Doxil® â€" The first FDA-approved nano-drug: Lessor

Journal of Controlled Release 160, 117-134 DOI: 10.1016/j.jconrel.2012.03.020

Citation Report

#	Article	IF	CITATIONS
3	Maximizing measures for endomorphisms of the circle. Nonlinearity, 2008, 21, 2347-2359.	0.6	12
4	Study on eigenvalue space of hyperchaotic canonical four-dimensional Chua's circuit. Chinese Physics B, 2010, 19, 030507.	0.7	7
5	Novel anti-inflammatory strategies in atherosclerosis. Current Opinion in Lipidology, 2012, 23, 532-539.	1.2	39
6	Aluminum/MoO ₃ anode thin films: an effective anode structure for high-performance flexible organic optoelectronics. Journal of Semiconductors, 2012, 33, 013003.	2.0	6
7	Approximate solutions of nonlinear PDEs by the invariant expansion. Chinese Physics B, 2012, 21, 120204.	0.7	4
8	Clinical translation of nanomedicines. Current Opinion in Solid State and Materials Science, 2012, 16, 287-294.	5.6	134
9	Lyophilisomes as a new generation of drug delivery capsules. International Journal of Pharmaceutics, 2012, 439, 127-135.	2.6	16
10	Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 2012, 64, 1363-1384.	6.6	365
11	Shake up the drug containers. Nature Nanotechnology, 2012, 7, 483-484.	15.6	17
12	Magnetoliposomes and their potential in the intelligent drug-delivery field. Therapeutic Delivery, 2012, 3, 1469-1482.	1.2	16
13	Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Current Opinion in Solid State and Materials Science, 2012, 16, 295-301.	5.6	100
14	Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Advanced Drug Delivery Reviews, 2012, 64, 1738-1748.	6.6	75
15	Personalized nanomedicine: paving the way to the practical clinical utility of genomics and nanotechnology advancements. Advanced Drug Delivery Reviews, 2012, 64, 1359-1362.	6.6	25
16	Crucial factors and emerging concepts in ultrasound-triggered drug delivery. Journal of Controlled Release, 2012, 164, 248-255.	4.8	114
17	Accumulation and toxicity of antibody-targeted doxorubicin-loaded PEG–PE micelles in ovarian cancer cell spheroid model. Journal of Controlled Release, 2012, 164, 95-102.	4.8	125
18	Challenges and opportunities in the advancement of nanomedicines. Journal of Controlled Release, 2012, 164, 236-246.	4.8	100
19	Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today, 2012, 7, 367-379.	6.2	292
20	Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid). International Journal of Molecular Sciences, 2012, 13, 11681-11693.	1.8	71

TION RED

#	Article	IF	CITATIONS
21	Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. International Journal of Nanomedicine, 2012, 7, 5423.	3.3	40
22	Cold atoms feel the force. Nature Nanotechnology, 2012, 7, 484-485.	15.6	1
23	Structural characterization of the poly(ethylene glycol) layer of sterically stabilized liposomes by means of FTIR spectroscopy. European Polymer Journal, 2013, 49, 2415-2421.	2.6	20
24	Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 5288.	2.9	167
25	Octa-arginine-modified pegylated liposomal doxorubicin: An effective treatment strategy for non-small cell lung cancer. Cancer Letters, 2013, 335, 191-200.	3.2	79
26	Polymericâ€Micelleâ€Based Nanomedicine for siRNA Delivery. Particle and Particle Systems Characterization, 2013, 30, 211-228.	1.2	34
27	Development of liposomal formulations: From concept to clinical investigations. Asian Journal of Pharmaceutical Sciences, 2013, 8, 81-87.	4.3	147
28	Strategies for triggered drug release from tumor targeted liposomes. Expert Opinion on Drug Delivery, 2013, 10, 1399-1410.	2.4	69
29	3,3′-Diindolymethane ameliorates adriamycin-induced cardiac fibrosis via activation of a BRCA1-dependent anti-oxidant pathway. Pharmacological Research, 2013, 70, 139-146.	3.1	21
30	Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. Journal of Controlled Release, 2013, 172, 1045-1064.	4.8	193
31	Sterile Product Development. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , .	0.2	7
32	Can nanomedicines kill cancer stem cells?. Advanced Drug Delivery Reviews, 2013, 65, 1763-1783.	6.6	114
33	Can carbon nanotube–liposome conjugates address the issues associated with carbon nanotubes in drug delivery?. Future Medicinal Chemistry, 2013, 5, 503-505.	1.1	9
34	A nanoparticle formulation that selectively transfects metastatic tumors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14717-14722.	3.3	59
35	Exploiting Endocytosis for Nanomedicines. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016980-a016980.	2.3	173
36	Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials, 2013, 34, 3098-3109.	5.7	94
37	Smart Nanoscale Drug Delivery Platforms from Stimuli-Responsive Polymers and Liposomes. Macromolecules, 2013, 46, 9169-9180.	2.2	114
38	Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. International Journal of Pharmaceutics, 2013, 458, 324-333.	2.6	90

#	Article	IF	CITATIONS
39	Effect of PEG Surface Conformation on Anticancer Activity and Blood Circulation of Nanoemulsions Loaded with Tocotrienol-Rich Fraction of Palm Oil. AAPS Journal, 2013, 15, 1168-1179.	2.2	34
40	Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. Journal of Nanobiotechnology, 2013, 11, S6.	4.2	29
41	Nanocarriers for intravenous injection—The long hard road to the market. International Journal of Pharmaceutics, 2013, 457, 50-62.	2.6	136
42	Ligand-targeted particulate nanomedicines undergoing clinical evaluation: Current status. Advanced Drug Delivery Reviews, 2013, 65, 1284-1298.	6.6	338
43	Current trends in the use of liposomes for tumor targeting. Nanomedicine, 2013, 8, 1509-1528.	1.7	514
44	Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. International Journal of Biological Macromolecules, 2013, 62, 35-43.	3.6	46
45	Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia, 2013, 9, 9330-9342.	4.1	180
46	Facing the Truth about Nanotechnology in Drug Delivery. ACS Nano, 2013, 7, 7442-7447.	7.3	457
47	Nanoparticles targeting mechanisms in cancer therapy: current limitations and emerging solutions. Therapeutic Delivery, 2013, 4, 1197-1209.	1.2	11
48	Nanooncology: The future of cancer diagnosis and therapy. Ca-A Cancer Journal for Clinicians, 2013, 63, 395-418.	157.7	481
49	Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 2013, 65, 36-48.	6.6	3,565
50	Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 78-87.	1.7	69
51	Cholesterol – a biological compound as a building block in bionanotechnology. Nanoscale, 2013, 5, 89-109.	2.8	101
52	Decationized crosslinked polyplexes for redox-triggered gene delivery. Journal of Controlled Release, 2013, 169, 246-256.	4.8	41
53	Destination Known: Targeted Drug Delivery in Atherosclerosis and Thrombosis. Drug Development Research, 2013, 74, 460-471.	1.4	16
54	Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology, 2013, 24, 432002.	1.3	26
55	A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano, 2013, 7, 438-446.	7.3	246
56	Preparation of epirubicin-loaded poly(butyl cyanoacrylate) colloidal particles by polymerization in a mixed organic–aqueous solvent system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431, 27-33.	2.3	10

#	Article	IF	CITATIONS
57	Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. Journal of Controlled Release, 2013, 168, 88-102.	4.8	328
58	Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 742-757.	1.7	179
59	Clinical developments of chemotherapeutic nanomedicines: polymers and liposomes for delivery of camptothecins and platinum (II) drugs. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 130-138.	3.3	41
60	Second generation liposomal cancer therapeutics: Transition from laboratory to clinic. International Journal of Pharmaceutics, 2013, 448, 28-43.	2.6	67
61	Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. Journal of Controlled Release, 2013, 169, 48-61.	4.8	120
62	Pharmacokinetics of temoporfin-loaded liposome formulations: Correlation of liposome and temoporfin blood concentration. Journal of Controlled Release, 2013, 166, 277-285.	4.8	31
63	Origins of extreme boundary lubrication by phosphatidylcholine liposomes. Biomaterials, 2013, 34, 5465-5475.	5.7	73
64	A Novel Self-Assembly Albumin Nanocarrier for Reducing Doxorubicin-Mediated Cardiotoxicity. Journal of Pharmaceutical Sciences, 2013, 102, 1626-1635.	1.6	46
65	Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials, 2013, 34, 2773-2786.	5.7	106
66	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	2.8	610
67	Evidence for a new mechanism behind HIFU-triggered release from liposomes. Journal of Controlled Release, 2013, 168, 327-333.	4.8	56
68	Next-generation nanomedicines and nanosimilars: EU regulators' initiatives relating to the development and evaluation of nanomedicines. Nanomedicine, 2013, 8, 849-856.	1.7	122
69	Cancer nanomedicines: So many papers and so few drugs!. Advanced Drug Delivery Reviews, 2013, 65, 80-88.	6.6	472
70	Polymer-Coated Echogenic Lipid Nanoparticles with Dual Release Triggers. Biomacromolecules, 2013, 14, 841-853.	2.6	32
71	Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. Journal of Controlled Release, 2013, 167, 210-218.	4.8	54
72	A simple way to enhance Doxil® therapy: Drug release from liposomes at the tumor site by amphiphilic block copolymer. Journal of Controlled Release, 2013, 168, 61-69.	4.8	101
73	Introduction to biomaterials for cancer therapeutics. , 2013, , 3-19.		3
74	Targeting nanotherapeutics to the tumor microenvironment: how accurately can we aim?. Therapeutic Delivery, 2013, 4, 771-773.	1.2	1

#	Article	IF	CITATIONS
75	A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials, 2013, 34, 7980-7993.	5.7	158
76	Cost-Effectiveness of a Novel Blood-Pool Contrast Agent in the Setting of Chest Pain Evaluation in an Emergency Department. American Journal of Roentgenology, 2013, 201, 710-719.	1.0	3
77	Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials, 2013, 2013, 1-12.	1.5	82
78	Application of liposomal technologies for delivery of platinum analogs in oncology. International Journal of Nanomedicine, 2013, 8, 3309.	3.3	67
79	Deposition of Doxorubicin in Rats following Administration of Three Newly Synthesized Doxorubicin Conjugates. BioMed Research International, 2013, 2013, 1-8.	0.9	5
80	Nano Polymeric Carrier Fabrication Technologies for Advanced Antitumor Therapy. BioMed Research International, 2013, 2013, 1-9.	0.9	10
81	Focused ultrasound mediated drug delivery from temperature-sensitive liposomes: <i>in-vitro</i> characterization and validation. Physics in Medicine and Biology, 2013, 58, 8135-8151.	1.6	29
82	Decreased cutoff wavelength of a rectangular hole dimer in a metal. Journal of Optics (United) Tj ETQq1 1 0.784	314 rgBT / 1.0	Overlock 10
83	Assessment of Thermal Impact on Performance of Metamorphic High-Electron-Mobility Transistors on Polymer Substrates Using Flip-Chip-on-Board Technology. Applied Physics Express, 2013, 6, 126701.	1.1	0
84	Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting. Journal of Drug Delivery, 2013, 2013, 1-32.	2.5	183
85	Proapoptotic Chemotherapeutic Drugs Induce Noncanonical Processing and Release of IL-1β via Caspase-8 in Dendritic Cells. Journal of Immunology, 2013, 191, 4789-4803.	0.4	101
86	Gene Delivery by Liposomes. Israel Journal of Chemistry, 2013, 53, 737-747.	1.0	13
87	In Vitro Characterization of a Liposomal Formulation of Celecoxib Containing 1,2-Distearoyl-sn-Glycero-3-Phosphocholine, Cholesterol, and Polyethylene Glycol and its Functional Effects Against Colorectal Cancer Cell Lines. Journal of Pharmaceutical Sciences, 2013, 102, 3666-3677.	1.6	9
88	Liposomal chemotherapeutics. Future Oncology, 2013, 9, 1849-1859.	1.1	61
89	Assessing the need for quality-adjusted cost–effectiveness studies of nanotechnological cancer therapies. Nanomedicine, 2013, 8, 487-497.	1.7	10
91	From Nanotechnology to Nanoneuroscience/Nanoneurosurgery and Nanobioelectronics. , 2013, , 1-28.		1
93	The physiology of cardiovascular disease and innovative liposomal platforms for therapy. International Journal of Nanomedicine, 2013, 8, 629.	3.3	24
94	Glucocorticosteroids in Nano-Sterically Stabilized Liposomes Are Efficacious for Elimination of the Acute Symptoms of Experimental Cerebral Malaria. PLoS ONE, 2013, 8, e72722.	1.1	41

#	Article	IF	CITATIONS
95	Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Design, Development and Therapy, 2013, 7, 375.	2.0	157
96	Applications of Nanosystems to Anticancer Drug Therapy (Part II. Dendrimers, Micelles, Lipid-based) Tj ETQq1 1 0	.784314 r 0.8	gBT/Overloc 29
97	Vitamin C-driven epirubicin loading into liposomes. International Journal of Nanomedicine, 2013, 8, 3573.	3.3	26
98	History of the development of DOXIL^ ^reg;. Drug Delivery System, 2013, 28, 205-214.	0.0	4
99	Novel Strategies for Ultrasound Diagnostics and Therapeutics by Micro/Nanobubbles. Thermal Medicine, 2013, 29, 37-46.	0.0	1
100	Pharmacokinetics, Brain Delivery, and Efficacy in Brain Tumor-Bearing Mice of Clutathione Pegylated Liposomal Doxorubicin (2B3-101). PLoS ONE, 2014, 9, e82331.	1.1	207
101	Therapeutic Efficacy of Combining PEGylated Liposomal Doxorubicin and Radiofrequency (RF) Ablation: Comparison between Slow-Drug-Releasing, Non-Thermosensitive and Fast-Drug-Releasing, Thermosensitive Nano-Liposomes. PLoS ONE, 2014, 9, e92555.	1.1	53
102	PEG-Like Nanoprobes: Multimodal, Pharmacokinetically and Optically Tunable Nanomaterials. PLoS ONE, 2014, 9, e95406.	1.1	3
103	Cellular Uptake and Antitumor Activity of DOX-hyd-PEG-FA Nanoparticles. PLoS ONE, 2014, 9, e97358.	1.1	34
104	Nanopharmaceuticals (part 1): products on the market. International Journal of Nanomedicine, 2014, 9, 4357.	3.3	451
105	Self-Assembled Micelles Composed of Doxorubicin Conjugated Y-Shaped PEG-Poly(glutamic acid)2 Copolymers via Hydrazone Linkers. Molecules, 2014, 19, 11915-11932.	1.7	23
106	The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression. International Journal of Nanomedicine, 2014, 9, 3425.	3.3	17
107	Aggregation Behavior of Polystyrene-Nanoparticles in Human Blood Serum and its Impact on the in vivo Distribution in Mice. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	67
108	Rational Design of Multifunctional Nanoscale Self-Assembled Soft Materials for Biomedical Delivery Application. Topics in Medicinal Chemistry, 2014, , 55-73.	0.4	1
109	Nanoparticle Drug Formulations for Cancer Diagnosis and Treatment. Critical Reviews in Oncogenesis, 2014, 19, 223-245.	0.2	15
111	Etoposide-loaded immunoliposomes as active targeting agents for GD2-positive malignancies. Cancer Biology and Therapy, 2014, 15, 851-861.	1.5	36
112	Enhancing and initiating phage-based therapies. Bacteriophage, 2014, 4, e961869.	1.9	11
113	Theranostic applications of organic nanoparticles for cancer treatment. MRS Bulletin, 2014, 39, 239-249.	1.7	18

#	Article	IF	CITATIONS
114	In pursuit of a moving target: nanotherapeutics for the treatment of non-Hodgkin B-cell lymphoma. Expert Opinion on Drug Delivery, 2014, 11, 1923-1937.	2.4	27
115	The impact of size on particulate vaccine adjuvants. Nanomedicine, 2014, 9, 2671-2681.	1.7	94
116	Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Frontiers in Physiology, 2014, 5, 2.	1.3	57
117	Ligation Strategies for Targeting Liposomal Nanocarriers. BioMed Research International, 2014, 2014, 1-12.	0.9	99
118	Development, Characterization, and Evaluation of PSMA-Targeted Glycol Chitosan Micelles for Prostate Cancer Therapy. Journal of Nanomaterials, 2014, 2014, 1-13.	1.5	7
119	Small magnetite antiretroviral therapeutic nanoparticle probes for MRI of drug biodistribution. Nanomedicine, 2014, 9, 1341-1352.	1.7	11
120	Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. Journal of Controlled Release, 2014, 196, 113-121.	4.8	54
121	Selective recognition of anionic cell membranes using targeted liposomes coated with zinc(<scp>ii</scp>)-bis(dipicolylamine) affinity units. Organic and Biomolecular Chemistry, 2014, 12, 5645-5655.	1.5	13
123	Coating of carboxymethyl dextran on liposomal curcumin to improve the anticancer activity. RSC Advances, 2014, 4, 59211-59217.	1.7	26
124	Rational Design of Polyion Complex Nanoparticles to Overcome Cisplatin Resistance in Cancer Therapy. Advanced Materials, 2014, 26, 931-936.	11.1	134
125	Nanodrugs: pharmacokinetics and safety. International Journal of Nanomedicine, 2014, 9, 1025.	3.3	274
126	Clinical translational challenges in nanomedicine. MRS Bulletin, 2014, 39, 259-264.	1.7	16
127	Liposomes versus metallic nanostructures: differences in the process of knowledge translation in cancer. International Journal of Nanomedicine, 2014, 9, 2627.	3.3	9
128	The Significance of Nanoparticles in Medicine and Their Potential Application in Asthma. , 2014, , 247-275.		3
129	THE <i>GAIA</i> INERTIAL REFERENCE FRAME AND THE TILTING OF THE MILKY WAY DISK. Astrophysical Journal, 2014, 789, 166.	1.6	38
130	Efficient Drug Delivery of Paclitaxel Glycoside: A Novel Solubility Gradient Encapsulation into Liposomes Coupled with Immunoliposomes Preparation. PLoS ONE, 2014, 9, e107976.	1.1	32
131	Novel Resveratrol and 5-Fluorouracil Coencapsulated in PEGylated Nanoliposomes Improve Chemotherapeutic Efficacy of Combination against Head and Neck Squamous Cell Carcinoma. BioMed Research International, 2014, 2014, 1-14.	0.9	85
132	Mapping knowledge translation and innovation processes in Cancer Drug Development: the case of liposomal doxorubicin. Journal of Translational Medicine, 2014, 12, 227.	1.8	18

#	Article	IF	CITATIONS
133	Emerging nanotherapeutic strategies in breast cancer. Breast, 2014, 23, 10-18.	0.9	37
134	Targeted vs. non-targeted delivery systems: Reduced toxicity over efficacy. Journal of Controlled Release, 2014, 178, 126.	4.8	6
135	Omics-based nanomedicine: The future of personalized oncology. Cancer Letters, 2014, 352, 126-136.	3.2	75
136	Design, Synthesis, and Functionalization of Nanomaterials for Therapeutic Drug Delivery. Advances in Experimental Medicine and Biology, 2014, 811, 157-182.	0.8	6
137	Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35, 3365-3383.	5.7	698
139	Liposomal Co-Delivery of Omacetaxine Mepesuccinate and Doxorubicin for Synergistic Potentiation of Antitumor Activity. Pharmaceutical Research, 2014, 31, 2178-2185.	1.7	16
140	Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components. Biomaterials, 2014, 35, 1347-1358.	5.7	25
141	Selfâ€Reporting Liposomes for Intracellular Drug Release. Small, 2014, 10, 1261-1265.	5.2	39
142	Nanotherapeutics—Product Development Along the "Nanomaterial―Discussion. Journal of Pharmaceutical Sciences, 2014, 103, 777-784.	1.6	34
143	Nanoparticles containing insoluble drug for cancer therapy. Biotechnology Advances, 2014, 32, 778-788.	6.0	127
144	Focal Controlled Drug Delivery. Advances in Delivery Science and Technology, 2014, , .	0.4	25
145	Bridging cancer biology and the patients' needs with nanotechnology-based approaches. Cancer Treatment Reviews, 2014, 40, 626-635.	3.4	40
146	Nanomedicines: addressing the scientific and regulatory gap. Annals of the New York Academy of Sciences, 2014, 1313, 35-56.	1.8	364
147	An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 2014, 190, 15-28.	4.8	379
148	Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials, 2014, 35, 2283-2294.	5.7	89
149	Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Letters, 2014, 14, 972-981.	4.5	272
150	Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials, 2014, 35, 6482-6497.	5.7	81
151	The Role of Payload Hydrophobicity in Nanotherapeutic Pharmacokinetics. Journal of Pharmaceutical Sciences, 2014, 103, 2147-2156.	1.6	18

#	Article	IF	CITATIONS
152	Folate and TAT Peptide Co-Modified Liposomes Exhibit Receptor-Dependent Highly Efficient Intracellular Transport of Payload In Vitro and In Vivo. Pharmaceutical Research, 2014, 31, 3289-3303.	1.7	31
153	Capillary-Wall Collagen as a Biophysical Marker of Nanotherapeutic Permeability into the Tumor Microenvironment. Cancer Research, 2014, 74, 4239-4246.	0.4	75
154	Perylene-Derived Single-Component Organic Nanoparticles with Tunable Emission: Efficient Anticancer Drug Carriers with Real-Time Monitoring of Drug Release. ACS Nano, 2014, 8, 5939-5952.	7.3	102
155	Designer lipids for drug delivery: From heads to tails. Journal of Controlled Release, 2014, 190, 274-287.	4.8	129
156	Molecular structure and stability of the sorbitan monostearate (Span60) monolayers film at the water–air interface: A molecular dynamics simulation study. Journal of Molecular Liquids, 2014, 195, 157-164.	2.3	12
157	Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. Journal of Controlled Release, 2014, 185, 71-87.	4.8	247
158	Sequential Intraâ€Intercellular Nanoparticle Delivery System for Deep Tumor Penetration. Angewandte Chemie - International Edition, 2014, 53, 6253-6258.	7.2	211
159	Lipid-based carriers for pulmonary products: Preclinical development and case studies in humans. Advanced Drug Delivery Reviews, 2014, 75, 53-80.	6.6	107
160	Asymmetric Flow Field-Flow Fractionation in the Field of Nanomedicine. Analytical Chemistry, 2014, 86, 5201-5210.	3.2	116
161	Hyperthermia-Mediated Local Drug Delivery by a Bubble-Generating Liposomal System for Tumor-Specific Chemotherapy. ACS Nano, 2014, 8, 5105-5115.	7.3	160
162	Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading. Journal of Controlled Release, 2014, 173, 125-131.	4.8	39
163	Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Advanced Drug Delivery Reviews, 2014, 74, 53-74.	6.6	43
164	Ligand-targeted liposome design: challenges and fundamental considerations. Trends in Biotechnology, 2014, 32, 32-45.	4.9	399
165	Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Letters, 2014, 352, 66-80.	3.2	22
166	Nanocarriers for Vascular Delivery of Anti-Inflammatory Agents. Annual Review of Pharmacology and Toxicology, 2014, 54, 205-226.	4.2	85
167	Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 2014, 32, 761-777.	6.0	151
168	PEG-pHPMAm-based polymeric micelles loaded with doxorubicin-prodrugs in combination antitumor therapy with oncolytic vaccinia viruses. Polymer Chemistry, 2014, 5, 1674-1681.	1.9	17
169	Microfluidic Preparation of Liposomes to Determine Particle Size Influence on Cellular Uptake Mechanisms. Pharmaceutical Research, 2014, 31, 401-413.	1.7	124

#	Article	IF	CITATIONS
170	Novel aspects of encapsulation and delivery using polymersomes. Current Opinion in Pharmacology, 2014, 18, 104-111.	1.7	114
171	Nanotechnology applications in urology: a review. BJU International, 2014, 114, 653-660.	1.3	4
172	Diamagnetic chemical exchange saturation transfer (<scp>diaCEST</scp>) liposomes: physicochemical properties and imaging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 111-124.	3.3	36
173	Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: A potential candidate for overcoming multi-drug resistance. International Journal of Pharmaceutics, 2014, 477, 590-600.	2.6	55
174	Integration of Nanoassembly Functions for an Effective Delivery Cascade for Cancer Drugs. Advanced Materials, 2014, 26, 7615-7621.	11.1	317
175	Microfluidic remote loading for rapid single-step liposomal drug preparation. Lab on A Chip, 2014, 14, 3359.	3.1	70
176	Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. International Journal of Pharmaceutics, 2014, 474, 95-102.	2.6	40
177	Targeting of Injectable Drug Nanocrystals. Molecular Pharmaceutics, 2014, 11, 1762-1771.	2.3	60
178	The liposome–protein corona in mice and humans and its implications for in vivo delivery. Journal of Materials Chemistry B, 2014, 2, 7419-7428.	2.9	85
179	Light-Scattering Detection below the Level of Single Fluorescent Molecules for High-Resolution Characterization of Functional Nanoparticles. ACS Nano, 2014, 8, 10998-11006.	7.3	159
180	Recent progress of liposomes in nanomedicine. Journal of Materials Chemistry B, 2014, 2, 6686-6691.	2.9	28
181	NanoDDS 2013: The 11th International Nano Drug Delivery Symposium. Journal of Controlled Release, 2014, 191, 1-3.	4.8	2
182	Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Letters, 2014, 354, 290-298.	3.2	51
183	Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 12320-12364.	7.2	1,447
184	Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces, 2014, 123, 345-363.	2.5	360
185	PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery, 2014, 11, 139-154.	2.4	102
186	Synthesis of Doxorubicin α-Linolenic Acid Conjugate and Evaluation of Its Antitumor Activity. Molecular Pharmaceutics, 2014, 11, 1378-1390.	2.3	36
187	Multivalent Polymers for Drug Delivery and Imaging: The Challenges of Conjugation. Biomacromolecules, 2014, 15, 3215-3234.	2.6	56

#	Article	IF	CITATIONS
188	Suppression in mice of immunosurveillance against PEGylated liposomes by encapsulated doxorubicin. Journal of Controlled Release, 2014, 192, 167-173.	4.8	19
189	Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014, 13, 655-672.	21.5	1,261
190	Temperature-sensitive paramagnetic liposomes for image-guided drug delivery: Mn2+ versus [Gd(HPDO3A)(H2O)]. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2807-2816.	1.4	17
191	Prodrug Applications for Targeted Cancer Therapy. AAPS Journal, 2014, 16, 899-913.	2.2	87
192	Extracellular vesicles as drug delivery systems: Lessons from the liposome field. Journal of Controlled Release, 2014, 195, 72-85.	4.8	372
193	Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2014, 11, 1176-1188.	2.3	122
194	Charge-Conversional PEG-Polypeptide Polyionic Complex Nanoparticles from Simple Blending of a Pair of Oppositely Charged Block Copolymers as an Intelligent Vehicle for Efficient Antitumor Drug Delivery. Molecular Pharmaceutics, 2014, 11, 1562-1574.	2.3	55
195	Imaging of doxorubicin release from theranostic macromolecular prodrugs via fluorescence resonance energy transfer. Journal of Controlled Release, 2014, 194, 189-196.	4.8	46
196	Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 2014, 13, 813-827.	21.5	1,244
197	An integrated approach for the systematic evaluation of polymeric nanoparticles in healthy and diseased organisms. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	12
198	How to Regulate Nonbiological Complex Drugs (NBCD) and Their Follow-on Versions: Points to Consider. AAPS Journal, 2014, 16, 15-21.	2.2	101
199	Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. Journal of Colloid and Interface Science, 2014, 431, 194-199.	5.0	207
200	Breakthrough discoveries in drug delivery technologies: The next 30 years. Journal of Controlled Release, 2014, 190, 9-14.	4.8	82
201	Doxorubicin Conjugate of Poly(Ethylene Glycol)â€ <i>Block</i> â€Polyphosphoester for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 261-272.	3.9	64
202	Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release, 2014, 190, 3-8.	4.8	525
203	Synergy effects of magnetic silica nanostructures for drug delivery applications. Journal of Materials Chemistry B, 2014, 2, 2645-2653.	2.9	14
204	The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opinion on Drug Delivery, 2014, 11, 409-420.	2.4	126
205	Lapatinib-incorporated lipoprotein-like nanoparticles: preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacologica Sinica, 2014, 35, 846-852.	2.8	29

#	Article	IF	CITATIONS
206	Triggered Release of Doxorubicin from Temperature-Sensitive Poly(<i>N</i> -(2-hydroxypropyl)-methacrylamide mono/dilactate) Grafted Liposomes. Biomacromolecules, 2014, 15, 1002-1009.	2.6	52
207	Inhibition of Metastatic Tumor Growth and Metastasis via Targeting Metastatic Breast Cancer by Chlorotoxin-Modified Liposomes. Molecular Pharmaceutics, 2014, 11, 3233-3241.	2.3	56
208	The theranostic path to personalized nanomedicine. Clinical and Translational Imaging, 2014, 2, 67-76.	1.1	57
209	A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. Journal of Nanobiotechnology, 2014, 12, 17.	4.2	65
210	Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials, 2014, 35, 6118-6129.	5.7	304
211	Organic nanoparticles for drug delivery and imaging. MRS Bulletin, 2014, 39, 219-223.	1.7	77
212	Influence of dose and animal species on accelerated blood clearance of PEGylated liposomal doxorubicin. International Journal of Pharmaceutics, 2014, 476, 205-212.	2.6	56
213	Enhancement of the anti-tumor effect of DNA vaccination using an ultrasound-responsive mannose-modified gene carrier in combination with doxorubicin-encapsulated PEGylated liposomes. International Journal of Pharmaceutics, 2014, 475, 401-407.	2.6	27
214	Polyphosphoester-Based Nanoparticles with Viscous Flow Core Enhanced Therapeutic Efficacy by Improved Intracellular Drug Release. ACS Applied Materials & Interfaces, 2014, 6, 16174-16181.	4.0	26
215	Synergistic apoptotic effect of Doxil® and aminolevulinic acid-based photodynamic therapy on human breast adenocarcinoma cells. Photodiagnosis and Photodynamic Therapy, 2014, 11, 227-238.	1.3	22
216	Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. Journal of Controlled Release, 2014, 178, 101-107.	4.8	73
217	Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. Journal of Controlled Release, 2014, 176, 76-85.	4.8	94
218	Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 216-225.	2.0	62
219	Radical innovation from the confluence of technologies: Innovation management strategies for the emerging nanobiotechnology industry. Journal of Engineering and Technology Management - JET-M, 2014, 32, 1-25.	1.4	53
220	EPR: Evidence and fallacy. Journal of Controlled Release, 2014, 190, 451-464.	4.8	640
221	Just so stories: The random acts of anti-cancer nanomedicine performance. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1661-1666.	1.7	69
222	Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. Journal of Controlled Release, 2014, 174, 15-26.	4.8	100
223	Targeting of BRAF resistant melanoma via extracellular matrix metalloproteinase inducer receptor. Journal of Surgical Research, 2014, 190, 111-118.	0.8	10

ARTICLE IF CITATIONS # Self-assembled nanoscale coordination polymers with trigger release properties for effective 224 5.8 205 anticancer therapy. Nature Communications, 2014, 5, 4182. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine, 2014, 9, 313-330. 1.7 Issues and concerns in nanotech product development and its commercialization. Journal of 226 4.8 82 Controlled Release, 2014, 193, 51-62. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells. Nanoscale, 2014, 6, 8155. Sustained Drug Release in Nanomedicine: A Long-Acting Nanocarrier-Based Formulation for Glaucoma. 228 7.3 108 ACS Nano, 2014, 8, 419-429. Liposomal Bortezomib Nanoparticles via Boronic Ester Prodrug Formulation for Improved 229 Therapeutic Efficacy in Vivo. Journal of Medicinal Chemistry, 2014, 57, 5282-5292. 230 Molecular mechanisms and physiology of disease., 2014,,. 1 Effect of Solubilizing Agents on Mupirocin Loading into and Release from PEGylated Nanoliposomes. 231 1.6 19 Journal of Pharmaceutical Sciences, 2014, 103, 2131-2138. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved 232 4.8 434 nanomedicines. Journal of Controlled Release, 2014, 187, 133-144. Sustained-release from nanocarriers: a review. Journal of Controlled Release, 2014, 193, 122-138. 4.8 212 Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards 234 1.5 92 cancer therapy. Organic and Biomolecular Chemistry, 2014, 12, 4776. Glycosylation-mediated targeting of carriers. Journal of Controlled Release, 2014, 190, 542-555. 4.8 Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer 237 5.7 22 therapy. Biomaterials, 2014, 35, 7647-7653. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder 1.8 future developments. Frontiers in Chemistry, 2014, 2, 69. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the 239 combination of active targeting and molecular targeting. International Journal of Nanomedicine, 3.3 45 2014, 9, 2167. Drug delivery systems in the transport of doxorubicin. Surface Innovations, 2014, 2, 201-210. 240 14 Medical Applications of Lipid Nanoparticles., 2014, , 308-333. 241 2 Preclinical to Clinical Development of Nanomedicines. Frontiers in Nanobiomedical Research, 2014, , 242 0.1 175-224.

#	Article	IF	CITATIONS
244	Biosafe Nanoscale Pharmaceutical Adjuvant Materials. Journal of Biomedical Nanotechnology, 2014, 10, 2393-2419.	0.5	27
245	Liposomal Nanomedicines. Frontiers in Nanobiomedical Research, 2014, , 1-53.	0.1	2
247	Relationship between the Concentration of Anti-polyethylene Glycol (PEG) Immunoglobulin M (IgM) and the Intensity of the Accelerated Blood Clearance (ABC) Phenomenon against PEGylated Liposomes in Mice. Biological and Pharmaceutical Bulletin, 2015, 38, 417-424.	0.6	46
248	Preparation, Characterization, and In Vitro and In Vivo Evaluation of PEGylated Liposomal Doxorubicin Modified with Different cRGD Peptides. Methods in Pharmacology and Toxicology, 2015, , 51-68.	0.1	0
250	Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Scientific Reports, 2015, 5, 17579.	1.6	110
251	Half-life extension technologies for haemostatic agents. Thrombosis and Haemostasis, 2015, 113, 165-176.	1.8	29
252	Cholesterolâ€loaded nanoparticles ameliorate synaptic and cognitive function in <scp>H</scp> untington's disease mice. EMBO Molecular Medicine, 2015, 7, 1547-1564.	3.3	84
253	Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small, 2015, 11, 5483-5496.	5.2	103
254	Host–Guest Interactionâ€Mediated Construction of Hydrogels and Nanovesicles for Drug Delivery. Small, 2015, 11, 5901-5906.	5.2	31
255	An update on Curcuma as a functional food in the control of cancer and inflammation. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 605-611.	1.3	33
256	Nearâ€Infrared Lightâ€Absorptive Stealth Liposomes for Localized Photothermal Ablation of Tumors Combined with Chemotherapy. Advanced Functional Materials, 2015, 25, 5602-5610.	7.8	65
258	Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo. International Journal of Nanomedicine, 2015, 10, 5327.	3.3	17
259	Active Targeted Drug Delivery for Microbes Using Nano-Carriers. Current Topics in Medicinal Chemistry, 2015, 15, 1525-1531.	1.0	17
260	Virosomes of hepatitis B virus envelope L proteins containing doxorubicin: synergistic enhancement of human liver-specific antitumor growth activity by radiotherapy. International Journal of Nanomedicine, 2015, 10, 4159.	3.3	13
261	The Use of Anthracyclines for Therapy of CNS Tumors. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 721-727.	0.9	24
262	An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery. International Journal of Nanomedicine, 2015, 10, 6199.	3.3	38
263	Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics, 2015, 5, 1233-1248.	4.6	78
264	Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BioMed Research International, 2015, 2015, 1-22.	0.9	60

#	Article	IF	Citations
266	Liposomal doxorubicin for active targeting: surface modification of the nanocarrier evaluated <i>in vitro</i> and <i>in vivo</i> — challenges and prospects. Oncotarget, 2015, 6, 43698-43711.	0.8	15
267	Active Targeting Liposomes: Promising Approach for Tumor-Targeted Therapy. Journal of Bioequivalence & Bioavailability, 2015, 08, .	0.1	2
268	Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect. Scientific Reports, 2014, 4, 4492.	1.6	20
269	The Application of Liposomes as Vaccine Adjuvants. Advances in Delivery Science and Technology, 2015, , 77-94.	0.4	4
270	Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 025005.	0.7	21
271	Toxicity studies of coumarin 6-encapsulated polystyrene nanospheres conjugated with peanut agglutinin and poly(N-vinylacetamide) as a colonoscopic imaging agent in rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1227-1236.	1.7	8
272	Determination of Key Parameters for a Mechanism-Based Model to Predict Doxorubicin Release from Actively Loaded Liposomes. Journal of Pharmaceutical Sciences, 2015, 104, 1087-1098.	1.6	22
273	Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS Nano, 2015, 9, 6985-6995.	7.3	220
274	Tunable CD44-Specific Cellular Retargeting with Hyaluronic Acid Nanoshells. Pharmaceutical Research, 2015, 32, 1462-1474.	1.7	18
275	Recent Advances and Trends in the Brain Delivery of Small Molecule Based Cancer Therapies. , 2015, , 463-482.		0
276	Development of a bone targeted thermosensitive liposomal doxorubicin formulation based on a bisphosphonate modified non-ionic surfactant. Pharmaceutical Development and Technology, 2016, 21, 1-8.	1.1	12
277	New Developments in Liposomal Drug Delivery. Chemical Reviews, 2015, 115, 10938-10966.	23.0	1,183
278	Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. International Journal of Pharmaceutics, 2015, 493, 380-389.	2.6	26
279	Construction of a liposome dialyzer for the preparation of high-value, small-volume liposome formulations. Nature Protocols, 2015, 10, 927-938.	5.5	13
280	Effect of PEG Pairing on the Efficiency of Cancer-Targeting Liposomes. Theranostics, 2015, 5, 746-754.	4.6	61
281	Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. Journal of Controlled Release, 2015, 210, 10-18.	4.8	23
282	Applications of nanoparticles in cancer medicine and beyond: optical and multimodalin vivoimaging, tissue targeting and drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1837-1849.	2.4	44
283	Effective Remote Loading of Doxorubicin into DPPC/Poloxamer 188 Hybrid Liposome to Retain Thermosensitive Property and the Assessment of Carrier-Based Acute Cytotoxicity for Pulmonary Administration. Journal of Pharmaceutical Sciences, 2015, 104, 3824-3832.	1.6	28

ARTICLE IF CITATIONS # Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. 284 2.4 58 Expert Opinion on Drug Delivery, 2015, 12, 481-492. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids and Surfaces B: 2.5 228 Biointerfaces, 2015, 126, 631-648. Perfluorocarbon-loaded micro and nanosystems for medical imaging: A state of the art. Journal of 286 0.9 48 Fluorine Chemistry, 2015, 171, 18-26. Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery 190 Reviews, 2015, 91, 125-140. Structural Basis of Movement Across Cell Membranes., 2015, , 1-36. 289 0 Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials, 2015, 51, 30-42. 290 5.7 129 Nanoparticle-mediated delivery of a rapidly activatable prodrug of SN-38 for neuroblastoma therapy. 291 5.7 36 Biomaterials, 2015, 51, 22-29. Radionanomedicine: Widened perspectives of molecular theragnosis. Nanomedicine: Nanotechnology, 1.7 Biology, and Medicine, 2015, 11, 795-810. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET-indicated 293 2.2 51 drug release. Chemical Communications, 2015, 51, 4807-4810. Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes. International 294 1.1 Journal of Hyperthermia, 2015, 31, 349-358. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. European Journal of Pharmaceutics and Biopharmaceutics, 295 2.0 59 2015, 91, 66-74. A charge neutral, size tuneable polymersome capable of high biological encapsulation efficiency and 296 2.6 cell permeation. International Journal of Pharmaceutics, 2015, 481, 1-8. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for 297 tumor-specific chemotherapy that overcomes multidrug resistance. Journal of Controlled Release, 4.8 119 2015, 208, 42-51. Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 298 3.5 578 2015, 21, 223-232. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer 299 2.6 53 cells. International Journal of Pharmaceutics, 2015, 479, 364-373. Nanotherapy for Cancer: Targeting and Multifunctionality in the Future of Cancer Therapies. ACS 151 Biomaterials Science and Engineering, 2015, 1, 64-78. Liposomeâ€"protein corona in a physiological environment: Challenges and opportunities for targeted 301 1.7 196 delivery of nanomedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 543-557. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine, 2015, 10, 143-160.

#	Article	IF	CITATIONS
303	Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine, 2015, 10, 465-481.	1.7	52
304	Horizon scan of nanomedicinal products. Nanomedicine, 2015, 10, 1599-1608.	1.7	62
305	Bridging Laboratory and Large Scale Production: Preparation andÂln Vitro-Evaluation of Photosensitizer-Loaded Nanocarrier Devices for Targeted Drug Delivery. Pharmaceutical Research, 2015, 32, 1714-1726.	1.7	19
306	Mild Hyperthermia Enhances Transport of Liposomal Gemcitabine and Improves In Vivo Therapeutic Response. Advanced Healthcare Materials, 2015, 4, 1092-1103.	3.9	56
307	Tumor-Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT-Decorated Liposomes Comprising Redox-Responsive Poly(Ethylene Glycol). Journal of Pharmaceutical Sciences, 2015, 104, 1160-1173.	1.6	72
308	Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Advances, 2015, 5, 27630-27639.	1.7	18
309	Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials, 2015, 69, 76-88.	5.7	73
310	Multistage vector (MSV) therapeutics. Journal of Controlled Release, 2015, 219, 406-415.	4.8	52
311	Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. Journal of Controlled Release, 2015, 214, 121-133.	4.8	46
312	The Potential of Liposomes with Carbonic Anhydrase IX to Deliver Anticancer Ingredients to Cancer Cells in Vivo. International Journal of Molecular Sciences, 2015, 16, 230-255.	1.8	14
313	Drug Delivery with Organic Solvents or Colloidal Dispersed Systems. , 2015, , 699-722.		5
314	An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. Journal of Materials Chemistry B, 2015, 3, 7153-7172.	2.9	108
315	In vitro experiments showing enhanced release of doxorubicin from Doxil® in the presence of ammonia may explain drug release at tumor site. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1841-1850.	1.7	74
316	Liposomes: The Science and the Regulatory Landscape. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 77-106.	0.2	10
317	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-7206.	7.3	552
318	<i>In Vivo</i> Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles. ACS Nano, 2015, 9, 8142-8156.	7.3	274
319	Grand Challenges for Nanoscience and Nanotechnology. ACS Nano, 2015, 9, 6637-6640.	7.3	53
320	POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale, 2015, 7, 13671-13679.	2.8	64

#	Article	IF	CITATIONS
321	Enzymatic action of phospholipase A2 on liposomal drug delivery systems. International Journal of Pharmaceutics, 2015, 491, 49-57.	2.6	34
322	Clinical Translation of Nanomedicine. Chemical Reviews, 2015, 115, 11147-11190.	23.0	619
323	Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society Reviews, 2015, 44, 6306-6329.	18.7	95
324	Exosomes: potential model for complement-stealth delivery systems. European Journal of Nanomedicine, 2015, 7, .	0.6	10
325	Intratumoral gold-doxorubicin is effective in treating melanoma in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1365-1375.	1.7	42
326	Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale, 2015, 7, 9487-9496.	2.8	156
327	Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 675-690.	2.4	7
328	Well-defined biohybrids using reversible-deactivation radical polymerization procedures. Journal of Controlled Release, 2015, 205, 45-57.	4.8	57
329	Development, characterization, and in vitro evaluation of phosphatidylcholine–sodium cholate-based nanoparticles for siRNA delivery to MCF-7 human breast cancer cells. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	0
330	Multifunctional Vehicle of Amphiphilic Calix[4]arene Mediated by Liposome. Chemistry of Materials, 2015, 27, 2848-2854.	3.2	36
331	pH-responsive lyotropic liquid crystals and their potential therapeutic role in cancer treatment. Chemical Communications, 2015, 51, 6671-6674.	2.2	86
333	Plasmon resonant liposomes for controlled drug delivery. , 2015, , .		0
334	General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. Journal of Controlled Release, 2015, 210, 76-83.	4.8	63
335	Nanomedicine in veterinary oncology. Veterinary Journal, 2015, 205, 189-197.	0.6	6
337	Partition coefficient vs. binding constant: How best to assess molecular lipophilicity. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 92, 204-215.	2.0	8
338	Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. International Journal of Pharmaceutics, 2015, 482, 2-10.	2.6	95
339	Imaging the urinary pathways in mice by liposomal indocyanine green. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1057-1064.	1.7	23
340	Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer and Metastasis Reviews, 2015, 34, 291-301.	2.7	58

		CITATION REPORT		
#	Article		IF	CITATIONS
341	Cancer Nanotherapeutics in Clinical Trials. Cancer Treatment and Research, 2015, 166,	293-322.	0.2	34
342	Liposomes as nanomedical devices. International Journal of Nanomedicine, 2015, 10, 9	75.	3.3	1,579
343	Mathematical modeling analysis of intratumoral disposition of anticancer agents and d systems. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 767-784.	rug delivery	1.5	9
344	Hybrid Protein–Synthetic Polymer Nanoparticles for Drug Delivery. Advances in Prote and Structural Biology, 2015, 98, 93-119.	in Chemistry	1.0	9
345	Nanoparticle-Mediated Delivery of Therapeutic Drugs. Pharmaceutical Medicine, 2015,	29, 155-167.	1.0	10
346	Multifunctional nanoparticles for use in theranostic applications. Drug Delivery and Tra Research, 2015, 5, 295-309.	nslational	3.0	85
347	Human placental cell and tissue uptake of doxorubicin and its liposomal formulations. ⁻ Letters, 2015, 239, 108-114.	Гoxicology	0.4	35
348	Cancer therapy using nanoformulated substances: scientific, regulatory and financial as Review of Anticancer Therapy, 2015, 15, 1233-1255.	spects. Expert	1.1	81
349	pH-degradable and thermoresponsive water-soluble core cross-linked polymeric nanopa potential drug delivery vehicle for doxorubicin. RSC Advances, 2015, 5, 83565-83575.	articles as	1.7	14
350	The Potential of Nucleic Acid-Based Nanoparticles for Biomedical Application. Nano LIFE 1541004.	E, 2015, 05,	0.6	5
351	Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves and antitumor efficacy of liposomal doxorubicin. Journal of Controlled Release, 2015, 2		4.8	152
352	Drug delivery system innovation and Health Technology Assessment: Upgrading from O Technological Assessment. International Journal of Pharmaceutics, 2015, 495, 1005-10	Clinical to 18.	2.6	14
353	Development of a virus-mimicking nanocarrier for drug delivery systems: The bio-nanoc Advanced Drug Delivery Reviews, 2015, 95, 77-89.	apsule.	6.6	52
354	Lung cancer nanomedicine: potentials and pitfalls. Nanomedicine, 2015, 10, 3203-321	2.	1.7	53
355	Reviewing the regulatory barriers for nanomedicine: global questions and challenges. N 2015, 10, 3275-3286.	anomedicine,	1.7	42
356	Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies. Journal of Controlled F 219, 295-312.	Release, 2015,	4.8	11
357	Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration i Culture Models of Ovarian Cancer Residual Disease. Molecular Pharmaceutics, 2015, 12		2.3	24
358	Controlled Drug Delivery: Historical perspective for the next generation. Journal of Con Release, 2015, 219, 2-7.	trolled	4.8	263

#	Article	IF	CITATIONS
359	Considerations for clinically-relevant nanomedicine therapies for chronic diseases. Nanomedicine, 2015, 10, 3103-3107.	1.7	4
360	Ultrasmall dual-modality silica nanoparticle drug conjugates: Design, synthesis, and characterization. Bioorganic and Medicinal Chemistry, 2015, 23, 7119-7130.	1.4	26
361	Lessons in simplicity that should shape the future of drug delivery. Nature Biotechnology, 2015, 33, 1026-1027.	9.4	30
362	Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine, 2015, 10, 2963-2971.	1.7	120
363	Investigation of Hexadecylphosphocholine (miltefosine) usage in Pegylated liposomal doxorubicin as a synergistic ingredient: In vitro and in vivo evaluation in mice bearing C26 colon carcinoma and B16F0 melanoma. European Journal of Pharmaceutical Sciences, 2015, 80, 66-73.	1.9	23
364	Design considerations for nanotherapeutics in oncology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1893-1907.	1.7	208
365	Interaction between drug delivery vehicles and cells under the effect of shear stress. Biomicrofluidics, 2015, 9, 052605.	1.2	25
366	Mechanistic model and analysis of doxorubicin release from liposomal formulations. Journal of Controlled Release, 2015, 217, 82-91.	4.8	42
367	Drug–carrier interaction analysis in the cell penetrating peptide-modified liposomes for doxorubicin loading. Journal of Microencapsulation, 2015, 32, 745-754.	1.2	4
368	Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. International Journal of Pharmaceutics, 2015, 495, 162-170.	2.6	43
369	Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization. European Polymer Journal, 2015, 72, 620-631.	2.6	20
370	Clobal liposome research in the period of 1995–2014: a bibliometric analysis. Scientometrics, 2015, 105, 231-248.	1.6	34
371	Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 2015, 33, 941-951.	9.4	4,868
372	Design Principles for Nanoparticles Enveloped by a Polymer-Tethered Lipid Membrane. ACS Nano, 2015, 9, 9942-9954.	7.3	22
373	Porphyrin-phospholipid liposomes with tunable leakiness. Journal of Controlled Release, 2015, 220, 484-494.	4.8	44
374	Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials, 2015, 7, e227-e227.	3.8	80
375	Optically modulated cancer therapeutic delivery: past, present and future. Therapeutic Delivery, 2015, 6, 545-558.	1.2	2
376	Formulation and optimization of idarubicin thermosensitive liposomes provides ultrafast triggered release at mild hyperthermia and improves tumor response. Journal of Controlled Release, 2015, 220, 425-437.	4.8	42

#	Article	IF	CITATIONS
378	Liposomal forms of anticancer agents beyond anthracyclines: present and future perspectives. Journal of Liposome Research, 2015, 25, 166-173.	1.5	5
379	Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 2015, 200, 138-157.	4.8	1,477
380	Lipid composition: a "key factor―for the rational manipulation of the liposome–protein corona by liposome design. RSC Advances, 2015, 5, 5967-5975.	1.7	77
381	Well-defined single polymer nanoparticles for the antibody-targeted delivery of chemotherapeutic agents. Polymer Chemistry, 2015, 6, 1286-1299.	1.9	18
382	Stimuli-Responsive Nanomaterials for Biomedical Applications. Journal of the American Chemical Society, 2015, 137, 2140-2154.	6.6	442
383	Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 118-123.	7.2	49
384	Aqueous-core PEC-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 30-39.	2.0	71
385	Release, Partitioning, and Conjugation Stability of Doxorubicin in Polymer Micelles Determined by Mechanistic Modeling. Pharmaceutical Research, 2015, 32, 1752-1763.	1.7	20
386	Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. Journal of Controlled Release, 2015, 198, 35-54.	4.8	95
387	Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology, 2015, 16, 147-185.	2.0	57
388	Managing diabetes with nanomedicine: challenges and opportunities. Nature Reviews Drug Discovery, 2015, 14, 45-57.	21.5	459
389	A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 155-165.	1.7	51
390	Enhanced retention and anti-tumor efficacy of liposomes by changing their cellular uptake and pharmacokinetics behavior. Biomaterials, 2015, 41, 1-14.	5.7	78
391	Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. International Journal of Pharmaceutics, 2015, 478, 726-735.	2.6	105
392	New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG5000 polymers. Materials Science and Engineering C, 2015, 46, 470-481.	3.8	14
393	Subunit Vaccine Delivery. Advances in Delivery Science and Technology, 2015, , .	0.4	9
394	Nanomedical engineering: shaping future nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 169-188.	3.3	50
395	Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polymer Chemistry, 2015, 6, 198-212.	1.9	419

#	Article	IF	CITATIONS
396	Overcoming multidrug resistance with nanomedicines. Expert Opinion on Drug Delivery, 2015, 12, 223-238.	2.4	61
397	Nanomedicine: a pharma perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 125-130.	3.3	27
398	Investigation of factors affecting <i>in vitro</i> doxorubicin release from PEGylated liposomal doxorubicin for the development of <i>in vitro</i> release testing conditions. Drug Development and Industrial Pharmacy, 2015, 41, 1376-1386.	0.9	29
399	The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Advanced Drug Delivery Reviews, 2015, 91, 7-22.	6.6	142
400	Structural characterization of novel cationic diC16-amidine bilayers: Evidence for partial interdigitation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 127-133.	1.4	7
401	Leukocytes as carriers for targeted cancer drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 375-392.	2.4	58
402	PEGylated Hyaluronic Acid-Modified Liposomal Delivery System with Anti-Î ³ -Glutamylcyclotransferase siRNA for Drug-Resistant MCF-7 Breast Cancer Therapy. Journal of Pharmaceutical Sciences, 2015, 104, 476-484.	1.6	48
403	Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 401-409.	1.9	68
404	Recent Innovations in Cancer Chemotherapy by Nanomedicines. Current Nanomedicine, 2016, 6, 43-49.	0.2	0
405	Niosomes as Nano-Delivery Systems in the Pharmaceutical Field. Critical Reviews in Therapeutic Drug Carrier Systems, 2016, 33, 195-212.	1.2	20
406	Antibody-Targeted Immunocarriers for Cancer Treatment. , 0, , .		0
407	Improved Targeted Delivery for Chemotherapeutic Drugs. American Journal of Advanced Drug Delivery, 2016, 04, .	0.1	0
408	Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy. Theranostics, 2016, 6, 2329-2336.	4.6	50
409	Introduction of Nanotechnology in Herbal Drugs and Nutraceutical: A Review. Journal of Nanomedicine & Biotherapeutic Discovery, 2016, 6, .	0.6	28
410	Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. International Journal of Nanomedicine, 2016, Volume 11, 5697-5708.	3.3	28
411	Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules, 2016, 21, 305.	1.7	88
412	Evaluation of β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. International Journal of Nanomedicine, 2016, Volume 11, 6703-6712.	3.3	11
413	Nanotherapeutic Platforms for Cancer Treatment: From Preclinical Development to Clinical Application. , 2016, , 813-869.		5

#	Article	IF	CITATIONS
414	Bioabsorbable engineered nanobiomaterials for antibacterial therapy. , 2016, , 77-117.		12
415	Liposome-Nanogel Structures for Future Pharmaceutical Applications: An Updated Review. Current Pharmaceutical Design, 2016, 22, 1391-1413.	0.9	32
416	Liposome and Their Applications in Cancer Therapy. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	68
417	Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria. Theranostics, 2016, 6, 167-176.	4.6	22
418	In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. International Journal of Nanomedicine, 2016, 11, 2329.	3.3	40
419	The Smart Drug Delivery System and Its Clinical Potential. Theranostics, 2016, 6, 1306-1323.	4.6	718
420	Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics, 2016, 6, 1336-1352.	4.6	219
421	PDE5 Inhibitors-Loaded Nanovesicles: Physico-Chemical Properties and In Vitro Antiproliferative Activity. Nanomaterials, 2016, 6, 92.	1.9	20
422	Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers, 2016, 8, 99.	2.0	36
423	Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. International Journal of Nanomedicine, 2016, 11, 791.	3.3	86
424	The nasal delivery of nanoencapsulated statins – an approach for brain delivery. International Journal of Nanomedicine, 2016, Volume 11, 6575-6590.	3.3	65
425	Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics, 2016, 6, 679-687.	4.6	112
426	Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging. Theranostics, 2016, 6, 1293-1305.	4.6	68
427	Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale, 2016, 8, 14821-14835.	2.8	29
428	Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine, 2016, 11, 1865-1887.	1.7	35
429	Pharmacokinetic considerations of nanodelivery to the brain: Using modeling and simulations to predict the outcome of liposomal formulations. European Journal of Pharmaceutical Sciences, 2016, 92, 173-182.	1.9	24
430	Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 2016, 244, 314-325.	4.8	37
431	Enhanced Targeted Delivery of Cyclodextrinâ€Based Supermolecules by Core–Shell Nanocapsules for Magnetothermal Chemotherapy. Macromolecular Bioscience, 2016, 16, 1273-1286.	2.1	12

#	Article	IF	CITATIONS
432	Hybrid Nanoparticles as Drug Carriers for Controlled Chemotherapy of Cancer. Chemical Record, 2016, 16, 1833-1851.	2.9	19
433	Targeted Nanotherapies for the Treatment of Surgical Diseases. Annals of Surgery, 2016, 263, 900-907.	2.1	14
434	The Effects of Spacer Length and Composition on Aptamerâ€Mediated Cellâ€5pecific Targeting with Nanoscale PEGylated Liposomal Doxorubicin. ChemBioChem, 2016, 17, 1111-1117.	1.3	30
435	Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Imageâ€Guided Approaches. Advanced Functional Materials, 2016, 26, 3818-3836.	7.8	232
436	Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angewandte Chemie - International Edition, 2016, 55, 8806-8815.	7.2	215
437	Overexpression of caveolinâ€1 in inflammatory breast cancer cells enables IBCâ€specific gene delivery and prodrug conversion using histoneâ€ŧargeted polyplexes. Biotechnology and Bioengineering, 2016, 113, 2686-2697.	1.7	11
438	Die Steuerung des Stealthâ€Effekts von NanotrÃ g ern durch das VerstÃ ¤ dnis der Proteinkorona. Angewandte Chemie, 2016, 128, 8950-8959.	1.6	11
439	Long Circulation Redâ€Bloodâ€Cellâ€Mimetic Nanoparticles with Peptideâ€Enhanced Tumor Penetration for Simultaneously Inhibiting Growth and Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 1243-1252.	7.8	177
440	DNA Origami: Folded DNAâ€Nanodevices That Can Direct and Interpret Cell Behavior. Advanced Materials, 2016, 28, 5509-5524.	11.1	54
441	New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resistance Updates, 2016, 29, 90-106.	6.5	190
442	Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nature Communications, 2016, 7, 11838.	5.8	94
443	A Novel Liposomal Nanoparticle for the Imaging of Amyloid Plaque by Magnetic Resonance Imaging. Journal of Alzheimer's Disease, 2016, 52, 731-745.	1.2	31
444	Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnology, 2016, 7, 11.	1.9	125
454	Nanomedicines—A Scientific Toy or an Emerging Market?. , 2016, , 591-614.		3
455	Enhanced oral bioavailability and tissue distribution of ferric citrate through liposomal encapsulation. CYTA - Journal of Food, 0, , 1-7.	0.9	2
456	Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacological Reviews, 2016, 68, 701-787.	7.1	537
458	DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. Journal of Controlled Release, 2016, 229, 154-162.	4.8	52
459	Design and characterization of gadolinium infused theranostic liposomes. RSC Advances, 2016, 6, 36898-36905.	1.7	23

#	Article	IF	CITATIONS
460	Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. International Journal of Pharmaceutics, 2016, 509, 178-187.	2.6	49
461	pH-Sensitive, Long-Circulating Liposomes as an Alternative Tool to Deliver Doxorubicin into Tumors: a Feasibility Animal Study. Molecular Imaging and Biology, 2016, 18, 898-904.	1.3	29
462	Nanomedicine. Advances in Delivery Science and Technology, 2016, , .	0.4	6
464	Clinical applications of amylase: Novel perspectives. Surgery, 2016, 160, 26-37.	1.0	39
465	Exploring the relationship between anti-PEG IgM behaviors and PECylated nanoparticles and its significance for accelerated blood clearance. Journal of Controlled Release, 2016, 234, 59-67.	4.8	59
466	Liposomal doxorubicin: the good, the bad and the not-so-ugly. Journal of Drug Targeting, 2016, 24, 765-767.	2.1	11
467	Acoustic Cluster Therapy (ACT) — pre-clinical proof of principle for local drug delivery and enhanced uptake. Journal of Controlled Release, 2016, 224, 158-164.	4.8	38
468	A nanomedicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against Luminal A breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 387-397.	1.7	22
469	Chemical Components for the Design of Temperature-Responsive Vesicles as Cancer Therapeutics. Chemical Reviews, 2016, 116, 3883-3918.	23.0	132
470	Targeting, bio distributive and tumor growth inhibiting characterization of anti-HER2 affibody coupling to liposomal doxorubicin using BALB/c mice bearing TUBO tumors. International Journal of Pharmaceutics, 2016, 505, 89-95.	2.6	31
471	Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer. Expert Opinion on Drug Delivery, 2016, 13, 999-1013.	2.4	6
472	Nanoparticle-Based Modulation of the Immune System. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 305-326.	3.3	75
473	Insights into composition/structure/function relationships of Doxil® gained from "high-sensitivity― differential scanning calorimetry. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 260-270.	2.0	56
474	PRCosomes: pretty reactive complexes formed in liposomes. Journal of Drug Targeting, 2016, 24, 787-796.	2.1	17
475	An overview of the effective combination therapies for the treatment of breast cancer. Biomaterials, 2016, 97, 34-50.	5.7	117
476	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	23.0	1,333
477	Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. Biomaterials Science, 2016, 4, 958-969.	2.6	21
478	Dual Carfilzomib and Doxorubicin–Loaded Liposomal Nanoparticles for Synergistic Efficacy in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1452-1459.	1.9	56

#	Article	IF	Citations
479	Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin. Autophagy, 2016, 12, 949-962.	4.3	62
480	Reduction-responsive modification-induced higher efficiency for attenuation of tumor metastasis of low molecular weight heparin functionalized liposomes. RSC Advances, 2016, 6, 49250-49262.	1.7	14
481	Pieter Cullis: an outstanding lipid biophysicist, drug delivery scientist, educator, and entrepreneur. Journal of Drug Targeting, 2016, 24, 762-764.	2.1	1
482	Therapeutic polymeric nanoparticles and the methods of making and using thereof: a patent evaluation of WO2015036792. Expert Opinion on Therapeutic Patents, 2016, 26, 751-755.	2.4	2
483	Delivery of Liposomes with Different Sizes to Mice Brain afterÂSonication by Focused Ultrasound in the Presence ofÂMicrobubbles. Ultrasound in Medicine and Biology, 2016, 42, 1499-1511.	0.7	46
484	Methods for Implant Acceptance and Wound Healing: Material Selection and Implant Location Modulate Macrophage and Fibroblast Phenotypes. Advanced Healthcare Materials, 2016, 5, 2575-2594.	3.9	60
485	Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))–poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Advanced Drug Delivery Reviews, 2016, 107, 289-332.	6.6	33
486	Where Are the Nanodrugs? An Industry Perspective on Development of Drug Products Containing Nanomaterials. AAPS Journal, 2016, 18, 1351-1353.	2.2	80
487	Connectosomes for Direct Molecular Delivery to the Cellular Cytoplasm. Journal of the American Chemical Society, 2016, 138, 12833-12840.	6.6	35
488	Peptide-Based Ligand for Active Delivery of Liposomal Doxorubicin. Nano LIFE, 2016, 06, 1642004.	0.6	9
489	Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics, 2016, 515, 132-164.	2.6	83
490	Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomedicine and Pharmacotherapy, 2016, 84, 252-257.	2.5	42
491	Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. Journal of Controlled Release, 2016, 238, 139-148.	4.8	46
492	A Virus-Mimicking, Endosomolytic Liposomal System for Efficient, pH-Triggered Intracellular Drug Delivery. ACS Applied Materials & Interfaces, 2016, 8, 22457-22467.	4.0	21
493	Biodegradable and Renal Clearable Inorganic Nanoparticles. Advanced Science, 2016, 3, 1500223.	5.6	220
494	Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Science, 2016, 107, 60-67.	1.7	24
495	Smart Materials for Controlled Drug Release. , 2016, , 98-135.		0
496	Nanoparticles in the clinic. Bioengineering and Translational Medicine, 2016, 1, 10-29.	3.9	1,003

#	Article	IF	CITATIONS
497	Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Advanced Drug Delivery Reviews, 2016, 106, 3-26.	6.6	63
498	Tumor therapy: targeted drug delivery systems. Journal of Materials Chemistry B, 2016, 4, 6758-6772.	2.9	92
499	Overview on experimental models of interactions between nanoparticles and the immune system. Biomedicine and Pharmacotherapy, 2016, 83, 1365-1378.	2.5	68
500	Modular Design and Facile Synthesis of Enzyme-Responsive Peptide-Linked Block Copolymers for Efficient Delivery of Doxorubicin. Biomacromolecules, 2016, 17, 3268-3276.	2.6	52
501	Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Acta Biomaterialia, 2016, 45, 223-233.	4.1	43
502	Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx?. Journal of Controlled Release, 2016, 239, 149-158.	4.8	92
503	Image-Guided Radiotherapy Targets Macromolecules through Altering the Tumor Microenvironment. Molecular Pharmaceutics, 2016, 13, 3457-3467.	2.3	19
504	Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 54-67.	2.0	89
505	Macrophages as Active Nanocarriers for Targeted Early and Adjuvant Cancer Chemotherapy. Small, 2016, 12, 5108-5119.	5.2	82
506	Crossing the Endethalial Parrier 2016 227256		1
	Crossing the Endothelial Barrier. , 2016, , 227-256.		1
507	Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441.	1.7	213
	Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models.	1.7	
507	Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441.		213
507 508	 Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441. Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts of Chemical Research, 2016, 49, 1731-1740. Selfâ€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug 	7.6	213 308
507 508 509	 Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441. Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts of Chemical Research, 2016, 49, 1731-1740. Selfâ€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2517-2527. A novel photosensitizer: An l-glutamide lipid conjugate with improved properties for photodynamic 	7.6 3.9	213 308 22
507 508 509 511	 Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441. Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts of Chemical Research, 2016, 49, 1731-1740. Selfâ€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2517-2527. A novel photosensitizer: An I-glutamide lipid conjugate with improved properties for photodynamic therapy. Photochemical and Photobiological Sciences, 2016, 15, 1476-1483. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for 	7.6 3.9 1.6	213 308 22 5
507 508 509 511	 Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine, 2016, 11, 2431-2441. Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts of Chemical Research, 2016, 49, 1731-1740. Selfã€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2517-2527. A novel photosensitizer: An l-glutamide lipid conjugate with improved properties for photodynamic therapy. Photochemical and Photobiological Sciences, 2016, 15, 1476-1483. Engineering thermosensitive liposome-nanoparticle hybrids loaded with doxorubicin for heat-triggered drug release. International Journal of Pharmaceutics, 2016, 514, 133-141. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids and Surfaces B: 	7.6 3.9 1.6 2.6	 213 308 22 5 37

#	Article	IF	CITATIONS
517	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	11.1	56
518	The modulation of tumor vessel permeability by thalidomide and its impacts on different types of targeted drug delivery systems in a sarcoma mouse model. Journal of Controlled Release, 2016, 238, 186-196.	4.8	16
519	Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Advances, 2016, 6, 70592-70615.	1.7	65
520	Oleic acid-embedded nanoliposome as a selective tumoricidal agent. Colloids and Surfaces B: Biointerfaces, 2016, 146, 585-589.	2.5	20
521	Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 2016, 128-129, 99-112.	1.3	146
522	Ablative Focused Ultrasound Synergistically Enhances Thermally Triggered Chemotherapy for Prostate Cancer <i>in Vitro</i> . Molecular Pharmaceutics, 2016, 13, 3080-3090.	2.3	20
523	Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. Journal of Immunotoxicology, 2016, 13, 603-619.	0.9	38
524	Artificial Dense Granules: A Procoagulant Liposomal Formulation Modeled after Platelet Polyphosphate Storage Pools. Biomacromolecules, 2016, 17, 2572-2581.	2.6	25
525	Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. Journal of Controlled Release, 2016, 243, 121-131.	4.8	102
526	Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 2016, 1, .	23.3	3,393
		2010	
527	Optimization of an Anti-poly(ethylene glycol) (anti-PEG) Cell-Based Capture System To Quantify PEG and PEGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379.	3.2	13
527 528	Optimization of an Anti-poly(ethylene glycol) (anti-PEG) Cell-Based Capture System To Quantify PEG and PEGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36.		13 3
	PECylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical	3.2	
528	 PÉGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer 	3.2 0.2	3
528 529	 PÉGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i> Chemistry of Materials, 2016, 28, 8792-8799. 	3.2 0.2 3.2	3 88
528 529 530	 PÉGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i>. Chemistry of Materials, 2016, 28, 8792-8799. Novel biodegradable nanocarriers for enhanced drug delivery. Therapeutic Delivery, 2016, 7, 809-826. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. International 	3.2 0.2 3.2 1.2	3 88 27
528 529 530 531	 PÉGylated Molecules. Analytical Chemistry, 2016, 88, 12371-12379. Overview of Present Problems Facing Commercialization of Nanomedicines. Fundamental Biomedical Technologies, 2016, , 3-36. Multifunctional Click Hyaluronic Acid Nanogels for Targeted Protein Delivery and Effective Cancer Treatment <i>in Vivo</i>. Chemistry of Materials, 2016, 28, 8792-8799. Novel biodegradable nanocarriers for enhanced drug delivery. Therapeutic Delivery, 2016, 7, 809-826. Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. International Journal of Pharmaceutics, 2016, 514, 24-40. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of 	 3.2 0.2 3.2 1.2 2.6 	3 88 27 51

#	Article	IF	CITATIONS
535	Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Scientific Reports, 2016, 6, 34710.	1.6	37
536	Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus, 2016, 6, 20160055.	1.5	26
537	Pharmacokinetics and Pharmacodynamics of Nano-Drug Delivery Systems. Fundamental Biomedical Technologies, 2016, , 341-362.	0.2	2
538	Polymeric Nanoparticles as siRNA Drug Delivery System for Cancer Therapy: The Long Road to Therapeutic Efficiency. , 2016, , 503-540.		5
539	Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. Journal of Controlled Release, 2016, 243, 342-356.	4.8	43
540	Bioimaging of Intravenous Polymeric Micelles Based on Discrimination of Integral Particles Using an Environment-Responsive Probe. Molecular Pharmaceutics, 2016, 13, 4013-4019.	2.3	58
541	Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221.	5.8	111
542	Liposomal nano-drugs based on amphipathic weak acid steroid prodrugs for treatment of inflammatory diseases. Journal of Drug Targeting, 2016, 24, 805-820.	2.1	9
543	Peptideâ€based supramolecular hydrogels for delivery of biologics. Bioengineering and Translational Medicine, 2016, 1, 306-322.	3.9	109
544	Nanomedicines for renal disease: current status and future applications. Nature Reviews Nephrology, 2016, 12, 738-753.	4.1	179
545	Conjugate-SELEX: A High-throughput Screening of Thioaptamer-liposomal Nanoparticle Conjugates for Targeted Intracellular Delivery of Anticancer Drugs. Molecular Therapy - Nucleic Acids, 2016, 5, e382.	2.3	12
546	Enhanced Ehrlich tumor inhibition using DOX-NPâ,,¢ and gold nanoparticles loaded liposomes. AIP Conference Proceedings, 2016, , .	0.3	0
547	Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotechnology, 2016, 1, 191-208.	0.1	19
548	Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy. ChemMedChem, 2016, 11, 1734-1744.	1.6	9
549	Design and optimization of novel paclitaxel-loaded folate-conjugated amphiphilic cyclodextrin nanoparticles. International Journal of Pharmaceutics, 2016, 509, 375-390.	2.6	45
550	Nanotheranostics and In-Vivo Imaging. Advances in Delivery Science and Technology, 2016, , 97-129.	0.4	2
551	Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ -forming hydrogels for intratumoral administration. Journal of Controlled Release, 2016, 235, 328-336.	4.8	41
552	Magnetic Fluorescent Nanoformulation for Intracellular Drug Delivery to Human Breast Cancer, Primary Tumors, and Tumor Biopsies: Beyond Targeting Expectations. Bioconjugate Chemistry, 2016, 27, 1471-1483.	1.8	20

#	Article	IF	CITATIONS
553	Nanoformulations of anticancer thiosemicarbazones to reduce methemoglobin formation and improve anticancer activity. RSC Advances, 2016, 6, 55848-55859.	1.7	11
554	Delivery of Peptides and Proteins to the Brain Using Nano-Drug Delivery Systems and Other Formulations. Advances in Delivery Science and Technology, 2016, , 201-220.	0.4	1
555	Recent progress in development of siRNA delivery vehicles for cancer therapy. Advanced Drug Delivery Reviews, 2016, 104, 61-77.	6.6	346
556	Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. ACS Applied Materials & Interfaces, 2016, 8, 17166-17175.	4.0	101
557	Photonanomedicine: a convergence of photodynamic therapy and nanotechnology. Nanoscale, 2016, 8, 12471-12503.	2.8	144
558	Safety assessment of nanoparticles for drug delivery by means of classic <i>in vitro</i> assays and beyond. Expert Opinion on Drug Delivery, 2016, 13, 1545-1558.	2.4	18
559	Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Journal of Controlled Release, 2016, 244, 326-335.	4.8	86
560	Nano-mupirocin: enabling the parenteral activity of mupirocin. European Journal of Nanomedicine, 2016, 8, 139-149.	0.6	11
561	Nanomedicines for kidney diseases. Kidney International, 2016, 90, 740-745.	2.6	70
562	Nanomedicine: Working Towards Defining the Field. Advances in Delivery Science and Technology, 2016, , 1-12.	0.4	5
563	Probing adsorption of DSPE-PEG2000 and DSPE-PEG5000 to the surface of felodipine and griseofulvin nanocrystals. International Journal of Pharmaceutics, 2016, 510, 232-239.	2.6	18
564	Tat peptide and hexadecylphosphocholine introduction into pegylated liposomal doxorubicin: An in vitro and in vivo study on drug cellular delivery, release, biodistribution and antitumor activity. International Journal of Pharmaceutics, 2016, 511, 236-244.	2.6	26
565	Nanocarriers for cancer-targeted drug delivery. Journal of Drug Targeting, 2016, 24, 179-191.	2.1	423
566	Progress and problems with the use of suicide genes for targeted cancer therapy. Advanced Drug Delivery Reviews, 2016, 99, 113-128.	6.6	141
567	Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Delivery, 2016, 23, 1092-1100.	2.5	51
568	Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy. Molecular Pharmaceutics, 2016, 13, 699-709.	2.3	113
569	Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. Journal of Controlled Release, 2016, 225, 1-30.	4.8	155
571	Functional Nanoparticles for Molecular Imaging-Guided Gene Delivery and Therapy. Springer Series in Biomaterials Science and Engineering, 2016, , 273-305.	0.7	2

л г	Article	IF	Citations
#	Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art.	IF	CHATIONS
572	Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1597-1608.	1.9	51
573	Cytotoxicity of folic acid conjugated hollow silica nanoparticles toward Caco2 and 3T3 cells, with and without encapsulated DOX. Colloids and Surfaces B: Biointerfaces, 2016, 140, 213-222.	2.5	15
574	Size Determination of a Liposomal Drug by Small-Angle X-ray Scattering Using Continuous Contrast Variation. Langmuir, 2016, 32, 772-778.	1.6	27
575	Acyclic Cucurbit[<i>n</i>]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors. Molecular Pharmaceutics, 2016, 13, 809-818.	2.3	49
576	Comparison of complement activation-related pseudoallergy in miniature and domestic pigs: foundation of a validatable immune toxicity model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 933-943.	1.7	55
577	Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules, 2016, 17, 601-614.	2.6	78
578	A Simple and Improved Active Loading Method to Efficiently Encapsulate Staurosporine into Lipid-Based Nanoparticles for Enhanced Therapy of Multidrug Resistant Cancer. Pharmaceutical Research, 2016, 33, 1104-1114.	1.7	23
580	Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 269-286.	1.7	95
581	EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine, 2016, 11, 9-30.	1.7	72
582	Co-delivery of chemotherapeutics and proteins for synergistic therapy. Advanced Drug Delivery Reviews, 2016, 98, 64-76.	6.6	178
583	One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading. Molecular Pharmaceutics, 2016, 13, 92-99.	2.3	26
584	Low Intensity Ultrasound Mediated Liposomal Doxorubicin Delivery Using Polymer Microbubbles. Molecular Pharmaceutics, 2016, 13, 55-64.	2.3	43
585	Controlled magnetosomes: Embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles. Journal of Colloid and Interface Science, 2016, 466, 62-71.	5.0	42
586	Drug self-assembly: A phenomenon at the nanometer scale with major impact in the structure–biological properties relationship and the treatment of disease. Progress in Materials Science, 2016, 82, 39-82.	16.0	24
587	In Situ formation of pH-/thermo-sensitive nanohybrids via friendly-assembly of poly(N-vinylpyrrolidone) onto LAPONITE®. RSC Advances, 2016, 6, 31816-31823.	1.7	12
588	Design of pH-responsive gold nanoparticles in oncology. Materials Science and Technology, 2016, 32, 794-804.	0.8	10
589	Polymer-lipid hybrid systems: merging the benefits of polymeric and lipid-based nanocarriers to improve oral drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 691-707.	2.4	80
590	The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews, 2016, 99, 129-137.	6.6	372

#	Article	IF	CITATIONS
591	Subcellular behaviour evaluation of nanopharmaceuticals with aggregation-induced emission molecules. Journal of Materials Chemistry C, 2016, 4, 2719-2730.	2.7	12
592	Polymersomes via Self-Assembly of Amphiphilic β-Cyclodextrin-Centered Triarm Star Polymers for Enhanced Oral Bioavailability of Water-Soluble Chemotherapeutics. Biomacromolecules, 2016, 17, 1026-1039.	2.6	32
593	Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin–Phospholipid Liposomes. Molecular Pharmaceutics, 2016, 13, 420-427.	2.3	35
594	In VitroL6 Irritation Assay Predicts Clinical Injection Site Reactions for Small Molecules. Toxicological Sciences, 2016, 151, 302-311.	1.4	5
595	Drug Delivery Research: The Invention Cycle. Molecular Pharmaceutics, 2016, 13, 2143-2147.	2.3	26
596	Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2334-2352.	1.4	146
597	Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicology in Vitro, 2016, 33, 45-53.	1.1	36
598	Applied Nanotoxicology. International Journal of Toxicology, 2016, 35, 5-16.	0.6	32
599	Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88, 48-59.	5.7	98
600	Building nanostructures with drugs. Nano Today, 2016, 11, 13-30.	6.2	122
601	Intracellular PK/PD Relationships of Free and Liposomal Doxorubicin: Quantitative Analyses and PK/PD Modeling. Molecular Pharmaceutics, 2016, 13, 1358-1365.	2.3	27
602	Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale, 2016, 8, 6948-6957.	2.8	173
603	Synthesis and anticancer activity of carbosilane metallodendrimers based on arene ruthenium(<scp>ii</scp>) complexes. Dalton Transactions, 2016, 45, 7049-7066.	1.6	65
604	An integrated assessment of PEGylated liposomal doxorubicin products. Journal of Controlled Release, 2016, 221, 71.	4.8	1
605	Synthesis of a Gemcitabine Prodrug for Remote Loading into Liposomes and Improved Therapeutic Effect. Bioconjugate Chemistry, 2016, 27, 226-237.	1.8	17
606	Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nature Reviews Cancer, 2016, 16, 56-66.	12.8	341
607	Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids and Surfaces B: Biointerfaces, 2016, 139, 228-236.	2.5	62
608	Enhanced Cytotoxicity of Folic Acid-Targeted Liposomes Co-Loaded with C6 Ceramide and Doxorubicin: <i>In Vitro</i> Evaluation on HeLa, A2780-ADR, and H69-AR Cells. Molecular Pharmaceutics, 2016, 13, 428-437.	2.3	51

#	Article	IF	Citations
	Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer		
609	therapy. Nanoscale, 2016, 8, 12510-12519.	2.8	75
610	Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. Journal of Controlled Release, 2016, 240, 93-108.	4.8	115
611	Advancement in integrin facilitated drug delivery. Advanced Drug Delivery Reviews, 2016, 97, 111-143.	6.6	128
612	Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.	5.7	100
613	Bovine milk-derived exosomes for drug delivery. Cancer Letters, 2016, 371, 48-61.	3.2	630
614	The protein corona of circulating PEGylated liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 189-196.	1.4	178
615	An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. Journal of Controlled Release, 2016, 221, 1-8.	4.8	152
616	Hyaluronic acid for anticancer drug and nucleic acid delivery. Advanced Drug Delivery Reviews, 2016, 97, 204-236.	6.6	468
617	Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 2016, 116, 2023-2078.	23.0	254
618	Improved therapeutic activity of HER2 Affibody-targeted cisplatin liposomes in HER2-expressing breast tumor models. Expert Opinion on Drug Delivery, 2016, 13, 325-336.	2.4	41
619	David and Goliath: chemical perturbation of eukaryotes by bacteria. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 233-248.	1.4	5
620	Using solution X-ray scattering to determine the high-resolution structure and morphology of PECylated liposomal doxorubicin nanodrugs. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 108-119.	1.1	70
621	Personalized liposome–protein corona in the blood of breast, gastric and pancreatic cancer patients. International Journal of Biochemistry and Cell Biology, 2016, 75, 180-187.	1.2	112
622	Nanomedicine-mediated cancer stem cell therapy. Biomaterials, 2016, 74, 1-18.	5.7	117
623	Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: Current status. Cancer Letters, 2016, 370, 78-84.	3.2	55
624	Drug and protein delivery by polymer conjugation. Journal of Drug Delivery Science and Technology, 2016, 32, 132-141.	1.4	35
625	In vivo Functional Evaluation of Increased Brain Delivery of the Opioid Peptide DAMGO by Glutathione-PEGylated Liposomes. Pharmaceutical Research, 2016, 33, 177-185.	1.7	45
626	Management of retinoblastoma: opportunities and challenges. Drug Delivery, 2016, 23, 2488-2496.	2.5	25

ARTICLE IF CITATIONS # Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer 627 2.4 80 therapy. Expert Opinion on Drug Delivery, 2017, 14, 65-73. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. 628 6.6 881 Advanced Drug Delivery Reviews, 2017, 108, 25-38. Tumor delivery of liposomal doxorubicin prepared with poly-<scp>L</scp>-glutamic acid as a 629 1.5 10 drug-trapping agent. Journal of Liposome Research, 2017, 27, 99-107. <i>P</i>â€Sulfocalix[6]arene as Nanocarrier for Controlled Delivery of Doxorubicin. Chemistry - an Asian Journal, 2017, 12, 679-689. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. Journal of 631 4.8 143 Controlled Release, 2017, 249, 63-73. Peptide-Based Stealth Nanoparticles for Targeted and pH-Triggered Delivery. Bioconjugate Chemistry, 1.8 2017, 28, 627-635. Near-infrared light triggered drug delivery system for higher efficacy of combined 634 4.1 90 chemo-photothermal treatment. Acta Biomaterialia, 2017, 51, 374-392. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of 2.0 287 Pharmaceutics and Biopharmaceutics, 2017, 113, 211-228. In situ-prepared homogeneous supramolecular organic framework drug delivery systems (sof-DDSs): 636 Overcoming cancer multidrug resistance and controlled release. Chinese Chemical Letters, 2017, 28, 4.8 57 798-806. The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem 5.7 cell differentiation. Biomaterials, 2017, 123, 77-91. Therapeutic Efficacy of Cisplatin Thermosensitive Liposomes upon Mild Hyperthermia in C26 Tumor 638 2.333 Bearing BALB/c Mice. Molecular Pharmaceutics, 2017, 14, 712-721. Liposomal Drug Product Development and Quality: Current US Experience and Perspective. AAPS 2.2 69 Journal, 2017, 19, 632-641. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnology Reviews, 640 2.6 71 2017, 6, 383-404. Loading-free supramolecular organic framework drug delivery systems (sof-DDSs) for doxorubicin: normal plasm and multidrug resistant cancer cell-adaptive delivery and release. Chinese Chemical 641 4.8 Letters, 2017, 28, 893-899 Synthesis of cholesteryl doxorubicin and its anti-cancer activity. Bioorganic and Medicinal Chemistry 642 1.0 18 Letters, 2017, 27, 723-728. Largeâ€Pore Functionalized Mesoporous Silica Nanoparticles as Drug Delivery Vector for a Highly Cytotoxic Hybrid Platinum–Acridine Anticancer Agent. Chemistry - A European Journal, 2017, 23, 643 3386-3397. Kidney stone nano-structure â€" Is there an opportunity for nanomedicine development?. Biochimica Et 644 1.1 7 Biophysica Acta - General Subjects, 2017, 1861, 1521-1529. Positioning metal-organic framework nanoparticles within the context of drug delivery – A 645 221 comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.

		CITATION REPORT		
#	Article		IF	CITATIONS
646	Review: Extracellular Vesicles in Joint Inflammation. Arthritis and Rheumatology, 2017,	69, 1350-1362.	2.9	19
647	Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronizati Materials, 2017, 29, 1606628.	on. Advanced	11.1	771
648	Aptamer-based liposomes improve specific drug loading and release. Journal of Contro 2017, 251, 82-91.	lled Release,	4.8	46
649	Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-lo single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology, 2017, 28, 125101.	aded	1.3	37
650	Stimuliâ€responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nano Nanobiotechnology, 2017, 9, e1450.	medicine and	3.3	290
651	Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjugate Che 857-868.	mistry, 2017, 28,	1.8	118
652	New drug candidates for liposomal delivery identified by computer modeling of liposor loading and leakage. Journal of Controlled Release, 2017, 252, 18-27.	nes' remote	4.8	53
653	Influence of Drug Brittleness, Nanomilling Time, and Freeze-Drying on the Crystallinity Water-Soluble Drugs and Its Implications for Solubility Enhancement. AAPS PharmSciT 2437-2445.	of Poorly ech, 2017, 18,	1.5	29
654	Peptides for tumor-specific drug targeting: state of the art and beyond. Journal of Mate Chemistry B, 2017, 5, 4348-4364.	erials	2.9	39
655	In situ biodegradable crosslinking of cationic oligomer coating on mesoporous silica na for drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 153, 272-279.	anoparticles	2.5	15
656	Superamphiphile Based Cross-Linked Small-Molecule Micelles for pH-Triggered Release Drugs. Chemistry of Materials, 2017, 29, 3083-3091.	of Anticancer	3.2	41
657	Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: and Interpretation. Advanced Science, 2017, 4, 1600476.	Application	5.6	131
658	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology,	2017, 1530, 13-37.	0.4	11
659	Focused Ultrasound–Triggered Release of Tyrosine Kinase Inhibitor From Thermosen for Treatment of Renal Cell Carcinoma. Journal of Pharmaceutical Sciences, 2017, 106,	sitive Liposomes 1355-1362.	1.6	19
660	Recent advances on liposomal nanoparticles: synthesis, characterization and biomedic Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 788-799.	al applications.	1.9	172
661	Targeted nanoparticles in pregnancy: a new frontier in perinatal therapeutics. America Obstetrics and Gynecology, 2017, 216, 204-205.	n Journal of	0.7	9
662	Improving on Nature: The Role of Nanomedicine in the Development of Clinical Natura Medica, 2017, 83, 366-381.	l Drugs. Planta	0.7	126
663	Clinical and commercial translation of advanced polymeric nanoparticle systems: oppo material challenges. Translational Materials Research, 2017, 4, 014001.	rtunities and	1.2	23

#	Article	IF	Citations
664	Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials?. Drug Discovery Today, 2017, 22, 870-882.	3.2	44
665	Recent Trends in Clinical Trials Related to Carrier-Based Drugs. Journal of Pharmaceutical Sciences, 2017, 106, 2219-2226.	1.6	44
666	Tumor accumulation of liposomal doxorubicin in three murine models: Optimizing delivery efficiency. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1637-1644.	1.7	29
668	Dual-functional drug liposomes in treatment of resistant cancers. Advanced Drug Delivery Reviews, 2017, 115, 46-56.	6.6	111
669	The evolving landscape of drug products containing nanomaterials in the United States. Nature Nanotechnology, 2017, 12, 523-529.	15.6	267
670	Recent advances in CO2 bubble-generating carrier systems for localized controlled release. Biomaterials, 2017, 133, 154-164.	5.7	42
671	Control of Liposomal Penetration into Three-Dimensional Multicellular Tumor Spheroids by Modulating Liposomal Membrane Rigidity. Molecular Pharmaceutics, 2017, 14, 2158-2165.	2.3	35
672	Nanostructured nanoparticles for improved drug delivery. , 2017, , 149-182.		4
673	Self-assembled nanocomplex between polymerized phenylboronic acid and doxorubicin for efficient tumor-targeted chemotherapy. Acta Pharmacologica Sinica, 2017, 38, 848-858.	2.8	30
674	Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocrine-Related Cancer, 2017, 24, 275-286.	1.6	40
675	Dipole Orientation Matters: Longer-Circulating Choline Phosphate than Phosphocholine Liposomes for Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2017, 9, 17736-17744.	4.0	32
676	Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacological Research, 2017, 126, 97-108.	3.1	181
677	Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. European Journal of Pharmaceutical Sciences, 2017, 105, 219-229.	1.9	24
678	Targeting and Internalization of Liposomes by Bladder Tumor Cells Using a Fibronectin Attachment Protein-Derived Peptide–Lipopolymer Conjugate. Bioconjugate Chemistry, 2017, 28, 1481-1490.	1.8	14
679	Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.	5.7	244
680	Enhancement Effect of a Variable Topology of a Membrane-Tethered Anti-Poly(ethylene glycol) Antibody on the Sensitivity for Quantifying PEG and PEGylated Molecules. Analytical Chemistry, 2017, 89, 6082-6090.	3.2	10
681	PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. Nanomedicine, 2017, 12, 845-863.	1.7	19
682	Self-assembled core–polyethylene glycol–lipid shell nanoparticles demonstrate high stability in shear flow. Physical Chemistry Chemical Physics, 2017, 19, 13294-13306.	1.3	23

#	Article	IF	CITATIONS
683	Selection and optimization of nano-formulation of P-glycoprotein inhibitor for reversal of doxorubicin resistance in COLO205 cells. Journal of Pharmacy and Pharmacology, 2017, 69, 834-843.	1.2	14
684	Imaging and Therapeutic Potential of Extracellular Vesicles. , 2017, , 43-68.		8
685	Redox and pH Dual Responsive Polymer Based Nanoparticles for In Vivo Drug Delivery. Small, 2017, 13, 1602379.	5.2	66
686	Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discovery Today, 2017, 22, 270-281.	3.2	255
687	Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opinion on Drug Delivery, 2017, 14, 1059-1075.	2.4	20
688	Big data analysis of global advances in pharmaceutics and drug delivery 1980–2014. Drug Discovery Today, 2017, 22, 1201-1208.	3.2	12
689	Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice. Molecular Cancer Therapeutics, 2017, 16, 2047-2057.	1.9	10
690	Evolution of the scientific literature on drug delivery: A 1974–2015 bibliometric study. Journal of Controlled Release, 2017, 260, 226-233.	4.8	24
691	Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano, 2017, 11, 5195-5214.	7.3	104
692	Sequentially Responsive Shellâ€Stacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	11.1	360
693	Rational drug loading of liposomes revisited. Journal of Controlled Release, 2017, 252, 125.	4.8	5
694	Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale, 2017, 9, 10327-10334.	2.8	74
695	Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nature Communications, 2017, 8, 15507.	5.8	56
696	Poly-isoprenylated ifosfamide analogs: Preactivated antitumor agents as free formulation or nanoassemblies. International Journal of Pharmaceutics, 2017, 532, 748-756.	2.6	1
697	Physicochemical properties of liposomal modifiers that shift macrophage phenotype. Materials Science and Engineering C, 2017, 79, 237-244.	3.8	11
698	PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 2017, 260, 46-60.	4.8	335
699	Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. Journal of Materials Science: Materials in Medicine, 2017, 28, 101.	1.7	12
700	Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease. Journal of Controlled Release, 2017, 260, 61-77.	4.8	251

#	Article	IF	CITATIONS
701	PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations. International Journal of Pharmaceutics, 2017, 528, 47-54.	2.6	29
702	Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. International Journal of Pharmaceutics, 2017, 528, 18-32.	2.6	23
703	Nanomaterial-based cancer immunotherapy. Journal of Materials Chemistry B, 2017, 5, 5517-5531.	2.9	34
704	PNC27 anticancer peptide as targeting ligand significantly improved antitumor efficacy of Doxil in HDM2-expressing cells. Nanomedicine, 2017, 12, 1475-1490.	1.7	24
705	Lipid-Based Nanocarriers inÂCancer Therapy. , 2017, , 51-66.		1
706	Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells. International Journal of Pharmaceutics, 2017, 524, 364-372.	2.6	23
707	Nanocrystal formulations of a poorly soluble drug. 2. Evaluation of nanocrystal liver uptake and distribution after intravenous administration to mice. International Journal of Pharmaceutics, 2017, 524, 248-256.	2.6	22
708	Rapamycin nanoparticles localize in diseased lung vasculature and prevent pulmonary arterial hypertension. International Journal of Pharmaceutics, 2017, 524, 257-267.	2.6	31
709	Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1606530.	7.8	80
710	Immunomodulatory Nanomedicine. Macromolecular Bioscience, 2017, 17, 1700021.	2.1	11
711	PEC-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity. Acta Biomaterialia, 2017, 55, 443-454.	4.1	35
712	Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Molecular Therapy, 2017, 25, 1491-1500.	3.7	40
713	Multiparameter Quantification of Liposomal Nanomedicines at the Single-Particle Level by High-Sensitivity Flow Cytometry. ACS Applied Materials & Interfaces, 2017, 9, 13913-13919.	4.0	44
714	Drug and Gene Delivery Materials andÂDevices. , 2017, , 375-392.		1
715	Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes. International Journal of Pharmaceutics, 2017, 523, 320-326.	2.6	55
716	Antibodies and associates: Partners in targeted drug delivery. , 2017, 177, 129-145.		52
717	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
718	A simple passive equilibration method for loading carboplatin into pre-formed liposomes incubated with ethanol as a temperature dependent permeability enhancer. Journal of Controlled Release, 2017, 252, 50-61.	4.8	33

#	Article	IF	CITATIONS
719	Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism. Physical Chemistry Chemical Physics, 2017, 19, 9300-9312.	1.3	38
720	Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opinion on Drug Delivery, 2017, 14, 1423-1438.	2.4	47
721	A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety. European Journal of Pharmaceutical Sciences, 2017, 103, 128-135.	1.9	17
722	Developments and future clinical outlook of taxane nanomedicines. Journal of Controlled Release, 2017, 253, 137-152.	4.8	34
723	Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. Journal of Neurosurgery: Pediatrics, 2017, 19, 518-530.	0.8	23
724	Magnet-Targeted Delivery and Imaging. , 2017, , 123-152.		5
725	NIR Light-Activated Drug Release for Synergetic Chemo–Photothermal Therapy. Molecular Pharmaceutics, 2017, 14, 242-251.	2.3	42
726	Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017, 27, 1604300.	7.8	281
727	Electrosprayed Myocet-like Liposomes: An Alternative to Traditional Liposome Production. Pharmaceutical Research, 2017, 34, 419-426.	1.7	22
728	Preparation and <i>in vivo</i> safety evaluations of antileukemic homoharringtonine-loaded PEGylated liposomes. Drug Development and Industrial Pharmacy, 2017, 43, 652-660.	0.9	18
729	From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angewandte Chemie - International Edition, 2017, 56, 6712-6733.	7.2	65
730	Nanocrystal formulations of a poorly soluble drug. 1. In vitro characterization of stability, stabilizer adsorption and uptake in liver cells. International Journal of Pharmaceutics, 2017, 518, 29-40.	2.6	15
731	Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von TrÃ g ern für Tumortherapeutika. Angewandte Chemie, 2017, 129, 6814-6837.	1.6	8
732	Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents. Expert Opinion on Drug Delivery, 2017, 14, 1217-1226.	2.4	37
733	Cathepsin nanofiber substrates as potential agents for targeted drug delivery. Journal of Controlled Release, 2017, 257, 60-67.	4.8	28
734	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	1
735	Targeted Biomimetic Nanoparticles for Synergistic Combination Chemotherapy of Paclitaxel and Doxorubicin. Molecular Pharmaceutics, 2017, 14, 107-123.	2.3	74
736	Post-nano strategies for drug delivery: multistage porous silicon microvectors. Journal of Materials Chemistry B, 2017, 5, 207-219.	2.9	47

#	Article	IF	CITATIONS
737	Legomedicine—A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody–Nanoparticle Conjugates. Bioconjugate Chemistry, 2017, 28, 539-548.	1.8	36
738	Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Development and Industrial Pharmacy, 2017, 43, 177-189.	0.9	33
739	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , 15-54.	0.2	1
740	New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjugate Chemistry, 2017, 28, 135-152.	1.8	95
741	Delayed Sequential Co-Delivery of Gefitinib and Doxorubicin for Targeted Combination Chemotherapy. Molecular Pharmaceutics, 2017, 14, 4551-4559.	2.3	30
742	Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Scientific Reports, 2017, 7, 14177.	1.6	23
743	Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem, 2017, 12, 1908-1916.	1.6	13
744	Hollow Copper Sulfide Nanosphere–Doxorubicin/Graphene Oxide Core–Shell Nanocomposite for Photothermo-chemotherapy. ACS Biomaterials Science and Engineering, 2017, 3, 3230-3235.	2.6	41
745	Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic ‎agents by nanoprecipitation method. International Journal of Pharmaceutics, 2017, 533, 275-284.	2.6	74
746	pH sensitive mesoporous nanohybrids with charge-reversal properties for anticancer drugÂdelivery. RSC Advances, 2017, 7, 46045-46050.	1.7	8
747	Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chemical Society Reviews, 2017, 46, 7021-7053.	18.7	556
748	Variability of Complement Response toward Preclinical and Clinical Nanocarriers in the General Population. Bioconjugate Chemistry, 2017, 28, 2747-2755.	1.8	35
749	Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes. International Journal of Pharmaceutics, 2017, 534, 81-88.	2.6	13
750	Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Molecular Pharmaceutics, 2017, 14, 4032-4041.	2.3	33
751	Remote Loading of Smallâ€Molecule Therapeutics into Cholesterolâ€Enriched Cellâ€Membraneâ€Derived Vesicles. Angewandte Chemie, 2017, 129, 14263-14267.	1.6	2
752	Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine, 2017, 12, 2677-2692.	1.7	135
753	Tumor Extracellular Acidity-Sensitive Polymeric Nanocarriers for Drug Delivery and Cancer Therapy. Frontiers in Nanobiomedical Research, 2017, , 175-193.	0.1	0
754	NGR-modified pH-sensitive liposomes for controlled release and tumor target delivery of docetaxel. Colloids and Surfaces B: Biointerfaces, 2017, 160, 395-405.	2.5	18

#	Article	IF	Citations
755	Ratiometric drug delivery using non-liposomal nanocarriers as an approach to increase efficacy and safety of combination chemotherapy. Biomedicine and Pharmacotherapy, 2017, 96, 584-595.	2.5	23
756	Enhanced Triggering of Local Anesthetic Particles by Photosensitization and Photothermal Effect Using a Common Wavelength. Nano Letters, 2017, 17, 7138-7145.	4.5	22
757	Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. Journal of Controlled Release, 2017, 264, 228-236.	4.8	59
758	Improved tumor accumulation and therapeutic efficacy of CTLA-4-blocking antibody using liposome-encapsulated antibody: In vitro and in vivo studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2671-2682.	1.7	46
759	Nanomaterials in Cancer Theranostics. Nanomedicine and Nanotoxicology, 2017, , 173-206.	0.1	0
760	Fattigation-platform nanoparticles using apo-transferrin stearic acid as a core for receptor-oriented cancer targeting. Colloids and Surfaces B: Biointerfaces, 2017, 159, 571-579.	2.5	21
761	TQ-B3203, a potent proliferation inhibitor derived from camptothecin. Medicinal Chemistry Research, 2017, 26, 3395-3406.	1.1	8
762	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	23.0	464
763	Effect of BN Nanoparticles Loaded with Doxorubicin on Tumor Cells with Multiple Drug Resistance. ACS Applied Materials & Interfaces, 2017, 9, 32498-32508.	4.0	27
764	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Advanced Drug Delivery Reviews, 2017, 118, 52-64.	6.6	26
765	Responsive polymeric nanoparticles for controlled drug delivery. Polymer International, 2017, 66, 1756-1764.	1.6	18
766	Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials, 2017, 147, 145-154.	5.7	64
767	Bridging Bio–Nano Science and Cancer Nanomedicine. ACS Nano, 2017, 11, 9594-9613.	7.3	304
768	Recombinant Synthesis of Hybrid Lipid–Peptide Polymer Fusions that Selfâ€Assemble and Encapsulate Hydrophobic Drugs. Angewandte Chemie, 2017, 129, 14167-14172.	1.6	7
769	Remote Loading of Smallâ€Molecule Therapeutics into Cholesterolâ€Enriched Cellâ€Membraneâ€Derived Vesicles. Angewandte Chemie - International Edition, 2017, 56, 14075-14079.	7.2	86
770	Involvement of scavenger receptor class B type 1 and low-density lipoprotein receptor in the internalization of liposomes into HepG2 cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2253-2258.	1.4	10
771	Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—An innate immune system standpoint. Seminars in Immunology, 2017, 34, 68-77.	2.7	103
772	Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjugate Chemistry, 2017, 28, 2673-2686.	1.8	142

#	Article	IF	CITATIONS
773	The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomedicine and Pharmacotherapy, 2017, 95, 469-476.	2.5	9
774	Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjugate Chemistry, 2017, 28, 2715-2728.	1.8	32
775	Role of In Vitro Release Methods in Liposomal Formulation Development: Challenges and Regulatory Perspective. AAPS Journal, 2017, 19, 1669-1681.	2.2	57
776	Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 2017, 12, 2113-2135.	1.7	76
777	The use of nanoparticulates to treat breast cancer. Nanomedicine, 2017, 12, 2367-2388.	1.7	74
778	Triggered Release from Lipid Bilayer Vesicles by an Artificial Transmembrane Signal Transduction System. Journal of the American Chemical Society, 2017, 139, 15768-15773.	6.6	54
779	Nanoparticles target early-stage breast cancer metastasis <i>in vivo</i> . Nanotechnology, 2017, 28, 43LT01.	1.3	33
780	Recombinant Synthesis of Hybrid Lipid–Peptide Polymer Fusions that Selfâ€Assemble and Encapsulate Hydrophobic Drugs. Angewandte Chemie - International Edition, 2017, 56, 13979-13984.	7.2	53
781	Understanding the Capsanthin Tails in Regulating the Hydrophilic–Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane. Langmuir, 2017, 33, 10259-10270.	1.6	27
782	Liposomes loading sodium chloride as effective thermo-seeds for microwave ablation of hepatocellular carcinoma. Nanoscale, 2017, 9, 11068-11076.	2.8	20
783	pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging. Journal of Materials Chemistry B, 2017, 5, 6847-6859.	2.9	44
784	Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity. Chemistry of Materials, 2017, 29, 6578-6595.	3.2	99
785	Contribution of Kupffer cells to liposome accumulation in the liver. Colloids and Surfaces B: Biointerfaces, 2017, 158, 356-362.	2.5	78
786	Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine, 2017, 12, 1801-1822.	1.7	23
787	Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine, 2017, 12, 1791-1800.	1.7	25
788	Promising antileishmanial effectiveness of doxorubicin and Doxil against Leishmania major : An inÂvitro assay. Asian Pacific Journal of Tropical Medicine, 2017, 10, 544-548.	0.4	13
789	Analyzing Liposomal Drug Delivery Systems in Three-Dimensional Cell Culture Models Using MALDI Imaging Mass Spectrometry. Analytical Chemistry, 2017, 89, 8453-8458.	3.2	64
790	Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends in Cancer, 2017, 3, 551-560.	3.8	42

#	Article	IF	CITATIONS
791	The drug delivery field at the inflection point: Time to fight its way out of the egg. Journal of Controlled Release, 2017, 267, 2-14.	4.8	48
792	Emergence of Goldâ€Mesoporous Silica Hybrid Nanotheranostics: Doxâ€Encoded, Folate Targeted Chemotherapy with Modulation of SERS Fingerprinting for Apoptosis Toward Tumor Eradication. Small, 2017, 13, 1700819.	5.2	49
793	Highlights in nanocarriers for the treatment against cervical cancer. Materials Science and Engineering C, 2017, 80, 748-759.	3.8	39
794	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
795	Acid-sensitive lipidated doxorubicin prodrug entrapped in nanoemulsion impairs lung tumor metastasis in a breast cancer model. Nanomedicine, 2017, 12, 1751-1765.	1.7	29
796	Polymeric micelles loaded with (1,2-diaminocyclohexane)platinum(II) against colorectal cancer. Journal of Surgical Research, 2017, 218, 334-340.	0.8	9
797	Nanomaterials for the Capture and Therapeutic Targeting of Circulating Tumor Cells. Cellular and Molecular Bioengineering, 2017, 10, 275-294.	1.0	34
798	Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids and Surfaces B: Biointerfaces, 2017, 159, 454-467.	2.5	138
799	Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today, 2017, 15, 56-90.	6.2	103
800	Tumour-vessel-on-a-chip models for drug delivery. Lab on A Chip, 2017, 17, 3760-3771.	3.1	68
801	RGD Peptideâ€Based Target Drug Delivery of Doxorubicin Nanomedicine. Drug Development Research, 2017, 78, 283-291.	1.4	79
802	Capacity of gold nanoparticles in cancer radiotherapy. Japanese Journal of Radiology, 2017, 35, 555-561.	1.0	18
803	Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo. Journal of Controlled Release, 2017, 264, 14-23.	4.8	15
804	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 27587-27595.	4.0	34
805	Image-Guided Therapy. , 2017, , 41-55.		1
807	5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artificial Cells, Nanomedicine and Biotechnology, 2017, 46, 1-12.	1.9	25
808	Anticancer potency of nitric oxide-releasing liposomes. RSC Advances, 2017, 7, 53236-53246.	1.7	14
809	Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology. Journal of Physical Chemistry B 2017, 121, 11333-11343	1.2	14

ARTICLE IF CITATIONS Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of 810 1.7 28 doxorubicin to brain. Nanomedicine, 2017, 12, 2737-2761. Harnessing designed nanoparticles: Current strategies and future perspectives in cancer 6.2 69 immunotherapy. Nano Today, 2017, 17, 23-37. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. International Journal of Pharmaceutics, 2017, 812 2.6 54 529, 32-43. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials, 2017, 114 140, 162-169 Polysaccharide-coated liposomes by post-insertion of a hyaluronan-lipid conjugate. Colloids and 814 2.5 32 Surfaces B: Biointerfaces, 2017, 158, 119-126. pH and NIR-light-responsive magnetic iron oxide nanoparticles for mitochondria-mediated apoptotic cell death induced by chemo-photothermal therapy. International Journal of Pharmaceutics, 2017, 531, 2.6 1-13. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically 816 4.8 70 engineered mouse model of breast cancer. Journal of Controlled Release, 2017, 261, 287-296. A Perspective – can copper complexes be developed as a novel class of therapeutics?. Dalton 1.6 140 Transactions, 2017, 46, 10758-10773. Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading 818 5.7 34 capacity, increased stability, and improved anticancer efficacy. Biomaterials, 2017, 141, 161-175. PASylation®: A versatile technology to extend drug delivery. Current Opinion in Colloid and Interface 3.4 Science, 2017, 31, 10-17. Liposome-Encapsulated NaLnF₄ Nanoparticles for Mass Cytometry: Evaluating Nonspecific 820 3.2 27 Binding to Cells. Chemistry of Materials, 2017, 29, 4980-4990. Lipodox® (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) 1.1 39 xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer, 2017, 17, 405. Targeted delivery of anticancer drugs: new trends in lipid nanocarriers., 2017,, 455-484. 822 3 Nanomaterial Drug Products: Manufacturing and Analytical Perspectives. AAPS Journal, 2017, 19, 18-25. 2.2 824 Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17, 20-37. 12.8 4.153 Liposomes Came First: The Early History of Liposomology. Methods in Molecular Biology, 2017, 1522, 1-15. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced 826 5.8 128 photodynamic therapy. Nano Research, 2017, 10, 1200-1212. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of 5.3 34 lysosomal tumor cell death. Biosensors and Bioelectronics, 2017, 92, 724-732.

#	Article	IF	CITATIONS
828	Tumor-targeted nanomedicines for cancer theranostics. Pharmacological Research, 2017, 115, 87-95.	3.1	176
829	Bioresorbable polymer nanoparticles in the medical andÂpharmaceutical fields. , 2017, , 265-283.		12
830	Development of a Flow-Through USP-4 Apparatus Drug Release Assay to Evaluate Doxorubicin Liposomes. AAPS Journal, 2017, 19, 150-160.	2.2	30
831	Nanocarriers in cancer clinical practice: a pharmacokinetic issue. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 583-599.	1.7	50
832	Formulation and Optimization of Doxorubicin and Biochanin A Combinational Liposomes for Reversal of Chemoresistance. AAPS PharmSciTech, 2017, 18, 1116-1124.	1.5	22
833	New doxorubicin nanoparticles engineered from calcium-crosslinked carbomer and a microemulsion precursor. Drug Development and Industrial Pharmacy, 2017, 43, 830-838.	0.9	4
834	Unimolecular Micelles of Amphiphilic Cyclodextrin-Core Star-Like Copolymers with Covalent pH-Responsive Linkage of Anticancer Prodrugs. Molecular Pharmaceutics, 2017, 14, 2529-2537.	2.3	43
835	Autonomous bacterial nanoswimmers target cancer. Journal of Controlled Release, 2017, 257, 68-75.	4.8	39
836	Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opinion on Drug Delivery, 2017, 14, 851-864.	2.4	261
837	LC–MS/MS method development for quantification of doxorubicin and its metabolite 13â€hydroxy doxorubicin in mice biological matrices: Application to a pharmacoâ€delivery study. Biomedical Chromatography, 2017, 31, e3863.	0.8	18
838	Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opinion on Drug Delivery, 2017, 14, 865-877.	2.4	39
839	Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opinion on Drug Delivery, 2017, 14, 201-214.	2.4	106
840	Distinctive polymer micelle designed for siRNA delivery and reversal of <i>MDR1</i> gene-dependent multidrug resistance. , 2017, 105, 2093-2106.		10
841	Increasing the Therapeutic Efficacy of Radiotherapy Using Nanoparticles. Cancer Drug Discovery and Development, 2017, , 241-265.	0.2	9
842	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
843	Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development, 2017, , .	0.2	2
844	Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A 2 for efficient pulmonary drug delivery to lung cancers. International Journal of Pharmaceutics, 2017, 517, 35-41.	2.6	48
845	A Comprehensive Procedure to Evaluate the In Vivo Performance of Cancer Nanomedicines. Journal of Visualized Experiments, 2017, , .	0.2	5

ARTICLE IF CITATIONS Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance 846 5.8 71 in ovarian cancer. Nature Communications, 2017, 8, 2166. Challenges in the drug release testing of next-generation nanomedicines – What do we know?. 847 Materials Today: Proceedings, 2017, 4, S214-S217. Rapid Analysis of DOXIL Stability and Drug Release from DOXIL by HPLC Using a Glycidyl 848 0.6 17 Methacrylate-Coated Monolithic Column. Chemical and Pharmaceutical Bulletin, 2017, 65, 945-949. Liposomal Delivery Systems: Design Optimization and Current Applications. Biological and 849 271 Pharmaceutical Bulletin, 2017, 40, 1-10. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer 850 0.3 1 diagnosis and therapy. AIP Conference Proceedings, 2017, , . Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. 1.1 Molecular Medicine Reports, 2018, 17, 2456-2464. 852 A novel filtration approach to create small unilamellar liposomes for drug delivery., 2017,,. 1 Thermosensitive Liposomes., 0,,. 854 Liposomes Used as a Vaccine Adjuvant-Delivery System., 0, , . 2 Recent Advances in Application of Poly-Epsilon-Caprolactone and its Derivative Copolymers for 0.8 Controlled Release of Anti-Tumor Drugs. Current Cancer Drug Targets, 2017, 17, 445-455. In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast 856 2.0 29 tumors. Drug Design, Development and Therapy, 2017, Volume 11, 3105-3117. Nanotechnology in Medical Research., 2017, , 21-45. Accumulation of ¹¹¹In-Labelled EGF-Au-PEG Nanoparticles in EGFR-Positive Tumours is 858 2.7 17 Enhanced by Coadministration of Targeting Ligand. Nanotheranostics, 2017, 1, 232-243. Multiplexed Optical Imaging of Tumor-Directed Nanoparticles: A Review of Imaging Systems and Approaches. Nanotheranostics, 2017, 1, 369-388. 2.7 46 A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma 860 70 3.3 cells. International Journal of Nanomedicine, 2017, Volume 12, 2407-2425. Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. 70 Theranostics, 2017, 7, 4071-4086. Nanomaterials: promising structures for the management of Âoral cancer., 2017, , 511-544. 862 21 Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and 1.8 Drug Delivery. International Journal of Molecular Sciences, 2017, 18, 2430.

#	Article	IF	Citations
864	Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach. Materials, 2017, 10, 1411.	1.3	42
865	Practical Liposomal Formulation for Taxanes with Polyethoxylated Castor Oil and Ethanol with Complete Encapsulation Efficiency and High Loading Efficiency. Nanomaterials, 2017, 7, 290.	1.9	8
866	Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics, 2017, 9, 12.	2.0	1,396
867	Pharmacokinetics and biodistribution of the nanoparticles. , 2017, , 165-186.		24
868	Near-infrared light-responsive nanotherapeutic agents: application in medical oncology. , 2017, , 719-748.		0
869	Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, Volume 12, 7291-7309.	3.3	984
870	Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. International Journal of Molecular Sciences, 2017, 18, 1249.	1.8	181
871	Nanotechnology in Drug Discovery and Development. , 2017, , 264-295.		12
872	Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation. International Journal of Molecular Sciences, 2017, 18, 924.	1.8	40
873	[18F]-Fluorinated Carboplatin and [111In]-Liposome for Image-Guided Drug Delivery. International Journal of Molecular Sciences, 2017, 18, 1079.	1.8	26
874	Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications—Focus on Prostate and Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1102.	1.8	59
875	The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies. Frontiers in Molecular Biosciences, 2017, 4, 52.	1.6	24
876	Radiolabeling and Quantitative In Vivo SPECT/CT Imaging Study of Liposomes Using the Novel Iminothiolane- ^{99m} Tc-Tricarbonyl Complex. Contrast Media and Molecular Imaging, 2017, 2017, 1-8.	0.4	16
877	Innovations in Liposomal DDS Technology and Its Application for the Treatment of Various Diseases. Biological and Pharmaceutical Bulletin, 2017, 40, 119-127.	0.6	40
878	Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	13
879	Lymph cancer chemotherapy: delivery of doxorubicin-gemcitabine prodrug and vincristine by nanostructured lipid carriers. International Journal of Nanomedicine, 2017, Volume 12, 1565-1576.	3.3	29
880	Nanomedicine applications in the treatment of breast cancer: current state of the art. International Journal of Nanomedicine, 2017, Volume 12, 5879-5892.	3.3	136
881	4.30 Nanomaterials for Drug Delivery to the Brain. , 2017, , 549-570.		0

#	Article	IF	CITATIONS
882	The Potential of Stimuli-Responsive Nanogels in Drug and Active Molecule Delivery for Targeted Therapy. Gels, 2017, 3, 16.	2.1	64
883	Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. International Journal of Nanomedicine, 2017, Volume 12, 6289-6301.	3.3	56
884	Does anthracycline-based chemotherapy in pregnant women with cancer offer safe cardiac and neurodevelopmental outcomes for the developing fetus?. BMC Cancer, 2017, 17, 777.	1.1	27
885	Chitosan-Acrylic Polymeric Nanoparticles with Dynamic Covalent Bonds. Synthesis and Stimuli Behavior. Chemical and Pharmaceutical Bulletin, 2017, 65, 1132-1143.	0.6	4
886	Nanobiotechnology for Breast Cancer Treatment. , 0, , .		12
887	Nanotechnological approaches toward cancer chemotherapy. , 2017, , 211-240.		6
888	Using microsensors to promote the development of innovative therapeutic nanostructures. , 2017, , 539-566.		5
889	The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes, 2017, 8, 349.	1.0	27
890	Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Nanotheranostics, 2017, 1, 346-357.	2.7	76
891	Smart Therapeutics Achieved via Host–Guest Assemblies. , 2017, , 391-420.		6
892	Targeting and Triggered Release Using Lipid-Based Supramolecular Assemblies as Medicinal Nanocarriers. , 2017, , 329-364.		10
893	Nanoparticle size and production efficiency are affected by the presence of fatty acids during albumin nanoparticle fabrication. PLoS ONE, 2017, 12, e0189814.	1.1	7
894	Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano, 2018, 12, 2106-2121.	7.3	117
895	Nanomaterial Preparation by Extrusion through Nanoporous Membranes. Small, 2018, 14, e1703493.	5.2	69
896	Highly Augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)–Green Tea Catechin Conjugate for Cancer Therapy. Advanced Materials, 2018, 30, e1706963.	11.1	113
897	Nano-Assembly of Pamitoyl-Bioconjugated Coenzyme-A for Combinatorial Chemo-Biologics in Transcriptional Therapy. Bioconjugate Chemistry, 2018, 29, 1419-1427.	1.8	6
898	Investigation of controlled solvent exchange precipitation of fluorescent organic nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 86-92.	2.3	1
899	Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opinion on Drug Delivery, 2018, 15, 335-349.	2.4	21

#	Article	IF	CITATIONS
900	Impact of Clutathione Modulation on Stability and Pharmacokinetic Profile of Redox‧ensitive Nanogels. Small, 2018, 14, e1704093.	5.2	18
901	Cardinal Role of Intraliposome Doxorubicin-Sulfate Nanorod Crystal in Doxil Properties and Performance. ACS Omega, 2018, 3, 2508-2517.	1.6	46
902	Influence of stabilizing components on the integrity of antitumor liposomes loaded with lipophilic prodrug in the bilayer. Colloids and Surfaces B: Biointerfaces, 2018, 166, 45-53.	2.5	27
903	Glucosylated nanomicelles target glucose-avid pediatric patient-derived sarcomas. Journal of Controlled Release, 2018, 276, 59-71.	4.8	27
904	Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. Journal of Controlled Release, 2018, 277, 1-13.	4.8	214
905	Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy. Biomaterials Science, 2018, 6, 1546-1555.	2.6	34
906	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
907	Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by ¹⁸ F-Radiolabeling and Positron Emission Tomography. Biomacromolecules, 2018, 19, 2506-2516.	2.6	20
908	Pharmacokinetics of lipid-drug conjugates loaded into liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 188-199.	2.0	41
909	Remote‣oaded Platelet Vesicles for Diseaseâ€Targeted Delivery of Therapeutics. Advanced Functional Materials, 2018, 28, 1801032.	7.8	64
910	Meeting the needs of breast cancer: A nucleolin's perspective. Critical Reviews in Oncology/Hematology, 2018, 125, 89-101.	2.0	32
911	Redox-Active Quinone Chelators: Properties, Mechanisms of Action, Cell Delivery, and Cell Toxicity. Antioxidants and Redox Signaling, 2018, 28, 1394-1403.	2.5	31
912	Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomaterialia, 2018, 76, 1-20.	4.1	24
913	Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 2018, 128, 115-131.	6.6	75
914	Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications, 2018, 8, 303-313.	0.8	23
915	A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. Nanoscale, 2018, 10, 9021-9037.	2.8	34
916	Comparative Assessment of Active Targeted Redox Sensitive Polymersomes Based on pPEGMA-S-S-PLA Diblock Copolymer with Marketed Nanoformulation. Biomacromolecules, 2018, 19, 2549-2566.	2.6	28
917	Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 2018, 9, 1410.	5.8	1,488

#	Article	IF	CITATIONS
918	Cholesterol functionalized aliphatic <i>N</i> -substituted 8-membered cyclic carbonate. Polymer Chemistry, 2018, 9, 2434-2437.	1.9	11
919	New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy. Chemistry - an Asian Journal, 2018, 13, 3333-3340.	1.7	51
920	Effective light-triggered contents release from helper lipid-incorporated liposomes co-encapsulating gemcitabine and a water-soluble photosensitizer. International Journal of Pharmaceutics, 2018, 540, 50-56.	2.6	30
921	Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale, 2018, 10, 4167-4172.	2.8	77
922	Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids and Surfaces B: Biointerfaces, 2018, 168, 10-17.	2.5	40
923	Extracellular vesicle therapeutics for liver disease. Journal of Controlled Release, 2018, 273, 86-98.	4.8	88
924	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	4.8	43
925	Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine, 2018, 13, 539-554.	1.7	97
926	Arginine-α, β-dehydrophenylalanine Dipeptide Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutical Research, 2018, 35, 35.	1.7	16
927	Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS Nano, 2018, 12, 912-931.	7.3	107
928	Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale, 2018, 10, 4545-4560.	2.8	60
929	Advanced architectures in the design of responsive polymers for cancer nanomedicine. Journal of Applied Polymer Science, 2018, 135, 46154.	1.3	50
930	pH Responsive Doxorubicin Delivery by Fluorous Polymers for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 2954-2962.	2.3	23
931	Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8, 4-13.	5.7	65
932	Temperature-sensitive poly(phenyleneethynylene) nanomedicines for intracellular tracking via fluorescence resonance energy transfer. Polymer Chemistry, 2018, 9, 1045-1051.	1.9	3
933	Design of pH-Sensitive Nanovesicles via Cholesterol Analogue Incorporation for Improving in Vivo Delivery of Chemotherapeutics. ACS Applied Materials & Interfaces, 2018, 10, 5213-5226.	4.0	30
934	Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small. Journal of Controlled Release, 2018, 272, 159-168.	4.8	55
935	Targeting the leptin receptor: To evaluate therapeutic efficacy and anti-tumor effects of Doxil, in vitro and in vivo in mice bearing C26 colon carcinoma tumor. Colloids and Surfaces B: Biointerfaces, 2018, 164, 107-115.	2.5	19

#	Article	IF	CITATIONS
936	Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. Journal of Controlled Release, 2018, 275, 85-91.	4.8	53
937	Precision engineering of targeted nanocarriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1511.	3.3	21
938	Functionally Oriented Tumor Microenvironment Responsive Polymeric Nanoassembly: Engineering and Applications. Chinese Journal of Polymer Science (English Edition), 2018, 36, 273-287.	2.0	16
939	Self-Reporting Photoluminescent Porous Silicon Microparticles for Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 3200-3209.	4.0	42
940	Drug-mediation formation of nanohybrids for sequential therapeutic delivery in cancer cells. Colloids and Surfaces B: Biointerfaces, 2018, 163, 284-290.	2.5	18
941	Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. International Journal of Biological Macromolecules, 2018, 111, 62-69.	3.6	94
942	Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM–camptothecin conjugate. Drug Delivery, 2018, 25, 153-165.	2.5	27
943	PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 557-567.	1.7	57
944	Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. Journal of Controlled Release, 2018, 271, 60-73.	4.8	103
945	Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment. ACS Applied Materials & Interfaces, 2018, 10, 278-289.	4.0	27
946	Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery. Bioconjugate Chemistry, 2018, 29, 420-430.	1.8	91
947	Strategies toward the Enhanced Permeability and Retention Effect by Increasing the Molecular Weight of Arene Ruthenium Metallaassemblies. Inorganic Chemistry, 2018, 57, 3626-3633.	1.9	26
948	Engineering Polymersomes for Diagnostics and Therapy. Advanced Healthcare Materials, 2018, 7, e1701276.	3.9	97
949	Calciumâ€Responsive Liposomes via a Synthetic Lipid Switch. Chemistry - A European Journal, 2018, 24, 3599-3607.	1.7	22
950	Structure and kinetics of synthetic, lipid-based nucleic acid carriers. , 2018, , 529-562.		4
951	Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1733-1742.	1.7	56
952	Organic solvent-free preparation of keratin nanoparticles as doxorubicin carriers for antitumour activity. Materials Science and Engineering C, 2018, 90, 476-484.	3.8	48
953	Dual functionality nanobioconjugates: a new tool for intracellular bacterial targeting in cancer cells?. Therapeutic Delivery, 2018, 9, 317-320.	1.2	0

#	Article	IF	CITATIONS
954	Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes. Scientific Reports, 2018, 8, 6881.	1.6	48
955	The effect of size and polymer architecture of doxorubicin–poly(ethylene) glycol conjugate nanocarriers on breast duct retention, potency and toxicity. European Journal of Pharmaceutical Sciences, 2018, 121, 118-125.	1.9	23
956	Selective Targeting and Eradication of LGR5+ Cancer Stem Cells Using RSPO-Conjugated Doxorubicin Liposomes. Molecular Cancer Therapeutics, 2018, 17, 1475-1485.	1.9	13
957	A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 462-470.	2.0	33
958	ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Advanced Powder Technology, 2018, 29, 1601-1616.	2.0	117
959	Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale, 2018, 10, 8207-8216.	2.8	17
960	The Effect of Molecular Structure on Cytotoxicity and Antitumor Activity of PECylated Nanomedicines. Biomacromolecules, 2018, 19, 1625-1634.	2.6	17
961	Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting. Molecular Cancer Therapeutics, 2018, 17, 1196-1206.	1.9	87
962	Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 2018, 3, 7.	7.1	1,386
963	Dual effect of PEC-PE micelle over the oligomerization and fibrillation of human islet amyloid polypeptide. Scientific Reports, 2018, 8, 4463.	1.6	17
964	Quantification of ligand density and stoichiometry on the surface of liposomes using single-molecule fluorescence imaging. Journal of Controlled Release, 2018, 278, 80-86.	4.8	25
965	Simulation of Stimuli-Responsive and Stoichiometrically Controlled Release Rate of Doxorubicin from Liposomes in Tumor Interstitial Fluid. Pharmaceutical Research, 2018, 35, 103.	1.7	4
966	Drug Delivery in Cancer Therapy, Quo Vadis?. Molecular Pharmaceutics, 2018, 15, 3603-3616.	2.3	85
967	Investigation of the Discriminatory Ability of Pharmacokinetic Metrics for the Bioequivalence Assessment of PEGylated Liposomal Doxorubicin. Pharmaceutical Research, 2018, 35, 106.	1.7	7
968	GE11-Directed Functional Polymersomal Doxorubicin as an Advanced Alternative to Clinical Liposomal Formulation for Ovarian Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 3664-3671.	2.3	41
969	A Unified Mathematical Model for Nano-Liposomal Drug Delivery to Solid Tumors. IEEE Transactions on Nanobioscience, 2018, 17, 3-11.	2.2	3
970	A chemophotothermal and targeting multifunctional nanoprobe with a tumor-diagnosing ability. Nano Research, 2018, 11, 4333-4347.	5.8	7
971	Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine, 2018, 13, 929-952.	1.7	130

# 972	ARTICLE Nanomedicine: is it lost in translation?. Therapeutic Delivery, 2018, 9, 269-285.	IF 1.2	CITATIONS
973	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	11.1	127
974	Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hearing Research, 2018, 368, 49-66.	0.9	66
975	Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. Journal of Cellular Physiology, 2018, 233, 124-140.	2.0	29
976	The significance of drug-to-lipid ratio to the development of optimized liposomal formulation. Journal of Liposome Research, 2018, 28, 249-258.	1.5	38
977	Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2387-2395.	1.7	43
978	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	3.9	30
979	Evaluating Nanomedicines: Obstacles and Advancements. Methods in Molecular Biology, 2018, 1682, 3-16.	0.4	23
980	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 108-126.	2.3	66
981	Liposomeâ€encapsulated chemotherapy: Current evidence for its use in companion animals. Veterinary and Comparative Oncology, 2018, 16, E1-E15.	0.8	13
982	Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. , 2018, 183, 160-176.		54
983	Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2018, 7, 95-122.	2.6	105
984	Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity. AAPS PharmSciTech, 2018, 19, 634-647.	1.5	33
985	Promising effects of nanomedicine in cancer drug delivery. Journal of Drug Targeting, 2018, 26, 319-324.	2.1	52
986	SPIN: rapid synthesis, purification, and concentration of small drug-loaded liposomes. Journal of Liposome Research, 2018, 28, 331-340.	1.5	13
987	Determination of Nonspherical Morphology of Doxorubicin-Loaded Liposomes by Atomic Force Microscopy. Journal of Pharmaceutical Sciences, 2018, 107, 717-726.	1.6	16
988	A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography. International Journal of Pharmaceutics, 2018, 536, 21-28.	2.6	23
989	Functionalizing PLGA and PLGA Derivatives for Drug Delivery and Tissue Regeneration Applications. Advanced Healthcare Materials, 2018, 7, 1701035.	3.9	173

#	Article	IF	CITATIONS
990	Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems. Bioconjugate Chemistry, 2018, 29, 44-55.	1.8	85
991	Recent Advances in Managing Atherosclerosis via Nanomedicine. Small, 2018, 14, 1702793.	5.2	87
992	Microscopic investigation of" topically applied nanoparticles for molecular imaging of fresh tissue surfaces. Journal of Biophotonics, 2018, 11, e201700246.	1.1	14
993	Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics. Bioconjugate Chemistry, 2018, 29, 4-16.	1.8	104
994	Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomaterials Science, 2018, 6, 350-355.	2.6	21
995	Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of Pharmaceutical Investigation, 2018, 48, 43-60.	2.7	303
996	Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action. Journal of Controlled Release, 2018, 269, 171-176.	4.8	59
997	Mixed Liposome Approach for Ratiometric and Sequential Delivery of Paclitaxel and Gemcitabine. AAPS PharmSciTech, 2018, 19, 693-699.	1.5	13
998	Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discovery Today, 2018, 23, 1043-1052.	3.2	82
999	Theranostic Nanoparticles for Tracking and Monitoring Disease State. SLAS Technology, 2018, 23, 281-293.	1.0	79
1000	Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. Journal of Controlled Release, 2018, 269, 100-109.	4.8	43
1001	Current progress and challenges of nanoparticle-based therapeutics in pain management. Journal of Controlled Release, 2018, 269, 189-213.	4.8	34
1002	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
1003	Nanoplumbers: biomaterials to fight cardiovascular diseases. Materials Today, 2018, 21, 122-143.	8.3	38
1004	Preparation and Characterization of Drug Liposomes by pH-Gradient Method. Springer Reference Technik, 2018, , 1-12.	0.0	0
1005	Behavior of Doxorubicin Lipophilic Conjugates in Liposomal Lipid Bilayers. Russian Journal of Bioorganic Chemistry, 2018, 44, 732-739.	0.3	0
1006	Unveiling complex structure and dynamics in supramolecular biomaterials using super-resolution microscopy. , 2018, , 251-274.		1
1007	Platinum-Based Antitumor Drugs and Their Liposomal Formulations in Clinical Trials. Russian Journal of Bioorganic Chemistry, 2018, 44, 619-630.	0.3	5

#	Article	IF	CITATIONS
1008	Vaccine Adjuvant Delivery Systems Constructed Using Biocompatible Nanoparticles Formed through Self-Assembly of Small Molecules. , 0, , .		1
1009	Precise synchronization of hyperthermia–chemotherapy: photothermally induced on-demand release from injectable hydrogels of gold nanocages. Nanoscale, 2018, 10, 20020-20032.	2.8	27
1010	Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. Nanoscale, 2018, 10, 22720-22724.	2.8	60
1011	Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Research Letters, 2018, 13, 350.	3.1	13
1012	Targeted chemotherapy for subcutaneous and orthotopic non-small cell lung tumors with cyclic RGD-functionalized and disulfide-crosslinked polymersomal doxorubicin. Signal Transduction and Targeted Therapy, 2018, 3, 32.	7.1	43
1013	Impact of PEGylated Nanoparticles on Tumor Targeted Drug Delivery. Current Pharmaceutical Design, 2018, 24, 3283-3296.	0.9	48
1015	Regulation of in vivo behavior of TAT-modified liposome by associated protein corona and avidity to tumor cells. International Journal of Nanomedicine, 2018, Volume 13, 7441-7455.	3.3	19
1016	Nanomedicine and Phage Capsids. Viruses, 2018, 10, 307.	1.5	8
1017	A biophysical study on the mechanism of interactions of DOX or PTX with α-lactalbumin as a delivery carrier. Scientific Reports, 2018, 8, 17345.	1.6	17
1018	Mixed Surface Chemistry: An Approach to Highly Luminescent Biocompatible Amphiphilic Silicon Nanocrystals. Chemistry of Materials, 2018, 30, 8925-8931.	3.2	18
1019	Amphiphilic Drug Conjugates as Nanomedicines for Combined Cancer Therapy. Bioconjugate Chemistry, 2018, 29, 3967-3981.	1.8	59
1020	Chemo-Radiotherapy of Oligometastases of Colorectal Cancer With Pegylated Liposomal Mitomycin-C Prodrug (Promitil): Mechanistic Basis and Preliminary Clinical Experience. Frontiers in Oncology, 2018, 8, 544.	1.3	11
1021	A Biomimetic Gold Nanocages-Based Nanoplatform for Efficient Tumor Ablation and Reduced Inflammation. Theranostics, 2018, 8, 5362-5378.	4.6	46
1022	The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes. Current Medicinal Chemistry, 2018, 25, 4224-4268.	1.2	127
1023	Recent Advances of Novel Proteinoids and Proteinoid Nanoparticles and Their Applications in Biomedicine and Industrial Uses. Israel Journal of Chemistry, 2018, 58, 1277-1285.	1.0	15
1024	Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. International Journal of Nanomedicine, 2018, Volume 13, 7771-7787.	3.3	28
1025	Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery. Nanomaterials, 2018, 8, 998.	1.9	9
1026	HSA—Coated Magnetic Nanoparticles for MRI-Guided Photodynamic Cancer Therapy. Pharmaceutics, 2018, 10, 284.	2.0	15

#	Article	IF	CITATIONS
1027	Optimizing Antitumor Efficacy and Adverse Effects of Pegylated Liposomal Doxorubicin by Scheduled Plasmapheresis: Impact of Timing and Dosing. Current Drug Delivery, 2018, 15, 1261-1270.	0.8	8
1028	A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. International Journal of Molecular Sciences, 2018, 19, 3859.	1.8	45
1029	Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nature Communications, 2018, 9, 5032.	5.8	141
1030	Nanomedicine for cutaneous tumors – lessons since the successful treatment of the Kaposi sarcoma. Nanomedicine, 2018, 13, 2957-2959.	1.7	8
1031	A Comprehensive Map of FDA-Approved Pharmaceutical Products. Pharmaceutics, 2018, 10, 263.	2.0	207
1032	A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: From liposomal preparation to therapy. International Journal of Pharmaceutics, 2018, 551, 300-308.	2.6	58
1033	Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules. Therapeutic Delivery, 2018, 9, 667-689.	1.2	19
1034	Multifunctional Cargo-Free Nanomedicine for Cancer Therapy. International Journal of Molecular Sciences, 2018, 19, 2963.	1.8	21
1035	The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opinion on Therapeutic Targets, 2018, 22, 879-891.	1.5	16
1036	Protective Roles of Thymoquinone Nanoformulations: Potential Nanonutraceuticals in Human Diseases. Nutrients, 2018, 10, 1369.	1.7	61
1037	Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell and Tissue Research, 2018, 374, 427-438.	1.5	28
1038	Post-insertion parameters of PEC-derivatives in phosphocholine-liposomes. International Journal of Pharmaceutics, 2018, 552, 414-421.	2.6	29
1039	Bringing Again Noble Metal Nanoparticles to the Forefront of Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2018, 6, 143.	2.0	53
1040	Codelivery of doxorubicin and elacridar to target both liver cancer cells and stem cells by polylactide-co-glycolide/d-alpha-tocopherol polyethylene glycol 1000 succinate nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 6855-6870.	3.3	27
1041	Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release. Journal of Controlled Release, 2018, 292, 130-140.	4.8	53
1042	Redox- and pH-Sensitive Glycan (Polysialic Acid) Derivatives and F127 Mixed Micelles for Tumor-Targeted Drug Delivery. Molecular Pharmaceutics, 2018, 15, 5534-5545.	2.3	19
1043	Core–Shell Structure of Organic Crystalline Nanoparticles Determined by Relayed Dynamic Nuclear Polarization NMR. Journal of Physical Chemistry A, 2018, 122, 8802-8807.	1,1	22
1044	The combined administration of parthenolide and ginsenoside CK in long circulation liposomes with targeted tLyp-1 ligand induce mitochondria-mediated lung cancer apoptosis. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 931-942	1.9	39

#	Article	IF	CITATIONS
1045	Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. European Polymer Journal, 2018, 109, 391-401.	2.6	16
1046	Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS Nano, 2018, 12, 10636-10664.	7.3	320
1047	Development of Nanocarriers Functionalized with Stimuli-Responsive Polymer for Controlled Cellular Uptake. Kobunshi Ronbunshu, 2018, 75, 116-127.	0.2	2
1048	Particles and Nanoparticles in Pharmaceutical Products. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , .	0.2	3
1049	Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 2018, 102, 9449-9470.	1.7	54
1050	Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics, 2018, 8, 4279-4294.	4.6	46
1051	Glyceryl Monostearate: Probing the Self Assembly of a Lipid Amenable To Surface Modification for Hepatic Targeting. Journal of Physical Chemistry C, 2018, 122, 22160-22169.	1.5	4
1052	Different Nanoformulations Alter the Tissue Distribution of Paclitaxel, Which Aligns with Reported Distinct Efficacy and Safety Profiles. Molecular Pharmaceutics, 2018, 15, 4505-4516.	2.3	15
1054	Specific tissue factor delivery using a tumor-homing peptide for inducing tumor infarction. Biochemical Pharmacology, 2018, 156, 501-510.	2.0	23
1055	Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16, 71.	4.2	3,689
1056	Clinical translation of immunoliposomes for cancer therapy: recent perspectives. Expert Opinion on Drug Delivery, 2018, 15, 893-903.	2.4	44
1057	Preparation and Characterization of pH Sensitive Drug Liposomes. , 2018, , 1-24.		1
1058	Bio-nano: Theranostic at Cellular Level. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 85-170.	0.2	1
1059	Moving Liposome Technology from the Bench to the Oncological Patient: Towards Performance-by-Design. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 171-211.	0.2	0
1060	Drug nanocrystallisation within liposomes. Journal of Controlled Release, 2018, 288, 96-110.	4.8	100
1061	Dendrimers as Drug Nanocarriers: The Future of Gene Therapy and Targeted Therapies in Cancer. , 0, , .		13
1062	Mitochondrial Dysfunction Associated with Doxorubicin. , 0, , .		9
1063	Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proofâ€ofâ€Concept Studies. Advanced Therapeutics, 2018, 1, 1800068.	1.6	12

#	Article	IF	CITATIONS
1064	Functional evaluation of doxorubicin decorated polymeric liposomal curcumin: a surface tailored therapeutic platform for combination chemotherapy. New Journal of Chemistry, 2018, 42, 16608-16619.	1.4	10
1065	Radiolabelled nanoparticles for cancer diagnosis. Clinical and Translational Imaging, 2018, 6, 271-292.	1.1	15
1066	Nanoformulations of doxorubicin: how far have we come and where do we go from here?. Nanotechnology, 2018, 29, 332002.	1.3	26
1067	Radiolabeling Method: Core/Surface Labeling, Chemical and Physical Labeling. Biological and Medical Physics Series, 2018, , 209-227.	0.3	2
1068	Organic Nanomaterials: Liposomes, Albumin, Dendrimer, Polymeric Nanoparticles. Biological and Medical Physics Series, 2018, , 105-123.	0.3	5
1069	Advancements in Nanomedicine for Multiple Myeloma. Trends in Molecular Medicine, 2018, 24, 560-574.	3.5	23
1070	Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Molecular Pharmaceutics, 2018, 15, 3625-3633.	2.3	153
1071	Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Scientific Reports, 2018, 8, 7589.	1.6	145
1072	A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration. Nanoscale, 2018, 10, 9935-9948.	2.8	58
1073	Maximising success in multidrug formulation development: A review. Journal of Controlled Release, 2018, 283, 1-19.	4.8	28
1074	Delivering miRNA modulators for cancer treatment. , 2018, , 517-565.		4
1075	Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomaterialia, 2018, 75, 371-385.	4.1	64
1076	Novel analytical methods to assess the chemical and physical properties of liposomes. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1091, 14-20.	1.2	16
1079	Pentaglycine lipid derivates – rp-HPLC analytics for bioorthogonal anchor molecules in targeted, multiple-composite liposomal drug delivery systems. International Journal of Pharmaceutics, 2018, 547, 602-610.	2.6	9
1080	Tuning Liposome Membrane Permeability by Competitive Coiled Coil Heterodimerization and Heterodimer Exchange. Langmuir, 2018, 34, 6529-6537.	1.6	8
1081	Quantitative characterization of targeted nanoparticulate formulations for prediction of clinical efficacy. , 2018, , 397-440.		0
1084	Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale, 2018, 10, 13737-13750.	2.8	34
1085	Thermosensitive Liposomes for Image-Guided Drug Delivery. Advances in Cancer Research, 2018, 139, 121-146.	1.9	23

#	Article	IF	Citations
1086	Potential of nanoparticles as drug delivery system for cancer treatment. , 2018, , 431-468.		4
1087	Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. , 2018, , 3-41.		21
1088	Silica-based nanoparticles as drug delivery systems. , 2018, , 1-40.		10
1089	Advanced Optical Microscopy Techniques for the Investigation of Cell-Nanoparticle Interactions. , 2018, , 219-236.		7
1090	Supramolecular chemotherapeutic drug constructed from pillararene-based supramolecular amphiphile. Chemical Communications, 2018, 54, 8198-8201.	2.2	37
1091	Stealth coatings for nanoparticles. , 2018, , 345-361.		37
1092	From the "Magic Bullet―to Advanced Nanomaterials for Active Targeting in Diagnostics and Therapeutics. , 2018, , 1-32.		4
1093	A rational and iterative process for targeted nanoparticle design and validation. Colloids and Surfaces B: Biointerfaces, 2018, 171, 579-589.	2.5	6
1094	Analyzing PEGylation through Molecular Dynamics Simulations. ChemistrySelect, 2018, 3, 8415-8427.	0.7	14
1095	Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 2018, 9, 759.	1.6	10
1096	Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. Journal of Controlled Release, 2018, 286, 358-368.	4.8	71
1097	Lymphoma-targeted treatment using a folic acid-decorated vincristine-loaded drug delivery system. Drug Design, Development and Therapy, 2018, Volume 12, 863-872.	2.0	22
1098	Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Theranostics, 2018, 8, 2782-2798.	4.6	51
1099	PEGylation and anti-PEG antibodies. , 2018, , 51-68.		9
1100	Indomethacin functionalised poly(glycerol adipate) nanospheres as promising candidates for modified drug release. European Journal of Pharmaceutical Sciences, 2018, 123, 350-361.	1.9	17
1101	Energy Landscape in Supramolecular Coassembly of Platinum(II) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures. Journal of the American Chemical Society, 2018, 140, 9594-9605.	6.6	48
1102	Nanotherapeutics for Treatment of Pulmonary Arterial Hypertension. Frontiers in Physiology, 2018, 9, 890.	1.3	23
1103	Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials, 2018, 3, 358-374.	23.3	378

#	Article	IF	CITATIONS
1104	Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics, 2018, 8, 2765-2781.	4.6	85
1105	Physicochemical properties of nanosized polymeric drug carrier systems. , 2018, , 7-17.		1
1106	Application of Nanotechnology for Cancer Treatment. , 2018, , 161-178.		5
1107	PEGylated "stealth―nanoparticles and liposomes. , 2018, , 1-26.		17
1108	Targeted Nanotheranostics for Selective Drug Delivery in Cancer. , 2018, , 245-277.		5
1109	Lipid-Based Nanosystems for the Delivery of siRNA: Challenges and Trends. , 2018, , 495-515.		0
1110	Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World. Applied Sciences (Switzerland), 2018, 8, 845.	1.3	22
1111	Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers, 2018, 10, 9.	1.7	139
1112	Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. International Journal of Molecular Sciences, 2018, 19, 195.	1.8	332
1113	Preparation and Characterization of Electrostatically Crosslinked Polymer–Liposomes in Anticancer Therapy. International Journal of Molecular Sciences, 2018, 19, 1615.	1.8	15
1114	Anticoagulants Influence the Performance of In Vitro Assays Intended for Characterization of Nanotechnology-Based Formulations. Molecules, 2018, 23, 12.	1.7	34
1115	Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules, 2018, 23, 288.	1.7	194
1116	Development and Characterization of Solid Lipid Nanoparticles Loaded with a Highly Active Doxorubicin Derivative. Nanomaterials, 2018, 8, 110.	1.9	46
1117	Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies. Pharmaceutics, 2018, 10, 50.	2.0	5
1118	Bleomycin-Loaded pH-Sensitive Polymer–Lipid-Incorporated Liposomes for Cancer Chemotherapy. Polymers, 2018, 10, 74.	2.0	30
1119	Two multicenter Phase I randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Doxil® or Caelyx® in advanced ovarian cancer. Cancer Chemotherapy and Pharmacology, 2018, 82, 521-532.	1.1	30
1120	Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC) Tj ETQq0 0 0 rgB1	- /Qverlock	≀ 10 Tf 50 10 27

1121	Antileishmanial Activity of Amphotericin B-loaded-PLGA Nanoparticles: An Overview. Materials, 2018, 11, 1167.	1.3	40
------	---	-----	----

#	Article	IF	CITATIONS
1122	Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocytosis. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3015-3024.	1.0	45
1123	Brain Targeting by Liposome–Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. ACS Chemical Neuroscience, 2018, 9, 3166-3174.	1.7	53
1124	Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules, 2018, 23, 907.	1.7	376
1125	Intrinsic, Cancer Cell-Selective Toxicity of Organic Photothermal Nanoagent: A Simple Formulation for Combined Photothermal Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 26028-26038.	4.0	19
1126	Nanotheranostics and Their Potential in the Management of Metastatic Cancer. , 2018, , 199-244.		2
1127	Hybrid Vesicular Drug Delivery Systems for Cancer Therapeutics. Advanced Functional Materials, 2018, 28, 1802136.	7.8	45
1128	Near-Infrared Activated Release of Doxorubicin from Plasmon Resonant Liposomes. Nanotheranostics, 2018, 2, 295-305.	2.7	9
1129	Aminoâ€ŧerminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drug″oaded anionic liposomes. Polymer International, 2018, 67, 1352-1358.	1.6	10
1130	Networking of Smart Drugs: A Chem-Bioinformatic Approach to Cancer Treatment. Methods in Pharmacology and Toxicology, 2018, , 529-555.	0.1	0
1131	Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five. International Journal of Pharmaceutics, 2018, 549, 133-149.	2.6	110
1132	Sonosensitive MRI Nanosystems as Cancer Theranostics: A Recent Update. Frontiers in Chemistry, 2018, 6, 157.	1.8	12
1133	Investigation on Physicochemical Characteristics of a Nanoliposome-Based System for Dual Drug Delivery. Nanoscale Research Letters, 2018, 13, 101.	3.1	27
1134	How to measure release from nanosized carriers?. European Journal of Pharmaceutical Sciences, 2018, 120, 199-211.	1.9	54
1135	Liposomal delivery of a Pin1 inhibitor complexed with cyclodextrins as new therapy for high-grade serous ovarian cancer. Journal of Controlled Release, 2018, 281, 1-10.	4.8	29
1136	pH-Sensitive Multiligand Gold Nanoplatform Targeting Carbonic Anhydrase IX Enhances the Delivery of Doxorubicin to Hypoxic Tumor Spheroids and Overcomes the Hypoxia-Induced Chemoresistance. ACS Applied Materials & Interfaces, 2018, 10, 17792-17808.	4.0	50
1137	Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2632-2643.	1.7	22
1138	Impact of the hypoxic phenotype on the uptake and efflux of nanoparticles by human breast cancer cells. Scientific Reports, 2018, 8, 12318.	1.6	18
1139	The Improved Delivery to Breast Cancer Based on a Novel Nanocarrier Modified with Highâ€Affinity Peptides Discovered by Phage Display. Advanced Healthcare Materials, 2018, 7, e1800269.	3.9	7

#	Article	IF	CITATIONS
1140	Binding of an amphiphilic phthalocyanine to pre-formed liposomes confers light-triggered cargo release. Journal of Materials Chemistry B, 2018, 6, 7298-7305.	2.9	30
1141	Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chemistry, 2018, 20, 3897-3907.	4.6	35
1142	Synthesis of next generation dual-responsive cross-linked nanoparticles and their application to anti-cancer drug delivery. Nanoscale, 2018, 10, 16062-16068.	2.8	12
1143	Liposomal therapies in oncology: does one size fit all?. Cancer Chemotherapy and Pharmacology, 2018, 82, 741-755.	1.1	18
1144	Lymphatic Transport and Lymph Node Location of Microspheres Subcutaneously Injected in the Vicinity of Tumors in a Rabbit Model of Breast Cancer. Pharmaceutical Research, 2018, 35, 191.	1.7	2
1145	Influences of nanocarrier morphology on therapeutic immunomodulation. Nanomedicine, 2018, 13, 1795-1811.	1.7	33
1146	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	3.9	161
1147	The case for protein PEGylation. , 2018, , 27-49.		9
1148	Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 2018, 10, 118.	2.0	573
1149	Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics, 2018, 8, 1591-1606.	4.6	88
1150	Effects of arginine-based surface modifications of liposomes for drug delivery in Caco-2 colon carcinoma cells. Biochemical Engineering Journal, 2018, 139, 8-14.	1.8	4
1151	Self-assembling biomaterials for theranostic applications. , 2018, , 533-561.		3
1152	Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS Applied Nano Materials, 2018, 1, 4358-4385.	2.4	68
1153	Formation of a protein corona influences the biological identity of nanomaterials. Reports of Practical Oncology and Radiotherapy, 2018, 23, 300-308.	0.3	60
1154	Photoresponsive Micelle-Incorporated Doxorubicin for Chemo-Photodynamic Therapy to Achieve Synergistic Antitumor Effects. Biomacromolecules, 2018, 19, 3301-3310.	2.6	30
1155	Polymer Nanovesicle-Mediated Delivery of MLN8237 Preferentially Inhibits Aurora Kinase A To Target RalA and Anchorage-Independent Growth in Breast Cancer Cells. Molecular Pharmaceutics, 2018, 15, 3046-3059.	2.3	11
1156	1H NMR Determination of Incorporated Porphyrin Location in Lipid Membranes of Liposomes. Bulletin of the Chemical Society of Japan, 2018, 91, 1337-1342.	2.0	13
1157	Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids. Langmuir, 2018, 34, 7805-7812.	1.6	31

#	Article	IF	CITATIONS
1158	Nanoparticles of Metalâ€Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Advanced Materials, 2018, 30, e1707365.	11.1	459
1159	Enzymatically Activated Glyco-Prodrugs of Doxorubicin Synthesized by a Catalysis-Free Diels–Alder Reaction. Bioconjugate Chemistry, 2018, 29, 2370-2381.	1.8	6
1160	Controlled-release nanotherapeutics: State of translation. Journal of Controlled Release, 2018, 284, 39-48.	4.8	47
1161	Human Biomolecular Corona of Liposomal Doxorubicin: The Overlooked Factor in Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 22951-22962.	4.0	51
1162	Hierarchical nanocomposites of graphene oxide and PEGylated protoporphyrin as carriers to load doxorubicin hydrochloride for trimodal synergistic therapy. Journal of Materials Chemistry B, 2018, 6, 4687-4696.	2.9	37
1163	Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 51-87.	0.1	4
1164	Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Advances, 2018, 8, 7697-7708.	1.7	40
1165	Advances in Biomaterials for Drug Delivery. Advanced Materials, 2018, 30, e1705328.	11.1	565
1167	Chloroquine and nanoparticle drug delivery: A promising combination. , 2018, 191, 43-49.		54
1168	Noncoding RNA-Targeted Therapeutics in Autoimmune Diseases: From Bench to Bedside. , 2018, , 359-386.		2
1169	Liposome-Based Drug Delivery for Brain Tumor Theranostics. , 2018, , 245-266.		3
1170	Nanotechnology approaches to pulmonary drug delivery. , 2018, , 221-253.		14
1171	Developing liposomal nanomedicines for treatment of patients with neuroblastoma. , 2018, , 361-411.		3
1172	Lipid-based nanomedicines. , 2018, , 509-528.		9
1173	Design of targeting peptides for nanodrugs for treatment of infectious diseases and cancer. , 2018, , 343-381.		1
1174	Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma. , 2018, , 687-722.		10
1175	Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 1-10.	2.0	60
1176	Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. International Journal of Pharmaceutics, 2018, 547, 648-655.	2.6	37

	Сіта	tion Report	
#	Article	IF	CITATIONS
1177	An azobenzene-based heteromeric prodrug for hypoxia-activated chemotherapy by regulating subcellular localization. Chemical Communications, 2018, 54, 7983-7986.	2.2	35
1178	Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir, 2019, 35, 1273-1283.	1.6	61
1179	Clinical usefulness of liposomal formulations in cancer therapy: lessons from the experiences of doxorubicin. Journal of Pharmaceutical Investigation, 2019, 49, 203-214.	2.7	41
1180	Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discovery Today, 2019, 24, 462-491.	3.2	73
1181	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5.7	529
1182	Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles. Nanoscale, 2019, 11, 15971-15983.	2.8	9
1183	Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Accounts of Chemical Research, 2019, 52, 2415-2426.	7.6	143
1184	Recent advances in the targeting of systemically administered non-viral gene delivery systems. Expert Opinion on Drug Delivery, 2019, 16, 1037-1050.	2.4	15
1185	Quantitative analysis of cholesterol oxidation products and desmosterol in parenteral liposomal pharmaceutical formulations. International Journal of Pharmaceutics, 2019, 569, 118576.	2.6	12
1186	Effects of linker and liposome anchoring on lactose-functionalized glycomacromolecules as multivalent ligands for binding galectin-3. RSC Advances, 2019, 9, 23484-23497.	1.7	17
1187	Controlling the size and shape of liposomal ciprofloxacin nanocrystals by varying the lipid bilayer composition and drug to lipid ratio. Journal of Colloid and Interface Science, 2019, 555, 361-372.	5.0	13
1188	Selective pericellular hydrogelation by the overexpression of an enzyme and a membrane receptor. Nanoscale, 2019, 11, 13714-13719.	2.8	30
1189	Bioactive Natural Products for the Management of Cancer: from Bench to Bedside. , 2019, , .		4
1190	<p>Development of a stable single-vial liposomal formulation for vincristine</p> . International Journal of Nanomedicine, 2019, Volume 14, 4461-4474.	3.3	12
1191	PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110362.	2.5	22
1192	Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. International Journal of Pharmaceutics, 2019, 568, 118499.	2.6	39
1193	Nanomedicinal delivery systems for intelligent treatment of hepatocellular carcinoma. Journal of Drug Delivery Science and Technology, 2019, 53, 101152.	1.4	1
1194	Comb-like dextran copolymers: A versatile strategy to coat highly porous MOF nanoparticles with a PEG shell. Carbohydrate Polymers, 2019, 223, 115085.	5.1	27

#	Article	IF	CITATIONS
1195	Development and characteristics of novel sonosensitive liposomes for vincristine bitartrate. Drug Delivery, 2019, 26, 724-731.	2.5	18
1197	PEGylated liposomes: immunological responses. Science and Technology of Advanced Materials, 2019, 20, 710-724.	2.8	287
1198	A tumor microenvironment model coupled with a mass spectrometry system to probe the metabolism of drug-loaded nanoparticles. Chemical Communications, 2019, 55, 10218-10221.	2.2	12
1199	PEGylated Î ² -cyclodextrins: Click synthesis and in vitro biological insights. Carbohydrate Polymers, 2019, 223, 115113.	5.1	11
1200	Nanomedicine and Drug Delivery Systems in Overcoming Resistance to Targeted Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 291-312.	0.1	0
1201	Drug Resistance in Cancer and Role of Nanomedicine-Based Natural Products. , 2019, , 177-218.		Ο
1202	Highly biocompatible thermosensitive nanocomposite gel for combined therapy of hepatocellular carcinoma via the enhancement of mitochondria related apoptosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102062.	1.7	13
1203	Doxorubicin and liposomal doxorubicin induce senescence by enhancing nuclear factor kappa B and mitochondrial membrane potential. Life Sciences, 2019, 232, 116677.	2.0	12
1204	Theranostics Based on Liposome: Looking Back and Forward. Nuclear Medicine and Molecular Imaging, 2019, 53, 242-246.	0.6	26
1205	Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. International Journal of Molecular Sciences, 2019, 20, 3642.	1.8	36
1206	Synthesis and characterization of acetyl curcumin-loaded core/shell liposome nanoparticles via an electrospray process for drug delivery, and theranostic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 518-530.	2.0	31
1207	The Delivery of a Wnt Pathway Inhibitor Toward CSCs Requires Stable Liposome Encapsulation and Delayed Drug Release in Tumor Tissues. Molecular Therapy, 2019, 27, 1558-1567.	3.7	18
1208	Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics, 2019, 9, 5595-5609.	4.6	37
1209	pH- and photothermal-driven multistage delivery nanoplatform for overcoming cancer drug resistance. Theranostics, 2019, 9, 3825-3839.	4.6	38
1210	Advanced in silico modeling explains pharmacokinetics and biodistribution of temoporfin nanocrystals in humans. Journal of Controlled Release, 2019, 308, 57-70.	4.8	27
1211	Smart Polymersomes as Intelligent Nanomedicines in Cancer Treatment. , 2019, , 343-371.		8
1212	Polymeric nanomaterial revolution in drug delivery systems: toward patient care. , 2019, , 33-58.		2
1213	Liposomal formulation of Galbanic acid improved therapeutic efficacy of pegylated liposomal Doxorubicin in mouse colon carcinoma. Scientific Reports, 2019, 9, 9527.	1.6	47

#	Article	IF	CITATIONS
1214	A Dual Drug Delivery Platform for Cancer–Bacteria Cotargeting. ACS Applied Bio Materials, 2019, 2, 5032-5041.	2.3	10
1215	Phospholipidâ€Free Small Unilamellar Vesicles for Drug Targeting to Cells in the Liver. Small, 2019, 15, 1901782.	5.2	12
1216	Tumor Drug Distribution after Local Drug Delivery by Hyperthermia, In Vivo. Cancers, 2019, 11, 1512.	1.7	28
1217	Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Frontiers in Immunology, 2019, 10, 2257.	2.2	32
1218	Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers, 2019, 11, 1627.	2.0	22
1219	Stimuli-Sensitive Cell Penetrating Peptide-Modified Nanocarriers. Processes, 2019, 7, 727.	1.3	7
1220	Discovery of a Novel Cabazitaxel Nanoparticle–Drug Conjugate (CRLX522) with Improved Pharmacokinetic Properties and Anticancer Effects Using a β-Cyclodextrin–PEG Copolymer Based Delivery Platform. Journal of Medicinal Chemistry, 2019, 62, 9541-9559.	2.9	7
1221	Clusters of Nanoscale Liposomes Modulate the Release of Encapsulated Species and Mimic the Compartmentalization Intrinsic in Cell Structures. ACS Applied Nano Materials, 2019, 2, 7134-7143.	2.4	11
1222	Intratumor Performance and Therapeutic Efficacy of PAMAM Dendrimers Carried by Clustered Nanoparticles. Nano Letters, 2019, 19, 8947-8955.	4.5	41
1223	Biomedical Applications of Nanoparticles. , 2019, , 113-132.		21
1224	Smart cancer nanomedicine. Nature Nanotechnology, 2019, 14, 1007-1017.	15.6	776
1225	Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg?. Frontiers in Oncology, 2019, 9, 1227.	1.3	47
1226	Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery. Pharmaceutics, 2019, 11, 588.	2.0	81
1227	Cancer Nanomedicine: A New Era of Successful Targeted Therapy. Journal of Nanomaterials, 2019, 2019, 1-13.	1.5	52
1229	Theranostic nanocarriers combining high drug loading and magnetic particle imaging. International Journal of Pharmaceutics, 2019, 572, 118796.	2.6	18
1230	A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics, 2019, 9, 6224-6238.	4.6	41
1231	Poly(Sarcosine) Surface Modification Imparts Stealth‣ike Properties to Liposomes. Small, 2019, 15, e1904716.	5.2	50
1232	Importance of thorough tissue and cellular level characterization of targeted drugs in the evaluation of pharmacodynamic effects. PLoS ONE, 2019, 14, e0224917.	1.1	3

CITATION REPORT ARTICLE IF CITATIONS Nanoengineering Materials for Biomedical Uses., 2019,,. 1233 2 Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS Nano, 2019, 13, 12470-12486. Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the 1235 9 2.6 Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids. Biomacromolecules, 2019, 20, 4546-4562. Rational Design of Nanocarriers for Intracellular Protein Delivery. Advanced Materials, 2019, 31, 11.1 e1902791. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. 134 4.8 Journal of Controlled Release, 2019, 315, 1-22. Sonoprinting liposomes on tumor spheroids by microbubbles and ultrasound. Journal of Controlled Release, 2019, 316, 79-92. 1238 4.8 Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track. Journal of 1239 1.4 37 Drug Delivery Science and Technology, 2019, 49, 527-533. Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. ACS Applied 1240 2.0 47 Polymer Materials, 2019, 1, 211-220. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Current Drug 0.7 220 Metabolism, 2019, 20, 416-429. 1242 Nanoscale systems for local drug delivery. Nano Today, 2019, 28, 100765. 6.2 Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine, 2019, 14, 1.7 40 1771-1786. Prolonged use of pegylated liposomal doxorubicin in gynecologic malignancies. Gynecologic 0.3 Oncology Reports, 2019, 29, 89-93. Liposome-Mediated Chemotherapeutic Delivery Is Synergistically Enhanced by Ternary Lipid 1245 1.6 9 Compositions and Cationic Lipids. Langmuir, 2019, 35, 12532-12542. Enhanced Intraliposomal Metallic Nanoparticle Payload Capacity Using Microfluidic-Assisted Self-Assembly. Langmuir, 2019, 35, 13318-13331. 1246 1.6 14 Optimizing design parameters of a peptide targeted liposomal nanoparticle in an in vivo multiple myeloma disease model after initial evaluation in vitro. Journal of Controlled Release, 2019, 311-312, 4.8 11 190-200. Innovative approaches for cancer treatment: current perspectives and new challenges. 1248 Ecancermedicalscience, 2019, 13, 961. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opinion on Drug 1249 2.4 120 Delivery, 2019, 16, 1205-1226.

1250	Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy. RSC Advances, 2019, 9, 26572-26581.	1.7	13
------	--	-----	----

1234

1237

1241

1243

1244

#	Article	IF	CITATIONS
1251	Bifunctional liposomes reduce the chemotherapy resistance of doxorubicin induced by reactive oxygen species. Biomaterials Science, 2019, 7, 4782-4789.	2.6	28
1252	Sub-10 nm Theranostic Unimolecular Micelles with High Tumor-Specific Accumulation, Retention, and Inhibitory Effect. ACS Applied Bio Materials, 2019, 2, 4142-4153.	2.3	12
1253	Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS Applied Bio Materials, 2019, 2, 4464-4470.	2.3	49
1254	Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. International Journal of Molecular Sciences, 2019, 20, 4706.	1.8	63
1255	Nanobiomaterials Used in Cancer Therapy: An Up-To-Date Overview. Molecules, 2019, 24, 3547.	1.7	81
1256	When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Medicinal Chemistry, 2019, 11, 2205-2231.	1.1	8
1257	Effect of surface charge on the size-dependent cellular internalization of liposomes. Chemistry and Physics of Lipids, 2019, 224, 104726.	1.5	26
1258	Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. Journal of Controlled Release, 2019, 296, 114-139.	4.8	36
1259	Micro/nanomachines: what is needed for them to become a real force in cancer therapy?. Nanoscale, 2019, 11, 6519-6532.	2.8	46
1260	The influence of trapping agents on the antitumor efficacy of irinotecan liposomes: head-to-head comparison of ammonium sulfate, sulfobutylether-β-cyclodextrin and sucrose octasulfate. Biomaterials Science, 2019, 7, 419-428.	2.6	24
1261	Nanoparticle-based CT visualization of pulmonary vasculature for minimally-invasive thoracic surgery planning. PLoS ONE, 2019, 14, e0209501.	1.1	3
1262	Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery, 2019, 10, 113-132.	1.2	102
1263	Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 2019, 55, 2731-2740.	2.2	68
1264	Recent Perspectives in Hot Melt Extrusion-Based Polymeric Formulations for Drug Delivery: Applications and Innovations. AAPS PharmSciTech, 2019, 20, 92.	1.5	26
1265	High Throughput Nanoliposome Formation Using 3D Printed Microfluidic Flow Focusing Chips. Advanced Materials Technologies, 2019, 4, 1800511.	3.0	41
1266	Proof-of-Concept Multistage Biomimetic Liposomal DNA Origami Nanosystem for the Remote Loading of Doxorubicin. ACS Medicinal Chemistry Letters, 2019, 10, 517-521.	1.3	36
1267	Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics, 2019, 11, 55.	2.0	280
1268	Sortagged anti-EGFR immunoliposomes exhibit increased cytotoxicity on target cells. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 203-212.	2.0	13

#	Article	IF	CITATIONS
1269	Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nature Reviews Chemistry, 2019, 3, 68-84.	13.8	145
1270	Transportation and Biointeraction Properties in Nanomaterials Across Biological Systems. , 2019, , 343-368.		5
1271	Exhausting tumor associated macrophages with sialic acid-polyethyleneimine-cholesterol modified liposomal doxorubicin for enhancing sarcoma chemotherapy. International Journal of Pharmaceutics, 2019, 558, 187-200.	2.6	17
1272	Co-delivery of DOX and PDTC by pH-sensitive nanoparticles to overcome multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 181, 185-197.	2.5	42
1273	Nanomedicines - Tiny particles and big challenges. Advanced Drug Delivery Reviews, 2019, 151-152, 23-43.	6.6	73
1274	Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. Journal of Controlled Release, 2019, 307, 331-341.	4.8	58
1275	Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. Journal of Controlled Release, 2019, 307, 247-260.	4.8	103
1276	Leveraging Surface Plasmon Resonance to Dissect the Interfacial Properties of Nanoparticles: Implications for Tissue Binding and Tumor Penetration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102024.	1.7	12
1277	Hybrid drug nanocrystals. Advanced Drug Delivery Reviews, 2019, 143, 115-133.	6.6	79
1278	Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Molecular Pharmacology, 2019, 96, 219-232.	1.0	211
1279	Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology, 2019, 30, 1731-1753.	2.0	27
1280	Heat-activated drug delivery increases tumor accumulation of synergistic chemotherapies. Journal of Controlled Release, 2019, 308, 197-208.	4.8	42
1281	Development of Liposomal Gemcitabine with High Drug Loading Capacity. Molecular Pharmaceutics, 2019, 16, 2858-2871.	2.3	44
1282	Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 22-36.	6.6	124
1283	Stefin A-functionalized liposomes as a system for cathepsins S and L-targeted drug delivery. Biochimie, 2019, 166, 94-102.	1.3	16
1284	The hard protein corona of stealth liposomes is sparse. Journal of Controlled Release, 2019, 307, 1-15.	4.8	51
1285	Induction of anti-cancer T cell immunity by in situ vaccination using systemically administered nanomedicines. Cancer Letters, 2019, 459, 192-203.	3.2	23
1286	Synthesis of Small Lipid Nanoparticles Using an Inkjet Mixing System Aiming to Reduce Drug Loss. Chemical Engineering and Technology, 2019, 42, 2061-2066.	0.9	5

#	Article	IF	CITATIONS
1287	Light-Induced Reactive-Oxygen-Species- (ROS-) Mediated Activation of Self-Assembled Nanoplatforms for On-Demand Drug Delivery. ACS Symposium Series, 2019, , 253-285.	0.5	1
1288	Bio-inspired drug-dominated supramolecular nanocomplex based on low molecular weight heparin for progressive tumor therapy. Carbohydrate Polymers, 2019, 220, 30-42.	5.1	8
1289	Sub-cytotoxic doses of pharmaceutical silica nanoparticles show significant impact on the proteome of HepG2 cells. Journal of Controlled Release, 2019, 306, 1-14.	4.8	3
1290	Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides. Molecular Pharmaceutics, 2019, 16, 2265-2277.	2.3	69
1291	A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS Central Science, 2019, 5, 808-820.	5.3	64
1292	Adding Nanotechnology to the Metastasis Treatment Arsenal. Trends in Pharmacological Sciences, 2019, 40, 403-418.	4.0	32
1293	Regulating Nanomedicine at the Food and Drug Administration. AMA Journal of Ethics, 2019, 21, E347-355.	0.4	62
1294	Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers, 2019, 11, 640.	1.7	441
1295	Stimuli-responsive polymer-modified liposomes and their application to DDS. , 2019, , 305-319.		4
1296	The suitability of liposomes for the delivery of hydrophobic drugs – A case study with curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 140, 20-28.	2.0	37
1297	Polymer–Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomaterials Science and Engineering, 2019, 5, 2307-2315.	2.6	29
1298	Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioengineering, 2019, 3, 011502.	3.3	164
1299	<p>Liposomes targeted to MHC-restricted antigen improve drug delivery and antimelanoma response</p> . International Journal of Nanomedicine, 2019, Volume 14, 2069-2089.	3.3	23
1300	Amphiphilic Poly[poly(ethylene glycol) methacrylate]s with OH Groups in the PEG Side Chains for Controlling Solution/Rheological Properties and toward Bioapplication. ACS Applied Bio Materials, 2019, 2, 1920-1930.	2.3	6
1301	Oily core/amphiphilic polymer shell nanocapsules change the intracellular fate of doxorubicin in breast cancer cells. Journal of Materials Chemistry B, 2019, 7, 6390-6398.	2.9	8
1302	ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: Light-triggered size-reducing and enhanced tumor penetration. Biomaterials, 2019, 211, 68-80.	5.7	107
1303	Biodistribution, Excretion, and Toxicity of Inorganic Nanoparticles. , 2019, , 3-26.		7
1304	Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. Journal of	4.8	184

	Сітаті	on Report	
# 1305	ARTICLE <p>Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy</p> . Biologics: Targets and Therapy, 2019, Volume 13, 33-51.	IF 3.0	CITATIONS
1306	Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers, 2019, 11, 597.	. 1.7	83
1307	Recent Progress in Applied Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 33-64.	0.4	2
1308	Dually responsive nanogels as smart carriers for improving the therapeutic index of doxorubicin for breast cancer. European Polymer Journal, 2019, 116, 445-452.	2.6	22
1309	A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. Journal of Nanobiotechnology, 2019, 17, 52.	4.2	14
1310	Optimization of Lecithin-Chitosan nanoparticles for simultaneous encapsulation of doxorubicin and piperine. Journal of Drug Delivery Science and Technology, 2019, 52, 204-214.	1.4	34
1311	A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. Journal of Drug Targeting, 2019, 27, 502-524.	2.1	20
1312	Surface Modification of Nanoparticles for Targeted Drug Delivery. , 2019, , .		27
1313	Tumor targeting and microenvironment-responsive multifunctional fusion protein for pro-apoptotic peptide delivery. Cancer Letters, 2019, 452, 38-50.	3.2	16
1314	Nanomaterials Derived From Phosphorus-Containing Polymers. , 2019, , 183-233.		4
1316	Nanostructured organic-organic bio-hybrid delivery systems. , 2019, , 341-374.		5
1317	Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biological and Pharmaceutical Bulletin, 2019, 42, 319-326.	0.6	33
1318	Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.	6.2	324
1319	Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Scientific Reports, 2019, 9, 2639.	1.6	88
1320	The State of the Art of Investigational and Approved Nanomedicine Products for Nucleic Acid Delivery. , 2019, , 421-456.		7
1321	Transformable nanotherapeutics enabled by ICG: towards enhanced tumor penetration under NIR light irradiation. Nanoscale, 2019, 11, 6217-6227.	2.8	26
1322	Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. Journal of Nanomaterials, 2019, 2019, 1-26.	1.5	570
1323	Cabazitaxel-Loaded Nanocarriers for Cancer Therapy with Reduced Side Effects. Pharmaceutics, 2019, 11, 141.	2.0	37

#	Article	IF	CITATIONS
1324	Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. Journal of Materials Chemistry B, 2019, 7, 2926-2937.	2.9	15
1325	PEGylation of lipophilic SN38 prodrug with DSPE-mPEG ₂₀₀₀ versus cremophor EL: comparative study for intravenous chemotherapy. Drug Delivery, 2019, 26, 354-362.	2.5	15
1326	The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 2019, 119, 4819-4880.	23.0	709
1327	Formation of enzymatic/redox-switching nanogates on mesoporous silica nanoparticles for anticancer drug delivery. Materials Science and Engineering C, 2019, 100, 855-861.	3.8	38
1328	The use of tail-anchored protein chimeras to enhance liposomal cargo delivery. PLoS ONE, 2019, 14, e0212701.	1.1	3
1329	Lipoamino acid-based cerasomes for doxorubicin delivery: Preparation and in vitro evaluation. Materials Science and Engineering C, 2019, 100, 724-734.	3.8	13
1330	Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs. Pharmaceutics, 2019, 11, 110.	2.0	49
1331	Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharmaceutica Sinica B, 2019, 9, 858-870.	5.7	53
1332	Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS Nano, 2019, 13, 4631-4639.	7.3	46
1333	Nanoliposomes Co-Encapsulating CT Imaging Contrast Agent and Photosensitizer for Enhanced, Imaging Guided Photodynamic Therapy of Cancer. Theranostics, 2019, 9, 1323-1335.	4.6	64
1334	Multifunctional hyaluronate – nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. Journal of Controlled Release, 2019, 303, 55-66.	4.8	24
1335	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	1.9	86
1336	Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Science and Technology of Advanced Materials, 2019, 20, 324-336.	2.8	135
1337	Molecular platforms for targeted drug delivery. International Review of Cell and Molecular Biology, 2019, 346, 1-50.	1.6	22
1338	Simple physics in and easy manipulating of the interfacial behavior of charged molecules on drug delivery vesicles. Materials Today Physics, 2019, 9, 100092.	2.9	22
1339	<p>Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives</p> . International Journal of Nanomedicine, 2019, Volume 14, 1937-1952.	3.3	284
1340	Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Delivery, 2019, 26, 443-458.	2.5	40
1341	Electrochemical Triggered Dissolution of Hydroxyapatite/Doxorubicin Nanocarriers. ACS Applied Bio Materials, 2019, 2, 1956-1966.	2.3	3

#	Article	IF	CITATIONS
1342	Fatty Acids of Enteromorpha intestinalis Emulsified Drug Delivery Nanoemulsion: Evaluation of Loading Mechanism and Release Kinetics for Drug Delivery. Journal of Cluster Science, 2019, 30, 813-825.	1.7	4
1343	Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 2316-2329.	2.6	19
1344	A comprehensive perspective of food nanomaterials. Advances in Food and Nutrition Research, 2019, 88, 1-45.	1.5	8
1345	Nanoparticle Therapy for Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 635-646.	1.1	106
1346	Shape and Phase Transitions in a PEGylated Phospholipid System. Langmuir, 2019, 35, 3999-4010.	1.6	25
1347	A Safeâ€byâ€Design Strategy towards Safer Nanomaterials in Nanomedicines. Advanced Materials, 2019, 31, e1805391.	11.1	109
1348	Effect of the concentration process on unloaded and doxorubicin loaded liposomal dispersions. International Journal of Pharmaceutics, 2019, 560, 385-393.	2.6	1
1349	Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics, 2019, 11, 71.	2.0	36
1350	Co-delivery of Doxorubicin and Ceramide in a Liposomal Formulation Enhances Cytotoxicity in Murine B16BL6 Melanoma Cell Lines. AAPS PharmSciTech, 2019, 20, 99.	1.5	27
1351	Drug Delivery for Cancer Immunotherapy and Vaccines. Pharmaceutical Nanotechnology, 2019, 6, 232-244.	0.6	18
1352	Formulations of Curcumin Nanoparticles for Brain Diseases. Biomolecules, 2019, 9, 56.	1.8	112
1353	Current Advances in Nanopharmaceuticals. Journal of Nanoscience and Nanotechnology, 2019, 19, 3686-3705.	0.9	14
1354	Nanoparticle Binding to Urokinase Receptor on Cancer Cell Surface Triggers Nanoparticle Disintegration and Cargo Release. Theranostics, 2019, 9, 884-899.	4.6	23
1355	Direct Comparison of Standard Transmission Electron Microscopy and Cryogenic-TEM in Imaging Nanocrystals Inside Liposomes. Molecular Pharmaceutics, 2019, 16, 1775-1781.	2.3	18
1356	Phospholipidic Colchicinoids as Promising Prodrugs Incorporated into Enzyme-Responsive Liposomes: Chemical, Biophysical, and Enzymological Aspects. Bioconjugate Chemistry, 2019, 30, 1098-1113.	1.8	18
1357	Dual-receptor targeted strategy in nanoparticle design achieves tumor cell selectivity through cooperativity. Nanoscale, 2019, 11, 4414-4427.	2.8	49
1358	Liposome-Based Drug Delivery for Lung Cancer. , 2019, , 123-160.		8
1359	Detection of Endotoxin in Nano-formulations Using Limulus Amoebocyte Lysate (LAL) Assays. Journal of Visualized Experiments, 2019, , .	0.2	6

		CITATION REPORT		
#	Article		IF	Citations
1360	Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colo Cancer with Enhanced Efficacy and Reduced Side Effects. Theranostics, 2019, 9, 747-760.	prectal	4.6	24
1361	The untapped potential of placenta-enriched molecules for diagnostic and therapeutic dev Placenta, 2019, 84, 28-31.	velopment.	0.7	30
1362	Polymer Nanoplatforms at Work in Prostate Cancer Therapy. Advanced Therapeutics, 201	9, 2, 1800122.	1.6	16
1363	Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Letters, 2019, 448	, 144-154.	3.2	113
1364	Fundamentals of Sustainable Nanostructural Materials at Bio-Nano Interface. , 2019, , 1-24	4.		2
1365	Antiâ€Tumor Activity of Doxorubicinâ€loaded Boehmite Nanocontainers. Zeitschrift Fur A Und Allgemeine Chemie, 2019, 645, 1372-1378.	norganische	0.6	1
1366	Polymer nanoparticle drug-nucleic acid combinations. , 2019, , 241-255.			4
1367	Developments in Bio-Inspired Nanomaterials for Therapeutic Delivery to Treat Hearing Loss in Cellular Neuroscience, 2019, 13, 493.	s. Frontiers	1.8	26
1368	Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therap 2019, 11, 1783.	y. Cancers,	1.7	69
1369	Co-Encapsulation of Chlorin e6 and Chemotherapeutic Drugs in a PEGylated Liposome Enl Efficacy of Tumor Treatment: Pharmacokinetics and Therapeutic Efficacy. Pharmaceutics, 2	nance the 2019, 11, 617.	2.0	16
1370	Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics, 2019 8001-8017.	, 9,	4.6	252
1371	Synthesis and Characterization of Thiolate-Protected Gold Nanoparticles of Controlled Dia Journal of Physical Chemistry C, 2019, 123, 28486-28493.	imeter.	1.5	15
1372	Recalcitrant Issues and New Frontiers in Nano-Pharmacology. Frontiers in Pharmacology, 2 1369.	2019, 10,	1.6	28
1373	FDA and the medical device clinical drug trials. , 2019, , 301-357.			0
1374	Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atheros management. Nanomedicine, 2019, 14, 3105-3122.	clerosis	1.7	12
1375	An Effective Multi-Stage Liposomal DNA Origami Nanosystem for In Vivo Cancer Therapy. 11, 1997.	Cancers, 2019,	1.7	35
1376	4. Redox-Responsive Self-Assembled Amphiphilic Materials: Review and Application to Biol Systems. , 2019, , 113-142.	ogical		0
1377	Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles theory and experiment. Nanoscale, 2019, 11, 20179-20193.	simulation,	2.8	8

#	Article	IF	CITATIONS
1378	Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers, 2019, 11, 1873.	1.7	40
1379	Development of Injectable PEGylated Liposome Encapsulating Disulfiram for Colorectal Cancer Treatment. Pharmaceutics, 2019, 11, 610.	2.0	53
1381	Overcoming Physiological Barriers to Nanoparticle Delivery—Are We There Yet?. Frontiers in Bioengineering and Biotechnology, 2019, 7, 415.	2.0	81
1382	Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 2019, 23, 20.	3.2	561
1383	Double-Edged Lipid Nanoparticles Combining Liposome-Bound TRAIL and Encapsulated Doxorubicin Showing an Extraordinary Synergistic Pro-Apoptotic Potential. Cancers, 2019, 11, 1948.	1.7	14
1384	Bolalipid-Doped Liposomes: Can Bolalipids Increase the Integrity of Liposomes Exposed to Gastrointestinal Fluids?. Pharmaceutics, 2019, 11, 646.	2.0	14
1385	Frontiers in pharmaceutical nanotechnology. Beilstein Journal of Nanotechnology, 2019, 10, 2538-2540.	1.5	7
1386	Biodistribution of PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. Biomacromolecules, 2019, 20, 625-634.	2.6	15
1387	Towards feedback-controlled nanomedicines for smart, adaptive delivery. Experimental Biology and Medicine, 2019, 244, 283-293.	1.1	10
1388	Nanoimmunotherapy to treat ischaemic heart disease. Nature Reviews Cardiology, 2019, 16, 21-32.	6.1	43
1389	Melanoma tumour vasculature heterogeneity: from mice models to human. Journal of Cancer Research and Clinical Oncology, 2019, 145, 589-597.	1.2	9
1390	Chemotherapeutic Drug Delivery and Quantitative Analysis of Proliferation, Apoptosis, and Migration in a Tissue-Engineered Three-Dimensional Microvessel Model of the Tumor Microenvironment. ACS Biomaterials Science and Engineering, 2019, 5, 633-643.	2.6	11
1391	Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coordination Chemistry Reviews, 2019, 381, 79-103.	9.5	111
1392	Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. Journal of Controlled Release, 2019, 294, 102-113.	4.8	175
1393	Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. ACS Nano, 2019, 13, 215-228.	7.3	125
1394	Time Interval of Two Injections and First-Dose Dependent of Accelerated Blood Clearance Phenomenon Induced by PEGylated Liposomal Gambogenic Acid: The Contribution of PEG-Specific IgM. Journal of Pharmaceutical Sciences, 2019, 108, 641-651.	1.6	22
1395	Blood Interactions, Pharmacokinetics, and Depth-Dependent Ablation of Rat Mammary Tumors with Photoactivatable, Liposomal Doxorubicin. Molecular Cancer Therapeutics, 2019, 18, 592-601.	1.9	17
1396	Biologically Inspired and Chemically Derived Methods for Glucoseâ€Responsive Insulin Therapy. Advanced Healthcare Materials, 2019, 8, e1801466.	3.9	53

	Сг	tation Report	
#	Article	IF	CITATIONS
1397	Ion quantification in liposomal drug products using high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165, 41-46.	1.4	8
1398	Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. International Journal of Pharmaceutics, 2019, 554, 161-178.	2.6	52
1399	Delivery of Cancer Nanotherapeutics. Bioanalysis, 2019, , 163-205.	0.1	2
1400	Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2019, 17, 849-865.	8.3	204
1401	Hybrid Nanostructures in Targeted Drug Delivery. , 2019, , 139-158.		11
1402	Nanotheranostics for Cancer Applications. Bioanalysis, 2019, , .	0.1	3
1403	Poly(d,l-lactide-co-glycolide) Nanoparticles as Delivery Platforms for TLR7/8 Agonist-Based Cancer Vaccine. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 715-724.	1.3	38
1404	Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 82-93.	1.7	40
1405	Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. Journal of Controlled Release, 2019, 296, 1-13.	4.8	61
1406	Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. Medicines (Basel, Switzerland), 2019, 6, 7.	0.7	47
1407	Assemblies of Peptide ytotoxin Conjugates for Tumorâ€Homing Chemotherapy. Advanced Functio Materials, 2019, 29, 1807446.	nal 7.8	44
1408	Starburst Diblock Polyprodrugs: Reduction-Responsive Unimolecular Micelles with High Drug Loading and Robust Micellar Stability for Programmed Delivery of Anticancer Drugs. Biomacromolecules, 2019, 20, 1190-1202.	2.6	44
1409	MDM2 antagonist-loaded targeted micelles in combination with doxorubicin: effective synergism against human glioblastoma via p53 re-activation. Journal of Drug Targeting, 2019, 27, 624-633.	2.1	11
1410	Cell mimetic liposomal nanocarriers for tailored delivery of vascular therapeutics. Chemistry and Physics of Lipids, 2019, 218, 149-157.	1.5	10
1411	Lipids and polymers in pharmaceutical technology: Lifelong companions. International Journal of Pharmaceutics, 2019, 558, 128-142.	2.6	101
1412	In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. International Journal of Pharmaceutics, 2019, 558, 311-318.	2.6	35
1413	Nanolipid Materials for Drug Delivery Systems. , 2019, , 137-163.		14
1414	Nano Drugs. , 2019, , 523-551.		1

#	Article	IF	CITATIONS
1415	Effect of Glucose on Liposome–Plasma Protein Interactions: Relevance for the Physiological Response of Clinically Approved Liposomal Formulations. Advanced Biology, 2019, 3, e1800221.	3.0	11
1416	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Advanced Drug Delivery Reviews, 2019, 138, 259-275.	6.6	146
1417	Nanopharmaceuticals as Drug-Delivery Systems. , 2019, , 133-154.		11
1418	Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327-336.	2.6	12
1419	Nanotechnology in Targeted Drug Delivery and Therapeutics. , 2019, , 357-409.		17
1420	Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Delivery and Translational Research, 2019, 9, 404-413.	3.0	56
1421	A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials, 2019, 188, 118-129.	5.7	62
1422	Oral Nanotherapeutics for Cancer with Innovations in Lipid and Polymeric Nanoformulations. Bioanalysis, 2019, , 207-229.	0.1	0
1423	Cysteine-Directed Bioconjugation of a Platinum(II)–Acridine Anticancer Agent. Inorganic Chemistry, 2019, 58, 43-46.	1.9	10
1424	Engineering lymphocytes with RNAi. Advanced Drug Delivery Reviews, 2019, 141, 55-66.	6.6	21
1425	Exosome as a Novel Shuttle for Delivery of Therapeutics across Biological Barriers. Molecular Pharmaceutics, 2019, 16, 24-40.	2.3	163
1426	Solid State Characterization of Ciprofloxacin Liposome Nanocrystals. Molecular Pharmaceutics, 2019, 16, 184-194.	2.3	12
1427	Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology, 2019, 191, 13-17.	1.7	13
1428	Future of nanomedicines for treating respiratory diseases. Expert Opinion on Drug Delivery, 2019, 16, 59-68.	2.4	19
1429	Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery, 2019, 16, 69-78.	2.4	364
1430	The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proofâ€of oncept Clinical Study. Advanced Materials, 2019, 31, e1803335.	11.1	116
1431	Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Advanced Drug Delivery Reviews, 2019, 143, 161-176.	6.6	95
1432	Physiologically Based Pharmacokinetic Modeling of Nanoparticles. Journal of Pharmaceutical Sciences, 2019, 108, 58-72.	1.6	105

#	Article	IF	CITATIONS
1433	Mobile Microrobots for Active Therapeutic Delivery. Advanced Therapeutics, 2019, 2, 1800064.	1.6	158
1434	The multifaceted role of autophagy in cancer and the microenvironment. Medicinal Research Reviews, 2019, 39, 517-560.	5.0	146
1435	Composite Hydrogel Embedded with Porous Microspheres for Long-Term pH-Sensitive Drug Delivery. Tissue Engineering - Part A, 2019, 25, 172-182.	1.6	8
1436	Thermoresponsive polymer nanocarriers for biomedical applications. Advanced Drug Delivery Reviews, 2019, 138, 167-192.	6.6	256
1437	Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Annals of Biomedical Engineering, 2019, 47, 39-59.	1.3	37
1438	Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxidants and Redox Signaling, 2019, 30, 762-785.	2.5	7
1439	Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering - Part A, 2019, 25, 91-112.	1.6	68
1440	Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today, 2020, 25, 107-125.	3.2	74
1441	Uptake and release profiles of PEGylated liposomal doxorubicin nanoparticles: A comprehensive picture based on separate determination of encapsulated and total drug concentrations in tissues of tumor-bearing mice. Talanta, 2020, 208, 120358.	2.9	16
1442	Longitudinal and quantitative assessment platform for concurrent analysis of anti-tumor efficacy and cardiotoxicity of nano-formulated medication inÂvivo. Analytica Chimica Acta, 2020, 1095, 129-137.	2.6	10
1443	Grand challenges in nanomedicine. Materials Science and Engineering C, 2020, 106, 110302.	3.8	90
1444	Targeted Exosomes for Drug Delivery: Biomanufacturing, Surface Tagging, and Validation. Biotechnology Journal, 2020, 15, e1900163.	1.8	52
1445	Design Considerations and Assays for Hemocompatibility of FDA-Approved Nanoparticles. Seminars in Thrombosis and Hemostasis, 2020, 46, 637-652.	1.5	11
1446	Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons, 2020, 5, 25-42.	4.1	80
1447	Reimaging biological barriers affecting distribution and extravasation of PEG/peptide- modified liposomes in xenograft SMMC7721 tumor. Acta Pharmaceutica Sinica B, 2020, 10, 546-556.	5.7	11
1448	Acetylated Hyaluronic Acid-Poly(L-lactic acid) Conjugate Nanoparticles for Inhibition of Doxorubicinol Production from Doxorubicin. Macromolecular Research, 2020, 28, 67-73.	1.0	5
1449	Embedment of liposomes into chitosan physical hydrogel for the delayed release of antibiotics or anaesthetics, and its first ESEM characterization. Carbohydrate Polymers, 2020, 229, 115532.	5.1	19
1450	Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles. Clinica Chimica Acta, 2020, 501, 102-111.	0.5	26

#	Article	IF	CITATIONS
1451	Endogenous nucleotide as drug carrier: base-paired guanosine-5′-monophosphate:pemetrexed vesicles with enhanced anticancer capability. Science China Chemistry, 2020, 63, 244-253.	4.2	6
1452	The Benefits of Macromolecular/Supramolecular Approaches in Hydrogen Sulfide Delivery: A Review of Polymeric and Self-Assembled Hydrogen Sulfide Donors. Antioxidants and Redox Signaling, 2020, 32, 79-95.	2.5	32
1453	The potential antiâ€infective applications of metal oxide nanoparticles: A systematic review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1592.	3.3	70
1454	Nanoinformatics in Drug Delivery. Israel Journal of Chemistry, 2020, 60, 1108-1117.	1.0	4
1455	Critical considerations for targeting colorectal liver metastases with nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1588.	3.3	14
1456	Analytical centrifugation. , 2020, , 225-247.		3
1457	Phosphatidylserine (PS) and phosphatidylglycerol (PG) nanodispersions as potential anti-inflammatory therapeutics: Comparison of in vitro activity and impact of pegylation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102096.	1.7	19
1458	Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102110.	1.7	54
1459	Liposomes as Anticancer Therapeutic Drug Carrier's Systems: More than a Tour de Force. Current Nanomedicine, 2020, 10, 178-185.	0.2	8
1460	Fabrication of advanced parenteral drug-delivery systems. , 2020, , 47-84.		4
1460 1461	Fabrication of advanced parenteral drug-delivery systems. , 2020, , 47-84. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112.	1.7	4 36
	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020,	1.7 2.3	
1461	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational		36
1461 1462	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today, 2020, 19, 100552. Development of functional liposomes by modification of stimuli-responsive materials and their	2.3	36 27
1461 1462 1463	 Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today, 2020, 19, 100552. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine 	2.3 2.9	36 27 79
1461 1462 1463 1464	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today, 2020, 19, 100552. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809. Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology,	2.3 2.9 2.8	36 27 79 9
1461 1462 1463 1464 1465	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today, 2020, 19, 100552. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1093-1107. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809. Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with	2.3 2.9 2.8 4.2	 36 27 79 9 26

#	Article	IF	CITATIONS
1469	Alpha-tocopheryl succinate improves encapsulation, pH-sensitivity, antitumor activity and reduces toxicity of doxorubicin-loaded liposomes. European Journal of Pharmaceutical Sciences, 2020, 144, 105205.	1.9	22
1470	Magnetic Hybrid Wax Nanocomposites as Externally Controlled Theranostic Vehicles: High MRI Enhancement and Synergistic Magnetically Assisted Thermo/Chemo Therapy. Chemistry - A European Journal, 2020, 26, 4531-4538.	1.7	12
1471	Indium-111 labelling of liposomal HEGF for radionuclide delivery via ultrasound-induced cavitation. Journal of Controlled Release, 2020, 319, 222-233.	4.8	9
1472	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	3.9	50
1473	Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. , 2020, 207, 107456.		42
1474	A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 2020, 317, 347-374.	4.8	53
1475	Characterization of doxorubicin liposomal formulations for size-based distribution of drug and excipients using asymmetric-flow field-flow fractionation (AF4) and liquid chromatography-mass spectrometry (LC-MS). International Journal of Pharmaceutics, 2020, 574, 118906.	2.6	16
1476	Biodegradable hybrid block copolymer – lipid vesicles as potential drug delivery systems. Journal of Colloid and Interface Science, 2020, 562, 418-428.	5.0	48
1477	Synthesis, characterization and in vitro toxicity evaluation of doxorubicin-loaded magnetoliposomes on MCF-7 breast cancer cell line. Journal of Drug Delivery Science and Technology, 2020, 55, 101447.	1.4	14
1478	Combining Doxorubicin-Loaded PEGylated Poly(Lactide-co-glycolide) Nanoparticles with Checkpoint Inhibition Safely Enhances Therapeutic Efficacy in a Melanoma Model. ACS Biomaterials Science and Engineering, 2020, 6, 2659-2667.	2.6	15
1479	Imaging-assisted anticancer nanotherapy. Theranostics, 2020, 10, 956-967.	4.6	40
1480	Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance. Asian Journal of Pharmaceutical Sciences, 2020, 15, 646-660.	4.3	36
1481	pH-responsive chimeric liposomes: From nanotechnology to biological assessment. International Journal of Pharmaceutics, 2020, 574, 118849.	2.6	8
1482	Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. Journal of Controlled Release, 2020, 317, 109-117.	4.8	65
1483	A Multifunctional Lipid Incorporating Active Targeting and Dual-Control Release Capabilities for Precision Drug Delivery. ACS Applied Materials & amp; Interfaces, 2020, 12, 70-85.	4.0	21
1484	Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjugate Chemistry, 2020, 31, 315-331.	1.8	82
1485	Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. , 2020, , 37-53.		39
1486	Magnetic nanoparticles. , 2020, , 195-221.		12

#	Article	IF	CITATIONS
1487	Metal-shell nanocapsules for the delivery of cancer drugs. Journal of Colloid and Interface Science, 2020, 567, 171-180.	5.0	17
1488	What does the future hold for chemotherapy with the use of lipid-based nanocarriers?. Future Oncology, 2020, 16, 81-84.	1.1	6
1489	A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine, 2020, 15, 41-54.	1.7	30
1490	Tuning the Density of Zwitterionic Polymer Brushes on PET Fabrics by Aminolysis: Effect on Antifouling Performances. Polymers, 2020, 12, 6.	2.0	13
1491	Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials, 2020, 232, 119707.	5.7	138
1492	Drug-Loaded Lipid-Coated Hybrid Organic-Inorganic "Stealth―Nanoparticles for Cancer Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1027.	2.0	19
1493	Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells, 2020, 9, 2191.	1.8	66
1494	Active Transportation of Liposome Enhances Tumor Accumulation, Penetration, and Therapeutic Efficacy. Small, 2020, 16, e2004172.	5.2	89
1495	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	5.6	47
1496	Clinical Applications of Tumor-targeted Systems. , 2020, , 437-456.		1
1497	Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy. Chemistry and Physics of Lipids, 2020, 233, 104992.	1.5	4
1498	Green Synthesis of Nanoparticles: Applications and Prospects. , 2020, , .		4
1499	Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. Pharmaceutics, 2020, 12, 912.	2.0	13
1500	Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. Advanced Therapeutics, 2020, 3, 2000178.	1.6	21
1501	Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. Journal of Controlled Release, 2020, 328, 985-999.	4.8	33
1502	Cytopharmaceuticals: An emerging paradigm for drug delivery. Journal of Controlled Release, 2020, 328, 313-324.	4.8	25
1503	New approaches for targeting platinum-resistant ovarian cancer. Seminars in Cancer Biology, 2021, 77, 167-181.	4.3	38
1504	Interface cisplatin-crosslinked doxorubicin-loaded triblock copolymer micelles for synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111334.	2.5	10

щ		IF	CITATIONS
#	ARTICLE Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In	IF	CITATIONS
1505	Vitro Efficacy of Carfilzomib. Pharmaceutical Research, 2020, 37, 213.	1.7	8
1506	Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. International Journal of Pharmaceutics, 2020, 590, 119926.	2.6	37
1507	Light Scattering as an Easy Tool to Measure Vesicles Weight Concentration. Membranes, 2020, 10, 222.	1.4	7
1508	When liposomes met antibodies: Drug delivery and beyond. Advanced Drug Delivery Reviews, 2020, 154-155, 151-162.	6.6	51
1509	Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale, 2020, 12, 21034-21059.	2.8	66
1510	Clinical failure of nanoparticles in cancer: mimicking nature's solutions. Nanomedicine, 2020, 15, 2311-2324.	1.7	16
1511	Development of Liposomal Vesicles for Osimertinib Delivery to EGFR Mutation—Positive Lung Cancer Cells. Pharmaceutics, 2020, 12, 939.	2.0	15
1512	Barriers for Tumor Drug Delivery. , 2020, , 5-26.		1
1514	Compositional inhomogeneity of drug delivery liposomes quantified at the single liposome level. Acta Biomaterialia, 2020, 118, 207-214.	4.1	12
1515	Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Applied Nano Materials, 2020, 3, 9542-9559.	2.4	30
1516	Paclitaxel and betulonic acid synergistically enhance antitumor efficacy by forming co-assembled nanoparticles. Biochemical Pharmacology, 2020, 182, 114232.	2.0	13
1517	Improved antitumor activity and tolerability of cabazitaxel derived remote-loading liposomes. International Journal of Pharmaceutics, 2020, 589, 119814.	2.6	8
1518	Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today, 2020, 35, 100970.	6.2	86
1519	TRAIL therapy and prospective developments for cancer treatment. Journal of Controlled Release, 2020, 326, 335-349.	4.8	39
1520	Opportunities and challenges in commercial pharmaceutical liposome applications. Advanced Drug Delivery Reviews, 2020, 154-155, 2-12.	6.6	50
1521	Doxorubicin-loaded micelles with high drug-loading capacity and stability based on zwitterionic oligopeptides. New Journal of Chemistry, 2020, 44, 12633-12638.	1.4	6
1522	N-Alkylisatin-Loaded Liposomes Target the Urokinase Plasminogen Activator System in Breast Cancer. Pharmaceutics, 2020, 12, 641.	2.0	11
1523	Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics, 2020, 12, 637.	2.0	6

#	Article	IF	CITATIONS
1524	Lipid-based microbubbles and ultrasound for therapeutic application. Advanced Drug Delivery Reviews, 2020, 154-155, 236-244.	6.6	42
1525	Light-Triggered Trafficking to the Cell Nucleus of a Cationic Polyamidoamine Functionalized with Ruthenium Complexes. ACS Applied Materials & Interfaces, 2020, 12, 34576-34587.	4.0	6
1526	Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Advances in Colloid and Interface Science, 2020, 277, 102121.	7.0	25
1527	Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. Journal of Drug Delivery Science and Technology, 2020, 59, 101899.	1.4	24
1528	A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 153-165.	2.0	15
1529	Microparticles. , 2020, , 431-451.		2
1530	Drug Delivery Systems. , 2020, , 1237-1266.		9
1531	From 2D to 3D Cancer Cell Models—The Enigmas of Drug Delivery Research. Nanomaterials, 2020, 10, 2236.	1.9	50
1532	Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules, 2020, 25, 5294.	1.7	57
1533	Identifying Differing Intracellular Cargo Release Mechanisms by Monitoring InÂVitro Drug Delivery from MOFs in Real Time. Cell Reports Physical Science, 2020, 1, 100254.	2.8	19
1534	Biomaterials for Drug Delivery: Sources, Classification, Synthesis, Processing, and Applications. , 0, , .		8
1535	Organâ€onâ€aâ€Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. Small, 2020, 16, e2003517.	5.2	80
1536	Tumor-Microenvironment- Responsive Size-Shrinkable Drug-Delivery Nanosystems for Deepened Penetration Into Tumors. Frontiers in Molecular Biosciences, 2020, 7, 576420.	1.6	25
1537	<p>Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 9447-9467.	3.3	51
1538	Strategies for altering lipid self-assembly to trigger liposome cargo release. Chemistry and Physics of Lipids, 2020, 232, 104966.	1.5	18
1539	Fabrication and characterization of sterically stabilized liposomes of topotecan. Future Journal of Pharmaceutical Sciences, 2020, 6, .	1.1	6
1540	Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules, 2020, 25, 5672.	1.7	124
1541	The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. Journal of Controlled Release, 2020, 328, 817-833.	4.8	14

#	Article	IF	CITATIONS
1542	Pro-organic radical contrast agents ("pro-ORCAsâ€) for real-time MRI of pro-drug activation in biological systems. Polymer Chemistry, 2020, 11, 4768-4779.	1.9	20
1543	Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose-Response, 2020, 18, 155932582093616.	0.7	85
1544	Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics, 2020, 578, 119098.	2.6	44
1545	Advances and limitations of drug delivery systems formulated as eye drops. Journal of Controlled Release, 2020, 321, 1-22.	4.8	175
1546	Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. Frontiers in Bioengineering and Biotechnology, 2020, 8, 690.	2.0	13
1547	<p>Ultrasound Combined with Core Cross-Linked Nanosystem for Enhancing Penetration of Doxorubicin Prodrug/Beta-Lapachone into Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 4825-4845.	3.3	15
1548	Nuclear imaging approaches facilitating nanomedicine translation. Advanced Drug Delivery Reviews, 2020, 154-155, 123-141.	6.6	41
1549	Aptamers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, 2020, , .	0.6	1
1550	Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake <i>in vivo</i> . Theranostics, 2020, 10, 8143-8161.	4.6	17
1551	MUC1 Aptamer apped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Tripleâ€Negative Breast Cancer. Chemistry - A European Journal, 2020, 26, 16318-16327.	1.7	16
1552	Stimuliâ€Responsive Biomaterials for Vaccines and Immunotherapeutic Applications. Advanced Therapeutics, 2020, 3, 2000129.	1.6	27
1553	Green synthesis of gold nanoparticles coated doxorubicin liposomes using procyanidins for light–controlled drug release. Advanced Powder Technology, 2020, 31, 3640-3649.	2.0	10
1554	Mechanistic Insights into the Release of Doxorubicin from Graphene Oxide in Cancer Cells. Nanomaterials, 2020, 10, 1482.	1.9	20
1555	Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Advanced Drug Delivery Reviews, 2020, 154-155, 163-175.	6.6	332
1556	Nanomedicine progress in thrombolytic therapy. Biomaterials, 2020, 258, 120297.	5.7	62
1557	General Nanomedicine Platform by Solvent-Mediated Disassembly/Reassembly of Scalable Natural Polyphenol Colloidal Spheres. ACS Applied Materials & Interfaces, 2020, 12, 37914-37928.	4.0	25
1558	Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Applied Materials & Interfaces, 2020, 12, 38887-38898.	4.0	23
1559	Dimeric prodrug-based nanomedicines for cancer therapy. Journal of Controlled Release, 2020, 326, 510-522.	4.8	73

# 1560	ARTICLE A fluorous biphase drug delivery system triggered by low frequency ultrasound: controlled release from perfluorous discoidal porous silicon particles. Nanoscale Advances, 2020, 2, 3561-3569.	IF 2.2	Citations
1561	Protein-coated corrole nanoparticles for the treatment of prostate cancer cells. Cell Death Discovery, 2020, 6, 67.	2.0	19
1562	Optimization and efficacy study of synergistic vincristine coloaded liposomal doxorubicin against breast and lung cancer. Nanomedicine, 2020, 15, 2585-2607.	1.7	11
1563	Preparation and Drug Entrapment Properties of Asymmetric Liposomes Containing Cationic and Anionic Lipids. Langmuir, 2020, 36, 12521-12531.	1.6	13
1564	Adjuvant Antitumor Immunity Contributes to the Overall Antitumor Effect of Pegylated Liposomal Doxorubicin (Doxil®) in C26 Tumor-Bearing Immunocompetent Mice. Pharmaceutics, 2020, 12, 990.	2.0	5
1565	The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated. Physical Chemistry Chemical Physics, 2020, 22, 27955-27965.	1.3	55
1566	Issues affecting nanomedicines on the way from the bench to the market. Journal of Materials Chemistry B, 2020, 8, 10681-10685.	2.9	14
1567	Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery, 2020, 27, 1474-1490.	2.5	71
1568	Continuous-Flow Production of Liposomes with a Millireactor under Varying Fluidic Conditions. Pharmaceutics, 2020, 12, 1001.	2.0	32
1569	Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics, 2020, 12, 1007.	2.0	43
1570	Person-Specific Biomolecular Coronas Modulate Nanoparticle Interactions with Immune Cells in Human Blood. ACS Nano, 2020, 14, 15723-15737.	7.3	55
1571	Design and Characterization of Glyceryl Monooleate-Nanostructures Containing Doxorubicin Hydrochloride. Pharmaceutics, 2020, 12, 1017.	2.0	27
1572	Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances, 2020, 8, 100087.	2.5	21
1573	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	6.2	135
1574	A Pilot Study on Efficacy of Lipid Bubbles for Theranostics in Dogs with Tumors. Cancers, 2020, 12, 2423.	1.7	5
1575	Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS Omega, 2020, 5, 21162-21171.	1.6	28
1576	An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. Journal of Pharmaceutical Innovation, 2020, , 1-17.	1.1	10
1577	The Basement Membrane in a 3D Breast Acini Model Modulates Delivery and Anti-Proliferative Effects of Liposomal Anthracyclines. Pharmaceuticals, 2020, 13, 256.	1.7	3

#	Article	IF	Citations
1578	Exploiting nanoscale cooperativity for precision medicine. Advanced Drug Delivery Reviews, 2020, 158, 63-72.	6.6	17
1579	Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review. International Journal of Biological Macromolecules, 2020, 163, 2145-2161.	3.6	66
1580	Encapsulated doxorubicin crystals influence lysolipid temperature-sensitive liposomes release and therapeutic efficacy in vitro and in vivo. Journal of Controlled Release, 2020, 328, 665-678.	4.8	14
1581	Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opinion on Drug Delivery, 2020, 17, 1597-1613.	2.4	22
1582	Inverse Electron Demand Diels–Alder Reactions in the Liposomal Membrane Accelerates Release of the Encapsulated Drugs. Langmuir, 2020, 36, 10750-10755.	1.6	6
1583	Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes. Langmuir, 2020, 36, 10438-10447.	1.6	24
1584	Mastering the Tools: Natural versus Artificial Vesicles in Nanomedicine. Advanced Healthcare Materials, 2020, 9, e2000731.	3.9	34
1585	Role of the complement cascade in the biological fate of liposomes in rodents. Nanoscale, 2020, 12, 18875-18884.	2.8	9
1587	Application of a Scavenger Receptor A1-Targeted Polymeric Prodrug Platform for Lymphatic Drug Delivery in HIV. Molecular Pharmaceutics, 2020, 17, 3794-3812.	2.3	9
1588	Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics, 2020, 12, 849.	2.0	75
1589	Efficiency of Different Treatment Regimens Combining Anti-tumor and Anti-inflammatory Liposomes for Metastatic Breast Cancer. AAPS PharmSciTech, 2020, 21, 259.	1.5	11
1590	Gap Junction Liposomes for Efficient Delivery of Chemotherapeutics to Solid Tumors. ACS Biomaterials Science and Engineering, 2020, 6, 4851-4857.	2.6	8
1591	Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1011.	2.0	8
1592	Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers, 2020, 12, 2890.	2.0	17
1593	Building Blocks to Design Liposomal Delivery Systems. International Journal of Molecular Sciences, 2020, 21, 9559.	1.8	22
1594	The Phospholipid Research Center: Current Research in Phospholipids and Their Use in Drug Delivery. Pharmaceutics, 2020, 12, 1235.	2.0	67
1595	<p>Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors</p> . International Journal of Nanomedicine, 2020, Volume 15, 10183-10197.	3.3	36
1596	Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Advances, 2020, 10, 42098-42115.	1.7	25

#	Article	IF	Citations
1597	Nanobiotechnology and Its Application in Nanomedicine: An Overview. , 2020, , 3-25.		3
1598	<p>Efficacy of Combination Therapy with Linalool and Doxorubicin Encapsulated by Liposomes as a Two-in-One Hybrid Carrier System for Epithelial Ovarian Carcinoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 8427-8436.	3.3	7
1599	Phage Capsids as Gated, Long-Persistence, Uniform Drug Delivery Vehicles. , 2020, , .		0
1600	Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Science Advances, 2020, 6, .	4.7	147
1601	In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. Nanomaterials, 2020, 10, 2177.	1.9	19
1602	Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, 2020, , .	0.2	2
1603	Fluorescence imaging-guided multifunctional liposomes for tumor-specific phototherapy for laryngeal carcinoma. Biomaterials Science, 2020, 8, 3443-3453.	2.6	17
1604	Seedless synthetic branched gold nanoshells for chemo-thermal antitumor therapy. Journal of Materials Chemistry B, 2020, 8, 5155-5166.	2.9	5
1605	Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect, 2020, 5, 5537-5551.	0.7	9
1606	Current status of inÂvivo bioanalysis of nano drug delivery systems. Journal of Pharmaceutical Analysis, 2020, 10, 221-232.	2.4	32
1607	Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Advanced Healthcare Materials, 2020, 9, e2000261.	3.9	11
1608	Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. Nano Letters, 2020, 20, 4177-4187.	4.5	81
1609	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14957-14964.	7.2	44
1610	Magnetic Targeting and Ultrasound Activation of Liposome–Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies. ACS Applied Materials & Interfaces, 2020, 12, 23737-23751.	4.0	66
1611	Sustainable Agriculture Reviews 44. Sustainable Agriculture Reviews, 2020, , .	0.6	2
1612	Targeting CD4 ⁺ Cells with Anti-CD4 Conjugated Mertansine-Loaded Nanogels. Biomacromolecules, 2020, 21, 2473-2481.	2.6	17
1613	Molecular Dynamics Simulations Provide Insight into the Loading Efficiency of Proresolving Lipid Mediators Resolvin D1 and D2 in Cell Membrane-Derived Nanovesicles. Molecular Pharmaceutics, 2020, 17, 2155-2164.	2.3	10
1614	Lipid-encapsulated siRNA for hepatocyte-directed treatment of advanced liver disease. Cell Death and Disease, 2020, 11, 343.	2.7	21

	CHAHON R		
# 1615	ARTICLE Targeted hyperthermia with plasmonic nanoparticles. Frontiers of Nanoscience, 2020, 16, 307-352.	IF 0.3	CITATIONS 8
1616	Influence of hydrophobic Au nanoparticles on SOPC lipid model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125090.	2.3	7
1617	Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules, 2020, 25, 2193.	1.7	413
1618	Heritable modifiers of the tumor microenvironment influence nanoparticle uptake, distribution and response to photothermal therapy. Theranostics, 2020, 10, 5368-5383.	4.6	15
1619	Safety Considerations of Cancer Nanomedicine—A Key Step toward Translation. Small, 2020, 16, e2000673.	5.2	41
1620	Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTech, 2020, 21, 132.	1.5	7
1621	Surface Modification of Liposomes Using IR700 Enables Efficient Controlled Contents Release Triggered by Near-IR Light. Biological and Pharmaceutical Bulletin, 2020, 43, 736-741.	0.6	6
1622	<p>Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 3099-3120.	3.3	108
1623	Bispecific antibody (HER2Â×ÂmPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Acta Biomaterialia, 2020, 111, 386-397.	4.1	12
1624	Tumor Targeting by α _v β ₃ -Integrin-Specific Lipid Nanoparticles Occurs <i>via</i> Phagocyte Hitchhiking. ACS Nano, 2020, 14, 7832-7846.	7.3	69
1625	Nanoparticle–hydrogel superstructures for biomedical applications. Journal of Controlled Release, 2020, 324, 505-521.	4.8	117
1626	Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. Materials Science and Engineering C, 2020, 115, 111116.	3.8	17
1627	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie, 2020, 132, 15067-15074.	1.6	15
1628	Sustainable release of nanodrugs: A new biosafe approach. , 2020, , 603-615.		2
1629	Nanomedicine to target multidrug resistant tumors. Drug Resistance Updates, 2020, 52, 100704.	6.5	73
1630	HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine, 2020, 15, 1437-1452.	1.7	12
1631	Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Advanced Drug Delivery Reviews, 2020, 157, 142-160.	6.6	410
1632	Nanotechnology for angiogenesis: opportunities and challenges. Chemical Society Reviews, 2020, 49, 5008-5057.	18.7	135

#	Article	IF	Citations
1633	Functional smart hybrid nanostructures based nanotheranostic approach for advanced cancer treatment. Applied Surface Science, 2020, 527, 146809.	3.1	26
1634	Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. International Journal of Pharmaceutics, 2020, 586, 119541.	2.6	13
1635	Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Advanced Drug Delivery Reviews, 2020, 156, 65-79.	6.6	15
1636	Application of mesenchymal stem cell exosomes and their drugâ€loading systems in acute liver failure. Journal of Cellular and Molecular Medicine, 2020, 24, 7082-7093.	1.6	26
1637	Colloids for nanobiotechnology: An introduction. Frontiers of Nanoscience, 2020, 16, 1-7.	0.3	1
1638	Characterization and Therapeutic Effect of a pH Stimuli Responsive Polymeric Nanoformulation for Controlled Drug Release. Polymers, 2020, 12, 1265.	2.0	9
1639	An overview of chondrosarcoma with a focus on nanoscale therapeutics. Journal of Pharmaceutical Investigation, 2020, 50, 537-552.	2.7	5
1640	Mitochondrial Delivery of an Anticancer Drug Via Systemic Administration Using a Mitochondrial Delivery System That Inhibits the Growth of Drug-Resistant Cancer Engrafted on Mice. Journal of Pharmaceutical Sciences, 2020, 109, 2493-2500.	1.6	26
1641	Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12, 15275-15282.	2.8	28
1642	Nanoscale Probing of Liposome Encapsulating Drug Nanocrystal Using Atomic Force Microscopy-Infrared Spectroscopy. Analytical Chemistry, 2020, 92, 9922-9931.	3.2	12
1643	Translational considerations in nanomedicine: The oncology perspective. Advanced Drug Delivery Reviews, 2020, 158, 140-157.	6.6	31
1644	Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Frontiers in Immunology, 2020, 11, 945.	2.2	28
1645	Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Frontiers in Neuroscience, 2020, 14, 494.	1.4	156
1646	Nanotechnology in Chronic Pain Relief. Frontiers in Bioengineering and Biotechnology, 2020, 8, 682.	2.0	9
1647	Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound in Medicine and Biology, 2020, 46, 1296-1325.	0.7	193
1648	<p>Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities</p> . International Journal of Nanomedicine, 2020, Volume 15, 1437-1456.	3.3	91
1649	Tumor‣pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	7.2	85
1650	Aptamer-Modified Nanoparticles in Medical Applications. Advances in Biochemical Engineering/Biotechnology, 2020, 174, 161-193.	0.6	13

	CITATION REPORT	
Article	IF	Citations
Development of clinically effective formulations for anticancer applications: why it is so difficult?. , 2020, , 599-723.		0
Modulating the immune response with liposomal delivery. , 2020, , 159-211.		2
Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin <i>via</i> Formation of the Membrane Attack Complex. ACS Nano, 2020, 14, 7808-7822.	7.3	65
Complex injectables. , 2020, , 191-213.		4
Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomaterials Science and Engineering, 2020, 6, 2929-2942.	2.6	17
Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	22
Tumor‧pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angev Chemie, 2020, 132, 9780-9788.	wandte 1.6	13
Lipid-derived renewable amphiphilic nanocarriers for drug delivery, biopolymer-based formulations. , 2020, , 283-310.		4
Potent Anticancer Efficacy of Firstâ€Inâ€Class Cu II and Au III Metaled Phosphorus Dendrons with D Cell Death Pathways. Chemistry - A European Journal, 2020, 26, 5903-5910.	Distinct 1.7	15
The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	3.0	91
Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 2020, 156, 4-22.	6.6	301
Nanopharmacokinetics, pharmacodynamics (PK/PD), and clinical relationship. , 2020, , 245-268.		ο
ROS triggered cleavage of thioketal moiety to dissociate prodrug nanoparticles for chemotherapy. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111223.	2.5	23
Rapid scale-up and production of active-loaded PEGylated liposomes. International Journal of Pharmaceutics, 2020, 586, 119566.	2.6	27
Analytical profiling and stability evaluation of liposomal drug delivery systems: A rapid UHPLC-CAD-based approach for phospholipids in research and quality control. Talanta, 2020, 220, 121320.	2.9	18
Clinical Translation of Nanomedicine and Biomaterials for Cancer Immunotherapy: Progress and Perspectives. Advanced Therapeutics, 2020, 3, 1900215.	1.6	62
Development and Characterization of a Fucoidan-Based Drug Delivery System by Using Hydrophilic Anticancer Polysaccharides to Simultaneously Deliver Hydrophobic Anticancer Drugs. Biomolecules, 2020, 10, 970.	, 1.8	25

1669	Advancements in PARP1 Targeted Nuclear Imaging and Theranostic Probes. Journal of Clinical Medicine, 2020, 9, 2130.	1.0)	24
------	---	-----	---	----

#

#	Article	IF	CITATIONS
1670	Recent Advances and Impact of Chemotherapeutic and Antiangiogenic Nanoformulations for Combination Cancer Therapy. Pharmaceutics, 2020, 12, 592.	2.0	26
1671	Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomaterialia, 2020, 113, 464-477.	4.1	31
1672	Fabrication of 3D-Printed Fish-Gelatin-Based Polymer Hydrogel Patches for Local Delivery of PEGylated Liposomal Doxorubicin. Marine Drugs, 2020, 18, 325.	2.2	47
1673	A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 257-272.	2.0	17
1674	Liposome Consolidated with Cyclodextrin Provides Prolonged Drug Retention Resulting in Increased Drug Bioavailability in Brain. International Journal of Molecular Sciences, 2020, 21, 4408.	1.8	19
1675	<p>Size-Dependent Interactions of Lipid-Coated Gold Nanoparticles: Developing a Better Mechanistic Understanding Through Model Cell Membranes and in vivo Toxicity</p> . International Journal of Nanomedicine, 2020, Volume 15, 4091-4104.	3.3	31
1676	Role of Lipid-Based and Polymer-Based Non-Viral Vectors in Nucleic Acid Delivery for Next-Generation Gene Therapy. Molecules, 2020, 25, 2866.	1.7	118
1677	Consensus protocols for animal experimentation and nanomedicine trials at clinical stage in breast cancer. , 2020, , 331-349.		1
1678	Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews, 2020, 163-164, 65-83.	6.6	214
1679	A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. Journal of Controlled Release, 2020, 326, 628-647.	4.8	149
1680	Principles of nanosized drug delivery systems. , 2020, , 3-25.		6
1681	Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioactive Materials, 2020, 5, 924-937.	8.6	41
1682	Modulation of cell membrane functionalization with aggregates of oligodeoxynucleotides containing alkyl chain-modified uridines. Organic and Biomolecular Chemistry, 2020, 18, 5406-5413.	1.5	2
1683	Potential nanocarriers for the delivery of drugs to the brain. , 2020, , 449-472.		0
1684	Functional nanostructures for drug resistance breast cancer theranostics. , 2020, , 131-152.		1
1685	Recent Trends in Nanocarrier-Based Targeted Chemotherapy: Selective Delivery of Anticancer Drugs for Effective Lung, Colon, Cervical, and Breast Cancer Treatment. Journal of Nanomaterials, 2020, 2020, 1-14.	1.5	40
1686	A dual receptors-targeting and size-switchable "cluster bomb―co-loading chemotherapeutic and transient receptor potential ankyrin 1 (TRPA-1) inhibitor for treatment of triple negative breast cancer. Journal of Controlled Release, 2020, 321, 71-83.	4.8	21
1687	Active matter therapeutics. Nano Today, 2020, 31, 100836.	6.2	54

#	Article	IF	CITATIONS
1688	Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nuclear Medicine and Biology, 2020, 84-85, 63-72.	0.3	16
1689	Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacological Research, 2020, 158, 104685.	3.1	44
1690	An acoustic/thermo-responsive hybrid system for advanced doxorubicin delivery in tumor treatment. Biomaterials Science, 2020, 8, 2202-2211.	2.6	11
1691	CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain at 3T. Theranostics, 2020, 10, 2215-2228.	4.6	26
1692	<p>Dual-Ligand Functionalized Core-Shell Chitosan-Based Nanocarrier for Hepatocellular Carcinoma-Targeted Drug Delivery</p> . International Journal of Nanomedicine, 2020, Volume 15, 821-837.	3.3	32
1693	Targeted Nanomedicines: In the Right Route Towards Improved Therapies. Current Cancer Therapy Reviews, 2020, 16, 3-4.	0.2	2
1694	Advanced biomaterials for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 911-927.	2.8	62
1695	Adiposeâ€Derived Biogenic Nanoparticles for Suppression of Inflammation. Small, 2020, 16, e1904064.	5.2	53
1696	Long lasting mucoadhesive membrane based on alginate and chitosan for intravaginal drug delivery. Journal of Materials Science: Materials in Medicine, 2020, 31, 25.	1.7	21
1697	Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by Red Blood Cells?. Journal of Drug Delivery Science and Technology, 2020, 56, 101552.	1.4	12
1698	Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?. Critical Reviews in Toxicology, 2020, 50, 148-176.	1.9	31
1699	Hyperthermia and smart drug delivery systems for solid tumor therapy. Advanced Drug Delivery Reviews, 2020, 163-164, 125-144.	6.6	133
1700	Biomedical applications of metal organic polygons and polyhedra (MOPs). Coordination Chemistry Reviews, 2020, 410, 213181.	9.5	58
1701	Cell-penetrating corosolic acid liposome as a functional carrier for delivering chemotherapeutic drugs. Acta Biomaterialia, 2020, 106, 301-313.	4.1	22
1702	Tuning liposome composition to modulate corona formation in human serum and cellular uptake. Acta Biomaterialia, 2020, 106, 314-327.	4.1	43
1703	Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials, 2020, 13, 1048.	1.3	85
1704	Regulation of cancerâ€immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1612.	3.3	33
1705	Determination of critical micelle temperature of Pluronic® in Pluronic/gel phase liposome mixtures using steady-state anisotropy. Journal of Molecular Liquids, 2020, 304, 112784.	2.3	4

#	Article	IF	CITATIONS
1706	Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. Advanced Therapeutics, 2020, 3, 1900201.	1.6	44
1707	Sterically Stabilised Polymeric Mesoporous Silica Nanoparticles Improve Doxorubicin Efficiency: Tailored Cancer Therapy. Molecules, 2020, 25, 742.	1.7	23
1708	Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. Advanced Therapeutics, 2020, 3, 1900170.	1.6	42
1709	Doxil chemotherapy plus liposomal P5 immunotherapy decreased myeloid-derived suppressor cells in murine model of breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102150.	1.7	25
1710	Liposome Imaging in Optically Cleared Tissues. Nano Letters, 2020, 20, 1362-1369.	4.5	28
1711	Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 2020, 12, 162.	1.7	47
1712	Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics, 2020, 10, 1262-1280.	4.6	44
1713	Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy. ACS Applied Materials & Interfaces, 2020, 12, 6827-6839.	4.0	51
1714	Polymeric Nanoparticles for the Treatment of Malignant Gliomas. Cancers, 2020, 12, 175.	1.7	63
1715	Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. International Journal of Molecular Sciences, 2020, 21, 519.	1.8	19
1716	Enzyme-Triggered Release of the Antisense Octaarginine-PNA Conjugate from Phospholipase A2 Sensitive Liposomes. ACS Applied Bio Materials, 2020, 3, 1018-1025.	2.3	13
1717	Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation. International Journal of Pharmaceutics, 2020, 578, 119045.	2.6	18
1718	Physical characterization of liposomal drug formulations using multi-detector asymmetrical-flow field flow fractionation. Journal of Controlled Release, 2020, 320, 495-510.	4.8	43
1719	Effects of Focused-Ultrasound-and-Microbubble-Induced Blood-Brain Barrier Disruption on Drug Transport under Liposome-Mediated Delivery in Brain Tumour: A Pilot Numerical Simulation Study. Pharmaceutics, 2020, 12, 69.	2.0	6
1720	Multimodal and multiscale optical imaging of nanomedicine delivery across the blood-brain barrier upon sonopermeation. Theranostics, 2020, 10, 1948-1959.	4.6	30
1721	Antitumor efficacy and cardiotoxic effect of doxorubicin-loaded mixed micelles in 4T1 murine breast cancer model. Comparative studies using Doxil® and free doxorubicin. Journal of Drug Delivery Science and Technology, 2020, 56, 101506.	1.4	13
1722	Nanoparticles for biomedical applications: exploring and exploiting molecular interactions at the nano-bio interface. Materials Today Advances, 2020, 5, 100036.	2.5	60
1723	A comparative study of the effect of drug hydrophobicity on nanoparticle drug delivery in vivo using two photosensitizers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102151.	1.7	5

#	Article	IF	CITATIONS
1724	Perspectives on the Future of Nanomedicine to Impact Patients: An Analysis of US Federal Funding and Interventional Clinical Trials. Bioconjugate Chemistry, 2020, 31, 436-447.	1.8	18
1725	Nanomedicines and Nanosimilars: Looking for a New and Dynamic Regulatory "Astrolabe―Inspired System. AAPS PharmSciTech, 2020, 21, 65.	1.5	4
1726	The Use of Lactose as an Alternative Coating for Nanoparticles. Journal of Pharmaceutical Sciences, 2020, 109, 1573-1580.	1.6	13
1727	Twenty-five years of polymersomes: lost in translation?. Materials Horizons, 2020, 7, 1297-1309.	6.4	92
1728	Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics, 2020, 12, 65.	2.0	18
1729	Bacterial anti-microbial peptides and nano-sized drug delivery systems: The state of the art toward improved bacteriocins. Journal of Controlled Release, 2020, 321, 100-118.	4.8	62
1730	The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm. Journal of Drug Delivery Science and Technology, 2020, 57, 101754.	1.4	21
1731	Hepatosplenic phagocytic cells indirectly contribute to anti-PEG IgM production in the accelerated blood clearance (ABC) phenomenon against PEGylated liposomes: Appearance of an unexplained mechanism in the ABC phenomenon. Journal of Controlled Release, 2020, 323, 102-109.	4.8	32
1732	Understanding the In Vivo Fate of Advanced Materials by Imaging. Advanced Functional Materials, 2020, 30, 1910369.	7.8	5
1733	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie, 2020, 132, 22013-22022.	1.6	0
1734	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie - International Edition, 2020, 59, 21829-21838.	7.2	38
1735	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	5.2	95
1736	Delivering anticancer drugs as carrier-free nanocrystals. , 2020, , 95-115.		0
1737	Advances and clinical challenges in biomaterials for in vivo tumor imaging. , 2020, , 291-329.		1
1738	Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer. Acta Pharmaceutica Sinica B, 2020, 10, 1534-1548.	5.7	116
1739	Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes. International Journal of Pharmaceutics, 2020, 582, 119266.	2.6	72
1740	Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release, 2020, 322, 64-80.	4.8	37
1741	Extracellular vesicles for tumor targeting delivery based on five features principle. Journal of Controlled Release, 2020, 322, 555-565.	4.8	68

#	Article	IF	CITATIONS
1742	Design principles of drug combinations for chemotherapy. Journal of Controlled Release, 2020, 323, 36-46.	4.8	33
1743	Combination therapy with liposomal doxorubicin and liposomal vaccine containing E75, an HER-2/neu-derived peptide, reduces myeloid-derived suppressor cells and improved tumor therapy. Life Sciences, 2020, 252, 117646.	2.0	28
1744	Advances in living cell-based anticancer therapeutics. Biomaterials Science, 2020, 8, 2344-2365.	2.6	22
1745	Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Delivery, 2020, 27, 585-598.	2.5	295
1746	The Protein Corona Does Not Influence Receptor-Mediated Targeting of Virus-like Particles. Bioconjugate Chemistry, 2020, 31, 1575-1585.	1.8	20
1747	Smart Biomimetic Nanocomposites Mediate Mitochondrial Outcome through Aerobic Glycolysis Reprogramming: A Promising Treatment for Lymphoma. ACS Applied Materials & Interfaces, 2020, 12, 22687-22701.	4.0	26
1748	Intratumoral Comparison of Nanoparticle Entrapped Docetaxel (CPC634) with Conventional Docetaxel in Patients with Solid Tumors. Clinical Cancer Research, 2020, 26, 3537-3545.	3.2	36
1749	Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials, 2020, 10, 787.	1.9	219
1750	Establishment of a hTfR mAb-functionalized HPPS theranostic nanoplatform. Nanotheranostics, 2020, 4, 119-128.	2.7	6
1751	Size Measurement of Extracellular Vesicles and Synthetic Liposomes: The Impact of the Hydration Shell and the Protein Corona. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111053.	2.5	64
1752	Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. Journal of Controlled Release, 2020, 323, 387-397.	4.8	37
1753	Exposure of liposomes containing nanocrystallised ciprofloxacin to digestive media induces solid-state transformation and altered in vitro drug release. Journal of Controlled Release, 2020, 323, 350-360.	4.8	11
1754	Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncology, 2020, 106, 104689.	0.8	18
1755	Lipid-based mesophases as matrices for nanoscale reactions. Nanoscale Horizons, 2020, 5, 914-927.	4.1	13
1756	Dog-specific hemorrhagic changes induced by liposomal formulations, in the liver and the gallbladder. Journal of Toxicologic Pathology, 2020, 33, 1-9.	0.3	2
1757	Recent Advances in Understanding the Protein Corona of Nanoparticles and in the Formulation of "Stealthy―Nanomaterials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 166.	2.0	212
1758	Harnessing the Formation of Natural Killer–Tumor Cell Immunological Synapses for Enhanced Therapeutic Effect in Solid Tumors. Advanced Materials, 2020, 32, e2000020.	11.1	29
1759	Breast cancer nanomedicine market update and other industrial perspectives of nanomedicine. , 2020, , 371-404.		6

#	Article	IF	CITATIONS
1760	Extracellular vesicles as drug delivery systems: Why and how?. Advanced Drug Delivery Reviews, 2020, 159, 332-343.	6.6	606
1761	Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano, 2020, 14, 4890-4904.	7.3	134
1762	A biodegradable CO ₂ -based polymeric antitumor nanodrug <i>via</i> a one-pot surfactant- and solvent-free miniemulsion preparation. Biomaterials Science, 2020, 8, 2234-2244.	2.6	7
1763	Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. International Journal of Environmental Research and Public Health, 2020, 17, 2078.	1.2	163
1764	Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. International Journal of Molecular Sciences, 2020, 21, 2536.	1.8	120
1765	The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses, 2020, 12, 412.	1.5	10
1766	PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid–Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Molecular Pharmaceutics, 2021, 18, 2161-2173.	2.3	21
1767	Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology, 2021, 69, 52-68.	4.3	125
1768	Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment. Journal of Materials Science and Technology, 2021, 63, 73-80.	5.6	11
1769	Optimization of preparation methods for high loading content and high encapsulation efficiency of BSH into liposomes. Applied Radiation and Isotopes, 2021, 169, 109260.	0.7	4
1770	Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 5626-5643.	7.2	47
1771	Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angewandte Chemie, 2021, 133, 5686-5705.	1.6	3
1772	Selfâ€ S ynthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angewandte Chemie, 2021, 133, 3099-3107.	1.6	6
1773	Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. International Journal of Pharmaceutics, 2021, 592, 120051.	2.6	88
1774	Designing sub-20Ânm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. Journal of Controlled Release, 2021, 329, 538-551.	4.8	9
1775	Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chemical Reviews, 2021, 121, 3352-3389.	23.0	41
1776	Doxorubicin liposomes cell penetration enhancement and its potential drawbacks for the tumor targeting efficiency. International Journal of Pharmaceutics, 2021, 592, 120012.	2.6	12
1777	Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2000845.	3.9	33

#	Article	IF	CITATIONS
1778	A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharmaceutica Sinica B, 2021, 11, 258-270.	5.7	16
1779	Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1654.	3.3	21
1780	Hydroxyethylcellulose as a methotrexate carrier in anticancer therapy. Investigational New Drugs, 2021, 39, 15-23.	1.2	9
1781	Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Delivery and Translational Research, 2021, 11, 788-816.	3.0	32
1782	Clinical Translation of Self $\hat{a} \in A$ ssembled Cancer Nanomedicines. Advanced Therapeutics, 2021, 4, .	1.6	34
1783	Nanotechnology for delivery of natural therapeutic substances: a review. Environmental Chemistry Letters, 2021, 19, 1097-1106.	8.3	40
1784	Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. Journal of Controlled Release, 2021, 329, 676-695.	4.8	111
1785	Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113642.	1.4	165
1786	Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125673.	2.3	15
1787	Evaluation of a Platinum–Acridine Anticancer Agent and Its Liposomal Formulation in an in vivo Model of Lung Adenocarcinoma. ChemMedChem, 2021, 16, 412-419.	1.6	5
1788	Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opinion on Drug Delivery, 2021, 18, 205-227.	2.4	72
1789	Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. Journal of Controlled Release, 2021, 331, 282-295.	4.8	60
1790	Alpha-dystroglycan binding peptide A2G80-modified stealth liposomes as a muscle-targeting carrier for Duchenne muscular dystrophy. Journal of Controlled Release, 2021, 329, 1037-1045.	4.8	8
1791	Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 31, 102320.	1.7	28
1792	Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews, 2021, 426, 213529.	9.5	22
1793	Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. Advanced Therapeutics, 2021, 4, 2000203.	1.6	16
1794	LHRHâ€Targeted Redoxâ€Responsive Crosslinked Micelles Impart Selective Drug Delivery and Effective Chemotherapy in Tripleâ€Negative Breast Cancer. Advanced Healthcare Materials, 2021, 10, e2001196.	3.9	27
1795	Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. Journal of Drug Delivery Science and Technology, 2021, 61, 102229.	1.4	5

#	Article	IF	CITATIONS
1796	Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. International Journal of Pharmaceutics, 2021, 593, 120117.	2.6	70
1797	Biologically modified nanoparticles as theranostic bionanomaterials. Progress in Materials Science, 2021, 118, 100768.	16.0	108
1798	A quantitative view on multivalent nanomedicine targeting. Advanced Drug Delivery Reviews, 2021, 169, 1-21.	6.6	52
1799	Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. Materials Science and Engineering C, 2021, 120, 111781.	3.8	40
1800	Enhanced therapeutic index of liposomal doxorubicin Myocet locally delivered by fibrin gels in immunodeficient mice bearing human neuroblastoma. Pharmacological Research, 2021, 163, 105294.	3.1	4
1801	Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Molecular Pharmaceutics, 2021, 18, 44-64.	2.3	8
1802	Nanoparticles and liver cancer. , 2021, , 119-143.		2
1803	Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Human Reproduction Update, 2021, 27, 280-304.	5.2	42
1804	Supramolecular engineering of polymeric nanodrugs for antitumor chemotherapy. Chemical Engineering Journal, 2021, 416, 127968.	6.6	8
1805	Peptide-directed delivery of drug-loaded nanocarriers targeting CD36 overexpressing cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125970.	2.3	5
1806	Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today, 2021, 36, 101038.	6.2	54
1807	Benzimidazole-Based Organic–Inorganic Gold Nanohybrids Suppress Invasiveness of Cancer Cells by Modulating EMT Signaling Cascade. ACS Applied Bio Materials, 2021, 4, 470-482.	2.3	1
1808	A versatile strategy for improving phototherapeutic efficacy on deep-sited tumor by tissue optical clearing technique. Nano Today, 2021, 36, 101058.	6.2	20
1809	Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Therapeutic Delivery, 2021, 12, 55-76.	1.2	42
1810	Targeted nanomedicines for the treatment of bone disease and regeneration. Medicinal Research Reviews, 2021, 41, 1221-1254.	5.0	18
1811	Multivesicular Vesicles: Preparation and Applications. ChemSystemsChem, 2021, 3, e2000049.	1.1	19
1812	Designed fabrication of mesoporous silica-templated self-assembled theranostic nanomedicines. Science China Chemistry, 2021, 64, 204-217.	4.2	3
1813	Enhanced lymphatic delivery of nanomicelles encapsulating CXCR4-recognizing peptide and doxorubicin for the treatment of breast cancer. International Journal of Pharmaceutics, 2021, 594, 120183.	2.6	8

#	Article	IF	CITATIONS
1814	Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. Journal of Controlled Release, 2021, 329, 1090-1101.	4.8	41
1815	Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sciences, 2021, 264, 118605.	2.0	19
1816	Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125806.	2.3	28
1817	A Drugâ€Free Therapeutic System for Cancer Therapy by Diselenideâ€Based Polymers Themselves. Advanced Healthcare Materials, 2021, 10, e2001471.	3.9	13
1818	Self‧ynthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angewandte Chemie - International Edition, 2021, 60, 3062-3070.	7.2	18
1819	Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opinion on Drug Discovery, 2021, 16, 235-254.	2.5	8
1820	Dualâ€peptide functionalized nanoparticles for therapeutic use. Peptide Science, 2021, 113, e24205.	1.0	3
1821	Physical properties of nanoparticles do matter. Journal of Pharmaceutical Investigation, 2021, 51, 35-51.	2.7	41
1822	Macropinocytosis as a cell entry route for peptide-functionalized and bystander nanoparticles. Journal of Controlled Release, 2021, 329, 1222-1230.	4.8	27
1823	Evaluation of antitumor efficacy of folate-poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine based liposome. Pharmaceutical Development and Technology, 2021, 26, 110-118.	1.1	5
1824	Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. Advanced Materials, 2021, 33, e2002635.	11.1	50
1825	Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. Advanced Therapeutics, 2021, 4, .	1.6	17
1826	Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Seminars in Cancer Biology, 2021, 69, 226-237.	4.3	96
1827	Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Seminars in Cancer Biology, 2021, 69, 279-292.	4.3	59
1828	Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. Journal of Materials Chemistry B, 2021, 9, 2367-2383.	2.9	7
1829	Regulation of Nanotechnology-Based Products Subject to Health Regulations: Application of Quality by Design (QbD) and Quality Risk Management (QRM). Nanomedicine and Nanotoxicology, 2021, , 319-347.	0.1	1
1830	Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin <i>inÂvivo</i> . Drug Delivery, 2021, 28, 530-541.	2.5	11
1831	Current role of nanoparticles in the treatment of lung cancer. Journal of Clinical and Translational Research, 0, , .	0.3	17

#	Article	IF	CITATIONS
1832	Nanotherapeutics: Tumor delivery of drugs and genes using nanoparticles for synergistic therapeutic effects in the modern pharmaceutical world for welfare of human. , 2021, , 271-296.		0
1833	Liposomal nanotherapeutics in cancer treatment. , 2021, , 121-129.		1
1834	Nanotechnology advances in breast cancer. , 2021, , 271-287.		1
1835	Natural Polymers in Micro- and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part I: Lipids and Fabrication Techniques. , 0, , .		6
1836	Nanotechnology as a tool for treating cancerous tumors. Materials Today: Proceedings, 2021, 43, 3847-3851.	0.9	1
1837	Nanotechnology Approaches for Colorectal Cancer Diagnosis and Therapy. , 2021, , 171-186.		1
1838	Biological Conjugates: Potential Role in Biomedical and Pharmaceutical Applications. Nanotechnology in the Life Sciences, 2021, , 359-390.	0.4	0
1839	Nanominerals and Nanomaterials Utilized in Pharmacy and Therapeutics. , 2021, , 443-475.		0
1840	Photocleavable core cross-linked polymeric micelles of polypept(o)ides and ruthenium(<scp>ii</scp>) complexes. Journal of Materials Chemistry B, 2021, 9, 8211-8223.	2.9	14
1841	Advances in Bio-Based Polymers for Colorectal Cancer Treatment: Hydrogels and Nanoplatforms. Gels, 2021, 7, 6.	2.1	15
1842	Strategies for the functionalisation of gold nanorods to reduce toxicity and aid clinical translation. Nanotheranostics, 2021, 5, 155-165.	2.7	20
1843	Theranostics: Agents for Diagnosis and Therapy. , 2021, , 655-677.		3
1844	Preparation and Characterization of pH Sensitive Drug Liposomes. Biomaterial Engineering, 2021, , 385-408.	0.1	0
1845	Ancient Evolutionary Origin and Properties of Universally Produced Natural Exosomes Contribute to Their Therapeutic Superiority Compared to Artificial Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 1429.	1.8	18
1846	Drug penetration through the blood–brain barrier after radiotherapy: New approaches to bypass glioblastoma chemoresistance. , 2021, , 689-705.		0
1847	Regulatory, safety, and toxicological concerns of nanomaterials with their manufacturing issues. , 2021, , 93-115.		0
1848	Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Current Topics in Medicinal Chemistry, 2021, 21, 92-114.	1.0	16
1849	Use of artificial cells as drug carriers. Materials Chemistry Frontiers, 2021, 5, 6672-6692.	3.2	20

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
1850	Externally triggered smart drug delivery system encapsulating idarubicin shows superior enhances tumoral drug uptake and response. Theranostics, 2021, 11, 5700-5712.	or kinetics and	4.6	16
1851	Understanding nanoparticle endocytosis to improve targeting strategies in nanomedic Society Reviews, 2021, 50, 5397-5434.	ine. Chemical	18.7	398
1852	Recent advances in stimuliâ€responsive theranostic systems with aggregationâ€induc characteristics. Aggregate, 2021, 2, 48-65.	ed emission	5.2	113
1853	Pharmaceutical Nanocarriers. , 2021, , 1-16.			1
1854	Glyco-Nanomedicines and Their Applications in Cancer Treatment. , 2021, , 566-585.			1
1855	Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranos in Chemistry, 2020, 8, 631351.	tics. Frontiers	1.8	8
1856	Introduction to nanomedicine an overview. , 2021, , 1-20.			1
1857	Applications of nanoscale metal–organic frameworks as imaging agents in biology a Journal of Materials Chemistry B, 2021, 9, 3423-3449.	nd medicine.	2.9	61
1858	Nanotechnology for cancer drug design, delivery, and theranostics applications. , 2021	.,,1-26.		2
1859	Nanomaterials aimed toward the cardiac mitochondria: from therapeutics to nanosafe 311-347.	ry. , 2021, ,		0
1860	Immune-Targeted Nanomedicine. Advances in Medical Technologies and Clinical Practic 2021, , 294-305.	ce Book Series,	0.3	0
1861	Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therap Medicine. Nanomaterials, 2021, 11, 278.	eutics in	1.9	43
1862	Surface peptide functionalization of zeolitic imidazolate framework-8 for autonomous enhanced delivery of chemotherapeutic agent to lung tumor cells. Dalton Transactions 2375-2386.		1.6	6
1863	Pancreatic cancer: Removing extracellular matrix barrier in delivery. , 2021, , 421-438.			0
1864	From barriers to bridges; glycans in nonparenteral nanomedicines. , 2021, , 467-487.			0
1865	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25	-36.	15.6	191
1866	Liposomes in Drug Delivery: Status and Advances. Biomaterial Engineering, 2021, , 3-2	4.	0.1	4
1867	Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and opportunities. Biophysical Reviews, 2021, 13, 35-69.	translation	1.5	60

#	Article	IF	Citations
1869	An Overview of Bioactive Natural Products-Based Nano-Drug Delivery Systems in Antitumor Chemotherapy. E3S Web of Conferences, 2021, 271, 03042.	0.2	0
1870	FDC in nanotechnology. , 2021, , 473-496.		1
1871	Nanomedicine: Promises and challenges. , 2021, , 109-123.		2
1872	Recent applications and strategies in nanotechnology for lung diseases. Nano Research, 2021, 14, 2067-2089.	5.8	49
1874	Optimized 5-Fluorouridine Prodrug for Co-Loading with Doxorubicin in Clinically Relevant Liposomes. Pharmaceutics, 2021, 13, 107.	2.0	4
1875	Formulation and biological stability of nanomedicines in cancer treatment. , 2021, , 277-289.		5
1876	Pharmaceutical Nanocarriers: Nanotoxicology. , 2021, , 1-13.		0
1877	Virus-Mimicking Liposomal System Based on Dendritic Lipopeptides for Efficient Prevention Ischemia/Reperfusion Injury in the Mouse Liver. ACS Macro Letters, 2021, 10, 215-222.	2.3	5
1878	New Enkephalin Nanomedicines for Pain Alleviation, Overcoming the Side Effects of Morphine. , 2021, , 191-212.		0
1879	Drug Delivery in Respiratory Diseases: Current Opportunities, Molecular and Cellular Mechanism, and Future Challenges. , 2021, , 847-902.		0
1880	Functional Choline Phosphate Lipids for Enhanced Drug Delivery in Cancer Therapy. Chemistry of Materials, 2021, 33, 774-781.	3.2	27
1881	Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opinion on Drug Delivery, 2022, 19, 199-212.	2.4	33
1882	An "eat me―combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics, 2021, 11, 8738-8754.	4.6	29
1883	Targeted Drug Delivery in Cancer Treatment. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 356-381.	0.1	0
1884	Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horizons, 2021, 6, 78-94.	4.1	124
1885	Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Delivery and Translational Research, 2021, 11, 1309-1315.	3.0	75
1886	Nanoparticles breakthroughs tumor treatment limitations by regulating tumor immune microenvironment to enhance tumor immunotherapy efficacy. Smart Materials in Medicine, 2021, 2, 314-321.	3.7	2
1887	Anti-PEG scFv corona ameliorates accelerated blood clearance phenomenon of PEGylated nanomedicines. Journal of Controlled Release, 2021, 330, 493-501.	4.8	24

#	Article	IF	CITATIONS
1888	The Growing Field of Nanomedicine and Its Relevance to Pharmacy Curricula. American Journal of Pharmaceutical Education, 2021, 85, 8331.	0.7	10
1889	Recent advances on drug delivery nanocarriers for cerebral disorders. Biomedical Materials (Bristol), 2021, 16, 024104.	1.7	13
1890	Tumor grafted – chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 947-968.	1.5	28
1891	Facile preparation of liposome-encapsulated Zn–DTPA from soy lecithin for decorporation of radioactive actinides. Canadian Journal of Chemistry, 0, , 1-9.	0.6	1
1892	Microfluidic Reconstitution of Tumor Microenvironment for Nanomedical Applications. Advanced Healthcare Materials, 2021, 10, 2002122.	3.9	4
1893	Tackling the challenges of nanomedicines: are we ready?. American Journal of Health-System Pharmacy, 2021, 78, 1047-1056.	0.5	8
1894	Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS Applied Materials & Interfaces, 2021, 13, 7825-7838.	4.0	16
1895	Polymer Pro-Drug Nanoparticles for Sustained Release of Cytotoxic Drugs Evaluated in Patient-Derived Glioblastoma Cell Lines and In Situ Gelling Formulations. Pharmaceutics, 2021, 13, 208.	2.0	13
1897	Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today, 2021, 36, 101051.	6.2	61
1898	Towards the Development of Long Circulating Phosphatidylserine (PS)- and Phosphatidylglycerol (PG)-Enriched Anti-Inflammatory Liposomes: Is PEGylation Effective?. Pharmaceutics, 2021, 13, 282.	2.0	8
1899	Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 44-76.	2.0	137
1900	Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano, 2021, 15, 2068-2098.	7.3	117
1901	Radiolabeled Tedizolid Phosphate Liposomes for Topical Application: Design, Characterization, and Evaluation of Cellular Binding Capacity. AAPS PharmSciTech, 2021, 22, 62.	1.5	7
1902	Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials, 2021, 269, 120631.	5.7	21
1903	Tumor Environment-Responsive Hyaluronan Conjugated Zinc Protoporphyrin for Targeted Anticancer Photodynamic Therapy. Journal of Personalized Medicine, 2021, 11, 136.	1.1	9
1904	Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102345.	1.7	32
1905	Alkaloids of Peganum harmala: Anticancer Biomarkers with Promising Outcomes. Current Pharmaceutical Design, 2021, 27, 185-196.	0.9	17
1906	Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnology, 2021, 12, .	1.9	17

#	Article	IF	CITATIONS
1907	In Vivo Quantification of Nanoparticle Association with Immune Cell Subsets in Blood. Advanced Healthcare Materials, 2021, 10, e2002160.	3.9	4
1908	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	23.0	51
1909	Novel pH-Triggered Doxorubicin-Releasing Nanoparticles Self-Assembled by Functionalized β-Cyclodextrin and Amphiphilic Phthalocyanine for Anticancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 10674-10688.	4.0	33
1910	Targeted Therapy in Chronic Diseases Treatment by Nanomaterial Based Drug Delivery. International Journal of Advanced Research in Science, Communication and Technology, 0, , 141-145.	0.0	1
1911	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	7.8	13
1912	Contributions of Glycolipid Biosurfactants and Glycolipid-Modified Materials to Antimicrobial Strategy: A Review. Pharmaceutics, 2021, 13, 227.	2.0	54
1913	Advances in engineering of low molecular weight hydrogels for chemotherapeutic applications. Biomedical Materials (Bristol), 2021, 16, 024102.	1.7	11
1914	Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect. Journal of Personalized Medicine, 2021, 11, 124.	1.1	68
1915	Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology, 2021, 12, 601626.	1.6	257
1916	Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells, 2021, 10, 707.	1.8	4
1917	Nanomedicine in Cancer Clinics: Are We There Yet?. Current Pathobiology Reports, 2021, 9, 43-55.	1.6	15
1918	Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. Advanced Science, 2021, 8, 2003679.	5.6	87
1920	The Limitless Future of RNA Therapeutics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 628137.	2.0	296
1921	Nanotechnologyâ€Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Advanced Healthcare Materials, 2021, 10, e2002163.	3.9	14
1922	Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Molecular Cancer, 2021, 20, 55.	7.9	57
1923	Lipoidal-Nano Architecture for Parental Drug Delivery: Formulation Development and Regulatory Concerns. Current Applied Polymer Science, 2021, 4, 31-39.	0.2	1
1924	Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Frontiers in Oncology, 2021, 11, 623760.	1.3	38
1925	Modeling of a spray drying method to produce ciprofloxacin nanocrystals inside the liposomes utilizing a response surface methodology: Box-Behnken experimental design. International Journal of Pharmaceutics, 2021, 597, 120277.	2.6	31

#	Article	IF	CITATIONS
1926	Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnology Advances, 2021, 47, 107683.	6.0	20
1927	LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. International Journal of Pharmaceutics, 2021, 597, 120346.	2.6	45
1928	The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. European Journal of Lipid Science and Technology, 2021, 123, 2000297.	1.0	15
1929	Tumor-Acidity Responsive Polymeric Nanoparticles for Targeting Delivery of Angiogenesis Inhibitor for Enhanced Antitumor Efficacy With Decreased Toxicity. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664051.	2.0	3
1931	Liposome nanoâ€formulation with cationic polar lipid DOTAP and cholesterol as a suitable pHâ€responsive carrier for molecular therapeutic drug (all― <i>trans</i> retinoic acid) delivery to lung cancer cells. IET Nanobiotechnology, 2021, 15, 380-390.	1.9	13
1932	One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111556.	2.5	23
1933	Highway to Success—Developing Advanced Polymer Therapeutics. Advanced Therapeutics, 2021, 4, 2000285.	1.6	16
1934	Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Scientific Reports, 2021, 11, 5107.	1.6	37
1935	Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Molecular Medicine Reports, 2021, 23, .	1.1	33
1936	Clinical Relevance of Pre-Existing and Treatment-Induced Anti-Poly(Ethylene Clycol) Antibodies. Regenerative Engineering and Translational Medicine, 2022, 8, 32-42.	1.6	35
1937	Recent progress in nanoformulations of cabazitaxel. Biomedical Materials (Bristol), 2021, 16, 032002.	1.7	10
1938	Role of stealth lipids in nanomedicine-based drug carriers. Chemistry and Physics of Lipids, 2021, 235, 105036.	1.5	10
1939	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
1940	Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacology and Translational Science, 2021, 4, 589-612.	2.5	65
1941	Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine, 2021, 290, 486-498.	2.7	88
1942	Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS Applied Bio Materials, 2021, 4, 2863-2885.	2.3	15
1943	Activable Multi-Modal Nanoprobes for Imaging Diagnosis and Therapy of Tumors. Frontiers in Chemistry, 2020, 8, 572471.	1.8	9
1944	Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics, 2021, 13, 591.	2.0	9

#	Article	IF	CITATIONS
1945	Nanoparticle-based methodologies for targeted drug delivery—an insight. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	17
1946	Phosphatidylinositol Stabilizes Fluid-Phase Liposomes Loaded with a Melphalan Lipophilic Prodrug. Pharmaceutics, 2021, 13, 473.	2.0	17
1947	Liposomal doxorubicin targeting mitochondria: A novel formulation to enhance anti-tumor effects of Doxil® in vitro and in vivo. Journal of Drug Delivery Science and Technology, 2021, 62, 102351.	1.4	10
1948	iRCD‣iposomes Enhance Tumor Delivery and Therapeutic Efficacy of Antisense Oligonucleotide Drugs against Primary Prostate Cancer and Bone Metastasis. Advanced Functional Materials, 2021, 31, 2100478.	7.8	32
1949	Transitional Metalâ€Based Noncatalytic Medicine for Tumor Therapy. Advanced Healthcare Materials, 2021, 10, e2001819.	3.9	28
1950	Biological membrane derived nanomedicines for cancer therapy. Science China Chemistry, 2021, 64, 719-733.	4.2	23
1951	Evaluation of nanoparticle drug-delivery systems used in preclinical studies. Therapeutic Delivery, 2021, 12, 325-336.	1.2	6
1952	Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines, 2021, 9, 359.	2.1	222
1953	GMP-grade nanoparticle targeted to nucleolin downregulates tumor molecular signature, blocking growth and invasion, at low systemic exposure. Nano Today, 2021, 37, 101095.	6.2	15
1954	Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. Journal of Pharmaceutical Investigation, 2021, 51, 377-398.	2.7	28
1955	Embracing nanomaterials' interactions with the innate immune system. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1719.	3.3	10
1956	Magnetic field potential effects on the doxorubicin therapeutic activity in Ehrlich tumor growth. Saudi Journal of Biological Sciences, 2021, 28, 2566-2574.	1.8	0
1957	Observation of non-glandular gastritis associated with Doxil chemotherapy treatment in NSGâ"¢ mice. Laboratory Animals, 2021, 55, 367-374.	0.5	1
1958	Preformed Biodegradable Zwitterionic Nanoparticles as Tunable Excipients for the Formulation of Therapeutics Directly at the Point of Care. Industrial & Engineering Chemistry Research, 2021, 60, 10699-10709.	1.8	6
1959	Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111589.	2.5	26
1960	Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Current Drug Targets, 2021, 22, 779-792.	1.0	13
1961	Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Advanced Drug Delivery Reviews, 2021, 171, 77-93.	6.6	6
1962	Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nature Communications, 2021, 12, 2425.	5.8	75

#	Article	IF	CITATIONS
1963	Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Therapy, 2021, 28, 935-946.	2.2	10
1964	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	7.8	36
1965	The Challenges and Strategies of Antisense Oligonucleotide Drug Delivery. Biomedicines, 2021, 9, 433.	1.4	79
1966	Polymeric Nanocarriers: A Transformation in Doxorubicin Therapies. Materials, 2021, 14, 2135.	1.3	17
1967	The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5, 951-967.	11.6	539
1968	Enhancement of tumor tropism of mPEGylated nanoparticles by anti-mPEG bispecific antibody for ovarian cancer therapy. Scientific Reports, 2021, 11, 7598.	1.6	4
1969	Thermoresponsive glycopolymer vesicles: in situ observation of morphological changes and triggered cargo release. Polymer Journal, 2021, 53, 1251-1258.	1.3	1
1970	Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. Journal of Nanobiotechnology, 2021, 19, 102.	4.2	27
1971	Ionic Liquids in Drug Delivery. Encyclopedia, 2021, 1, 324-339.	2.4	24
1972	Drug repurposing supported by nanotechnology: a promising strategy to fight cancer. Therapeutic Delivery, 2021, 12, 267-269.	1.2	3
1973	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	5.7	42
1974	Repurposing of camptothecin: An esterase-activatable prodrug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer. International Journal of Pharmaceutics, 2021, 599, 120399.	2.6	8
1975	Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell. Journal of Drug Delivery Science and Technology, 2021, 62, 102385.	1.4	6
1976	Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. International Journal of Pharmaceutics, 2021, 599, 120438.	2.6	56
1977	Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. Small, 2021, 17, e2008198.	5.2	36
1978	Nanomedicine in cancer therapy: promises and hurdles of polymeric nanoparticles. Exploration of Medicine, 0, , .	1.5	4
1979	Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery, 2021, 18, 1261-1290.	2.4	69
1980	All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opinion on Drug Delivery, 2021, 18, 1335-1354.	2.4	7

#	Article	IF	Citations
1981	Camptothecin Nanoprodrug Possessing Dual Responsiveness to Endolysosomal pH and Cytosolic Redox for Amplified Cytotoxic Potency. ACS Applied Bio Materials, 2021, 4, 4990-4998.	2.3	0
1982	Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology, 2021, 32, 322001.	1.3	17
1983	Using Liposomes to Alleviate the Toxicity of Chelerythrine, a Natural PKC Inhibitor, in Treating Non-Small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 658543.	1.3	3
1984	Membrane fusion and drug delivery with carbon nanotube porins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
1985	Artemisinin co-delivery system based on manganese oxide for precise diagnosis and treatment of breast cancer. Nanotechnology, 2021, 32, 325101.	1.3	4
1986	Meta-analysis of In Vitro Drug-Release Parameters Reveals Predictable and Robust Kinetics for Redox-Responsive Drug-Conjugated Therapeutic Nanogels. ACS Applied Nano Materials, 2021, 4, 4256-4268.	2.4	12
1987	New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. Journal of Drug Targeting, 2022, 30, 61-81.	2.1	34
1988	Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release, 2021, 333, 188-245.	4.8	31
1989	Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. International Journal of Biological Macromolecules, 2021, 178, 193-228.	3.6	51
1990	Continuous flow scalable production of injectable size-monodisperse nanoliposomes in easy-fabrication milli-fluidic reactors. Chemical Engineering Science, 2021, 235, 116481.	1.9	7
1991	Advances in Functional Metalâ€Organic Frameworks Based Onâ€Demand Drug Delivery Systems for Tumor Therapeutics. Advanced NanoBiomed Research, 2021, 1, 2100014.	1.7	24
1992	Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111623.	2.5	28
1993	Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111633.	2.5	26
1994	Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Acta Biomaterialia, 2021, 126, 372-383.	4.1	7
1995	Anti‑inflammatory role of curcumin in retinal disorders (Review). Experimental and Therapeutic Medicine, 2021, 22, 790.	0.8	12
1996	MicroRNA-Responsive DNA-Programmed Nanomedicine with Controllability of Cascaded Events for Cancer Therapy Enhancement. ACS Macro Letters, 2021, 10, 654-661.	2.3	1
1997	Effect of the ammonium salt anion on the structure of doxorubicin complex and PEGylated liposomal doxorubicin nanodrugs. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129849.	1.1	8
1998	Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. Journal of Nanoscience and Nanotechnology, 2021, 21, 2760-2777.	0.9	0

#	Article	IF	CITATIONS
1999	Surfactant Assisted Rapid-Release Liposomal Strategies Enhance the Antitumor Efficiency of Bufalin Derivative and Reduce Cardiotoxicity. International Journal of Nanomedicine, 2021, Volume 16, 3581-3598.	3.3	8
2000	Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. International Journal of Molecular Sciences, 2021, 22, 5264.	1.8	10
2001	Drug Release Studies of SCâ \in 514 PLGA Nanoparticles. FASEB Journal, 2021, 35, .	0.2	0
2002	A brief overview about the use of different bioactive liposome-based drug delivery systems in Peritoneal Dialysis and some other diseases. Nano Express, 2021, 2, 022006.	1.2	2
2003	Nanocarrier-enhanced intracellular delivery of benznidazole for treatment of Trypanosoma cruzi infection. JCI Insight, 2021, 6, .	2.3	5
2004	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	2.0	8
2005	Development of a high payload, cancer-targeting liposomes of methyl aminolevulinate for intraoperative photodynamic diagnosis/therapy of peritoneal carcinomatosis. International Journal of Pharmaceutics, 2021, 602, 120612.	2.6	3
2006	Selective Targeting of Breast Cancer by Tafuramycin A Using SMA-Nanoassemblies. Molecules, 2021, 26, 3532.	1.7	0
2007	Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Reviews and Reports, 2021, 17, 2025-2041.	1.7	2
2008	Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. Journal of Pharmaceutical Investigation, 2021, 51, 541-553.	2.7	13
2009	Bio-based nanomaterials for cancer therapy. Nano Today, 2021, 38, 101134.	6.2	58
2010	Folic acid decoration of mesoporous silica nanoparticles to increase cellular uptake and cytotoxic activity of doxorubicin in human breast cancer cells. Journal of Drug Delivery Science and Technology, 2021, 63, 102535.	1.4	11
2011	The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 2021, 173, 306-330.	6.6	65
2012	Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPRER) and Beyond. Biomedicines, 2021, 9, 635.	1.4	8
2013	The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging—A Review. International Journal of Molecular Sciences, 2021, 22, 6229.	1.8	17
2014	Antisense microRNA185 loaded liposome for efficient inhibition of the hepatic endogenous microRNA185 level. European Journal of Pharmaceutical Sciences, 2021, 161, 105803.	1.9	6
2015	Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. Journal of Allergy and Clinical Immunology, 2021, 147, 2075-2082.e2.	1.5	117
2016	Theragnostic nanomotors: Successes and upcoming challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1736.	3.3	12

#	Article	IF	CITATIONS
2017	Doxorubicin hydrochloride liposome and albumin-bound paclitaxel in cancer: a nanotechnology perspective. The Applied Biology & Chemistry Journal, 0, , 59-65.	0.0	1
2018	Dual-Targeting of Doxorubicin and Chlorine e6 Co-Delivery Based on Small-Size Nanocomposite for the Synergetic Imaging and Therapy. Journal of Cluster Science, 2022, 33, 1793-1807.	1.7	2
2019	The story behind the science. Journal of Controlled Release, 2021, 334, 452.	4.8	0
2020	Integrin α ₂ β ₁ Targeting DGEA-Modified Liposomal Doxorubicin Enhances Antitumor Efficacy against Breast Cancer. Molecular Pharmaceutics, 2021, 18, 2634-2646.	2.3	5
2021	Unadulterated Organic Nanoparticles with Small Sizes for Robust Tumor Imaging and Photothermal Treatment. Advanced Functional Materials, 2021, 31, 2103714.	7.8	18
2022	Meglumine Antimoniate‣oaded Aqueousâ€Core PLA Nanocapsules: Old Drug, New Formulation against <i>Leishmania</i> â€Related Diseases. Macromolecular Bioscience, 2021, 21, e2100046.	2.1	10
2023	A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Advanced Drug Delivery Reviews, 2021, 173, 479-491.	6.6	68
2024	A Focus on "Bio―in Bio–Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Advanced Healthcare Materials, 2021, 10, e2100574.	3.9	23
2025	Lipid membrane-based therapeutics and diagnostics. Archives of Biochemistry and Biophysics, 2021, 704, 108858.	1.4	4
2026	Subâ€50 nm Supramolecular Nanohybrids with Active Targeting Corona for Imageâ€Guided Solid Tumor Treatment and Metastasis Inhibition. Advanced Functional Materials, 2021, 31, 2103272.	7.8	7
2027	Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 784-793.	4.3	24
2028	Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. Journal of Personalized Medicine, 2021, 11, 571.	1.1	199
2029	Improving selective targeting to cancer-associated fibroblasts by modifying liposomes with arginine based materials. Journal of Drug Targeting, 2022, 30, 94-107.	2.1	0
2031	Role of intravital imaging in nanomedicine-assisted anti-cancer therapy. Current Opinion in Biotechnology, 2021, 69, 153-161.	3.3	5
2032	Interrogating preclinical study of liposomes: The effect of mouse strain reexamined. Journal of Controlled Release, 2021, 334, 178-187.	4.8	10
2033	A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Scientific Reports, 2021, 11, 13027.	1.6	18
2034	Recent Advances and Disputes About Curcumin in Retinal Diseases. Clinical Ophthalmology, 2021, Volume 15, 2553-2571.	0.9	12
2035	Tumor acidity-induced charge-reversal liposomal doxorubicin with enhanced cancer cell uptake and anticancer activity. Giant, 2021, 6, 100052.	2.5	12

#	Article	IF	CITATIONS
2036	The Combination of Morphology and Surface Chemistry Defines the Immunological Identity of Nanocarriers in Human Blood. Advanced Therapeutics, 2021, 4, 2100062.	1.6	19
2037	From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. Nanomaterials, 2021, 11, 1727.	1.9	25
2038	Production and isolation of pharmaceutical drug nanoparticles. International Journal of Pharmaceutics, 2021, 603, 120708.	2.6	35
2039	Smart Therapeutic Strategy of pHâ€Responsive Gold Nanoparticles for Combating Multidrug Resistance. Particle and Particle Systems Characterization, 2021, 38, 2100073.	1.2	2
2040	Nanomedicine in Oncocardiology: Contribution and Perspectives of Preclinical Studies. Frontiers in Cardiovascular Medicine, 2021, 8, 690533.	1.1	4
2041	A Promising Future of Ferroptosis in Tumor Therapy. Frontiers in Cell and Developmental Biology, 2021, 9, 629150.	1.8	44
2042	Nanoengineering Apolipoprotein A1â€Based Immunotherapeutics. Advanced Therapeutics, 2021, 4, 2100083.	1.6	8
2043	Nanomedicine at the crossroads – A quick guide for IVIVC. Advanced Drug Delivery Reviews, 2021, 179, 113829.	6.6	29
2044	Nanotechnology of Tyrosine Kinase Inhibitors in Cancer Therapy: A Perspective. International Journal of Molecular Sciences, 2021, 22, 6538.	1.8	18
2045	Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Applied Nano Materials, 2021, 4, 6441-6470.	2.4	56
2046	Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 2021, 15, 16982-17015.	7.3	730
2047	NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 35376-35388.	4.0	17
2048	Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Advanced Drug Delivery Reviews, 2021, 174, 1-29.	6.6	40
2049	Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. Nanomedicine, 2021, 16, 1451-1456.	1.7	3
2050	Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nature Communications, 2021, 12, 4121.	5.8	58
2051	Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. Journal of Controlled Release, 2021, 335, 369-388.	4.8	30
2052	Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules, 2021, 26, 4621.	1.7	10
2053	Effect of graphene oxide on the <scp>pHâ€responsive</scp> drug release from supramolecular hydrogels. Journal of Applied Polymer Science, 2022, 139, 51420.	1.3	12

#	Article	IF	CITATIONS
2054	Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 701504.	2.0	27
2055	Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bulletin, 2021, 46, 643-649.	1.7	5
2056	Carnosic acid-induced co-self-assembly of metal-peptide complexes into a nanocluster-based framework with tumor-specific accumulation for augmented immunotherapy. Chemical Engineering Journal, 2021, 416, 129141.	6.6	19
2057	G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals, 2021, 14, 671.	1.7	19
2058	In Vitro Cell Toxicity and Intracellular Uptake of Doxorubicin Exposed as a Solution or Liposomes: Implications for Treatment of Hepatocellular Carcinoma. Cells, 2021, 10, 1717.	1.8	25
2059	Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers, 2021, 13, 3539.	1.7	9
2060	Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. International Journal of Pharmaceutics, 2021, 604, 120711.	2.6	24
2061	Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies – A commentary. Journal of Controlled Release, 2021, 335, 660-667.	4.8	13
2062	Recent Advances in Liposomal-Based Anti-Inflammatory Therapy. Pharmaceutics, 2021, 13, 1004.	2.0	11
2063	Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers, 2021, 13, 3387.	1.7	24
2064	Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Advanced Drug Delivery Reviews, 2021, 178, 113861.	6.6	28
2065	Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study. Journal of Molecular Liquids, 2021, 333, 115949.	2.3	9
2066	Modulation of Intracellular Copper Levels as the Mechanism of Action of Anticancer Copper Complexes: Clinical Relevance. Biomedicines, 2021, 9, 852.	1.4	93
2067	Cryogenic Electron Microscopy Methodologies as Analytical Tools for the Study of Self-Assembled Pharmaceutics. Pharmaceutics, 2021, 13, 1015.	2.0	11
2069	Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers, 2021, 13, 2557.	2.0	13
2070	Infrared Responsive Choline Phosphate Lipids for Synergistic Cancer Therapy. Chemistry - A European Journal, 2021, 27, 12589-12598.	1.7	4
2071	Cancer Nanomedicine and Immune System—Interactions and Challenges. Frontiers in Nanotechnology, 2021, 3, .	2.4	8
2072	Tumor-Specific ONOO [–] Nanogenerator for Improved Drug Delivery and Enhanced Chemotherapy of Tumor. ACS Nano, 2021, 15, 11514-11525.	7.3	28

#	Article	IF	CITATIONS
2073	Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 35-52.	4.3	17
2075	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	3.0	92
2076	Mechanisms and Pharmaceutical Action of Lipid Nanoformulation of Natural Bioactive Compounds as Efficient Delivery Systems in the Therapy of Osteoarthritis. Pharmaceutics, 2021, 13, 1108.	2.0	5
2077	Doxorubicin and doxorubicin-loaded nanoliposome induce senescence by enhancing oxidative stress, hepatotoxicity, and in vivo genotoxicity in male Wistar rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1803-1813.	1.4	9
2078	Self-Assembled pH-Sensitive Nanoparticles Based on Ganoderma lucidum Polysaccharide–Methotrexate Conjugates for the Co-delivery of Anti-tumor Drugs. ACS Biomaterials Science and Engineering, 2021, 7, 3764-3773.	2.6	20
2079	Lightâ€Activated Biomedical Applications of Chlorophyll Derivatives. Macromolecular Bioscience, 2021, 21, e2100181.	2.1	22
2080	The Increase of Antileukemic Efficiency of Doxorubicin and Other Cytostatics Combined with Platinum(IV)-Nitroxyl Complex Đ'Đ¡118. Bulletin of Experimental Biology and Medicine, 2021, 171, 342-346.	0.3	0
2081	Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics, 2021, 10, 3321-3337.	2.9	6
2082	The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioactive Materials, 2021, 6, 1973-1987.	8.6	343
2083	Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews, 2021, 121, 12181-12277.	23.0	227
2084	Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Current Medicinal Chemistry, 2023, 30, 335-355.	1.2	8
2085	Surface Ligand Valency and Immunoliposome Binding: when More Is Not Always Better. Pharmaceutical Research, 2021, 38, 1593-1600.	1.7	4
2086	Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics, 2021, 13, 1365.	2.0	61
2087	Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International Journal of Nanomedicine, 2021, Volume 16, 5395-5409.	3.3	25
2088	A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharmaceutica Sinica B, 2021, 11, 2396-2415.	5.7	55
2089	A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomaterialia, 2021, 130, 409-422.	4.1	9
2090	Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomaterialia, 2021, 130, 460-472.	4.1	17
2091	Antennapediaâ€derived positivelyâ€charged peptide faces multiple problems upon their usage as targeting ligand for liposomal doxorubicin. Biotechnology Progress, 2021, 37, e3202.	1.3	0

#	Article	IF	Citations
2092	Supramolecular "Click Chemistry―for Targeting in the Body. Bioconjugate Chemistry, 2021, 32, 1935-1946.	1.8	20
2093	Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development?. Advanced Drug Delivery Reviews, 2021, 175, 113760.	6.6	34
2094	Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. Journal of Controlled Release, 2021, 336, 16-39.	4.8	20
2095	Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioactive Materials, 2022, 10, 281-294.	8.6	117
2096	Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics, 2021, 13, 1250.	2.0	21
2097	Chlorogenic Acid Enhances Doxorubicin-Mediated Cytotoxic Effect in Osteosarcoma Cells. International Journal of Molecular Sciences, 2021, 22, 8586.	1.8	17
2098	Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules, 2021, 26, 5052.	1.7	33
2099	In Vivo Distribution of Poly(ethylene glycol) Functionalized Iron Oxide Nanoclusters: An Ultrastructural Study. Nanomaterials, 2021, 11, 2184.	1.9	7
2100	Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews, 2021, 175, 113818.	6.6	90
2101	Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation. Cardiovascular Drugs and Therapy, 2022, 36, 1075-1089.	1.3	17
2102	Understanding the Potential of Genome Editing in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 9241.	1.8	3
2103	Dual-modified PCL-PEG nanoparticles for improved targeting and therapeutic efficacy of docetaxel against colorectal cancer. Pharmaceutical Development and Technology, 2021, 26, 910-921.	1.1	7
2104	Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine, 2021, 16, 1813-1832.	1.7	7
2105	TopicalÂtransdermal chemoprevention of breast cancer: where will nanomedical approaches deliver us?. Nanomedicine, 2021, 16, 1713-1731.	1.7	7
2106	Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. European Journal of Pharmaceutical Sciences, 2021, 163, 105838.	1.9	11
2107	Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. Journal of Controlled Release, 2021, 336, 396-409.	4.8	31
2108	Nanovesicle Formulation Enhances Anti-inflammatory Property and Safe Use of Piroxicam. Pharmaceutical Nanotechnology, 2021, 9, 177-190.	0.6	3
2109	Liposome-based delivery of biological drugs. Chinese Chemical Letters, 2022, 33, 587-596.	4.8	79

#	Article	IF	CITATIONS
2111	Engineered nanomaterials for biomedical applications and their toxicity: a review. Environmental Chemistry Letters, 2022, 20, 445-468.	8.3	32
2112	Polymeric Lipid Hybrid Nanoparticles (PLNs) as Emerging Drug Delivery Platform—A Comprehensive Review of Their Properties, Preparation Methods, and Therapeutic Applications. Pharmaceutics, 2021, 13, 1291.	2.0	46
2113	Co-delivery systems: hope for clinical application?. Drug Delivery and Translational Research, 2022, 12, 1339-1354.	3.0	7
2114	Retinoids Delivery Systems in Cancer: Liposomal Fenretinide for Neuroectodermal-Derived Tumors. Pharmaceuticals, 2021, 14, 854.	1.7	8
2115	Pharmacokinetic Analysis of Peptide-Modified Nanoparticles with Engineered Physicochemical Properties in a Mouse Model of Traumatic Brain Injury. AAPS Journal, 2021, 23, 100.	2.2	12
2116	Bioactive Lipids and Their Derivatives in Biomedical Applications. Biomolecules and Therapeutics, 2021, 29, 465-482.	1.1	18
2117	Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy. Nano Research, 2022, 15, 2177-2195.	5.8	6
2118	Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Frontiers in Nanotechnology, 2021, 3, .	2.4	36
2119	Overview of the Therapeutic Applications of Stem Cell–Derived Exosomes: A Research and Commercial Perspective. Current Protocols, 2021, 1, e230.	1.3	0
2120	Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Advanced Drug Delivery Reviews, 2021, 178, 113992.	6.6	43
2121	Preparation and characterization of beta sitosterol encapsulated nanoliposomal formulation for improved delivery to cancer cells and evaluation of its anti-tumor activities against Daltons Lymphoma Ascites tumor models. Journal of Drug Delivery Science and Technology, 2022, 70, 102832.	1.4	5
2122	Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials, 2021, 11, 2426.	1.9	11
2123	Liposomes: Ideal drug delivery systems in breast cancer. Biotechnology and Applied Biochemistry, 2022, 69, 1867-1884.	1.4	7
2124	Polymeric nanomedicines targeting hematological malignancies. Journal of Controlled Release, 2021, 337, 571-588.	4.8	15
2125	Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 2021, 176, 113851.	6.6	317
2126	Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	12
2127	iRGD Peptide-Mediated Liposomal Nanoparticles with Photoacoustic/Ultrasound Dual-Modality Imaging for Precision Theranostics Against Hepatocellular Carcinoma. International Journal of Nanomedicine, 2021, Volume 16, 6455-6475.	3.3	17
2128	Core-Shell Structured Theranotics. Nano LIFE, 0, , 2141004.	0.6	2

# 2129	ARTICLE Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and	IF 4.8	Citations
2130	nano-formulation approaches. Journal of Controlled Release, 2021, 337, 27-58. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. Journal of Controlled Release, 2021, 337, 505-520.	4.8	41
2131	Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano, 2021, 15, 14022-14048.	7.3	189
2132	Using Parallel Coordinates in Optimization of Nano-Particle Drug Delivery. Journal of Biomechanical Engineering, 2021, 144, .	0.6	1
2133	Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochemistry and Biophysics Reports, 2021, 27, 101067.	0.7	6
2134	Investigating the Application of Liposomes as Drug Delivery Systems for the Diagnosis and Treatment of Cancer. International Journal of Biomaterials, 2021, 2021, 1-16.	1.1	34
2135	PEGylated phospholipid micelles containing D-α-tocopheryl succinate as multifunctional nanocarriers for enhancing the antitumor efficacy of doxorubicin. International Journal of Pharmaceutics, 2021, 607, 120979.	2.6	5
2136	Active targeting strategy in nanomedicines using anti-EGFR ligands – A promising approach for cancer therapy and diagnosis. International Journal of Pharmaceutics, 2021, 609, 121134.	2.6	12
2137	Doxorubicinâ€Sensitized Luminescence of NIRâ€Emitting Ytterbium Liposomes: Towards Direct Monitoring of Drug Release. Angewandte Chemie - International Edition, 2021, 60, 23574-23577.	7.2	7
2138	Doxorubicinâ€Sensitized Luminescence of NIRâ€Emitting Ytterbium Liposomes: Towards Direct Monitoring of Drug Release. Angewandte Chemie, 2021, 133, 23766.	1.6	1
2139	Exosome-based hybrid nanostructures for enhanced tumor targeting and hyperthermia therapy. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111915.	2.5	22
2140	A Screening Study for the Development of Simvastatin-Doxorubicin Liposomes, a Co-Formulation with Future Perspectives in Colon Cancer Therapy. Pharmaceutics, 2021, 13, 1526.	2.0	16
2141	Pharmacodynamic Studies of Fluorescent Diamond Carriers of Doxorubicin in Liver Cancer Cells and Colorectal Cancer Organoids. Nanotechnology, Science and Applications, 2021, Volume 14, 139-159.	4.6	2
2142	The Potential of Milk-Derived Exosomes for Drug Delivery. Current Drug Delivery, 2021, 18, 688-699.	0.8	10
2143	Construction polyprodrugs by click-reactions and metal-coordination: pH-responsive release for magnetic resonance imaging guided chemotherapy. Chemical Engineering Journal, 2021, 422, 130108.	6.6	5
2144	Hyperbaric oxygen regulates tumor microenvironment and boosts commercialized nanomedicine delivery for potent eradication of cancer stem-like cells. Nano Today, 2021, 40, 101248.	6.2	34
2145	Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials, 2021, 277, 121119.	5.7	11
2146	Computational pharmaceutics - A new paradigm of drug delivery. Journal of Controlled Release, 2021, 338, 119-136.	4.8	75

#	Article	IF	CITATIONS
2147	Loading drugs into liposomes by temperature up-down cycle procedure with controllable results fitting prediction by mathematical and thermodynamic process. Materials Science and Engineering C, 2021, 129, 112379.	3.8	4
2148	Injectable drug delivery systems of doxorubicin revisited: In vitro-in vivo relationships using human clinical data. International Journal of Pharmaceutics, 2021, 608, 121073.	2.6	15
2149	Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in Colloid and Interface Science, 2021, 296, 102509.	7.0	84
2150	Bovine Serum Albumin Nanoparticle-Mediated Delivery of Sorafenib for Improving Hepatocellular Carcinoma Therapy. Journal of Nanoscience and Nanotechnology, 2021, 21, 5075-5082.	0.9	2
2151	Development of a novel formulation method to prepare liposomal Epacadostat. European Journal of Pharmaceutical Sciences, 2021, 165, 105954.	1.9	4
2152	Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. Journal of Drug Delivery Science and Technology, 2021, 65, 102677.	1.4	7
2153	Delivery of doxorubicin loaded P18 conjugated-poly(2-ethyl-oxazoline)-DOPE nanoliposomes for targeted therapy of breast cancer. Toxicology and Applied Pharmacology, 2021, 428, 115671.	1.3	7
2154	Gold nanoparticle-coated thermosensitive liposomes for the triggered release of doxorubicin, and photothermal therapy using a near-infrared laser. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127038.	2.3	18
2155	Targeting immunosuppressor cells with nanoparticles in autoimmunity: How far have we come to?. Cellular Immunology, 2021, 368, 104412.	1.4	4
2156	Colloidal bag of marbles: The structure and properties of lipid-coated silica nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127358.	2.3	1
2157	Surface engineered nanocarriers for the management of breast cancer. Materials Science and Engineering C, 2021, 130, 112441.	3.8	30
2158	Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. Journal of Drug Delivery Science and Technology, 2021, 66, 102790.	1.4	18
2159	Sequential administration of PEG-Span 80 niosome enhances anti-tumor effect of doxorubicin-containing PEG liposome. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 20-28.	2.0	17
2160	Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochemistry, 2021, 111, 9-31.	1.8	14
2161	Biomaterials and devices for immunotherapy. , 2022, , 97-133.		0
2162	Delivery strategies of RNA therapeutics for ex vivo and in vivo B-cell malignancies. , 2022, , 117-146.		0
2163	Construction of enzymatic nanoreactors with high catalytic activity in millifluidic systems for cancer therapy. Chemical Engineering Journal, 2022, 429, 132305.	6.6	5
2164	Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics. Bioactive Materials, 2022, 8, 153-164.	8.6	20

#	Article	IF	CITATIONS
2165	Quantitative Cryo-TEM Reveals New Structural Details of Doxil-Like PEGylated Liposomal Doxorubicin Formulation. Pharmaceutics, 2021, 13, 123.	2.0	28
2166	Nanomaterials: Synthesis, physicochemical characterization, and biopharmaceutical applications. , 2021, , 33-70.		2
2167	Lung cancer: Improving efficacy and reducing side effects. , 2021, , 351-371.		0
2168	Nanoporous Gold Monolith for High Loading of Unmodified Doxorubicin and Sustained Co-Release of Doxorubicin-Rapamycin. Nanomaterials, 2021, 11, 208.	1.9	5
2169	Reactive Oxygen Species-Mediated Inflammation and Apoptosis in Hand-Foot Syndrome Induced by PEGylated Liposomal Doxorubicin. International Journal of Nanomedicine, 2021, Volume 16, 471-480.	3.3	14
2170	Theranostic Applications of Nanomaterials for Ophthalmic Applications. International Journal of Scientific Advances, 2021, 2, .	0.0	1
2171	Bioinspired nanoparticles-based drug delivery systems for cancer theranostics. , 2021, , 189-228.		2
2172	Preparation and Characterization of Drug Liposomes by pH-Gradient Method. Biomaterial Engineering, 2021, , 47-58.	0.1	Ο
2173	Hybrid lipopolymer vesicle drug delivery and release systems. Journal of Biomedical Research, 2021, 35, 301.	0.7	12
2174	Receptor-Based Combinatorial Nanomedicines. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 339-355.	0.1	6
2175	Homing Peptides for Cancer Therapy. Advances in Experimental Medicine and Biology, 2021, 1295, 29-48.	0.8	21
2176	Nanocarriers for the Diagnosis and Treatment of Cancer. Nanomedicine and Nanotoxicology, 2021, , 223-252.	0.1	0
2177	Synthesis of poly(2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids and their characterization and surface properties of modified liposomes for protein interactions. Biomaterials Science, 2021, 9, 5854-5867.	2.6	10
2178	Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega, 2021, 6, 2973-2989.	1.6	30
2179	Overcoming the Mucosal Barrier: Tetraether Lipid‣tabilized Liposomal Nanocarriers Decorated with Cellâ€Penetrating Peptides Enable Oral Delivery of Vancomycin. Advanced Therapeutics, 2021, 4, 2000247.	1.6	16
2180	Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine, 2021, 16, 63-80.	1.7	24
2181	Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta, 2021, 104, 199-207.	0.7	25
2182	Extracellular Vesicles Derived from a Human Brain Endothelial Cell Line Increase Cellular ATP Levels. AAPS PharmSciTech, 2021, 22, 18.	1.5	22

#	Article	IF	CITATIONS
2183	Advances of smart nano-drug delivery systems in osteosarcoma treatment. Journal of Materials Chemistry B, 2021, 9, 5439-5450.	2.9	20
2184	Solid Lipid Particles for Lung Metastasis Treatment. Pharmaceutics, 2021, 13, 93.	2.0	8
2185	<scp>Antiâ€</scp> epithelial cell adhesion molecule <scp>RNA</scp> aptamerâ€conjugated liposomal doxorubicin as an efficient targeted therapy in mice bearing colon carcinoma tumor model. Biotechnology Progress, 2021, 37, e3116.	1.3	16
2186	Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based <i>in vitro</i> model of Parkinson's disease. Biomaterials Science, 2021, 9, 8171-8188.	2.6	18
2190	Reactive Oxygen Speciesâ€Regulating Strategies Based on Nanomaterials for Disease Treatment. Advanced Science, 2021, 8, 2002797.	5.6	149
2191	Long Circulation and Tumor Accumulation. , 2013, , 543-571.		3
2192	Pharmacokinetic and Pharmacodynamic Aspects of Focal and Targeted Delivery of Drugs. Advances in Delivery Science and Technology, 2014, , 149-166.	0.4	1
2193	Pharmaceutics of Nanoparticles. Methods in Pharmacology and Toxicology, 2016, , 219-238.	0.1	2
2194	Nanoparticulate Drug Delivery Systems to Overcome the Blood–Brain Barrier. Methods in Pharmacology and Toxicology, 2016, , 333-347.	0.1	4
2195	Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. Methods in Pharmacology and Toxicology, 2016, , 457-482.	0.1	14
2196	Surface Modification of Nanoparticles to Oppose Uptake by the Mononuclear Phagocyte System. , 2019, , 221-236.		4
2197	Nanocarriers as Potential Targeted Drug Delivery for Cancer Therapy. Environmental Chemistry for A Sustainable World, 2020, , 51-88.	0.3	15
2198	Metal- and Polymer-Based Nanoparticles for Advanced Therapeutic and Diagnostic System Applications. , 2020, , 357-384.		1
2199	Nanocarriers as Tools for Delivery of Nature Derived Compounds and Extracts with Therapeutic Activity. Sustainable Agriculture Reviews, 2020, , 73-114.	0.6	1
2200	Cancer Nanomedicine: Special Focus on Cancer Immunotherapy. , 2021, , 465-508.		2
2201	Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. Advances in Delivery Science and Technology, 2014, , 3-45.	0.4	7
2202	Ocular Bioadhesives and Their Applications in Ophthalmic Drug Delivery. , 2016, , 211-230.		2
2203	Ligand-targeted Particulate Nanomedicines Undergoing Clinical Evaluation: Current Status. Fundamental Biomedical Technologies, 2016, , 163-200.	0.2	16

#	Article	IF	CITATIONS
2204	Fabrication and Applications of Magnetic Nanoparticles-Based Drug Delivery System: Challenges and Perspectives. , 2020, , 455-482.		1
2205	Pressurized intraperitoneal aerosol chemotherapy and its effect on gastric-cancer-derived peritoneal metastases: an overview. Clinical and Experimental Metastasis, 2019, 36, 1-14.	1.7	15
2207	Natural-based consumer health nanoproducts: medicines, cosmetics, and food supplements. , 2020, , 527-578.		7
2208	Nanoparticle-based delivery of polyphenols for the treatment of inflammation-associated diseases. , 2020, , 343-382.		4
2209	Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 36-48.	5.7	384
2210	Cancer cell death induced by nanomagnetolectin. European Journal of Cell Biology, 2017, 96, 600-611.	1.6	5
2211	Secretory phospholipase A 2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro , but induce unforeseen severe toxicity in vivo. Journal of Controlled Release, 2017, 262, 212-221.	4.8	31
2212	The Ouzo effect: A tool to elaborate high-payload nanocapsules. Journal of Controlled Release, 2020, 324, 430-439.	4.8	10
2213	Immunopolymer Lipid Nanoparticles for Delivery of Macromolecules to Antigen-Expressing Cells. ACS Applied Bio Materials, 2020, 3, 8481-8495.	2.3	4
2214	Glucose-Functionalized Liposomes for Reducing False Positives in Cancer Diagnosis. ACS Nano, 2021, 15, 1301-1309.	7.3	14
2215	Effect of apoA-I PEGylation on the Biological Fate of Biomimetic High-Density Lipoproteins. ACS Omega, 2021, 6, 871-880.	1.6	2
2216	Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. Journal of Materials Chemistry B, 2020, 8, 4973-4989.	2.9	102
2217	Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. International Journal of Hyperthermia, 2020, 37, 18-33.	1.1	12
2218	Roadmap on nanomedicine. Nanotechnology, 2021, 32, 012001.	1.3	17
2219	The magic bullet as cancer therapeutic—has nanotechnology failed to find its mark?. Progress in Biomedical Engineering, 2020, 2, 042004.	2.8	5
2220	Improvement of the pharmacokinetic characteristics of liposomal doxorubicin using CD47 biomimickry. Journal of Pharmacy and Pharmacology, 2021, 73, 169-177.	1.2	10
2225	Recent Progress of Doxorubicin Nanomedicine in Hematologic Malignancies. Nanoscience and Nanotechnology Letters, 2017, 9, 1861-1874.	0.4	2
2226	Anti-Epcam Aptamer (Syl3c)-Functionalized Liposome for Targeted Delivery Of Doxorubicin: In Vitro And In Vivo Antitumor Studies in Mice Bearing C26 Colon Carcinoma. Nanoscale Research Letters, 2020, 15, 101.	3.1	52

#	Article	IF	CITATIONS
2227	Bringing Research to Clinical Application. , 2016, , 523-585.		1
2228	Analytical Utility of Liposomes: From Past to Present. , 2016, , 1-82.		2
2229	Analytical Utility of Liposomes: From Past to Present. , 2016, , 15-96.		1
2230	Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging. PLoS ONE, 2013, 8, e66128.	1.1	57
2231	Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect. PLoS ONE, 2015, 10, e0123461.	1.1	88
2232	Development of a Cell-Based Bioassay for Phospholipase A2-Triggered Liposomal Drug Release. PLoS ONE, 2015, 10, e0125508.	1.1	15
2233	XTEN as Biological Alternative to PEGylation Allows Complete Expression of a Protease-Activatable Killin-Based Cytostatic. PLoS ONE, 2016, 11, e0157193.	1.1	27
2234	Thought-Controlled Nanoscale Robots in a Living Host. PLoS ONE, 2016, 11, e0161227.	1.1	38
2235	Dispersion of Nanoparticles in Different Media Importantly Determines the Composition of Their Protein Corona. PLoS ONE, 2017, 12, e0169552.	1.1	107
2236	Use of short interfering RNA delivered by cationic liposomes to enable efficient down-regulation of PTPN22 gene in human T lymphocytes. PLoS ONE, 2017, 12, e0175784.	1.1	24
2237	The Use of Iron Oxide Nanoparticles for Pancreatic Cancer Therapy. Journal of Nanomedicine Research, 2014, 1, .	1.8	14
2238	Mini review on emerging methods of preparation of liposome and its application as Liposome drug delivery systems. , 2017, 3, 005-021.		14
2239	A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors. Oncotarget, 2016, 7, 59965-59975.	0.8	11
2240	Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6, 39564-39577.	0.8	22
2242	Nanotherapeutics in the EU: an overview on current state and future directions. International Journal of Nanomedicine, 2014, 9, 1005.	3.3	149
2243	Liposome Circulation Time is Prolonged by CD47 Coating. Protein and Peptide Letters, 2020, 27, 1029-1037.	0.4	16
2244	Nanocarriers for Tracking and Treating Diseases. Current Medicinal Chemistry, 2013, 20, 3500-3514.	1.2	33
2245	Hierarchy of Knowledge Translation: From Health Problems to Ad-Hoc Drug Design. Current Medicinal Chemistry, 2016, 23, 3000-3012	1.2	2

#	Article	IF	CITATIONS
2246	Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents. Current Medicinal Chemistry, 2019, 26, 4631-4656.	1.2	62
2247	Targeting Tumour Metastasis: The Emerging Role of Nanotechnology. Current Medicinal Chemistry, 2020, 27, 1367-1381.	1.2	4
2248	Monoclonal Antibodies Carried in Drug Delivery Nanosystems as a Strategy for Cancer Treatment. Current Medicinal Chemistry, 2020, 28, 401-418.	1.2	19
2249	Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current Medicinal Chemistry, 2020, 27, 7234-7255.	1.2	7
2250	Recent Advances on the Development of Pharmacotherapeutic Agents on the Basis of Human Serum Albumin. Current Pharmaceutical Design, 2015, 21, 1866-1888.	0.9	65
2251	Carrier Deformability in Drug Delivery. Current Pharmaceutical Design, 2016, 22, 1118-1134.	0.9	19
2252	Nanoparticles: Properties and Applications in Cancer Immunotherapy. Current Pharmaceutical Design, 2019, 25, 1962-1979.	0.9	12
2253	Cell-penetrating Peptide-based Intelligent Liposomal Systems for Enhanced Drug Delivery. Current Pharmaceutical Biotechnology, 2014, 15, 210-219.	0.9	77
2254	Safety of Nanoparticles in Medicine. Current Drug Targets, 2015, 16, 1671-1681.	1.0	384
2255	Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini-Reviews in Medicinal Chemistry, 2019, 19, 961-969.	1.1	12
2256	Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. Current Drug Delivery, 2019, 16, 829-838.	0.8	12
2257	Liposomal Formulation of a Melphalan Lipophilic Prodrug: Studies of Acute Toxicity, Tolerability, and Antitumor Efficacy. Current Drug Delivery, 2020, 17, 312-323.	0.8	12
2258	Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Current Cancer Drug Targets, 2019, 19, 257-276.	0.8	21
2259	Synergistic Interplay of Medicinal Chemistry and Formulation Strategies in Nanotechnology – From Drug Discovery to Nanocarrier Design and Development. Current Topics in Medicinal Chemistry, 2017, 17, 1451-1468.	1.0	12
2260	Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Current Topics in Medicinal Chemistry, 2018, 17, 3425-3443.	1.0	13
2261	Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Current Topics in Medicinal Chemistry, 2020, 20, 2762-2776.	1.0	4
2262	Membrane Derived Vesicles as Biomimetic Carriers for Targeted Drug Delivery System. Current Topics in Medicinal Chemistry, 2020, 20, 2472-2492.	1.0	14
2263	Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers. Current Cancer Therapy Reviews, 2020, 16, 306-319.	0.2	5

#	Article	IF	CITATIONS
2264	In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. Current Analytical Chemistry, 2019, 15, 373-409.	0.6	6
2265	Cancer Nanotechnology-An Excursion on Drug Delivery Systems. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 2078-2092.	0.9	10
2266	Breast Cancer Targeted Treatment Strategies: Promising Nanocarrier Approaches. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1300-1310.	0.9	9
2267	Patenting Networking and Knowledge Translation in Liposomes for Cancer Therapy. Recent Patents on Nanomedicine, 2015, 4, 121-128.	0.5	2
2268	Nanotoxicity Assessment: A Necessity. Nanoscience and Nanotechnology - Asia, 2020, 10, 248-265.	0.3	1
2269	Development and In Vitro Characterization of a Gemcitabine-loaded MUC4-targeted Immunoliposome Against Pancreatic Ductal Adenocarcinoma. Anticancer Research, 2017, 37, 6031-6039.	0.5	10
2270	Dual Loading Of Primaquine And Chloroquine Into Liposome. European Pharmaceutical Journal, 2019, 66, 18-25.	0.2	11
2271	The importance of nanotechnology and drug carrier systems in pharmacology. GSC Biological and Pharmaceutical Sciences, 2020, 10, 014-023.	0.1	2
2272	Nanoscale Therapeutic System: Safety Assessment Features. Safety and Risk of Pharmacotherapy, 2019, 7, 127-138.	0.1	5
2273	Targeted Drug Delivery in Lipid-like Nanocages and Extracellular Vesicles. Acta Naturae, 2019, 11, 28-41.	1.7	17
2274	Lipophilic prodrug of methotrexate in the membrane of liposomes promotes their uptake by human blood phagocytes. Acta Naturae, 2020, 12, 99-109.	1.7	10
2275	Engineered Doxorubicin Delivery System Using Proteinoid-Poly (L-Lactic Acid) Polymeric Nanoparticles of Narrow Size Distribution and High Molecular Weight for Cancer Treatment. International Journal of Nanotechnology and Nanomedicine, 2017, 2, .	1.0	3
2276	Nanoparticle-Encapsulated Doxorubicin Demonstrates Superior Tumor Cell Kill in Triple Negative Breast Cancer Subtypes Intrinsically Resistant to Doxorubicin. Precision Nanomedicine, 2018, 1, 173-182.	0.4	10
2277	Small Peptide-Doxorubicin Co-Assembly for Synergistic Cancer Therapy. Molecules, 2020, 25, 484.	1.7	5
2278	Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials, 2020, 10, 190.	1.9	168
2279	PD-L1 Targeting Immune-Microbubble Complex Enhances Therapeutic Index in Murine Colon Cancer Models. Pharmaceuticals, 2021, 14, 6.	1.7	15
2280	Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Advanced Pharmaceutical Bulletin, 2020, 10, 524-541.	0.6	17
2281	Caffeic acid phenethyl ester (CAPE): cornerstone pharmacological studies and drug delivery systems. Pharmacia, 2019, 66, 223-231.	0.4	7

#	Article	IF	CITATIONS
2282	Drug delivery application of extracellular vesicles; insight into production, drug loading, targeting, and pharmacokinetics. AIMS Bioengineering, 2017, 4, 73-92.	0.6	27
2283	Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5, 162-180.	0.2	2
2284	Nanomedicine: Tiny Particles and Machines, from Diagnosis to Treatment of Cardiovascular Disease, Provides Huge Achievements. Advances in Bioscience and Biotechnology (Print), 2015, 06, 613-623.	0.3	4
2285	Surviving Cancer without a Broken Heart. Rambam Maimonides Medical Journal, 2019, 10, e0012.	0.4	5
2286	Nanodrugs used in cancer therapy. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2019, 163, 122-131.	0.2	31
2287	Ultrasound-Mediated Gene and Drug Delivery Using a Microbubble-Liposome Particle System. Theranostics, 2014, 4, 1133-1144.	4.6	100
2288	Development and evaluation antitumor activity of PEGylated liposomal doxorubicin on tumor-bearing BALB/c-Foxn1nu mice model. Journal of Applied Pharmaceutical Science, 0, , 001-006.	0.7	1
2289	Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. ELife, 2019, 8, .	2.8	20
2290	Recent Advances in Lipid-Based Nanoformulations for Breast Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 175-200.	0.4	3
2291	Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomaterials Science, 2021, 9, 7667-7704.	2.6	30
2292	Nanoparticle Systems Applied for Immunotherapy in Various Treatment Modalities. Bioanalysis, 2021, , 117-142.	0.1	0
2293	Liposomal formulations of anticancer copper(<scp>ii</scp>) thiosemicarbazone complexes. Dalton Transactions, 2021, 50, 16053-16066.	1.6	5
2294	Nanomedicines: Recent Progress, Impact and Challenges in Applications. Asian Journal of Chemistry, 2021, 33, 2561-2578.	0.1	0
2295	Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chemical Reviews, 2022, 122, 167-208.	23.0	172
2296	Surface modification of nanoâ€drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1758.	3.3	38
2297	Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. Journal of Nanobiotechnology, 2021, 19, 322.	4.2	48
2298	Nanoliposomes as drug delivery systems: safety concerns. Journal of Drug Targeting, 2022, 30, 313-325.	2.1	17
2300	A Systematic Approach for Liposome and Lipodisk Preclinical Formulation Development by Microfluidic Technology. AAPS Journal, 2021, 23, 111.	2.2	8

#	Article	IF	CITATIONS
2301	The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19?. Journal of Drug Delivery Science and Technology, 2022, 67, 102899.	1.4	3
2302	Polyelectrolyte/Gold Nanoparticle Nanotubes Incorporating Doxorubicin‣oaded Liposomes. Chemistry - an Asian Journal, 2021, 16, 4057-4061.	1.7	4
2303	Preparation and Characterization of Chitosan and Inclusive Compound-Layered Gold Nanocarrier to Improve the Antiproliferation Effect of Tamoxifen Citrate in Colorectal Adenocarcinoma (Caco-2) and Breast Cancer (MCF-7) Cells. Turkish Journal of Pharmaceutical Sciences, 2022, 19, 391-399.	0.6	3
2304	Preclinical Studies in Small Animals for Advanced Drug Delivery Using Hyperthermia and Intravital Microscopy. Cancers, 2021, 13, 5146.	1.7	7
2305	Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids?. Cancers, 2021, 13, 5346.	1.7	11
2306	Facile Synthesis of N-Doped Graphene Quantum Dots as Novel Transfection Agents for mRNA and pDNA. Nanomaterials, 2021, 11, 2816.	1.9	11
2307	Nanomedicine for Immunotherapy Targeting Hematological Malignancies: Current Approaches and Perspective. Nanomaterials, 2021, 11, 2792.	1.9	8
2308	Rational Design 2-Hydroxypropylphosphonium Salts as Cancer Cell Mitochondria-Targeted Vectors: Synthesis, Structure, and Biological Properties. Molecules, 2021, 26, 6350.	1.7	9
2309	Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Review of Anticancer Therapy, 2021, 21, 1385-1398.	1.1	30
2310	Modulating expression of inhibitory and stimulatory immune â€~checkpoints' using nanoparticulate-assisted nucleic acid delivery. EBioMedicine, 2021, 73, 103624.	2.7	6
2311	Delivering more for less: nanosized, minimal-carrier and pharmacoactive drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113994.	6.6	39
2312	Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. Journal of Drug Delivery Science and Technology, 2021, 66, 102916.	1.4	24
2313	Polymer- and Lipid-Based Systems for Parenteral Drug Delivery. AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 47-60.	0.2	1
2315	Historical and Practical Perspective of the Unique Surface Electrical Properties of Cancer Cells. Science Insights, 2015, 11, 346-354.	0.1	1
2316	Strategies for Virus–Enzyme Coupling. , 2015, , 65-124.		0
2317	Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles. Applied Science and Convergence Technology, 2015, 24, 284-288.	0.3	0
2318	Pharmacokinetic Properties of Nanomaterials. Methods in Pharmacology and Toxicology, 2016, , 239-250.	0.1	1
2319	Improving Human Health at the Atomic Level: A Bibliographic Survey of Nanomedicine. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2320	Nanotechnology in Urology. Indian Journal of Urology, 2016, 33, 13-18.	0.2	3
2322	Historical Introduction to the Field of Controlled Drug Delivery. , 2016, , 1-21.		Ο
2323	Magnetic Nanogel-enabled Image-guided Therapy. RSC Smart Materials, 2017, , 109-127.	0.1	1
2324	Liposomes. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 52-87.	0.3	0
2325	Nanotechnology Advances in Drug Delivery. NanoWorld Journal, 2017, 03, .	0.8	2
2326	Roles of Reactive Oxygen Species in Diseases and Development of Novel Antioxidant Therapeutics. Y Hoc Thanh Pho Ho Chi Minh, 2017, 2, 1-6.	0.1	0
2327	Nanotechnology in Urology: History of Development and Applications in Urology. , 2018, , 279-288.		1
2328	13: Essential Oil-Based Nanomedicines against Trypanosomatides. , 2017, , 258-278.		0
2329	"Active Targeting of Breast Cancer Cells Using Nanocarriers". Modern Applications in Pharmacy & Pharmacology, 2017, 1, .	0.1	0
2331	Zwischen Fiktion, Wissenschaft und Wirtschaft: Nanomedizin. , 2018, , 209-229.		0
2332	Immune Response to PEGylated Nanomedicines: Impact of IgM Response. Biological and Medical Physics Series, 2018, , 371-388.	0.3	0
2333	Translational Nanodiagnostics for InÂVivo Cancer Detection. Bioanalysis, 2019, , 133-162.	0.1	1
2334	Liposomes in Drug Delivery: Status and Advances. Biomaterial Engineering, 2019, , 1-22.	0.1	0
2335	Anthracyclines. WikiJournal of Medicine, 2018, 5, 1.	1.0	0
2336	Therapeutic nanostructures: novel approaches. , 2019, , 1-22.		0
2337	Conjugate-mediated Delivery of RNAi-based Therapeutics: Enhancing Pharmacokinetics–Pharmacodynamics Relationships of Medicinal Oligonucleotides. RSC Drug Discovery Series, 2019, , 206-232.	0.2	0
2338	Nghiên cứu táºio phức hợp nanosilica - curcumin - bromelain và đÃinh giÃi hoáºit tÃnh lên dÃ2ng nguy mA´hình động váºt. Tap Chi Khoa Hoc = Journal of Science, 2019, 55(Công nghệ Sinh hỀ), 252.	/ên bÃo s 0.1	ợi trên O
2339	Challenges of in vitro characterization of nonbiological complex drugs: Example of parenteral preparations with liposomal drug carriers. Arhiv Za Farmaciju, 2019, 69, 176-198.	0.2	0

#	Article	IF	CITATIONS
2340	Nanotechnology: The Future for Cancer Treatment. , 2019, , 389-418.		1
2341	Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings. , 2019, , 241-297.		0
2342	Stromal Barriers Within the Tumor Microenvironment and Obstacles to Nanomedicine. , 2019, , 57-89.		3
2343	Computational Methodologies for Exploring Nano-engineered Materials. , 2019, , 57-79.		0
2344	Chitosan-Based Systems for Theranostic Applications. , 2019, , 343-384.		1
2346	Challenges in Development of Nanomedicine for Treatment of Cancer. Journal of Cancer Research Updates, 0, 8, 64-69.	0.3	0
2347	Nanomedicine in Cancer Stem Cell Therapy. , 2020, , 67-105.		2
2348	Designing Personalized and Innovative Novel Drug Therapies for Cancer Treatment. , 2020, , 213-228.		2
2349	Nanoparticle-based formulation for drug repurposing in cancer treatment. , 2020, , 335-351.		2
2350	Use of Nanoparticulate Systems for Tackling Neurological Aging. Healthy Ageing and Longevity, 2020, , 187-218.	0.2	0
2351	Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. Journal of Physical Chemistry Letters, 2020, 11, 4791-4802.	2.1	7
2352	Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia: a literature review of pharmaceutical and clinical aspects. European Journal of Hospital Pharmacy, 2021, 28, 124-128.	0.5	5
2354	Robust Nanoparticle Morphology and Size Analysis by Atomic Force Microscopy for Standardization. Chemical and Pharmaceutical Bulletin, 2020, 68, 791-796.	0.6	1
2357	Click and Bioorthogonal Chemistry: The Future of Active Targeting of Nanoparticles for Nanomedicines?. Chemical Reviews, 2022, 122, 340-384.	23.0	97
2358	Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochemical Society Transactions, 2021, 49, 2253-2269.	1.6	7
2359	Porous nanoparticles with engineered shells release their drug cargo in cancer cells. International Journal of Pharmaceutics, 2021, 610, 121230.	2.6	7
2360	RNA and Protein Delivery by Cellâ€Secreted and Bioengineered Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2101557.	3.9	5
2361	Ultrasoundâ€Triggered Delivery of Iproplatin from Microbubbleâ€Conjugated Liposomes. ChemistryOpen, 2021, 10, 1170-1176.	0.9	11

#	Article	IF	Citations
2363	Avengers against cancer: A new era of nano-biomaterial-based therapeutics. Materials Today, 2021, 51, 317-349.	8.3	24
2364	Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. Journal of Extracellular Vesicles, 2021, 10, e12163.	5.5	53
2365	Current understandings and clinical translation of nanomedicines for breast cancer therapy. Advanced Drug Delivery Reviews, 2022, 180, 114034.	6.6	32
2366	Nanoformulations in Human Health Conditions: The Paradigm Shift. , 2020, , 13-42.		0
2367	Application of Nanomaterials for Cancer Diagnosis and Therapy. , 2020, , 121-140.		0
2368	Calibrated liposomal release of the anti-mitotic agent Bl-2536 increases the targeting of mitotic tumor cells. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 183-190.	2.0	1
2369	Virusâ€mimetic systems for cancer diagnosis and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1692.	3.3	4
2370	Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages. JCI Insight, 2020, 5, .	2.3	5
2371	Microfluidic technologies for nanoparticle formation. Lab on A Chip, 2022, 22, 512-529.	3.1	45
2372	Nanomedicines and Nanodrug Delivery Systems: Trends and Perspectives. , 2020, , 99-141.		3
2373	Nanotechnology in Medicine. Ecoproduction, 2020, , 57-64.	0.8	2
2374	Molecular Studies of Peptide Assemblies and Related Applications in Tumor Therapy and Diagnosis. , 2020, , 255-286.		0
2375	Nanobiotechnology: Paving the Way to Personalized Medicine. , 2020, , 17-32.		1
2376	Latest Tools in Fight Against Cancer: Nanomedicines. , 2020, , 139-164.		1
2377	Application of nanomedical technology in breast cancer treatment. Hospital Pharmacology, 2020, 7, 883-894.	0.1	0
2378	Ir–Ho bimetallic complex-mediated low-dose radiotherapy/radiodynamic therapy <i>in vivo</i> . Chemical Communications, 2020, 56, 6193-6196.	2.2	7
2379	Considerations for the Development of Novel Chemotherapies and Antibody Drug Conjugates in Phase I Trials. , 2020, , 185-198.		0
2380	Recent Advances in the Emergence of Nanorobotics in Medicine. , 2020, , 119-148.		0

#	Article	IF	CITATIONS
2381	MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent. Molecular Pharmaceutics, 2021, 18, 4543-4552.	2.3	4
2383	Superstable and Large-Scalable Organosilica-Micellar Hybrid Nanosystem <i>via</i> a Confined Gelation Strategy for Ultrahigh-Dosage Chemotherapy. Nano Letters, 2021, 21, 9388-9397.	4.5	12
2384	Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics, 2021, 13, 1875.	2.0	8
2385	Knowledge-Based Design of 5-Fluororacil Prodrug Liposomal Formulation: Molecular Packing and Interaction Revealed by Interfacial Isotherms and X-ray Scattering Techniques. Molecular Pharmaceutics, 2021, 18, 4331-4340.	2.3	Ο
2386	Polyethylenimine–Poly(lactic-co-glycolic acid)2 Nanoparticles Show an Innate Targeting Ability to the Submandibular Salivary Gland via the Muscarinic 3 Receptor. ACS Central Science, 2021, 7, 1938-1948.	5.3	0
2387	A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. Journal of Molecular Liquids, 2022, 348, 118008.	2.3	50
2388	Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to Innovative Applications. Applied Sciences (Switzerland), 2021, 11, 10345.	1.3	14
2389	Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. Journal of Controlled Release, 2021, 340, 318-330.	4.8	8
2390	Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. Journal of Hematology and Oncology, 2021, 14, 187.	6.9	82
2391	Natural Products and Nanopharmaceuticals. Environmental Chemistry for A Sustainable World, 2021, , 113-154.	0.3	0
2392	Special focus issue on drug delivery strategies for the treatment of cancer. Therapeutic Delivery, 2020, 11, 605-607.	1.2	0
2395	Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies. Journal of Basic and Clinical Medicine, 2013, 2, 1-6.	0.5	16
2396	Nanotechnology and Pediatric Cancer: Prevention, Diagnosis and Treatment. Iranian Journal of Pediatric Hematology and Oncology, 2015, 5, 233-48.	0.4	5
2398	Interactive anticancer effect of nanomicellar curcumin and galbanic acid combination therapy with some common chemotherapeutics in colon carcinoma cells. Avicenna Journal of Phytomedicine, 2019, 9, 237-247.	0.1	0
2399	Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy. Ecancermedicalscience, 2020, 14, 1095.	0.6	2
2400	Current role of nanoparticles in the treatment of lung cancer. Journal of Clinical and Translational Research, 2021, 7, 140-155.	0.3	16
2401	Fabrication design, process technologies, and convolutions in the scale-up of nanotherapeutic delivery systems. , 2022, , 47-131.		1
2402	Nanoparticle technologies: Recent state of the art and emerging opportunities. , 2022, , 3-46.		7

#	Article	IF	CITATIONS
2403	Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews, 2022, 452, 214309.	9.5	81
2404	Theranostic nanoparticles with disease-specific administration strategies. Nano Today, 2022, 42, 101335.	6.2	54
2405	Facile Separation of PEGylated Liposomes Enabled by Anti-PEG scFv. Nano Letters, 2021, 21, 10107-10113.	4.5	12
2406	Polymer-based nanoparticles: fabrication to applications—the many faces of DC8,9PC and albumin. Biophysical Reviews, 2021, 13, 925-930.	1.5	3
2407	Lipid Nanoparticles for Drug Delivery. Advanced NanoBiomed Research, 2022, 2, 2100109.	1.7	129
2408	Nanodesigning of multifunctional quantum dots and nanoparticles for the treatment of fibrosarcoma. Journal of Microencapsulation, 2021, , 1-40.	1.2	0
2409	An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discovery Today, 2022, 27, 471-489.	3.2	38
2410	Liposome Sterile Filtration Characterization via X-ray Computed Tomography and Confocal Microscopy. Membranes, 2021, 11, 905.	1.4	1
2411	Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules, 2021, 22, 5290-5306.	2.6	14
2412	One-Step Microfluidic Fabrication of Multi-Responsive Liposomes for Targeted Delivery of Doxorubicin Synergism with Photothermal Effect. International Journal of Nanomedicine, 2021, Volume 16, 7759-7772.	3.3	20
2413	Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. International Journal of Nanomedicine, 2021, Volume 16, 7891-7941.	3.3	41
2414	Modulating undruggable targets to overcome cancer therapy resistance. Drug Resistance Updates, 2022, 60, 100788.	6.5	15
2415	Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine, 2021, 16, 2605-2631.	1.7	11
2416	LDL-Based Lipid Nanoparticle Derived for Blood Plasma Accumulates Preferentially in Atherosclerotic Plaque. Frontiers in Bioengineering and Biotechnology, 2021, 9, 794676.	2.0	3
2417	Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. International Journal of Molecular Sciences, 2021, 22, 13011.	1.8	24
2418	Disulfur-bridged polyethyleneglycol/DOX nanoparticles for the encapsulation of photosensitive drugs: a case of computational simulations on the redox-responsive chemo-photodynamic drug delivery system. RSC Advances, 2021, 11, 37988-37994.	1.7	4
2419	Tuning the membrane fluidity of liposomes for desirable in vivo fate with enhanced drug delivery. Advances in Biomembranes and Lipid Self-Assembly, 2021, 34, 67-106.	0.3	7
2420	Chapter 2. Inorganic Materials in Drug Delivery. Inorganic Materials Series, 2021, , 14-126.	0.5	0

#	Article	IF	CITATIONS
2421	Particles and nanoparticles in nuclear medicine: Basic principles and instrumentation. , 2021, , .		1
2422	Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics, 2022, 14, 105.	2.0	4
2423	Double hit strategy using pH-sensitive liposomes containing doxorubicin and pheophorbide-a for combination tumor therapy. Colloids and Interface Science Communications, 2022, 46, 100565.	2.0	6
2424	Multiple targeted doxorubicin-lonidamine liposomes modified with p-hydroxybenzoic acid and triphenylphosphonium to synergistically treat glioma. European Journal of Medicinal Chemistry, 2022, 230, 114093.	2.6	14
2425	Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. Journal of Controlled Release, 2022, 342, 210-227.	4.8	16
2426	Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112530.	2.5	41
2427	Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 2022, 342, 53-65.	4.8	134
2428	Polymersomes as a potential platform for cancer immunotherapy. Materials Today Advances, 2022, 13, 100203.	2.5	13
2429	Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today, 2022, 43, 101375.	6.2	9
2430	Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy. Ecancermedicalscience, 2020, 14, 1095.	0.6	5
2431	Physical Characterization and Biodistribution of Cisplatin Loaded in Surfactant Modified-Hybrid Nanoparticles Using Polyethylene Oxide-b-Polymethacrylic Acid. Advanced Pharmaceutical Bulletin, 2020, 11, 765-771.	0.6	1
2432	Applications of Nano-drugs and Tumor Microenvironment Sensitive Nano-drug Delivery Systems. , 2020, , .		1
2433	Tumor acidity and near-infrared light responsive drug delivery MoS2-based nanoparticles for chemo-photothermal therapy. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102716.	1.3	11
2434	Recent progress of macrophage vesicle-based drug delivery systems. Drug Delivery and Translational Research, 2022, 12, 2287-2302.	3.0	11
2435	Harnessing chlorin e6 loaded by functionalized iron oxide nanoparticles linked with glucose for target photodynamic therapy and improving of the immunogenicity of lung cancer. Journal of Cancer Research and Clinical Oncology, 2022, 148, 867-879.	1.2	15
2436	A pH-sensitive liposome formulation of a peptidomimetic-Dox conjugate for targeting HER2Â+Âcancer. International Journal of Pharmaceutics, 2022, 612, 121364.	2.6	12
2437	Recent Progress of RGD Modified Liposomes as Multistage Rocket Against Cancer. Frontiers in Pharmacology, 2021, 12, 803304.	1.6	31
2438	Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. Frontiers in Medical Technology, 2021, 3, 778645.	1.3	19

#	Article	IF	Citations
2439	Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials, 2022, 17, 29-48.	8.6	42
2440	An esterase-activatable prodrug formulated liposome strategy: potentiating the anticancer therapeutic efficacy and drug safety. Nanoscale Advances, 2022, 4, 952-966.	2.2	13
2441	A novel anti-tumor/anti-tumor-associated fibroblast/anti-mPEG tri-specific antibody to maximize the efficacy of mPEGylated nanomedicines against fibroblast-rich solid tumor. Biomaterials Science, 2021, 10, 202-215.	2.6	6
2442	Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease. BMB Reports, 2022, 55, 30-38.	1.1	3
2443	Development of Pharmaceutical Nanomedicines: From the Bench to the Market. Pharmaceutics, 2022, 14, 106.	2.0	109
2444	Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation. Pharmaceutics, 2022, 14, 217.	2.0	6
2445	Role of Curcumin in Retinal Diseases—A review. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 1457-1473.	1.0	15
2446	Necrotizing leg gangrene from invasive cutaneous Kaposi sarcoma, reversed by pegylated liposomal doxorubicin. Journal of Oncology Pharmacy Practice, 2022, 28, 1003-1008.	0.5	2
2447	Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers, 2022, 14, 451.	1.7	14
2448	The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics, 2022, 14, 247.	2.0	14
2449	Composite magnetic/polymer delivery systems for medical applications. , 2022, , 425-436.		0
2450	Liposomal Formulation of a PLA2-Sensitive Phospholipid–Allocolchicinoid Conjugate: Stability and Activity Studies In Vitro. International Journal of Molecular Sciences, 2022, 23, 1034.	1.8	8
2451	Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics, 2022, 14, 141.	2.0	35
2452	Targeted Extracellular Vesicles Delivered Verrucarin A to Treat Glioblastoma. Biomedicines, 2022, 10, 130.	1.4	8
2453	Application of nanoparticles in drug delivery for the treatment of osteosarcoma: focussing on the liposomes. Journal of Drug Targeting, 2022, 30, 463-475.	2.1	11
2454	Impact of Linker Modification and PEGylation of Vancomycin Conjugates on Structure-Activity Relationships and Pharmacokinetics. Pharmaceuticals, 2022, 15, 159.	1.7	2
2455	Preparation and Evaluation of Gefitinib Containing Nanoliposomal Formulation for Lung Cancer Therapy. BioNanoScience, 2022, 12, 241-255.	1.5	12
2456	Anti-PD-L1 F(ab) Conjugated PEG-PLGA Nanoparticle Enhances Immune Checkpoint Therapy. Nanotheranostics, 2022, 6, 243-255.	2.7	17

		CITATION REPORT	
#	Article	IF	Citations
2457	Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Experimental Cell Research, 2022, 410, 112968.	1.2	13
2458	Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas. Cancers, 2022, 14,	626. 1.7	11
2460	Targeted Delivery of Exosomes Armed with Anti-Cancer Therapeutics. Membranes, 2022, 12, 85.	1.4	17
2461	Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics. Journal of Nanobiotechnology, 2022, 20, 10.	4.2	13
2462	Nanotechnology for Biomedical Devices: Cancer Treatment. Materials Horizons, 2022, , 207-251	. 0.3	1
2463	The effect of AS1411 surface density on the tumor targeting properties of PEGylated silver nanotriangles. Nanomedicine, 2022, 17, 289-302.	1.7	1
2464	Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. Applied Sciences (Switzerland), 2022, 12, 935.	1.3	16
2465	Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022 1336-1376.	a, 51, 18.7	76
2466	A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy. Theranostics, 2022, 12, 1756-1768.	4.6	27
2467	Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery. Nanomaterials, 2022, 12, 399.	1.9	16
2468	A Metabolic Reprogramming Amino Acid Polymer as an Immunosurveillance Activator and Leuke Targeting Drug Carrier for Tâ€Cell Acute Lymphoblastic Leukemia. Advanced Science, 2022, 9, e.		27
2469	Extracellular Vesicles Mediate the Intercellular Exchange of Nanoparticles. Advanced Science, 20 e2102441.	22, 9, 5.6	11
2470	Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Advar Science, 2022, 9, e2104012.	nced 5.6	40
2471	Need for Expansion of Pharmacy Education Globally for the Growing Field of Nanomedicine. Phar (Basel, Switzerland), 2022, 10, 17.	macy 0.6	6
2472	Vascular Graft Infections: An Overview of Novel Treatments Using Nanoparticles and Nanofibers. Fibers, 2022, 10, 12.	1.8	4
2473	Structureâ€Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Advanced Science, 2022, 9, e2105373.	5.6	80
2474	Accelerated blood clearance and hypersensitivity by PEGylated liposomes containing TLR agonist Journal of Controlled Release, 2022, 342, 337-344.	rs. 4.8	24
2475	Delivery strategies of RNA therapeutics to leukocytes. Journal of Controlled Release, 2022, 342,	362-371. 4.8	9

#	Article	IF	CITATIONS
2476	Performance of nanoparticles for biomedical applications: The <i>in vitro</i> / <i>in vivo</i> discrepancy. Biophysics Reviews, 2022, 3, .	1.0	10
2477	Design of Nanostructured Lipid Carriers and Hybrid Lipid Nanoparticles. RSC Nanoscience and Nanotechnology, 2022, , 381-416.	0.2	1
2478	A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNAÂvaccine-inducedÂrare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience, 2022, 44, 597-618.	2.1	26
2479	Confocal reflectance microscopy for metal and lipid nanoparticle visualization in the brain. Nanomedicine, 2022, , .	1.7	1
2480	Proof of Concept: Protein Delivery into Human Erythrocytes Using Stable Cavitation. Molecular Pharmaceutics, 2022, 19, 929-935.	2.3	4
2481	Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics, 2022, 14, 382.	2.0	10
2482	Current nano-therapeutic approaches ameliorating inflammation in cancer progression. Seminars in Cancer Biology, 2022, 86, 886-908.	4.3	11
2483	Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell, 2022, 40, 255-276.	7.7	45
2484	Before in vivo studies: In vitro screening of sphingomyelin nanosystems using a relevant 3D multicellular pancreatic tumor spheroid model. International Journal of Pharmaceutics, 2022, 617, 121577.	2.6	9
2485	Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect, 2022, 7, .	0.7	15
2486	Effect of cholesterol on nano-structural alteration of light-activatable liposomes via laser irradiation: Small angle neutron scattering study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128548.	2.3	5
2487	Fat-Soluble Vitamin Supplementation Using Liposomes, Cyclodextrins, or Medium-Chain Triglycerides in Cystic Fibrosis: A Randomized Controlled Trial. Nutrients, 2021, 13, 4554.	1.7	12
2489	Evaluation of poly (lactic-co-glycolic acid) nanoparticles to improve the therapeutic efficacy of paclitaxel in breast cancer. BioImpacts, 2022, , .	0.7	1
2492	Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. Nanotechnology in the Life Sciences, 2022, , 83-116.	0.4	4
2494	Metallodrugs in cancer nanomedicine. Chemical Society Reviews, 2022, 51, 2544-2582.	18.7	70
2495	Hydrogen-bond super-amphiphile based drug delivery system: design, synthesis, and biological evaluation. RSC Advances, 2022, 12, 6076-6082.	1.7	2
2496	Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC Advances, 2022, 12, 7635-7651.	1.7	31
2497	Application of nanotechnology assisted devices in cancer treatment. , 2022, , 77-94.		1

#	Article	IF	CITATIONS
π 2499	Microfluidic Chip Interfacing Microdialysis and Mass Spectrometry for in Vivo Monitoring of	0.4	0
	Nanomedicine Pharmacokinetics in Real Time. SSRN Electronic Journal, 0, , .		Ŭ
2500	Aptamer-mediated drug delivery system for cardiovascular diseases. , 2022, , 107-127.		0
2502	Iron oxide nanoparticles as a drug carrier reduce host immunosuppression for enhanced chemotherapy. Nanoscale, 2022, 14, 4588-4594.	2.8	7
2503	Pharmaceutical Development and Design of Thermosensitive Liposomes Based on the QbD Approach. Molecules, 2022, 27, 1536.	1.7	3
2504	Lipid-Coated CaCO ₃ Nanoparticles as a Versatile pH-Responsive Drug Delivery Platform to Enable Combined Chemotherapy of Breast Cancer. ACS Applied Bio Materials, 2022, 5, 1194-1201.	2.3	13
2505	Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. Small, 2022, 18, e2106529.	5.2	10
2506	Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 241-252.	4.3	13
2507	The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Frontiers in Medicine, 2022, 9, 814986.	1.2	4
2508	Mechanomimetic 3D Scaffolds as a Humanized In Vitro Model for Ovarian Cancer. Cells, 2022, 11, 824.	1.8	4
2509	Research on the synthesis of nanoparticles of betulinic acid and their targeting antitumor activity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1789-1795.	1.6	2
2510	Physiologically Based Pharmacokinetic Modelling and Simulation to Predict the Plasma Concentration Profile of Doxorubicin. Pharmaceutics, 2022, 14, 541.	2.0	1
2511	A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules, 2022, 27, 1372.	1.7	303
2512	Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Frontiers in Pharmacology, 2022, 13, 776895.	1.6	11
2513	Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines, 2022, 10, 486.	1.4	15
2514	The Fate of Sialic Acid and PEG Modified Epirubicin Liposomes in Aged versus Young Cells and Tumor Mice Models. Pharmaceutics, 2022, 14, 545.	2.0	8
2515	In vivo Evaluation of Non-viral NICD Plasmid-Loaded PLGA Nanoparticles in Developing Zebrafish to Improve Cardiac Functions. Frontiers in Physiology, 2022, 13, 819767.	1.3	3
2516	Increased Targeting Area in Tumors by Dual-Ligand Modification of Liposomes with RGD and TAT Peptides. Pharmaceutics, 2022, 14, 458.	2.0	7
2517	NIR Activated Upper Critical Solution Temperature Polymeric Micelles for Trimodal Combinational Cancer Therapy. Biomacromolecules, 2022, 23, 937-947.	2.6	9

#	Article	IF	CITATIONS
2518	Sonocrystallization of CMONS Needles and Nanocubes: Mechanistic Studies and Advanced Crystallinity Characterization by Combining X-ray and Electron Diffractions with DNP-Enhanced NMR. Crystal Growth and Design, 2022, 22, 2181-2191.	1.4	0
2519	Structurally Related Liposomes Containing <i>N</i> -Oxide Surfactants: Physicochemical Properties and Evaluation of Antimicrobial Activity in Combination with Therapeutically Available Antibiotics. Molecular Pharmaceutics, 2022, 19, 788-797.	2.3	3
2520	Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics, 2022, 14, 451.	2.0	14
2521	Modulation of Tumor Vasculature Network: Key Strategies. Small Structures, 2022, 3, .	6.9	7
2522	Nanoparticle therapy for head and neck cancers. Current Opinion in Oncology, 2022, 34, 177-184.	1.1	3
2523	A preliminary study of the innate immune memory of Kupffer cells induced by PEGylated nanoemulsions. Journal of Controlled Release, 2022, 343, 657-671.	4.8	14
2524	Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B, 2022, 12, 3028-3048.	5.7	103
2525	Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. Journal of Nanobiotechnology, 2022, 20, 152.	4.2	49
2526	Shape-specific microfabricated particles for biomedical applications: a review. Drug Delivery and Translational Research, 2022, 12, 2019-2037.	3.0	8
2527	A New Approach to Supramolecular Structure Determination in Pharmaceutical Preparation of Self-Assembling Peptides: A Case Study of Lanreotide Autogel. Pharmaceutics, 2022, 14, 681.	2.0	4
2528	Resolvin <scp>D1</scp> â€loaded nanoliposomes promote <scp>M2</scp> macrophage polarization and are effective in the treatment of osteoarthritis. Bioengineering and Translational Medicine, 2022, 7, .	3.9	14
2529	Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Advanced Healthcare Materials, 2022, 11, e2102600.	3.9	15
2531	The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. Journal of Nanobiotechnology, 2022, 20, 127.	4.2	33
2533	Foscarnet-Type Inorganic-Organic Hybrid Nanoparticles for Effective Antiviral Therapy. ACS Biomaterials Science and Engineering, 2022, , .	2.6	2
2534	Nanotechnology: A revolutionary approach to prevent breast cancer recurrence. Asian Journal of Surgery, 2023, 46, 13-17.	0.2	12
2535	Versatile Encapsulation and Synthesis of Potent Liposomes by Thermal Equilibration. Membranes, 2022, 12, 319.	1.4	4
2536	The Pyrazolo[3,4-d]Pyrimidine Derivative Si306 Encapsulated into Anti-GD2-Immunoliposomes as Therapeutic Treatment of Neuroblastoma. Biomedicines, 2022, 10, 659.	1.4	6
2537	Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics, 2022, 14, 701.	2.0	12

#	Article	IF	Citations
2538	Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Reviews and Reports, 2022, 18, 1756-1773.	1.7	7
2539	Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers, 2022, 14, 1221.	2.0	16
2540	Nonspherical Nanocapsules as Long-Circulating Drug Delivery Systems. Chemistry of Materials, 2022, 34, 2503-2530.	3.2	7
2541	Exploration of the cardinal formulation parameters influencing the encapsulation and physicochemical properties of co-loaded anticancer dual drug nanoliposomes. Journal of Drug Delivery Science and Technology, 2022, , 103295.	1.4	1
2542	Highly Stable Nanostructured Magnetic Vesicles as Doxorubicin Carriers for Fieldâ€assisted Therapies. ChemNanoMat, 2022, 8, .	1.5	1
2543	Dualâ€Loaded Liposomes Tagged with Hyaluronic Acid Have Synergistic Effects in Tripleâ€Negative Breast Cancer. Small, 2022, 18, e2107690.	5.2	22
2544	Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. Chemistry Africa, 2022, 5, 459-480.	1.2	22
2545	PEGylated Liposomes Accumulate in the Areas Relevant to Skin Toxicities <i>via</i> Passive Extravasation across "Leaky―Endothelium. ACS Nano, 2022, 16, 6349-6358.	7.3	7
2546	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	6.6	34
2547	Delivery of anti-cancer drugs using microbubble-assisted ultrasound in digestive oncology: from preclinical to clinical studies. Expert Opinion on Drug Delivery, 2022, 19, 421-433.	2.4	5
2548	Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient?. Advanced Drug Delivery Reviews, 2022, 183, 114173.	6.6	44
2549	Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect, 2022, 7, .	0.7	2
2550	Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics, 2022, 14, 778.	2.0	28
2551	Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacologica Sinica, 2022, 43, 2759-2776.	2.8	37
2552	Microfluidic Nanoparticles for Drug Delivery. Small, 2022, 18, e2106580.	5.2	58
2553	Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine, 2022, 17, 547-568.	1.7	35
2554	Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. Journal of Controlled Release, 2022, 344, 62-79.	4.8	20
2555	Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. Journal of Controlled Release, 2022, 350, 60-79.	4.8	9

#	Article	IF	CITATIONS
2556	Nanomedicine tactics in cancer treatment: Challenge and hope. Critical Reviews in Oncology/Hematology, 2022, 174, 103677.	2.0	18
2557	Cascade Downregulation of the HER Family by a Dualâ€Targeted Recombinant Protein–Drug Conjugate to Inhibit Tumor Growth and Metastasis. Advanced Materials, 2022, 34, e2201558.	11.1	7
2558	Impact of critical process parameters and critical material attributes on the critical quality attributes of liposomal formulations prepared using continuous processing. International Journal of Pharmaceutics, 2022, 619, 121700.	2.6	8
2559	The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Advanced Drug Delivery Reviews, 2022, 184, 114195.	6.6	12
2560	Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. Biomaterials and Biosystems, 2022, 6, 100047.	1.0	2
2561	MnO2-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy. Journal of Colloid and Interface Science, 2022, 617, 315-325.	5.0	12
2562	Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chemical Engineering Journal, 2022, 439, 135661.	6.6	48
2564	Encapsulation of ultrasmall nanophosphors into liposomes by thin-film hydration. European Physical Journal: Special Topics, 0, , 1.	1.2	2
2565	Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy. Pharmaceutics, 2021, 13, 2183.	2.0	3
2566	Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Frontiers in Pharmacology, 2021, 12, 787226.	1.6	5
2567	Packaging and Delivery of Asthma Therapeutics. Pharmaceutics, 2022, 14, 92.	2.0	4
2568	Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. Materials Science and Engineering C, 2022, 133, 112623.	3.8	26
2569	The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles. European Journal of Chemistry, 2021, 12, 488-492.	0.3	0
2570	Challenges for the Development of Extracellular Vesicle-Based Nucleic Acid Medicines. Cancers, 2021, 13, 6137.	1.7	11
2571	Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma <i>in vitro</i> and <i>in vivo</i> . Cancer Biology and Therapy, 2022, 23, 1-16.	1.5	21
2572	Therapeutic Potential of Injectable Nano-Mupirocin Liposomes for Infections Involving Multidrug-Resistant Bacteria. Pharmaceutics, 2021, 13, 2186.	2.0	5
2573	PEGylated Liposomes Remotely Loaded with the Combination of Doxorubicin, Quinine, and Indocyanine Green Enable Successful Treatment of Multidrug-Resistant Tumors. Pharmaceutics, 2021, 13, 2181.	2.0	11
2574	Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review. Nanoscale Research Letters, 2021, 16, 174.	3.1	75

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2576	Preclinical and clinical evaluation of nanodrugs for diabetes treatment. , 2022, , 225-24	.6.		0
2577	Suppression of Melanoma Growth in a Murine Tumour Model Using <i>Orthosiphon sta Benth</i> . Extract Loaded in Ethanolic Phospholipid Vesicles (Spherosome). Current Dr 2022, 23, 317-328.	amineus ug Metabolism,	0.7	4
2578	Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine, 2022,	17, 645-664.	1.7	3
2579	A Review on Exploring the Opportunities of Polymer Drug Conjugated Systems for Targ Treatment. Current Drug Delivery, 2023, 20, 8-30.	eted Cancer	0.8	3
2580	Nanoliposomes in Cancer Therapy: Marketed Products and Current Clinical Trials. Interr Journal of Molecular Sciences, 2022, 23, 4249.	national	1.8	37
2581	Enhanced Therapeutic Effect of Liposomal Doxorubicin <i>via</i> Bio-Orthogonal Chem in Tumors. Molecular Pharmaceutics, 2022, 19, 1400-1409.	nical Reactions	2.3	4
2582	Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using P Bromide Nanocapsule Xâ€ray Computed Tomography Contrast. Advanced Therapeutics		1.6	1
2583	Cisplatin Nanoparticles Promote Intratumoral CD8 ⁺ T Cell Priming via Ant Presentation and T Cell Receptor Crosstalk. Nano Letters, 2022, 22, 3328-3339.	igen	4.5	18
2584	Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Ca 2022, 113, 2224-2231.	ancer Science,	1.7	35
2588	Changeable net charge on nanoparticles facilitates intratumor accumulation and penet Journal of Controlled Release, 2022, 346, 392-404.	ration.	4.8	7
2589	Surface Modification of Lipid-Based Nanoparticles. ACS Nano, 2022, 16, 7168-7196.		7.3	49
2590	Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunct Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. The American Jo Chinese Medicine, 2022, 50, 749-772.	ion: From burnal of	1.5	8
2591	An update of advanced nanoplatforms for Glioblastoma Multiforme Management EXC 20, 1544-1570.	Ll Journal, 2021,	0.5	8
2592	Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled R Doxorubicin. Frontiers in Pharmacology, 2022, 13, 854430.	elease of	1.6	14
2593	Potential application of biomimetic exosomes in cardiovascular disease; focused on iscl disease BMB Reports, 2021, , .	nemic heart	1.1	0
2594	Remote drug loading into liposomes <i>via</i> click reaction. Materials Horizons, 2022	, 9, 1969-1977.	6.4	2
2595	Improving the functionality of a nanomaterial by biological probes. , 2022, , 379-418.			4
2596	Cholesterol in drug delivery systems. , 2022, , 797-824.			2

#	Article	IF	CITATIONS
2597	Theranostics application of nanocarriers in hepatocellular carcinoma. , 2022, , 15-27.		0
2598	Nanotechnology-Based Drug Delivery System. Advances in Bioinformatics and Biomedical Engineering Book Series, 2022, , 97-133.	0.2	1
2599	Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma. Marine Drugs, 2022, 20, 301.	2.2	2
2600	Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering, 2022, 17, 1-175.	0.1	0
2601	Regulatory Considerations Specific to Liposome Drug Development as Complex Drug Products. Frontiers in Drug Delivery, 2022, 2, .	0.4	10
2602	Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals, 2022, 15, 542.	1.7	14
2603	Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjugate Chemistry, 2022, 33, 2018-2034.	1.8	28
2604	pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine, 2022, 17, 717-739.	1.7	3
2605	What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers, 2022, 14, 2238.	1.7	6
2606	Clickable Albumin Nanoparticles for Pretargeted Drug Delivery toward PD-L1 Overexpressing Tumors in Combination Immunotherapy. Bioconjugate Chemistry, 2022, , .	1.8	5
2607	A Decision Support System for preclinical assessment of nanomaterials in medical products: the REFINE DSS. Drug Delivery and Translational Research, 2022, , 1.	3.0	2
2608	Design and optimization of PEGylated silver nanoparticles for efficient delivery of doxorubicin to cancer cells. Journal of Drug Delivery Science and Technology, 2022, 71, 103347.	1.4	10
2609	Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacology and Translational Science, 2022, 5, 278-298.	2.5	9
2610	Nanomedicines Targeting Glioma Stem Cells. ACS Applied Materials & amp; Interfaces, 2023, 15, 158-181.	4.0	13
2611	Lipid Nanoparticles as Platforms for Theranostic Purposes: Recent Advances in the Field. Journal of Nanotheranostics, 2022, 3, 86-101.	1.7	3
2612	Application of lipid nanovesicle drug delivery system in cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, 214.	4.2	24
2613	A physiologically based pharmacokinetic model to predict pegylated liposomal doxorubicin disposition in rats and human. Drug Delivery and Translational Research, 2022, , 1.	3.0	2
2614	Targeted delivery of edaravone by liposomes for the treatment of ischemic stroke. Nanomedicine, 2022, 17, 741-752.	1.7	3

_			_		
C	TAT	ION.	Dr	DO	DT
	пап		ILL	РU	INC I

#	Article	IF	CITATIONS
2615	Dendritic–Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjugate Chemistry, 2022, , .	1.8	3
2616	Development and evaluation of PLA based hybrid block copolymeric nanoparticles for systemic delivery of pirarubicin as an anti-cancer agent. International Journal of Pharmaceutics, 2022, 620, 121761.	2.6	4
2617	Translational development of a tumor junction opening technology. Scientific Reports, 2022, 12, 7753.	1.6	3
2618	One-Pot, One-Step Synthesis of Drug-Loaded Magnetic Multimicelle Aggregates. Bioconjugate Chemistry, 2022, 33, 969-981.	1.8	0
2619	Size and surface charge effect of layered double hydroxide particles upon blood cells. Applied Clay Science, 2022, 225, 106549.	2.6	7
2620	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
2621	Liposomes: structure, composition, types, and clinical applications. Heliyon, 2022, 8, e09394.	1.4	213
2622	Shedding Light on the Blood–Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharmaceutical Research, 2022, 39, 1457-1468.	1.7	5
2623	Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 3694-3709.	5.7	13
2624	Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
2625	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	6.6	33
2626	Chemische AnsÃæze für synthetische Wirkstofftransportsysteme für systemische Anwendungen. Angewandte Chemie, 2022, 134, .	1.6	3
2627	Coimmunomodulation of tumor and tumor-draining lymph nodes during in situ vaccination promotes antitumor immunity. JCI Insight, 2022, 7, .	2.3	3
2628	The effects of protein corona on in vivo fate of nanocarriers. Advanced Drug Delivery Reviews, 2022, 186, 114356.	6.6	72
2629	Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. International Journal of Pharmaceutics, 2022, 622, 121857.	2.6	18
2630	Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. Biomedicines, 2022, 10, 1207.	1.4	7
2631	Hollow Multicomponent Capsules for Biomedical Applications: A Comprehensive Review. Journal of Cluster Science, 2023, 34, 77-110.	1.7	3
2632	Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chemical Engineering Journal, 2022, 446, 137147.	6.6	35

#	Article	IF	CITATIONS
2633	Nanocrystals: A Deep Insight into Formulation Aspects, Stabilization Strategies, and Biomedical Applications. Recent Patents on Nanotechnology, 2023, 17, 307-326.	0.7	3
2634	Synthesis of asymmetrically dihydrophobic chain poly(ethylene glycol) lipids for long circulation and membrane fusion. Journal of Surfactants and Detergents, 0, , .	1.0	0
2635	Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines, 2022, 10, 1187.	1.4	18
2636	Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Seminars in Cancer Biology, 2022, 86, 358-375.	4.3	17
2637	Targeted Drug Delivery Biopolymers Effectively Inhibit Breast Tumor Growth and Prevent Doxorubicin-Induced Cardiotoxicity. Molecules, 2022, 27, 3371.	1.7	5
2638	The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Advanced Drug Delivery Reviews, 2022, 187, 114324.	6.6	30
2639	Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics, 2022, 14, 1202.	2.0	7
2641	Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chemical Reviews, 2022, 122, 11514-11603.	23.0	164
2642	Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. Journal of Drug Delivery Science and Technology, 2022, 73, 103477.	1.4	7
2643	Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules, 2022, 12, 784.	1.8	48
2644	Nanoparticle-based medicines in clinical cancer therapy. Nano Today, 2022, 45, 101512.	6.2	59
2645	Pharmaceutical Nanocarriers. , 2022, , 802-817.		0
2646	Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. Journal of Materials Chemistry B, 2022, 10, 7607-7621.	2.9	9
2647	Fluorescence lifetime microscopy unveils the supramolecular organization of liposomal Doxorubicin. Nanoscale, 2022, 14, 8901-8905.	2.8	11
2648	Multifunctional liposome-quantum dot hybrid nanocarriers for drug targeting to brain tumors. , 2022, , 649-677.		1
2650	Pharmaceutical Nanocarriers: Nanotoxicology. , 2022, , 840-853.		0
2651	Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech, 2022, 23, .	1.5	25
2652	PNA-Modified Liposomes Improve the Delivery Efficacy of CAPIRI for the Synergistic Treatment of Colorectal Cancer. Frontiers in Pharmacology, 0, 13, .	1.6	3

#	Article	IF	Citations
 2653	Liposomal Formulations of a New Zinc(II) Complex Exhibiting High Therapeutic Potential in a Murine Colon Cancer Model. International Journal of Molecular Sciences, 2022, 23, 6728.	1.8	10
2654	Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nature Communications, 2022, 13, .	5.8	12
2655	Recent updates in curcumin delivery. Journal of Liposome Research, 2023, 33, 53-64.	1.5	24
2656	Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnology and Genetic Engineering Reviews, 2023, 39, 45-84.	2.4	18
2657	Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discovery Today, 2022, 27, 2526-2540.	3.2	12
2658	Optimization of Biomimetic, Leukocyte-Mimicking Nanovesicles for Drug Delivery Against Colorectal Cancer Using a Design of Experiment Approach. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
2659	Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics, 2022, 14, 1213.	2.0	38
2660	Herbal Nanoparticles: A New Perspective of Drug Delivery System- A Review. Nanoscience and Nanotechnology - Asia, 2022, 12, .	0.3	0
2661	Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. Small, 2022, 18, .	5.2	8
2662	Nanoparticleâ€assisted, imageâ€guided laser interstitial thermal therapy for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	4
2664	Cell-based drug delivery systems and their in vivo fate. Advanced Drug Delivery Reviews, 2022, 187, 114394.	6.6	28
2665	Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Frontiers in Oncology, 0, 12, .	1.3	108
2666	Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics, 2022, 14, 1235.	2.0	8
2667	Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Advanced Drug Delivery Reviews, 2022, 187, 114395.	6.6	17
2668	Uncovering the limitation of nanodrug delivery system: Backdrop to the game changer. , 2022, , 321-342.		0
2669	Advancements in nanophyto formulations. , 2022, , 103-132.		0
2670	Liposomes and their theranostic applications in infectious diseases. , 2022, , 275-287.		0
2672	Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9

#	Article	IF	CITATIONS
2673	Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. Pharmaceutical Fronts, 2022, 04, e43-e60.	0.4	2
2674	Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano, 2022, 16, 11769-11780.	7.3	108
2675	A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery. Bioactive Materials, 2023, 25, 783-795.	8.6	5
2676	Redox-sensitive doxorubicin liposome: a formulation approach for targeted tumor therapy. Scientific Reports, 2022, 12, .	1.6	13
2677	A Perspective on Studies of Phage DNA Packaging Dynamics. International Journal of Molecular Sciences, 2022, 23, 7854.	1.8	0
2678	Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 74, 103585.	1.4	7
2679	A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules, 2022, 27, 4400.	1.7	20
2680	Drug Delivery through Liposomes. , 0, , .		3
2681	Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	22
2682	Pegylated Liposomal Doxorubicin, Docetaxel, and Trastuzumab as Neoadjuvant Treatment for HER2-Positive Breast Cancer Patients: A Phase II and Biomarker Study. Frontiers in Oncology, 0, 12, .	1.3	4
2683	Chemophototherapeutic Ablation of <scp>Doxorubicinâ€Resistant</scp> Human Ovarian Tumor Cells ^{â€} . Photochemistry and Photobiology, 2023, 99, 844-849.	1.3	1
2684	The Big Potential of Small Particles: Lipid-Based Nanoparticles and Exosomes in Vaccination. Vaccines, 2022, 10, 1119.	2.1	4
2685	Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharmaceutica Sinica B, 2023, 13, 1866-1886.	5.7	23
2686	Characterization of a Mesoporous Silica Nanoparticle Formulation Loaded with Mitomycin C Lipidic Prodrug (MLP) and In Vitro Comparison with a Clinical-Stage Liposomal Formulation of MLP. Pharmaceutics, 2022, 14, 1483.	2.0	3
2687	Ex-vivo activation of a liposomal prodrug of mitomycin C by human tumors. Cancer Chemotherapy and Pharmacology, 0, , .	1.1	0
2688	Lipidâ€Headâ€Polymerâ€Tail Chimeric Vesicles. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
2689	Liposome-Based Carbohydrate Vaccine for Simultaneously Eliciting Humoral and Cellular Antitumor Immunity. ACS Macro Letters, 2022, 11, 975-981.	2.3	2
2690	Multi-purpose zein nanoparticles for battling hepatocellular carcinoma: A Green approach. European Polymer Journal, 2022, 176, 111396.	2.6	9

		CITATION REPORT		
#	Article		IF	CITATIONS
2691	A brief history of long circulating nanoparticles. Advanced Drug Delivery Reviews, 2022	, 188, 114396.	6.6	24
2692	The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advan Delivery Reviews, 2022, 188, 114416.	nced Drug	6.6	192
2693	Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and a targeting mechanisms. Advanced Drug Delivery Reviews, 2022, 188, 114449.	lternative	6.6	59
2694	Azide-Locked Prodrug Co-Assembly into Nanoparticles with Indocyanine Green for Chemophotothermal Therapy. Molecular Pharmaceutics, 0, , .		2.3	4
2695	The antisolvent coprecipitation method for enhanced bioavailability of poorly water-sol International Journal of Pharmaceutics, 2022, 626, 122043.	uble drugs.	2.6	17
2696	Emerging strategies in nanotechnology to treat respiratory tract infections: realizing cu for future clinical perspectives. Drug Delivery, 2022, 29, 2442-2458.	rrent trends	2.5	11
2697	Nanoparticles Targeting and Uptake: Current Advances in Breast Cancer Research. , 20.	22, , 171-195.		0
2698	Maleimide-Functionalized Liposomes: Prolonged Retention and Enhanced Efficacy of De Breast Cancer with Low Systemic Toxicity. Molecules, 2022, 27, 4632.	oxorubicin in	1.7	5
2699	InÂvivo imaging with SERS nanoprobes. , 2022, , 199-235.			0
2701	A Review on Nanocarrier Mediated Treatment and Management of Triple Negative Brea Saudi Arabian Scenario. Frontiers in Oncology, 0, 12, .	st Cancer: A	1.3	4
2702	Nanomedicine and regenerative medicine approaches in osteoarthritis therapy. Aging C Experimental Research, 2022, 34, 2305-2315.	linical and	1.4	5
2703	Engineering a Nano/Biointerface for Cell and Organ-Selective Drug Delivery. Langmuir, 2 9092-9098.	2022, 38,	1.6	4
2704	Tumor evolution-targeted nanomedicine ^{EVTChimica, 2022, 52, 2121-2155.}	;. Scientia Sinica	0.2	4
2705	Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics,	2022, 14, 1522.	2.0	11
2706	Editorial: Nano-Imaging in Translational Cancer Medicine. Frontiers in Bioengineering ar Biotechnology, 0, 10, .	ıd	2.0	0
2707	Research progress in membrane fusion-based hybrid exosomes for drug delivery system Bioengineering and Biotechnology, 0, 10, .	s. Frontiers in	2.0	14
2708	Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanor 12, 2672.	naterials, 2022,	1.9	23
2709	Nanoparticle-Based Therapeutics to Overcome Obstacles in the Tumor Microenvironme Hepatocellular Carcinoma. Nanomaterials, 2022, 12, 2832.	nt of	1.9	2

#	Article	IF	CITATIONS
2710	Nano-Chemotherapy synergize with immune checkpoint inhibitor- A better option?. Frontiers in Immunology, 0, 13, .	2.2	4
2711	Cationically modified inhalable nintedanib niosomes: enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine, 2022, 17, 935-958.	1.7	11
2712	Acriflavine, an Acridine Derivative for Biomedical Application: Current State of the Art. Journal of Medicinal Chemistry, 2022, 65, 11415-11432.	2.9	12
2713	Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	5
2714	Development and Challenges of Synthetic Retinoid Formulations in Cancer. Current Drug Delivery, 2022, 19, .	0.8	3
2715	An expanding horizon of complex injectable products: development and regulatory considerations. Drug Delivery and Translational Research, 2023, 13, 433-472.	3.0	7
2716	Development of siRNA Delivery System by Lipid Nanoparticles Modified with Functional Materials for Cancer Treatment. Biological and Pharmaceutical Bulletin, 2022, 45, 972-977.	0.6	2
2717	Research advances in nanomedicine applied to the systemic treatment of colorectal cancer. International Journal of Cancer, 2023, 152, 807-821.	2.3	5
2718	Industrializationâ \in ${}^{\mathrm{M}}$ s eye view on theranostic nanomedicine. Frontiers in Chemistry, 0, 10, .	1.8	0
2719	A Novel Diosgenin-Based Liposome Delivery System Combined with Doxorubicin for Liver Cancer Therapy. Pharmaceutics, 2022, 14, 1685.	2.0	6
2720	Application of Biocompatible Drug Delivery Nanosystems for the Treatment of Naturally Occurring Cancer in Dogs. Journal of Functional Biomaterials, 2022, 13, 116.	1.8	5
2721	Metal-based nano-delivery platform for treating bone disease and regeneration. Frontiers in Chemistry, 0, 10, .	1.8	2
2722	Nanoparticles: Attractive tools to treat colorectal cancer. Seminars in Cancer Biology, 2022, 86, 1-13.	4.3	17
2723	Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics, 2022, 14, 1722.	2.0	14
2724	Navigations of the targeting pathway of nanomedicines toward tumor. Expert Opinion on Drug Delivery, 2022, 19, 985-996.	2.4	2
2725	Nanotherapies from an oncologist doctor's view. Smart Materials in Medicine, 2023, 4, 183-198.	3.7	1
2726	A novel therapy to combat non-small cell lung carcinoma (A549) using platinum (IV) and barium titanate conjugate. Journal of Drug Delivery Science and Technology, 2022, 75, 103617.	1.4	3
2727	A comprehensive review on novel delivery approaches for exemestane. Journal of Drug Delivery Science and Technology, 2022, 75, 103655.	1.4	2

#	Article	IF	CITATIONS
2728	A recent update on therapeutic potential of vesicular system against fungal keratitis. Journal of Drug Delivery Science and Technology, 2022, 75, 103721.	1.4	7
2729	CD44 receptor targeted nanoparticles augment immunity against tuberculosis in mice. Journal of Controlled Release, 2022, 349, 796-811.	4.8	6
2730	Advances in aptamer-based drug delivery vehicles for cancer therapy. , 2022, 140, 213077.		9
2731	Efficient extracellular vesicles freeze-dry method for direct formulations preparation and use. Colloids and Surfaces B: Biointerfaces, 2022, 218, 112745.	2.5	6
2732	Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Advanced Drug Delivery Reviews, 2022, 189, 114462.	6.6	11
2733	The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. International Journal of Molecular Sciences, 2022, 23, 9981.	1.8	2
2734	Evaluation of the potential of ultrasound-mediated drug delivery for the treatment of ovarian cancer through preclinical studies. Frontiers in Oncology, 0, 12, .	1.3	1
2735	Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	17
2736	In Vitro Binding and Release Mechanisms of Doxorubicin from Nanoclays. Journal of Physical Chemistry Letters, 2022, 13, 8429-8435.	2.1	7
2737	An innovative one step green supercritical CO2 process for the production of liposomes co-encapsulating both a hydrophobic and a hydrophilic compound for pulmonary administration. International Journal of Pharmaceutics, 2022, 627, 122212.	2.6	5
2739	Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters. Journal of Drug Targeting, 2023, 31, 179-193.	2.1	0
2740	Dynamic drug release state and PEG length in PEGylated liposomal formulations define the distribution and pharmacological performance of drug. Journal of Drug Delivery Science and Technology, 2022, 76, 103825.	1.4	3
2741	Nano-drug delivery systems for T cell-based immunotherapy. Nano Today, 2022, 46, 101621.	6.2	13
2742	Oral administration of sodium bicarbonate can enhance the therapeutic outcome of Doxil® via neutralizing the acidic tumor microenvironment. Journal of Controlled Release, 2022, 350, 414-420.	4.8	3
2743	Morphology-driven protein corona manipulation for preferential delivery of lipid nanodiscs. Nano Today, 2022, 46, 101609.	6.2	11
2744	Enhanced delivery to brain using sonosensitive liposome and microbubble with focused ultrasound. , 2022, 141, 213102.		12
2745	Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. Journal of Controlled Release, 2022, 351, 215-230.	4.8	78
2746	Microbubble-Assisted Ultrasound for Imaging and Therapy of Melanoma Skin Cancer: A Systematic Review. Ultrasound in Medicine and Biology, 2022, 48, 2174-2198.	0.7	2

#	Article	IF	CITATIONS
2747	Advancements in clinical translation of flavonoid nanoparticles for cancer treatment. OpenNano, 2022, 8, 100074.	1.8	13
2748	Liposomal formulations for treating lysosomal storage disorders. Advanced Drug Delivery Reviews, 2022, 190, 114531.	6.6	5
2749	Challenging the fundamental conjectures in nanoparticle drug delivery for chemotherapy treatment of solid cancers. Advanced Drug Delivery Reviews, 2022, 190, 114525.	6.6	22
2750	Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomedicine and Pharmacotherapy, 2022, 155, 113714.	2.5	10
2751	Optimizing the modification density of acid oligopeptides to enhance the bone-targeting activity of liposomes. Composites Part B: Engineering, 2022, 247, 110288.	5.9	12
2752	Boosting doxil-based chemoimmunotherapy via reprogramming tumor-associated macrophages. Chemical Engineering Journal, 2023, 451, 138971.	6.6	3
2753	Nanoparticles. , 2022, , 175-201.		0
2754	Polymersomes as versatile drug delivery vesicular carriers. , 2022, , 155-190.		0
2755	Targeted nanomedicine delivery to human epidermal growth receptor. , 2022, , 111-130.		0
2756	Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment. , 2022, , 1-21.		0
2757	The Interface of Cancer, Their Microenvironment and Nanotechnology. Oncologie, 2022, 24, 371-411.	0.2	2
2758	Polymeric micelles for drug delivery in oncology with an emphasis on siRNA conveyance. , 2022, , 199-284.		0
2759	Tumor microenvironment-responsive nanovesicular drug delivery systems. , 2022, , 245-252.		0
2760	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
2761	Thermosensitive liposomes for targeted breast cancer therapy. , 2022, , 351-368.		0
2762	Nucleic Acid and Drug Dual Agent Nanoplatforms for Breast Cancer. , 2022, , .		0
2763	Polymeric micellar nanomedicine for enhanced permeability and retention effect–based tumor-targeted delivery. , 2022, , 65-87.		0
2764	Current status of FDA-approved marketed nano drug products. , 2022, , 501-521.		1

#	Article	IF	CITATIONS
2765	Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis. Chemical Engineering Journal, 2023, 452, 139506.	6.6	13
2766	The Role of Optical Imaging in Translational Nanomedicine. Journal of Functional Biomaterials, 2022, 13, 137.	1.8	0
2767	The Influence of Lipid Matrix Composition on the Microenvironment of Levofloxacin in Liposomal Forms. Russian Journal of Bioorganic Chemistry, 2022, 48, 710-719.	0.3	3
2768	Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics, 2022, 14, 1940.	2.0	13
2769	Co-administration of Transportan Peptide Enhances the Cellular Entry of Liposomes in the Bystander Manner Both In Vitro and In Vivo. Molecular Pharmaceutics, 2022, 19, 4123-4134.	2.3	6
2770	The Use of the QbD Approach to Optimize the Co-Loading of Simvastatin and Doxorubicin in Liposomes for a Synergistic Anticancer Effect. Pharmaceuticals, 2022, 15, 1211.	1.7	5
2771	A mucoadhesive patch loaded with freeze-dried liposomes for the local treatment of oral tumors. Drug Delivery and Translational Research, 2023, 13, 1228-1245.	3.0	3
2772	Understanding of Polydopamine Encapsulation of Hydrophobic Curcumin for Pleiotropic Drug Nanoformulation. Particle and Particle Systems Characterization, 2023, 40, .	1.2	1
2773	Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines, 2022, 10, 2179.	1.4	34
2774	Perspective Chapter: Magnetoliposomes - A Recent Development as Recent Advances in the Field of Controlled Release Drug Delivery. , 0, , .		0
2775	Recent advancements on hyperthermia driven controlled drug delivery from nanotherapeutics. Recent Advances in Drug Delivery and Formulation, 2022, 16, .	0.3	3
2776	Hepatocyte-targeting and tumor microenvironment-responsive liposomes for enhanced anti-hepatocarcinoma efficacy. Drug Delivery, 2022, 29, 2995-3008.	2.5	2
2777	Development and application of bionic systems consisting of tumor-cell membranes. Journal of Zhejiang University: Science B, 2022, 23, 770-777.	1.3	3
2778	Cytotoxic effects of aptamer-doxorubicin conjugates in an ovarian cancer cell line. Biochimie, 2023, 204, 108-117.	1.3	6
2779	Bibliometric and visualized analysis of the application of nanotechnology in glioma. Frontiers in Pharmacology, 0, 13, .	1.6	1
2780	Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers, 2022, 14, 4654.	1.7	3
2781	Doxorubicin-Loaded Polymeric Meshes Prevent Local Recurrence after Sarcoma Resection While Avoiding Cardiotoxicity. Cancer Research, 2022, 82, 4474-4484.	0.4	2
2782	Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines, 2022, 13, 1623.	1.4	23

#	Article	IF	CITATIONS
2783	Spatial Transcriptomicsâ€Based Identification of Molecular Markers for Nanomedicine Distribution in Tumor Tissue. Small Methods, 2022, 6, .	4.6	7
2784	How promising are HIV-1-based virus-like particles for medical applications. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
2785	Characterization of lipid-based nanomedicines at the single-particle level. Fundamental Research, 2023, 3, 488-504.	1.6	8
2786	Preclinical development of carrier-free prodrug nanoparticles for enhanced antitumor therapeutic potential with less toxicity. Journal of Nanobiotechnology, 2022, 20, .	4.2	4
2787	Chemotherapy Dose Shapes the Expression of Immune-Interacting Markers on Cancer Cells. Cellular and Molecular Bioengineering, 2022, 15, 535-551.	1.0	3
2788	Microfluidic chip interfacing microdialysis and mass spectrometry for in vivo monitoring of nanomedicine pharmacokinetics in real time. Journal of Chromatography A, 2022, 1683, 463520.	1.8	4
2789	Liposomes and Niosomes for Targeted Drug and Gene Delivery Systems. Nanotechnology in the Life Sciences, 2022, , 337-359.	0.4	1
2790	Dendritic lipopeptide liposomes decorated with dual-targeted proteins. Biomaterials Science, 2022, 10, 7032-7041.	2.6	2
2791	Artificial Exosomes as Targeted Drug Delivery Systems. Nanotechnology in the Life Sciences, 2022, , 123-147.	0.4	1
2792	Toxicity Evaluation of Nanomedicine. , 2022, , 323-345.		1
2793	Nanostructured Lipid Carrier as a Strategy for the Treatment of Breast Cancer. , 2022, , .		0
2794	Identification of an ALKâ€2 Inhibitor as an Agonist for Intercellular Exchange and Tumor Delivery of Nanomaterial. Advanced Therapeutics, 0, , 2200173.	1.6	0
2795	Red Blood Cell Membrane-Camouflaged Gold Nanoparticles for Treatment of Melanoma. Journal of Oncology, 2022, 2022, 1-11.	0.6	3
2796	Smart Multistage "Trojan Horse―Inspired Bovine Serum Albumin-Coated Liposomes for Enhancing Tumor Penetration and Antitumor Efficacy. Biomacromolecules, 0, , .	2.6	8
2797	Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 2023, 20, 33-48.	12.5	176
2798	Suprasomes Based on Host–Guest Molecular Recognition: An Excellent Alternative to Liposomes in Cancer Theranostics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
2799	Nanomateriales para el transporte y liberación controlada de ciprofloxacino en aplicaciones biomédicas. QuÃmica Hoy Chemistry Sciences \$b, 2022, 11, 8-17.	0.1	1
2800	Surface Presentation of Hyaluronic Acid Modulates Nanoparticle–Cell Association. Bioconjugate Chemistry, 2022, 33, 2065-2075.	1.8	3

#	Article	IF	CITATIONS
2801	Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer. Nano Research, 2023, 16, 2851-2858.	5.8	8
2802	Intracellular pH-Regulating Nanoparticles to Improve Anticancer Drug Efficacy for Cancer Treatment. Biomacromolecules, 2022, 23, 4786-4794.	2.6	2
2803	In vitro application of redesigned vacuole extracted in yeast. Molecular and Cellular Toxicology, 0, , .	0.8	0
2805	Nanomedicineâ€Enabled/Augmented Cell Pyroptosis for Efficient Tumor Nanotherapy. Advanced Science, 2022, 9, .	5.6	28
2806	Therapeutic silencing of mTOR by systemically administered siRNA-loaded neutral liposomal nanoparticles inhibits DMBA-induced mammary carcinogenesis. British Journal of Cancer, 2022, 127, 2207-2219.	2.9	6
2808	Suprasomes Based on Host–Guest Molecular Recognition: An Excellent Alternative to Liposome in Cancer Theranostics. Angewandte Chemie, 0, , .	1.6	0
2809	Micro and nanotechnologies: The little formulations that could. Bioengineering and Translational Medicine, 2023, 8, .	3.9	9
2810	Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications, 2022, 12, 1119-1139.	0.8	8
2811	Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine, 2022, 17, 1281-1303.	1.7	4
2812	The emerging role of cancer nanotechnology in the panorama of sarcoma. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	13
2813	The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. International Journal of Molecular Sciences, 2022, 23, 12487.	1.8	13
2814	Gated Ethidium- and Bleomycin-Loading in Phage T4 That Is Subsequently Purified Leak-Free. Biophysica, 2022, 2, 366-380.	0.6	5
2815	Sexâ€Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. Advanced NanoBiomed Research, 2022, 2, .	1.7	9
2816	Electroporation in Head-and-Neck Cancer: An Innovative Approach with Immunotherapy and Nanotechnology Combination. Cancers, 2022, 14, 5363.	1.7	9
2817	Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics, 2022, 14, 2231.	2.0	8
2818	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
2819	Probing the Role of Connecting Bonds and Modifying Chains in the Rational Design of Prodrug Nanoassemblies. ACS Applied Materials & Interfaces, 2022, 14, 51200-51211.	4.0	9
2820	Prostate-Specific Membrane Antigen Targeted Deep Tumor Penetration of Polymer Nanocarriers. ACS Applied Materials & Interfaces, 2022, 14, 50569-50582.	4.0	8

#	Article	IF	CITATIONS
2821	Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids, 2022, 368, 120717.	2.3	8
2822	New concepts in wound targeting through liposome-based nanocarriers (LBNs). Journal of Drug Delivery Science and Technology, 2022, 77, 103878.	1.4	4
2823	Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines, 2022, 10, 2792.	1.4	28
2824	On-demand targeting nanotheranostics with stimuli-responsive releasing property to improve delivery efficiency to cancer. Biomaterials, 2022, 290, 121852.	5.7	12
2825	Cysteine cathepsins: A long and winding road towards clinics. Molecular Aspects of Medicine, 2022, 88, 101150.	2.7	10
2826	A decade of the liposome-protein corona: Lessons learned and future breakthroughs in theranostics. Nano Today, 2022, 47, 101657.	6.2	9
2827	Image-Guided Nanodelivery of Pt(IV) Prodrugs to GRP-Receptor Positive Tumors. Nanotheranostics, 2023, 7, 22-40.	2.7	2
2828	Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosensors and Bioelectronics, 2023, 219, 114845.	5.3	4
2829	Pharmaceutical liposomal delivery—specific considerations of innovation and challenges. Biomaterials Science, 2022, 11, 62-75.	2.6	17
2830	Perspective Chapter: Liposome Mediated Delivery of Immunotherapeutics for Cancer. , 0, , .		0
2831	Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends in Molecular Medicine, 2023, 29, 70-91.	3.5	6
2832	Study of FA12 peptide-modified PEGylated liposomal doxorubicin (PLD) as an effective ligand to target Muc1 in mice bearing C26 colon carcinoma: in silico, in vitro, and in vivo study. Expert Opinion on Drug Delivery, 2022, 19, 1710-1724.	2.4	5
2833	Exploring microfluidics and membrane extrusion for the formulation of temozolomide-loaded liposomes: investigating the effect of formulation and process variables. Journal of Liposome Research, 2023, 33, 170-182.	1.5	3
2834	Cell membrane-camouflaged DOX-loaded Î ² -glucan nanoparticles for highly efficient cancer immunochemotherapy. International Journal of Biological Macromolecules, 2023, 225, 873-885.	3.6	6
2835	Phosphate-Trapping Liposomes for Long-Term Management of Hyperphosphatemia. Materials, 2022, 15, 7779.	1.3	1
2836	Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Nature Communications, 2022, 13, .	5.8	19
2837	Exosome mimetics derived from bone marrow mesenchymal stem cells deliver doxorubicin to osteosarcoma <i>in vitro</i> and <i>in vivo</i> . Drug Delivery, 2022, 29, 3291-3303.	2.5	16
2838	Impact of spontaneous liposome modification with phospholipid polymer-lipid conjugates on protein interactions. Science and Technology of Advanced Materials, 2022, 23, 845-857.	2.8	3

#	Article	IF	CITATIONS
2839	BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs. Chemical Engineering Journal, 2023, 454, 140440.	6.6	8
2840	The Association of Patent Ductus Arteriosus with Inflammation: A Narrative Review of the Role of Inflammatory Biomarkers and Treatment Strategy in Premature Infants. International Journal of Molecular Sciences, 2022, 23, 13877.	1.8	5
2841	Chitosan-Boric Acid Scaffolds for Doxorubicin Delivery in the Osteosarcoma Treatment. Polymers, 2022, 14, 4753.	2.0	1
2842	A novel strategy against hepatitis B virus: Glycyrrhetnic acid conjugated multi-component synergistic nano-drug delivery system for targeted therapy. Journal of Biomaterials Applications, 2023, 37, 1393-1408.	1.2	3
2843	Bone-Targeted Dual Functional Lipid-coated Drug Delivery System for Osteosarcoma Therapy. Pharmaceutical Research, 2023, 40, 231-243.	1.7	3
2844	Dynamic covalent macrocycles co-delivering genes and drugs against drug-resistant cancer. Cell Reports Physical Science, 2022, 3, 101150.	2.8	1
2845	Image-guided drug delivery in nanosystem-based cancer therapies. Advanced Drug Delivery Reviews, 2023, 192, 114621.	6.6	8
2846	The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Advanced Drug Delivery Reviews, 2022, 191, 114614.	6.6	59
2847	Emerging applications of magnetic nanoparticles in medicine – A personal perspective. Biochemical and Biophysical Research Communications, 2022, 633, 52-54.	1.0	3
2848	Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. Journal of Controlled Release, 2022, 352, 1024-1047.	4.8	22
2849	A liposomal formulation of simvastatin and doxorubicin for improved cardioprotective and anti-cancer effect. International Journal of Pharmaceutics, 2022, 629, 122379.	2.6	0
2851	Folded, undulating, and fibrous doxorubicin sulfate crystals in liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, , 102631.	1.7	1
2853	Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics, 2022, 14, 2498.	2.0	7
2854	Nanotechnology and photodynamic therapy from a clinical perspective. Translational Biophotonics, 2023, 5, .	1.4	4
2855	Recent updates on liposomal formulations for detection, prevention and treatment of coronavirus disease (COVID-19). International Journal of Pharmaceutics, 2023, 630, 122421.	2.6	3
2856	Analysis of Nanomedicine Efficacy for Osteoarthritis. Advanced NanoBiomed Research, 2022, 2, .	1.7	1
2857	Polymersome-based protein drug delivery – quo vadis?. Chemical Society Reviews, 2023, 52, 728-778.	18.7	28
2858	Development of potent tripodal G-quadruplex DNA binders and their efficient delivery to cancer cells by aptamer functionalised liposomes. Organic and Biomolecular Chemistry, 0, , .	1.5	1

#	Article	IF	CITATIONS
2859	Delineating the tumour microenvironment response to a lipid nanoparticle formulation. Journal of Controlled Release, 2023, 353, 988-1001.	4.8	3
2860	Onion-like doxorubicin-carrying polymeric nanomicelles with tumor acidity-sensitive dePEGylation to expose positively-charged chitosan shell for enhanced cancer chemotherapy. International Journal of Biological Macromolecules, 2023, 227, 925-937.	3.6	8
2861	Immunoliposomes as an emerging nanocarrier for breast cancer therapy. European Polymer Journal, 2023, 184, 111781.	2.6	16
2862	Nanocarriers for platinum drug delivery. , 2023, 2, 77-89.		12
2863	Cytokine Therapy Combined with Nanomaterials Participates in Cancer Immunotherapy. Pharmaceutics, 2022, 14, 2606.	2.0	2
2864	Nanovaccines against Viral Infectious Diseases. Pharmaceutics, 2022, 14, 2554.	2.0	6
2865	Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Research, 2023, 16, 2927-2937.	5.8	2
2866	Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B, 2023, 13, 4105-4126.	5.7	13
2868	Recent Photosensitizer Developments, Delivery Strategies and Combinationâ€based Approaches for Photodynamic Therapy ^{â€} . Photochemistry and Photobiology, 2023, 99, 469-497.	1.3	6
2869	Advances in Lipidâ€Based Codelivery Systems for Cancer and Inflammatory Diseases. Advanced Healthcare Materials, 2023, 12, .	3.9	5
2870	Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions. , 2023, , 325-383.		2
2871	Quality by Design Approach in Liposomal Formulations: Robust Product Development. Molecules, 2023, 28, 10.	1.7	7
2872	Nonclinical Testing Evaluation of Liposomes as Drug Delivery Systems. International Journal of Toxicology, 0, , 109158182211484.	0.6	0
2873	A Predictive Pharmacokinetic Model for Immune Cell-Mediated Uptake and Retention of Nanoparticles in Tumors. International Journal of Molecular Sciences, 2022, 23, 15664.	1.8	4
2874	Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics, 2022, 14, 2808.	2.0	7
2875	Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS Applied Materials & Interfaces, 2022, 14, 56613-56622.	4.0	6
2876	Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
2877	Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics, 2022, 14, 2832.	2.0	9

#	Article	IF	CITATIONS
2878	Nanomedicine-based commercial formulations: current developments and future prospects. Journal of Pharmaceutical Investigation, 2023, 53, 19-33.	2.7	40
2879	Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: A review. Saudi Pharmaceutical Journal, 2023, 31, 279-294.	1.2	3
2880	Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomaterialia, 2023, 157, 24-48.	4.1	7
2881	Could the Lung Be a Gateway for Amphotericin B to Attack the Army of Fungi?. Pharmaceutics, 2022, 14, 2707.	2.0	0
2882	Novel Development of Nanoparticles—A Promising Direction for Precise Tumor Management. Pharmaceutics, 2023, 15, 24.	2.0	4
2883	Lipid-Nanoparticle-Mediated Delivery of Docetaxel Prodrug for Exploiting Full Potential of Gold Nanoparticles in the Treatment of Pancreatic Cancer. Cancers, 2022, 14, 6137.	1.7	2
2884	Artificial and Naturally Derived Phospholipidic Bilayers as Smart Coatings of Solid-State Nanoparticles: Current Works and Perspectives in Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 15815.	1.8	3
2885	Brigatinib-repurposed chemo-photodynamic therapy nanoplatform via effective apoptosis against colorectal cancer. Materials and Design, 2023, 226, 111613.	3.3	2
2886	Pharmaceutical Nanotechnology. Micro/Nano Technologies, 2023, , 179-283.	0.1	1
2887	Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Molecular Cancer, 2023, 22, .	7.9	60
2888	Synthesis, Characterization, and Acute Cytotoxicity Evaluation of Chloroquine Encapsulating Liposomes. Micro, 2023, 3, 51-59.	0.9	1
2889	Albumin-based nanoparticles: small, uniform and reproducible. Nanoscale Advances, 2023, 5, 503-512.	2.2	1
2890	The Future of Nanomedicine. Micro/Nano Technologies, 2023, , 847-873.	0.1	0
2891	Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. Small Methods, 2023, 7, .	4.6	8
2892	Biomaterialâ€Based In Situ Cancer Vaccines. Advanced Materials, 0, , .	11.1	13
2893	Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics, 2023, 15, 207.	2.0	20
2894	Lipid Nanoparticles Functionalized with Antibodies for Anticancer Drug Therapy. Pharmaceutics, 2023, 15, 216.	2.0	18
2895	Robust Construction of Supersmall Zwitterionic Micelles Based on Hyperbranched Polycarbonates Mediates High Tumor Accumulation. ACS Applied Materials & Interfaces, 2023, 15, 2725-2736.	4.0	3

		CITATION REPORT		
#	Article		IF	CITATIONS
2896	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156		0.1	0
2897	Gliadin Nanoparticles Containing Doxorubicin Hydrochloride: Characterization and Cytoto Pharmaceutics, 2023, 15, 180.	xicity.	2.0	3
2898	CD44â€Targeting Drug Delivery System of Exosomes Loading Forsythiaside A Combats Liv Regulating NLRP3â€Mediated Pyroptosis. Advanced Healthcare Materials, 2023, 12, .	er Fibrosis via	3.9	11
2899	Nanocomplexes of doxorubicin and DNA fragments for efficient and safe cancer chemothe Journal of Controlled Release, 2023, 354, 91-108.	гару.	4.8	5
2900	In vivo distribution characteristics and anti-tumor effects of doxorubicin encapsulated in PEG-modified niosomes in solid tumor-bearing mice. Journal of Drug Delivery Science and T 2023, 80, 104122.	echnology,	1.4	2
2901	Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3 Journal of Controlled Release, 2023, 354, 208-220.	T MRI.	4.8	5
2902	Functionalized liposomes for targeted breast cancer drug delivery. Bioactive Materials, 202 401-437.	23, 24,	8.6	33
2903	Myocardial Cell Preservation from Potential Cardiotoxic Drugs: The Role of Nanotechnolog Pharmaceutics, 2023, 15, 87.	ies.	2.0	0
2904	Drug Transport via Nanocarrier for Liver Cancer Treatment. , 0, , .			1
2905	Advances in Lung Cancer Treatment Using Nanomedicines. ACS Omega, 2023, 8, 10-41.		1.6	42
2906	Liposome-Encapsulated Melphalan Exhibits Potent Antimyeloma Activity and Reduced Toxi Omega, 2023, 8, 1693-1701.	city. ACS	1.6	1
2907	Tuning Liposome Stability in Biological Environments and Intracellular Drug Release Kinetic Biomolecules, 2023, 13, 59.	rs.	1.8	2
2908	Recent Strategies and Challenges in Immunity and Nanomaterials for Cancer Therapy. Curr in Medicinal Chemistry, 2022, 23, .	ent Topics	1.0	0
2909	Microfluidic Post-Insertion Method for the Efficient Preparation of PEGylated Liposomes Us Functionality and Quality Lipids. International Journal of Nanomedicine, 0, Volume 17, 667		3.3	2
2910	Aptamer-functionalized liposomes for targeted cancer therapy. , 2023, , 141-172.			8
2911	Structure–Activity Relationship of pH-Sensitive Doxorubicin-Fatty Acid Prodrug Albumin Nanoparticles. Nano Letters, 2023, 23, 1530-1538.		4.5	6
2912	Photothermal Properties of IR-780-Based Nanoparticles Depend on Nanocarrier Design: A 0 Study on Synthetic Liposomes and Cell Membrane and Hybrid Biomimetic Vesicles. Pharma 15, 444.		2.0	4
2913	Natural Biopolymers as Smart Coating Materials of Mesoporous Silica Nanoparticles for Dr Delivery. Pharmaceutics, 2023, 15, 447.	ug	2.0	13

#	Article	IF	CITATIONS
2914	Perspectives, safety issues, and legal factors of nano-based materials utility in pharmaceutical applications. , 2023, , 403-422.		0
2915	Animal Model-Based Studies to Evaluate the Lipid-Based Drug Delivery Nanocarriers for Cancer Treatment. , 2023, , 1019-1038.		0
2916	Esterase-Responsive Polymeric Micelles Containing Tetraphenylethene and Poly(ethylene glycol) Moieties for Efficient Doxorubicin Delivery and Tumor Therapy. Bioconjugate Chemistry, 2023, 34, 248-256.	1.8	6
2917	Polysaccharideâ€modified liposomes and their application in cancer research. Chemical Biology and Drug Design, 2023, 101, 998-1011.	1.5	4
2918	Changing therapeutic landscape in advanced Kaposi sarcoma: Current state and future directions. Journal of Oncology Pharmacy Practice, 2023, 29, 917-926.	0.5	2
2919	Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. Nanoscale Advances, 2023, 5, 1011-1022.	2.2	3
2920	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.	23.3	88
2921	Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. International Journal of Molecular Sciences, 2023, 24, 2332.	1.8	5
2922	Hyaluronan-Cyclodextrin Conjugates as Doxorubicin Delivery Systems. Pharmaceutics, 2023, 15, 374.	2.0	2
2923	Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab on A Chip, 2023, 23, 1432-1466.	3.1	27
2924	Opportunities, challenges, and future prospects of engineered nanostructures for therapeutics and biomedical applications. , 2023, , 313-320.		0
2925	Co-Encapsulation of Simvastatin and Doxorubicin into pH-Sensitive Liposomes Enhances Antitumoral Activity in Breast Cancer Cell Lines. Pharmaceutics, 2023, 15, 369.	2.0	7
2926	Magnetic Thermosensitive Liposomes Loaded with Doxorubicin. Methods in Molecular Biology, 2023, , 103-119.	0.4	0
2927	In vitro to clinical translational pharmacokinetic/pharmacodynamic modeling of doxorubicin (DOX) and dexrazoxane (DEX) interactions: Safety assessment and optimization. Scientific Reports, 2023, 13, .	1.6	6
2928	The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Frontiers in Pharmacology, 0, 14, .	1.6	3
2929	Oral liposomal delivery of an activatable budesonide prodrug reduces colitis in experimental mice. Drug Delivery, 2023, 30, .	2.5	5
2930	The effect of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) Addition on the physical characteristics of β-ionone liposomes. Scientific Reports, 2023, 13, .	1.6	5
2931	A novel estrogen-targeted PEGylated liposome co-delivery oxaliplatin and paclitaxel for the treatment of ovarian cancer. Biomedicine and Pharmacotherapy, 2023, 160, 114304.	2.5	7

#	Article	IF	CITATIONS
2932	Recent progress in nanocarrier-based drug delivery systems for antitumour metastasis. European Journal of Medicinal Chemistry, 2023, 252, 115259.	2.6	8
2933	Macrophage cell membrane infused biomimetic liposomes for glioblastoma targeted therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 49, 102663.	1.7	6
2935	Advances in nanomaterial-based targeted drug delivery systems. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	20
2936	Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a â€~golden gate' for nanomedicine in preclinical studies?. Nanomedicine, 2023, 18, 169-190.	1.7	9
2937	Exploring temozolomide encapsulated PEGylated liposomes and lyotropic liquid crystals for effective treatment of glioblastoma: in-vitro, cell line, and pharmacokinetic studies. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 186, 18-29.	2.0	6
2938	AR13 peptide-conjugated liposomes improve the antitumor efficacy of doxorubicin in mice bearing C26 colon carcinoma; in silico, in vitro, and in vivo study. Toxicology and Applied Pharmacology, 2023, 466, 116470.	1.3	3
2939	Remote Co-loading of amphipathic acid drugs in neutrophil nanovesicles infilled with cholesterol mitigates lung bacterial infection and inflammation. Biomaterials, 2023, 296, 122071.	5.7	8
2940	Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Letters, 2023, 561, 216141.	3.2	10
2941	Platinum-based combination nanomedicines for cancer therapy. Current Opinion in Chemical Biology, 2023, 74, 102290.	2.8	4
2942	Developing engineering technologies for the treatment of systemic lupus erythematosus. , 2023, 4, 1-10.		1
2943	Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188881.	3.3	3
2944	siRNA Loaded in Drug Delivery Nanosystems as a Strategy for Breast Cancer Treatment. , 2022, , .		Ο
2945	Pancreatic Cancer: Nanoparticle Targeted Therapy Via Epidermal Growth Factor Receptor. , 2022, , 111-128.		0
2946	Ferroptosis: The Entanglement between Traditional Drugs and Nanodrugs in Tumor Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	14
2947	Ether lipids from archaeas in nano-drug delivery and vaccination. International Journal of Pharmaceutics, 2023, 634, 122632.	2.6	9
2947 2948		2.6 2.3	9 2
	Pharmaceutics, 2023, 634, 122632. Prominent enhancement of peptide-mediated targeting efficiency for human hepatocellular carcinomas with composition-engineered protein corona on gold nanoparticles. Colloids and		

#	Article	IF	CITATIONS
2951	An Magnetic-Targeting Nano-Diagnosis and Treatment Platform for TNBC. Breast Cancer: Targets and Therapy, 0, Volume 15, 101-119.	1.0	2
2952	Self-Assembled Core–Shell Nanoscale Coordination Polymer Nanoparticles Carrying a Sialyltransferase Inhibitor for Cancer Metastasis Inhibition. ACS Applied Materials & Interfaces, 2023, 15, 7713-7724.	4.0	3
2953	Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. International Journal of Pharmaceutics, 2023, 635, 122681.	2.6	6
2954	Recent advances in long-acting drug delivery systems for anticancer drug. Advanced Drug Delivery Reviews, 2023, 194, 114724.	6.6	30
2955	Chitosan or Cyclodextrin Grafted with Oleic Acid Self-Assemble into Stabilized Polymeric Micelles with Potential of Drug Carriers. Life, 2023, 13, 446.	1.1	16
2956	Coating Materials to Increase the Stability of Liposomes. Polymers, 2023, 15, 782.	2.0	17
2957	A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules, 2023, 28, 1498.	1.7	13
2958	Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. Annals of Animal Science, 2023, 23, 703-716.	0.6	0
2959	SREKA-targeted liposomes for highly metastatic breast cancer therapy. Drug Delivery, 2023, 30, .	2.5	1
2960	A Critical Review of Nanomaterials and Their Industrial Applications. Al-MaÄŸallatÌ^ Al-QawmiyyatÌ^ Lil DirÄsÄŧ Al-TaÊ¿Äá¹Ä« Wa Al-IdmÄn, 2022, 2, 73-89.	0.0	0
2961	Introductory Chapter: Liposome - A Versatile Tool for Drug Delivery in Nanobiomedicine. , 0, , .		0
2962	In Vivo Detection of Circulating Cancer-Associated Fibroblasts in Breast Tumor Mouse Xenograft: Impact of Tumor Stroma and Chemotherapy. Cancers, 2023, 15, 1127.	1.7	0
2963	Locoregional Melanoma Therapy by Tissue Adhesive Microneedle Patch-assisted Trans-tumoral Delivery of Anticancer Drug. Biotechnology and Bioprocess Engineering, 0, , .	1.4	3
2964	Preparation of Doxorubicin Liposomes by Remote Loading Method. Methods in Molecular Biology, 2023, , 95-101.	0.4	2
2965	Targeted nanomedicine: Lessons learned and future directions. Journal of Controlled Release, 2023, 355, 446-457.	4.8	11
2966	From Olive Oil Emulsions to COVID-19 Vaccines: Liposomes Came First. Methods in Molecular Biology, 2023, , 1-19.	0.4	0
2967	Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. Journal of Drug Delivery Science and Technology, 2023, 81, 104261.	1.4	9
2968	Liposomal Delivery of MIW815 (ADU-S100) for Potentiated STING Activation. Pharmaceutics, 2023, 15, 638.	2.0	5

#	Article	IF	CITATIONS
2969	Neoadjuvant Gold Nanoshell-Based Photothermal Therapy Combined with Liposomal Doxorubicin in a Mouse Model of Colorectal Cancer. International Journal of Nanomedicine, 0, Volume 18, 829-841.	3.3	2
2970	Conventional and PEGylated Liposomes as Vehicles of Copaifera sabulicola. Pharmaceutics, 2023, 15, 671.	2.0	2
2971	A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. , 2023, 18, .		16
2972	Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. International Journal of Molecular Sciences, 2023, 24, 4109.	1.8	8
2973	Encapsulation of doxorubicin in carboxymethyl- $\hat{1}^2$ -cyclodextrin in aqueous medium mediated by pH-modulated electrostatics interactions. Journal of Molecular Liquids, 2023, 376, 121512.	2.3	0
2974	Promises and challenges for targeting the immunological players in the tumor micro-environment – Critical determinants for NP-based therapy. OpenNano, 2023, 10, 100134.	1.8	1
2975	Nanosized drug delivery strategies in osteosarcoma chemotherapy. APL Bioengineering, 2023, 7, .	3.3	8
2976	Application of Cell Membrane-Coated Nanomaterials for Tumor Treatment. Mini-Reviews in Medicinal Chemistry, 2023, 23, .	1.1	0
2977	Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano, 2023, 11, 100132.	1.8	16
2978	Approved Nanomedicine against Diseases. Pharmaceutics, 2023, 15, 774.	2.0	14
2979	Application of two glycosylated Lactobacillus surface layer proteins in coating cationic liposomes. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	2
2980	A Sojourn on Liposomal Delivery System: Recent Advances and Future Prospects. Assay and Drug Development Technologies, 2023, 21, 48-64.	0.6	1
2981	Nanomedicine strategies to improve therapeutic agents for the prevention and treatment of preterm birth and future directions. Nanoscale Advances, 2023, 5, 1870-1889.	2.2	2
2982	Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnology, 2023, 14, .	1.9	7
2983	Nanocarriers and their Role in the Treatment of Breast Cancer. , 2023, , 163-210.		0
2984	Delivery technologies for women's health applications. , 2023, 1, 408-425.		13
2985	Supermolecule—Drug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin. Molecules, 2023, 28, 2517.	1.7	2
2986	Vesicular Diagnostics: A Spotlight on Lactate- and Ammonia-Sensing Systems. ACS Applied Bio Materials, 2023, 6, 1315-1322.	2.3	0

#	Article	IF	CITATIONS
2987	Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications. , 0, 3, .		2
2988	Emerging Trends in Lipid-Based Vaccine Delivery: A Special Focus on Developmental Strategies, Fabrication Methods, and Applications. Vaccines, 2023, 11, 661.	2.1	8
2989	A Trojan horse approach for efficient drug delivery in photodynamic therapy: Focus on taxanes. Journal of Materials Chemistry B, O, , .	2.9	0
2990	Probing emergence of biomolecular coronas around drugâ€loaded liposomal nanoparticles in the solution by using nanoparticle tracking analysis. Bulletin of the Korean Chemical Society, 2023, 44, 551-557.	1.0	3
2991	Targeting strategies using PLGA nanoparticles for efficient drug delivery. , 2023, , 123-151.		0
2992	Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs. Molecular Pharmaceutics, 2023, 20, 2119-2127.	2.3	7
2993	Nanotechnology and its Role in Cancer Treatment and Diagnosis. , 0, 36, 1051-1061.		1
2994	Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers, 2023, 15, 1596.	2.0	58
2995	Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management—Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Frontiers in Pharmacology, 0, 14, .	1.6	5
2996	Lipid-engineered nanotherapeutics for cancer management. Frontiers in Pharmacology, 0, 14, .	1.6	4
2997	Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. International Journal of Nanomedicine, 0, Volume 18, 1537-1560.	3.3	10
2998	Oral delivery of RNAi for cancer therapy. Cancer and Metastasis Reviews, 2023, 42, 699-724.	2.7	6
2999	Theranostic inorganic–organic hybrid nanoparticles with a cocktail of chemotherapeutic and cytostatic drugs. Journal of Materials Chemistry B, 2023, 11, 3635-3649.	2.9	2
3000	Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy. Cancer Nanotechnology, 2023, 14, .	1.9	8
3002	Membrane permeability and antimicrobial peptides: Much more than just making a hole. Peptide Science, 2024, 116, .	1.0	4
3003	Liposomes in Cancer Therapy: How Did We Start and Where Are We Now. International Journal of Molecular Sciences, 2023, 24, 6615.	1.8	29
3004	MicroRNA-nanoparticles against cancer: Opportunities and challenges for personalized medicine. Molecular Therapy - Nucleic Acids, 2023, 32, 371-384.	2.3	7
3005	Customizable Dual-Fluorescent Nanoparticles for Tracing and Quantifying of Cell Transport. International Journal of Nanomedicine, 0, Volume 18, 1823-1834.	3.3	2

#	Article	IF	CITATIONS
3006	Doxorubicin compositions with biocompatible terpolymer of N-vinylpyrrolidone, methacrylic acid and triethylene glycol dimethacrylate. Mendeleev Communications, 2023, 33, 255-258.	0.6	0
3007	Redox and pH Dual-Responsive Polypeptide Micelles for Doxorubicin Delivery with Enhanced Anticancer Efficacy. ACS Applied Polymer Materials, 0, , .	2.0	3
3008	Harnessing Hafniumâ€Based Nanomaterials for Cancer Diagnosis and Therapy. Small, 2023, 19, .	5.2	11
3009	The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. Biomicrofluidics, 2023, 17, .	1.2	3
3010	Engineering a material-genetic interface as safety switch for embedded therapeutic cells. , 2023, 150, 213422.		3
3011	Role of Micelle Size in Cell Transcytosis-Based Tumor Extravasation, Infiltration, and Treatment Efficacy. Nano Letters, 2023, 23, 3904-3912.	4.5	7
3012	Advanced Formulation Approaches for Proteins. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
3013	Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian Journal of Pharmaceutical Sciences, 2023, , 100811.	4.3	2
3014	Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Advanced Drug Delivery Reviews, 2023, 197, 114828.	6.6	7
3015	Dual Functioned Hexapeptideâ€Coated Lipidâ€Core Nanomicelles Suppress Tollâ€Like Receptorâ€Mediated Inflammatory Responses through Endotoxin Scavenging and Endosomal pH Modulation. Advanced Science, 2023, 10, .	5.6	0
3016	Nanomedicine Technologies for Diagnosis and Treatment of Breast Cancer. ACS Pharmacology and Translational Science, 2023, 6, 671-682.	2.5	7
3017	Pyruvate-conjugation of PEGylated liposomes for targeted drug delivery to retinal photoreceptors. Biomedicine and Pharmacotherapy, 2023, 163, 114717.	2.5	3
3019	Encapsulation in respiratory system. , 2023, , 283-298.		0
3021	Utilizing 505(b)(2) Regulatory Pathway for New Drug Applications: An Overview on the Advanced Formulation Approach and Challenges. , 0, , .		0
3033	Nanotechnology in vaccines and personalized medicine. , 2024, , 304-321.		0
3043	Advances in Pulmonary Nanopharmacology. , 2023, , 1-27.		0
3049	A Perspective of Engineered Lipids and Liposomes: Chemical Design and Functional Application Based on Therapeutic Safety. Chemistry of Materials, 2023, 35, 4587-4597.	3.2	2
3055	Drug delivery and functional nanoparticles. , 2023, , 447-484.		0

ARTICLE IF CITATIONS Scalable production of microscopic particles for biological delivery. Materials Advances, 2023, 4, 3057 2.6 1 2885-2908. Nanomaterials in bioprocessing and their biomedical applications., 2023, , 365-401. 3058 3060 Vesicular Nanomaterials: Types and Therapeutic Uses., 2023, , 99-145. 0 Selection of an aggregation-caused quenching-based fluorescent tracer for imaging studies in nano 2.8 drug delivery systems. Nanoscale, 2023, 15, 9290-9296. PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. 3072 22 1.8 Bioconjugate Chemistry, 2023, 34, 941-960. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 2769-2792. 3077 1.4 The bloodâ€"brain barrier: structure, regulation, and drug delivery. Signal Transduction and Targeted 3078 7.1 79 Therapy, 2023, 8, . 3080 The Three Laws of Nano-Robotics. ACS Sensors, 2023, 8, 1868-1870. 4.0 Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomaterials Science and 3096 2.6 6 Engineering, 2023, 9, 4527-4557. 3099 Phyto nanomedicine for cancer therapy., 2023, , 313-347. Editorial: Anti-cancer drug delivery: lipid-based nanoparticles. Frontiers in Oncology, 0, 13, . 3100 0 1.3 Cancer Stem Cell Therapeutic Delivery and EPR Effect., 2023, , 221-235. Nanodiagnostics and targeted drug delivery: integrated technologies., 2023,, 353-393. 3111 1 Extracellular vesicles: powerful candidates in nano-drug delivery systems. Drug Delivery and 3120 Translational Research, O, , . Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer 3128 Chemoresistance: Recent Advances and Pharmacological Insights. Molecular Pharmaceutics, 2023, 20, 2.32 5254-5277. In situ self-assembly for cancer therapy and imaging. Nature Reviews Materials, 2023, 8, 710-725. Specific interaction based drug loading strategies. Nanoscale Horizons, 2023, 8, 1523-1528. 3139 4.1 3 Structural and Functional Aspects of the Interactions Between Medical Polymers and Liposomes and Bacterial Cells. Moscow University Chemistry Bulletin, 2023, 78, 255-268.

ARTICLE IF CITATIONS Novel drug delivery system., 2023, , 1-32. 2 3167 Nanomedicine – Immune System Interactions: Limitations and Opportunities for the Treatment of 3172 Cancer. Handbook of Experimental Pharmacology, 2023, , . Natural product-based nanomedicinal approaches for targeting phospholipases in cancer cells. , 2023, 3173 0 , 179-196. Drug Delivery Systems: Lipid Nanoparticles Technology in Clinic., 2023, , 181-200. 3190 Nanoinformatics Applied to Smart Nanomaterials., 2024, , 31-48. 0 3204 Drug Conjugation Chemistry in Iron Oxide Nanoparticles (IONPs). Nanomedicine and Nanotoxicology, 0.1 2023, , 15-34. Smart nanoparticles for cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8, . 3210 7.1 22 Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduction 7.1 and Targeted Therapy, 2023, 8, . Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of 3225 18.7 2 current therapeutic design. Chemical Society Reviews, 2024, 53, 204-226. Nano- and Micromedicines as Intraperitoneal Therapy in Ovarian Cancer: Critical Overview and Focus on Pharmaceutical Manufacturing Under cGMP. , 2023, , 79-105. Bioinspired nanomaterials for the treatment of bacterial infections. Nano Research, 2024, 17, 691-714. 3231 2 5.8 Study on Multifunctional MOF Nano Drugs Toxicity for Targeted Diagnosis and Treatment of 3236 Colorectal Cancer., 2023,,. Prospective Bacterial Minicells for Drug Delivery Systems., 0,,. 3242 0 Nanomaterials in Cancer Therapy. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 217-248. 3270 0.1 Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and 3271 3.10 opportunities. Lab on A Chip, 2024, 24, 1154-1174. The role of nanotechnology: Organic nanomaterials and the mechanism of cancer phototheranostics. , 2024, , 21-64. Multifunctional nanocomposites for targeted drug delivery in breast cancer therapy., 2024, , 139-177. 3283 0 3290 The promise of nanomedicine in ovarian cancer treatment: a review and outlook., 2024,,.

IF ARTICLE CITATIONS Lipid-based nanomaterials as phototheranostic agents., 2024, , 195-232. 3299 0 Advantages of Nanomedicine Over Conventional Therapeutics. Learning Materials in Biosciences, 2023, 0.2 , 45-85. Nanomedicines in Treatment of Cancer. Learning Materials in Biosciences, 2023, , 183-211. 3301 0.2 0 Advances in functional lipid nanoparticles: from drug delivery platforms to clinical applications. 3 1.1 Current status, challenges, and future perspective of nanomedicine-based cancer immunotherapy., 3308 0 2024, , 495-516. Nanomaterials in cancer treatment., 2024, , 431-472. Liposome-based nanomedicines for cancer immunotherapy., 2024, , 271-298. 3310 0 Nanomedicine., 2024,, 267-296. 3311 3313 Nanomaterials in drug delivery., 2024, , 297-319. 0 Exosomes-based nanomedicines for cancer immunotherapy., 2024, , 175-205. 3314 State of the art in pediatric nanomedicines. Drug Delivery and Translational Research, 0, , . 3324 3.0 0 Novel Methods in Cancer Therapy and Drugs Delivery., 2024, , 1-27. 3334 Nanomaterials in Biomedical Applications: Specific Case of the Transport and Controlled Release of 3348 0 Ciprofloxacin., 2024, , 125-140.