Dapagliflozin, metformin XR, or both: initial pharmacot randomised controlled trial

International Journal of Clinical Practice 66, 446-456 DOI: 10.1111/j.1742-1241.2012.02911.x

Citation Report

#	Article	IF	CITATIONS
1	Targeting Renal Glucose Reabsorption for the Treatment of Type 2 Diabetes Mellitus Using the SGLT2 Inhibitor Dapagliflozin. Postgraduate Medicine, 2012, 124, 62-73.	0.9	12
2	Hypoglycemic Potential of Current and Emerging Pharmacotherapies in Type 2 Diabetes Mellitus. Postgraduate Medicine, 2012, 124, 74-83.	0.9	19
3	The Role of the Kidney and Sodium-Glucose Cotransporter-2 Inhibition in Diabetes Management. Clinical Diabetes, 2012, 30, 151-155.	1.2	16
4	Oral Pharmacologic Treatment of Type 2 Diabetes Mellitus: A Clinical Practice Guideline From the American College of Physicians. Annals of Internal Medicine, 2012, 156, 218.	2.0	277
5	New avenues for the pharmacological management of type 2 diabetes: An update. Annales D'Endocrinologie, 2012, 73, 459-468.	0.6	5
6	Dapagliflozin. Drugs, 2012, 72, 2289-2312.	4.9	80
7	Dapagliflozin: an evidence-based review of its potential in the treatment of type-2 diabetes. Core Evidence, 2012, 7, 21.	4.7	10
8	Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012, 5, 313.	1.1	36
9	Dapagliflozin monotherapy in drugâ€naÃ⁻ve patients with diabetes: a randomizedâ€controlled trial of Iowâ€dose range. Diabetes, Obesity and Metabolism, 2012, 14, 951-959.	2.2	142
10	Dapagliflozin for the treatment of type 2 diabetes. Expert Opinion on Pharmacotherapy, 2013, 14, 1695-1703.	0.9	17
11	Sodium–Glucose Cotransporter 2 Inhibitors for Type 2 Diabetes. Annals of Internal Medicine, 2013, 159, 262.	2.0	749
12	Documento de posicionamiento: evaluación y manejo de la hipoglucemia en el paciente concon diabetes mellitus. Grupo de Trabajo de Diabetes Mellitus de la Sociedad Española de EndocrinologÃa y Nutrición. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion 2013 60 517 e1-517 e18	0.8	22
13	Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocrine Disorders, 2013, 13, 58.	0.9	69
14	Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors: Targeting the Kidney to Improve Glycemic Control in Diabetes Mellitus. Diabetes Therapy, 2013, 4, 195-220.	1.2	76
15	SGLT inhibitors in management of diabetes. Lancet Diabetes and Endocrinology,the, 2013, 1, 140-151.	5.5	268
16	Dapagliflozin: a review on efficacy, clinical effectiveness and safety. Expert Opinion on Investigational Drugs, 2013, 22, 131-140.	1.9	20
17	Position statement: Hypoglycemia management in patients with diabetes mellitus. Diabetes Mellitus Working Group of the Spanish Society of Endocrinology and Nutrition. EndocrinologÃa Y Nutrición (English Edition), 2013, 60, 517.e1-517.e18.	0.5	4
18	Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opinion on Investigational Drugs, 2013, 22, 463-486.	1.9	71

#	Article	IF	CITATIONS
19	A review of the efficacy and safety of oral antidiabetic drugs. Expert Opinion on Drug Safety, 2013, 12, 153-175.	1.0	251
20	Sodium–glucose cotransporter inhibition: therapeutic potential for the treatment of type 2 diabetes mellitus. Diabetes/Metabolism Research and Reviews, 2013, 29, 347-356.	1.7	37
21	The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. British Journal of Clinical Pharmacology, 2013, 76, 432-444.	1.1	98
22	The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM). Journal of Diabetes and Its Complications, 2013, 27, 280-286.	1.2	41
23	The Clinical Efficacy and Safety of Sodium Glucose Cotransporter-2 Inhibitors in Adults with Type 2 Diabetes Mellitus. Pharmacotherapy, 2013, 33, 984-999.	1.2	76
24	Review of Insulin-Dependent and Insulin-Independent Agents for Treating Patients With Type 2 Diabetes Mellitus and Potential Role for Sodium-Glucose Co-Transporter 2 Inhibitors. Postgraduate Medicine, 2013, 125, 214-226.	0.9	21
25	Sodium-Glucose Co-Transporter 2 Inhibitors and the Potential for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes Mellitus. Postgraduate Medicine, 2013, 125, 21-32.	0.9	20
26	Glucosuria: a counter intuitive treatment for diabesity. British Journal of Diabetes and Vascular Disease, 2013, 13, 2-6.	0.6	0
27	Impact of Sodium Glucose Cotransporter 2 Inhibitors on Weight in Patients With Type 2 Diabetes Mellitus. Postgraduate Medicine, 2013, 125, 92-100.	0.9	34
28	Effects of Dapagliflozin on Cardiovascular Risk Factors. Postgraduate Medicine, 2013, 125, 181-189.	0.9	100
30	Patient considerations in the management of type 2 diabetes – critical appraisal of dapagliflozin. Patient Preference and Adherence, 2014, 8, 493.	0.8	7
31	Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Design, Development and Therapy, 2014, 8, 1335.	2.0	279
32	Dapagliflozin for the treatment of type 2 diabetes: a review of the literature. Drug Design, Development and Therapy, 2014, 8, 2493.	2.0	21
33	Novel and emerging diabetes mellitus drug therapies for the type 2 diabetes patient. World Journal of Diabetes, 2014, 5, 305.	1.3	20
34	Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs in Context, 2014, 3, 1-19.	1.0	40
35	Patient Characteristics are not Associated with Clinically Important Differential Response to Dapagliflozin: a Staged Analysis of Phase 3 Data. Diabetes Therapy, 2014, 5, 471-482.	1.2	12
36	The potential role of sodium glucose co-transporter 2 inhibitors in combination therapy for type 2 diabetes mellitus. Expert Opinion on Pharmacotherapy, 2014, 15, 2565-2585.	0.9	27
37	Dapagliflozin. Hospital Pharmacy, 2014, 49, 647-662.	0.4	3

#	Article	IF	Citations
38	Sodium glucose transporter protein 2 inhibitors: focusing on the kidney to treat type 2 diabetes. Therapeutic Advances in Endocrinology and Metabolism, 2014, 5, 124-136.	1.4	29
39	The efficacy of dapagliflozin combined with hypoglycaemic drugs in treating type 2 diabetes mellitus: meta-analysis of randomised controlled trials. BMJ Open, 2014, 4, e004619.	0.8	63
40	Empagliflozin improves glycaemic and weight control as addâ€on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24â€week, randomized, placeboâ€controlled trial. Diabetes, Obesity and Metabolism, 2014, 16, 147-158.	2.2	323
41	A Novel Therapeutic Agent for Type 2 Diabetes Mellitus: SGLT2 Inhibitor. Diabetes and Metabolism Journal, 2014, 38, 261.	1.8	66
42	SGLT2 Inhibitors to Control Glycemia in Type 2 Diabetes Mellitus: A New Approach to an Old Problem. Postgraduate Medicine, 2014, 126, 111-117.	0.9	22
43	Place of sodium-glucose co-transporter type 2 inhibitors for treatment of type 2 diabetes. World Journal of Diabetes, 2014, 5, 854.	1.3	47
44	Dapagliflozin efficacy and safety: a perspective review. Therapeutic Advances in Drug Safety, 2014, 5, 242-254.	1.0	42
45	Dapagliflozin as Monotherapy in Drug-Naive Asian Patients With Type 2 Diabetes Mellitus: A Randomized, Blinded, Prospective Phase III Study. Clinical Therapeutics, 2014, 36, 84-100.e9.	1.1	139
46	Dapagliflozin treatment for type 2 diabetes: a systematic review and metaâ€analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews, 2014, 30, 204-221.	1.7	98
47	Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. Journal of the American Society of Hypertension, 2014, 8, 262-275.e9.	2.3	371
48	Dapagliflozin: A Review of Its Use in Patients with Type 2 Diabetes. Drugs, 2014, 74, 2191-2209.	4.9	82
49	Pharmacological treatment and therapeutic perspectives of metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 329-341.	2.6	64
50	A systematic review and mixed-treatment comparison of dapagliflozin with existing anti-diabetes treatments for those with type 2 diabetes mellitus inadequately controlled by sulfonylurea monotherapy. Diabetology and Metabolic Syndrome, 2014, 6, 73.	1.2	20
51	Safety Profile of Dapagliflozin for Type 2 Diabetes: Pooled Analysis of Clinical Studies for Overall Safety and Rare Events. Drug Safety, 2014, 37, 815-829.	1.4	102
52	Combinational therapy with metformin and sodium-glucose cotransporter inhibitors in management of type 2 diabetes: Systematic review and meta-analyses. Diabetes Research and Clinical Practice, 2014, 105, 313-321.	1.1	38
53	SGLT-2 Inhibitors: A New Mechanism for Glycemic Control. Clinical Diabetes, 2014, 32, 4-11.	1.2	131
54	Dapagliflozin for the Treatment of Type 2 Diabetes Mellitus. Annals of Pharmacotherapy, 2014, 48, 1202-1208.	0.9	12
55	Early combination therapy for the treatment of type 2 diabetes mellitus: systematic review and metaâ€analysis. Diabetes, Obesity and Metabolism, 2014, 16, 410-417.	2.2	120

#	Article	IF	CITATIONS
56	Efficacy and safety of sodium glucose coâ€transportâ€2 inhibitors in type 2 diabetes: a metaâ€analysis of randomized clinical trials. Diabetes, Obesity and Metabolism, 2014, 16, 457-466.	2.2	217
57	Dapagliflozin Added to Usual Care in Individuals with Type 2 Diabetes Mellitus with Preexisting Cardiovascular Disease: A 24â€Week, Multicenter, Randomized, Doubleâ€Blind, Placeboâ€Controlled Study with a 28â€Week Extension. Journal of the American Geriatrics Society, 2014, 62, 1252-1262.	1.3	137
58	SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Research and Clinical Practice, 2014, 104, 297-322.	1.1	139
59	Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes, Obesity and Metabolism, 2014, 16, 1102-1110.	2.2	90
60	New Treatments for Type 2 Diabetes: Cardiovascular Protection Beyond Glucose Lowering?. Heart Lung and Circulation, 2014, 23, 997-1008.	0.2	12
61	Blood pressure effects of sodium–glucose co-transport 2 (SGLT2) inhibitors. Journal of the American Society of Hypertension, 2014, 8, 330-339.	2.3	201
62	Genital and urinary tract infections in diabetes: Impact of pharmacologically-induced glucosuria. Diabetes Research and Clinical Practice, 2014, 103, 373-381.	1.1	189
63	Hypoglycaemia in elderly patients with type 2 diabetes mellitus: a review of risk factors, consequences and prevention. Journal of Pharmacy Practice and Research, 2015, 45, 459-469.	0.5	8
64	The potential role of sodium glucose coâ€ŧransporter 2 inhibitors in the early treatment of type 2 diabetes mellitus. International Journal of Clinical Practice, 2015, 69, 1071-1087.	0.8	29
65	Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs. Current Issues in Pharmacy and Medical Sciences, 2015, 28, 155-158.	0.1	3
66	Potential Place of SGLT2 Inhibitors in Treatment Paradigms for type 2 Diabetes Mellitus. Endocrine Practice, 2015, 21, 1054-1065.	1.1	10
67	Durability and tolerability of dapagliflozin over 52 weeks as addâ€on to metformin and sulphonylurea in type 2 diabetes. Diabetes, Obesity and Metabolism, 2015, 17, 1075-1084.	2.2	52
68	Dapagliflozin in type 2 diabetes: effectiveness across the spectrum of disease and over time. International Journal of Clinical Practice, 2015, 69, 186-198.	0.8	14
69	Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Therapeutics and Clinical Risk Management, 2015, 11, 621.	0.9	33
70	Glucuretic effects and renal safety of dapagliflozin in patients with type 2 diabetes. Therapeutic Advances in Endocrinology and Metabolism, 2015, 6, 92-102.	1.4	25
71	Efficacy and safety of dapagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in diabetes mellitus. Cardiovascular Diabetology, 2015, 14, 142.	2.7	68
72	Dapagliflozin Improves Glycemic Control and Reduces Body Weight as Add-on Therapy to Metformin Plus Sulfonylurea: A 24-Week Randomized, Double-Blind Clinical Trial. Diabetes Care, 2015, 38, 365-372.	4.3	115
73	Efficacy and safety of dapagliflozin monotherapy in people with Type 2 diabetes: a randomized doubleâ€blind placeboâ€controlled 102â€week trial. Diabetic Medicine, 2015, 32, 531-541.	1.2	108

#	Article	IF	CITATIONS
74	Twiceâ€daily dapagliflozin coâ€administered with metformin in type 2 diabetes: a 16â€week randomized, placeboâ€controlled clinical trial. Diabetes, Obesity and Metabolism, 2015, 17, 42-51.	2.2	47
75	Dual Add-on Therapy in Type 2 Diabetes Poorly Controlled With Metformin Monotherapy: A Randomized Double-Blind Trial of Saxagliptin Plus Dapagliflozin Addition Versus Single Addition of Saxagliptin or Dapagliflozin to Metformin. Diabetes Care, 2015, 38, 376-383.	4.3	234
76	Dapagliflozin: drug profile and its role in individualized treatment. Expert Review of Cardiovascular Therapy, 2015, 13, 129-139.	0.6	2
77	Dapagliflozin: A new sodium–glucose cotransporter 2 inhibitor for treatment of type 2 diabetes. American Journal of Health-System Pharmacy, 2015, 72, 361-372.	0.5	26
78	Energy Balance After Sodium–Glucose Cotransporter 2 Inhibition. Diabetes Care, 2015, 38, 1730-1735.	4.3	276
81	SGLT2 inhibition: efficacy and safety in type 2 diabetes treatment. Expert Opinion on Drug Safety, 2015, 14, 1879-1904.	1.0	58
82	Clinical use of dipeptidyl peptidase-4 and sodium-glucose cotransporter 2 inhibitors in combination therapy for type 2 diabetes mellitus. Postgraduate Medicine, 2015, 127, 463-479.	0.9	11
83	Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Type 2 Diabetes Mellitus. The Diabetes Educator, 2015, 41, 5S-18S.	2.6	4
84	Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2015, 309, F889-F900.	1.3	113
85	Pharmacodynamics, Efficacy and Safety of Sodium–Glucose Co-Transporter TypeÂ2 (SGLT2) Inhibitors for the Treatment of TypeÂ2 Diabetes Mellitus. Drugs, 2015, 75, 33-59.	4.9	417
86	Pharmacokinetics, pharmacodynamics and clinical efficacy of dapagliflozin for the treatment of type 2 diabetes. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 125-137.	1.5	9
87	Metformin Supports the Antidiabetic Effect of a Sodium Glucose Cotransporter 2 Inhibitor by Suppressing Endogenous Glucose Production in Diabetic Mice. Diabetes, 2015, 64, 284-290.	0.3	35
88	Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults Colombia Medica, 2016, , 109-130.	0.7	39
89	Sodium–glucose cotransporter-2 inhibitor combination therapy to optimize glycemic control and tolerability in patients with type 2 diabetes: focus on dapagliflozin–metformin. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2016, 9, 71.	1.1	4
90	Quality measure attainment with dapagliflozin plus metformin extended-release as initial combination therapy in patients with type 2 diabetes: a post hoc pooled analysis of two clinical studies. Risk Management and Healthcare Policy, 2016, Volume 9, 231-241.	1.2	7
91	Patient considerations in type 2 diabetes – role of combination dapagliflozin–metformin XR. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2016, 9, 25.	1.1	7
92	Changes in HbA1c, body weight, and systolic blood pressure in type 2 diabetes patients initiating dapagliflozin therapy: a primary care database study. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2016, Volume 9, 337-345.	1.1	24
93	Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE, 2016, 11, e0166125.	1.1	188

#	Article	IF	CITATIONS
94	Advantages and Pitfalls of Antihyperglycemic Combination Pills as First-Line Therapy in the Management of Type 2 Diabetes. American Journal of Therapeutics, 2016, 23, e1857-e1866.	0.5	2
95	Long-Term Safety of Dapagliflozin in Older Patients with Type 2 Diabetes Mellitus: A Pooled Analysis of Phase IIb/III Studies. Drugs and Aging, 2016, 33, 511-522.	1.3	32
96	Switching from sulphonylurea to a sodiumâ€glucose cotransporter2 inhibitor in the fasting month of Ramadan is associated with a reduction in hypoglycaemia. Diabetes, Obesity and Metabolism, 2016, 18, 628-632.	2.2	53
97	The Na+/Glucose Cotransporter Inhibitor Canagliflozin Activates AMPK by Inhibiting Mitochondrial Function and Increasing Cellular AMP Levels. Diabetes, 2016, 65, 2784-2794.	0.3	277
98	Recent development of single preparations and fixed-dose combination tablets for the treatment of non-insulin-dependent diabetes mellitus. Archives of Pharmacal Research, 2016, 39, 731-746.	2.7	14
99	Dapagliflozin in the treatment of patients with type 2 diabetes presenting with high baseline A1C. Postgraduate Medicine, 2016, 128, 356-363.	0.9	7
100	Combination therapy for the improvement of long-term macrovascular and microvascular outcomes in type 2 diabetes: Rationale and evidence for early initiation. Journal of Diabetes and Its Complications, 2016, 30, 1177-1185.	1.2	15
101	Tratamiento de la diabetes mellitus (II). Hipoglucemiantes no insulÃnicos. Medicine, 2016, 12, 1013-1025.	0.0	0
102	Hypersensitivity Events, Including Potentially Hypersensitivity-Related Skin Events, with Dapagliflozin in Patients with Type 2 Diabetes Mellitus: A Pooled Analysis. Clinical Drug Investigation, 2016, 36, 925-933.	1.1	10
103	The power of two: an update on fixed-dose combinations for type 2 diabetes. Expert Review of Clinical Pharmacology, 2016, 9, 1453-1462.	1.3	19
104	Apparent subadditivity of the efficacy of initial combination treatments for type 2 diabetes is largely explained by the impact of baseline HbA1c on efficacy. Diabetes, Obesity and Metabolism, 2016, 18, 348-354.	2.2	10
105	Efficacy and safety of dapagliflozin in addition to insulin therapy in Japanese patients with type 2 diabetes: Results of the interim analysis of 16â€week doubleâ€blind treatment period. Journal of Diabetes Investigation, 2016, 7, 555-564.	1.1	42
106	Clinical Considerations for Use of Initial Combination Therapy in Type 2 Diabetes. Diabetes Care, 2016, 39, S137-S145.	4.3	77
107	Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor Increases Circulating Zinc-Α2-Glycoprotein Levels in Patients with Type 2 Diabetes. Scientific Reports, 2016, 6, 32887.	1.6	47
108	Efficacy and safety of sodiumâ€glucose coâ€ŧransporterâ€2 inhibitors in type 2 diabetes mellitus: systematic review and network metaâ€analysis. Diabetes, Obesity and Metabolism, 2016, 18, 783-794.	2.2	355
109	Sodium–glucose cotransporter 2 inhibition: cardioprotection by treating diabetes—a translational viewpoint explaining its potential salutary effects. European Heart Journal - Cardiovascular Pharmacotherapy, 2016, 2, 244-255.	1.4	38
110	Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovascular Diabetology, 2016, 15, 37.	2.7	148
111	Initial Combination Therapy With Canagliflozin Plus Metformin Versus Each Component as Monotherapy for Drug-NaA ⁻ ve Type 2 Diabetes. Diabetes Care, 2016, 39, 353-362.	4.3	105

#	Article	IF	CITATIONS
112	Pharmacotherapy of Obesity and Metabolic Syndrome. , 2016, , 797-809.		0
113	Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes and Endocrinology,the, 2016, 4, 411-419.	5.5	384
114	Combination therapy of SGLT2 inhibitors with incretin-based therapies for the treatment of type 2 diabetes mellitus: Effects and mechanisms of action. Expert Review of Endocrinology and Metabolism, 2016, 11, 281-296.	1.2	0
115	Osmotic diuresis with SGLT2 inhibition: analysis of events related to volume reduction in dapagliflozin clinical trials. Postgraduate Medicine, 2016, 128, 346-355.	0.9	35
116	The effect of dapagliflozin on renal function in patients with type 2 diabetes. Journal of Nephrology, 2016, 29, 391-400.	0.9	62
117	Sodium–glucose cotransporter 2 inhibitors: an evidence-based practice approach to their use in the natural history of type 2 diabetes. Current Medical Research and Opinion, 2016, 32, 907-919.	0.9	11
118	SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open, 2016, 6, e009417.	0.8	106
119	Cystatin C- and Creatinine-Based Estimates of Glomerular Filtration RateÂin Dapagliflozin Phase 3 Clinical Trials. Diabetes Therapy, 2016, 7, 139-151.	1.2	5
120	Practical considerations for the use of sodium–glucose co-transporter type 2 inhibitors in treating hyperglycemia in type 2 diabetes. Current Medical Research and Opinion, 2016, 32, 1097-1108.	0.9	14
121	Fed and Fasted Single-dose Assessment of Bioequivalence of Dapagliflozin and Metformin Extended-release Fixed-dose Combination Tablets Relative to Single-component Dapagliflozin and Metformin Extended-release Tablets in Healthy Subjects. Clinical Therapeutics, 2016, 38, 99-109.	1.1	11
122	Combination therapy for type 2 diabetes: dapagliflozin plus metformin. Expert Opinion on Pharmacotherapy, 2016, 17, 117-126.	0.9	19
123	Dapagliflozin combination therapy in type 2 diabetes mellitus. Postgraduate Medicine, 2016, 128, 124-136.	0.9	3
124	Dapagliflozin. Journal of Pharmacy Practice, 2016, 29, 165-171.	0.5	4
125	Early Combination Therapy with Oral Glucose-Lowering Agents in Type 2 Diabetes. Drugs, 2017, 77, 247-264.	4.9	25
126	Dapagliflozin improves insulin resistance and glucose intolerance in a novel transgenic rat model of chronic glucose overproduction and glucose toxicity. Diabetes, Obesity and Metabolism, 2017, 19, 1135-1146.	2.2	30
127	Dapagliflozin: potential beneficial effects in the prevention and treatment of renal and cardiovascular complications in patients with type 2 diabetes. Expert Opinion on Pharmacotherapy, 2017, 18, 517-527.	0.9	5
128	A consensus statement for the clinical use of the renal sodium-glucose co-transporter-2 inhibitor dapagliflozin in patients with type 2 diabetes mellitus. Expert Review of Clinical Pharmacology, 2017, 10, 763-772.	1.3	14
129	A network meta-analysis for efficacy and safety of seven regimens in the treatment of type II diabetes. Biomedicine and Pharmacotherapy, 2017, 92, 707-719.	2.5	7

#	Article	IF	CITATIONS
130	Effect of Sodiumâ€Clucose Cotransportâ€2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Metaâ€Analysis of 43 Randomized Control Trials With 22 528 Patients. Journal of the American Heart Association, 2017, 6, .	1.6	226
131	Is insulin the preferred treatment for <scp>HbA1c</scp> >9%?. Journal of Diabetes, 2017, 9, 814-816.	0.8	6
132	Changes in Glycemic Control and Body Weight After Initiation of Dapagliflozin or Basal Insulin Supported Oral Therapy in Type 2 Diabetes: A Primary Care Database Study. Journal of Diabetes Science and Technology, 2017, 11, 590-596.	1.3	4
133	Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 751-759.	2.2	114
134	Understanding and overcoming metformin gastrointestinal intolerance. Diabetes, Obesity and Metabolism, 2017, 19, 473-481.	2.2	141
135	SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia, 2017, 60, 1862-1872.	2.9	134
136	Efficacy of Additional Canagliflozin Administration to Type 2 Diabetes Patients Receiving Insulin Therapy: Examination of Diurnal Glycemic Patterns Using Continuous Glucose Monitoring (CGM). Diabetes Therapy, 2017, 8, 821-827.	1.2	35
137	Durability of response to dapagliflozin: a review of long-term efficacy and safety. Current Medical Research and Opinion, 2017, 33, 1685-1696.	0.9	11
138	Urinary tract and genital infections in patients with type 2 diabetes treated with sodiumâ€glucose coâ€transporter 2 inhibitors: A metaâ€analysis of randomized controlled trials. Diabetes, Obesity and Metabolism, 2017, 19, 348-355.	2.2	160
139	The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. , 2017, 170, 148-165.		96
140	Cost-effectiveness analysis of dapagliflozin versus glimepiride as monotherapy in a Chinese population with type 2 diabetes mellitus. Current Medical Research and Opinion, 2017, 33, 359-369.	0.9	29
141	Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetologica, 2017, 54, 19-36.	1.2	75
142	Efficacy and safety of dapagliflozin in Asian patients: A pooled analysis. Journal of Diabetes, 2017, 9, 787-799.	0.8	16
143	Past and current perspective on new therapeutic targets for Type-II diabetes. Drug Design, Development and Therapy, 2017, Volume 11, 1567-1583.	2.0	18
144	Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2017, Volume 10, 161-167.	1.1	7
145	GuÃa de práctica clÃnica para el tratamiento de la diabetes mellitus tipo 2: manejo inicial. Revista Universitas Medica, 2017, 58, .	0.0	0
146	Effects of the sodium–glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and Stages 3b–4 chronic kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 2005-2011.	0.4	72
147	Comparison of costs and outcomes of dapagliflozin with other glucose-lowering therapy classes added to metformin using a short-term cost-effectiveness model in the US setting. Journal of Medical Economics, 2018, 21, 497-509.	1.0	21

#	Article	IF	CITATIONS
148	Longâ€ŧerm efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes, Obesity and Metabolism, 2018, 20, 1453-1460.	2.2	70
149	<scp>DECLAREâ€TIMI</scp> 58: Participants' baseline characteristics. Diabetes, Obesity and Metabolism, 2018, 20, 1102-1110.	2.2	96
150	Bioequivalence of Dapagliflozin/Metformin Extended-release Fixed-combination Drug Product and Single-component Dapagliflozin and Metformin Extended-release Tablets in Healthy Russian Subjects. Clinical Therapeutics, 2018, 40, 550-561.e3.	1.1	12
151	Dipeptidyl peptidaseâ€4 inhibitors moderate the risk of genitourinary tract infections associated with sodiumâ€glucose coâ€transporterâ€2 inhibitors. Diabetes, Obesity and Metabolism, 2018, 20, 740-744.	2.2	31
152	No disparity of the efficacy and allâ€cause mortality between Asian and nonâ€Asian type 2 diabetes patients with sodium–glucose cotransporter 2 inhibitors treatment: A metaâ€analysis. Journal of Diabetes Investigation, 2018, 9, 850-861.	1.1	49
153	The Association Between the Dosage of SCLT2 Inhibitor and Weight Reduction in Type 2 Diabetes Patients: A Metaâ€Analysis. Obesity, 2018, 26, 70-80.	1.5	109
154	The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1287-1302.	1.5	78
155	Dose response of sodium glucose cotransporter-2 inhibitors in relation to urinary tract infections: a systematic review and network meta-analysis of randomized controlled trials. CMAJ Open, 2018, 6, E594-E602.	1.1	25
156	Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2018, 61, 2461-2498.	2.9	1,002
157	Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2018, 41, 2669-2701.	4.3	2,190
158	Efficacy and Safety of Initial Combination Therapy in Treatment-NaÃ⁻ve Type 2 Diabetes Patients: A Systematic Review and Meta-analysis. Diabetes Therapy, 2018, 9, 1995-2014.	1.2	28
159	Recent progress of sodium-glucose transporter 2 inhibitors as potential antidiabetic agents. Future Medicinal Chemistry, 2018, 10, 1261-1276.	1.1	8
160	Combination Glucose-Lowering Therapy Plans in T2DM: Case-Based Considerations. Advances in Therapy, 2018, 35, 939-965.	1.3	14
161	Effects of sodium glucose co-transporter 2 inhibitors on the kidney. Diabetes and Vascular Disease Research, 2018, 15, 375-386.	0.9	31
162	The safety of DPP-4 inhibitor and SGLT2 inhibitor combination therapies. Expert Opinion on Drug Safety, 2018, 17, 815-824.	1.0	13
163	Characteristics of Dapagliflozin Responders: A Longitudinal, Prospective, Nationwide Dapagliflozin Surveillance Study in Korea. Diabetes Therapy, 2018, 9, 1689-1701.	1.2	18
164	Dapagliflozin vs nonâ€SGLTâ€2i treatment is associated with lower healthcare costs in type 2 diabetes patients similar to participants in the DECLAREâ€TIMI 58 trial: A nationwide observational study. Diabetes, Obesity and Metabolism, 2019, 21, 2651-2659.	2.2	10
165	Effects of the sodiumâ€glucose coâ€ŧransporterâ€2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2667-2673.	2.2	73

#	Article	IF	CITATIONS
166	Are TallyHo Mice A True Mouse Model for Type 2 Diabetes and Alzheimer's Disease?. Journal of Alzheimer's Disease, 2019, 72, S81-S93.	1.2	10
167	Correction of hypomagnesemia by dapagliflozin in patients with type 2 diabetes: A post hoc analysis of 10 randomized, placebo-controlled trials. Journal of Diabetes and Its Complications, 2019, 33, 107402.	1.2	25
169	Rationale for the Early Use of Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Type 2 Diabetes. Advances in Therapy, 2019, 36, 2567-2586.	1.3	12
170	Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes. Journal of Medical Economics, 2019, 22, 336-343.	1.0	19
171	Effects of Sodium-glucose Cotransporter 2 Inhibitor Monotherapy on Weight Changes in Patients With Type 2 Diabetes Mellitus: a Bayesian Network Meta-analysis. Clinical Therapeutics, 2019, 41, 322-334.e11.	1.1	22
172	Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and metaâ€analysis. Diabetes, Obesity and Metabolism, 2019, 21, 1237-1250.	2.2	190
173	Evidence-Based Consensus on Positioning of SGLT2i in Type 2 Diabetes Mellitus in Indians. Diabetes Therapy, 2019, 10, 393-428.	1.2	16
174	Triple therapy with lowâ€dose dapagliflozin plus saxagliptin versus dual therapy with each monocomponent, all added to metformin, in uncontrolled type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 2152-2162.	2.2	15
175	Assessment of Dapagliflozin Effectiveness as Add-on Therapy for the Treatment of Type 2 Diabetes Mellitus in a Qatari Population. Scientific Reports, 2019, 9, 6864.	1.6	7
176	Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open, 2019, 9, e022577.	0.8	144
177	Retrospective Analysis of the Efficacy of Dapagliflozin in Patients with Type 2 Diabetes in a Primary Clinic in Korea. Endocrinology and Metabolism, 2019, 34, 70.	1.3	1
178	Risk assessment of urinary tract infections for patients receiving dapagliflozin. Journal of Intelligent and Fuzzy Systems, 2019, 36, 1041-1048.	0.8	0
179	Nonglycemic Outcomes of Antidiabetic Medications. Clinical Diabetes, 2019, 37, 131-141.	1.2	1
180	9. Pharmacologic Approaches to Glycemic Treatment: <i>Standards of Medical Care in Diabetes—2019</i> . Diabetes Care, 2019, 42, S90-S102.	4.3	695
181	Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLAREâ€TIMI 58 trial: A nationwide observational study. Diabetes, Obesity and Metabolism, 2019, 21, 1136-1145.	2.2	61
182	Combination Therapy with an SGLT2 Inhibitor as Initial Treatment for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2019, 8, 45.	1.0	37
183	Reduction in albuminuria with dapagliflozin cannot be predicted by baseline clinical characteristics or changes in most other risk markers. Diabetes, Obesity and Metabolism, 2019, 21, 720-725.	2.2	15
184	SGLT2 inhibitors and metformin: Dual antihyperglycemic therapy and the risk of metabolic acidosis in type 2 diabetes. European Journal of Pharmacology, 2019, 846, 23-29.	1.7	43

#	Article	IF	CITATIONS
185	Improved glycaemic variability and time in range with dapagliflozin versus gliclazide modified release among adults with type 2 diabetes, evaluated by continuous glucose monitoring: A 12â€week randomized controlled trial. Diabetes, Obesity and Metabolism, 2020, 22, 501-511.	2.2	8
186	Efficacy and safety of dapagliflozin in Japanese patients with inadequately controlled type 1 diabetes (DEPICTâ€5): 52â€week results from a randomized, open″abel, phase III clinical trial. Diabetes, Obesity and Metabolism, 2020, 22, 540-548.	2.2	22
187	Effects of dapagliflozin on cardiovascular outcomes in type 2 diabetes. Medicine (United States), 2020, 99, e22660.	0.4	0
188	Age, sex, disease severity, and diseaseÂduration difference in placebo response: implications from a meta-analysis of diabetes mellitus. BMC Medicine, 2020, 18, 322.	2.3	5
189	Real-world risk of hypoglycemia-related hospitalization in Japanese patients with type 2 diabetes using SGLT2 inhibitors: a nationwide cohort study. BMJ Open Diabetes Research and Care, 2020, 8, e001856.	1.2	18
190	Real-World Clinical Outcomes Associated with Canagliflozin in Patients with Type 2 Diabetes Mellitus in Spain: The Real-Wecan Study. Journal of Clinical Medicine, 2020, 9, 2275.	1.0	8
191	Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. Journal of Biological Chemistry, 2020, 295, 14379-14390.	1.6	54
192	9. Pharmacologic Approaches to Glycemic Treatment: <i>Standards of Medical Care in Diabetes—2020</i> . Diabetes Care, 2020, 43, S98-S110.	4.3	778
193	Stability Indicating, pH and pKa Dependent HPLC–DAD Method for the Simultaneous Determination of Weakly Ionizable Empagliflozin, Dapagliflozin and Canagliflozin in Pharmaceutical Formulations. Chromatographia, 2020, 83, 1453-1465.	0.7	11
194	SGLT2 Inhibitors and Kidney Outcomes in Patients with Chronic Kidney Disease. Journal of Clinical Medicine, 2020, 9, 2723.	1.0	13
195	Effects of sodium glucose cotransporter 2 inhibitors on risk of dyslipidemia among patients with type 2 diabetes: A systematic review and metaâ€analysis of randomized controlled trials. Pharmacoepidemiology and Drug Safety, 2020, 29, 582-590.	0.9	13
196	Comparative efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Heart Failure Reviews, 2021, 26, 1421-1435.	1.7	26
197	Effect of Hemoglobin A1c Reduction or Weight Reduction on Blood Pressure in Glucagonâ€Like Peptideâ€1 Receptor Agonist and Sodiumâ€Glucose Cotransporterâ€2 Inhibitor Treatment in Type 2 Diabetes Mellitus: A Metaâ€Analysis. Journal of the American Heart Association, 2020, 9, e015323.	1.6	22
198	Incretin mimetics and sodium-glucose co-transporter 2 inhibitors as monotherapy or add-on to metformin for treatment of type 2 diabetes: a systematic review and network meta-analysis. Acta Diabetologica, 2021, 58, 5-18.	1.2	15
199	9. Pharmacologic Approaches to Glycemic Treatment: <i>Standards of Medical Care in Diabetes—2021</i> . Diabetes Care, 2021, 44, S111-S124.	4.3	787
200	Renal protection: a leading mechanism for cardiovascular benefit in patients treated with SGLT2 inhibitors. Heart Failure Reviews, 2021, 26, 337-345.	1.7	23
201	Association of metformin monotherapy or combined therapy with cardiovascular risks in patients with type 2 diabetes mellitus. Cardiovascular Diabetology, 2021, 20, 30.	2.7	27
202	The different hypoglycemic effects between East Asian and non-Asian type 2 diabetes patients when treated with SGLT-2 inhibitors as an add-on treatment for metformin: a systematic review and meta-analysis of randomized controlled trials. Aging, 2021, 13, 12748-12765.	1.4	5

ARTICLE IF CITATIONS Metformin in the era of new antidiabetics. Future Cardiology, 2021, 17, 475-485. 203 0.5 2 SCLT-2i and Risk of Malignancy in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. 204 1.3 Frontiers in Public Health, 2021, 9, 668368. Dapagliflozin reduces thrombin generation and platelet activation: implications for cardiovascular 206 2.9 22 risk reduction in type 2 diabetes mellitus. Diabetologia, 2021, 64, 1834-1849. Impact of Sodium–Glucose Co-Transporter 2 Inhibitors on Cardiac Protection. International Journal 1.8 of Molecular Sciences, 2021, 22, 7170. Pilot study in pharmacogenomic management of empagliflozin in type 2 diabetes mellitus patients. 208 0.8 2 Journal of Diabetes and Metabolic Disorders, 2021, 20, 1407-1413. Sodiumâ€Clucose Cotransporter 2 Inhibitors, Allâ€Cause Mortality, and Cardiovascular Outcomes in Adults with Type 2 Diabetes: A Bayesian Metaâ€Analysis and Metaâ€Regression. Journal of the American 209 1.6 Heart Association, 2021, 10, e019918. Diurnal Glycemic Patterns during an 8-Week Open-Label Proof-of-Concept Trial of Empagliflozin in 211 1.1 28 Type 1 Diabetes. PLoS ONE, 2015, 10, e0141085. Cost-Effectiveness of Dapagliflozin versus Acarbose as a Monotherapy in Type 2 Diabetes in China. PLoS 1.1 ONE, 2016, 11, e0165629. The Emerging Role of SGLT2 Inhibitors in the Treatment of Type 2 Diabetes. Focus on Dapagliflozin. 213 0.3 1 Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2016, 23, 113-120. A Review of Sodium Glucose Co transporter 2 (SGLT2) Inhibitors for Type 2 Diabetes Mellitus. Pharmacy 214 0.1 & Pharmacology International Journal, 2016, 4, . Prescribing for refugees. Australian Prescriber, 2013, 36, 146-147. 215 3 0.5 Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: systematic review and economic evaluation. Health Technology Assessment, 2017, 21, 1-218. 1.3 Sodium glucose co-transporter-2 inhibitor: Benefits beyond glycemic control. Indian Journal of 217 0.2 7 Endocrinology and Metabolism, 2019, 23, 140. Cardiovascular effects of sodium glucose co-transporter-2 inhibitors in patients with type 2 diabetes 0.2 mellitus. Indian Journal of Endocrinology and Metabolism, 2019, 23, 150. Glucose Lowering Effect of SGLT2 Inhibitors: A Review of Clinical Studies. Journal of Korean Diabetes, 220 0.1 0 2014, 15, 146. Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors in Type 2 Diabetes: A Literature Review of Approved 221 Products. Pharmacology & Pharmacy, 2014, 05, 1029-1058. 222 Pharmacotherapy of Obesity and Metabolic Syndrome., 2015, , 1-16. 0 Role of Sodium Glucose Co-Transporter-2 Inhibitors in Pre-diabetes and Their Extra-glycemic Effects. 1.2 International Archive of Medicine, 0, , .

#	Article	IF	CITATIONS
224	ORAL HYPOGLYCAEMIC AGENTS IN THE MANAGEMENT OF TYPE II DIABETES MELLITUS. Journal of Evidence Based Medicine and Healthcare, 2016, 3, 2272-2282.	0.0	0
225	SGLT2 Inhibitors for Treating Diabetes. , 2017, , 13-35.		0
226	Fixed-dose combinations - therapy of type 2 diabetes mellitus. Interni Medicina Pro Praxi, 2017, 19, 186-190.	0.0	0
227	Focus on New Diabetes Treatment Options with Cardiovascular Benefits. Journal of Contemporary Pharmacy Practice, 2019, 66, 34-40.	0.2	0
228	Standard Pharmacological Treatment of Diabetes Based on the Guidelines. Stroke Revisited, 2021, , 179-187.	0.2	0
229	Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults. Colombia Medica, 2016, 47, 109-31.	0.7	11
230	9. Pharmacologic Approaches to Glycemic Treatment: <i>Standards of Medical Care in Diabetes—2022</i> . Diabetes Care, 2022, 45, S125-S143.	4.3	534
231	Impacts of Sodium/Glucose Cotransporter-2 Inhibitors on Circulating Uric Acid Concentrations: A Systematic Review and Meta-Analysis. Journal of Diabetes Research, 2022, 2022, 1-17.	1.0	19
232	SGLT2 Inhibitors in Type 2 Diabetes Mellitus and Heart Failure—A Concise Review. Journal of Clinical Medicine, 2022, 11, 1470.	1.0	16
233	Clinical Effects of Sodium-Glucose Transporter Type 2 Inhibitors in Patients With Partial Lipodystrophy. Endocrine Practice, 2022, , .	1.1	0
234	Effect of metformin on microvascular outcomes in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 2022, 186, 109821.	1.1	5
235	Dapagliflozin, metformin, monotherapy or both in patients with metabolic syndrome. Scientific Reports, 2021, 11, 24263.	1.6	9
236	Metformin plus a low hypoglycemic risk antidiabetic drug vs. metformin monotherapy for untreated type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes Research and Clinical Practice, 2022, 189, 109937.	1.1	0
237	Expert consensus on personalized initiation of glucoseâ€lowering therapy in adults with newly diagnosed type 2 diabetes without clinical cardiovascular disease or chronic kidney disease. Journal of Evidence-Based Medicine, 2022, 15, 168-179.	0.7	3
238	Editorial commentary: Potential role of SGLT2 inhibitors in the management of hypertension. Trends in Cardiovascular Medicine, 2023, 33, 487-489.	2.3	0
240	The METRO study: a retrospective analysis of the efficacy of metformin for type 2 diabetes in Japan. Endocrine Journal, 2022, , .	0.7	0
241	The Cardiovascular Benefits and Infections Risk of SGLT2i versus Metformin in Type 2 Diabetes: A Systemic Review and Meta-Analysis. Metabolites, 2022, 12, 979.	1.3	2
242	The Safety and Efficacy of Combination Therapy of Dapagliflozin and Metformin in Patient with Type 2 Diabetes Mellitus: A Review Study. Journal of Diabetes Mellitus, 2022, 12, 271-283.	0.1	Ο

#	Article	IF	CITATIONS
243	9. Pharmacologic Approaches to Glycemic Treatment: <i>Standards of Care in Diabetes—2023</i> . Diabetes Care, 2023, 46, S140-S157.	4.3	339
244	Influence of Metformin Dose and Treatment Adherence on Glycemic Control, Adiposity, and Cardiovascular Risk Markers in Iraqi Patients with T2DM. Journal of the Faculty of Medicine, Baghdad, 2023, 64, .	0.1	3
245	Predictors of Metformin Failure: Repurposing Electronic Health Record Data to Identify High-Risk Patients. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 1740-1746.	1.8	3
246	Efficacy and Safety of Enavogliflozin versus Dapagliflozin as Add-on to Metformin in Patients with Type 2 Diabetes Mellitus: A 24-Week, Double-Blind, Randomized Trial. Diabetes and Metabolism Journal, 2023, 47, 796-807.	1.8	7
247	Life-Threatening Acidosis With Metformin and Dapagliflozin Combination Therapy: A Case Report. Cureus, 2023, , .	0.2	0
248	Neutral effects of SGLT2 inhibitors in acute coronary syndromes, peripheral arterial occlusive disease, or ischemic stroke: a meta-analysis of randomized controlled trials. Cardiovascular Diabetology, 2023, 22, .	2.7	1
249	Combination therapy as a first step of treatment in diabetes: Changing the paradigm in KDIGO guidelines?. European Journal of Internal Medicine, 2023, 111, 21-23.	1.0	2
250	Risk of Urinary Tract Infection in Patients with Type 2 Diabetes Mellitus Treated with Dapagliflozin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clinical Drug Investigation,	1.1	4