Electrocaloric materials for future solid-state refrigerat

Progress in Materials Science 57, 980-1009 DOI: 10.1016/j.pmatsci.2012.02.001

Citation Report

#	Article	IF	CITATIONS
1	Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg _{1/3} Nb _{2/3} O ₃ -0.29PbTiO ₃ single crystal. Applied Physics Letters, 2012, 101, 062907.	1.5	51
2	LARGE ELECTROCALORIC EFFECT IN RELAXOR FERROELECTRICS. Journal of Advanced Dielectrics, 2012, 02, 1230011.	1.5	33
3	Direct measurements of the electrocaloric effect in lead-free K <inf>0.5</inf> Na <inf>0.5</inf> NbO <inf>3</inf> -SrTiO <inf>3</inf> ceramics sintered in air. , 2012, , .		0
4	Electrocaloric temperature change constrained by the dielectric strength. Materials Chemistry and Physics, 2012, 136, 277-280.	2.0	48
5	Direct and indirect electrocaloric measurements on ã€^001〉-PbMg1/3Nb2/3O3-30PbTiO3 single crystals. Journal of Applied Physics, 2012, 111, .	1.1	165
6	Advanced materials for solid-state refrigeration. Journal of Materials Chemistry A, 2013, 1, 4925.	5.2	320
7	The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. Europhysics Letters, 2013, 102, 47004.	0.7	46
8	Direct characterization of the electrocaloric effects in thin films supported on substrates. Applied Physics Letters, 2013, 103, .	1.5	18
9	Cation Order–Disorder Transition in Fe-Doped 6H-BaTiO ₃ for Dilute Room-Temperature Ferromagnetism. Chemistry of Materials, 2013, 25, 3544-3550.	3.2	23
10	Direct measurement of the electrocaloric effect in poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 103, .) 387 Td (1.5	fluoride-triflu 21
10			
	103, . Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450,	1.5	21
11	103, .Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450, 84-92.	1.5 0.3	21
11 12	 103, . Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450, 84-92. An electrocaloric device demonstrator for solid-state cooling. Europhysics Letters, 2013, 103, 47011. The Electrocaloric Effect in Lead-Free K_{0.5}Na_{0.5}NbO₃-SrTiO₃Ceramics. Ferroelectrics, 2013, 	1.5 0.3 0.7	21 10 15
11 12 13	 103, . Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450, 84-92. An electrocaloric device demonstrator for solid-state cooling. Europhysics Letters, 2013, 103, 47011. The Electrocaloric Effect in Lead-Free K_{0.5}NbO₃SrTiO₃Ceramics. Ferroelectrics, 2013, 446, 39-45. 	1.5 0.3 0.7	21 10 15 18
11 12 13 14	 103,. Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450, 84-92. An electrocaloric device demonstrator for solid-state cooling. Europhysics Letters, 2013, 103, 47011. The Electrocaloric Effect in Lead-Free K_{0.5}Na_{0.5}NbO₃SrTiO₃Ceramics. Ferroelectrics, 2013, 446, 39-45. Requirements to (Ba,Ca)(Zr,Ti)O<inf>3</inf> electrocaloric materials., 2013, . Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC 	1.5 0.3 0.7 0.3 1.7	21 10 15 18 2 25
11 12 13 14 15	103, . Pyroelectric and Electrocaloric Properties of PZT- and BT-Based Ceramics. Ferroelectrics, 2013, 450, 84-92. An electrocaloric device demonstrator for solid-state cooling. Europhysics Letters, 2013, 103, 47011. The Electrocaloric Effect in Lead-Free K _{0.5} Na _{0.5} NbO ₃ SrTiO ₃ Ceramics. Ferroelectrics, 2013, 446, 39-45. Requirements to (Ba,Ca)(Zr,Ti)O<inf>3</inf> electrocaloric materials., 2013, Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Advances, 2013, 3, 7928. Enhanced Electrocaloric Effects in Spark Plasmaâ€6intered <scp>Sr</scp> < <scp>Scp>Sc/scp><_{0.35}</scp>	1.5 0.3 0.7 0.3 1.7	21 10 15 18 2 25

#	Article	IF	CITATIONS
19	Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer, 2013, 54, 1709-1728.	1.8	251
20	Coupled caloric effects in multiferroics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 567-571.	0.9	30
21	Temperature–electric field hysteresis loop of electrocaloric effect in ferroelectricity—Direct measurement and analysis of electrocaloric effect. I. Applied Physics Letters, 2013, 102, .	1.5	32
22	Electrocaloric effect on graphenes. Applied Physics Letters, 2013, 102, .	1.5	34
23	Modeling of polar nanoregions dynamics on the dielectric response of relaxors. Journal of Applied Physics, 2013, 113, .	1.1	12
24	Elastocaloric modeling of natural rubber. Applied Thermal Engineering, 2013, 57, 33-38.	3.0	58
25	Lead-free (Ba,Ca)(Zr,Ti)O3 Based Electrocaloric Devices: Challenges and Perspectives. Materials Research Society Symposia Proceedings, 2013, 1581, 1.	0.1	3
26	Effect of surface tension on electrocaloric effects in the ferroelectric nanomaterial with vortex domain structures. Journal of Applied Physics, 2013, 114, 044301.	1.1	14
27	Investigations on electrocaloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O3. Applied Physics Letters, 2013, 102, .	1.5	36
30	Doubling the electrocaloric cooling of poled ferroelectric materials by bipolar cycling. Applied Physics Letters, 2014, 105, .	1.5	18
31	Giant electrocaloric effect in asymmetric ferroelectric tunnel junctions at room temperature. Applied Physics Letters, 2014, 104, .	1.5	17
32	Electrocaloric characterization of a poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 307 Td (fluori Letters, 2014, 105, .	le-trifluorc 1.5	ethylene-chl 27
33	Enhanced electrocaloric and pyroelectric response from ferroelectric multilayers. Applied Physics Letters, 2014, 105, .	1.5	40
34	Effect of Ce doping on the electrocaloric effect of SrxBa1â^'xNb2O6 single crystals. Applied Physics Letters, 2014, 104, .	1.5	26
35	Enhanced electrocaloric effect in lead-free BaTi1â^'xSnxO3 ceramics near room temperature. Applied Physics Letters, 2014, 105, .	1.5	165
36	Characterization of the electrocaloric effect and hysteresis loss in relaxor ferroelectric thin films under alternating current bias fields. Applied Physics Letters, 2014, 104, 251913.	1.5	3
37	Smart Materials for Energy Harvesting, Energy Storage, and Energy Efficient Solid-State Electronic Refrigeration. Springer Tracts in Mechanical Engineering, 2014, , 303-315.	0.1	1
38	Electrocaloric Effect in Relaxor Ferroelectric-Based Materials. Engineering Materials, 2014, , 47-89.	0.3	3

#	Article	IF	CITATIONS
39	Electrocaloric effect based on the depolarization transition in (1â^'x)Bi0.5Na0.5TiO3–xKNbO3 lead-free ceramics. Ceramics International, 2014, 40, 2627-2634.	2.3	93
40	Anisotropy of the Electrocaloric Effect in Leadâ€Free Relaxor Ferroelectrics. Advanced Energy Materials, 2014, 4, 1301688.	10.2	63
41	Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. International Journal of Heat and Mass Transfer, 2014, 72, 559-564.	2.5	68
42	Step-like features on caloric effects of graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 918-921.	0.9	13
43	A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63, 1-57.	16.0	584
44	Giant mechanically-mediated electrocaloric effect in ultrathin ferroelectric capacitors at room temperature. Applied Physics Letters, 2014, 104, .	1.5	36
45	Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13, 439-450.	13.3	1,129
46	Lead-Free and "Exotic―Electrocaloric Materials. Engineering Materials, 2014, , 125-146.	0.3	0
47	Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering, 2014, , .	0.1	14
48	Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives. International Journal of Refrigeration, 2014, 40, 174-188.	1.8	178
49	0.92 Pb(Mg1/3Nb2/3)O3 — 0.08 PbTiO3 relaxor ferroelectrics modified with different dopants for electrocaloric cooling application. , 2014, , .		0
50	Electrocaloric effect in BaTiO3: A first-principles-based study on the effect of misfit strain. Applied Physics Letters, 2014, 104, .	1.5	39
51	Reactively sputtered PMN-PT thin films for electrocaloric applications. , 2014, , .		3
52	Performance analysis of energy conversion via caloric effects in first-order ferroic phase transformations. Physical Chemistry Chemical Physics, 2014, 16, 12750-12763.	1.3	6
53	Effect of high pressure on the supramolecular structures of guanidinium based ferroelectrics. CrystEngComm, 2014, 16, 6250.	1.3	18
54	Enhanced room temperature electrocaloric effect in barium titanate thin films with diffuse phase transition. RSC Advances, 2014, 4, 21826.	1.7	21
55	Modeling of efficient solid-state cooler on layered multiferroics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1357-1363.	1.7	18
56	Origin of Metastable Properties in the Ferroelectric Phase of Tetraguanidinium Dichloro-Sulfate. Journal of Physical Chemistry C, 2014, 118, 15556-15564.	1.5	2

#	ARTICLE	IF	CITATIONS
57	Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution. Ceramics International, 2014, 40, 11269-11276.	2.3	65
58	A review and analysis of the elasto-caloric effect for solidstate refrigeration devices: Challenges and opportunities. MRS Energy & Sustainability, 2015, 2, 1.	1.3	53
59	Depolarizing field in ultrathin electrocalorics. Physical Review B, 2015, 92, .	1.1	9
60	Electrocaloric effect in ferroelectric nanowires from atomistic simulations. Scientific Reports, 2015, 5, 17294.	1.6	32
61	Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Applied Physics Letters, 2015, 107, .	1.5	102
62	Characterization of electrocaloric properties by indirect estimation and direct measurement of temperature–electric field hysteresis loops. Japanese Journal of Applied Physics, 2015, 54, 10NB08.	0.8	13
63	Electrocaloric effect in core-shell ferroelectric ceramics: Theoretical approach and practical conclusions. Applied Physics Letters, 2015, 107, 172902.	1.5	2
65	Strain assisted electrocaloric effect in PbZr0.95Ti0.05O3 films on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 substrate. Scientific Reports, 2015, 5, 16164.	1.6	9
66	Electrocaloric Properties of (Pb,La)(Zr,Ti)O3 and BaTiO3 Ceramics. , 2015, , .		1
67	Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials. AIP Advances, 2015, 5, .	0.6	12
68	Alternative Caloric Energy Conversions. Green Energy and Technology, 2015, , 395-450.	0.4	2
69	Effect of dopants on the electrocaloric effect of 0.92 Pb(Mg1/3Nb2/3)O3–0.08 PbTiO3 ceramics. Journal of the European Ceramic Society, 2015, 35, 2065-2071.	2.8	42
70	Enhanced Electrocaloric Effect in Preâ€stressed Ferroelectric Materials. Energy Technology, 2015, 3, 177-186.	1.8	14
71	Ferroelectric Polymer Nanocomposites for Roomâ€Temperature Electrocaloric Refrigeration. Advanced Materials, 2015, 27, 1450-1454.	11.1	192
72	Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals. Acta Materialia, 2015, 89, 384-395.	3.8	59
73	Relaxor Ferroelectricâ€Based Electrocaloric Polymer Nanocomposites with a Broad Operating Temperature Range and High Cooling Energy. Advanced Materials, 2015, 27, 2236-2241.	11.1	143
74	Phase Structure Tuned Electrocaloric Effect and Pyroelectric Energy Harvesting Performance of (Pb _{0.97} La _{0.02})(Zr,Sn,Ti)O ₃ Antiferroelectric Thick Films. Journal of Physical Chemistry C, 2015, 119, 18877-18885.	1.5	52
75	Colossal Room-Temperature Electrocaloric Effect in Ferroelectric Polymer Nanocomposites Using Nanostructured Barium Strontium Titanates. ACS Nano, 2015, 9, 7164-7174.	7.3	164

#	Article	IF	CITATIONS
76	The giant electrocaloric effect in EuTiO3 nanowires near room temperature. Journal of Alloys and Compounds, 2015, 649, 261-266.	2.8	7
77	Large electrocaloric strength in the (100)-oriented relaxor ferroelectric Pb[(Ni1/3Nb2/3)0.6Ti0.4]O3 single crystal at near morphotropic phase boundary. Ceramics International, 2015, 41, 9344-9349.	2.3	23
78	Electrocaloric Effect of Lead-Free (Ba,Ca)(Zr,Ti)O3 Ferroelectric Ceramic. Journal of Electronic Materials, 2015, 44, 2555-2558.	1.0	8
79	Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Applied Physics Letters, 2015, 106, .	1.5	131
80	Caloric and multicaloric effects in oxygen ferroics and multiferroics. Physics of the Solid State, 2015, 57, 429-441.	0.2	29
81	Giant Negative Electrocaloric Effect in Antiferroelectric Laâ€Doped Pb(ZrTi)O ₃ Thin Films Near Room Temperature. Advanced Materials, 2015, 27, 3165-3169.	11.1	241
82	Electrocaloric properties of PZT- and BaTiO <inf>3</inf> - based ceramics and LiNbO <inf>3</inf> crystals. , 2015, , .		1
83	Direct electrocaloric measurements using a differential scanning calorimeter. , 2015, , .		1
84	Mn-doped PMN-PT thin films for electrocaloric applications. , 2015, , .		1
85	Materials and device concepts for electrocaloric refrigeration. Physica Scripta, 2015, 90, 094020.	1.2	15
86	Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Physical Chemistry Chemical Physics, 2015, 17, 23897-23908.	1.3	33
87	Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic. Applied Physics Letters, 2015, 107, .	1.5	41
88	Elastocaloric effect dependence on pre-elongation in natural rubber. Applied Physics Letters, 2015, 107,	1.5	48
89	Enhanced electrocaloric effect in Fe-doped (Ba0.85Ca0.15Zr0.1Ti0.9)O3 ferroelectric ceramics. Applied Materials Today, 2015, 1, 37-44.	2.3	17
90	Ferroelectric phase transitions in nanoscale HfO 2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy, 2015, 18, 154-164.	8.2	175
91	Magnetization and magnetocaloric effect in La _{0.7} Pb _{0.3} MnO ₃ ceramics and 0.85(La _{0.7} Pb _{0.3} MnO ₃)–0.15(PbTiO ₃) composite. Journal of Materials Research, 2015, 30, 278-285.	1.2	9
92	Magnetocaloric Energy Conversion. Green Energy and Technology, 2015, , .	0.4	171
93	Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1â^'Sn O3 (x=0, x=0.075) ceramics. Solid State Communications, 2015, 201, 64-67.	0.9	60

#	Article	IF	CITATIONS
94	(Magneto)caloric refrigeration: is there light at the end of the tunnel?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150305.	1.6	37
95	Electrocaloric and elastocaloric effects in soft materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150301.	1.6	22
96	Electricâ€Fieldâ€Driven Caloric Effects in Ferroelectric Materials for Solidâ€State Refrigeration. Energy Technology, 2016, 4, 417-423.	1.8	7
97	Caloric Effects in Bulk Leadâ€Free Ferroelectric Ceramics for Solidâ€State Refrigeration. Energy Technology, 2016, 4, 244-248.	1.8	14
98	Elastocaloric and Piezocaloric Effects in Lead Zirconate Titanate Ceramics. Energy Technology, 2016, 4, 647-652.	1.8	12
99	Response of Methylammonium Lead Iodide to External Stimuli and Caloric Effects from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 17274-17281.	1.5	33
100	Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics. APL Materials, 2016, 4, .	2.2	35
101	Tuning the caloric response of BaTiO ₃ by tensile epitaxial strain. Europhysics Letters, 2016, 115, 47002.	0.7	8
102	Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal. Applied Physics Letters, 2016, 108, .	1.5	48
103	Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films. AIP Advances, 2016, 6, .	0.6	32
104	Electrocaloric properties of potassium tantalate niobate crystals. Japanese Journal of Applied Physics, 2016, 55, 10TB09.	0.8	15
105	Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration. Applied Physics Letters, 2016, 109, .	1.5	28
106	Influence of 90° charged domain walls on the electrocaloric effect in PbTiO3 ferroelectric thin films. Journal of Applied Physics, 2016, 120, 214105.	1.1	5
107	Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead-free ceramics. Applied Physics Letters, 2016, 109, .	1.5	46
108	Inverse barocaloric effects in ferroelectric BaTiO3 ceramics. APL Materials, 2016, 4, .	2.2	64
109	Why is the electrocaloric effect so small in ferroelectrics?. APL Materials, 2016, 4, 064106.	2.2	30
110	Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Applied Physics Letters, 2016, 108, 162902.	1.5	38
111	Pyro-paraelectric and flexocaloric effects in barium strontium titanate: A first principles approach. Applied Physics Letters, 2016, 108, .	1.5	22

#	Article	IF	CITATIONS
112	Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives. Applied Physics Reviews, 2016, 3, 031102.	5.5	206
113	Some strategies for improving caloric responses with ferroelectrics. APL Materials, 2016, 4, 064109.	2.2	57
114	Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing. APL Materials, 2016, 4, .	2.2	51
115	Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Applied Physics Letters, 2016, 108, .	1.5	31
116	Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. Journal of Chemical Physics, 2016, 144, 014901.	1.2	33
117	Elastocaloric and barocaloric effects in polyvinylidene di-fluoride-based polymers. Applied Physics Letters, 2016, 108, .	1.5	49
118	Characterisation of lead barium zirconate thin films for utilisation of the electrocaloric effect. Materials Chemistry and Physics, 2016, 178, 74-81.	2.0	0
119	Perovskite ferroelectrics and relaxor-ferroelectric solid solutions with large intrinsic electrocaloric response over broad temperature ranges. Journal of Materials Chemistry C, 2016, 4, 4763-4769.	2.7	29
120	New modalities of strain-control of ferroelectric thin films. Journal of Physics Condensed Matter, 2016, 28, 263001.	0.7	86
121	PMN-8PT device structures for electrocaloric cooling applications. Ferroelectrics, 2016, 498, 111-119.	0.3	12
122	Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solid solution. Solid State Communications, 2016, 237-238, 49-54.	0.9	16
123	Unified Understanding of Ferroelectricity in <i>n</i> -Nylons: Is the Polar Crystalline Structure a Prerequisite?. Macromolecules, 2016, 49, 3070-3082.	2.2	49
124	Composition dependent electrocaloric behavior of (Sr _x Ba _{1-x})Nb ₂ O ₆ ceramics. Integrated Ferroelectrics, 2016, 168, 163-169.	0.3	1
125	Criticality: Concept to Enhance the Piezoelectric and Electrocaloric Properties of Ferroelectrics. Advanced Functional Materials, 2016, 26, 7326-7333.	7.8	89
126	Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material's Point of View. Topics in Applied Physics, 2016, , 295-310.	0.4	3
127	Modified Differential Scanning Calorimeter for Direct Electrocaloric Measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 1690-1696.	1.7	20
128	Direct measurements of electrocaloric effect in ferroelectrics using thin-film thermocouples. Japanese Journal of Applied Physics, 2016, 55, 10TB04.	0.8	7
129	Solid-State Refrigeration Based on Caloric Effects. , 2016, , 753-789.		0

	CITATION	Report	
#	ARTICLE	IF	Citations
130	Nanoscale solid-state cooling: a review. Reports on Progress in Physics, 2016, 79, 095901.	8.1	55
131	Electrocaloric Effect in Ba(Zr,Ti)O ₃ –(Ba,Ca)TiO ₃ Ceramics Measured Directly. Journal of the American Ceramic Society, 2016, 99, 4022-4030.	1.9	59
132	Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films. Materials Research Bulletin, 2016, 84, 177-184.	2.7	31
133	Experimental investigation of the electrocaloric response in ferroelectric materials. Technical Physics, 2016, 61, 1112-1114.	0.2	5
134	Intensive electrocaloric effect in triglycine sulfate under nonequilibrium thermal conditions and periodic electric field. Physica Status Solidi (B): Basic Research, 2016, 253, 2073-2078.	0.7	7
135	First-principles-based calculation of the electrocaloric effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>BaTiO </mml:mi> <mml:mn>3 A comparison of direct and indirect methods. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	nml:ma> <td>nmໄສອາsub> <</td>	nmໄສອາsub> <
136	Fatigue effect of elastocaloric properties in natural rubber. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150302.	1.6	16
137	Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. Journal of Materials Science: Materials in Electronics, 2016, 27, 10309-10319.	1.1	23
138	Barocaloric effect in ferroelastic fluorides and oxyfluorides. Ferroelectrics, 2016, 500, 153-163.	0.3	8
139	Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Scientific Reports, 2016, 6, 28251.	1.6	52
140	Experimental investigation of the electrocaloric response and simulation of solid-state ferroelectric cooler. Journal of Physics: Conference Series, 2016, 741, 012163.	0.3	1
141	Electrocaloric effect and freezing temperature in (Pb0.8Ba0.2)[(Zn1â^•3Nb2â^•3)0.7Ti0.3]O ₃ relaxor ferroelectric ceramic. Journal of Advanced Dielectrics, 2016, 06, 1620002.	1.5	2
142	Upper bounds in electrocaloric cooling. , 2016, , .		3
143	Scaling law for electrocaloric temperature change in antiferroelectrics. Scientific Reports, 2016, 6, 19590.	1.6	20
144	Amplitudon and phason modes of electrocaloric energy interconversion. Npj Computational Materials, 2016, 2, .	3.5	14
145	Toward Wearable Cooling Devices: Highly Flexible Electrocaloric Ba _{0.67} Sr _{0.33} TiO ₃ Nanowire Arrays. Advanced Materials, 2016, 28, 4811-4816.	11.1	101
146	Large room-temperature electrocaloric effect in lead-free BaHf Ti O3 ceramics under low electric field. Acta Materialia, 2016, 115, 58-67.	3.8	162
147	A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. International Journal of Refrigeration, 2016, 69, 369-382.	1.8	45

#	Article	IF	CITATIONS
148	PLZT microfibers volume gradients and anisotropy. Ferroelectrics, 2016, 498, 102-110.	0.3	1
149	Electrocaloric properties of 0.7Pb(Mg _{1/3} Nb _{2/3})O ₃ –0.3PbTiO ₃ ceramics with different grain sizes. Advances in Applied Ceramics, 2016, 115, 77-80.	0.6	14
150	Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg 1/3 Nb 2/3)O 3 –0.1PbTiO 3. Journal of the European Ceramic Society, 2016, 36, 75-80.	2.8	75
151	Lead-free Relaxor Ferroelectrics for Electrocaloric Cooling. Materials Today: Proceedings, 2016, 3, 622-631.	0.9	16
152	Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy and Environmental Science, 2016, 9, 1335-1345.	15.6	109
153	Compositional dependence of electrocaloric effect in lead-free (1 â^) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf ceramics. RSC Advances, 2016, 6, 14084-14089.	50 547 Tc 1.7	l (x)Ba(Zr <su 48</su
154	Enhanced electrocaloric effect in Ba _{0.85} Ca _{0.15} Zr _{0.1} Ti _{0.9–} <i>_x</i> Sn <i><sub ceramics. Phase Transitions, 2016, 89, 1062-1073.</sub </i>	>x@ ./s ub>	20 ₃
155	Thickness-Dependent Electrocaloric Effect in Pb0.9La0.1Zr0.65Ti0.35O3 Films Grown by Sol–Gel Process. Journal of Electronic Materials, 2016, 45, 1057-1064.	1.0	12
156	Large room temperature electrocaloric strength in bulk ferroelectric ceramics: an optimum solution. Phase Transitions, 2016, 89, 1019-1028.	0.6	9
157	Electrocaloric effect in (1Ââ^'Âx)PIN-xPT relaxor ferroelectrics. Journal of Alloys and Compounds, 2016, 663, 444-448.	2.8	31
158	Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition. Materials Research Bulletin, 2016, 74, 57-61.	2.7	60
159	Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb (1â^'3x/2) La x Zr 0.85 Ti 0.15 O 3 antiferroelectric thick films. Ceramics International, 2016, 42, 1679-1687.	2.3	53
160	Direct and indirect analysis of the electrocaloric effect for lanthanum-modified lead zirconate titanate antiferroelectric ceramics. Ceramics International, 2016, 42, 229-233.	2.3	17
161	Flexoelectric Induced Caloric Effect in Truncated Pyramid Shaped Ba0.67Sr0.33TiO3 Ferroelectric Material. Journal of Electronic Materials, 2017, 46, 4166-4171.	1.0	8
162	Electrocaloric effect and energy storage in lead free Gd 0.02 Na 0.5 Bi 0.48 TiO 3 ceramic. Solid State Sciences, 2017, 66, 31-37.	1.5	52
163	Large electrocaloric responses in [Bi _{1/2} (Na,K) _{1/2}]TiO ₃ â€based ceramics with giant electroâ€strains. Journal of the American Ceramic Society, 2017, 100, 2088-2097.	1.9	30
164	Electrocaloric induced retarded ferroelectric switching. Applied Physics Letters, 2017, 110, 022901.	1.5	1
165	Temperature dependence of the elastocaloric effect in natural rubber. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2112-2116.	0.9	33

#	Article	IF	CITATIONS
166	Lead free Ba0.8Ca0.2TexTi1â^'xO3 ferroelectric ceramics exhibiting high electrocaloric properties. Journal of Applied Physics, 2017, 121, .	1.1	9
167	Note: Experimental setup for measuring the barocaloric effect in polymers: Application to natural rubber. Review of Scientific Instruments, 2017, 88, 046103.	0.6	21
168	Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics. Journal of Applied Physics, 2017, 121, .	1.1	20
169	Enhanced electrocaloric, pyroelectric and energy storage performance of BaCe Ti1â^O3 ceramics. Journal of the European Ceramic Society, 2017, 37, 3927-3933.	2.8	79
170	Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties?. Progress in Polymer Science, 2017, 72, 16-60.	11.8	156
171	Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. Applied Physics Letters, 2017, 110, .	1.5	73
172	Phase transformations, anisotropic pyroelectric energy harvesting and electrocaloric properties of (Pb,La)(Zr,Sn,Ti)O ₃ single crystals. Physical Chemistry Chemical Physics, 2017, 19, 13534-13546.	1.3	37
173	Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Physics of the Solid State, 2017, 59, 1118-1126.	0.2	9
174	Fatigue-less electrocaloric effect in relaxor Pb(Mg1/3Nb2/3)O3 multilayer elements. Journal of the European Ceramic Society, 2017, 37, 5105-5108.	2.8	20
175	Large barocaloric effects at low pressures in natural rubber. European Polymer Journal, 2017, 92, 287-293.	2.6	32
176	Large barocaloric effect and pressureâ€mediated electrocaloric effect in Pb _{0.99} Nb _{0.02} (Zr _{0.95} Ti _{0.05}) _{0.08} O _{3ceramics. Journal of the American Ceramic Society, 2017, 100, 4902-4911.}	ba.9	9
177	The effect of low Sn doping on the dielectric and electrocaloric properties of ferroelectric ceramics Ba 0.95 Sr 0.05 Ti 0.95 Zr 0.05 O 3. Journal of Alloys and Compounds, 2017, 720, 284-288.	2.8	18
178	A novel sol–gel route to synthesize (Sr0.5Ba0.5)Nb ₂ O ₆ ceramics with enhanced electrocaloric effect. Journal of Advanced Dielectrics, 2017, 07, 1750012.	1.5	4
179	Electrocaloric effect in Pb-free Sr-doped BaTi 0.9 Sn 0.1 O 3 ceramics. Materials Research Bulletin, 2017, 91, 31-35.	2.7	27
180	Thickness dependence of electrocaloric response in ferroelectric thin films. Materials Letters, 2017, 196, 351-353.	1.3	4
181	Giant electrocaloric effect in lead zinc niobate titanate single crystal. Journal of Alloys and Compounds, 2017, 710, 297-301.	2.8	14
182	Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics. Scientific Reports, 2017, 7, 45335.	1.6	98
183	Giant multicaloric response of bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Fe</mml:mi> <mml:m Physical Review B, 2017, 95, .</mml:m </mml:msub></mml:mrow></mml:math 	n x1.449 < /mr 	nl ສ໙ n>

#	Article	IF	CITATIONS
184	Materials with Giant Mechanocaloric Effects: Cooling by Strength. Advanced Materials, 2017, 29, 1603607.	11.1	304
185	Electrocaloric effect in relaxor ferroelectric Ba(Ti1-Y)O3-/2 ceramics over a broad temperature range. Journal of Alloys and Compounds, 2017, 729, 57-63.	2.8	26
186	Adapting BaTiO3-based relaxor ferroelectrics for electrocaloric application. Ferroelectrics, 2017, 515, 1-7.	0.3	8
187	Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Journal of Applied Physics, 2017, 122, .	1.1	27
188	High-throughput direct measurement of magnetocaloric effect based on lock-in thermography technique. Applied Physics Letters, 2017, 111, .	1.5	23
189	Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics. Applied Physics Letters, 2017, 111, .	1.5	43
190	Large electrocaloric effect in La-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 relaxor ferroelectric ceramics. Journal of Alloys and Compounds, 2017, 727, 785-791.	2.8	21
191	Orientation related electrocaloric effect and dielectric phase transitions of relaxor PMN-PT single crystals. Ceramics International, 2017, 43, 16300-16305.	2.3	28
192	A scaling law for distinct electrocaloric cooling performance in low-dimensional organic, relaxor and anti-ferroelectrics. Scientific Reports, 2017, 7, 11111.	1.6	4
193	Giant electrocaloric effect in ferroelectric ultrathin films at room temperature mediated by flexoelectric effect and work function. Journal of Applied Physics, 2017, 122, .	1.1	24
194	Conventional and inverse barocaloric effects around triple points in ferroelastics (NH 4) 3 NbOF 6 and (NH 4) 3 TiOF 5. Scripta Materialia, 2017, 139, 53-57.	2.6	14
195	Nonlinear dielectric effects in liquids: a guided tour. Journal of Physics Condensed Matter, 2017, 29, 363001.	0.7	33
196	Physical properties in polydomain c/a/c/a phase PbTiO3 ferroelectric thick films: effect of thermal stresses. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
197	The influence of mechanical and electrical boundary conditions on electrocaloric response in (Ba0.50Sr0.50)TiO3 thin films. Materials Research Bulletin, 2017, 95, 334-338.	2.7	4
198	Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr,Ti)O ₃ and (Ba,Sr)TiO ₃ ceramics. Japanese Journal of Applied Physics, 2017, 56, 10PC05.	0.8	14
199	Giant barocaloric effects over a wide temperature range in superionic conductor Agl. Nature Communications, 2017, 8, 1851.	5.8	95
200	Simulating of solid-state electrocaloric cooler based on multi-layered ferroelectric capacitor structures. Journal of Physics: Conference Series, 2017, 929, 012083.	0.3	2
201	Large electrocaloric efficiency over a broad temperature span in lead-free BaTiO3-based ceramics near room temperature. Applied Physics Letters, 2017, 111, .	1.5	27

	CITATION RE	PORT	
#	Article	IF	CITATIONS
202	Giant negative electrocaloric effect in PbZrO3/0.88BaTiO3–0.12Bi(Mg1/2,Ti1/2)O3 multilayered composite ferroelectric thin film for solid-state refrigeration. Journal of Applied Physics, 2017, 122, .	1.1	10
203	The impact of the P-E hysteresis on the performance of electrocaloric cooling. Ferroelectrics, 2017, 516, 1-7.	0.3	7
204	Multicaloric effects in PbZr _{0.2} Ti _{0.8} O ₃ thin films with 90 [°] domain structure. Europhysics Letters, 2017, 118, 17005.	0.7	4
205	Phase–composition and temperature dependence of electrocaloric effect in lead–free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2â−¡0.1)TiO3 ceramics. Journal of the European Ceramic Society, 2017, 4732-4740.	372.8	76
206	Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary. Journal of Alloys and Compounds, 2017, 725, 275-282.	2.8	23
207	Electrocaloric effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaTiO</mml:mi><mml:mn>3at all three ferroelectric transitions: Anisotropy and inverse caloric effects. Physical Review B, 2017, 96.</mml:mn></mml:msub></mml:math 	11:mp>1.1	ıml <u>:</u> msub>
208	Thin-film ferroelectric materials and their applications. Nature Reviews Materials, 2017, 2, .	23.3	590
209	Influence of the processing parameters on the electrocaloric effect of poly(vinylidene) Tj ETQq1 1 0.784314 rgB1	Qverloc	k 10 Tf 50 46
210	Thickness-dependent electrocaloric effect of Pb0.82Ba0.08La0.10(Zr0.90Ti0.10)O3 antiferroelectric thick films. Journal of Alloys and Compounds, 2017, 690, 131-138.	2.8	20
211	Effect of sintering temperature and dwell time on electrocaloric properties of Ba0.85Ca0.075Sr0.075Ti0.90Zr0.10O3 ceramics. Phase Transitions, 2017, 90, 465-474.	0.6	15
212	Multilayer 0.9Pb(Mg 1/3 Nb 2/3)O 3 –0.1PbTiO 3 elements for electrocaloric cooling. Journal of the European Ceramic Society, 2017, 37, 599-603.	2.8	43
213	Size dependent flexocaloric effect of paraelectric Ba0.67Sr0.33TiO3 nanostructures. Materials Letters, 2017, 186, 146-150.	1.3	15
214	Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases. Applied Thermal Engineering, 2017, 111, 914-926.	3.0	32
215	Enhancement of electrocaloric response through quantum effects. Physical Review B, 2017, 96, .	1.1	7
216	Influence of thermal conditions on the electrocaloric effect in a multilayer capacitor based on doped BaTiO ₃ . Journal of Advanced Dielectrics, 2017, 07, 1750041.	1.5	10
217	Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route. Materials, 2017, 10, 1093.	1.3	29
218	Ionic Mobility and Phase Transitions in Perovskite Oxides for Energy Application. Challenges, 2017, 8, 5.	0.9	8
219	Electrocaloric Cooling. , 0, , .		7

#	Article	IF	CITATIONS
220	Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47, 285-293.	8.2	78
221	Direct Measurement of the Electrocaloric Temperature Change in Multilayer Ceramic Components using Resistanceâ€Welded Thermocouple Wires. Energy Technology, 2018, 6, 1535-1542.	1.8	5
222	BaZr _{<i>x</i>} Ti _{1â^'<i>x</i>} O ₃ Epitaxial Thin Films for Electrocaloric Investigations. Energy Technology, 2018, 6, 1526-1534.	1.8	6
223	Large electrocaloric effect in lead-free Ba1-xCaxTi1-yZryO3 ceramics under strong electric field at room-temperature. Ceramics International, 2018, 44, 13595-13601.	2.3	32
224	Giant Negative and Positive Electrocaloric Effects Coexisting in Leadâ€Free Na _{0.5} Bi _{4.5} Ti ₄ O ₁₅ Films Over a Broad Temperature Range. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700443.	1.2	15
225	Material Measures of Electrocaloric Cooling Power in Perovskite Ferroelectrics. Energy Technology, 2018, 6, 1512-1518.	1.8	8
226	Electrocaloric effects in multilayer capacitors for cooling applications. MRS Bulletin, 2018, 43, 291-294.	1.7	31
227	Influence of microstructure features on electrocaloric effect in ferroelectric ceramics. Ceramics International, 2018, 44, 8263-8269.	2.3	23
228	Anisotropic field induced phase transitions and negative electrocaloric effect in rhombohedral Mn doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Ceramics International, 2018, 44, 9045-9052.	2.3	8
229	Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics. Physical Review Letters, 2018, 120, 055901.	2.9	21
230	Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure. Scientific Reports, 2018, 8, 293.	1.6	25
231	Influence of Finite Size on the Electrocaloric Response in PbTiO ₃ Ceramics Near Room Temperature Using Landau Theory. Physica Status Solidi (B): Basic Research, 2018, 255, 1700469.	0.7	5
232	Electrocaloric behavior and temperature dependent scaling of dynamic hysteresis of BaxSr1-xTiO3 (x = 0.7, 0.8 and 0.9) bulk ceramics. Journal of the Australian Ceramic Society, 2018, 54, 439-450.	1.1	12
233	Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications. Scientific Reports, 2018, 8, 396.	1.6	35
234	Direct Measurement of Large Electrocaloric Effect in Ba(Zr _{<i>x</i>} Ti _{1–<i>x</i>})O ₃ Ceramics. ACS Applied Materials & Interfaces, 2018, 10, 4801-4807.	4.0	90
235	Large electrocaloric effect in lead-free Ba(ZrxTi1-x)O3 thick film ceramics. Journal of Alloys and Compounds, 2018, 742, 165-171.	2.8	15
236	Elastocaloric Cooling on the Miniature Scale: A Review on Materials and Device Engineering. Energy Technology, 2018, 6, 1588-1604.	1.8	78
237	Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Applied Physics Letters, 2018, 112, .	1.5	45

#	Article	IF	CITATIONS
238	Interplay of conventional with inverse electrocaloric response in (Pb,Nb)(Zr,Sn,Ti)O3 antiferroelectric materials. Physical Review B, 2018, 97, .	1.1	42
239	Microstructure, ferroelectric and electrocaloric effect of (Pb _{0.88} La _{0.08})(Zr _{0.65} Ti _{0.35})O ₃ ceramics doped with ZnO. Ferroelectrics, 2018, 524, 148-155.	0.3	0
240	Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics. Applied Physics Letters, 2018, 112, .	1.5	16
241	Giant Negative Electrocaloric Effect in (Pb,La)(Zr,Sn,Ti)O ₃ Antiferroelectrics Near Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 11747-11755.	4.0	75
242	Quasi-adiabatic calorimeter for direct electrocaloric measurements. Review of Scientific Instruments, 2018, 89, 034903.	0.6	17
243	Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials. Journal of Applied Physics, 2018, 123, .	1.1	14
244	Giant electrocaloric effect in BaTiO3–Bi(Mg1/2Ti1/2)O3 lead-free ferroelectric ceramics. Journal of Alloys and Compounds, 2018, 747, 1053-1061.	2.8	48
245	Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator. Thermal Science and Engineering Progress, 2018, 6, 370-379.	1.3	39
246	The Electrocaloric Effect in BaTiO3–SrTiO3 Solid Solution. Technical Physics Letters, 2018, 44, 60-62.	0.2	11
247	Size effects of electrocaloric cooling in ferroelectric nanowires. Journal of the American Ceramic Society, 2018, 101, 1566-1575.	1.9	38
248	Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1-xLa2x/3TiO3 ferroelectric ceramics. Journal of Alloys and Compounds, 2018, 730, 501-508.	2.8	27
249	Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. Journal of Materials Science: Materials in Electronics, 2018, 29, 1075-1081.	1.1	37
250	Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceramics International, 2018, 44, 343-350.	2.3	70
251	Long term stability of electrocaloric response in barium zirconate titanate. Journal of the European Ceramic Society, 2018, 38, 551-556.	2.8	40
252	A photopyroelectric approach for electrocaloric effect characterization of polar materials. Journal Physics D: Applied Physics, 2018, 51, 025306.	1.3	3
253	Thickness dependence of electrocaloric effect in high-temperature sintered Ba0.8Sr0.2TiO3 ceramics. Journal of Alloys and Compounds, 2018, 736, 57-61.	2.8	19
254	Ferroelectric and electrocaloric effect in lead-free (Ba 1â^'x Ca x) 1â^'3y/2 Bi y TiO 3 ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 227, 110-115.	1.7	7
255	Intensive electrocaloric effect in the multilayer capacitor under equilibrium and nonequilibrium the multilayer capacitor under equilibrium and nonequilibrium thermal conditions. Scripta Materialia, 2018, 146, 51-54.	2.6	8

#	Article	IF	CITATIONS
256	The Impact of Hysteresis on the Electrocaloric Effect at Firstâ€Order Phase Transitions. Physica Status Solidi (B): Basic Research, 2018, 255, 1700308.	0.7	13
257	A generalized thermodynamic frame of magneto-electric-caloric coupling effects of single phase epitaxial multiferroic thin films. Ferroelectrics, 2018, 531, 186-195.	0.3	3
258	Investigation of dielectric properties and electrocaloric effect in ferroelectric ceramics based on solid solution of lead magnesium niobate-lead zinc niobate. Journal of Physics: Conference Series, 2018, 1135, 012079.	0.3	0
259	Interfacial Coupling Boosts Giant Electrocaloric Effects in Relaxor Polymer Nanocomposites: In Situ Characterization and Phaseâ€Field Simulation. Advanced Materials, 2019, 31, e1801949.	11.1	60
260	Electrocaloric behavior and piezoelectric effect in relaxor NaNbO ₃ â€based ceramics. Journal of the American Ceramic Society, 2019, 102, 2578-2586.	1.9	16
261	Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy, 2018, 165, 439-455.	4.5	62
262	Giant negative electrocaloric effect induced by domain transition in the strained ferroelectric thin film. Journal of Physics Condensed Matter, 2018, 30, 465401.	0.7	16
263	Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. Journal of Applied Physics, 2018, 124, .	1.1	40
264	Structural investigation, dielectric, ferroelectric, and elecrocaloric properties of lead-free Ba(1â^'x)CaxTi(1â^'x)(Li1/3Nb2/3)xO3â^1̂´ (x = 0.02 and x = 0.07) ceramics. Journal of Materials in Electronics, 2018, 29, 18640-18649.	Sicilence:	M ø terials
265	Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration. Journal of Materials Chemistry C, 2018, 6, 10415-10421.	2.7	36
267	Defect-controlled electrocaloric effect in PbZrO ₃ thin films. Journal of Materials Chemistry C, 2018, 6, 10332-10340.	2.7	38
268	Study of electrocaloric effect and harvested pyroelectric energy density of ferroelectric material. Materials Research Express, 2018, 5, 116302.	0.8	3
269	Electrocaloric effect in lead-free 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 ceramic measured by direct and indirect methods. Ceramics International, 2018, 44, 21950-21955.	2.3	22
270	Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics for Pyroelectric Applications. Journal of Electronic Materials, 2018, 47, 4882-4891.	1.0	33
271	Impact of Polarization Dynamics and Charged Defects on the Electrocaloric Response of Ferroelectric Pb(Zr,Ti)O ₃ Ceramics. Energy Technology, 2018, 6, 1519-1525.	1.8	12
272	Stabilization of Polar Nanoregions in Pb-free Ferroelectrics. Physical Review Letters, 2018, 120, 207603.	2.9	46
273	Enhanced piezoelectric properties and electrocaloric effect in novel leadâ€free (Bi _{0.5} K _{0.5})TiO ₃ ‣a(Mg _{0.5} Ti _{0.5})O _{3ceramics. Journal of the American Ceramic Society, 2018, 101, 5503-5513.}	b 1 .9	20
274	Large Electrocaloric Effect in Lead-free Ba(Hf _{<i>x</i>} Ti _{1<i>–x</i>})O ₃ Ferroelectric Ceramics for Clean Energy Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 8920-8925.	3.2	44

# 275	ARTICLE The coexisting negative and positive electrocaloric effect in (Pb0.97La0.02)(Zr, Sn, Ti)O3 antiferroelectric thick films optimized via phase transition procedure. Journal of Materials Science: Materials in Electronics, 2018, 29, 14528-14534.	IF 1.1	CITATIONS
276	Multilayer Ceramics for Electrocaloric Cooling Applications. Energy Technology, 2018, 6, 1543-1552.	1.8	15
277	Optimisation of SrBi2(Nb,Ta)2O9 Aurivillius phase for lead-free electrocaloric cooling. Journal of the European Ceramic Society, 2018, 38, 5354-5358.	2.8	14
278	Investigation of the electrocaloric effect in strontium barium niobate (SBN) ceramics with rare-earth dopants. Journal of Physics: Conference Series, 2018, 1038, 012115.	0.3	1
279	Origins of the Inverse Electrocaloric Effect. Energy Technology, 2018, 6, 1491-1511.	1.8	39
280	Enhanced electrocaloric effect in lead-free organic and inorganic relaxor ferroelectric composites near room temperature. Applied Physics Letters, 2018, 112, .	1.5	31
281	Electrocaloric effect in cubic Hubbard nanoclusters. Scientific Reports, 2018, 8, 5116.	1.6	11
282	BaTiO3-Based Piezoelectric Materials. , 2018, , 247-299.		3
283	Recent Development of Lead-Free Piezoelectrics. , 2018, , 397-461.		0
284	Enhanced electrocaloric response and high energy-storage properties in lead-free (1-x) (K0.5Na0.5)NbO3 - xSrZrO3 nanocrystalline ceramics. Journal of Alloys and Compounds, 2018, 764, 289-294.	2.8	41
285	Realization of Magnetostructural Transition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. Journal of Superconductivity and Novel Magnetism, 2019, 32, 659-665.	0.8	3
286	Direct measurement and dynamic mechanical analysis on the coexistence of positive and negative electrocaloric effects in Bi0.5Na0.5TiO3-xBaTiO3 solid solutions. Ceramics International, 2019, 45, 2876-2880.	2.3	10
287	Study of electro-elastocaloric effect and pyroelectric energy density in piezocomposites. Smart Materials and Structures, 2019, 28, 105026.	1.8	1
288	Room-Temperature Electrocaloric Effect in Layered Ferroelectric CuInP ₂ S ₆ for Solid-State Refrigeration. ACS Nano, 2019, 13, 8760-8765.	7.3	69
289	Coexistence of positive and negative electrocaloric effects in lead free perovskite structured ferroelectrics. Solid State Sciences, 2019, 95, 105929.	1.5	2
290	Meet Our Section Editor. Current Smart Materials, 2019, 4, 1-1.	0.5	0
291	Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium. Energies, 2019, 12, 2902.	1.6	27
292	Conventional and inverse barocaloric effects in ferroelectric NH4HSO4. Journal of Alloys and Compounds, 2019, 806, 1047-1051.	2.8	15

ARTICLE

293	Phenomenological analysis of elastocaloric effect in ferroelectric poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 Td (fluoride
-----	---

294	Structural Design and Kinematics Analysis of a Multi-legged Wall-climbing Robot. , 2019, , .		0
295	Indirect Electrocaloric Evaluation: Influence of Polarization Hysteresis Measurement Frequency. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900684.	0.8	9
296	The effects of anti-ferroelectric nanofillers on the negative electrocaloric effects in Poly(vinylidene) Tj ETQq1 1 ().784314 r 1.5	gBŢ /Overlock
297	Seeding effects on the mechanochemical synthesis of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3. Journal of the European Ceramic Society, 2019, 39, 1837-1845.	2.8	16
298	Large electrocaloric effect over a wide temperature range in BaTiO ₃ -modified lead-free ceramics. Journal of Materials Chemistry C, 2019, 7, 1353-1358.	2.7	64
299	Phase-field simulations on the electrocaloric properties of ferroelectric nanocylinders with the consideration of surface polarization effect. Journal of Applied Physics, 2019, 125, .	1.1	6
300	Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: High energy storage performance and electrocaloric effect. Journal of Alloys and Compounds, 2019, 803, 185-192.	2.8	79
301	Large electrocaloric effect near room temperature in lead–free Bi0.5Na0.5TiO3-based ergodic relaxor observed by differential scanning calorimetry. Scripta Materialia, 2019, 171, 10-15.	2.6	19
302	Improving the multicaloric properties of Pb(Fe0.5Nb0.5)O3 by controlling the sintering conditions and doping with manganese. Journal of the European Ceramic Society, 2019, 39, 4122-4130.	2.8	10
303	Temperature dependence of electromechanical and electrocaloric properties of PLZT ceramics. Ferroelectrics, 2019, 539, 71-78.	0.3	3
304	Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading. Applied Physics Letters, 2019, 114, .	1.5	20
305	Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry C, 2019, 7, 6836-6859.	2.7	58
306	Caloric Effects in Perovskite Oxides. Advanced Materials Interfaces, 2019, 6, 1900291.	1.9	66
307	Enhanced Electrocaloric Effect in Sr ²⁺ -Modified Lead-Free BaZr <i>_x</i> Ti _{1–<i>x</i>} O ₃ Ceramics. ACS Applied Materials & Interfaces, 2019, 11, 20167-20173.	4.0	37
308	Improved electrocaloric properties in La doped (Bi0.5Na0.5)0.92Ba0.08TiO3 lead-free ceramics. Applied Physics Letters, 2019, 114, .	1.5	12
309	Cr-doped lead lanthanum zirconate titanate (PLZT) ceramics for pyroelectric and energy harvesting device applications. Ceramics International, 2019, 45, 14111-14120.	2.3	12
310	Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nature Communications, 2019, 10, 1803.	5.8	144

#	Article	IF	CITATIONS
311	Ultrahigh room temperature electrocaloric response in lead-free bulk ceramics <i>via</i> tape casting. Journal of Materials Chemistry C, 2019, 7, 6860-6866.	2.7	22
312	Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics Condensed Matter, 2019, 31, 255402.	0.7	4
313	Tuning of electrocaloric performance in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 by induced relaxor-like behavior. Ceramics International, 2019, 45, 11408-11412.	2.3	12
314	Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. Journal of Materials Chemistry A, 2019, 7, 11665-11672.	5.2	50
315	Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation. Acta Materialia, 2019, 169, 275-283.	3.8	25
316	Study of the electrocaloric effect in ferroelectric liquid crystals. Liquid Crystals, 2019, 46, 1517-1526.	0.9	4
317	Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications. Advanced Functional Materials, 2019, 29, 1808118.	7.8	125
318	Pyroelectric and Electrocaloric Effects and Their Applications. , 2019, , 217-244.		2
319	Direct measurement of electrocaloric effect in lead-free (Na0.5Bi0.5)TiO3-based multilayer ceramic capacitors. Journal of the European Ceramic Society, 2019, 39, 3315-3319.	2.8	21
320	Effects of Long- and Short-Range Ferroelectric Order on the Electrocaloric Effect in Relaxor Ferroelectric Ceramics. Physical Review Applied, 2019, 11, .	1.5	57
321	Enhanced electrocaloric strength of P(VDF-TrFE-CFE) induced by edge-on lamellae. Journal of Materials Chemistry C, 2019, 7, 3212-3217.	2.7	11
322	Giant electrocaloric response in smectic liquid crystals with direct smectic-isotropic transition. Scientific Reports, 2019, 9, 1721.	1.6	8
323	Electric-field-induced phase transition and electrocaloric effect in PZT near morphotropic phase boundary. Physica B: Condensed Matter, 2019, 560, 208-214.	1.3	7
324	Electrocaloric Effect in Antiferroelectric Lead Zirconate Thin Films Negative electrocaloric effects in PbZrO ₃ films prepared by chemical solution deposition. , 2019, , .		1
325	Compositionâ€induced nonâ€ergodic–ergodic transition and electrocaloric evolution in Pb 1â^'1.5 x La x Zr 0.8 Ti 0.2 O 3 relaxor ferroelectric ceramics. IET Nanodielectrics, 2019, 2, 123-128.	2.0	16
326	Electrocaloric effect and dielectric properties in ferroelectric ceramics based on solid solution of barium-calcium titanate. Journal of Physics: Conference Series, 2019, 1400, 077004.	0.3	6
327	Investigation of Electric and Electrocaloric Properties for Sm-Doped 71PMN–29PT Ceramics. , 2019, , .		2
328	Tailoring the electrocaloric effect of Pb _{0.78} Ba _{0.2} La _{0.02} ZrO ₃ relaxor thin film by GaN substrates. Journal of Materials Chemistry C, 2019, 7, 14109-14115.	2.7	20

#	Article	IF	CITATIONS
329	Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. Journal of Materials Chemistry A, 2019, 7, 25526-25536.	5.2	63
330	High cyclic stability of electrocaloric effect in relaxor poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf stransition. Journal of Applied Physics, 2019, 126, .	50 707 Td 1.1	(fluoride-tri 14
331	Designing soft pyroelectric and electrocaloric materials using electrets. Soft Matter, 2019, 15, 262-277.	1.2	17
332	Phase formation and electrocaloric effect in nonstoichiometric 0.94Bi0.5+xNa0.5TiO3-0.06BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 3465-3471.	1.1	1
333	Enhanced Electrocaloric Effect and Energy Storage Density in Leadâ€Free 0.8Na _{0.5} Bi _{0.5} TiO ₃ â€0.2SrTiO ₃ Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800786.	0.8	8
334	Numerical modelling and experimental validation of a regenerative electrocaloric cooler. International Journal of Refrigeration, 2019, 98, 139-149.	1.8	44
335	Enhancement of the electrocaloric effect over a wide temperature range in PLZT ceramics by doping with Gd3+ and Sn4+ ions. Journal of the European Ceramic Society, 2019, 39, 1093-1102.	2.8	35
336	Large electrocaloric effect in tetragonal perovskite 0.03Bi(Mg1/2Ti1/2)O3–0.97(0.875Bi1/2Na1/2TiO3–0.125BaTiO3) lead-free ferroelectric ceramics. Scripta Materialia, 2019, 162, 256-260.	2.6	10
337	Nanoconfinementâ€Induced Giant Electrocaloric Effect in Ferroelectric Polymer Nanowire Array Integrated with Aluminum Oxide Membrane to Exhibit Record Cooling Power Density. Advanced Materials, 2019, 31, e1806642.	11.1	56
338	Strongly enhanced electrocaloric effects in doped BaTiO ₃ with reduced grain size. Smart Materials and Structures, 2019, 28, 015013.	1.8	7
339	Large Room Temperature Electrocaloric Effect in KTa _{1â~<i>x</i>} Nb _{<i>x</i>} O ₃ Single Crystal. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800515.	1.2	19
340	Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering Reports, 2019, 135, 1-57.	14.8	530
341	Direct measurement of enhanced electrocaloric effect in Mn2+ doped lead-free Ba(ZrTi)O3 ceramics. Scripta Materialia, 2020, 176, 67-72.	2.6	6
342	The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler. Energy, 2020, 190, 116404.	4.5	47
343	Tuning the electrocaloric effect in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by relaxor phase blending. Ceramics International, 2020, 46, 4454-4461.	2.3	7
344	Effect of phase transition on electrocaloric effect in Indium substituted BaTiO3 ceramics. Journal of Alloys and Compounds, 2020, 822, 153632.	2.8	11
345	Effect of sintering temperature on the ferroelectric property and electrocaloric effect of Pb0.8Ba0.2ZrO3 ceramics. Ceramics International, 2020, 46, 9129-9135.	2.3	0
346	Extraordinarily Large Electrocaloric Strength of Metalâ€Free Perovskites. Advanced Materials, 2020, 32, e1906224.	11.1	43

#	Article	IF	Citations
347	Temperature-insensitive large electrocaloric effect near room temperature in La3+-doped lead magnesium niobate-lead titanate ceramics. Ceramics International, 2020, 46, 8391-8397.	2.3	4
348	The primary and secondary electrocaloric effect at ferroelectric-ferroelectric transitions in lead-free ceramics. Scripta Materialia, 2020, 178, 150-154.	2.6	9
349	Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling. Journal of Materials Chemistry A, 2020, 8, 16814-16830.	5.2	20
350	Bismuth zinc niobate: BZN-BT, a new lead-free BaTiO ₃ -based ferroelectric relaxor?. Journal of Advanced Dielectrics, 2020, 10, 2050033.	1.5	7
351	Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field. Applied Physics Reviews, 2020, 7, .	5.5	29
352	Electrocaloric devices part II: All-solid heat pump without moving parts. Journal of Advanced Dielectrics, 2020, 10, 2050029.	1.5	8
353	Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InformaÄnÃ-Materiály, 2020, 2, 1163-1190.	8.5	112
354	Enhanced ferroelectric and electrocaloric properties in CuO-modified lead-free (Na0.5K0.5)NbO3 ceramics for solid-state cooling application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114767.	1.7	10
355	Effect of texture on the electrical and electrocaloric properties of 0.90Pb(Mg1/3Nb2/3)O3–0.10PbTiO3 relaxor ceramics. Journal of Applied Physics, 2020, 128, .	1.1	9
356	Electrocaloric multilayer capacitors on the base of lead magnesium niobate–lead scandium niobate. Journal of Applied Physics, 2020, 128, 104106.	1.1	2
357	High-performance lead-free ferroelectric BZT–BCT and its application in energy fields. Journal of Materials Chemistry C, 2020, 8, 13530-13556.	2.7	42
358	Electrocaloric properties of Sr and Sn doped BCZT lead-free ceramics. EPJ Applied Physics, 2020, 91, 20905.	0.3	4
359	Giant Electrocaloric Effect and Ultrahigh Refrigeration Efficiency in Antiferroelectric Ceramics by Morphotropic Phase Boundary Design. ACS Applied Materials & Interfaces, 2020, 12, 45005-45014.	4.0	37
360	Knowledge-Based Descriptor for the Compositional Dependence of the Phase Transition in BaTiO ₃ -Based Ferroelectrics. ACS Applied Materials & Interfaces, 2020, 12, 44970-44980.	4.0	7
361	Comprehensive evaluation of electrocaloric effect and fatigue behavior in the 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 bulk relaxor ferroelectric ceramic. Journal of Applied Physics, 2020, 128, .	1.1	11
362	Electrocaloric Cooling: A Review of the Thermodynamic Cycles, Materials, Models, and Devices. Magnetochemistry, 2020, 6, 67.	1.0	28
363	Relation between dielectric permittivity and electrocaloric effect under high electric fields in the Pb(Mg1/3Nb2/3)O3-based ceramics. Journal of Applied Physics, 2020, 127, .	1.1	8
364	Enhancement of electrocaloric effect in compositionally graded ferroelectric nanowires. Journal of Applied Physics, 2020, 127, 214103.	1.1	7

#	Article	IF	CITATIONS
365	High electrocaloric effect in barium titanate-sodium niobate ceramics with core-shell grain assembly. Journal of Materiomics, 2020, 6, 618-627.	2.8	13
366	Electrocaloric effects in monolayer germanium sulfide: A study by molecular dynamics simulations and thermodynamic analyses. Journal of Applied Physics, 2020, 127, .	1.1	6
367	Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure*. Chinese Physics B, 2020, 29, 087701.	0.7	3
368	An Allâ€Scale Hierarchical Architecture Induces Colossal Roomâ€Temperature Electrocaloric Effect at Ultralow Electric Field in Polymer Nanocomposites. Advanced Materials, 2020, 32, e1907927.	11.1	34
369	Electrocaloric effect of alkali co-substituted Sr0.6Ba0.4Nb2O6 ceramics. Journal of Alloys and Compounds, 2020, 844, 156132.	2.8	6
370	Enhanced Electrocaloric Effect in 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 Single Crystals via Direct Measurement. Crystals, 2020, 10, 451.	1.0	25
371	High energy storage efficiency and large electrocaloric effect in lead-free BaTi0.89Sn0.11O3 ceramic. Ceramics International, 2020, 46, 23867-23876.	2.3	47
372	Electrocaloric response in lanthanum-modified lead zirconate titanate ceramics. Journal of Applied Physics, 2020, 127, .	1.1	9
373	Hydrogen-Bonded Small-Molecular Crystals Yielding Strong Ferroelectric and Antiferroelectric Polarizations. Journal of the Physical Society of Japan, 2020, 89, 051009.	0.7	51
374	Deviceâ€level thermodynamic model for an electrocaloric cooler. International Journal of Energy Research, 2020, 44, 5343-5359.	2.2	12
375	Regenerative cooling using elastocaloric rubber: Analytical model and experiments. Journal of Applied Physics, 2020, 127, .	1.1	22
376	Interrelation of electrocaloric and concomitant effects in lead magnesium niobate based ceramics. Journal of Materials Science, 2020, 55, 6783-6793.	1.7	5
377	A thermodynamic study of phase transitions and electrocaloric properties of K0.5Na0.5NbO3 single crystals. Applied Physics Letters, 2020, 116, .	1.5	8
378	Large Electrocaloric Effect in (Bi _{0.5} Na _{0.5})TiO ₃ -Based Relaxor Ferroelectrics. ACS Applied Materials & Interfaces, 2020, 12, 33934-33940.	4.0	58
379	Elastic, electronic and electrocaloric properties near room temperature in Mn-doped SnTiO3 from first-principles calculations. Ceramics International, 2020, 46, 21995-22004.	2.3	3
380	Anisotropy of piezocaloric effect at ferroelectric phase transitions in ammonium hydrogen sulphate. Journal of Alloys and Compounds, 2020, 839, 155085.	2.8	4
381	Tuning the operation temperature window of the elastocaloric effect in Cu–Al–Mn shape memory alloys by composition design. Journal of Alloys and Compounds, 2020, 828, 154265.	2.8	36
382	Relaxor behavior and electrothermal properties of Sn- and Nb-modified (Ba,Ca)TiO ₃ Pb-free ferroelectric. Journal of Materials Research, 2020, 35, 1017-1027.	1.2	8

#	Article	IF	CITATIONS
383	Tailoring the negative electrocaloric effect of PbZrO3 antiferroelectric thin films by Yb doping. Journal of Alloys and Compounds, 2020, 830, 154581.	2.8	15
384	Electrocaloric and electromechanical properties of (Pb,La)(Zr,Ti)O ₃ ceramics. Ferroelectrics, 2020, 556, 51-61.	0.3	6
385	Tunability of the elastocaloric response in main-chain liquid crystalline elastomers. Liquid Crystals, 2021, 48, 405-411.	0.9	7
386	Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure. Scripta Materialia, 2021, 193, 97-102.	2.6	16
387	Enhanced electrocaloric effect in the Sm and Hf co-doped BaTiO3 ceramics. Ceramics International, 2021, 47, 1101-1108.	2.3	24
388	Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via Oneâ€6tep Molecular Engineering. Advanced Functional Materials, 2021, 31, .	7.8	21
389	Enhanced electrocaloric effect in BaSn/TiO3 ceramics by addition of CuO. Journal of Alloys and Compounds, 2021, 851, 156772.	2.8	8
390	Comparative analysis of elastocaloric and barocaloric effects in single-crystal and ceramic ferroelectric (NH4)2SO4. Scripta Materialia, 2021, 191, 149-154.	2.6	7
391	Electrocaloric properties and caloric figure of merit in the ferroelectric solid solution BaZrO3–BaTiO3 (BZT). Journal of the European Ceramic Society, 2021, 41, 1280-1287.	2.8	15
392	Perspective on antiferroelectrics for energy storage and conversion applications. Chinese Chemical Letters, 2021, 32, 2097-2107.	4.8	24
393	Multifunctional response of lanthanum-modified PZT relaxor ferroelectric system with improved electrocaloric effect and energy storage performance. Journal of Alloys and Compounds, 2021, 858, 157704.	2.8	8
394	Pulse Shape Effects in Electrocaloric Cooling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 865-871.	1.7	2
395	Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Applied Physics Letters, 2021, 118, .	1.5	20
396	Perspective on emerging views on microscopic origin of relaxor behavior. Journal of Materials Research, 2021, 36, 1015-1036.	1.2	17
397	Energy Storage and Electrocaloric Cooling Performance of Advanced Dielectrics. Molecules, 2021, 26, 481.	1.7	6
398	Thermal Investigation of an Electrocaloric Refrigeration Systems. Springer Proceedings in Energy, 2021, , 409-416.	0.2	0
399	Large electrocaloric response with superior temperature stability in NaNbO ₃ -based relaxor ferroelectrics benefiting from the crossover region. Journal of Materials Chemistry A, 2021, 9, 2806-2814.	5.2	32
400	Enhanced electrocaloric effect in compositional driven potassium sodium niobateâ€based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1142-1152.	1.2	14

#	Article	IF	CITATIONS
401	Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability, 2021, 8, 3.	1.3	21
402	Thermodynamic cycles and electrical charge recovery in high-efficiency electrocaloric cooling systems. International Journal of Refrigeration, 2021, 131, 970-979.	1.8	9
403	Synthesis and characterizations of (Ba1-xCax)Ti4O9, 0 ≤ ≤0.9 ceramics. Journal of Materials Research and Technology, 2021, 11, 1828-1833.	2.6	22
404	Colossal Barocaloric Effect by Large Latent Heat Produced by Firstâ€Order Intersiteâ€Chargeâ€Transfer Transition. Advanced Functional Materials, 2021, 31, 2009476.	7.8	21
405	Large Room Temperature Negative Electrocaloric Effect in Novel Antiferroelectric PbHfO ₃ Films. ACS Applied Materials & Interfaces, 2021, 13, 21331-21337.	4.0	21
406	Electrocaloric effect enhancement in compositionally graded ferroelectric thin films driven by a needle-to-vortex domain structure transition. Journal Physics D: Applied Physics, 2021, 54, 255307.	1.3	9
407	Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement. Journal of Advanced Ceramics, 2021, 10, 482-492.	8.9	40
408	Influence of Synthesis-Related Microstructural Features on the Electrocaloric Effect for 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 Ceramics. Crystals, 2021, 11, 372.	1.0	5
409	The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 12001-12016.	1.1	4
410	Effect of Composition on Polarization Hysteresis and Energy Storage Ability of P(VDF-TrFE-CFE) Relaxor Terpolymers. Polymers, 2021, 13, 1343.	2.0	6
411	Non-contact and direct electrocaloric effect measurement for high-throughput material screening. Review of Scientific Instruments, 2021, 92, 044902.	0.6	3
412	Thermo-hydraulic evaluation of oscillating-flow shell-and-tube-like regenerators for (elasto)caloric cooling. Applied Thermal Engineering, 2021, 190, 116842.	3.0	19
413	Directly Measured Electrocaloric Effect in Relaxor Polymer Nanocomposites. , 2021, , .		1
414	Effect of Grain Size on the Electrocaloric Properties of Polycrystalline Ferroelectrics. Physical Review Applied, 2021, 15, .	1.5	15
415	Mechanical control of electrocaloric response in epitaxial ferroelectric thin films. International Journal of Solids and Structures, 2021, 216, 59-67.	1.3	19
416	Structural and Electric Properties of Epitaxial Na0.5Bi0.5TiO3-Based Thin Films. Coatings, 2021, 11, 651.	1.2	3
417	Electric field induced phase transitions and electrocaloric effect of La3+ doped Pb(Zr,Sn,Ti)O3 ceramics. Ceramics International, 2021, 47, 13939-13947.	2.3	8
418	Investigation of the electrocaloric effect in BaTiO3 multilayers by pASC calorimetry. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4837-4843.	2.0	2

#	Article	IF	CITATIONS
419	Electrocaloric properties of lead-free ferroelectric ceramic near room temperature. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	11
420	Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications. Journal of the European Ceramic Society, 2021, 41, 3387-3396.	2.8	7
421	Dynamical origins of weakly coupled relaxor behavior in Sn-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mo> (</mml:mo> <mml:r mathvariant="normal">O <mml:mn> 3 </mml:mn> <mml:mtext> â°' </mml:mtext> <mml:m mathvariant="normal">O <mml:mn> 3 </mml:mn> </mml:m </mml:r </mml:mrow> .</mml:mrow></mml:math 	nrow> <m i>BiSic<td>ml:mi>Ba</td></m ml :m i> <mml:< td=""></mml:<>	ml:mi>Ba
422	Physical Review B, 2021, 103, . Designed Giant Roomâ€Temperature Electrocaloric Effects in Metalâ€Free Organic Perovskite [MDABCO](NH ₄)I ₃ by Phase–Field Simulations. Advanced Functional Materials, 2021, 31, 2104393.	7.8	27
423	Giant multiple caloric effects in charge transition ferrimagnet. Scientific Reports, 2021, 11, 12682.	1.6	6
424	Adjustable negative electrocaloric effect in Pb1+xZrO3 thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 19446-19454.	1.1	0
425	Roomâ€Temperature Symmetric Giant Positive and Negative Electrocaloric Effect in PbMg _{0.5} W _{0.5} O ₃ Antiferroelectric Ceramic. Advanced Functional Materials, 2021, 31, 2101176.	7.8	22
426	Caloric devices: A review on numerical modeling and optimization strategies. International Journal of Energy Research, 2021, 45, 18498-18539.	2.2	30
427	Thermoelectric response as a tool to observe electrocaloric effect in a thin conducting ferroelectric SnSe flake. Physical Review B, 2021, 104, .	1.1	5
428	Polymer″Ceramicâ€based Dielectric Composites for Energy Storage and Conversion. Energy and Environmental Materials, 2022, 5, 486-514.	7.3	66
429	Giant room temperature elastocaloric effect in metal-free thin-film perovskites. Npj Computational Materials, 2021, 7, .	3.5	9
430	Electrocaloric effect in ferroelectric materials: From phase field to first-principles based effective Hamiltonian modeling. Materials Reports Energy, 2021, 1, 100050.	1.7	3
431	An isogeometric analysis-based investigation of the flexocaloric effect in functionally graded dielectrics. Acta Mechanica, 2021, 232, 4261-4271.	1.1	3
432	La3+ substitution induced structural transformation in CaBi4Ti4O15 Aurivillius phases: Synthesis, morphology, dielectric and optical properties. Ceramics International, 2021, 47, 23549-23557.	2.3	14
433	(Ba, Sr)TiO3/polymer dielectric composites–progress and perspective. Progress in Materials Science, 2021, 121, 100813.	16.0	37
434	Non-ambient X-ray and neutron diffraction of novel relaxor ferroelectric <i>x</i> Bi ₂ (Zn _{2/3} ,Nb _{1/3})O ₃ –(1) Tj ETQq1 1	0.71894314	rg ð T /Overlo
435	Direct measurement of temperature change due to elastocaloric effect in poled piezoelectric ceramics attached to metal. Japanese Journal of Applied Physics, 2021, 60, SFFC06.	0.8	2
436	Comparative study of phase structure, dielectric properties and electrocaloric effect in novel high-entropy ceramics. Journal of Materials Science, 2021, 56, 18417-18429.	1.7	16

#	Article	IF	CITATIONS
437	Direct and indirect studies of the electrocaloric effect in single crystalline ferrielectric (NH4)2SO4. Journal of Alloys and Compounds, 2022, 892, 162130.	2.8	4
438	Relaxor Ferroelectric Oxides: Concept to Applications. , 0, , .		4
439	The Effect of Ca Dopant on the Electrical and Dielectric Properties of BaTi4O9 Sintered Ceramics. Materials, 2021, 14, 5375.	1.3	22
440	Electrocaloric refrigeration capacity in BNT-based ferroelectrics benefiting from low depolarization temperature and high breakdown electric field. Journal of Materials Chemistry A, 2021, 9, 12772-12781.	5.2	11
441	Electrocaloric Multilayer Capacitors. Engineering Materials, 2014, , 91-105.	0.3	5
442	Coexistence of negative and positive electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3 - 0.1SrTiO3 nanocrystalline ceramics. Scripta Materialia, 2018, 143, 5-9.	2.6	43
443	<i>T</i> – <i>p</i> phase diagrams and the barocaloric effect in materials with successive phase transitions. Journal Physics D: Applied Physics, 2017, 50, 384002.	1.3	21
444	The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal Physics D: Applied Physics, 2020, 53, 505302.	1.3	12
445	Caloric response of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:m subjected to uniaxial load and magnetic field. Physical Review Materials, 2018, 2, .</mml:m </mml:msub></mml:mrow></mml:math 	ın x049 <td>mlran></td>	ml ra n>
446	Refrigeration in 2D: Electrostaticaloric effect in monolayer materials. Physical Review Materials, 2018, 2, .	0.9	5
447	A high-performance solid-state electrocaloric cooling system. Science, 2020, 370, 129-133.	6.0	130
448	Electrocaloric devices part I: Analytical solution of one-dimensional transient heat conduction in a multilayer electrocaloric system. Journal of Advanced Dielectrics, 2020, 10, 2050028.	1.5	9
449	Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 217705.	0.2	2
450	Highly Reliable Electrocaloric Behaviors of Antiferroelectric Al:ZrOâ,, Thin Films for Solid-State Cooling in Integrated Circuits. IEEE Transactions on Electron Devices, 2021, , 1-7.	1.6	2
451	Emergent Enhanced Electrocaloric Effect within Wide Temperature Span in Laminated Composite Ceramics. Advanced Functional Materials, 2022, 32, 2108182.	7.8	25
452	Electrocaloric Effect and Hystersis Properties of Pb-free Ferroelectric (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3Ceramics. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2013, 26, 801-805.	0.0	0
453	Electrocaloric Effect in Pb _{0.865} La _{0.09} (Zr _{0.65} Ti _{0.35})O ₃ Thin Film. Journal of Sensor Science and Technology, 2014, 23, 224-228.	0.1	1
454	Dielectric Properties and Electrocaloric Effects of PLZT Ferroelectric Ceramics by Applying Electric Fields. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 164-167.	0.0	1

#	Article	IF	CITATIONS
455	Dielectric and Electrocaloric Characteristics of PLZT(8/65/35) Ceramics as a Function of Sintering Temperature. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 608-612.	0.0	0
456	Materials issues in thermal modeling of thin film electrocaloric solid-state refrigerators. Modern Electronic Materials, 2018, 4, 59-69.	0.2	0
457	Materials issues in thermal modeling of thin film electrocaloric solid-state refrigerators. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2020, 23, 57-70.	0.1	0
458	Intrinsic connections between thermionic emission cooling effect and emission characteristics of W-La2O3 cathodes at high temperatures. Materials Letters, 2022, 308, 131172.	1.3	5
459	Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material's Point of View. Topics in Applied Physics, 2020, , 343-357.	0.4	2
460	Investigation of time and frequency characteristics of the electrocaloric response in ferroelectric materials. Journal of Physics: Conference Series, 2020, 1697, 012195.	0.3	1
461	Thin Films for Electrocaloric Cooling Devices. Materials Horizons, 2020, , 369-388.	0.3	0
462	Broad Distribution of Local Polar States Generates Large Electrothermal Properties in Pb-Free Relaxor Ferroelectrics. Chemistry of Materials, 0, , .	3.2	2
463	Electrocaloric Cooling Prototype Using Lead-Free Barium Titanate Multilayer Capacitors and Heat Transfer Fluid Motion. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	5
464	Gate-tunable charge carrier electrocaloric effect in trilayer graphene. Scientific Reports, 2021, 11, 22000.	1.6	2
465	Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1-11.	1.2	0
466	Large electrocaloric effect and energy storage performance of site-engineered lead-free Ba _{1-x } (Bi _{0.5} Li _{0.5}) _x TiO ₃ ferroelectric oxides. Journal Physics D: Applied Physics, 2021, 54, 045302.	1.3	7
467	High comprehensive electrocaloric performance in barium titanate-based ceramics via integrating diffuse phase transition near room temperature and a high applied electric field. Ceramics International, 2022, 48, 6842-6849.	2.3	4
468	Large electrocaloric effect with ultrawide temperature span in Na _{1/2} Bi _{1/2} TiO ₃ â€based leadâ€free ceramics. Journal of the American Ceramic Society, 2022, 105, 3312-3321.	1.9	9
469	Enhancement of the electrocaloric effect in PbZr0.7Ti0.3O3 ceramics via La doping: Driven by phase co-existence or defect effects?. Acta Materialia, 2022, 225, 117559.	3.8	3
470	Impact of Annealing on Electrocaloric Response in Lanthanum-Modified Lead Zirconate Titanate Ceramic. SSRN Electronic Journal, 0, , .	0.4	0
471	Analytical Solution of Heat Exchange in Typical Electrocaloric Devices. Journal of Heat Transfer, 2022, 144, .	1.2	2
472	Optimizing Electrocaloric Effect in Barium Titanate-Based Room TemperatureÂFerroelectrics: Combining Landau Theory, Machine Learning and Synthesis. SSRN Electronic Journal, 0, , .	0.4	Ο

#	ARTICLE	IF	CITATIONS
473	Nylons. , 2022, , 153-183.		0
474	Large energy-storage density and positive electrocaloric effect in <i>x</i> BiFeO ₃ –(1 â^') Tj ETQq1 1302-1312.	1 0.78431 2.7	.4 rgBT /Ov∈ 17
475	Understanding electrocaloric cooling of ferroelectrics guided by phaseâ€field modeling. Journal of the American Ceramic Society, 2022, 105, 3689-3714.	1.9	17
476	Understanding the enhanced electrocaloric effect in BaTiO3-based ferroelectrics at critical state. Acta Materialia, 2022, 227, 117735.	3.8	16
477	Enhanced elastocaloric stability in NiTi alloys under shear stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142787.	2.6	11
478	Large electrocaloric effect under electric field behavior in potassium sodium niobate ceramics with incompletely overlapped phase boundaries. Journal of Materials Chemistry A, 2022, 10, 5262-5272.	5.2	13
479	Large electrocaloric effect with high thermal and electric field cycling stability in solution-processed Y:HfO ₂ thin films. Journal of Materials Chemistry A, 2022, 10, 9960-9970.	5.2	4
480	Agreement in experimental and theoretically obtained electrocaloric effect in optimized Bi3+ doped PbZr0.52Ti0.48O ₃ material. Journal of Advanced Dielectrics, 0, , .	1.5	3
481	Performance optimization on the irreversible regenerative Ericsson refrigeration cycle using electrocaloric materials as the working medium. International Journal of Refrigeration, 2022, , .	1.8	0
482	Correlations between electrocaloric effect and dielectric diffuseness of lead-free Ba(Ti1-Sn)O3 ceramics. Journal of Alloys and Compounds, 2022, 910, 164826.	2.8	4
483	Enhanced Electrocaloric Effect Induced by the Electric-Field-Generated Like-Multiphase Coexistence in Anisotropic KTa _{1–<i>x</i>} Nb _{<i>x</i>} O ₃ Single Crystals. Crystal Growth and Design, 2022, 22, 3485-3492.	1.4	3
484	Effects of thermal and electrical hysteresis on phase transitions and electrocaloric effect in ferroelectrics: A computational study. Acta Materialia, 2022, 228, 117784.	3.8	0
485	Impact of annealing on electrocaloric response in Lanthanum-modified lead zirconate titanate ceramic. Journal of Alloys and Compounds, 2022, 907, 164517.	2.8	2
486	Enhanced electrocaloric and energy-storage properties of environment-friendly ferroelectric Ba0.9Sr0.1Ti1â^'xSnxO3 ceramics. Materials Today Communications, 2022, 31, 103351.	0.9	3
487	Synergy of ferroelectric-relaxor transition and multiphase coexistence induced high electrocaloric effect with wide temperature span in Pb0.7Ba0.3ZrO3-based system. Scripta Materialia, 2022, 215, 114713.	2.6	7
488	Phase transitions and electrocaloric effects of (111)-oriented K _{0.5} Na _{0.5} NbO ₃ epitaxial films: effect of external stress and misfit strains. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
489	Novel Fluoriteâ€Structured Materials for Solidâ€State Refrigeration. Small, 2022, 18, e2200133.	5.2	2

490	Enhanced Electrocaloric Effect of P(Vdf-Trfe)-Based Nanocomposites with Ca and Sn Co-Doped Batio3 Particles. SSRN Electronic Journal, 0, , .	0.4	1
-----	---	-----	---

#	Article	IF	CITATIONS
491	Tuning the electrocaloric effect by tailoring phase fraction in BaTiO3-based ferroelectrics. Journal of the European Ceramic Society, 2022, 42, 5172-5178.	2.8	8
492	Lattice disorder effect on the structural, ferroelectric and electrocaloric properties of (Ba, Sr,) Tj ETQq1 1 0.78431	4_rgBT /O	verlock 10 Ti
493	Non-ergodic – ergodic transition and corresponding electrocaloric effect in lead-free bismuth sodium titanate-based relaxor ferroelectrics. Journal of the European Ceramic Society, 2022, 42, 4917-4925.	2.8	19
494	Enhanced electrocaloric effect and energy storage response in lead-free (1-x)K0.5Na0.5NbO3 - xBaTiO3 ferroelectric ceramics. Ceramics International, 2022, 48, 27018-27026.	2.3	5
495	Optimizing Electrocaloric Effect in Barium Titanate-based Room Temperature Ferroelectrics: Combining Landau Theory, Machine Learning and Synthesis. Acta Materialia, 2022, 235, 118054.	3.8	8
496	Microstructure, magnetism and critical behavior of hot pressed Ni-Mn-Ga/Al magnetocaloric composites with enhanced thermal conductivity and mechanical properties. Journal of Alloys and Compounds, 2022, 918, 165664.	2.8	5
497	Heat removal by refrigeration. , 2022, , 551-566.		0
498	Influence of voltage amplitude parameters on the electrocaloric response in ferroelectric materials. Ferroelectrics, 2022, 591, 43-50.	0.3	0
499	Compositional-induced structural transformation and relaxor ferroelectric behavior in Sr/Nb-modified Bi4Ti3O12 Aurivillius ceramics. Ceramics International, 2022, 48, 30598-30605.	2.3	9
500	XCBoost model for electrocaloric temperature change prediction in ceramics. Npj Computational Materials, 2022, 8, .	3.5	15
501	The equation of state for metal-doped ferroelectrics within the Weiss model. Journal of Advanced Dielectrics, 2022, 12, .	1.5	2
502	Large Electrocaloric Responsivity and Energy Storage Response in the Lead-Free Ba(GexTi1â^x)O3 Ceramics. Materials, 2022, 15, 5227.	1.3	7
503	Giant Room-Temperature Electrocaloric Effect of Polymer-Ceramic Composites with Orientated BaSrTiO ₃ Nanofibers. Nano Letters, 2022, 22, 6560-6566.	4.5	13
504	Large elastocaloric effect in as-cast Ni-Mn-Sn-Fe ferromagnetic shape memory alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 451, 128374.	0.9	6
505	Improved description of the potential energy surface in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BaTiO</mml:mi><mml:mn>3by anharmonic phonon coupling. Physical Review B, 2022, 106, .</mml:mn></mml:msub></mml:math 	:munut > <td>mbmsub></td>	m b msub>
506	Electrocaloric effect in lead-free Ba1-Ln2/3Ti0.925(Yb0.5Nb0.5)0.075O3 ceramics (LnÂ=ÂEu3+, Nd3+, Pr3+) Tj ET	Q _q] 1 0.7	′84314 rg8⊤ 1
507	Birefringence induced by antiferroelectric switching in transparent polycrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:m mathvariant="normal">O<mml:mn>3</mml:mn></mml:m></mml:msub></mml:mrow></mml:math> film. Physical Review Materials, 2022, 6, .	i>Zr0.9	l:mi> <mml:m< td=""></mml:m<>
508	Enhanced electrocaloric effect of P(VDF-TrFE)-based nanocomposites with Ca and Sn co-doped BaTiO3 particles. Ceramics International, 2023, 49, 2904-2910.	2.3	4

#	Article	IF	CITATIONS
509	Enhanced electrocaloric performance within wide temperature span in Al-doped BaZr0.2Ti0.8O3 ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 24986-24994.	1.1	3
510	The near room temperature electrocaloric cycling refrigeration in Bi5Ti3FeO15/BiFeO3 mesoscopic composites: Experiment and simulation. Ceramics International, 2023, 49, 4298-4304.	2.3	1
511	Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices. Journal of Central South University, 2022, 29, 2857-2872.	1.2	0
512	Analysis of the electric field dependence on the electrocaloric properties on BaHf0.11Ti0.89O3 ferroelectric ceramics. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	0
513	Grainâ€orientationâ€engineered PMNâ€10PT ceramics for electrocaloric applications. Journal of the American Ceramic Society, 2023, 106, 1194-1202.	1.9	2
514	Influence of protective layer thinning on the electrocaloric performance of 0.8Ba(Ti0.82Zr0.18)O3–0.2Ba(Ti0.9Sn0.1)O3 multilayer ceramic films. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
515	Positive and negative electrocaloric effect in the direct and indirect characterization of NaNbO ₃ -based ceramics with tetragonal–cubic phase boundary. Journal of Materials Chemistry C, 2022, 10, 17099-17108.	2.7	7
516	Large Electrocaloric Effect in Nanostructure-Engineered (Bi, Na)TiO ₃ -Based Thin Films. ACS Applied Materials & Interfaces, 2022, 14, 53048-53056.	4.0	4
517	Electrocaloric effect at special points in the composition-temperature-electric field phase diagram of barium zirconate-titanate (BZT). Journal of the European Ceramic Society, 2023, 43, 1952-1963.	2.8	5
518	Giant electrocaloric effect in a molecular ceramic. Materials Horizons, 2023, 10, 869-874.	6.4	3
519	Volumetric Effects in Electrocaloric Response of Ferroelectric Thin Films. Journal of Materials Chemistry C, 0, , .	2.7	0
520	Electrocaloric Ceramics. , 2023, , 208-217.		0
521	The effect of defect and substitution on barocaloric performance of neopentylglycol plastic crystals. Applied Physics Letters, 2022, 121, .	1.5	5
522	Personal Cooling Garments: A Review. Polymers, 2022, 14, 5522.	2.0	6
523	Giant caloric effects in charge–spin–lattice coupled transition-metal oxides. Journal of Materials Chemistry A, 2023, 11, 12695-12702.	5.2	3
524	High strain lead-free piezo ceramics for sensor and actuator applications: A review. Sensors International, 2023, 4, 100226.	4.9	5
525	Polymeric nanocomposites for electrocaloric refrigeration. Frontiers in Energy, 0, , .	1.2	1
526	Study on Electric Card Effect of Lead-free Piezoelectric Ceramics. , 0, 27, 285-291.		0

#	ARTICLE Optimizing magnetocaloric and thermoelectric performance of MnCoGe/BiSbTe composites by	IF	CITATIONS
527	regulating magnetostructural transition and element diffusion. Materials Characterization, 2023, 199, 112760.	1.9	3
528	Enhanced ferroelectricity and electrocaloric effect of Sm modified BSTO with temperature stability near room temperature. Journal of Applied Physics, 2023, 133, .	1.1	3
529	Piezoelectric response of disordered lead-based relaxor ferroelectrics. Communications Materials, 2023, 4, .	2.9	0
530	Effects of the Grain Orientation on the Electrocaloric Effect of Polycrystalline Ferroelectrics. , 2022, , .		0
531	Liquid crystal based active electrocaloric regenerator. Heliyon, 2023, 9, e14035.	1.4	0
532	Cooling efficiency and losses in electrocaloric materials. Applied Physics Letters, 2023, 122, 081903.	1.5	4
533	Electrocaloric effect in lead-free ferroelectric perovskites. , 2023, , 143-173.		0
534	Electrocaloric devices using cantilever structures. , 2023, , 379-405.		0
535	Electrocaloric effects in thin film structures. , 2023, , 225-244.		0
536	Thermodynamics of electrocaloric effect. , 2023, , 9-36.		0
537	Processing issues with inorganic electrocaloric materials and structures. , 2023, , 111-141.		0
538	Electrocaloric effect in relaxor ferroelectrics. , 2023, , 175-204.		0
539	Multi-element B-site substituted perovskite ferroelectrics exhibit enhanced electrocaloric effect. Science China Technological Sciences, 0, , .	2.0	0
540	High-entropy design for dielectric materials: Status, challenges, and beyond. Journal of Applied Physics, 2023, 133, .	1.1	5
541	Influence of Sintering Additives on Modified (Ba,Sr)(Sn,Ti)O3 for Electrocaloric Application. Inorganics, 2023, 11, 151.	1.2	4
547	Statistical Mechanical Model of the Giant Electrocaloric Effect in Ferroelectric Polymers. ACS Macro Letters, 0, , 848-853.	2.3	0
553	A review on different theoretical models of electrocaloric effect for refrigeration. Frontiers in Energy, 2023, 17, 478-503.	1.2	4
569	Dielectric thin film fabrication, recent developments and their applications. , 2023, , .		0

#	Article	IF	CITATIONS
578	Structural and impedance spectroscopic characterization of lanthanum modified Bi0.35Na0.35Sr0.3TiO3 composite. AIP Conference Proceedings, 2024, , .	0.3	0
579	Flexocaloric effect in ceramics. , 2024, , 243-274.		0