Current Management of Nasopharyngeal Cancer

Seminars in Radiation Oncology 22, 233-244 DOI: 10.1016/j.semradonc.2012.03.008

Citation Report

#	Article	IF	CITATIONS
1	Use of a peptide enhancing the ability of radiation therapy to kill cancer cells: a patent evaluation of WO2012016918. Expert Opinion on Therapeutic Patents, 2012, 22, 1485-1487.	5.0	0
2	Characterization of TRIP6-dependent nasopharyngeal cancer cell migration. Tumor Biology, 2013, 34, 2329-2335.	1.8	13
4	Prognostic implication of neuropilin-1 upregulation in human nasopharyngeal carcinoma. Diagnostic Pathology, 2013, 8, 155.	2.0	15
5	Assessment of diffusion parameters by intravoxel incoherent motion MRI in head and neck squamous cell carcinoma. NMR in Biomedicine, 2013, 26, 1806-1814.	2.8	41
6	Pretreatment body mass index as an independent prognostic factor in patients with locoregionally advanced nasopharyngeal carcinoma treated with chemoradiotherapy: Findings from a randomised trial. European Journal of Cancer, 2013, 49, 1923-1931.	2.8	58
8	Intensity-modulated radiotherapy with simultaneous modulated accelerated boost technique and chemotherapy in patients with nasopharyngeal carcinoma. BMC Cancer, 2013, 13, 318.	2.6	7
9	Prognostic role of epidermal growth factor receptor in nasopharyngeal carcinoma: A metaâ€analysis. Head and Neck, 2014, 36, 1508-1516.	2.0	25
10	A randomized clinical trial comparing prophylactic upper versus wholeâ€neck irradiation in the treatment of patients with nodeâ€negative nasopharyngeal carcinoma. Cancer, 2013, 119, 3170-3176.	4.1	57
11	Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. Journal of Pathology, 2013, 231, 311-322.	4.5	119
13	mTOR inhibitor RAD001 (everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. International Journal of Molecular Medicine, 2013, 31, 904-912.	4.0	22
14	Combined upregulation of matrix metalloproteinase-1 and proteinase-activated receptor-1 predicts unfavorable prognosis in human nasopharyngeal carcinoma. OncoTargets and Therapy, 2013, 6, 1139.	2.0	12
15	Target volume and position variations during intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. OncoTargets and Therapy, 2013, 6, 1719.	2.0	20
16	Combined chemo-radiotherapy in locally advanced nasopharyngeal carcinomas. World Journal of Clinical Oncology, 2013, 4, 47.	2.3	11
17	Survival Benefit of Adding Chemotherapy to Intensity Modulated Radiation in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. PLoS ONE, 2013, 8, e56208.	2.5	21
18	Emerging treatment options for nasopharyngeal carcinoma. Drug Design, Development and Therapy, 2013, 7, 37.	4.3	111
19	Mitochondrial DNA Haplogroup Confers Genetic Susceptibility to Nasopharyngeal Carcinoma in Chaoshanese from Guangdong, China. PLoS ONE, 2014, 9, e87795.	2.5	19
20	Current Status of Cancer Care for Young Patients with Nasopharyngeal Carcinoma in Jakarta, Indonesia. PLoS ONE, 2014, 9, e102353.	2.5	15
21	Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells. PLoS ONE, 2014, 9, e107893.	2.5	35

#	Article	IF	CITATIONS
22	Therapeutic implications of Epstein–Barr virus infection for the treatment of nasopharyngeal carcinoma. Therapeutics and Clinical Risk Management, 2014, 10, 721.	2.0	48
23	Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution. Future Oncology, 2014, 10, 1863-1872.	2.4	4
25	Factors Affecting Outcomes of Alternating Chemoradiotherapy for Nasopharyngeal Cancer. Annals of Otology, Rhinology and Laryngology, 2014, 123, 509-516.	1.1	15
26	Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of <i>miR-125a-5p</i> . Clinical Science, 2014, 127, 571-579.	4.3	48
27	Dinitrosopiperazine-Mediated Phosphorylated-Proteins Are Involved in Nasopharyngeal Carcinoma Metastasis. International Journal of Molecular Sciences, 2014, 15, 20054-20071.	4.1	7
28	Evaluation of computed tomography-guided parapharyngeal mass needle biopsy through mandibular notch for diagnosis of recurrent nasopharygeal carcinoma. Journal of Cancer Research and Therapeutics, 2014, 10, 229.	0.9	6
29	Advantages of intensity modulated radiotherapy in recurrent T1-2 nasopharyngeal carcinoma: a retrospective study. BMC Cancer, 2014, 14, 797.	2.6	15
30	Apogossypolone, a small-molecule inhibitor of Bcl-2, induces radiosensitization of nasopharyngeal carcinoma cells by stimulating autophagy. International Journal of Oncology, 2014, 45, 1099-1108.	3.3	25
31	Biomarkers in Nasopharyngeal Carcinoma and Ionizing Radiation. , 2014, , 1-13.		0
32	14-Thienyl Methylene Matrine (YYJ18), the Derivative from Matrine, Induces Apoptosis of Human Nasopharyngeal Carcinoma Cells by Targeting MAPK and PI3K/Akt Pathways <i>in Vitro</i> . Cellular Physiology and Biochemistry, 2014, 33, 1475-1483.	1.6	32
33	Individualized treatment in stage IVC nasopharyngeal carcinoma. Oral Oncology, 2014, 50, 791-797.	1.5	45
34	Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magnetic Resonance Imaging, 2014, 32, 630-637.	1.8	71
35	Nasopharyngeal carcinoma: comparison of diffusion and perfusion characteristics between different tumour stages using intravoxel incoherent motion MR imaging. European Radiology, 2014, 24, 176-183.	4.5	49
36	Is There a Real Need of Adjuvant Chemotherapy for Locally Advanced Nasopharyngeal Carcinoma?. Journal of Gastrointestinal Cancer, 2014, 45, 396-397.	1.3	0
37	Meta-analysis of the association between GSTT1 null genotype and risk of nasopharyngeal carcinoma in Chinese. Tumor Biology, 2014, 35, 345-349.	1.8	5
38	Direct Quantification of Circulating MiRNAs in Different Stages of Nasopharyngeal Cancerous Serum Samples in Single Molecule Level with Total Internal Reflection Fluorescence Microscopy. Analytical Chemistry, 2014, 86, 9880-9886.	6.5	34
39	Concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: Treatment outcomes of a prospective, multicentric clinical study. Radiotherapy and Oncology, 2014, 112, 106-111.	0.6	104
40	Interleukin-6 promotes the migration and invasion of nasopharyngeal carcinoma cell lines and upregulates the expression of MMP-2 and MMP-9. International Journal of Oncology, 2014, 44, 1551-1560.	3.3	72

#	Article	IF	Citations
41	Increased expression of SHP-1 is associated with local recurrence after radiotherapy in patients with nasopharyngeal carcinoma. Radiology and Oncology, 2014, 48, 40-49.	1.7	8
42	Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity. Oncology Reports, 2015, 34, 1692-1700.	2.6	32
43	Concurrent chemoradiotherapy was associated with a higher severe late toxicity rate in nasopharyngeal carcinoma patients compared with radiotherapy alone: a meta-analysis based on randomized controlled trials. Radiation Oncology, 2015, 10, 70.	2.7	34
44	Value of the prognostic nutritional index and weight loss in predicting metastasis and long-term mortality in nasopharyngeal carcinoma. Journal of Translational Medicine, 2015, 13, 364.	4.4	67
45	Osteopontin is a useful predictor of bone metastasis and survival in patients with locally advanced nasopharyngeal carcinoma. International Journal of Cancer, 2015, 137, 1672-1678.	5.1	18
46	The impact of the cumulative dose of cisplatin during concurrent chemoradiotherapy on the clinical outcomes of patients with advanced-stage nasopharyngeal carcinoma in an era of intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 977.	2.6	21
47	Epstein–Barr virus infection and nasopharyngeal carcinoma. Anti-Cancer Drugs, 2015, 26, 1017-1025.	1.4	17
48	Management of cancer of the head and neck. , 0, , 132-169.		0
49	Serum CYFRA21-1 as an effective tumor biomarker for patients with nasopharyngeal carcinoma. Neoplasma, 2015, 62, 124-129.	1.6	6
50	Feasibility and Safety of Overtubes for PEG-Tube Placement in Patients with Head and Neck Cancer. Gastroenterology Research and Practice, 2015, 2015, 1-7.	1.5	6
51	Long-Term Results of Concurrent Chemoradiotherapy for Advanced N2-3 Stage Nasopharyngeal Carcinoma. PLoS ONE, 2015, 10, e0137383.	2.5	6
52	EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget, 2015, 6, 5804-5817.	1.8	55
53	EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget, 2015, 6, 41766-41782.	1.8	96
54	A Comparison Between the Chinese 2008 and the 7th Edition AJCC Staging Systems for Nasopharyngeal Carcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2015, 38, 189-196.	1.3	78
55	p53, MDM2, elF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: A retrospective study. Oncology Letters, 2015, 9, 113-118.	1.8	46
56	Development of a time-resolved fluoroimmunoassay for Epstein–Barr virus viral capsid antigen IgA antibody in human serum. Journal of Virological Methods, 2015, 222, 16-21.	2.1	7
57	Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases. Scientific Reports, 2015, 5, 12242.	3.3	51
58	Intensity modulated radiation therapy in nasopharyngeal carcinoma. European Annals of Otorhinolaryngology, Head and Neck Diseases, 2015, 132, 147-151.	0.7	23

#	Article	IF	CITATIONS
59	Ten-year outcomes of a randomised trial for locoregionally advanced nasopharyngeal carcinoma: A single-institution experience from an endemic area. European Journal of Cancer, 2015, 51, 1760-1770.	2.8	43
60	Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncology, The, 2015, 16, 645-655.	10.7	593
61	Epstein–Barr virus-targeted therapy in nasopharyngeal carcinoma. Journal of Cancer Research and Clinical Oncology, 2015, 141, 1845-1857.	2.5	47
62	Outcomes of xerostomia-related quality of life for nasopharyngeal carcinoma treated by IMRT: based on the EORTC QLQ-C30 and H&N35 questionnaires. Expert Review of Anticancer Therapy, 2015, 15, 109-119.	2.4	21
63	Management of Nasopharyngeal Carcinoma: Current Practice and Future Perspective. Journal of Clinical Oncology, 2015, 33, 3356-3364.	1.6	579
64	Irradiation conformationnelle avec modulation d'intensité des cancers du rhinopharynx. Annales Francaises D'Oto-Rhino-Laryngologie Et De Pathologie Cervico-Faciale, 2015, 132, 142-146.	0.0	0
65	Circulating <scp>E</scp> pstein– <scp>B</scp> arr virus micro <scp>RNA</scp> s mi <scp>Râ€BART7</scp> and mi <scp>Râ€BART13</scp> as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. International Journal of Cancer, 2015, 136, E301-12.	5.1	107
66	Clutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma. Journal of Cancer, 2016, 7, 1716-1723.	2.5	16
67	Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in stage III-IVb nasopharyngeal carcinoma patients with Epstein-Barr virus DNA ≥4000 copies/ml: a matched study. Oncotarget, 2016, 7, 29739-29748.	1.8	15
68	Excellent Survival Regardless of Disease Stage in Patients with Advanced Nasopharyngeal Cancer. Tumori, 2016, 102, 381-386.	1.1	4
69	Incidence and Mortality of Nasopharynx Cancer and Its Relationship With Human Development Index in the World in 2012. World Journal of Oncology, 2016, 7, 109-118.	1.5	22
70	The tumor shape changes of nasopharyngeal cancer during chemoradiotherapy: the estimated margin to cover the geometrical variation. Quantitative Imaging in Medicine and Surgery, 2016, 6, 115-124.	2.0	11
71	Cetuximab and Cisplatin Show Different Combination Effect in Nasopharyngeal Carcinoma Cells Lines via Inactivation of EGFR/AKT Signaling Pathway. Biochemistry Research International, 2016, 2016, 1-10.	3.3	12
72	Increased Serum Level of MicroRNA-663 Is Correlated with Poor Prognosis of Patients with Nasopharyngeal Carcinoma. Disease Markers, 2016, 2016, 1-6.	1.3	13
73	A Phase II Clinical Trial of Concurrent Helical Tomotherapy plus Cetuximab Followed by Adjuvant Chemotherapy with Cisplatin and Docetaxel for Locally Advanced Nasopharyngeal Carcinoma. International Journal of Biological Sciences, 2016, 12, 446-453.	6.4	14
74	Should All Nasopharyngeal Carcinoma with Paranasal Sinus Invasion Be Staged as T3 in the Intensity-Modulated Radiotherapy Era? A Study of 1811 Cases. Journal of Cancer, 2016, 7, 1353-1359.	2.5	12
75	Overexpression of Mitochondria Mediator Gene TRIAP1 by miR-320b Loss Is Associated with Progression in Nasopharyngeal Carcinoma. PLoS Genetics, 2016, 12, e1006183.	3.5	48
76	Exploration and Validation of C-Reactive Protein/Albumin Ratio as a Novel Inflammation-Based Prognostic Marker in Nasopharyngeal Carcinoma. Journal of Cancer, 2016, 7, 1406-1412.	2.5	48

#	Article	IF	CITATIONS
77	Circulating EBV DNA, Globulin and Nodal Size Predict Distant Metastasis after Intensity-Modulated Radiotherapy in Stage II Nasopharyngeal Carcinoma. Journal of Cancer, 2016, 7, 664-670.	2.5	27
78	An open-label, single-arm phase II clinical study of docetaxel plus lobaplatin for Chinese patients with pulmonary and hepatic metastasis of nasopharyngeal carcinoma. Anti-Cancer Drugs, 2016, 27, 685-688.	1.4	9
79	Epidemiology and Inequality in the Incidence andÂMortality of Nasopharynx Cancer in Asia. Osong Public Health and Research Perspectives, 2016, 7, 360-372.	1.9	67
80	Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer. Scientific Reports, 2016, 6, 25959.	3.3	0
81	Pectolinarigenin Suppresses the Tumor Growth in Nasopharyngeal Carcinoma. Cellular Physiology and Biochemistry, 2016, 39, 1795-1803.	1.6	24
82	Downregulation of Bmi-1 is associated with suppressed tumorigenesis and induced apoptosis in CD44+ nasopharyngeal carcinoma cancer stem-like cells. Oncology Reports, 2016, 35, 923-931.	2.6	10
83	IMRT vs. 2D-radiotherapy or 3D-conformal radiotherapy of nasopharyngeal carcinoma. Strahlentherapie Und Onkologie, 2016, 192, 377-385.	2.0	42
84	Induction Chemotherapy Followed by Radiotherapy versus Concurrent Chemoradiotherapy in elderly patients with nasopharyngeal carcinoma: finding from a propensity-matched analysis. BMC Cancer, 2016, 16, 693.	2.6	16
85	Prognostic significance of Livin expression in nasopharyngeal carcinoma after radiotherapy. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2016, 20, 384-390.	1.4	3
86	MicroRNA-183 suppresses cancer stem-like cell properties in EBV-associated nasopharyngeal carcinoma. BMC Cancer, 2016, 16, 495.	2.6	25
87	The value of circulating CYFRA21-1 expression in patients with nasopharyngeal carcinoma: a study of 529 subjects. International Journal of Clinical Oncology, 2016, 21, 1038-1045.	2.2	8
89	Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy. Oncology Letters, 2016, 11, 884-890.	1.8	40
90	Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation. International Journal of Oncology, 2016, 48, 756-764.	3.3	18
91	Can Epstein-Barr virus DNA load in nasopharyngeal brushings or whole blood predict recurrent nasopharyngeal carcinoma in a non-endemic region? A prospective nationwide study of the Dutch Head and Neck Oncology Cooperative Group. European Archives of Oto-Rhino-Laryngology, 2016, 273, 1557-1567.	1.6	15
92	Late toxicity, evolving radiotherapy techniques, and quality of life in nasopharyngeal carcinoma. Radiologia Medica, 2017, 122, 303-308.	7.7	15
93	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase III multicentre randomised controlled trial. European Journal of Cancer, 2017, 75, 14-23.	2.8	226
94	lncRNA C22orf32-1 contributes to the tumorigenesis of nasopharyngeal carcinoma. Oncology Letters, 2017, 13, 4487-4492.	1.8	14
95	Comprehensive Overview: Definitive Radiotherapy and Concurrent Chemoradiation in Locally Advanced Head and Neck Cancer. , 2017, , 151-176.		3

ARTICLE IF CITATIONS Critical Issues in Head and Neck Oncology., 2017,,. 0 96 Combined prognostic value of pretreatment anemia and cervical node necrosis in patients with nasopharyngeal carcinoma receiving intensityâ€modulated radiotherapy: A largeâ€scale retrospective 2.8 study. Cancer Medicine, 2017, 6, 2822-2831. Induction Chemotherapy Has No Prognostic Value in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma and Chronic Hepatitis B Infection in the IMRT Era. Translational Oncology, 98 7 3.7 2017, 10, 800-805. The immunologic advantage of recurrent nasopharyngeal carcinoma from the viewpoint of 99 Galectin-9/Tim-3-related changes in the tumour microenvironment. Scientific Reports, 2017, 7, 10349. miRâ€206 enhances nasopharyngeal carcinoma radiosensitivity by targeting IGF1. Kaohsiung Journal of 100 1.9 22 Medical Sciences, 2017, 33, 427-432. Dural metastasis of nasopharyngeal carcinoma: A case report. Egyptian Journal of Ear, Nose, Throat and Allied Sciences, 2017, 18, 325-327. 0.1 Endoscopic surgery for early-stage nasopharyngeal carcinoma: a justified initial option. Acta 102 0.9 6 Oto-Laryngologica, 2017, 137, 1194-1198. Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the 1.4 treatment of recurrent nasopharyngeal carcinoma. Anti-Cancer Drugs, 2017, 28, 230-236. JNK pathway inhibition enhances chemotherapeutic sensitivity to Adriamycin in nasopharyngeal 104 1.8 6 carcinoma cells. Oncology Letters, 2017, 14, 1790-1794. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM 3.4 28 and Smad pathways. Cancer Biology and Therapy, 2017, 18, 681-693. Improved antitumor effect of ionizing radiation in combination with rapamycin for treating 106 1.8 8 nasopharyngeal carcinoma. Oncology Letters, 2017, 14, 1105-1108. Clinicopathologic idiosyncrasies of nasopharyngeal cancer in a moderate-risk Mediterranean region. 1.5 Acta Otorhinolaryngológica Italica, 2017, 37, 180-187. The Changing Therapeutic Role of Chemo-radiotherapy for Loco-regionally Advanced Nasopharyngeal Carcinoma from Two/Three-Dimensional Radiotherapy to Intensity-Modulated Radiotherapy: A Network 108 10.0 64 Meta-Analysis. Theranostics, 2017, 7, 4825-4835. Influence of Cervical Node Necrosis of Different Grades on the Prognosis of Nasopharyngeal 109 2.5 Carcinoma Patients Treated with Intensity-Modulated Radiotherapy. Journal of Cancer, 2017, 8, 959-966. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. International Journal of Molecular Sciences, 2017, 18, 110 4.1 82 1343. miR-663 promotes NPC cell proliferation by directly targeting CDKN2A. Molecular Medicine Reports, 2.4 2017, 16, 4863-4870. LZTS2 inhibits PI3K/AKT activation and radioresistance in nasopharyngeal carcinoma by interacting 112 7.2 46 with p85. Cancer Letters, 2018, 420, 38-48. Longâ€term outcomes in patients with nasopharyngeal carcinoma treated with reducedâ€volume 114 conformal radiotherapy: A retrospective cohort study. Journal of Medical Imaging and Radiation 1.8

CITATION REPORT

Oncology, 2018, 62, 562-567.

#	Article	IF	CITATIONS
115	Antitumor activity and underlying mechanism of Sargassum fusiforme polysaccharides in CNE-bearing mice. International Journal of Biological Macromolecules, 2018, 112, 516-522.	7.5	36
116	A randomized trial of induction docetaxel–cisplatin–5FU followed by concomitant cisplatin-RT versus concomitant cisplatin-RT in nasopharyngeal carcinoma (GORTEC 2006-02). Annals of Oncology, 2018, 29, 731-736.	1.2	140
117	Impact of minimum point dose on local control and toxicity in T3–4 nasopharyngeal carcinoma treated with intensity-modulated radiation therapy plus chemotherapy. Japanese Journal of Clinical Oncology, 2018, 48, 265-271.	1.3	7
118	Antitumor and radiosensitizing effects of SKLB-163, a novel benzothiazole-2-thiol derivative, on nasopharyngeal carcinoma by affecting the RhoGDI/JNK-1 signaling pathway. Radiotherapy and Oncology, 2018, 129, 30-37.	0.6	12
119	Contrast-enhanced dynamic and diffusion-weighted magnetic resonance imaging at 3.0Ã ⁻ ¿½T to assess early-stageÃ ⁻ ¿½nasopharyngeal carcinoma. Oncology Letters, 2018, 15, 5294-5300.	1.8	8
120	Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: A report of 3328 patients (HKNPCSG 1301 study). Oral Oncology, 2018, 77, 16-21.	1.5	189
121	Knockdown of long nonâ€coding RNA XIST suppresses nasopharyngeal carcinoma progression by activating miRâ€491â€5p. Journal of Cellular Biochemistry, 2018, 119, 3936-3944.	2.6	31
122	Management of indeterminate pulmonary nodules (<1 cm) newly detected during the followâ€up of nasopharyngeal carcinoma patients. Asia-Pacific Journal of Clinical Oncology, 2018, 14, e15-e20.	1.1	0
123	Bilateral thalamic and mesencephalic infarctions with hypopituitarism as long-term complications postradiotherapy. Medicine (United States), 2018, 97, e11917.	1.0	0
124	Proposal of a Pretreatment Nomogram for Predicting Local Recurrence after Intensity-Modulated Radiation Therapy in T4 Nasopharyngeal Carcinoma: A Retrospective Review of 415 Chinese Patients. Cancer Research and Treatment, 2018, 50, 1084-1095.	3.0	19
125	The diagnosis and management of rare cystic liver metastases from nasopharyngeal carcinoma. Medicine (United States), 2018, 97, e11257.	1.0	7
126	Design of a microfluidic chip consisting of micropillars and its use for the enrichment of nasopharyngeal cancer cells. Oncology Letters, 2019, 17, 1581-1588.	1.8	3
127	Local regression and control of T1â€2 nasopharyngeal carcinoma treated with intensityâ€modulated radiotherapy. Cancer Medicine, 2018, 7, 6010-6019.	2.8	8
128	Long non-coding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics, 2018, 8, 5676-5689.	10.0	102
129	Downregulation of EB virus miR-BART4 inhibits proliferation and aggressiveness while promoting radiosensitivity of nasopharyngeal carcinoma. Biomedicine and Pharmacotherapy, 2018, 108, 741-751.	5.6	29
130	Analysis of geometric variation of neck node levels during image-guided radiotherapy for nasopharyngeal carcinoma: recommended planning margins. Quantitative Imaging in Medicine and Surgery, 2018, 8, 637-647.	2.0	11
131	IncRNA HOTAIR upregulates COX-2 expression to promote invasion and migration of nasopharyngeal carcinoma by interacting with miR-101. Biochemical and Biophysical Research Communications, 2018, 505, 1090-1096.	2.1	23
132	Neoadjuvant Chemotherapy with Fluorouracil plus Nedaplatin or Cisplatin for Locally Advanced Nasopharyngeal Carcinoma: a Retrospective Study. Journal of Cancer, 2018, 9, 367 <u>6-3682.</u>	2.5	12

#	Article	IF	CITATIONS
133	Long non‑coding RNA ZNF674‑1 acts as a cancer suppressor in nasopharyngeal carcinoma. Oncology Letters, 2018, 15, 10047-10054.	1.8	6
134	Long-term outcomes of alternating chemoradiotherapy in patients with advanced nasopharyngeal cancer: a single-centre experience over the last decade. Acta Otorhinolaryngologica Italica, 2018, 38, 103-108.	1.5	2
135	A novel N staging system for NPC based on IMRT and RTOG guidelines for lymph node levels: Results of a prospective multicentric clinical study. Oncology Letters, 2018, 16, 308-316.	1.8	5
136	Association of E adherin methylation with risk of nasopharyngeal cancer: A metaâ€analysis. Head and Neck, 2018, 40, 2538-2545.	2.0	7
137	Nutlin-3, A p53-Mdm2 Antagonist for Nasopharyngeal Carcinoma Treatment. Mini-Reviews in Medicinal Chemistry, 2018, 18, 173-183.	2.4	40
138	Pretreatment quality of life as a predictor of survival for patients with nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2018, 18, 114.	2.6	13
139	Effect of induction chemotherapy with cisplatin, fluorouracil, with or without taxane on locoregionally advanced nasopharyngeal carcinoma: a retrospective, propensity scoreâ€matched analysis. Cancer Communications, 2018, 38, 1-10.	9.2	26
140	Which neoadjuvant chemotherapy regimen should be recommended for patients with advanced nasopharyngeal carcinoma?. Medicine (United States), 2018, 97, e11978.	1.0	14
141	Platinum-based concurrent chemotherapy remains the optimal regimen for nasopharyngeal carcinoma: a large institutional-based cohort study from an endemic area. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2231-2243.	2.5	9
142	Feasibility of ipsilateral lower neck sparing irradiation for unilateral or bilateral neck node-negative nasopharyngeal carcinoma: systemic review and meta-analysis of 2, 521 patients. Radiation Oncology, 2018, 13, 141.	2.7	11
143	Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma. PLoS ONE, 2018, 13, e0191295.	2.5	15
144	CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miRâ€4288â€induced ELF3 inhibition. Journal of Cellular Physiology, 2019, 234, 1699-1706.	4.1	70
145	Feedback loop in miRâ€449bâ€3p/ADAM17/NFâ€₽̂B promotes metastasis in nasopharyngeal carcinoma. Cancer Medicine, 2019, 8, 6049-6063.	2.8	9
146	A combined marker based on plasma D-dimer and serum albumin levels in patients with nasopharyngeal carcinoma is associated with poor survival outcomes in a retrospective cohort study. Journal of Cancer, 2019, 10, 3691-3697.	2.5	7
147	Association between Pretreatment Serum High-density Lipoprotein Cholesterol and Treatment Outcomes in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma Treated with Chemoradiotherapy: Findings from a Randomised Trial. Journal of Cancer, 2019, 10, 3618-3623.	2.5	4
148	The evolution of nasopharyngeal carcinoma staging. British Journal of Radiology, 2019, 92, 20190244.	2.2	73
149	Induction gemcitabine and cisplatin in locoregionally advanced nasopharyngeal carcinoma. Cancer Communications, 2019, 39, 1-4.	9.2	21
150	Knockdown of Notch1 inhibits nasopharyngeal carcinoma cell growth and metastasis via downregulation of CCL2, CXCL16, and uPA. Molecular Carcinogenesis, 2019, 58, 188 <u>6-1896.</u>	2.7	15

#	Article	IF	CITATIONS
151	Fabrication of SERS active Langmuir–Blodgett Film substrate for screening human cancer cell lines: Experimental observations supported by multivariate data analyses. Sensors and Actuators B: Chemical, 2019, 299, 126962.	7.8	15
152	Thyroid doseâ€volume thresholds for the risk of radiationâ€related hypothyroidism in nasopharyngeal carcinoma treated with intensityâ€modulated radiotherapy—A singleâ€institution study. Cancer Medicine, 2019, 8, 6887-6893.	2.8	19
153	Prognostic value of radiologic extranodal extension and its potential role in future N classification for nasopharyngeal carcinoma. Oral Oncology, 2019, 99, 104438.	1.5	43
154	Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Cancer Control, 2019, 26, 107327481988389.	1.8	7
155	Cetuximab in the management of nasopharyngeal carcinoma – a narrative review. Journal of Laryngology and Otology, 2019, 133, 843-855.	0.8	3
156	A novel and nonâ€invasive approach utilising nasal washings for the detection of nasopharyngeal carcinoma. International Journal of Cancer, 2019, 145, 2260-2266.	5.1	12
157	Establishment and validation of a nomogram for predicting survival in patients with de novo metastatic nasopharyngeal carcinoma. Oral Oncology, 2019, 94, 73-79.	1.5	12
158	Use of intensity-modulated radiation therapy for nasopharyngeal cancer in Japan: analysis using a national database. Japanese Journal of Clinical Oncology, 2019, 49, 639-645.	1.3	3
159	Prognostic Value of the Pretreatment Primary Lesion Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma. Academic Radiology, 2019, 26, 1473-1482.	2.5	15
160	Adapted strategy to tumor response in childhood nasopharyngeal carcinoma: the French experience. Strahlentherapie Und Onkologie, 2019, 195, 504-516.	2.0	20
161	Adjunctive Chinese herbal medicine therapy for nasopharyngeal carcinoma: Clinical evidence and experimental validation. Head and Neck, 2019, 41, 2860-2872.	2.0	21
162	<p>Stage-specific concurrent chemoradiotherapy with or without induction chemotherapy for locoregionally advanced nasopharyngeal carcinoma: a retrospective, population-based study</p> . Cancer Management and Research, 2019, Volume 11, 9813-9827.	1.9	4
163	Aberrant promoter methylation reduced the expression of protocadherin 17 in nasopharyngeal cancer. Biochemistry and Cell Biology, 2019, 97, 364-368.	2.0	5
164	MiRâ€194 regulates nasopharyngeal carcinoma progression by modulating <scp>MAP</scp> 3K3 expression. FEBS Open Bio, 2019, 9, 43-52.	2.3	17
165	Bufalin Induces Apoptotic Cell Death in Human Nasopharyngeal Carcinoma Cells through Mitochondrial ROS and TRAIL Pathways. The American Journal of Chinese Medicine, 2019, 47, 237-257.	3.8	30
166	The efficacy and safety of docetaxel, cisplatin and fluorouracil (TPF)-based induction chemotherapy followed by concurrent chemoradiotherapy for locoregionally advanced nasopharyngeal carcinoma: a meta-analysis. Clinical and Translational Oncology, 2020, 22, 429-439.	2.4	12
167	Prevalence and Associated Impacts of Cervical Esophageal Clearance Issues Post Chemoradiotherapy for Nasopharyngeal Carcinoma (NPC). Dysphagia, 2020, 35, 99-109.	1.8	7
168	Nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: clinical outcomes and patterns of failure among subsets of 8th AJCC stage IVa. European Radiology, 2020, 30, 816-822.	4.5	23

#	Article	IF	CITATIONS
169	Relationship between serum tumor markers and Anaplastic Lymphoma Kinase mutations in stage IV lung adenocarcinoma in Hubei province, Central China. Journal of Clinical Laboratory Analysis, 2020, 34, e23027.	2.1	6
170	LncRNA XIST knockdown suppresses the malignancy of human nasopharyngeal carcinoma through XIST/miRNA-148a-3p/ADAM17 pathway in vitro and in vivo. Biomedicine and Pharmacotherapy, 2020, 121, 109620.	5.6	21
171	A Multicentre UK Study of Outcomes of Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy ± Chemotherapy. Clinical Oncology, 2020, 32, 238-249.	1.4	11
172	Optimizing the Treatment Pattern for De Novo Metastatic Nasopharyngeal Carcinoma Patients: A Large-Scale Retrospective Cohort Study. Frontiers in Oncology, 2020, 10, 543646.	2.8	7
173	Nucleolar and spindle-associated protein 1 accelerates cellular proliferation and invasion in nasopharyngeal carcinoma by potentiating Wnt/β-catenin signaling via modulation of GSK-3β. Journal of Bioenergetics and Biomembranes, 2020, 52, 441-451.	2.3	4
174	Tetrandrine inhibits cell migration and invasion in human nasopharyngeal carcinoma NPCâ€TW 039 cells through inhibiting MAPK and RhoA signaling pathways. Journal of Food Biochemistry, 2020, 44, e13387.	2.9	6
175	Clinical Characteristics and Prognostic Factors of Early and Late Recurrence After Definitive Radiotherapy for Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 1469.	2.8	10
176	p63+Krt5+ basal cells are increased in the squamous metaplastic epithelium of patients with radiation-induced chronic Rhinosinusitis. Radiation Oncology, 2020, 15, 222.	2.7	6
177	Serum Calcium Levels Before Antitumour Therapy Predict Clinical Outcomes in Patients with Nasopharyngeal Carcinoma. OncoTargets and Therapy, 2020, Volume 13, 13111-13119.	2.0	6
178	EGFRâ€rich extracellular vesicles derived from highly metastatic nasopharyngeal carcinoma cells accelerate tumour metastasis through PI3K/AKT pathwayâ€suppressed ROS. Journal of Extracellular Vesicles, 2020, 10, e12003.	12.2	25
179	Dysphagia after chemoâ€radiation for nasopharyngeal cancer: A scoping review. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2020, 6, 10-24.	1.6	13
180	Combination of diffusion-weighted imaging and arterial spin labeling at 3.0ÂT for the clinical staging of nasopharyngeal carcinoma. Clinical Imaging, 2020, 66, 127-132.	1.5	3
181	Gene Signatures and Prognostic Values of m6A Genes in Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 875.	2.8	24
182	Nasopharyngeal Neoplasms. Medical Radiology, 2020, , 191-235.	0.1	0
183	Low-dose fractionated radiation with induction docetaxel and cisplatin followed by concurrent cisplatin and radiation therapy in locally advanced nasopharyngeal cancer: A randomized phase II–III trial. Hematology/ Oncology and Stem Cell Therapy, 2021, 14, 199-205.	0.9	3
184	Correlation of intensity-modulated radiation therapy at a specific radiation dose with the prognosis of nasal mucous damage after radiotherapy. Radiation and Environmental Biophysics, 2020, 59, 245-255.	1.4	9
186	Emerging roles of HOTAIR in human cancer. Journal of Cellular Biochemistry, 2020, 121, 3235-3247.	2.6	36
187	The Five-Year Survival Rate of Patients with Nasopharyngeal Carcinoma Based on Tumor Response after Receiving Neoadjuvant Chemotherapy, Followed by Chemoradiation, in Indonesia: A Retrospective Study. Oncology, 2020, 98, 154-160.	1.9	14

#	Article	IF	CITATIONS
188	Baseline Low Prognostic Nutritional Index Predicts Poor Survival in Locally Advanced Nasopharyngeal Carcinomas Treated With Radical Concurrent Chemoradiotherapy. Ear, Nose and Throat Journal, 2021, 100, NP69-NP76.	0.8	9
189	Angiotensin II receptor blockers valsartan and losartan improve survival rate clinically and suppress tumor growth via apoptosis related to PI3K/AKT signaling in nasopharyngeal carcinoma. Cancer, 2021, 127, 1606-1619.	4.1	12
190	Prognostic Value of Pretreatment Serum Cystatin C Level in Nasopharyngeal Carcinoma Patients in the Intensity-modulated Radiotherapy Era. OncoTargets and Therapy, 2021, Volume 14, 29-37.	2.0	1
191	Management of Neck Disease in Early Stage Disease. Practical Guides in Radiation Oncology, 2021, , 47-56.	0.1	0
192	O6-methylguanine-DNA methyltransferase modulates cisplatin-induced DNA double-strand breaks by targeting the homologous recombination pathway in nasopharyngeal carcinoma. Journal of Biomedical Science, 2021, 28, 2.	7.0	12
193	The Current Role of Adjuvant Chemotherapy in Locally Advanced Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 585046.	2.8	9
194	Efficacy of Transnasal Endoscopic Fineâ€Needle Aspiration Biopsy in Diagnosing Submucosal Nasopharyngeal Carcinoma. Laryngoscope, 2021, 131, 1798-1804.	2.0	4
195	Concurrent chemoradiotherapy with additional chemotherapy for nasopharyngeal carcinoma: A pooled analysis of propensity scoreâ€matching studies. Head and Neck, 2021, 43, 1912-1927.	2.0	3
196	Clinical features of post-radiation nasopharyngeal necrosis and their outcomes following surgical intervention in nasopharyngeal cancer patients. Oral Oncology, 2021, 114, 105180.	1.5	6
197	Corticosteroid Therapy in Optic Neuropathy Secondary to Nasopharyngeal Carcinoma. Cureus, 2021, 13, e13735.	0.5	4
198	Network Pharmacology Reveals Polyphyllin II as One Hit of Nano Chinese Medicine Monomers against Nasopharyngeal Carcinoma. Bioinorganic Chemistry and Applications, 2021, 2021, 1-10.	4.1	16
199	Antitumor and Radiosensitization Effects of a CXCR2 Inhibitor in Nasopharyngeal Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 689613.	3.7	6
200	Efficacy and safety of two different adjuvant chemotherapy regimens in combination with concurrent chemoradiotherapy in treating patients with advanced nasopharyngeal carcinoma. Medicine (United) Tj ETQqO O	01gBT/O	vedock 10 T
201	Establishment of a Prognostic Nomogram for Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Incorporating TNM Stage, Post-Induction Chemotherapy Tumor Volume and Epstein-Barr Virus DNA Load. Frontiers in Oncology, 2021, 11, 683475.	2.8	11
202	IMRT improves local control in patients with nasopharyngeal carcinoma compared with conventional radiotherapy: propensity score-matched analysis. Japanese Journal of Clinical Oncology, 2021, 51, 1444-1451.	1.3	4
203	Survival benefit of induction chemotherapy in treatment for stage III or IV locally advanced nasopharyngeal carcinoma – An updated meta-analysis and systematic review. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 102973.	1.3	4
204	Effectiveness of an Intervention to Promote Self-Efficacy on Quality of Life of Patients with Nasopharyngeal Carcinoma of the Zhuang Tribe Minority in Guangxi, China: A Prospective Study. Medical Science Monitor, 2017, 23, 4077-4086.	1.1	9
205	The Pretreatment Albumin to Globulin Ratio Has Predictive Value for Long-Term Mortality in Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e94473.	2.5	99

#	Article	IF	CITATIONS
206	Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells. PLoS ONE, 2015, 10, e0135236.	2.5	18
207	The Impact of the Overall Radiotherapy Time on Clinical Outcome of Patients with Nasopharyngeal Carcinoma; A Retrospective Study. PLoS ONE, 2016, 11, e0151899.	2.5	10
208	Neoadjuvant and Concurrent Chemotherapy Have Varied Impacts on the Prognosis of Patients with the Ascending and Descending Types of Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy. PLoS ONE, 2016, 11, e0161878.	2.5	8
209	Twist1 promotes radioresistance in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 81332-81340.	1.8	14
210	Sphingosine kinase 1 is a potential therapeutic target for nasopharyngeal carcinoma. Oncotarget, 2016, 7, 80586-80598.	1.8	7
211	High pretreatment serum gamma-glutamyl transpeptidase predicts an inferior outcome in nasopharyngeal carcinoma. Oncotarget, 2017, 8, 67651-67662.	1.8	11
212	Inhibition of Notch-1 pathway is involved in rottlerin-induced tumor suppressive function in nasopharyngeal carcinoma cells. Oncotarget, 2017, 8, 62120-62130.	1.8	7
213	Addition of 5-fluorouracil to first-line induction chemotherapy with docetaxel and cisplatin before concurrent chemoradiotherapy does not improve survival in locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2017, 8, 91150-91161.	1.8	16
214	Prognostic value of MET protein overexpression and gene amplification in locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2015, 6, 13309-13319.	1.8	19
215	miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget, 2015, 6, 15995-16018.	1.8	50
216	Association of <i>CELF2</i> polymorphism and the prognosis of nasopharyngeal carcinoma in southern Chinese population. Oncotarget, 2015, 6, 27176-27186.	1.8	9
217	Serum apolipoprotein A-I is a novel prognostic indicator for non-metastatic nasopharyngeal carcinoma. Oncotarget, 2015, 6, 44037-44048.	1.8	25
218	Risk stratification based on change in plasma Epstein-Barr virus DNA load after treatment in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 9576-9585.	1.8	19
219	Establishment of an integrated model incorporating standardised uptake value and N-classification for predicting metastasis in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 13612-13620.	1.8	18
220	A new staging system for nasopharyngeal carcinoma based on intensity-modulated radiation therapy: results of a prospective multicentric clinical study. Oncotarget, 2016, 7, 15252-15261.	1.8	20
221	<p>Inhibition of HMGB1 Overcomes Resistance to Radiation and Chemotherapy in Nasopharyngeal Carcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 4189-4199.	2.0	13
222	microRNA‑93, upregulated in serum of nasopharyngeal carcinoma patients, promotes tumor cell proliferation by targeting PDCD4. Experimental and Therapeutic Medicine, 2020, 19, 2579-2587.	1.8	3
223	CircCTDP1 promotes nasopharyngeal carcinoma progression via a microRNA‑320b/HOXA10/TGFβ2 pathway. International Journal of Molecular Medicine, 2020, 45, 836-846.	4.0	16

#	Article	IF	CITATIONS
224	Cetuximab in combination with chemoradiotherapy for nasopharyngeal carcinoma: A meta-analysis. Indian Journal of Cancer, 2018, 55, 196.	0.2	4
225	Risk Assessment of Secondary Primary Malignancies in Nasopharyngeal Carcinoma: A Big-Data Intelligence Platform-Based Analysis of 6,377 Long-term Survivors from an Endemic Area Treated with Intensity-Modulated Radiation Therapy during 2003-2013. Cancer Research and Treatment, 2019, 51, 982-991.	3.0	11
226	Subdivision of Nasopharyngeal Carcinoma Patients with Bone-Only Metastasis at Diagnosis for Prediction of Survival and Treatment Guidance. Cancer Research and Treatment, 2019, 51, 1259-1268.	3.0	18
227	Nasopharyngeal carcinoma – treatment possibilities in patients with primary metastatic carcinoma. OnCOReview, 2017, 7, 44-48.	0.2	1
228	ZD1839 and Cisplatin Alone or in Combination for Treatment of a Nasopharyngeal Carcinoma Cell Line and Xenografts. Asian Pacific Journal of Cancer Prevention, 2013, 14, 1787-1790.	1.2	2
229	Mangiferin Induces Apoptosis by Regulating Bcl-2 and Bax Expression in the CNE2 Nasopharyngeal Carcinoma Cell Line. Asian Pacific Journal of Cancer Prevention, 2014, 15, 7065-7068.	1.2	58
230	Clinicopathological Significance of ATRX Expression in Nasopharyngeal Carcinoma Patients: A Retrospective Study. Journal of Cancer, 2021, 12, 6931-6936.	2.5	0
231	Association of Systemic Inflammation and Malnutrition With Survival in Nasopharyngeal Carcinoma Undergoing Chemoradiotherapy: Results From a Multicenter Cohort Study. Frontiers in Oncology, 2021, 11, 766398.	2.8	13
232	Is the Neoadjuvant Docetaxel, Cisplatin and 5-Fluorouracil Regimen Superior to Classic Cisplatin and 5-Fluorouracil for Locoregionally Advanced Nasopharyngeal Carcinoma?. Journal of Cancer Research Updates, 0, , .	0.3	0
233	Biomarkers in Nasopharyngeal Carcinoma and Ionizing Radiation. Biomarkers in Disease, 2015, , 875-890.	0.1	О
		0.12	
234	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421.	0.1	0
234 236	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie. , 2016, , 177-212.	0.1	0
234 236 238	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie. , 2016, , 177-212. Rare Tumors in Pediatric Oncology. Pediatric Oncology, 2018, , 131-170.	0.1	0 0 0
234 236 238 239	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie., 2016,, 177-212. Rare Tumors in Pediatric Oncology. Pediatric Oncology, 2018,, 131-170. Feasibility and efficiency of double-agent versus single-agent concurrent chemoradiotherapy in patients with nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104704.	0.1 0.5 1.5	0 0 0
234 236 238 239 240	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie. , 2016, , 177-212. Rare Tumors in Pediatric Oncology. Pediatric Oncology, 2018, , 131-170. Feasibility and efficiency of double-agent versus single-agent concurrent chemoradiotherapy in patients with nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104704. Geometric Changes in the Parotid, Submandibular, and Thyroid Glands during Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Cohort Study. Journal of Analytical Oncology, 0, 9, 46-55.	0.1 0.5 1.5 0.1	0 0 0 1 0
234 236 238 239 240	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie. , 2016, , 177-212. Rare Tumors in Pediatric Oncology. Pediatric Oncology, 2018, , 131-170. Feasibility and efficiency of double-agent versus single-agent concurrent chemoradiotherapy in patients with nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104704. Geometric Changes in the Parotid, Submandibular, and Thyroid Glands during Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Cohort Study. Journal of Analytical Oncology, 0, 9, 46-55. Sustained improvement of quality of life for nasopharyngeal carcinoma treated by intensity modulated radiation therapy in long-term survivors. International Journal of Clinical and Experimental Medicine, 2015, 8, 5658-66.	0.1 0.5 1.5 0.1 1.3	0 0 0 1 0 7
 234 236 238 239 240 241 242 	Clinical results of recurrent nasopharyngeal cancer. Japanese Journal of Head and Neck Cancer, 2015, 41, 418-421. Onkologie., 2016,, 177-212. Rare Tumors in Pediatric Oncology. Pediatric Oncology, 2018,, 131-170. Feasibility and efficiency of double-agent versus single-agent concurrent chemoradiotherapy in patients with nasopharyngeal carcinoma. Oral Oncology, 2020, 106, 104704. Geometric Changes in the Parotid, Submandibular, and Thyroid Clands during Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Cohort Study. Journal of Analytical Oncology, 0, 9, 46-55. Sustained improvement of quality of life for nasopharyngeal carcinoma treated by intensity modulated radiation therapy in long-term survivors. International Journal of Clinical and Experimental Medicine, 2015, 8, 5658-66. Comparison between nedaplatin and cisplatin plus docetaxel combined with intensity-modulated radiotherapy for locoregionally advanced nasopharyngeal carcinoma: a multicenter randomized phase II clinical trial. American Journal of Cancer Research, 2016, 6, 2064-2075.	0.1 0.5 1.5 0.1 1.3 1.4	0 0 0 1 0 7 13

#	Article	IF	CITATIONS
244	INHBA knockdown inhibits proliferation and invasion of nasopharyngeal carcinoma SUNE1 cells in vitro. International Journal of Clinical and Experimental Pathology, 2020, 13, 854-868.	0.5	7
245	Tumor factors associated with inâ€field failure for nasopharyngeal carcinoma after intensityâ€modulated radiotherapy. Head and Neck, 2022, 44, 876-888.	2.0	6
246	Dihydromyricetin inhibits cancer cell migration and matrix metalloproteinasesâ€2 expression in human nasopharyngeal carcinoma through extracellular signalâ€regulated kinase signaling pathway. Environmental Toxicology, 2022, 37, 1244-1253.	4.0	9
247	Development of a Radiotherapy Localisation Computed Tomography-Based Radiomic Model for Predicting Survival in Patients With Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy Following Induction Chemotherapy. Cancer Control, 2022, 29, 107327482210768.	1.8	0
248	Positive regulation of ataxia-telangiectasia-mutated protein (ATM) by E2F transcription Factor 1 (E2F-1) in cisplatin-resistant nasopharyngeal carcinoma cells. World Journal of Surgical Oncology, 2022, 20, 88.	1.9	0
249	Effect of Hydrogen Inhalation Therapy on Hearing Loss of Patients With Nasopharyngeal Carcinoma After Radiotherapy. Frontiers in Medicine, 2022, 9, 828370.	2.6	3
250	Trend of nasopharyngeal carcinoma mortality and years of life lost in China and its provinces from 2005 to 2020. International Journal of Cancer, 2022, 151, 684-691.	5.1	14
251	Changes in Plasma Beta-Endorphin Levels in Stage III–IV Nasopharyngeal Carcinoma Patients Post World Health Organization 3-Step Analgesic Ladder Therapy. Asian Journal of Oncology, 0, 08, 066-071.	0.2	0
252	Effect of Concurrent Chemoradiotherapy With Nedaplatin vs Cisplatin on the Long-term Outcomes of Survival and Toxic Effects Among Patients With Stage II to IVB Nasopharyngeal Carcinoma. JAMA Network Open, 2021, 4, e2138470.	5.9	9
253	Upright epiglottis prevents aspiration in patients with nasopharyngeal carcinoma post-chemoradiation. PLoS ONE, 2021, 16, e0261110.	2.5	5
256	Hsa_circ_0000345 inhibits cell proliferation, migration and invasion of nasopharyngeal carcinoma cells via miR-513a-3p/PTEN axis. Journal of Physiological Sciences, 2022, 72, 10.	2.1	0
258	The role of synbiotics in improving inflammatory status in nasopharyngeal carcinoma patients. Journal of Basic and Clinical Physiology and Pharmacology, 2023, 34, 263-275.	1.3	0
259	Role of neo-adjuvant chemotherapy in locally advanced nasopharyngeal carcinoma. IP Indian Journal of Anatomy and Surgery of Head Neck and Brain, 2022, 8, 51-56.	0.1	0
260	Definition of an Normal Tissue Complication Probability Model for the Inner Ear in Definitive Radiochemotherapy of Nasopharynx Carcinoma. Cancers, 2022, 14, 3422.	3.7	2
261	Modulation of diverse oncogenic signaling pathways by oroxylin A: An important strategy for both cancer prevention and treatment. Phytomedicine, 2022, 105, 154369.	5.3	9
262	Prognostic Relevance of Change in Body Mass Index in Patients With Nasopharyngeal Carcinoma Undergoing Volumetric Modulated Arc Therapy: A Retrospective Study. Cancer Control, 2022, 29, 107327482211269.	1.8	1
263	A Case of Mucoepidermoid Carcinoma of the Nasopharynx that Recurred after 18 Years. Journal of Clinical Otolaryngology, 2022, 33, 144-148.	0.1	0
264	Association of delayed chemoradiotherapy with elevated Epstein-Barr virus DNA load and adverse clinical outcome in nasopharyngeal carcinoma treatment during the COVID-19 pandemic: a retrospective study. Cancer Cell International, 2022, 22, .	4.1	1

#	Article	IF	CITATIONS
265	A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma. European Radiology, 2023, 33, 2171-2184.	4.5	3
266	Vertical nanowires enhanced X-ray radiation damage of cells. Journal of Materials Science and Technology, 2023, 145, 7-13.	10.7	0
267	The value of intravoxel incoherent motion model-based diffusion-weighted imaging for predicting long-term outcomes in nasopharyngeal carcinoma. Frontiers in Oncology, 0, 12, .	2.8	0
268	Head and neck MRI-based T stage and [18F]FDG PET/CT-based N/M stage improved prognostic stratification in primary nasopharyngeal carcinoma. European Radiology, 2023, 33, 7952-7966.	4.5	1
269	CPVL suppresses metastasis of nasopharyngeal carcinoma through inhibiting epithelial–mesenchymal transition. Journal of Cancer Research and Clinical Oncology, 2023, 149, 16473-16488.	2.5	0
270	Babe Ruth's Anaplastic Epidermoid Carcinoma of the Nasopharynx. Ear, Nose and Throat Journal, 0, , .	0.8	0
271	A Neural Network-based Method for Predicting Dose to Organs at Risk in Intensity-modulated Radiotherapy for Nasopharyngeal Carcinoma. Clinical Oncology, 2024, 36, 46-55.	1.4	0
272	The association between chronic sinonasal inflammation and nasopharyngeal carcinoma - A systematic review and meta-analysis. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2024, 45, 104206.	1.3	0
273	Statin use reduces radiation-induced stroke risk in advanced nasopharyngeal carcinoma patients. Radiotherapy and Oncology, 2024, 191, 110067.	0.6	0
274	Cyclin B2 impairs the p53 signaling in nasopharyngeal carcinoma. BMC Cancer, 2024, 24, .	2.6	0