Cognitive and clinical characteristics of patients with an carrying a C9orf72 repeat expansion: a population-base

Lancet Neurology, The 11, 232-240 DOI: 10.1016/s1474-4422(12)70014-5

Citation Report

#	Article	IF	CITATIONS
1	Treatment and Management of Adult Motor Neuron Diseases. , 2011, , 169-178.		0
2	FTD/ALS families are no longer orphaned. Neurology, 2012, 79, 962-964.	1.5	4
3	Amyotrophic lateral sclerosis. Current Opinion in Neurology, 2012, 25, 530-535.	1.8	85
4	How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia. Current Opinion in Neurology, 2012, 25, 689-700.	1.8	169
5	Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain, 2012, 135, 2883-2891.	3.7	65
6	Transmission of C9orf72 hexanucleotide repeat expansions in sporadic amyotrophic lateral sclerosis. NeuroReport, 2012, 23, 556-559.	0.6	16
7	Ask the Experts: Translating amyotrophic lateral sclerosis genetics to the clinic: implications for the patient. Neurodegenerative Disease Management, 2012, 2, 355-360.	1.2	0
8	The Use of Next-Generation Sequencing in Movement Disorders. Frontiers in Genetics, 2012, 3, 75.	1.1	21
9	Phenotype difference between ALS patients with expanded repeats in <i>C9ORF72</i> and patients with mutations in other ALS-related genes. Journal of Medical Genetics, 2012, 49, 258-263.	1.5	157
10	Extensive genetics of ALS. Neurology, 2012, 79, 1983-1989.	1.5	145
11	Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive–compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. Journal of Neurology, 2012, 259, 2723-2725.	1.8	37
13	Cognitive and behavioral features of c9FTD/ALS. Alzheimer's Research and Therapy, 2012, 4, 29.	3.0	20
14	Expanding the genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Alzheimer's Research and Therapy, 2012, 4, 30.	3.0	6
15	Neuropsychiatric features of C9orf72-associated behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease. Alzheimer's Research and Therapy, 2012, 4, 38.	3.0	30
16	Neuroimaging features of C9ORF72 expansion. Alzheimer's Research and Therapy, 2012, 4, 45.	3.0	29
17	The C9orf72 hexanucleotide repeat expansion in FTD and ALS. Nature Reviews Neurology, 2012, 8, 249-250.	4.9	14
18	A hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic ALS in Taiwan. Neurobiology of Aging, 2012, 33, 2232.e11-2232.e18.	1.5	52
19	Analysis of C9orf72 repeat expansion in 563 Japanese patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 2527.e11-2527.e16.	1.5	98

TION RE

#	Article	IF	CITATIONS
20	C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiology of Aging, 2012, 33, 2528.e7-2528.e14.	1.5	74
21	Investigation of C9orf72 in 4 Neurodegenerative Disorders. Archives of Neurology, 2012, 69, 1583.	4.9	89
22	The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 2012, 124, 339-352.	3.9	346
23	Databases for neurogenetics: Introduction, overview, and challenges. Human Mutation, 2012, 33, 1311-1314.	1.1	3
24	Awaji Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. Archives of Neurology, 2012, 69, 1410.	4.9	211
25	Advances in understanding the molecular basis of frontotemporal dementia. Nature Reviews Neurology, 2012, 8, 423-434.	4.9	353
27	Early Onset Behavioral Variant Frontotemporal Dementia due to the C9ORF72 Hexanucleotide Repeat Expansion: Psychiatric Clinical Presentations. Journal of Alzheimer's Disease, 2012, 31, 447-452.	1.2	60
28	Dystrophic neurites express C9orf72 in Alzheimer's disease brains. Alzheimer's Research and Therapy, 2012, 4, 33.	3.0	19
29	Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS ONE, 2012, 7, e43993.	1.1	168
30	The expansions of ALS. Neurology, 2012, 79, 842-843.	1.5	1
30 31		1.5 4.9	1
	The expansions of ALS. Neurology, 2012, 79, 842-843.		
31	The expansions of ALS. Neurology, 2012, 79, 842-843. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurology, The, 2012, 11, 205-207. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11,	4.9	6
31 32	The expansions of ALS. Neurology, 2012, 79, 842-843. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurology, The, 2012, 11, 205-207. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	4.9 4.9	6 1,039
31 32 33	The expansions of ALS. Neurology, 2012, 79, 842-843. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurology, The, 2012, 11, 205-207. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 207-208. C9orf72 repeat expansions in patients with ALS and FTD. Lancet Neurology, The, 2012, 11, 297-298. New therapy options for amyotrophic lateral sclerosis. Expert Opinion on Pharmacotherapy, 2013, 14,	4.9 4.9 4.9	6 1,039 46
31 32 33 34	The expansions of ALS. Neurology, 2012, 79, 842-843. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurology, The, 2012, 11, 205-207. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 297-298. C9orf72 repeat expansions in patients with ALS and FTD. Lancet Neurology, The, 2012, 11, 297-298. New therapy options for amyotrophic lateral sclerosis. Expert Opinion on Pharmacotherapy, 2013, 14, 1907-1917.	4.9 4.9 4.9 0.9	6 1,039 46 19
 31 32 33 34 35 	The expansions of ALS. Neurology, 2012, 79, 842-843. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurology, The, 2012, 11, 205-207. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 207-208. C9orf72 repeat expansions in patients with ALS and FTD. Lancet Neurology, The, 2012, 11, 297-298. New therapy options for amyotrophic lateral sclerosis. Expert Opinion on Pharmacotherapy, 2013, 14, 1907-1917. Spinal Cord. Neurologic Clinics, 2013, 31, 219-239. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. Neuron, 2013, 79,	4.9 4.9 4.9 0.9 0.8	6 1,039 46 19 19

#	Article	IF	CITATIONS
39	Clinical and genetic heterogeneity ofÂamyotrophic lateral sclerosis. Clinical Genetics, 2013, 83, 408-416.	1.0	92
40	The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Reviews Neurology, 2013, 9, 617-628.	4.9	658
41	Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in Predictive, Preventive and Personalised Medicine, 2013, , .	0.6	3
42	Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2013, 1, 42.	2.4	143
43	<i>C9ORF72</i> Intermediate Repeat Copies Are a Significant Risk Factor for Parkinson Disease. Annals of Human Genetics, 2013, 77, 351-363.	0.3	69
44	Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurology, The, 2013, 12, 310-322.	4.9	454
45	Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurology, The, 2013, 12, 368-380.	4.9	363
46	UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study. Neurobiology of Aging, 2013, 34, 357.e1-357.e5.	1.5	59
47	C9ORF72 Repeat Expansions in the Frontotemporal Dementias Spectrum of Diseases: A Flow-chart for Genetic Testing. Journal of Alzheimer's Disease, 2013, 34, 485-499.	1.2	93
48	Electrodiagnosis of Motor Neuron Disease. Physical Medicine and Rehabilitation Clinics of North America, 2013, 24, 139-151.	0.7	17
49	Analysis of the <i>C9orf72</i> Gene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide. Human Mutation, 2013, 34, 79-82.	1.1	85
50	Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study. Neurobiology of Aging, 2013, 34, 2890.e7-2890.e12.	1.5	38
51	Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation. Biological Psychiatry, 2013, 74, 384-391.	0.7	105
52	Pathophysiological insights into ALS with C9ORF72 expansions. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 931-935.	0.9	89
53	Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions. NeuroImage: Clinical, 2013, 2, 836-843.	1.4	35
54	The changing scene of amyotrophic lateral sclerosis. Nature Reviews Neuroscience, 2013, 14, 248-264.	4.9	860
55	Corticobasal and ataxia syndromes widen the spectrum of <i>C9ORF72</i> hexanucleotide expansion disease. Clinical Genetics, 2013, 83, 279-283.	1.0	128
56	Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2234.e13-2234.e19.	1.5	59

#	Article	IF	Citations
57	Distinct Clinical Characteristics of C9orf72 Expansion Carriers Compared With GRN, MAPT, and	4.5	85
	Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. JAMA Neurology, 2013, 70, 365.		
58	Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends in Neurosciences, 2013, 36, 450-459.	4.2	151
59	Stages of pTDPâ€43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 20-38.	2.8	820
60	ZNF512B gene is a prognostic factor in patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2013, 324, 163-166.	0.3	27
61	Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathologica, 2013, 126, 859-879.	3.9	298
62	Frontotemporal dementia with amyotrophic lateral sclerosis: A clinical comparison of patients with and without repeat expansions in <i>C9orf72</i> . Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 172-176.	1.1	58
63	Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 766-773.	0.9	121
64	Genetics and Pathophysiology of Neurodegeneration with Brain Iron Accumulation (NBIA). Current Neuropharmacology, 2013, 11, 59-79.	1.4	100
65	Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 2013, 80, 1117-1123.	1.5	100
66	<i>C9ORF72</i> repeat expansions in cases with previously identified pathogenic mutations. Neurology, 2013, 81, 1332-1341.	1.5	84
67	ALS, cognition and the clinic. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 3-5.	1.1	12
68	The importance of looking in dark places. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 1-2.	1.1	7
69	Multiparametric MRI study of ALS stratified for the <i>C9orf72</i> genotype. Neurology, 2013, 81, 361-369.	1.5	150
70	Current pathways for epidemiological research in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 33-43.	1.1	33
71	Frontotemporal dementia, Parkinsonism and lower motor neuron involvement in a patient with C9ORF72 expansion. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 66-69.	1.1	13
72	When more is needed: The utility of the frontotemporal dementia scale in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 169-171.	1.1	5
73	Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 1-63.	1.1	5
74	Familial amyotrophic lateral sclerosis in Alberta, Canada. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 273-277.	1.1	10

#	Article	IF	CITATIONS
75	Clinical implications of recent breakthroughs in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2013, 26, 466-472.	1.8	22
76	Amyotrophic Lateral Sclerosis: An update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials. , 2013, 04, 295-310.		220
77	Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 70-72.	1.1	11
78	Clinical Reasoning: Rapidly progressive quadriparesis in a forgetful patient. Neurology, 2013, 81, e154-e158.	1.5	0
79	Cognitive decline and reduced survival in <i>C9orf72</i> expansion frontotemporal degeneration and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 163-169.	0.9	141
80	Truncating mutations in <i><scp>FUS</scp>TLS</i> give rise to a more aggressive <scp>ALS</scp> â€phenotype than missense mutations: a clinicoâ€genetic study in <scp>G</scp> ermany. European Journal of Neurology, 2013, 20, 540-546.	1.7	58
81	Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: A populationâ€based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 699-708.	2.8	116
86	Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. Journal of Medical Genetics, 2013, 50, 776-783.	1.5	151
87	Neurodegenerative disorders. , 0, , 23-71.		0
88	Clinical Characteristics of C9ORF72-Linked Frontotemporal Lobar Degeneration. Dementia and Geriatric Cognitive Disorders Extra, 2013, 3, 251-262.	0.6	29
91	C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients. PLoS ONE, 2013, 8, e56899.	1.1	56
92	Altered Intracellular Localization of SOD1 in Leukocytes from Patients with Sporadic Amyotrophic Lateral Sclerosis. PLoS ONE, 2013, 8, e75916.	1.1	38
143	Antisense Therapy in Neurology. Journal of Personalized Medicine, 2013, 3, 144-176.	1.1	53
144	C9ORF72 Hexanucleotide Repeat Number in Frontotemporal Lobar Degeneration: A Genotype-Phenotype Correlation Study. Journal of Alzheimer's Disease, 2013, 38, 799-808.	1.2	43
146	Genetics of ALS and Correlations Between Genotype and Phenotype in ALS — A Focus on Italian Population. , 2013, , .		3
147	Spectrum of Cognitive Impairment in Korean ALS Patients without Known Genetic Mutations. PLoS ONE, 2014, 9, e87163.	1.1	39
148	The future of neurological patient registries. Clinical Practice (London, England), 2014, 11, 509-516.	0.1	1
149	Intermediate repeat expansion length in C9orf72 may be pathological in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 148-150.	1.1	48

#	Article	IF	CITATIONS
150	Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology, 2014, 82, 149-155.	1.5	95
151	Fecundity in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 204-206.	1.1	5
152	Side of Limb-Onset Predicts Laterality of Gray Matter Loss in Amyotrophic Lateral Sclerosis. BioMed Research International, 2014, 2014, 1-11.	0.9	18
153	Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain, 2014, 137, 2546-2555.	3.7	151
154	Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate InÂVitro and InÂVivo Neuronal Death. Neuron, 2014, 84, 1213-1225.	3.8	459
155	Value of ¹⁸ Fluorodeoxyglucose–Positron-Emission Tomography in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 553.	4.5	111
156	ALS-FTD Complex Disorder due to <i>C9ORF72</i> Gene Mutation: Description of First Polish Family. European Neurology, 2014, 72, 64-71.	0.6	1
157	Clinical and genetic analysis of MAPT, GRN, and C9orf72 genes in Korean patients with frontotemporal dementia. Neurobiology of Aging, 2014, 35, 1213.e13-1213.e17.	1.5	35
158	Genetics of dementia. Lancet, The, 2014, 383, 828-840.	6.3	253
159	C9ORF72 Mutations in Neurodegenerative Diseases. Molecular Neurobiology, 2014, 49, 386-398.	1.9	25
160	The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 844-852.	3.3	103
161	The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues. Acta Neuropathologica, 2014, 127, 319-332.	3.9	51
162	The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathologica, 2014, 127, 333-345.	3.9	150
163	Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research. Muscle and Nerve, 2014, 49, 786-803.	1.0	76
164	Neurodegenerative Diseases. , 2014, , .		3
165	Recent progress in the genetics of motor neuron disease. European Journal of Medical Genetics, 2014, 57, 103-112.	0.7	169
166	Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurology, The, 2014, 13, 1108-1113.	4.9	302
167	Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability?. Journal of Anatomy, 2014, 224, 45-51.	0.9	32

#	Article	lF	CITATIONS
168	Quantifying disease progression in amyotrophic lateral sclerosis. Annals of Neurology, 2014, 76, 643-657.	2.8	133
169	C9ORF72 repeat expansion: a genetic mutation associated with Amyotrophic Lateral Sclerosis. Current Medicine Research and Practice, 2014, 4, 161-167.	0.1	0
170	HDL and cognition in neurodegenerative disorders. Neurobiology of Disease, 2014, 72, 22-36.	2.1	118
171	The phenotypic variability of amyotrophic lateral sclerosis. Nature Reviews Neurology, 2014, 10, 661-670.	4.9	453
172	ALS-Plus syndrome: Non-pyramidal features in a large ALS cohort. Journal of the Neurological Sciences, 2014, 345, 118-124.	0.3	51
173	Quelle place pour l'enquête familiale dans la sclérose latérale amyotrophique�. Pratique Neurologique - FMC, 2014, 5, 95-98.	0.1	0
174	Analysis of the hexanucleotide repeat expansion and founder haplotype at C9ORF72 in an Irish psychosis case-control sample. Neurobiology of Aging, 2014, 35, 1510.e1-1510.e5.	1.5	20
175	Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiology of Aging, 2014, 35, 1214.e1-1214.e6.	1.5	55
176	Extensive molecular genetic survey of Taiwanese patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2014, 35, 2423.e1-2423.e6.	1.5	46
177	C9orf72 repeat expansions are restricted to the ALS-FTD spectrum. Neurobiology of Aging, 2014, 35, 936.e17.	1.5	28
178	Absence of <i>C9ORF72</i> expanded or intermediate repeats in autopsy onfirmed Parkinson's disease. Movement Disorders, 2014, 29, 827-830.	2.2	24
179	Should all patients with ALS have genetic testing?. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 475-475.	0.9	5
180	Frontotemporal Dementia Associated With the <i>C9ORF72</i> Mutation. JAMA Neurology, 2014, 71, 331.	4.5	144
183	UBQLN2 mutations are not a frequent cause of amyotrophic lateral sclerosis in Ireland. Neurobiology of Aging, 2014, 35, 267.e9-267.e11.	1.5	8
185	Screening for C9orf72 Expansion Mutation in Serbian Patients with Early-Onset Dementia. Dementia and Geriatric Cognitive Disorders, 2015, 40, 358-365.	0.7	3
186	The genetic basis of amyotrophic lateral sclerosis: recent breakthroughs. Advances in Genomics and Genetics, 0, , 327.	0.8	11
187	C9ORF72 and the FTD-ALS spectrum: a systematic review of neuroimaging studies. Dementia E Neuropsychologia, 2015, 9, 413-421.	0.3	11
188	Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Frontiers in Aging Neuroscience, 2015, 7, 171.	1.7	90

		CITATION REPORT		
#	Article		IF	CITATIONS
189	<i>C9orf72</i> promoter hypermethylation is neuroprotective. Neurology, 2015, 84, 1	622-1630.	1.5	66
190	Genetics of ALS. , 2015, , 385-409.			0
191	Semi-automated quantification of C9orf72 expansion size reveals inverse correlation be hexanucleotide repeat number and disease duration in frontotemporal degeneration. A Neuropathologica, 2015, 130, 363-372.	?tween cta	3.9	65
192	Frontal assessment battery for detecting executive dysfunction in amyotrophic lateral s without dementia: a retrospective observational study. BMJ Open, 2015, 5, e007069.	sclerosis	0.8	25
193	Frontotemporal lobar degeneration: defining phenotypic diversity through personalized Acta Neuropathologica, 2015, 129, 469-491.	l medicine.	3.9	218
194	The analysis of C9orf72 repeat expansions in a large series of clinically and pathological cases with atypical parkinsonism. Neurobiology of Aging, 2015, 36, 1221.e1-1221.e6.	ly diagnosed	1.5	39
195	C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis. Land The, 2015, 14, 291-301.	cet Neurology,	4.9	270
196	Amyotrophic Lateral Sclerosis and Dementia. , 2015, , 23-34.			1
197	A second-generation Irish genome-wide association study for amyotrophic lateral sclerc Neurobiology of Aging, 2015, 36, 1221.e7-1221.e13.	osis.	1.5	10
198	Challenges in the Understanding and Treatment of Amyotrophic Lateral Sclerosis/Moto Disease. Neurotherapeutics, 2015, 12, 317-325.	r Neuron	2.1	25
199	Presymptomatic and longitudinal neuroimaging in neurodegeneration—from snapsho picture: a systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 2015,	ts to motion 86, 1089-1096.	0.9	78
200	Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann York Academy of Sciences, 2015, 1338, 71-93.	als of the New	1.8	97
201	Use of biomarkers in ALS drug development and clinical trials. Brain Research, 2015, 16	.07, 94-107.	1.1	36
202	A fruitful endeavor: Modeling ALS in the fruit fly. Brain Research, 2015, 1607, 47-74.		1.1	89
203	Genetic and Molecular Aspects of Frontotemporal Lobar Degeneration. Current Genetic Reports, 2015, 3, 8-18.	: Medicine	1.9	6
204	The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerc Neurotherapeutics, 2015, 12, 326-339.	osis.	2.1	46
205	Constructional apraxia in frontotemporal dementia associated with the C9orf72 mutat Broadening the clinical and neuropsychological phenotype. Amyotrophic Lateral Scleros Frontotemporal Degeneration, 2015, 16, 8-15.		1.1	10
206	Frontotemporal lobar dementia and amyotrophic lateral sclerosis associated with c9orf Revue Neurologique, 2015, 171, 475-481.	72 expansion.	0.6	8

#	Article	IF	CITATIONS
207	Cognitive Profile of C9orf72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Current Neurology and Neuroscience Reports, 2015, 15, 59.	2.0	15
208	C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population. Neurobiology of Aging, 2015, 36, 2908.e5-2908.e9.	1.5	12
209	The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 667-673.	0.9	104
210	Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population. Neurobiology of Aging, 2015, 36, 1601.e17-1601.e20.	1.5	10
211	Motor neuron disease-frontotemporal dementia: a clinical continuum. Expert Review of Neurotherapeutics, 2015, 15, 509-522.	1.4	48
212	Homozygosity mapping in an Irish ALS case–control cohort describes local demographic phenomena and points towards potential recessive risk loci. Genomics, 2015, 105, 237-241.	1.3	15
213	Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. Journal of Neurology, 2015, 262, 1447-1454.	1.8	84
215	Brain morphologic changes in asymptomatic <i>C9orf72</i> repeat expansion carriers. Neurology, 2015, 85, 1780-1788.	1.5	66
216	Clinical features of amyotrophic lateral sclerosis in south-west China. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 512-519.	1.1	15
217	Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathologica, 2015, 130, 559-573.	3.9	89
218	Familial Amyotrophic Lateral Sclerosis. Neurologic Clinics, 2015, 33, 807-830.	0.8	120
219	Disorders of Upper and Lower Motor Neurons. , 2015, , 261-272.		2
220	Prognosis of Neurological Diseases. , 2015, , .		1
221	Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 168-173.	0.9	233
222	Biomarker development for C9orf72 repeat expansion in ALS. Brain Research, 2015, 1607, 26-35.	1.1	25
223	Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathologica, 2015, 129, 39-52.	3.9	111
224	Frontotemporal dementia in amyotrophic lateral sclerosis: from rarity to reality?. Neurology International, 2016, 8, 6534.	1.3	3
225	The Association between <i>C9orf72</i> Repeats and Risk of Alzheimer's Disease and Amyotrophic Lateral Sclerosis: A Meta-Analysis. Parkinson's Disease, 2016, 2016, 1-8.	0.6	13

#	Article	IF	CITATIONS
226	The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine. Stem Cells International, 2016, 2016, 1-9.	1.2	16
227	Measurement of Social Cognition in Amyotrophic Lateral Sclerosis: A Population Based Study. PLoS ONE, 2016, 11, e0160850.	1.1	63
228	Cortical hyperexcitability in patients with <i>C9ORF72</i> mutations: Relationship to phenotype. Muscle and Nerve, 2016, 54, 264-269.	1.0	29
229	A clinical tool for predicting survival in ALS. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1361-1367.	0.9	57
230	Widespread structural brain involvement in ALS is not limited to the <i>C9orf72</i> repeat expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1354-1360.	0.9	69
231	Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype. NeuroImage: Clinical, 2016, 12, 1035-1043.	1.4	64
232	ALS: A bucket of genes, environment, metabolism and unknown ingredients. Progress in Neurobiology, 2016, 142, 104-129.	2.8	158
233	Distinct neurological disorders with C9orf72 mutations: genetics, pathogenesis, and therapy. Neuroscience and Biobehavioral Reviews, 2016, 66, 127-142.	2.9	11
234	The frontotemporal syndrome of ALS is associated with poor survival. Journal of Neurology, 2016, 263, 2476-2483.	1.8	46
235	Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population. Neurology, 2016, 87, 1024-1030.	1.5	74
236	Five-Year Incidence of Amyotrophic Lateral Sclerosis in British Columbia (2010-2015). Canadian Journal of Neurological Sciences, 2016, 43, 791-795.	0.3	5
237	Loss-of-function mutations in the <i>C9ORF72</i> mouse ortholog cause fatal autoimmune disease. Science Translational Medicine, 2016, 8, 347ra93.	5.8	217
238	Structural insight into C9orf72 hexanucleotide repeat expansions: Towards new therapeutic targets in FTD-ALS. Neurochemistry International, 2016, 100, 11-20.	1.9	25
239	Amyotrophic Lateral Sclerosis 1 andÂMany Diseases. , 2016, , 685-712.		3
240	From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathologica Communications, 2016, 4, 70.	2.4	115
241	The validation of the Italian Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 489-498.	1.1	125
242	Association of a Locus in the <i>CAMTA1</i> Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.	4.5	57
243	Participation in Physical Activity and Risk for Amyotrophic Lateral Sclerosis Mortality Among Postmenopausal Women. JAMA Neurology, 2016, 73, 329.	4.5	24

#	Article	IF	CITATIONS
244	Epidemiology of amyotrophic lateral sclerosis: A review of literature. Revue Neurologique, 2016, 172, 37-45.	0.6	90
245	Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2016, 38, 217.e15-217.e22.	1.5	43
246	Cognitive impairment in amyotrophic lateral sclerosis, clues from the SOD1 mouse. Neuroscience and Biobehavioral Reviews, 2016, 60, 12-25.	2.9	16
247	The Role of <i>APOE</i> in the Occurrence of Frontotemporal Dementia in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 425.	4.5	37
248	Ethnic and demographic incidence of amyotrophic lateral sclerosis (ALS) in Brazil: A population based study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 275-281.	1.1	19
249	Frontotemporal Dysfunction in Amyotrophic Lateral Sclerosis: A Discriminant Function Analysis. Neurodegenerative Diseases, 2016, 16, 140-146.	0.8	7
250	Eye-tracking in amyotrophic lateral sclerosis: A longitudinal study of saccadic and cognitive tasks. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 101-111.	1.1	65
251	Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Medicine Reviews, 2016, 26, 33-42.	3.8	65
252	Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. NeuroToxicology, 2017, 61, 101-130.	1.4	158
253	HLA-DRA/HLA-DRB5 polymorphism affects risk of sporadic ALS and survival in a southwest Chinese cohort. Journal of the Neurological Sciences, 2017, 373, 124-128.	0.3	18
254	Genetic epidemiology of motor neuron disease-associated variants in the Scottish population. Neurobiology of Aging, 2017, 51, 178.e11-178.e20.	1.5	37
255	Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 540-549.	0.9	347
256	ALS/FTLD: experimental models and reality. Acta Neuropathologica, 2017, 133, 177-196.	3.9	78
257	Genetic analysis of the SOD1 and C9ORF72 genes in Hungarian patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2017, 53, 195.e1-195.e5.	1.5	17
258	Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 193-201.	1.1	17
259	C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 281.1-281.	0.9	33
260	The changing picture of amyotrophic lateral sclerosis: lessons from European registers. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 557-563.	0.9	89
261	Longitudinal assessment of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): lack of practice effect in ALS patients?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 202-209.	1.1	26

#	Article	IF	CITATIONS
262	Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurology, 2017, 17, 73.	0.8	71
263	A Crossâ€sectional populationâ€based investigation into behavioral change in amyotrophic lateral sclerosis: subphenotypes, staging, cognitive predictors, and survival. Annals of Clinical and Translational Neurology, 2017, 4, 305-317.	1.7	63
264	ALS and frontotemporal dementia belong to a common disease spectrum. Revue Neurologique, 2017, 173, 273-279.	0.6	56
265	Phosphorylated neurofilament heavy chain: A biomarker of survival for <scp><i>C9ORF</i></scp> <i>72</i> â€essociated amyotrophic lateral sclerosis. Annals of Neurology, 2017, 82, 139-146.	2.8	88
266	Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 611-623.	1.1	63
267	Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiology of Aging, 2017, 57, 206-219.	1.5	54
268	Natural History of Amyotrophic Lateral Sclerosis. , 2017, , 25-41.		2
269	Genetics of Amyotrophic Lateral Sclerosis. , 2017, , 43-59.		2
270	Disease progression in <i>C9orf72</i> mutation carriers. Neurology, 2017, 89, 234-241.	1.5	29
271	Relationship between C9orf72 repeat size and clinical phenotype. Current Opinion in Genetics and Development, 2017, 44, 117-124.	1.5	114
272	Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 533-547.	3.3	7
273	Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Review of Neurotherapeutics, 2017, 17, 561-577.	1.4	24
274	Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. NeuroImage: Clinical, 2017, 14, 286-297.	1.4	129
275	Increasing Evidence for an Association Between Amyotrophic Lateral Sclerosis and Psychiatric Disorders. JAMA Neurology, 2017, 74, 1396.	4.5	4
276	Clustering of Neuropsychiatric Disease in First-Degree and Second-Degree Relatives of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurology, 2017, 74, 1425.	4.5	52
277	Expansion of C9ORF72 in amyotrophic lateral sclerosis correlates with brain-computer interface performance. Scientific Reports, 2017, 7, 8875.	1.6	1
278	Cell-type specific differences in promoter activity of the ALS-linked C9orf72 mouse ortholog. Scientific Reports, 2017, 7, 5685.	1.6	9
279	Intermediate C9orf72 alleles in neurological disorders: does size really matter?. Journal of Medical Genetics, 2017, 54, 591-597.	1.5	52

	Сплнон	CITATION REPORT		
#	Article	IF	Citations	
280	Biomarkers in Neurodegenerative Diseases. Advances in Neurobiology, 2017, 15, 491-528.	1.3	69	
281	Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene. Neuroscience Letters, 2017, 636, 16-26.	1.0	36	
282	Sessions 1 - 11. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 1-73.	1.1	2	
283	Peripheral Nerve Disorders. , 2017, , 55-80.		1	
284	Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2017, 11, 126.	1.8	11	
285	Mismatch Negativity as an Indicator of Cognitive Sub-Domain Dysfunction in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 395.	1.1	24	
286	Frontotemporal dementia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 409-430.	1.0	51	
287	Emerging understanding of the genotype–phenotype relationship in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 603-623.	1.0	30	
288	C9orf72-associated neurodegeneration in ALS-FTD: breaking new ground in ribosomal RNA and nucleolar dysfunction. Cell and Tissue Research, 2018, 373, 351-360.	1.5	26	
289	Twenty years of molecular analyses in amyotrophic lateral sclerosis: genetic landscape of Italian patients. Neurobiology of Aging, 2018, 66, 179.e5-179.e16.	1.5	16	
290	Longitudinal predictors of caregiver burden in amyotrophic lateral sclerosis: a population-based cohort of patient–caregiver dyads. Journal of Neurology, 2018, 265, 793-808.	1.8	28	
291	Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging and Behavior, 2018, 12, 1696-1707.	1.1	89	
292	High frequency of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis patients from two founder populations sharing the same risk haplotype. Neurobiology of Aging, 2018, 64, 160.e1-160.e7.	1.5	11	
293	Disease Mechanisms of <i>C9ORF72</i> Repeat Expansions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a024224.	2.9	75	
294	The Genetics of <i>C9orf72</i> Expansions. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a026757.	2.9	19	
295	Longitudinal diffusion imaging across the <i>C9orf72</i> clinical spectrum. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 53-60.	0.9	44	
296	Brain signal intensity changes as biomarkers in amyotrophic lateral sclerosis. Acta Neurologica Scandinavica, 2018, 137, 262-271.	1.0	27	
297	OPTN p.Met468Arg and ATXN2 intermediate length polyQ extension in families with C9orf72 mediated amyotrophic lateral sclerosis and frontotemporal dementia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 75-85.	1.1	12	

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
298	Longitudinal structural changes in ALS: a three time-point imaging study of white and gray n degeneration. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 2		1.1	82
300	Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Fr in Neurology, 2018, 9, 1005.	ontiers	1.1	73
301	Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated Witl Hexanucleotide Expansion Mutations in C9orf72. Frontiers in Neurology, 2018, 9, 1063.	٦ :	1.1	28
302	Phenotypic variability and neuropsychological findings associated with C9orf72 repeat expa a Bulgarian dementia cohort. PLoS ONE, 2018, 13, e0208383.	nsions in	1.1	5
303	Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis Current Knowledge. Journal of Personalized Medicine, 2018, 8, 44.	(ALS):	1.1	13
304	Cognitive impairment in neuromuscular diseases: A systematic review. Neurology Internation 10, 7473.	nal, 2018,	1.3	17
305	microRNAs in Neurodegeneration: Current Findings and Potential Impacts. , 2018, 08, .			37
306	Intrafamilial Phenotypic Variability in the C9orf72 Gene Expansion: 2 Case Studies. Frontiers Psychology, 2018, 9, 1615.	in	1.1	9
307	Cognitive-behavioral longitudinal assessment in ALS: the Italian Edinburgh Cognitive and Bel ALS screen (ECAS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018,		1.1	34
308	Frequency of C9orf72 hexanucleotide repeat expansion and SOD1Âmutations in Portuguese with amyotrophic lateralÂsclerosis. Neurobiology of Aging, 2018, 70, 325.e7-325.e15.	e patients	1.5	7
309	Determining the incidence of familiality in ALS. Neurology: Genetics, 2018, 4, e239.		0.9	27
310	Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a commo mechanism. ELife, 2018, 7, .	on disease	2.8	53
311	Genotypic and Phenotypic Heterogeneity in Amyotrophic Lateral Sclerosis. , 2018, , 279-295	i.		3
312	The Clinical and Radiological Spectrum of Hippocampal Pathology in Amyotrophic Lateral Sc Frontiers in Neurology, 2018, 9, 523.	lerosis.	1.1	27
313	The clinical and radiological profile of primary lateral sclerosis: a population-based study. Jou Neurology, 2019, 266, 2718-2733.	rnal of	1.8	58
314	Platform Communications: Abstract Book - 30th International Symposium on ALS/MND (Con	nplete) Tj ETQq1 1 0.78	84314 rg 1.1	BT /Overloo
315	Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitud neuroimaging study. NeuroImage: Clinical, 2019, 24, 102054.	linal	1.4	59
316	Cognitive, Emotional and Psychological Manifestations in Amyotrophic Lateral Sclerosis at B and Overtime: A Review. Frontiers in Neuroscience, 2019, 13, 951.	aseline	1.4	56

#	Article	IF	CITATIONS
317	Prospective natural history study of <i>C9orf72</i> ALS clinical characteristics and biomarkers. Neurology, 2019, 93, e1605-e1617.	1.5	29
318	Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2019, 13, 440.	1.4	10
319	Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Frontiers in Neuroscience, 2019, 13, 485.	1.4	35
320	Gyrification abnormalities in presymptomatic <i>c9orf72</i> expansion carriers. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1005-1010.	0.9	24
321	Spinal Cord Imaging in Amyotrophic Lateral Sclerosis: Historical Concepts—Novel Techniques. Frontiers in Neurology, 2019, 10, 350.	1.1	55
322	Episodic memory and learning rates in amyotrophic lateral sclerosis without dementia. Cortex, 2019, 117, 257-265.	1.1	9
323	Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Frontiers in Neuroscience, 2019, 13, 135.	1.4	102
324	C9orf72 Intermediate Alleles in Patients with Amyotrophic Lateral Sclerosis, Systemic Lupus Erythematosus, and Rheumatoid Arthritis. NeuroMolecular Medicine, 2019, 21, 150-159.	1.8	19
325	Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Frontiers in Neurology, 2019, 10, 229.	1.1	67
326	Dysfunction of attention switching networks in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2019, 22, 101707.	1.4	18
327	Relationship Between Cognitive-Behavioral Impairment and Clinical and Functional Parameters in ALS and Reliability of the Edinburgh Cognitive and Behavioural ALS Screen to Assess ALS: Preliminary Findings. Cognitive and Behavioral Neurology, 2019, 32, 185-192.	0.5	2
328	Editorial: Non-motor Symptoms in Primary Motor Neurological Disorders: From Molecular Pathways to Clinical and Therapeutic Implications. Frontiers in Neuroscience, 2019, 13, 1296.	1.4	1
329	Frontotemporal dementia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 167, 279-299.	1.0	19
330	Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. NeuroImage: Clinical, 2019, 24, 102089.	1.4	60
331	Parkinsonism in frontotemporal dementias. International Review of Neurobiology, 2019, 149, 249-275.	0.9	24
332	Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Frontiers in Neurology, 2019, 10, 1318.	1.1	2
333	Muscleblind acts as a modifier of FUS toxicity by modulating stress granule dynamics and SMN localization. Nature Communications, 2019, 10, 5583.	5.8	31
334	Review: Clinical, genetic and neuroimaging features of frontotemporal dementia. Neuropathology and Applied Neurobiology, 2019, 45, 6-18.	1.8	32

#	Article	IF	CITATIONS
335	Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation. Neurological Sciences, 2019, 40, 515-521.	0.9	19
336	The association between repeat number in C9orf72 and phenotypic variability in Turkish patients with frontotemporal lobar degeneration. Neurobiology of Aging, 2019, 76, 216.e1-216.e7.	1.5	3
337	Story of the ALS-FTD continuum retold: rather two distinct entities. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 586-589.	0.9	26
338	¿Por qué degeneran las motoneuronas? Actualización en la patogenia de la esclerosis lateral amiotrófica. NeurologÃa, 2019, 34, 27-37.	0.3	32
339	Why do motor neurons degenerate? Actualisation in the pathogenesis of amyotrophic lateral sclerosis. NeurologÃa (English Edition), 2019, 34, 27-37.	0.2	0
340	C9orf72 hexanucleotide repeat expansion in Indian patients with ALS: a common founder and its geographical predilection. Neurobiology of Aging, 2020, 88, 156.e1-156.e9.	1.5	13
341	Survival and Prognostic Factors in <i>C9orf72</i> Repeat Expansion Carriers. JAMA Neurology, 2020, 77, 367.	4.5	23
342	Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 291-297.	0.9	18
343	Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiology of Disease, 2020, 145, 105063.	2.1	23
344	Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death and Disease, 2020, 11, 888.	2.7	12
345	Resting State Functional Connectivity Is Decreased Globally Across the C9orf72 Mutation Spectrum. Frontiers in Neurology, 2020, 11, 598474.	1.1	7
346	Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Frontiers in Genetics, 2020, 11, 587243.	1.1	15
347	Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Scientific Reports, 2020, 10, 13378.	1.6	38
348	Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. Journal of the Neurological Sciences, 2020, 417, 117039.	0.3	33
349	Amyotrophic lateral sclerosis in the Faroe Islands – a genealogical study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 571-575.	1.1	5
350	Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Research Reviews, 2020, 64, 101172.	5.0	5
351	Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathologica Communications, 2020, 8, 140.	2.4	19
352	Clinical Phenotype and Inheritance in Patients With C9ORF72 Hexanucleotide Repeat Expansion: Results From a Large French Cohort. Frontiers in Neuroscience, 2020, 14, 316.	1.4	10

#	Article	IF	CITATIONS
353	"Switchboard―malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NeuroImage: Clinical, 2020, 27, 102300.	1.4	45
354	Genetics and Sex in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS): Is There a Link?. International Journal of Molecular Sciences, 2020, 21, 3647.	1.8	39
355	2â€Deoxyâ€2â€{ ¹⁸ F]fluoroâ€ <scp>d</scp> â€glucose positron emission tomography, cortical thickness and white matter graph network abnormalities in brains of patients with amyotrophic lateral sclerosis and frontotemporal dementia suggest early neuronopathy rather than axonopathy. European Journal of Neurology, 2020, 27, 1904-1912.	1.7	7
356	The reading the mind in the eyes test short form (A & B): validation and outcomes in an amyotrophic lateral sclerosis cohort. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 380-388.	1.1	9
357	In vivo histopathological staging in C9orf72-associated ALS: A tract of interest DTI study. NeuroImage: Clinical, 2020, 27, 102298.	1.4	20
358	An overview of screening instruments for cognition and behavior in patients with ALS: selecting the appropriate tool for clinical practice. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 324-336.	1.1	35
359	Early white matter changes on diffusion tensor imaging in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 1265-1265.	1.7	1
360	The Distinct Traits of the UNC13A Polymorphism in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 88, 796-806.	2.8	23
361	Spectroscopic markers of neurodegeneration in the mesial prefrontal cortex predict survival in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 246-251.	1.1	6
362	Structural Variants May Be a Source of Missing Heritability in sALS. Frontiers in Neuroscience, 2020, 14, 47.	1.4	43
363	The impact of cognitive and behavioral impairment in amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2020, 20, 281-293.	1.4	48
364	Cortical Circuit Dysfunction as a Potential Driver of Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2020, 14, 363.	1.4	39
365	Relationship between neuropsychiatric disorders and cognitive and behavioural change in MND. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 245-253.	0.9	15
366	Differential Neuropsychological Profile of Patients With Amyotrophic Lateral Sclerosis With and Without <i>C9orf72</i> Mutation. Neurology, 2021, 96, e141-e152.	1.5	17
367	Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. Journal of Neuromuscular Diseases, 2021, 8, 25-38.	1.1	25
368	The genetic architecture of ALS. Neurobiology of Disease, 2021, 147, 105156.	2.1	49
369	Manifold learning for amyotrophic lateral sclerosis functional loss assessment. Journal of Neurology, 2021, 268, 825-850.	1.8	23
370	REscan: inferring repeat expansions and structural variation in paired-end short read sequencing data. Bioinformatics, 2021, 37, 871-872.	1.8	0

#	Article	IF	CITATIONS
372	Glial Cell Dysfunction in C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells, 2021, 10, 249.	1.8	16
373	The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging and Behavior, 2021, 15, 2693-2719.	1.1	15
374	Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain, 2022, 145, 621-631.	3.7	26
375	Clinical Update on C9orf72: Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Beyond. Advances in Experimental Medicine and Biology, 2021, 1281, 67-76.	0.8	4
376	Risk factors for cognitive impairment in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 688-693.	0.9	17
377	Brain Stimulation as a Therapeutic Tool in Amyotrophic Lateral Sclerosis: Current Status and Interaction With Mechanisms of Altered Cortical Excitability. Frontiers in Neurology, 2020, 11, 605335.	1.1	10
378	A 59-Year-Old Man with Weakness and Personality Changes. , 2021, , 36-43.		0
379	Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it?. Neurological Sciences, 2021, 42, 2211-2222.	0.9	16
380	Destination Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2021, 12, 596006.	1.1	24
381	Genetic and Transcriptomic Biomarkers in Neurodegenerative Diseases: Current Situation and the Road Ahead. Cells, 2021, 10, 1030.	1.8	11
383	Decreased blood CD4+ T lymphocyte helps predict cognitive impairment in patients with amyotrophic lateral sclerosis. BMC Neurology, 2021, 21, 157.	0.8	7
384	Disease Mechanisms and Therapeutic Approaches in C9orf72 ALS-FTD. Biomedicines, 2021, 9, 601.	1.4	7
386	Cognitive and behavioural impairment in amyotrophic lateral sclerosis: A landmark of the disease? A mini review of longitudinal studies. Neuroscience Letters, 2021, 754, 135898.	1.0	15
387	Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurology, The, 2021, 20, 373-384.	4.9	35
388	C9orf72 Intermediate Repeats Confer Genetic Risk for Severe COVID-19 Pneumonia Independently of Age. International Journal of Molecular Sciences, 2021, 22, 6991.	1.8	12
389	Humoral response to neurofilaments and dipeptide repeats in ALS progression. Annals of Clinical and Translational Neurology, 2021, 8, 1831-1844.	1.7	8
391	Astrocytes in Amyotrophic Lateral Sclerosis. , 0, , 35-54.		7
392	Genotype-phenotype correlations in a chinese population with familial amyotrophic lateral sclerosis. Neurological Research, 2022, 44, 206-216.	0.6	5

щ	Article	IF	CITATIONS
#	Fast Progression in Amyotrophic Lateral Sclerosis Is Associated With Greater TDP-43 Burden in Spinal		
393	Cord. Journal of Neuropathology and Experimental Neurology, 2021, 80, 754-763.	0.9	7
394	Analysis of Heritability Across the Clinical Phenotypes of Frontotemporal Dementia and the Frequency of the C9ORF72 in a Colombian Population. Frontiers in Neurology, 2021, 12, 681595.	1.1	3
395	Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiology of Aging, 2021, 104, 57-70.	1.5	13
396	Treatment and Management of Adult Motor Neuron Diseases. , 2022, , 248-260.		0
397	Fluid Biomarkers of Frontotemporal Lobar Degeneration. Advances in Experimental Medicine and Biology, 2021, 1281, 123-139.	0.8	7
398	Amyotrophic Lateral Sclerosis: Genotypes and Phenotypes. , 2014, , 179-192.		1
401	The C9orf72 expansion is associated with accelerated respiratory function decline in a large Amyotrophic Lateral Sclerosis cohort. HRB Open Research, 2019, 2, 23.	0.3	7
402	Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis. PLoS ONE, 2015, 10, e0128682.	1.1	51
403	Diagnosis and management of amyotrophic lateral sclerosis. Journal of the Korean Medical Association, 2015, 58, 131.	0.1	5
404	Pre-Morbid Risk Factors for Amyotrophic Lateral Sclerosis: Prospective Cohort Study. Clinical Epidemiology, 2021, Volume 13, 941-947.	1.5	1
405	Toward a Personalized Approach in Amyotrophic Lateral Sclerosis: New Developments in Diagnosis, Genetics, Pathogenesis and Therapies. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 205-233.	0.6	0
409	TDP43-proteinopathy in ALS: cognitive deficits in ALS, ALS Plus syndromes. Neurologie Pro Praxi, 2016, 17, 366-369.	0.0	0
411	Revealing the microstructural brain damage in amyotrophic lateral sclerosis: the relentless pursuit to approach an imaging biomarker. Arquivos De Neuro-Psiquiatria, 2017, 75, 265-266.	0.3	0
414	To be, or not to be… Guillain-Barré Syndrome. Autoimmunity Reviews, 2021, 20, 102983.	2.5	7
415	A behavioral screen for mediators of age-dependent TDP-43 neurodegeneration identifies SF2/SRSF1 among a group of potent suppressors in both neurons and glia. PLoS Genetics, 2021, 17, e1009882.	1.5	14
416	Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Molecular Medicine, 2021, 13, e12595.	3.3	13
417	Linking amyotrophic lateral sclerosis and frontotemporal dementia. , 2020, , 49-59.		0
418	C9ORF72 hexanucleotide repeats in behavioral and motor neuron disease: clinical heterogeneity and pathological diversity. American Journal of Neurodegenerative Disease, 2014, 3, 1-18.	0.1	21

#	Article	IF	CITATIONS
419	Biomarkers for C9orf7-ALS in Symptomatic and Pre-symptomatic Patients: State-of-the-art in the New Era of Clinical Trials. Journal of Neuromuscular Diseases, 2022, 9, 25-37.	1.1	11
421	Perampanel for amyotrophic lateral sclerosis: A systematic review and meta-analysis. Neurological Sciences, 2022, 43, 889-897.	0.9	4
422	Mapping cortical disease-burden at individual-level in frontotemporal dementia: implications for clinical care and pharmacological trials. Brain Imaging and Behavior, 2022, 16, 1196-1207.	1.1	7
423	Causal associations of genetic factors with clinical progression in amyotrophic lateral sclerosis. Computer Methods and Programs in Biomedicine, 2022, 216, 106681.	2.6	3
424	ALS in Finland. Neurology: Genetics, 2022, 8, e665.	0.9	11
425	Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Current Drug Metabolism, 2022, 23, 200-222.	0.7	4
426	Schizotypal traits across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum: pathomechanistic insights. Journal of Neurology, 2022, , 1.	1.8	0
427	Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurology, The, 2022, 21, 465-479.	4.9	130
428	A mouse model with widespread expression of the C9orf72-linked glycine–arginine dipeptide displays non-lethal ALS/FTD-like phenotypes. Scientific Reports, 2022, 12, 5644.	1.6	9
429	Formation of RNA G-wires by G4C2 repeats associated with ALS and FTD. Biochemical and Biophysical Research Communications, 2022, 610, 113-118.	1.0	2
430	Plasma Uric Acid Helps Predict Cognitive Impairment in Patients With Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2021, 12, 789840.	1.1	8
431	Preclinical evaluation of WVE-004, an investigational stereopure oligonucleotide for the treatment of C9orf72-associated ALS or FTD. Molecular Therapy - Nucleic Acids, 2022, 28, 558-570.	2.3	19
436	Progress in Amyotrophic Lateral Sclerosis Gene Discovery. Neurology: Genetics, 2022, 8, .	0.9	15
437	Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics, 2022, 19, 1145-1158.	2.1	26
438	Clinical and Electrophysiological Findings in <i>C9ORF72</i> ALS. Muscle and Nerve, 0, , .	1.0	2
439	Genetic factors for survival in amyotrophic lateral sclerosis: an integrated approach combining a systematic review, pairwise and network meta-analysis. BMC Medicine, 2022, 20, .	2.3	5
440	Gene Therapy in Amyotrophic Lateral Sclerosis. Cells, 2022, 11, 2066.	1.8	21
441	Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Molecular Neurobiology, 2022, 59, 5673-5694.	1.9	25

#	Article	IF	CITATIONS
442	Peripheral Nerve Disorders. , 2023, , 57-83.		0
443	The challenge of amyotrophic lateral sclerosis descriptive epidemiology: to estimate low incidence rates across complex phenotypes in different geographic areas. Current Opinion in Neurology, 2022, 35, 678-685.	1.8	10
444	<scp>MRI</scp> Clustering Reveals Three <scp>ALS</scp> Subtypes With Unique Neurodegeneration Patterns. Annals of Neurology, 2022, 92, 1030-1045.	2.8	20
445	Intronic NEFH variant is associated with reduced risk for sporadic ALS and later age of disease onset. Scientific Reports, 2022, 12, .	1.6	3
447	Familial Cerebellar Ataxia and Amyotrophic Lateral Sclerosis/Frontotemporal Dementia with <scp><i>DAB1</i></scp> and <scp><i>C9ORF72</i></scp> Repeat Expansions: An 18‥ear Study. Movement Disorders, 2022, 37, 2427-2439.	2.2	6
448	Cognitive and behavioral but not motor impairment increases brain age in amyotrophic lateral sclerosis. Brain Communications, 0, , .	1.5	1
449	Amyotrophic Lateral Sclerosis—The Complex Phenotype—From an Epidemiological Perspective: A Focus on Extrapyramidal and Non-Motor Features. Biomedicines, 2022, 10, 2537.	1.4	5
451	Rapidly Progressive Frontotemporal Dementia With Amyotrophic Lateral Sclerosis in an Elderly Female. Cureus, 2022, , .	0.2	0
452	Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia. Biomedica, 2022, 42, 623-632.	0.3	0
453	Genotype–phenotype characterisation of long survivors with motor neuron disease in Scotland. Journal of Neurology, 2023, 270, 1702-1712.	1.8	4
454	Altered Blood–Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse Model of Amyotrophic Lateral Sclerosis. Pharmaceutics, 2022, 14, 2803.	2.0	5
456	C9orf72 ALS mutation carriers show extensive cortical and subcortical damage compared to matched wild-type ALS patients. NeuroImage: Clinical, 2023, 38, 103400.	1.4	6
457	Clinical testing panels for ALS: global distribution, consistency, and challenges. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2023, 24, 420-435.	1.1	4
458	Not a benign motor neuron disease: longitudinal imaging captures relentless motor connectome disintegration in primary lateral sclerosis. European Journal of Neurology, 2023, 30, 1232-1245.	1.7	10
461	Clinical and genetic features of amyotrophic lateral sclerosis patients with <i>C9orf72</i> mutations. Brain Communications, 2023, 5, .	1.5	7
462	Deregulation of Plasma microRNA Expression in a TARDBP-ALS Family. Biomolecules, 2023, 13, 706.	1.8	2
478	Language deficits in primary lateral sclerosis: cortical atrophy, white matter degeneration and functional disconnection between cerebral regions. Journal of Neurology, 0, , .	1.8	0
480	Neuropsychological impairment in amyotrophic lateral sclerosis–frontotemporal spectrum disorder. Nature Reviews Neurology, 2023, 19, 655-667.	4.9	4

ARTICLE

IF CITATIONS