and optimizat and Systems Biotechnology, 2017, 2, 97-104.	tion. Synthetic	1.8	17
153	Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic b Biotechnology Advances, 2017, 35, 845-866.	iology.	6.0	240
154	Cell-free protein synthesis from non-growing, stressed Escherichia coli. Scientific Repor 16524.	ts, 2017, 7,	1.6	30
155	Generation of thermostable Moloney murine leukemia virus reverse transcriptase varia saturation mutagenesis library and cell-free protein expression system. Bioscience, Biot Biochemistry, 2017, 81, 2339-2345.	nts using site technology and	0.6	19
156	Quantitative and synthetic biology approaches to combat bacterial pathogens. Current Biomedical Engineering, 2017, 4, 116-126.	t Opinion in	1.8	4
157	A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system. Na Biology, 2017, 13, 938-942.	ture Chemical	3.9	58
158	Engineering genetic circuit interactions within and between synthetic minimal cells. Na Chemistry, 2017, 9, 431-439.	iture	6.6	272
159	<i>In Vitro</i> Reconstruction of Nonribosomal Peptide Biosynthesis Directly from DN/ Cell-Free Protein Synthesis. ACS Synthetic Biology, 2017, 6, 39-44.	A Using	1.9	80
160	In vitro metabolic engineering of bioelectricity generation by the complete oxidation of Metabolic Engineering, 2017, 39, 110-116.	f glucose.	3.6	69
161	Challenges at the interface of control engineering and synthetic biology. , 2017, , .			9
162	Biotransformations. , 2017, , 574-585.			1
163	Analyzing native membrane protein assembly in nanodiscs by combined non-covalent r spectrometry and synthetic biology. ELife, 2017, 6, .	nass	2.8	75
164	Sequence-based prediction of permissive stretches for internal protein tagging and kno Biology, 2017, 15, 100.	ockdown. BMC	1.7	10
165	Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructure CO2/O2 selectivity of RubisCO. Biotechnology for Biofuels, 2017, 10, 175.	es that enhance	6.2	24
166	Systems and Synthetic Biology Applied to Health. , 2017, , 183-213.			0
167	Cell-free synthetic biology for inÂvitro biosynthesis of pharmaceutical natural products and Systems Biotechnology, 2018, 3, 83-89.	. Synthetic	1.8	48
168	Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnolo 2018, 13, 1700620.	ogy Journal,	1.8	19

#	Article	IF	CITATIONS
169	Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems. CheM, 2018, 4, 1022-1034.	5.8	281
170	Cell-Free Optogenetic Gene Expression System. ACS Synthetic Biology, 2018, 7, 986-994.	1.9	31
171	Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeletonâ€membrane system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1410.	6.6	32
172	Evaluation of oxidative enzymes for efficient oxidation of aniline and phenolic pollutants. International Journal of Environmental Science and Technology, 2018, 15, 1679-1686.	1.8	10
173	Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synthetic Biology, 2018, 3, ysy004.	1.2	42
174	Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics. Synthetic Biology, 2018, 3, ysy016.	1.2	39
175	Models for Cell-Free Synthetic Biology: Make Prototyping Easier, Better, and Faster. Frontiers in Bioengineering and Biotechnology, 2018, 6, 182.	2.0	33
176	Fabrication of Al air-bridge on coplanar waveguide. Chinese Physics B, 2018, 27, 100310.	0.7	5
177	Expanding biological applications using cell-free metabolic engineering: An overview. Metabolic Engineering, 2018, 50, 156-172.	3.6	52
178	Functional Surface-immobilization of Genes Using Multistep Strand Displacement Lithography. Journal of Visualized Experiments, 2018, , .	0.2	Ο
179	Dynamic Sequence Specific Constraint-Based Modeling of Cell-Free Protein Synthesis. Processes, 2018, 6, 132.	1.3	7
180	Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synthetic Biology, 2018, 3, ysy005.	1.2	26
181	Canonical translation-modulating OFF-riboswitches with a single aptamer binding to a small molecule that function in a higher eukaryotic cell-free expression system. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2353-2357.	1.0	7
182	Sequence Specific Modeling of <i>E. coli</i> Cell-Free Protein Synthesis. ACS Synthetic Biology, 2018, 7, 1844-1857.	1.9	27
183	Cell-Free Synthetic Biology for Pathway Prototyping. Methods in Enzymology, 2018, 608, 31-57.	0.4	45
184	Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components. Biochemical Engineering Journal, 2018, 138, 47-53.	1.8	22
185	Establishment of a five-enzyme cell-free cascade for the synthesis of uridine diphosphate N-acetylglucosamine. Journal of Biotechnology, 2018, 283, 120-129.	1.9	26
186	Cell-Free Approaches in Synthetic Biology Utilizing Microfluidics. Genes, 2018, 9, 144.	1.0	45

#	ARTICLE In vitro synthetic enzymatic biosystems at the interface of the food-energy-water nexus: A conceptual	IF	CITATIONS
187	framework and recent advances. Process Biochemistry, 2018, 74, 43-49. Synthetic Biology with an All E. coli TXTL System: Quantitative Characterization of Regulatory Elements and Gene Circuits. Methods in Molecular Biology, 2018, 1772, 61-93.	0.4	2
189	Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. Journal of Biological Engineering, 2018, 12, 13.	2.0	26
190	Microfluidic-Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis. ACS Applied Materials & Interfaces, 2018, 10, 29308-29313.	4.0	41
191	Cellular reagents for diagnostics and synthetic biology. PLoS ONE, 2018, 13, e0201681.	1.1	17
192	Conversion of d-glucose to l-lactate via pyruvate by an optimized cell-free enzymatic biosystem containing minimized reactions. Synthetic and Systems Biotechnology, 2018, 3, 204-210.	1.8	21
193	Rational Design of Artificial Riboswitches. , 2018, , 79-93.		2
194	Coupled chemistry kinetics demonstrate the utility of functionalized Sup35 amyloid nanofibrils in biocatalytic cascades. Journal of Biological Chemistry, 2019, 294, 14966-14977.	1.6	4
195	Optimization of a reduced enzymatic reaction cascade for the production of L-alanine. Scientific Reports, 2019, 9, 11754.	1.6	23
196	Multi-enzymatic recycling of ATP and NADPH for the synthesis of 5-aminolevulinic acid using a semipermeable reaction system. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2213-2219.	0.6	5
197	Quantitative modeling of transcription and translation of an all-E. coli cell-free system. Scientific Reports, 2019, 9, 11980.	1.6	45
198	Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnology Advances, 2019, 37, 107433.	6.0	23
199	Opportunities at the Intersection of Synthetic Biology, Machine Learning, and Automation. ACS Synthetic Biology, 2019, 8, 1474-1477.	1.9	95
200	Establishment of measurement traceability for peptide and protein quantification through rigorous purity assessment—a review. Metrologia, 2019, 56, 044006.	0.6	43
201	Futureâ€proofing synthetic biology: educating the next generation. Engineering Biology, 2019, 3, 25-31.	0.8	7
202	A Highly Productive, One-Pot Cell-Free Protein Synthesis Platform Based on Genomically Recoded Escherichia coli. Cell Chemical Biology, 2019, 26, 1743-1754.e9.	2.5	59
203	Absolute Quantification of Cell-Free Protein Synthesis Metabolism by Reversed-Phase Liquid Chromatography-Mass Spectrometry. Journal of Visualized Experiments, 2019, , .	0.2	10
204	PARAGEN 1.0: A Standardized Synthetic Gene Library for Fast Cell-Free Bacteriocin Synthesis. Frontiers in Bioengineering and Biotechnology, 2019, 7, 213.	2.0	14

#	Article	IF	CITATIONS
205	Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems. Frontiers in Bioengineering and Biotechnology, 2019, 7, 248.	2.0	84
206	Development of a Split Esterase for Protein–Protein Interaction-Dependent Small-Molecule Activation. ACS Central Science, 2019, 5, 1768-1776.	5.3	22
207	Cellâ€Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottomâ€Up. Advanced Biology, 2019, 3, e1800322.	3.0	19
208	Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synthetic Biology, 2019, 4, ysz003.	1.2	63
209	Facile synthesis of (â^')†vibo â€quercitol from maltodextrin via an in vitro synthetic enzymatic biosystem. Biotechnology and Bioengineering, 2019, 116, 2710-2719.	1.7	9
210	Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods in Enzymology, 2019, 627, 125-162.	0.4	13
211	High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. Science Advances, 2019, 5, eaaw9180.	4.7	35
212	Lessons from Two Design–Build–Test–Learn Cycles of Dodecanol Production in <i>Escherichia coli</i> Aided by Machine Learning. ACS Synthetic Biology, 2019, 8, 1337-1351.	1.9	107
213	Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biological Chemistry, 2019, 400, 831-846.	1.2	21
214	Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. Micromachines, 2019, 10, 299.	1.4	30
215	In vitro biosynthesis of optically pure d―(â^')―acetoin from meso â€2,3â€butanediol using 2,3â€butanediol dehydrogenase and NADH oxidase. Journal of Chemical Technology and Biotechnology, 2019, 94, 2547-2554.	1.6	15
216	Characterization of the allâ€ <scp><i>E. coli</i></scp> transcriptionâ€translation system myTXTL by mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1036-1048.	0.7	38
217	Applications and Future Perspectives of Synthetic Biology Systems. , 2019, , 393-412.		3
218	<i>In Vitro</i> Naringenin Biosynthesis from <i>p</i> -Coumaric Acid Using Recombinant Enzymes. Journal of Agricultural and Food Chemistry, 2019, 67, 13430-13436.	2.4	33
219	Direct Aromatic Nitration System for Synthesis of Nitrotryptophans in <i>Escherichia coli</i> . ACS Synthetic Biology, 2019, 8, 857-865.	1.9	11
220	What can we learn from the construction of <i>in vitro</i> replication systems?. Annals of the New York Academy of Sciences, 2019, 1447, 144-156.	1.8	11
221	Advances in Cell-Free Biosynthetic Technology. , 2019, , 23-45.		2
223	Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. Biotechnology for Biofuels, 2019, 12, 267.	6.2	11

#	Article	IF	CITATIONS
224	Transactions on Engineering Technologies. , 2019, , .		0
225	Deconstructing Cell-Free Extract Preparation for <i>in Vitro</i> Activation of Transcriptional Genetic Circuitry. ACS Synthetic Biology, 2019, 8, 403-414.	1.9	102
226	Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochemical Engineering Journal, 2019, 142, 135-144.	1.8	80
227	The <i>Synthetic Microbiology Caucus</i> : from abstract ideas to turning microbes into cellular machines and back. Microbial Biotechnology, 2019, 12, 5-7.	2.0	5
228	Recombinant cell-lysate-catalysed synthesis of uridine-5′-triphosphate from nucleobase and ribose, and without addition of ATP. New Biotechnology, 2019, 49, 104-111.	2.4	7
229	Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochemical Engineering Journal, 2019, 141, 182-189.	1.8	47
230	The Diversity of Engineering in Synthetic Biology. NanoEthics, 2020, 14, 71-91.	0.5	8
231	High-Throughput Synthesis and Analysis of Intact Glycoproteins Using SAMDI-MS. Analytical Chemistry, 2020, 92, 1963-1971.	3.2	18
232	Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli. Metabolic Engineering Communications, 2020, 10, e00113.	1.9	21
233	Cellâ€free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnology and Bioengineering, 2020, 117, 1204-1229.	1.7	32
234	Interfacing electronic and genetic circuits. Nature Chemistry, 2020, 12, 14-16.	6.6	1
235	Cell-free gene expression: an expanded repertoire of applications. Nature Reviews Genetics, 2020, 21, 151-170.	7.7	369
236	One-pot efficient biosynthesis of (3 <i>R</i>)-acetoin from pyruvate by a two-enzyme cascade. Catalysis Science and Technology, 2020, 10, 7734-7744.	2.1	11
237	Cell-free systems for accelerating glycoprotein expression and biomanufacturing. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 977-991.	1.4	33
238	<i>In Vitro</i> Selection of RNA Aptamers Binding to Nanosized DNA for Constructing Artificial Riboswitches. ACS Synthetic Biology, 2020, 9, 2648-2655.	1.9	8
239	Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude <i>E.Âcoli</i> Cell-Free Systems. ACS Synthetic Biology, 2020, 9, 2986-2997.	1.9	4
240	A Cellâ€Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. Advanced Science, 2020, 7, 2001616.	5.6	33
241	Engineering control circuits for molecular robots using synthetic biology. APL Materials, 2020, 8, 101104.	2.2	4

#	Article	IF	CITATIONS
242	A machine learning Automated Recommendation Tool for synthetic biology. Nature Communications, 2020, 11, 4879.	5.8	129
243	A bio-inspired cell-free system for cannabinoid production from inexpensive inputs. Nature Chemical Biology, 2020, 16, 1427-1433.	3.9	32
244	Proteins and peptides for functional nanomaterials: Current efforts and new opportunities. MRS Bulletin, 2020, 45, 1005-1016.	1.7	4
245	Cell-free styrene biosynthesis at high titers. Metabolic Engineering, 2020, 61, 89-95.	3.6	41
246	Large scale active-learning-guided exploration for in vitro protein production optimization. Nature Communications, 2020, 11, 1872.	5.8	70
247	Cell-free protein synthesis in hydrogel materials. Chemical Communications, 2020, 56, 7108-7111.	2.2	25
248	Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metabolic Engineering, 2020, 62, 95-105.	3.6	27
249	Cell-free synthetic biology in the new era of enzyme engineering. Chinese Journal of Chemical Engineering, 2020, 28, 2810-2816.	1.7	4
250	Developing a Cell-Free Extract Reaction (CFER) System in Clostridium thermocellum to Identify Metabolic Limitations to Ethanol Production. Frontiers in Energy Research, 2020, 8, .	1.2	5
251	Preparation of a Millimeter-Sized Supergiant Liposome That Allows for Efficient, Eukaryotic Cell-Free Translation in the Interior by Spontaneous Emulsion Transfer. ACS Synthetic Biology, 2020, 9, 1608-1614.	1.9	7
252	Improving the reaction mix of a Pichia pastoris cell-free system using a design of experiments approach to minimise experimental effort. Synthetic and Systems Biotechnology, 2020, 5, 137-144.	1.8	15
253	Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 72.	2.0	30
254	Advances in biological conversion technologies: new opportunities for reaction engineering. Reaction Chemistry and Engineering, 2020, 5, 632-640.	1.9	15
255	Synthetic Biochemistry: The Bio-inspired Cell-Free Approach to Commodity Chemical Production. Trends in Biotechnology, 2020, 38, 766-778.	4.9	92
256	In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform. Biophysical Reviews, 2020, 12, 175-182.	1.5	16
257	Biobased plastics. , 2020, , 67-96.		11
258	Biochemical Production with Purified Cell-Free Systems. Biochemical Engineering Journal, 2021, 166, 107002.	1.8	7
259	Process economics evaluation of cellâ€free synthesis for the commercial manufacture of antibody drug conjugates. Biotechnology Journal, 2021, 16, 2000238.	1.8	11

		CITATION REPORT		
#	Article		IF	CITATIONS
260	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63	3, 34-60.	3.6	135
261	Strategy exploration for developing robust lyophilized cell-free systems. Biotechnology 2, 44-50.	Notes, 2021,	0.7	15
262	Converging conversion $\hat{a} \in $ using promiscuous biocatalysts for the cell-free synthesis c from heterogeneous biomass. Green Chemistry, 2021, 23, 3656-3663.	f chemicals	4.6	12
263	Unnatural Amino Acid and its Incorporation in Protein. New Paradigms of Living System	ns, 2021, , 111-126.	0.4	0
264	Multiomics Data Collection, Visualization, and Utilization for Guiding Metabolic Engine Frontiers in Bioengineering and Biotechnology, 2021, 9, 612893.	ering.	2.0	7
265	PURE mRNA display and cDNA display provide rapid detection of core epitope motif via sequencing. Biotechnology and Bioengineering, 2021, 118, 1702-1715.	highâ€ŧhroughput	1.7	8
266	Reconstituting Natural Cell Elements in Synthetic Cells. Advanced Biology, 2021, 5, e2	000188.	1.4	52
267	Synthetic logic circuits using RNA aptamer against T7 RNA polymerase. Biotechnology e2000449.	Journal, 2022, 17,	1.8	5
268	Impact of Metal–Organic Frameworks on Protein Expression. Chemical Research in T 34, 1403-1408.	oxicology, 2021,	1.7	1
270	Engineering molecular translation systems. Cell Systems, 2021, 12, 593-607.		2.9	17
271	Development and comparison of cell-free protein synthesis systems derived from typic chassis. Bioresources and Bioprocessing, 2021, 8, 58.	al bacterial	2.0	16
273	An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabo yeast extracts. Nature Communications, 2021, 12, 5139.	ically rewired	5.8	16
274	Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Postarch. Bioconjugate Chemistry, 2021, 32, 2032-2042.	oduction from	1.8	6
275	Improved Stability of Engineered Ammonia Production in the Plant-Symbiont <i>Azosp brasilense</i> . ACS Synthetic Biology, 2021, 10, 2982-2996.	irillum	1.9	7
276	Responsive-DNA hydrogel based intelligent materials: Preparation and applications. Ch Engineering Journal, 2021, 420, 130384.	emical	6.6	24
277	Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platfo Pyruvate Biosynthesis and Transformation. ACS Synthetic Biology, 2021, 10, 2417-243		1.9	6
278	Enzyme Cascade Process Design and Modelling. , 2021, , 125-139.			2
279	A Detailed Protocol for Preparing Millimeter-sized Supergiant Liposomes that Permit Ef Eukaryotic Cell-free Translation in the Interior. Bio-protocol, 2021, 11, e4054.	ficient	0.2	1

#	Article	IF	CITATIONS
280	Energy Conversion Based on Bio(electro)catalysts. , 2017, , 757-777.		2
291	Cell-Free Systems Based on CHO Cell Lysates: Optimization Strategies, Synthesis of "Difficult-to-Express―Proteins and Future Perspectives. PLoS ONE, 2016, 11, e0163670.	1.1	49
292	Multiplex transcriptional characterizations across diverse bacterial species using cellâ€free systems. Molecular Systems Biology, 2019, 15, e8875.	3.2	54
293	Development of a Cofactor Balanced, Multi Enzymatic Cascade Reaction for the Simultaneous Production of L-Alanine and L-Serine from 2-Keto-3-deoxy-gluconate. Catalysts, 2021, 11, 31.	1.6	4
294	Principles of synthetic biology. Essays in Biochemistry, 2021, 65, 791-811.	2.1	14
295	Synthetic Biochemical Devices for Programmable Dynamic Behavior. , 2014, , 273-295.		0
296	Cell-free biosystems. , 2016, , 465-483.		0
297	Synthetic Biology: From Gene Circuits to Novel Biological Tools. , 2017, , 371-388.		0
302	Computation of Ratios Using Chemical Reactions and DNA Strand Displacements. , 2019, , 281-295.		0
303	Enzyme alchemy: cell-free synthetic biochemistry for natural products. Emerging Topics in Life Sciences, 2019, 3, 529-535.	1.1	3
305	Ảnh hưởng cá»§a việc sá»-dụng thức Äfn bổ sung ưÆing giống tôm cÃng xanh (Macrobrachi huyện Thới Bình tỉnh Cà Mau. Tap Chi Khoa Hoc = Journal of Science, 2020, 56(Aquaculture), 78.	um rosenb 0.1	ergii) trong ri
307	Editorial: 4th Applied Synthetic Biology in Europe. Frontiers in Bioengineering and Biotechnology, 2020, 8, 431.	2.0	2
309	Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. IScience, 2021, 24, 103401.	1.9	7
312	Synthetic biology tools: Engineering microbes for biotechnological applications. , 2022, , 369-398.		0
313	Robotic automation of droplet microfluidics. Biomicrofluidics, 2022, 16, 014102.	1.2	5
314	An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy, 2022, 47, 37264-37281.	3.8	48
315	Efficient multi-gene expression in cell-free droplet microreactors. PLoS ONE, 2022, 17, e0260420.	1.1	5
317	KAT7-mediated CANX (calnexin) crotonylation regulates leucine-stimulated MTORC1 activity. Autophagy, 2022, 18, 2799-2816.	4.3	5

		CITATION REPORT	
#	Article	IF	CITATIONS
321	Advances in antibody phage display technology. Drug Discovery Today, 2022, 27, 2151-2169.	3.2	62
322	An efficient cellâ€free protein synthesis platform for producing proteins with pyrrolysineâ€based noncanonical amino acids. Biotechnology Journal, 2022, 17, e2200096.	1.8	9
323	Codon-Reduced Protein Synthesis With Manipulating tRNA Components in Cell-Free System. Frontic in Bioengineering and Biotechnology, 2022, 10, .	ers 2.0	2
324	Metabolic engineering: tools for pathway rewiring and value creation. , 2022, , 3-26.		0
325	Toward modular construction of cell-free multienzyme systems. Chinese Journal of Catalysis, 2022, 43, 1749-1760.	6.9	3
326	Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides. Bioorganic and Medicinal Chemistry Letters, 2022, 71, 128839.	1.0	3
327	Using fungible biosensors to evolve improved alkaloid biosyntheses. Nature Chemical Biology, 2022 18, 981-989.	, 3.9	35
328	Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
329	Screening and characterizing flavone synthases and its application in biosynthesizing vitexin from naringenin by a one-pot enzymatic cascade. Enzyme and Microbial Technology, 2022, 160, 110101.	1.6	2
330	PeroxiHUB: A Modular Cell-Free Biosensing Platform Using H ₂ O ₂ as Signa Integrator. ACS Synthetic Biology, 2022, 11, 2578-2588.	al 1.9	4
331	Alternative design strategies to help build the enzymatic retrosynthesis toolbox. RSC Chemical Biology, 2022, 3, 1301-1313.	2.0	5
332	SpyPhage: A Cell-Free TXTL Platform for Rapid Engineering of Targeted Phage Therapies. ACS Synthe Biology, 2022, 11, 3330-3342.	etic 1.9	8
333	Functional Characterization and Screening of Promiscuous Kinases and Isopentenyl Phosphate Kinas for the Synthesis of DMAPP via a One-Pot Enzymatic Cascade. International Journal of Molecular Sciences, 2022, 23, 12904.	ses 1.8	2
334	Recent advances in machine learning applications in metabolic engineering. Biotechnology Advance 2023, 62, 108069.	s, 6.0	18
335	A meaningful path finding method without specific starting metabolite. , 2022, , .		0
336	Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches. ACS Synthetic Biology, 2023, 12, 35-42.	1.9	5
337	A novel synthetic sRNA promoting protein overexpression in cellâ€free systems. Biotechnology Progress, 0, , .	1.3	0
338	Cell-Free Systems for Sustainable Production of Biofuels. , 2023, , 331-348.		0

#	Article	IF	CITATIONS
339	Multi-enzyme cascade excluding costly cofactors for pyruvate production from glucose. Chemical Engineering Journal, 2023, 463, 142473.	6.6	0
340	Development of an expression-tunable multiple protein synthesis system in cell-free reactions using T7-promoter-variant series. Synthetic Biology, 2022, 7, .	1.2	1
341	Transcription factor-based biosensors for screening and dynamic regulation. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	11
342	Construction of engineered bifunctional enzymes to improve the production of kaempferol in an in vitro synthetic biosystem. Food Science and Technology, 0, 43, .	0.8	0
343	Machine learning for metabolic pathway optimization: A review. Computational and Structural Biotechnology Journal, 2023, 21, 2381-2393.	1.9	1
346	Cell-free systems for biosynthesis: towards a sustainable and economical approach. Green Chemistry, 2023, 25, 4912-4940.	4.6	5
348	Synthetic Biology: Technical Issues. , 2023, , 39-61.		0
351	Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
354	Cell-Free Synthetic Biology. Advances in Bioinformatics and Biomedical Engineering Book Series, 2023, , 22-41.	0.2	0
358	Synthetic Biology: Major Principles and Current Trends of Development in Russia. Nanobiotechnology Reports, 2023, 18, 337-344.	0.2	0