Enhanced bioethanol dehydration by extractive and aze columns

Separation and Purification Technology 86, 70-78 DOI: 10.1016/j.seppur.2011.10.022

Citation Report

#	Article	IF	CITATIONS
1	Progress in energy and combustion science. Progress in Energy and Combustion Science, 1985, 11, i.	15.8	1
2	Enhancing multi-component separation of aromatics with Kaibel columns and DWC. Computer Aided Chemical Engineering, 2012, 30, 672-676.	0.3	0
3	Purification of bioethanol using extractive batch distillation: Simulation and experimental studies. Chemical Engineering and Processing: Process Intensification, 2012, 61, 30-35.	1.8	38
4	fficient Bioethanol Dehydration in Azeotropic and Extractive Dividing-wall Columns. Procedia Engineering, 2012, 42, 566-572.	1.2	10
5	Enhanced Dimethyl Ether Synthesis by Reactive Distillation in a Dividing-wall Column. Procedia Engineering, 2012, 42, 581-587.	1.2	13
6	Towards FAME and Fortune by Reactive DWC. Procedia Engineering, 2012, 42, 1908-1914.	1.2	1
7	Economic Optimum Design of the Heterogeneous Azeotropic Dehydration of Ethanol. Industrial & Engineering Chemistry Research, 2012, 51, 16427-16432.	1.8	39
8	Enhanced methanol recovery and glycerol separation in biodiesel production – DWC makes it happen. Applied Energy, 2012, 99, 146-153.	5.1	81
9	Computational simulation applied to the investigation of industrial plants for bioethanol distillation. Computers and Chemical Engineering, 2012, 46, 1-16.	2.0	45
10	Towards energy efficient distillation technologies – Making the right choice. Energy, 2012, 47, 531-542.	4.5	213
11	Synthesis of new separation processes for bioethanol production by extractive distillation. Separation and Purification Technology, 2012, 96, 58-67.	3.9	62
12	Innovative single step bioethanol dehydration in an extractive dividing-wall column. Separation and Purification Technology, 2012, 98, 290-297.	3.9	155
13	Reactive DWC leading the way to FAME and fortune. Fuel, 2012, 95, 352-359.	3.4	108
14	Innovative dimethyl ether synthesis in a reactive dividing-wall column. Computers and Chemical Engineering, 2012, 38, 74-81.	2.0	126
15	Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column. Industrial & Engineering Chemistry Research, 2013, 52, 5384-5399.	1.8	112
16	A novel integrated process to break the ethanol/water azeotrope using reactive distillation – Part I: Parametric study. Separation and Purification Technology, 2013, 118, 455-462.	3.9	46
17	A novel application of reactive absorption to break the CO2–ethane azeotrope with low energy requirement. Energy Conversion and Management, 2013, 75, 407-417.	4.4	16
18	Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Industrial & Engineering Chemistry Research, 2013, 52, 11070-11083.	1.8	46

ATION RED

#	Article	IF	CITATIONS
19	A novel ethanol dehydration process by forward osmosis. Chemical Engineering Journal, 2013, 232, 397-404.	6.6	35
20	Dynamic Behavior of Alternative Separation Processes for Ethanol Dehydration by Extractive Distillation. Industrial & Engineering Chemistry Research, 2013, 52, 17554-17561.	1.8	36
21	Optimal design, dynamics and control of a reactive DWC for biodiesel production. Chemical Engineering Research and Design, 2013, 91, 1760-1767.	2.7	67
22	Energy-Efficient Diabatic Distillation Using a Horizontal Distillation Column. Industrial & Engineering Chemistry Research, 2013, 52, 14927-14935.	1.8	13
23	From laboratory experiments to simulation studies of methanol dehydration to produce dimethyl ether reaction—Part II: Simulation and cost estimation. Chemical Engineering and Processing: Process Intensification, 2013, 73, 151-157.	1.8	10
25	The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen. Applied Energy, 2013, 105, 349-357.	5.1	39
26	Optimal retrofit of a side stream column to a dividing wall column for energy efficiency maximization. Chemical Engineering Research and Design, 2013, 91, 2291-2298.	2.7	29
27	Optimal Synthesis of Distillation Systems for Bioethanol Separation. Part 2. Extractive Distillation with Complex Columns. Industrial & amp; Engineering Chemistry Research, 2013, 52, 1620-1626.	1.8	57
28	Optimal Economic Design of an Extractive Distillation Process for Bioethanol Dehydration. Energy Technology, 2013, 1, 166-170.	1.8	41
29	Study of the Fusel Oil Distillation Process. Industrial & Engineering Chemistry Research, 2013, 52, 2336-2351.	1.8	77
30	Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer. Energy, 2013, 50, 103-109.	4.5	65
31	Design and optimization of an ethanol dehydration process using stochastic methods. Separation and Purification Technology, 2013, 105, 90-97.	3.9	76
35	Intensified process for aromatics separation powered by Kaibel and dividing-wall columns. Chemical Engineering and Processing: Process Intensification, 2013, 67, 39-48.	1.8	36
36	Novel applications of dividingâ€wall column technology to biofuel production processes. Journal of Chemical Technology and Biotechnology, 2013, 88, 1387-1404.	1.6	68
37	Study on the Separation of Azeotrope of Tetrahydrofuran-Water Using a Combined Method of Extractive and General Distillation. Advanced Materials Research, 2013, 803, 149-152.	0.3	1
38	Separation of Ethyl Acetateâ€Dichloromethaneâ€Ethanol by Extractive Distillation: Simulation and Optimization. Chemical Engineering and Technology, 2013, 36, 627-634.	0.9	10
40	Distillation technology–Âstill young and full of breakthrough opportunities. Journal of Chemical Technology and Biotechnology, 2014, 89, 479-498.	1.6	201
41	Energy optimization and comparative study of pre- and post-fractionator extractive dividing wall column for the CO2–ethane azeotropic process. Energy Conversion and Management, 2014, 79, 590-598.	4.4	7

#	Article	IF	CITATIONS
42	Design and simulation of ethane recovery process in an extractive dividing wall column. Journal of Cleaner Production, 2014, 72, 222-229.	4.6	34
43	Energy-Efficient Extractive Distillation Process by Combining Preconcentration Column and Entrainer Recovery Column. Industrial & Engineering Chemistry Research, 2014, 53, 7121-7131.	1.8	72
44	Design and Control of Extractive Dividing Wall Column for Separating Benzene/Cyclohexane Mixtures. Industrial & Engineering Chemistry Research, 2014, 53, 8120-8131.	1.8	76
45	Design and Control of Extractive Dividing-Wall Column for Separating Ethyl Acetate–Isopropyl Alcohol Mixture. Industrial & Engineering Chemistry Research, 2014, 53, 1189-1205.	1.8	50
46	Energy-Saving Dividing-Wall Column Design and Control for Heterogeneous Azeotropic Distillation Systems. Industrial & amp; Engineering Chemistry Research, 2014, 53, 1537-1552.	1.8	70
47	Energy Evaluation of Ethanol Dehydration with Glycol Mixture as Entrainer. Chemical Engineering and Technology, 2014, 37, 987-994.	0.9	20
48	A novel distillation design for vapor phase dimethyl ether production process. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 464-470.	0.8	0
49	Process Intensification. Computer Aided Chemical Engineering, 2014, 35, 397-448.	0.3	15
50	Investigation of the Energy-Saving Design of an Industrial 1,4-Dioxane Dehydration Process with Light Feed Impurity. Industrial & Engineering Chemistry Research, 2014, 53, 15667-15685.	1.8	10
51	Optimal Extractive Distillation Process for Bioethanol Dehydration. Computer Aided Chemical Engineering, 2014, 33, 1333-1338.	0.3	5
52	Extractive Distillation. , 2014, , 201-245.		12
53	Conceptual Design of Flowsheet Options Based on Thermodynamic Insights for (Reactionâ^')Separation Processes Applying Process Intensification. Industrial & Engineering Chemistry Research, 2014, 53, 13412-13429.	1.8	22
54	Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment. Korean Journal of Chemical Engineering, 2014, 31, 875-880.	1.2	5
55	Simulation based approach to optimal design of dividing wall column using random search method. Computers and Chemical Engineering, 2014, 68, 38-46.	2.0	28
56	High pressure vapor–liquid equilibria measurements and modeling of butane/ethanol system and isobutane/ethanol system. Fluid Phase Equilibria, 2014, 375, 176-180.	1.4	2
57	Optimization of Extractive Distillation Process with a Single Column for Anhydrous Ethanol Production. Computer Aided Chemical Engineering, 2014, , 1411-1416.	0.3	8
58	Control analysis of an extractive dividing-wall column used for ethanol dehydration. Chemical Engineering and Processing: Process Intensification, 2014, 82, 88-100.	1.8	93
59	Review of Retrofitting Distillation Columns Using Thermally Coupled Distillation Sequences and Dividing Wall Columns to Improve Energy Efficiency. Journal of Chemical Engineering of Japan, 2014, 47, 87-108.	0.3	47

#	Article	IF	CITATIONS
60	Fuel-based ethanol dehydration process directly extracted by gasoline additive. Separation and Purification Technology, 2015, 149, 9-15.	3.9	9
61	Bioethanol recovery and purification using extractive dividing-wall column and pressure swing adsorption: An economic comparison after heat integration and optimization. Separation and Purification Technology, 2015, 149, 413-427.	3.9	57
62	Effect of Solvent Flow Rates on Controllability of Extractive Distillation for Separating Binary Azeotropic Mixture. Industrial & Engineering Chemistry Research, 2015, 54, 12908-12919.	1.8	62
63	Application of Vapor Recompression to Heterogeneous Azeotropic Dividing-Wall Distillation Columns. Industrial & Engineering Chemistry Research, 2015, 54, 11592-11609.	1.8	45
64	Mathematical modeling of a single stage ultrasonically assisted distillation process. Ultrasonics Sonochemistry, 2015, 24, 184-192.	3.8	8
65	Novel Heat-Pump-Assisted Extractive Distillation for Bioethanol Purification. Industrial & Engineering Chemistry Research, 2015, 54, 2208-2213.	1.8	160
66	Performance of diffusion distillation column for production of fuel grade ethanol. Journal of Chemical Technology and Biotechnology, 2015, 90, 1847-1854.	1.6	2
67	Using an internally heat-integrated distillation column for ethanol–water separation for fuel applications. Chemical Engineering Research and Design, 2015, 95, 55-63.	2.7	24
68	Criterion of the energy effectiveness of extractive distillation in the partially thermally coupled columns. Chemical Engineering Research and Design, 2015, 99, 165-175.	2.7	34
69	Extractive distillation: recent advances in operation strategies. Reviews in Chemical Engineering, 2015, 31, .	2.3	26
70	Improving the Performance of Extractive Dividing-Wall Columns with Intermediate Heating. Industrial & amp; Engineering Chemistry Research, 2015, 54, 2709-2723.	1.8	28
71	Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column. Chemical Engineering Science, 2015, 135, 166-178.	1.9	76
72	Optimization of the Design and Operation of Extractive Distillation Processes. Separation Science and Technology, 0, , 150527095459001.	1.3	16
73	Design and Control of Dividing-Wall Column for <i>tert</i> Butanol Dehydration System via Heterogeneous Azeotropic Distillation. Industrial & Engineering Chemistry Research, 2015, 54, 3384-3397.	1.8	51
74	Investigation of Separation Efficiency Indicator for the Optimization of the Acetone–Methanol Extractive Distillation with Water. Industrial & Engineering Chemistry Research, 2015, 54, 10863-10875.	1.8	31
75	Heat pump assisted reactive and azeotropic distillations in dividing wall columns. Chemical Engineering and Processing: Process Intensification, 2015, 95, 289-301.	1.8	47
76	Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47, 60-88.	15.8	446
77	Improved Design and Efficiency of the Extractive Distillation Process for Acetone–Methanol with Water. Industrial & Engineering Chemistry Research, 2015, 54, 491-501.	1.8	59

#	Article	IF	CITATIONS
78	Side-rectifier divided wall column for offshore LNG plant. Separation and Purification Technology, 2015, 139, 25-35.	3.9	8
79	Pervaporation. , 2015, , 101-154.		18
80	A method for the design of distillation systems aided by ionic liquids. Chemical Engineering and Processing: Process Intensification, 2015, 87, 1-8.	1.8	14
81	Design and control of an alternative distillation sequence for bioethanol purification. Journal of Chemical Technology and Biotechnology, 2015, 90, 2180-2185.	1.6	22
82	State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Separation and Purification Reviews, 2015, 44, 308-330.	2.8	75
83	Some operational aspects and applications of dividing wall columns: energy requirements and carbon dioxide emissions. Clean Technologies and Environmental Policy, 2015, 17, 657-665.	2.1	6
84	Energy Efficiency Improvement in a Modified Ethanol Process from Acetic Acid. Entropy, 2016, 18, 422.	1.1	2
85	Membranes for ethanol dehydration. , 2016, , 241-262.		2
86	Separations Versus Sustainability. , 2016, , 35-65.		1
87	Comparison of a conventional twoâ€column demethanizer/deethanizer configuration requiring refrigerated condensers with a nonconventional column/rectifier configuration. Journal of Chemical Technology and Biotechnology, 2016, 91, 1688-1696.	1.6	7
88	Trends and Sustainability Criteria for Liquid Biofuels. , 2016, , 77-114.		0
89	Designing experiments with Aspen HYSYS simulation to improve distillation systems: Insights from a chemical engineering course. , 2016, , .		0
90	Process Intensification in Chemical Engineering. , 2016, , .		11
91	Constrained azeotropic optimization of extraction system components for the safe and efficient recovery of a desired metabolite (e.g., 3-demethylated colchicine). RSC Advances, 2016, 6, 35498-35506.	1.7	2
92	Reactive dividing wall column for hydrolysis of methyl acetate: Design and control. Chinese Journal of Chemical Engineering, 2016, 24, 1360-1368.	1.7	23
93	Enhanced recovery of PGME and PGMEA from waste photoresistor thinners by heterogeneous azeotropic dividing-wall column. Chemical Engineering Research and Design, 2016, 103, 413-423.	2.7	31
94	Comparison of stabilizing control structures for four-product Kaibel column. Chemical Engineering Research and Design, 2016, 109, 675-685.	2.7	24
95	Process Intensification in the Production of Liquid Biofuels: Strategies to Minimize Environmental Impact. , 2016, , 279-292.		1

#	Article	IF	CITATIONS
96	Control structure selection for four-product Kaibel column. Computers and Chemical Engineering, 2016, 93, 372-381.	2.0	34
97	Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. International Journal of Hydrogen Energy, 2016, 41, 20880-20896.	3.8	41
98	Ethanol and isobutanol dehydration by heat-integrated distillation. Chemical Engineering and Processing: Process Intensification, 2016, 108, 117-124.	1.8	35
99	Experimental study of the production of high purity ethanol using a semi-continuous extractive batch dividing wall distillation column. Chemical Engineering and Processing: Process Intensification, 2016, 108, 74-77.	1.8	10
100	Process Assessment of Heterogeneous Azeotropic Dividing-Wall Column for Ethanol Dehydration with Cyclohexane as an Entrainer: Design and Control. Industrial & Engineering Chemistry Research, 2016, 55, 8784-8801.	1.8	18
101	Energy aving Hydrocarbon Distillation with Coupled Heat and Material Flows. Chemical Engineering and Technology, 2016, 39, 2251-2264.	0.9	5
102	Model Predictive Control of Reactive Dividing Wall Column for the Selective Hydrogenation and Separation of a C3 Stream in an Ethylene Plant. Industrial & Engineering Chemistry Research, 2016, 55, 9738-9748.	1.8	33
103	Extractive distillation for ethanol dehydration using imidazolium-based ionic liquids as solvents. Chemical Engineering and Processing: Process Intensification, 2016, 109, 190-198.	1.8	76
105	Effect of Solvent Content and Heat Integration on the Controllability of Extractive Distillation Process for Anhydrous Ethanol Production. Industrial & Engineering Chemistry Research, 2016, 55, 11315-11328.	1.8	21
106	Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW) column. Polish Journal of Chemical Technology, 2016, 18, 105-112.	0.3	3
107	Conventional Proportionalâ€Integral Control of a Dividingâ€Wall Distillation Column with Discrete Measurements. Chemical Engineering and Technology, 2016, 39, 2238-2250.	0.9	8
108	Dividing wall column control: Common practices and key findings. Chemical Engineering and Processing: Process Intensification, 2016, 107, 106-115.	1.8	38
109	Design and control of energy-efficient distillation columns. Korean Journal of Chemical Engineering, 2016, 33, 2513-2521.	1.2	16
110	Control of reactive dividing wall column for selective hydrogenation and separation of C3 stream. Chinese Journal of Chemical Engineering, 2016, 24, 1213-1228.	1.7	13
111	Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation. Separation and Purification Technology, 2016, 169, 66-77.	3.9	113
112	Economic evaluation of energy saving alternatives in extractive distillation process. Computers and Chemical Engineering, 2016, 93, 185-196.	2.0	38
113	Synthesis and Simulation of Efficient Divided Wall Column Sequences for Bioethanol Recovery and Purification from an Actual Lignocellulosic Fermentation Broth. Industrial & amp; Engineering Chemistry Research, 2016, 55, 7411-7430.	1.8	15
114	A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Advances, 2016, 6, 14964-14992.	1.7	70

#	Article	IF	CITATIONS
115	Process Assessment of Distillation Using Intermediate Entrainer: Conventional Sequences to the Corresponding Dividing-Wall Columns. Industrial & Engineering Chemistry Research, 2016, 55, 1655-1666.	1.8	20
116	Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer. Chemical Engineering and Processing: Process Intensification, 2016, 100, 49-64.	1.8	46
117	Effect of methylimidazolium-based ionic liquids on vapor–liquid equilibrium behavior of tert-butyl alcohol+water azeotropic mixture at 101.3kPa. Chinese Journal of Chemical Engineering, 2016, 24, 365-372.	1.7	22
118	Control comparison of conventional and thermally coupled ternary extractive distillation processes. Chemical Engineering Research and Design, 2016, 106, 253-262.	2.7	67
119	Alternative extractive distillation system for CO2–ethane azeotrope separation in enhanced oil recovery processes. Applied Thermal Engineering, 2016, 96, 39-47.	3.0	35
120	Design and optimization of the levulinic acid recovery process from lignocellulosic biomass. Chemical Engineering Research and Design, 2016, 107, 126-136.	2.7	36
121	Equationâ€oriented optimization of process flowsheets with dividingâ€wall columns. AICHE Journal, 2016, 62, 704-716.	1.8	41
122	Azeotropic Distillation. , 2017, , .		0
123	Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration. Chemical Engineering Research and Design, 2017, 119, 66-74.	2.7	58
124	Heat Integration and Control of a Triple-Column Pressure-Swing Distillation Process. Industrial & Engineering Chemistry Research, 2017, 56, 2150-2167.	1.8	43
125	Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane. Separation and Purification Technology, 2017, 180, 58-68.	3.9	17
126	Membranes as a tool to support biorefineries: Applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renewable and Sustainable Energy Reviews, 2017, 74, 873-890.	8.2	71
127	Process Design and Optimization of an Acetic Acid Recovery System in Terephthalic Acid Production via Hybrid Extraction–Distillation Using a Novel Mixed Solvent. Industrial & Engineering Chemistry Research, 2017, 56, 2168-2176.	1.8	36
128	Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation. Computers and Chemical Engineering, 2017, 100, 27-37.	2.0	114
129	Review of Technological Advances in Bioethanol Recovery and Dehydration. Industrial & Engineering Chemistry Research, 2017, 56, 5147-5163.	1.8	65
130	Process integration by application of an extractive dividing-wall column: An industrial case study. Chemical Engineering Research and Design, 2017, 123, 120-129.	2.7	28
131	Design of an energy-efficient side-stream extractive distillation system. Computers and Chemical Engineering, 2017, 102, 17-25.	2.0	93
132	Hydraulic Driven Active Vapor Distributor for Enhancing Operability of a Dividing Wall Column. Industrial & Engineering Chemistry Research, 2017, 56, 6493-6498.	1.8	33

#	Article	IF	CITATIONS
133	Optimization of Intensified Separation Processes using Differential Evolution with Tabu List. Advances in Process Systems Engineering, 2017, , 260-288.	0.3	3
134	Optimal hybrid separations for intensified downstream processing of biobutanol. Separation and Purification Technology, 2017, 185, 149-159.	3.9	39
135	A thermally coupled reactive distillation and pervaporation hybrid process for n -butyl acetate production with enhanced energy efficiency. Chemical Engineering Research and Design, 2017, 124, 98-113.	2.7	33
136	Process Development and Optimization of Bioethanol Recovery and Dehydration by Distillation and Vapor Permeation for Multiple Objectives. Advances in Process Systems Engineering, 2017, , 289-320.	0.3	6
137	Systematic Strategy for Obtaining a Dividing-Wall Column Applied to an Extractive Distillation Process. Industrial & amp; Engineering Chemistry Research, 2017, 56, 4083-4094.	1.8	19
138	Entrainer-Assisted Pressure-Swing Distillation for Separating the Minimum-Boiling Azeotrope Toluene/Pyridine: Design and Control. Industrial & Engineering Chemistry Research, 2017, 56, 11894-11902.	1.8	20
139	Modelling and simulation of a pervaporation process using tubular module for production of anhydrous ethanol. AIP Conference Proceedings, 2017, , .	0.3	2
140	A hybrid reactive distillation process with high selectivity pervaporation for butyl acetate production via transesterification. Journal of Membrane Science, 2017, 543, 49-57.	4.1	30
141	Optimal design for dividing wall column using support vector machine and particle swarm optimization. Chemical Engineering Research and Design, 2017, 125, 422-432.	2.7	24
142	Conceptual Design of Highly Integrated Processes – Optimization of Dividing Wall Columns. Chemie-Ingenieur-Technik, 2017, 89, 562-581.	0.4	33
143	Design of Dividingâ€Wall Columns by Mixedâ€Integer Nonlinear Programming Optimization. Chemie-Ingenieur-Technik, 2017, 89, 582-597.	0.4	19
144	Design and Control of a Heat Pump-Assisted Azeotropic Dividing Wall Column for EDA/Water Separation. Industrial & Engineering Chemistry Research, 2017, 56, 9770-9777.	1.8	24
145	Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorganic Chemistry Communication, 2017, 82, 64-67.	1.8	25
146	A control strategy for extractive and reactive dividing wall columns. Chemical Engineering and Processing: Process Intensification, 2017, 113, 14-19.	1.8	19
147	Novel heat–integrated and intensified biorefinery process for cellulosic ethanol production from lignocellulosic biomass. Energy Conversion and Management, 2017, 141, 367-377.	4.4	40
148	Efficient optimization-based design of energy-intensified azeotropic distillation processes. Computer Aided Chemical Engineering, 2017, 40, 1045-1050.	0.3	8
149	Designing Solutions by a Student Centred Approach: Integration of Chemical Process Simulation with Statistical Tools to Improve Distillation Systems. International Journal of Engineering Pedagogy, 2017, 7, 4.	0.7	7
150	Analysis and extension of the Furter equation, and its application in the simulation of saline extractive distillation columns. Brazilian Journal of Chemical Engineering, 2017, 34, 607-621.	0.7	3

#	Article	IF	CITATIONS
151	Vapor split manipulation in extractive divided-wall distillation columns. Chemical Engineering and Processing: Process Intensification, 2018, 126, 132-140.	1.8	29
152	Pressure-Swing Dividing Wall Column with Multiple Binary Azeotropes: Improving Energy Efficiency and Cost Savings through Vapor Recompression. Industrial & Engineering Chemistry Research, 2018, 57, 4019-4032.	1.8	25
153	Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy, 2018, 148, 296-308.	4.5	205
154	Control of a Ternary Extractive Distillation Process with Recycle Splitting Using a Mixed Entrainer. Industrial & Engineering Chemistry Research, 2018, 57, 339-351.	1.8	41
155	Design and operation of extractive distillation systems using different class of entrainers for the production of fuel grade tert-butyl Alcohol:A techno-economic assessment. Energy, 2018, 144, 1013-1025.	4.5	30
156	Energy-Saving Optimal Design and Effective Control of Heat Integration-Extractive Dividing Wall Column for Separating Heterogeneous Mixture Methanol/Toluene/Water with Multiazeotropes. Industrial & Engineering Chemistry Research, 2018, 57, 8036-8056.	1.8	75
157	Adsorption capacity study of ethanol-water mixture for zeolite, activated carbon, and polyvinyl alcohol. IOP Conference Series: Earth and Environmental Science, 2018, 105, 012025.	0.2	7
158	Saltingâ€out extraction of bioâ€based isobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology, 2018, 93, 372-384.	1.6	14
159	Process design of carbon dioxide and ethane separation using ionic liquid by extractive distillation. Journal of Chemical Technology and Biotechnology, 2018, 93, 887-896.	1.6	26
160	Effect of thermodynamic parameters on prediction of phase behavior and process design of extractive distillation. Chinese Journal of Chemical Engineering, 2018, 26, 993-1002.	1.7	11
161	Dynamic Performance of a Complex Distillation System to Separate a Fiveâ€Component Hydrocarbon Mixture. Chemical Engineering and Technology, 2018, 41, 2053-2065.	0.9	5
162	Heat-integrated pressure-swing distillation process for separation of the maximum-boiling azeotrope diethylamine and methanol. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 644-659.	2.7	40
163	Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water) via heterogeneous azeotropic distillation by energy-saving dividing-wall column: Process design and control strategies. Chemical Engineering Research and Design, 2018, 135, 52-66.	2.7	30
164	Nanocrystalline Hâ€RTH Zeolite: An Efficient Catalyst for the Lowâ€Temperature Dehydration of Ethanol to Ethene. ChemSusChem, 2018, 11, 2035-2039.	3.6	9
165	Compared novel thermally coupled extractive distillation sequences for separating multi-azeotropic mixture of acetonitrile/benzene/methanol. Chemical Engineering Research and Design, 2018, 136, 513-528.	2.7	64
166	Optimization of extractive distillation – integrated solvent selection and energy integration. Computer Aided Chemical Engineering, 2018, 44, 187-192.	0.3	2
167	Computer-Aided Screening of Ionic Liquids As Entrainers for Separating Methyl Acetate and Methanol via Extractive Distillation. Industrial & amp; Engineering Chemistry Research, 2018, 57, 9656-9664.	1.8	47
168	Economics and Controllability of Conventional and Intensified Extractive Distillation Configurations for Acetonitrile/Methanol/Benzene Mixtures. Industrial & Engineering Chemistry Research. 2018. 57, 10551-10563.	1.8	51

#	Article	IF	CITATIONS
169	Energy-efficient and ecologically friendly hybrid extractive distillation using a pervaporation system for azeotropic feed compositions in alcohol dehydration process. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 251-265.	2.7	26
170	Performance of a gasoline engine powered by a mixture of ethanol and n-butanol. Clean Technologies and Environmental Policy, 2018, 20, 1929-1937.	2.1	9
171	Purification of 2,3-butanediol from fermentation broth: process development and techno-economic analysis. Biotechnology for Biofuels, 2018, 11, 18.	6.2	61
172	Design and control of extractive distillation process for separation of the minimum-boiling azeotrope ethyl-acetate and ethanol. Chemical Engineering Research and Design, 2018, 136, 57-70.	2.7	54
173	Property estimation of water/alcohol/ionic liquid ternary system: Density. Journal of Molecular Liquids, 2018, 264, 88-97.	2.3	11
174	An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineering and Processing: Process Intensification, 2018, 133, 160-210.	1.8	216
175	Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Conversion and Management, 2018, 171, 371-383.	4.4	38
176	Performance analysis of a heat integrated column with heat pumping. Separation and Purification Technology, 2019, 209, 18-25.	3.9	21
177	Performance of Different Inert Gases in Production of Fuel Grade Ethanol by Diffusion Distillation. Theoretical Foundations of Chemical Engineering, 2019, 53, 132-138.	0.2	0
178	Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane. Energy, 2019, 186, 115756.	4.5	80
179	Energy-efficient extractive pressure-swing distillation for separating binary minimum azeotropic mixture dimethyl carbonate and ethanol. Separation and Purification Technology, 2019, 229, 115817.	3.9	57
180	OPTIMIZATION OF PRESSURE-SWING DISTILLATION FOR ANHYDROUS ETHANOL PURIFICATION BY THE SIMULATED ANNEALING ALGORITHM. Brazilian Journal of Chemical Engineering, 2019, 36, 453-469.	0.7	19
181	Applicability of Composite Silica–Divinylbenzene in Bioethanol Dehydration: Equilibrium, Kinetic, Thermodynamic, and Regeneration Analysis. Energy & Fuels, 2019, 33, 7347-7356.	2.5	6
182	Bioethanol and Biobutanol. , 2019, , 285-327.		0
183	Steady state considerations for designing minimum energy control strategies for a dividing wall distillation column with trace components. Chemical Engineering and Processing: Process Intensification, 2019, 145, 107641.	1.8	5
184	Separation of propylene oxide-methanol-water mixture via enhanced extractive distillation: Design and control. Chemical Engineering and Processing: Process Intensification, 2019, 144, 107651.	1.8	21
185	Economic and environmental comparison of bioethanol dehydration processes via simulation: reactive distillation, reactor–separator process and azeotropic distillation. Clean Technologies and Environmental Policy, 2019, 21, 2061-2071.	2.1	12
186	Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chemical Engineering Research and Design, 2019, 143, 249-260	2.7	65

#	Article	IF	Citations
187	Process analysis of extractive distillation for the separation of ethanol–water using deep eutectic solvent as entrainer. Chemical Engineering Research and Design, 2019, 148, 298-311.	2.7	37
188	A Novel Heat Integrated Extractive Dividing Wall Column for Ethanol Dehydration. Industrial & Engineering Chemistry Research, 2019, 58, 9109-9117.	1.8	32
189	New Suggested Model Reference Adaptive Controller for the Divided Wall Distillation Column. Industrial & Engineering Chemistry Research, 2019, 58, 7247-7264.	1.8	9
190	Comparison of pressure-swing distillation with or without crossing curved-boundary for separating a multiazeotropic ternary mixture. Separation and Purification Technology, 2019, 220, 114-125.	3.9	41
191	Double-partitioned dividing wall column for a multicomponent azeotropic system. Separation and Purification Technology, 2019, 219, 33-46.	3.9	26
192	Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology. Applied Thermal Engineering, 2019, 154, 519-529.	3.0	59
193	Structured Polyvinyl Alcohol/Zeolite/Carbon Composites Prepared Using Supercritical Fluid Extraction Techniques as Adsorbent for Bioethanol Dehydration. International Journal of Chemical Engineering, 2019, 2019, 1-11.	1.4	9
194	Optimization, scale-up and cost estimation of dehydration of ethanol using temperature swing adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 102938.	3.3	11
195	Comparison of Temperature Control and Temperature Difference Control for a Kaibel Dividing Wall Column. Processes, 2019, 7, 773.	1.3	9
196	Effect of ionic liquids as entrainers on the dynamic behavior of ethanol-water extractive columns. BMC Chemical Engineering, 2019, 1, .	3.4	5
197	Review of extractive distillation. Process design, operation, optimization and control. Chemical Engineering Research and Design, 2019, 141, 229-271.	2.7	162
198	Extractive distillation: Advances in conceptual design, solvent selection, and separation strategies. Chinese Journal of Chemical Engineering, 2019, 27, 1247-1256.	1.7	90
199	One-step synthesis and deposition of ZnFe ₂ O ₄ related composite films via SPPS route for photodegradation application. Nanotechnology, 2019, 30, 045707.	1.3	8
200	Design and optimization of multi-effect-evaporation-assisted distillation configuration for recovery of 2,3-butanediol from fermentation broth. Chemical Engineering and Processing: Process Intensification, 2019, 136, 107-115.	1.8	20
201	Heat-integrated triple-column pressure-swing distillation process with multi-recycle streams for the separation of ternary azeotropic mixture of acetonitrile/methanol/benzene. Separation and Purification Technology, 2019, 211, 40-53.	3.9	37
202	Advances in Extractive Distillation. , 2019, , .		6
203	Determination of a suitable index for a solvent via two-column extractive distillation using a heuristic method. Frontiers of Chemical Science and Engineering, 2020, 14, 824-833.	2.3	21
204	Fischer-Tropsch synthesis in a bottom split reactive dividing wall column. Chemical Engineering and Processing: Process Intensification, 2020, 148, 107798.	1.8	2

#	Article	IF	CITATIONS
205	Process design and evaluations for producing pyrolytic jet fuel. Biofuels, Bioproducts and Biorefining, 2020, 14, 249-264.	1.9	12
206	Changing product specification in extractive distillation process using intelligent control system. Neural Computing and Applications, 2020, 32, 13255-13266.	3.2	9
207	Efficient optimization-based design of energy-integrated azeotropic distillation processes. Computers and Chemical Engineering, 2020, 133, 106676.	2.0	28
208	Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. , 2020, , 67-125.		20
209	Membrane assisted reactive distillation for bioethanol purification. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108110.	1.8	30
210	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
211	Thermal coupled extractive distillation sequences with three entrainers for the separation of azeotrope isopropyl alcohol + diisopropyl ether. Journal of Chemical Technology and Biotechnology, 2020, 95, 1590-1603.	1.6	11
212	Alcohol Dehydration by Extractive Distillation with Use of Aminoethers of Boric Acid. Processes, 2020, 8, 1466.	1.3	7
213	Ecoâ€efficient Separation of Mono―and Dichloroacetic Acid by Thermally Coupled Extractive Distillation. Chemical Engineering and Technology, 2020, 43, 2403-2417.	0.9	4
214	Azeotropes as Powerful Tool for Waste Minimization in Industry and Chemical Processes. Molecules, 2020, 25, 5264.	1.7	16
215	The Azeotropic Distillation for Bioethanol Purification: The Effects of Entrainer Solvents. IOP Conference Series: Earth and Environmental Science, 2020, 506, 012007.	0.2	0
216	Optimization of fractional freezing process for bioethanol purification. IOP Conference Series: Materials Science and Engineering, 2020, 736, 022102.	0.3	2
217	Isobaric vapor – liquid – liquid equilibrium for waterÂ+ÂMTBEÂ+Âalcohol (ethanol or 1-butanol) mixtures. Fluid Phase Equilibria, 2020, 523, 112768.	1.4	8
218	Molecular Mechanism, Thermoeconomic, and Environmental Impact for Separation of Isopropanol and Water Using the Choline-Based DESs as Extractants. Industrial & Engineering Chemistry Research, 2020, 59, 16077-16087.	1.8	23
219	Optimization of Pressure-Swing Distillation for iC5-Methanol Azeotropic Mixture Purification. Process Integration and Optimization for Sustainability, 2020, 4, 255-263.	1.4	5
220	Energy-saving quaternary extractive distillation processes with single- or double-dividing-wall column for separation of acetone/methanol/butanone/tert-butyl alcohol. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107999.	1.8	18
221	Mechanism Analysis, Economic Optimization, and Environmental Assessment of Hybrid Extractive Distillation–Pervaporation Processes for Dehydration of <i>n</i> Propanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 4561-4571.	3.2	40
222	Easy-to-Operate and Energy-Efficient Four-Product Dividing Wall Columns with Two Partition Walls. Industrial & Engineering Chemistry Research, 2020, 59, 12822-12833.	1.8	12

#	Article	IF	CITATIONS
223	Development and intensification of a four-column hybrid process of heteroazeotropic distillation and pressure-swing distillation. Chemical Engineering and Processing: Process Intensification, 2020, 150, 107875.	1.8	13
224	Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture. Chemical Engineering Research and Design, 2020, 137, 246-260.	2.7	44
225	Enhanced separation of mixing diols by distillation in dividing wall column. Chemical Engineering and Processing: Process Intensification, 2020, 149, 107859.	1.8	4
226	Ethanol as a Renewable Building Block for Fuels and Chemicals. Industrial & Engineering Chemistry Research, 2020, 59, 4843-4853.	1.8	81
227	Performance Enhancement of Heat Pump with Preheater-Assisted Pressure-Swing Distillation Process. Industrial & Engineering Chemistry Research, 2020, 59, 4742-4755.	1.8	18
228	Design and control of vapor recompression assisted extractive distillation for separating n-hexane and ethyl acetate. Separation and Purification Technology, 2020, 240, 116655.	3.9	60
229	Eliminating the vapor split in dividing wall columns through controllable double liquid-only side-stream distillation configuration. Separation and Purification Technology, 2020, 242, 116837.	3.9	28
230	Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology. Energy, 2021, 215, 119126.	4.5	49
231	Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures. Chinese Journal of Chemical Engineering, 2021, 33, 203-210.	1.7	24
232	Dynamic simulation of control systems for bioethanol reactive dehydration: Conventional and intensified case studies. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108238.	1.8	10
233	ANN-based intelligent control system for simultaneous feed disturbances rejection and product specification changes in extractive distillation process. Separation and Purification Technology, 2021, 259, 118104.	3.9	10
234	Application of the Chemical-Looping Concept for Azoetrope Separation. Engineering, 2021, 7, 84-93.	3.2	31
235	Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene. Separation and Purification Technology, 2021, 257, 117907.	3.9	21
236	Model predictive control of azeotropic dividing wall distillation column for separating furfural–water mixture. ISA Transactions, 2021, 111, 302-308.	3.1	10
237	Multi-objective optimization of bioethanol reactive dehydration processes using genetic algorithms. Separation Science and Technology, 2021, 56, 3167-3182.	1.3	5
238	Extractive technologies in liquid biphasic systems: extractive distillation. , 2021, , 285-300.		0
239	Environmental assessment of different technologies for bioethanol production from Cynara cardunculus: A Life Cycle Assessment study. Biomass and Bioenergy, 2021, 144, 105910.	2.9	19
240	A Short Review of Dividing Wall Distillation Column as an Application of Process Intensification: Geographical Development and the Pioneering Contribution of Prof. Arturo Jimenez in Latin America. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108275.	1.8	7

#	Article	IF	CITATIONS
241	Methoxyâ€methylheptane as a cleaner fuel additive: An energy―and costâ€efficient enhancement for separation and purification units. Energy Science and Engineering, 2021, 9, 1632-1646.	1.9	1
242	Parastillation and metastillation applied to bioethanol and neutral alcohol purification with energy savings. Chemical Engineering and Processing: Process Intensification, 2021, 162, 108334.	1.8	9
243	Insight into controllability and operation of extractive dividing-wall column. Separation and Purification Technology, 2021, 263, 118362.	3.9	8
244	Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth. Energies, 2021, 14, 3377.	1.6	3
245	Review on technologies to separate and purify ethyl alcohol from dilute aqueous solutions. Reviews in Chemical Engineering, 2023, 39, 297-328.	2.3	6
246	Optimization and eco-efficiency analysis of extractive distillation processes with different solvents for separating the ternary mixture embedding two azeotropes. Separation and Purification Technology, 2021, 269, 118763.	3.9	32
247	Sustainable concept design including economic, environment and inherent safety criteria: Process intensification-reactive pressure swing distillation. Journal of Cleaner Production, 2021, 314, 127852.	4.6	32
248	Biojet fuel production from oleaginous crop residues: thermoeconomic, life cycle and flight performance analysis. Energy Conversion and Management, 2021, 244, 114534.	4.4	12
249	Optimal design and control of an energy-efficient triple-side-stream quaternary extractive distillation process. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108510.	1.8	7
250	Energy-saving exploration and optimization of methyl alcohol – Methyl ethyl ketone – Tertbutyl alcohol separation by extractive dividing-wall distillation with ionic liquid as extractant. Separation and Purification Technology, 2021, 272, 118886.	3.9	18
251	Bioethanol dehydration and mixing by heterogeneous azeotropic distillation. Journal of Cleaner Production, 2021, 320, 128810.	4.6	12
252	Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis. Energy, 2022, 239, 121970.	4.5	12
253	Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation. Energy, 2022, 239, 121952.	4.5	9
254	Azeotropic distillation. , 2022, , 155-190.		1
255	Optimal design of extractive dividing-wall column using an efficient equation-oriented approach. Frontiers of Chemical Science and Engineering, 2021, 15, 72-89.	2.3	17
256	Past practices and current trends in the recovery and purification of first generation ethanol: A learning curve for lignocellulosic ethanol. Journal of Cleaner Production, 2020, 268, 122357.	4.6	32
257	Intensified Downstream Processing in Biofuels Production. RSC Green Chemistry, 2018, , 62-85.	0.0	2
258	Analysis of ethanol dehydration using membrane separation processes. Open Life Sciences, 2020, 15, 122-132.	0.6	15

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
259	Multiobjective Stochastic Optimization of Dividing-wall Distillation Columns Using a Surrogate Model Based on Neural Networks. Chemical and Biochemical Engineering Quarterly, 2016, 29, 491-504.	0.5	17
260	ACETONE-CHLOROFORM-n-BUTANOL MIXTURE SEPARATION BY THE EXTRACTIVE DISTILLATION IN SCHEMES OF TWO-OUTLET COLUMNS. Fine Chemical Technologies, 2017, 12, 34-46.	0.1	2
261	Amino Ethers of Ortho-Phosphoric Acid as Extragents for Ethanol Dehydration. ChemEngineering, 2021, 5, 71.	1.0	0
262	UMA NOVA ESTRATÉGIA DE OTIMIZAÇÃ∱O APLICADA À SEQUÊNCIA TERMICAMENTE ACOPLADA DE UM PROCESSO DA DESTILAÇÃO EXTRATIVA. , 0, , .		0
263	Downstream process: toward cost/energy effectiveness. , 2022, , 249-260.		5
264	Bioethanol: Product Separation Methods. , 2020, , 177-193.		0
265	Using the Method of Infinitely Sharp Splits for the Optimal Design of Extractive Distillation Units. 1. Ternary Mixtures. Industrial & Engineering Chemistry Research, 2021, 60, 16430-16444.	1.8	1
266	A Review on AI Control of Reactive Distillation for Various Applications. , 0, , .		1
267	Inherent Safer, Eco-Friendly and Energy Saving Vapor Recompression Assisted Extractive Dividing-Wall Column Process for the Separation of Minimum-Boiling Azeotrope. SSRN Electronic Journal, 0, , .	0.4	0
268	The evolution of process design and control for ternary azeotropic separation: Recent advances in distillation and future directions. Separation and Purification Technology, 2022, 284, 120292.	3.9	22
269	Eco-Efficient Heat-Integrated Extractive Distillation Process Using Ionic Liquid as Entrainer for Ethyl Acetate-Isopropyl Alcohol-Water Mixture. SSRN Electronic Journal, 0, , .	0.4	0
270	Current status and future trends of computer-aided process design, applied to purification of liquid biofuels, using process intensification: A short review. Chemical Engineering and Processing: Process Intensification, 2022, 172, 108804.	1.8	10
271	Inherent safer, eco-friendly and energy saving vapor recompression assisted extractive dividing-wall column process for the separation of minimum-boiling azeotrope. Separation and Purification Technology, 2022, 286, 120368.	3.9	8
272	Eco-efficient heat-integrated extractive distillation process using ionic liquid as entrainer for ethyl acetate-isopropyl alcohol-water mixture. Separation and Purification Technology, 2022, 287, 120491.	3.9	19
273	Development of control strategies for an air separation unit with a divided wall column using a pressure-driven digital twin. Chemical Engineering and Processing: Process Intensification, 2022, 176, 108893.	1.8	8
274	Multi-objective Optimization and Control of Self-Heat Recuperative Azeoropic Distillation for Separating an Ethanol/Water Mixture. ACS Omega, 2022, 7, 11382-11394.	1.6	4
275	Multiplicities in ethanol dehydration by extractive distillation processes with ethyleneglycol. Chemical Engineering and Processing: Process Intensification, 2022, 174, 108886.	1.8	4
276	Ethanol Dehydration with Ionic Liquids from Molecular Insights to Process Intensification. ACS Sustainable Chemistry and Engineering, 2022, 10, 441-455.	3.2	8

#	Article	IF	CITATIONS
277	Process of separating acetonitrile and water using LTTMs as entrainer. Polish Journal of Chemical Technology, 2021, 23, 1-9.	0.3	1
278	Energy, exergy, economic and environmental analysis of a novel steam-driven vapor recompression and organic Rankine cycle intensified dividing wall column. Separation and Purification Technology, 2022, 295, 121285.	3.9	6
279	Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSCA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl ether/water mixture. Energy, 2022, 254, 124376.	4.5	6
280	Microbial bioethanol fermentation technologies—Recent trends and future prospects. , 2022, , 75-108.		4
281	Sustainable bioalcohol production: Pretreatment, separation, and control strategies leading to sustainable processes. , 2022, , 41-85.		0
282	Intensified and hybrid distillation technologies for production of high value-added products from lignocellulosic biomass. , 2022, , 197-229.		1
283	Three-Phase Distillation of Ethyl Acetate/Water/Ethanol: Separation Feasibility and Conceptual Design. Chemistry and Chemical Technology, 2022, 16, 237-254.	0.2	0
284	Application Regularities of Heat Pumps in Extractive Distillation. Theoretical Foundations of Chemical Engineering, 2022, 56, 308-320.	0.2	3
285	Purification of methyl isobutyl ketone via dividing wall column with an internal boiling point of a heterogeneous azeotrope. Chemical Engineering and Processing: Process Intensification, 2022, 179, 109053.	1.8	3
286	Topology-Based Initialization for the Optimization-Based Design of Heteroazeotropic Distillation Processes. Processes, 2022, 10, 1482.	1.3	4
288	Feedstock planning and optimization of a sustainable distributed configuration biorefinery for biojet fuel production via ATJ process. Biofuels, Bioproducts and Biorefining, 2023, 17, 71-96.	1.9	7
289	Are process-intensified extractive distillation always energetically more efficient?. Chemical Engineering and Processing: Process Intensification, 2022, 181, 109131.	1.8	4
290	Biojet. Green Energy and Technology, 2022, , 131-162.	0.4	1
291	Economic and Environmental Optimization and Feedstock Planning for the Renewable Jet Production Using an Intensified Process. Computer Aided Chemical Engineering, 2022, , 643-648.	0.3	1
292	Process Intensification and Circular Economy. Green Energy and Technology, 2022, , 9-24.	0.4	0
293	Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering, 2022, 6, 83.	1.0	1
294	Application of dividing wall column in azeotropic distillation with intermediate boiling-point heteroazeotrope: Simulation and optimization. Chemical Engineering Research and Design, 2023, 189, 384-400.	2.7	11
295	Purification of Butanol from the ABE Mixture: Effect of Intensification on the Dynamic Behavior. Industrial & Engineering Chemistry Research, 2022, 61, 17963-17975.	1.8	1

#	Article	IF	CITATIONS
296	A heuristic predictive model for screening green entrainers comparing life cycle assessment indexes and economics. Green Chemistry, 2023, 25, 2305-2317.	4.6	9
297	Sandwich Structure Membrane with Enhanced Anti-Swelling Property and Mechanical Strength for Bioethanol Separation by Pervaporation. Industrial & Engineering Chemistry Research, 2023, 62, 5262-5273.	1.8	1
298	Extractive Dividing Wall Column for Separating Azeotropic Systems: A Review. Industrial & Engineering Chemistry Research, 2023, 62, 5750-5770.	1.8	3
304	Bioethanol Production from Lignocellulosic Wastes: Potentials and Challenges. Green Energy and Technology, 2023, , 123-160.	0.4	0
305	Bioethanol Recovery and Dehydration Techniques. Green Energy and Technology, 2023, , 229-254.	0.4	0
306	Alcohol production: downstream processes. , 2024, , 183-235.		0
317	Process intensification by dividing wall column. , 2024, , 133-163.		0