Review of sustainable biomass pellets production – A pellets†∰arket in Greece

Renewable and Sustainable Energy Reviews

16, 1426-1436

DOI: 10.1016/j.rser.2011.11.028

Citation Report

#	Article	IF	CITATIONS
1	Research of Woody Biomass Drying Process in Pellet Production. Environmental and Climate Technologies, 2012, 10, 46-50.	0.2	5
2	Recent developments in biomass pelletization $\hat{a} \in \hat{A}$ review. BioResources, 2012, 7, 4451-4490.	0.5	143
3	The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China. Renewable and Sustainable Energy Reviews, 2013, 24, 172-180.	8.2	14
4	The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability. Renewable and Sustainable Energy Reviews, 2013, 25, 511-528.	8.2	152
5	An overview of agricultural biomass for decentralized rural energy in Ghana. Renewable and Sustainable Energy Reviews, 2013, 20, 15-25.	8.2	112
6	A biomass briquetting fuel machine and its large-scale operation system. Journal of Renewable and Sustainable Energy, 2013, 5, .	0.8	11
7	A Review of the Wood Pellet Value Chain, Modern Value/Supply Chain Management Approaches, and Value/Supply Chain Models. Journal of Renewable Energy, 2014, 2014, 1-14.	2.1	13
8	Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant. Renewable and Sustainable Energy Reviews, 2014, 35, 57-72.	8.2	58
9	Optimisation and investment analysis of two biomass-to-heat supply chain structures. Biosystems Engineering, 2014, 120, 81-91.	1.9	14
10	Mixed biomass pellets for thermal energy production: A review of combustion models. Applied Energy, 2014, 127, 135-140.	5.1	124
11	Regionalized Techno-Economic Assessment and Policy Analysis for Biomass Molded Fuel in China. Energies, 2015, 8, 13846-13863.	1.6	21
12	Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ingenieria E Investigacion, 2015, 35, 17-23.	0.2	19
13	Biomass Pellet Technology: A Green Approach for Sustainable Development. , 2015, , 403-433.		3
14	The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges. Renewable and Sustainable Energy Reviews, 2015, 51, 730-740.	8.2	31
15	The suitability of wood pellet heating for domestic households: A review of literature. Renewable and Sustainable Energy Reviews, 2015, 42, 1362-1369.	8.2	74
16	Torrefied Biomass Pellets: An alternative fuel for coal power plants. , 2016, , .		5
17	Five years left – How are the EU member states contributing to the 20% target for EU's renewable energy consumption; the role of woody biomass. Biomass and Bioenergy, 2016, 95, 64-77.	2.9	78
18	Pyrolysis process for the treatment of food waste. Bioresource Technology, 2016, 218, 1203-1207.	4.8	88

CITATION REPORT

#	Article	IF	CITATIONS
19	Environmental evaluation of biomass pelleting using life cycle assessment. Biomass and Bioenergy, 2016, 84, 107-117.	2.9	76
20	Production and quality analysis of pellets manufactured from five potential energy crops in the Northern Region of Costa Rica. Biomass and Bioenergy, 2016, 87, 84-95.	2.9	23
21	Effect of fiber natures on the formation of "solid bridge―for preparing wood sawdust derived biomass pellet fuel. Fuel Processing Technology, 2016, 144, 79-84.	3.7	26
22	Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 2016, 57, 1126-1140.	8.2	1,460
23	Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews, 2017, 71, 1-11.	8.2	223
24	Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Reviews in Environmental Science and Biotechnology, 2017, 16, 81-130.	3.9	189
25	Torrefaction of olive tree pruning: Effect of operating conditions on solid product properties. Fuel, 2017, 202, 109-117.	3.4	94
26	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 2017, 62, 33-86.	15.8	1,748
27	Study of the Mechanical and Energetic Properties of Pellets Produce from Agricultural Biomass of Quinoa, Beans, Oat, Cattail and Wheat. Waste and Biomass Valorization, 2017, 8, 2881-2888.	1.8	12
28	Possibilities of Energy Generation from Olive Tree Residues, by-products and Waste in Crete, Greece. Journal of Agricultural Studies, 2017, 5, 110.	0.2	3
29	Logistics cost analysis between wood pellets and torrefied Biomass Pellets: The case of Portugal. , 2018, , .		5
30	Alternatives of Small-Scale Biorefineries for the Integrated Production of Xylitol from Sugarcane Bagasse. Journal of Renewable Materials, 2018, 6, 139-151.	1.1	16
31	Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging. Environmental Pollution, 2018, 239, 21-29.	3.7	69
32	Production of Wood Pellets from Waste Wood. , 2018, , 181-191.		0
33	An Inclusive Investigation on Conceivable Performance of Rice Straw Incinerated Electricity Generation. Journal of the Institution of Engineers (India): Series B, 2018, 99, 245-261.	1.3	1
34	The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable and Sustainable Energy Reviews, 2018, 82, 380-389.	8.2	61
35	Investigation of the Olive Mill Solid Wastes Pellets Combustion in a Counter-Current Fixed Bed Reactor. Energies, 2018, 11, 1965.	1.6	16
36	Oxidative torrefaction of briquetted birch shavings in the bentonite. Energy, 2018, 165, 303-313.	4.5	22

CITATION REPORT

#	Article	IF	CITATIONS
37	Structural and Functional Features of Chars From Different Biomasses as Potential Plant Amendments. Frontiers in Plant Science, 2018, 9, 1119.	1.7	35
38	Renewable biofuel production from biomass: a review for biomass pelletization, characterization, and thermal conversion techniques. International Journal of Green Energy, 2018, 15, 837-863.	2.1	28
39	Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles. Energies, 2019, 12, 2973.	1.6	24
40	Promoting sustainability of use of biomass as energy resource: Pakistan's perspective. Environmental Science and Pollution Research, 2019, 26, 29606-29619.	2.7	20
41	Participation in a programme for assisted replacement of wood-burning stoves in Chile: The role of sociodemographic factors, evaluation of air quality and risk perception. Energy Policy, 2019, 129, 1220-1226.	4.2	29
42	Biomass conversion into valuable products within the integrated management of bio-resources. E3S Web of Conferences, 2019, 85, 07008.	0.2	6
43	Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters. Renewable Energy, 2019, 138, 805-819.	4.3	65
44	The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews, 2019, 105, 332-348.	8.2	102
45	Advances in Solid Biofuels. Green Energy and Technology, 2019, , .	0.4	14
46	The role of temperature on slow pyrolysis of olive cake for the production of solid fuels and adsorbents. Chemical Engineering Research and Design, 2019, 121, 209-220.	2.7	29
47	Optimization of Pelleting and Infrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM). Waste and Biomass Valorization, 2019, 10, 1711-1729.	1.8	17
48	Machine for Producing Tablets From Coal Powder. , 2020, , 407-410.		0
49	Technology for Producing Briquettes From Wet Biomass. , 2020, , 901-907.		0
50	Small to Medium Burners for Agricultural Pellets. , 2020, , 789-792.		1
51	Large Biomass Burners for Fuel Switch in Existing Fossil Fuel Based Plants. , 2020, , 403-406.		1
52	Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark. Renewable Energy, 2020, 149, 933-939.	4.3	14
53	Small to Medium Scale Gasification Plant. , 2020, , 793-796.		0
54	Life cycle assessment of biomass pellets: A review of methodological choices and results. Renewable and Sustainable Energy Reviews, 2020, 133, 110278.	8.2	30

#	Article	IF	CITATIONS
55	Sustainability assessment of straw direct combustion power generation in China: From the environmental and economic perspectives of straw substitute to coal. Journal of Cleaner Production, 2020, 273, 122890.	4.6	34
56	Sustainable biomass pellets using trunk wood from olive groves at the end of their life cycle. Energy Reports, 2020, 6, 2627-2640.	2.5	5
57	Analysis of the Possibilities for Using Renewable Energy Sources in the Autonomous Province of Vojvodina. Sustainability, 2020, 12, 5645.	1.6	4
58	Pelletizing of hydrochar biofuels with organic binders. Fuel, 2020, 280, 118659.	3.4	20
59	The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions. Energies, 2020, 13, 5107.	1.6	17
60	Mixed biomass pelleting potential for Portugal, step forward to circular use of biomass residues. Energy Reports, 2020, 6, 940-945.	2.5	12
61	Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM). Energy, 2020, 198, 117369.	4.5	46
62	Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 2020, 123, 109763.	8.2	317
63	Selection of sustainable solutions for crop residue burning: an environmental issue in northwestern states of India. Environment, Development and Sustainability, 2021, 23, 3696-3730.	2.7	25
64	Transaction Cost Theory: a Case Study in the Biomass-to-Energy Sector. Current Sustainable/Renewable Energy Reports, 2021, 8, 57-69.	1.2	2
65	Biomass Waste as Sustainable Raw Material for Energy and Fuels. Sustainability, 2021, 13, 794.	1.6	108
66	Energy Recovery from Invasive Species: Creation of Value Chains to Promote Control and Eradication. Recycling, 2021, 6, 21.	2.3	15
67	Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production. Energies, 2021, 14, 2263.	1.6	8
68	Energy Recovery of Agricultural Residues: Incorporation of Vine Pruning in the Production of Biomass Pellets with ENplus® Certification. Recycling, 2021, 6, 28.	2.3	8
70	Sustainability of agricultural waste power generation industry in China: criteria relationship identification and policy design mechanism. Environment, Development and Sustainability, 2022, 24, 3371-3395.	2.7	8
71	Environmental effects from the use of traditional biomass for heating in rural areas: a case study of Anogeia, Crete. Environment, Development and Sustainability, 2022, 24, 5473-5495.	2.7	3
72	Valorization of Insulation Cellulose Waste as Solid Biomass Fuel. Applied Sciences (Switzerland), 2021, 11, 8223.	1.3	3
73	A review of the mechanism of bonding in densified biomass pellets. Renewable and Sustainable Energy Reviews, 2021, 148, 111249.	8.2	50

	CITATION REF	PORT	
#	Article	IF	CITATIONS
74	The integration of pelletized agricultural residues into electricity grid: Perspectives from the human, environmental and economic aspects. Journal of Cleaner Production, 2021, 321, 128932.	4.6	8
75	Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 2021, 223, 106997.	3.7	256
76	Solid Biomass Pretreatment Processes. Green Energy and Technology, 2019, , 25-56.	0.4	2
77	AVALIAÇÃO DA CONCENTRAÇÃO DO MERCADO MUNDIAL DE PELLETS DE MADEIRA E AS OPORTUNIDADES PARA O BRASIL. Enciclopédia Biosfera, 2016, 13, 103-113.	0.0	2
78	Influence of Moisture Content of Feedstock Materials on Briquettes Properties. Manufacturing Technology, 2017, 17, 680-685.	0.2	3
79	ACTIVATION ENERGY AND EFFECTIVE MOISTURE DIFFUSIVITY DETERMINATION IN DRYING OF GRINDED ARTICHOKE STEMS. Chemistry Technology and Application of Substances, 2019, 2, 110-114.	0.2	2
80	Costs of Wood Pellet Production in Iran. IBusiness, 2016, 08, 37-47.	0.4	1
81	Biomass Type Selection for Boilers Using TOPSIS Multi-Criteria Model. International Journal of Environmental Science and Development, 0, , 181-186.	0.2	8
82	Modification of Energy Parameters in Wood Pellets with the Use of Waste Cooking Oil. Energies, 2021, 14, 6486.	1.6	6
83	Solid Biofuel Production Perspectives in Ukraine. Naftogazova Energetika, 2019, , 70-78.	0.0	0
84	Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production. Renewable and Sustainable Energy Reviews, 2022, 154, 111821.	8.2	62
85	Overview of biomass conversion to biofuels. , 2022, , 1-48.		1
87	Development of a technological process for the use of lavender waste biomass for energy purposes. , 2020, , .		1
88	Evaluation of the Phytochemical and Pharmacological Potential of Taif's Rose (Rosa damascena Mill) Tj ETQq1	10.7843 1.1	14 rgBT /O
89	Production of fuel pellets from bean crop residues (<i>Phaseolus vulgaris</i>). IET Renewable Power Generation, 0, , .	1.7	2
90	Pamuk ‡iÄŸidi K¼spesi ve Kırmızı Biber İşleme Atıklarından Biyoyakıt Amaçlı Pelet Elde Ediln Northwestern Medical Journal, 0, , 879-890.	nesi. 0.0	0
91	Pelletization of mixed torrefied corn cob and khat stem to enhance the physicochemical and thermal properties of solid biofuel and parametric optimization. Biomass Conversion and Biorefinery, 0, , 1.	2.9	5
93	Effects of Kraft Lignin and Corn Residue on the Production of Eucalyptus Pellets. Bioenergy Research, 2023, 16, 484-493.	2.2	3

ARTICLE

Environmental assessment of biomass-to-biofuels mechanical conversion routes (pelleting,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 To

95	The Use of Wood Pellets in the Production of High Quality Biocarbon Materials. Materials, 2022, 15, 4404.	1.3	4
96	Targeting a Sustainable Sugar Crops Processing Industry: A Review (Part II): Reuse and Conversion Technologies. Sugar Tech, 0, , .	0.9	0
97	Effects of temperature and aspect ratio on heterogeneity of the biochar from pyrolysis of biomass pellet. Fuel Processing Technology, 2022, 235, 107366.	3.7	14
98	Ignition, Combustion, and Mechanical Properties of Briquettes from Coal Slime and Oil Waste, Biomass, Peat and Starch. Waste and Biomass Valorization, 2023, 14, 431-445.	1.8	5
99	Factors affecting the biomass pellet using industrial eucalyptus bark residue. Biomass Conversion and Biorefinery, 0, , .	2.9	2
100	Evaluation of Agricultural Residues as Organic Green Energy Source Based on Seabuckthorn, Blackberry, and Straw Blends. Agronomy, 2022, 12, 2018.	1.3	0
101	Green waste characteristics and sustainable recycling options. Resources, Environment and Sustainability, 2023, 11, 100098.	2.9	6
102	An Experimental and Numerical Study of the Burning of Calliandra Wood Pellets in a 200 kW Furnace. Energies, 2022, 15, 8251.	1.6	1
103	Characterization and quality analysis of biomass pellets prepared from furfural residue, sawdust, corn stalk and sewage sludge. Fuel Processing Technology, 2023, 241, 107620.	3.7	4
104	A Comprehensive Review on "Pyrolysis―for Energy Recovery. Bioenergy Research, 2023, 16, 1417-1437.	2.2	3
105	Barter mode: The institutional innovation for affordable and clean energy (SDG7) in rural China. Biomass and Bioenergy, 2023, 170, 106725.	2.9	3
106	The strategy for developing wood pellets as sustainable renewable energy in Indonesia. Heliyon, 2023, 9, e14217.	1.4	6
108	Biomass Energy from Agriculture. , 2023, , 1-19.		1
110	Potentials and prospects of solid biowaste resources for biofuel production in Ethiopia: a systematic review of the evidence. Biomass Conversion and Biorefinery, 0, , .	2.9	0