Damming the prairie: Human alteration of Great Plains

Journal of Hydrology 444-445, 90-99 DOI: 10.1016/j.jhydrol.2012.04.008

Citation Report

#	Article	IF	CITATIONS
1	Valuing hydrological alteration in multi-objective water resources management. Journal of Hydrology, 2012, 472-473, 277-286.	5.4	32
2	Hydrologic response to climate change and human activities in a subtropical coastal watershed of southeast China. Regional Environmental Change, 2013, 13, 1195-1210.	2.9	30
3	On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 2013, 489, 98-107.	5.4	38
4	Sampling Efficiency of the Moore Egg Collector. North American Journal of Fisheries Management, 2013, 33, 79-88.	1.0	6
5	Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems. PLoS ONE, 2014, 9, e96599.	2.5	25
6	Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of <scp>G</scp> reat <scp>P</scp> lains fishes. Molecular Ecology, 2014, 23, 5663-5679.	3.9	37
7	Longitudinal variability in hydraulic geometry and substrate characteristics of a Great Plains sand-bed river. Geomorphology, 2014, 210, 48-58.	2.6	50
8	Trends in nutrient and sediment retention in Great Plains reservoirs (USA). Environmental Monitoring and Assessment, 2014, 186, 1143-1155.	2.7	25
9	Effects of a â€~natural' flood event on the riparian ecosystem of a regulated largeâ€river system: the 2011 flood on the Missouri River, USA. Ecohydrology, 2015, 8, 812-824.	2.4	39
10	Transient response of <i>Salix</i> cuttings to changing water level regimes. Water Resources Research, 2015, 51, 1758-1774.	4.2	16
11	Fragmentation and drying ratchet down Great Plains stream fish diversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 639-655.	2.0	99
12	Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network. Journal of Hydrology, 2015, 522, 305-316.	5.4	45
13	Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 2015, 85, 73-92.	5.4	148
14	Assessing temporal and spatial alterations of flow regimes in the regulated Huai River Basin, China. Journal of Hydrology, 2015, 529, 384-397.	5.4	31
15	Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. Journal of Hydrology, 2015, 531, 810-820.	5.4	56
16	Multiple Changes in the Hydrologic Regime of the Yangtze River and the Possible Impact of Reservoirs. Water (Switzerland), 2016, 8, 408.	2.7	5
17	Quantification of Climate Changes and Human Activities That Impact Runoff in the Taihu Lake Basin, China. Mathematical Problems in Engineering, 2016, 2016, 1-7.	1.1	17
18	Hydrologic Alteration Associated with Dam Construction in a Medium-Sized Coastal Watershed of Southeast China. Water (Switzerland), 2016, 8, 317.	2.7	34

#	ARTICLE	IF	CITATIONS
19	Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability. Ecological Modelling, 2016, 342, 1-18.	2.5	24
20	Preliminary Findings for a Relationship between Instream Flow and Shoal Chub Recruitment in the Lower Brazos River, Texas. Transactions of the American Fisheries Society, 2016, 145, 943-950.	1.4	10
21	Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration. Estuarine, Coastal and Shelf Science, 2016, 183, 304-313.	2.1	33
22	Rapid Response of a Sandâ€Dominated River to Installation and Removal of a Temporary Runâ€ofâ€theâ€River Dam. River Research and Applications, 2016, 32, 110-124.	1.7	9
23	Channel morphology and flow structure of an abandoned channel under varying stages. Water Resources Research, 2016, 52, 5458-5472.	4.2	29
24	Assessing hydrologic alteration: Evaluation of different alternatives according to data availability. Ecological Indicators, 2016, 60, 470-482.	6.3	33
25	Stream flow changes across North Carolina (USA) 1955–2012 with implications for environmental flow management. Geomorphology, 2016, 252, 171-184.	2.6	15
26	Collapsing Range of an Endemic Great Plains Minnow, Peppered Chub Macrhybopsis tetranema. American Midland Naturalist, 2017, 177, 57-68.	0.4	19
27	A Histogram Comparison Approach for Assessing Hydrologic Regime Alteration. River Research and Applications, 2017, 33, 809-822.	1.7	15
28	Assessment of multi-objective reservoir operation in the middle and lower Yangtze River based on a flow regime influenced by the Three Gorges Project. Ecological Informatics, 2017, 38, 115-125.	5.2	20
29	High value of ecological information for river connectivity restoration. Landscape Ecology, 2017, 32, 2327-2336.	4.2	11
30	Assessment of Hydrologic Alterations in Elbe and Rhine Rivers, Germany. Water (Switzerland), 2017, 9, 684.	2.7	28
31	Projected climate change impacts on hydrologic flow regimes in the Great Plains of Kansas. River Research and Applications, 2018, 34, 195-206.	1.7	15
32	Large wood distribution, mobility, and recruitment in an interâ€dam river reach: A comparison with geomorphic process on the Garrison Reach of the Missouri River pre and post the historical 2011 flood. Earth Surface Processes and Landforms, 2018, 43, 1677-1688.	2.5	3
33	Quantifying Seining Detection Probability for Fishes of Great Plains Sandâ€Bed Rivers. Transactions of the American Fisheries Society, 2018, 147, 329-341.	1.4	10
34	The emblematic minnows of the North American Great Plains: A synthesis of threats and conservation opportunities. Fish and Fisheries, 2018, 19, 271-307.	5.3	42
35	Opportunities for collaboration between infrastructure agencies and conservation groups: Road-stream crossings in Oklahoma. Transportation Research, Part D: Transport and Environment, 2018, 63, 622-631.	6.8	7
36	Extreme drought causes fish recruitment failure in a fragmented Great Plains riverscape. Ecohydrology, 2019, 12, e2120.	2.4	36

CITATION REPORT

#	Article	IF	CITATIONS
37	Assessment of large-scale patterns of hydrological alteration caused by dams. Journal of Hydrology, 2019, 572, 706-718.	5.4	39
38	Hierarchy theory reveals multiscale predictors of Arkansas darter (<i>Etheostoma cragini</i>) abundance in a Great Plains riverscape. Freshwater Biology, 2019, 64, 659-670.	2.4	8
39	Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Science of the Total Environment, 2020, 710, 136202.	8.0	92
40	Effects of transportation infrastructure on fishes in the Ozark and Ouachita Mountains. Transportation Research, Part D: Transport and Environment, 2020, 86, 102451.	6.8	5
41	Return of Topeka Shiner (<i>Notropis topeka</i>) to Restored Oxbows in the White Fox Creek Watershed, Iowa, USA. Journal of the Iowa Academy of Science, 2021, 128, 3-6.	0.5	5
42	Hydrological simulation of the Jialing River Basin using the MIKE SHE model in changing climate. Journal of Water and Climate Change, 2021, 12, 2495-2514.	2.9	22
43	Dams and Climate Interact to Alter River Flow Regimes Across the United States. Earth's Future, 2021, 9, e2020EF001816.	6.3	30
44	INVESTIGAÇÃO DA CONDIÇÃO TRÓFICA DO RESERVATÓRIO DE ABASTECIMENTO DE ÃGUA BOLONHA. Rev AIDIS De IngenierÃa Y Ciencias Ambientales Investigación Desarrollo Y Práctica, 2021, 14, 32.	ista 0.0	0
45	Connectivity and flow regime direct conservation priorities for pelagophil fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 3215-3227.	2.0	11
46	Analysis of Hydrologic Regime Changes Caused by Small Hydropower Plants in Lowland Rivers. Water (Switzerland), 2021, 13, 1961.	2.7	8
47	Response of the Dnieper river fluvial system to the river erosion caused by the operation of the Kaniv hydro-electric power plant (Ukraine). Catena, 2021, 202, 105265.	5.0	8
48	Complexity analyses of Godavari and Krishna river streamflow using the concept of entropy. Acta Geophysica, 2021, 69, 2325-2338.	2.0	4
49	Characteristics of the natural flow regime paradigm explain occurrence of imperiled Great Plains fishes. Ecosphere, 2021, 12, e03669.	2.2	8
50	How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation. PLoS ONE, 2015, 10, e0141210.	2.5	98
51	Uso do Ãndice de estado trófico e análise rápida da comunidade de macroinvertebrados como indicadores da qualidade ambiental das águas na Bacia do Rio JundiaÃ-Mirim - SP – BR. Brazilian Journal of Aquatic Science and Technology, 2015, 19, 13.	0.1	10
52	Dam-Induced Hydrologic Alterations in the Rivers Feeding the Pantanal. Frontiers in Environmental Science, 2020, 8, .	3.3	30
53	Drought and Associated Impacts in the Great Plains of the United States—A Review. International Journal of Geosciences, 2013, 04, 72-81.	0.6	62
56	THE REACTION OF ANASTOMOSING RIVER FLUVIAL SYSTEMS TO THE OPERATION OF A HYDROELECTRIC POWER PLANT. Visnyk of Taras Shevchenko National University of Kyiv Geology, 2021, , 105-111.	0.3	0

	CITATION REPORT		
#	Article	IF	CITATIONS
57	Artificial and Natural Water Bodies Change in China, 2000–2020. Water (Switzerland), 2022, 14, 1756.	2.7	2
58	Human induced fish declines in North America, how do agricultural pesticides compare to other drivers?. Environmental Science and Pollution Research, 2022, 29, 66010-66040.	5.3	5
59	Juvenile drift of an invasive crayfish <i>Faxonius virilis</i> (Hagen, 1870) (Decapoda: Astacidea:) Tj ETQq0 0 () rgBT /Overlc	ock 10 Tf 50 6
60	Oxbow Restorations for Topeka Shiner (Notropis topeka) Recovery: Defining Success. American Midland Naturalist, 2022, 188, .	0.4	5
62	A Hierarchical Approach to Fish Conservation in Semiarid Landscapes: A Need to Understand Multiscale Environmental Relationships. , 0, , .		0

63	Hydrological Response and Ecological Flow Optimization in Water Diversion Area of Inter-basin Water Diversion Project. Water Resources Management, 2022, 36, 5839-5865.	3.9	3
64	Preâ€instrumental perspectives on Arkansas River crossâ€watershed flow variability. Journal of the American Water Resources Association, 2023, 59, 1-15.	2.4	1
65	Comparison of sampling methods for small oxbow wetland fish communities. PLoS ONE, 2022, 17, e0277698.	2.5	2
66	Community perceptions of the social impacts of the Metolong Dam and Reservoir in Lesotho. Land Use Policy, 2023, 125, 106495.	5.6	1
67	The duality of drought: Pelagic―and <scp>benthicâ€spawning</scp> stream fishes show opposing responses to drought in the southern Great Plains. North American Journal of Fisheries Management, 2023, 43, 1276-1293.	1.0	3
69	Why are larger fish farther upstream? Testing multiple hypotheses using Silver Chub in two Midwestern United States riverscapes. North American Journal of Fisheries Management, 0, , .	1.0	3
70	Conservation at the nexus of niches: Multidimensional niche modeling to improve management of Prairie Chub. North American Journal of Fisheries Management, 0, , .	1.0	1
71	Hydrologic changes in the Brazos River Basin and implications for Great Plains fishes. Journal of Hydrology, 2024, 629, 130351.	5.4	0
72	Evaluating indicators of hydrologic alteration to demonstrate the impact of open-pit lignite mining on the flow regimes of small and medium-sized rivers. Ecological Indicators, 2023, 157, 111295.	6.3	2
73	The hydrological regime of Taihu Lake under the influence of anthropogenic activities. Journal of Hydrology: Regional Studies, 2023, 50, 101568.	2.4	0
74	Bibliometrics-based Research Hotspots and Development Trends in Eco-hydrology of Dammed Rivers. Chinese Geographical Science, 2023, 33, 1153-1164.	3.0	0
75	A novel Joint Probability Density Difference Approach for assessing the alteration of hydrologic regime. River Research and Applications, 0, , .	1.7	0