Multifunctional nanoparticles for upconversion lumine and magnetically targeted photothermal therapy

Biomaterials 33, 2215-2222 DOI: 10.1016/j.biomaterials.2011.11.069

Citation Report

#	Article	IF	CITATIONS
1	Biomedical applications of organosilica nanoparticles toward theranostics. Nanotechnology Reviews, 2012, 1, 469-491.	2.6	23
2	Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today, 2012, 7, 532-563.	6.2	345
3	Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 2012, 64, 1394-1416.	6.6	408
4	Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes. Nanoscale, 2012, 4, 6325.	2.8	42
5	Recent Advances in Nanoparticle-Based Förster Resonance Energy Transfer for Biosensing, Molecular Imaging and Drug Release Profiling. International Journal of Molecular Sciences, 2012, 13, 16598-16623.	1.8	119
6	Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. International Journal of Nanomedicine, 2012, 7, 5271.	3.3	27
7	Covalently Assembled NIR Nanoplatform for Simultaneous Fluorescence Imaging and Photodynamic Therapy of Cancer Cells. ACS Nano, 2012, 6, 4054-4062.	7.3	356
8	Hybrid Nanoparticles for Detection and Treatment of Cancer. Advanced Materials, 2012, 24, 3779-3802.	11.1	406
9	Organic Stealth Nanoparticles for Highly Effective <i>in Vivo</i> Near-Infrared Photothermal Therapy of Cancer. ACS Nano, 2012, 6, 5605-5613.	7.3	405
10	A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012, 5, 199-212.	5.8	562
11	Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. International Journal of Pharmaceutics, 2012, 430, 266-275.	2.6	86
12	Superparamagnetic and upconversion luminescent properties of Fe3O4/NaYF4:Yb, Er hetero-submicro-rods. Materials Letters, 2012, 85, 1-3.	1.3	15
13	Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Advanced Materials, 2012, 24, 1868-1872.	11.1	865
14	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	11.1	437
15	CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 2013, 5, 8056.	2.8	147
16	Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics. Theranostics, 2013, 3, 317-330.	4.6	369
17	Multiwalled Carbon Nanotubes and NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticle-Doped Bilayer Hydrogel for Concurrent NIR-Triggered Drug Release and Up-Conversion Luminescence Tagging. Langmuir, 2013, 29, 9573-9580.	1.6	70
18	Multicolor and bright white upconversion luminescence from rice-shaped lanthanide doped BiPO4 submicron particles. Dalton Transactions, 2013, 42, 12101.	1.6	47

	CITATION RE	PORT	
#	Article	IF	CITATIONS
19	Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34, 7715-7724.	5.7	344
20	Rare earth ions doped phosphors for improving efficiencies of solar cells. Energy, 2013, 57, 270-283.	4.5	180
21	PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials, 2013, 34, 9160-9170.	5.7	185
22	Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials, 2013, 5, e75-e75.	3.8	75
23	Upconversionâ€Nanophosphorâ€Based Functional Nanocomposites. Advanced Materials, 2013, 25, 5287-5303.	11.1	202
24	IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials, 2013, 34, 6853-6861.	5.7	323
25	Facile One-Pot Synthesis of Fe ₃ O ₄ @Au Composite Nanoparticles for Dual-Mode MR/CT Imaging Applications. ACS Applied Materials & Interfaces, 2013, 5, 10357-10366.	4.0	132
26	PECylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013, 34, 9666-9677.	5.7	182
27	Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. Journal of Materials Chemistry B, 2013, 1, 5762.	2.9	115
28	Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer. Nanoscale Research Letters, 2013, 8, 357.	3.1	24
29	Multifunctional manganese-doped core–shell quantum dots for magnetic resonance and fluorescence imaging of cancer cells. New Journal of Chemistry, 2013, 37, 3076.	1.4	22
30	Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Advances, 2013, 3, 13915.	1.7	54
31	Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale, 2013, 5, 2107.	2.8	116
32	Studies on interaction and illumination damage of CS-Fe3O4@ZnS:Mn to bovine serum albumin. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	10
33	Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes. Biomaterials, 2013, 34, 7444-7452.	5.7	70
34	Magnetic nanoparticle-based cancer therapy. Chinese Physics B, 2013, 22, 027506.	0.7	35
35	Magnetic nanoparticles-based diagnostics and theranostics. Current Opinion in Biotechnology, 2013, 24, 672-681.	3.3	44
36	Effect of surface functionalities on relaxometric properties of MR contrast agents based on NaGdF4 nanoparticles. RSC Advances, 2013, 3, 5386.	1.7	17

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	Nanomaterials for Photo-Based Diagnostic and Therapeutic Applications. Theranostics, 2013, 3, 152-166.	4.6	234
38	Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale, 2013, 5, 23-37.	2.8	325
39	Preparation and photodynamic therapy application of NaYF4:Yb, Tm–NaYF4:Yb, Er multifunctional upconverting nanoparticles. New Journal of Chemistry, 2013, 37, 1782.	1.4	59
40	Optical/Magnetic Multimodal Bioprobes Based on Lanthanideâ€Doped Inorganic Nanocrystals. Chemistry - A European Journal, 2013, 19, 5516-5527.	1.7	45
41	Sub-10 nm Fe ₃ O ₄ @Cu _{2–<i>x</i>} S Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. Journal of the American Chemical Society, 2013, 135, 8571-8577.	6.6	581
42	Multifunctional Fe ₃ O ₄ @P(St/MAA)@Chitosan@Au Core/Shell Nanoparticles for Dual Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2013, 5, 4966-4971.	4.0	87
43	Nanomaterials formulations for photothermal and photodynamic therapy of cancer. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15, 53-72.	5.6	312
44	Platinum (IV) Proâ€Drug Conjugated NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles for Targeted Drug Delivery and Upâ€Conversion Cell Imaging. Advanced Healthcare Materials, 2013, 2, 562-567.	3.9	45
45	Down-/up-conversion luminescence nanocomposites for dual-modal cell imaging. Journal of Materials Chemistry B, 2013, 1, 1333.	2.9	56
46	Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. Nanoscale, 2013, 5, 6950.	2.8	71
47	Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared inÂvivo imaging. Biomaterials, 2013, 34, 7143-7157.	5.7	69
48	Multi-Shell Structured Fluorescent–Magnetic Nanoprobe for Target Cell Imaging and On-Chip Sorting. ACS Applied Materials & Interfaces, 2013, 5, 7417-7424.	4.0	33
49	PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1077-1088.	1.7	72
50	PEGylated Upconverting Luminescent Hollow Nanospheres for Drug Delivery and In Vivo Imaging. Small, 2013, 9, 3235-3241.	5.2	49
51	Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials, 2013, 34, 774-783.	5.7	159
52	Nanomaterials for biomedical applications. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 90-98.	1.1	57
53	Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chemical Society Reviews, 2013, 42, 173-201.	18.7	1,446
54	Multifunctional Upconversion Nanoparticles for Dualâ€Modal Imagingâ€Guided Stem Cell Therapy under Remote Magnetic Control. Advanced Functional Materials, 2013, 23, 272-280.	7.8	141

ARTICLE IF CITATIONS # Polyacrylic Acid Modified Upconversion Nanoparticles for Simultaneous pH-Triggered Drug Delivery 55 0.5 44 and Release Imaging. Journal of Biomedical Nanotechnology, 2013, 9, 2063-2072. Spectroscopic research of upconversion nanomaterials based on complex oxide compounds doped with rare-earth ion pairs: Benefit for cancer diagnostics by upconversion fluorescence and radio sensitive methods/Spektroskopische Untersuchung von mit Ionenpaaren Seltener Erden dotierten 0.3 Upconversion-Nanokompositen: Nutzen fÃ1/4r die Krebsdiagnostik durch Upconversion-Fluoreszenz und Magnetic nanoparticles for imaging technology. International Journal of Nanotechnology, 2013, 10, 57 0.1 23 93Õ. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and 58 Bioapplications. Theranostics, 2013, 3, 292-305. Mesoporous Magnetic Gold "Nanoclusters―as Theranostic Carrier for Chemo-Photothermal 59 4.6 103 Co-therapy of Breast Cancer. Theranostics, 2014, 4, 678-692. $Preparation \ of \ multifunctional \ upconversion \ nanoconstruct \ for \ in \ vitro \ and \ in \ vivo \ imaging \ and \ photodynamic \ therapy \ induced \ by \ near-infrared \ light. \ Proceedings \ of \ SPIE, \ 2014, \ ,$ 0.8 Are Rareâ€Earth Nanoparticles Suitable for In Vivo Applications?. Advanced Materials, 2014, 26, 6922-6932. 62 11.1 166 Nanomedicine. Nanostructure Science and Technology, 2014, , . 0.1 21 Multifunctional upconversion nanoprobe for tumor fluorescence imaging and near-infrared thermal 0 64 therapy. , 2014, , . What Can Nanomedicine Learn from the Current Developments of Nanotechnology?. Nanostructure 0.1 Science and Technology, 2014, , 321-340. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor 67 236 5.7MR imaging. Biomaterials, 2014, 35, 3666-3677. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated 68 111 release and MRI. Biomaterials, 2014, 35, 6359-6368. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Letters, 2014, 69 3.2 205 347, 46-53. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. 2.6 341 Analytica Chimica Acta, 2014, 832, 1-33. 71 Lanthanide-Doped Nanoparticles., 2014, , 121-160. 6 Magnetic iron oxideâ€"fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomaterials Science, 2014, 2, 134 915-923. Dual functional AuNRs@MnMEIOs nanoclusters for magnetic resonance imaging and photothermal 73 5.723 therapy. Biomaterials, 2014, 35, 4678-4687. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014,

CITATION REPORT

18.7

746

^{43, 6254-6287}

#	Article	IF	CITATIONS
75	Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays. Mikrochimica Acta, 2014, 181, 263-294.	2.5	85
76	Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chemical Reviews, 2014, 114, 2343-2389.	23.0	1,259
77	Photoluminescence of CdSe and CdSe/ZnS quantum dots: Modifications for making the invisible visible at ensemble and single-molecule levels. Coordination Chemistry Reviews, 2014, 263-264, 2-12.	9.5	26
78	Magnetic Targeting Enhanced Theranostic Strategy Based on Multimodal Imaging for Selective Ablation of Cancer. Advanced Functional Materials, 2014, 24, 2312-2321.	7.8	97
79	Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn ²⁺ Doping. Advanced Functional Materials, 2014, 24, 4051-4059.	7.8	213
80	Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis, 2014, 35, 3290-3301.	1.3	8
81	Imaging guided photothermal therapy using iron oxide loaded poly(lactic acid) microcapsules coated with graphene oxide. Journal of Materials Chemistry B, 2014, 2, 217-223.	2.9	63
82	Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging. Nanoscale, 2014, 6, 2211.	2.8	45
83	Dual-core@shell-structured Fe ₃ O ₄ –NaYF ₄ @TiO ₂ nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. Journal of Materials Chemistry B, 2014, 2, 5775-5784.	2.9	84
84	Targeted multimodal imaging modalities. Advanced Drug Delivery Reviews, 2014, 76, 60-78.	6.6	113
85	Ultrasmall biomolecule-anchored hybrid GdVO ₄ nanophosphors as a metabolizable multimodal bioimaging contrast agent. Nanoscale, 2014, 6, 12042-12049.	2.8	48
86	Specific Detection and Simultaneously Localized Photothermal Treatment of Cancer Cells Using Layer-by-Layer Assembled Multifunctional Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 6443-6452.	4.0	38
87	Engineering lanthanide-based materials for nanomedicine. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 71-96.	5.6	85
88	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials, 2014, 35, 8206-8214.	5.7	210
89	Two dimensional TiO ₂ nanosheets: in vivo toxicity investigation. RSC Advances, 2014, 4, 42598-42603.	1.7	26
90	Functional Nanomaterials for Phototherapies of Cancer. Chemical Reviews, 2014, 114, 10869-10939.	23.0	2,120
91	Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials, 2014, 35, 9473-9483.	5.7	124
92	Tailor-Made Charge-Conversional Nanocomposite for pH-Responsive Drug Delivery and Cell Imaging. ACS Applied Materials & Interfaces, 2014, 6, 655-663.	4.0	40

#	Article	IF	CITATIONS
93	Synthesis of iron oxide coated fluoridated HAp/Ln ³⁺ (Ln = Eu or Tb) nanocomposites for biological applications. Chemical Communications, 2014, 50, 14010-14012.	2.2	11
94	Multifunctional Polypyrrole@Fe ₃ O ₄ Nanoparticles for Dualâ€Modal Imaging and In Vivo Photothermal Cancer Therapy. Small, 2014, 10, 1063-1068.	5.2	126
95	Stimuli-responsive cancer therapy based on nanoparticles. Chemical Communications, 2014, 50, 11614-11630.	2.2	121
96	Lanthanide-Doped Luminescent Nanomaterials. Nanomedicine and Nanotoxicology, 2014, , .	0.1	52
97	cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. Journal of Controlled Release, 2014, 195, 63-71.	4.8	81
98	Up-Conversion Nanoparticle Assembled Mesoporous Silica Composites: Synthesis, Plasmon-Enhanced Luminescence, and Near-Infrared Light Triggered Drug Release. ACS Applied Materials & Interfaces, 2014, 6, 3250-3262.	4.0	62
99	Nearâ€Infrared Lightâ€Mediated Photoactivation of a Platinum Antitumor Prodrug and Simultaneous Cellular Apoptosis Imaging by Upconversionâ€Luminescent Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 1012-1016.	7.2	274
100	A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials, 2014, 35, 5771-5784.	5.7	124
101	Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo. Coordination Chemistry Reviews, 2014, 273-274, 100-110.	9.5	134
102	Tunable multicolor upconversion luminescence and paramagnetic property of the lanthanide doped fluorescent/magnetic bi-function NaYbF4 microtubes. Journal of Alloys and Compounds, 2014, 589, 502-506.	2.8	20
103	The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids. Journal of Physics Condensed Matter, 2014, 26, 176004.	0.7	26
105	Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials, 2014, 35, 7470-7478.	5.7	264
106	Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials. Nanomaterials, 2014, 4, 129-154.	1.9	100
109	Nanotechnology for Multimodality Imaging: Applications in Disease Detection and Treatment Guidance. Frontiers in Nanobiomedical Research, 2014, , 145-193.	0.1	0
110	Recent Advances in Upconversion Nanoparticlesâ€Based Multifunctional Nanocomposites for Combined Cancer Therapy. Advanced Materials, 2015, 27, 7692-7712.	11.1	243
111	A New Single 808 nm NIR Lightâ€Induced Imagingâ€Guided Multifunctional Cancer Therapy Platform. Advanced Functional Materials, 2015, 25, 3966-3976.	7.8	178
112	Prussian Blue Derived Nanoporous Iron Oxides as Anticancer Drug Carriers for Magneticâ€Guided Chemotherapy. Chemistry - an Asian Journal, 2015, 10, 1457-1462.	1.7	61
113	Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials, 2015, 5, 1690-1703.	1.9	111

#	Article	IF	CITATIONS
114	Long-term prevalence of NIRF-labeled magnetic nanoparticles for the diagnostic and intraoperative imaging of inflammation. Nanotoxicology, 2015, 10, 1-12.	1.6	7
115	Upconversion Nanoparticles for Light-Activated Therapy. Nanostructure Science and Technology, 2015, , 285-341.	0.1	2
116	Near-IR Triggered Photon Upconversion. Fundamental Theories of Physics, 2015, 47, 273-347.	0.1	9
117	The Quality of <i>In Vivo</i> Upconversion Fluorescence Signals Inside Different Anatomic Structures. Journal of Biomedical Nanotechnology, 2015, 11, 325-333.	0.5	10
118	Facile Preparation of Doxorubicin‣oaded Upconversion@Polydopamine Nanoplatforms for Simultaneous In Vivo Multimodality Imaging and Chemophotothermal Synergistic Therapy. Advanced Healthcare Materials, 2015, 4, 559-568.	3.9	165
119	Core–shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. Nanoscale, 2015, 7, 5249-5261.	2.8	45
120	Utilising polymers to understand diseases: advanced molecular imaging agents. Polymer Chemistry, 2015, 6, 868-880.	1.9	28
121	Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging. Scientific Reports, 2015, 5, 7851.	1.6	154
122	Upconversion nanophosphores for bioimaging. TrAC - Trends in Analytical Chemistry, 2015, 66, 72-79.	5.8	49
123	Hexamodal Imaging with Porphyrinâ€Phospholipidâ€Coated Upconversion Nanoparticles. Advanced Materials, 2015, 27, 1785-1790.	11.1	189
124	An â€~all in one' approach for simultaneous chemotherapeutic, photothermal and magnetic hyperthermia mediated by hybrid magnetic nanoparticles. RSC Advances, 2015, 5, 25066-25078.	1.7	13
125	Up-Conversion Nanoparticles for Early Cancer Diagnosis. Frontiers in Nanobiomedical Research, 2015, , 1-19.	0.1	0
126	Phase-Shifted PFH@PLGA/Fe ₃ O ₄ Nanocapsules for MRI/US Imaging and Photothermal Therapy with near-Infrared Irradiation. ACS Applied Materials & Interfaces, 2015, 7, 14231-14242.	4.0	95
127	Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chemical Reviews, 2015, 115, 10725-10815.	23.0	946
128	Poly(acrylic acid) Bridged Gadolinium Metal–Organic Framework–Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging. ACS Applied Materials & Interfaces, 2015, 7, 17765-17775.	4.0	83
129	Upconversion Nanoparticle-Based Nanocomposites. Nanostructure Science and Technology, 2015, , 121-157.	0.1	3
130	Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomaterials Science, 2015, 3, 721-732.	2.6	61
131	Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosensors and Bioelectronics, 2015, 72, 282-287.	5.3	40

#	Article	IF	CITATIONS
132	Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials, 2015, 61, 95-102.	5.7	121
133	Plasmon enhancement of luminescence upconversion. Chemical Society Reviews, 2015, 44, 2940-2962.	18.7	242
134	In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale, 2015, 7, 8946-8954.	2.8	75
135	Electrostatically self-assembled microcapsule composed of conjugated polyelectrolytes and polypeptides for an emission color-changeable assay for trypsin. Sensors and Actuators B: Chemical, 2015, 221, 1229-1235.	4.0	18
136	Au ₂₅ cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7, 19568-19578.	2.8	99
137	Specific photothermal therapy to the tumors with high EphB4 receptor expression. Biomaterials, 2015, 68, 32-41.	5.7	31
138	Near-infrared light activated delivery platform for cancer therapy. Advances in Colloid and Interface Science, 2015, 226, 123-137.	7.0	42
139	Bottom-Up Synthesis of Metal-Ion-Doped WS ₂ Nanoflakes for Cancer Theranostics. ACS Nano, 2015, 9, 11090-11101.	7.3	263
140	Multimodal cancer imaging using lanthanide-based upconversion nanoparticles. Nanomedicine, 2015, 10, 2573-2591.	1.7	31
141	Stimuli responsive drug delivery application of polymer and silica in biomedicine. Journal of Materials Chemistry B, 2015, 3, 8599-8622.	2.9	88
142	Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS Nano, 2015, 9, 12425-12435.	7.3	145
143	Multifunctional Bioconjugate for Cancer Cell-Targeted Theranostics. Bioconjugate Chemistry, 2015, 26, 2571-2578.	1.8	23
144	Sub-10nm lanthanide doped BaLuF5 nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence. Materials Research Bulletin, 2015, 64, 27-32.	2.7	8
145	Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 2015, 115, 395-465.	23.0	1,815
146	Multifunctional NaYF ₄ :Yb, Er@mSiO ₂ @Fe ₃ O ₄ -PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale, 2015, 7, 1839-1848.	2.8	88
147	Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chemical Reviews, 2015, 115, 327-394.	23.0	1,063
148	Magnetic nano-Fe3O4particles targeted gathering and bio-effects on nude mice loading human hepatoma Bel-7402 cell lines model under external magnetic field exposurein vivo. Electromagnetic Biology and Medicine, 2015, 34, 309-316.	0.7	4
149	Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chemical Society Reviews, 2015, 44, 1585-1607.	18.7	328

#	Article	IF	CITATIONS
150	Current advances in lanthanide ion (Ln ³⁺)-based upconversion nanomaterials for drug delivery. Chemical Society Reviews, 2015, 44, 1416-1448.	18.7	676
151	Multifunctional Inorganic Nanoparticles: Recent Progress in Thermal Therapy and Imaging. Nanomaterials, 2016, 6, 76.	1.9	96
152	Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy. International Journal of Nanomedicine, 2016, Volume 11, 4327-4338.	3.3	33
153	Lanthanide Ions Doped Upconversion Nanomaterials: Synthesis, Surface Engineering, andÂApplication in Drug Delivery. , 2016, , 227-260.		5
154	A Universal Platform for Macromolecular Deliveryinto Cells Using Gold Nanoparticle Layers via the Photoporation Effect. Advanced Functional Materials, 2016, 26, 5787-5795.	7.8	55
155	Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials, 2016, 103, 265-277.	5.7	42
156	Upconversion nanocomposites for photo-based cancer theranostics. Journal of Materials Chemistry B, 2016, 4, 5331-5348.	2.9	25
157	Biomedical applications of multifunctional gold-based nanocomposites. Biochemistry (Moscow), 2016, 81, 1771-1789.	0.7	19
158	A Dual-Color Luminescent Localized Drug Delivery System with Ratiometric-Monitored Doxorubicin Release Functionalities. ACS Biomaterials Science and Engineering, 2016, 2, 652-661.	2.6	27
159	Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning. Journal of Alloys and Compounds, 2016, 681, 379-383.	2.8	21
160	Multifunctional gold-based nanocomposites for theranostics. Biomaterials, 2016, 108, 13-34.	5.7	106
161	Upconversion Nanoparticles for Bioimaging. , 2016, , 363-390.		2
162	Spatial organization and optical properties of layer-by-layer assembled upconversion and gold nanoparticles in thin films. Journal of Materials Chemistry C, 2016, 4, 9343-9349.	2.7	11
163	Synthesis of a UCNPs@SiO ₂ @gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Advances, 2016, 6, 98968-98974.	1.7	13
164	Multimodal Imaging-Guided Antitumor Photothermal Therapy and Drug Delivery Using Bismuth Selenide Spherical Sponge. ACS Nano, 2016, 10, 9646-9658.	7.3	175
165	Multifunctional ferritin nanocages for bimodal imaging and targeted delivery of doxorubicin into cancer cells. RSC Advances, 2016, 6, 109322-109333.	1.7	5
166	9 Upconversion Nanoparticles for Phototherapy. Nanomaterials and Their Applications, 2016, , 255-290.	0.0	0
167	5 Synergistic Effects in Organic-Coated Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 101-138.	0.0	5

#	Article	IF	CITATIONS
168	8 Active–Core–Active-Shell Upconverting Nanoparticles: Novel Mechanisms, Features, and Perspectives for Biolabeling. Nanomaterials and Their Applications, 2016, , 195-254.	0.0	0
169	Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy. Biomaterials, 2016, 105, 77-88.	5.7	61
170	Indocyanine green–loaded polydopamine–iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy. Nanoscale, 2016, 8, 17150-17158.	2.8	125
171	Probing the Interior Crystal Quality in the Development of More Efficient and Smaller Upconversion Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 3252-3258.	2.1	42
173	Recent advances in different modal imaging-guided photothermal therapy. Biomaterials, 2016, 106, 144-166.	5.7	228
174	Magnetic Nanomaterials for Tumor Targeting Theranostics. , 2016, , 55-83.		2
175	Luminescent Ions in Advanced Composite Materials for Multifunctional Applications. Advanced Functional Materials, 2016, 26, 6330-6350.	7.8	198
176	Upconversion Luminescence Behavior of Single Nanoparticles. , 2016, , 311-331.		1
177	Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells. Mikrochimica Acta, 2016, 183, 3209-3219.	2.5	10
178	Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Advances, 2016, 6, 111482-111516.	1.7	62
179	Lanthanide-Doped Upconversion Nanoprobes. , 2016, , 237-287.		0
180	On The Latest Threeâ€Stage Development of Nanomedicines based on Upconversion Nanoparticles. Advanced Materials, 2016, 28, 3987-4011.	11.1	221
181	Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy. Journal of Innovative Optical Health Sciences, 2016, 09, 1630006.	0.5	26
182	InGaAs/GaAs quantum well intermixing using proton irradiation for non-absorbing mirror. Current Applied Physics, 2016, 16, 1005-1008.	1.1	2
183	Upconversion NaGdF4 nanoparticles for monitoring heat treatment and acid corrosion processes of hair. Journal of Rare Earths, 2016, 34, 475-482.	2.5	3
184	Engineering nanolayered particles for modular drug delivery. Journal of Controlled Release, 2016, 240, 364-386.	4.8	112
185	Design of Magnetic Nanoparticles for MRI-Based Theranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 3-37.	0.7	1
186	Engineering Upconversion Nanoparticles for Multimodal Biomedical Imaging-Guided Therapeutic Applications. Springer Series in Biomaterials Science and Engineering, 2016, , 165-195.	0.7	1

#	Article	IF	CITATIONS
187	Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. Journal of Materials Chemistry B, 2016, 4, 2038-2050.	2.9	23
189	One-pot synthesis of polyamines improved magnetism and fluorescence Fe ₃ O ₄ –carbon dots hybrid NPs for dual modal imaging. Dalton Transactions, 2016, 45, 5484-5491.	1.6	42
190	Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled <i>via</i> Fe ₅ C ₂ Nanoparticles. ACS Nano, 2016, 10, 159-169.	7.3	136
191	The application of gold nanoparticles as a promising therapeutic approach in breast and ovarian cancer. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1222-1227.	1.9	18
192	SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	2
193	Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
194	Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents. Biomaterials Science, 2017, 5, 432-443.	2.6	61
195	SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-44.	0.2	3
196	Upconversion nanotheranostics: emerging designs for integration of diagnosis and therapy. Nanomedicine, 2017, 12, 577-580.	1.7	15
197	Recent Advances and Future Prospects of Aggregationâ€induced Emission Carbohydrate Polymers. Macromolecular Rapid Communications, 2017, 38, 1600575.	2.0	23
198	Amphiphilic Silane Modified Multifunctional Nanoparticles for Magnetically Targeted Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 11451-11460.	4.0	29
199	Biodistribution, excretion, and toxicity of polyethyleneimine modified NaYF ₄ :Yb,Er upconversion nanoparticles in mice via different administration routes. Nanoscale, 2017, 9, 4497-4507.	2.8	61
200	Multifunctional NaYF ₄ :Yb ³⁺ ,Er ³⁺ @SiO ₂ @Au heterogeneous nanocomposites for upconversion luminescence, temperature sensing and photothermal conversion. RSC Advances, 2017, 7, 11491-11495.	1.7	8
201	Bifunctional Nanomaterials: Magnetism, Luminescence and Multimodal Biomedical Applications. , 2017, , 121-171.		8
202	Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy. Biomaterials, 2017, 133, 165-175.	5.7	56
203	Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Advances in Colloid and Interface Science, 2017, 245, 1-19.	7.0	59
204	Depth-profiling of Yb ³⁺ sensitizer ions in NaYF ₄ upconversion nanoparticles. Nanoscale, 2017, 9, 7719-7726.	2.8	36
205	Multifunctional magnetic-fluorescent Ni-doped ZnAl 2 O 4 nanoparticles with second biological NIR window fluorescence. Materials Research Bulletin, 2017, 93, 310-317.	2.7	14

#	Article	IF	CITATIONS
206	Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry. Journal of Nanobiotechnology, 2017, 15, 22.	4.2	37
207	Complex Magnetic Nanostructures. , 2017, , .		6
208	PLA–PEGâ€grafted hollow magnetic silica microspheres as the carrier of iodinated contrast media. Journal of Applied Polymer Science, 2017, 134, .	1.3	3
209	Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135.	16.0	84
210	Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano, 2017, 11, 4463-4474.	7.3	583
211	Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1607-1616.	1.7	56
212	Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1466.	3.3	57
213	Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating. Chemical Physics Letters, 2017, 667, 226-232.	1.2	46
214	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	1
215	Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomaterials Science, 2017, 5, 190-210.	2.6	150
216	Nanomaterial-Based Drug Delivery Carriers for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , 15-54.	0.2	1
217	Photon upconversion towards applications in energy conversion and bioimaging. Progress in Surface Science, 2017, 92, 281-316.	3.8	41
218	Novel Magneticâ€Luminescent Janus Nanoparticles for Cell Labeling and Tumor Photothermal Therapy. Small, 2017, 13, 1701129.	5.2	40
219	Luminescent and Magnetic α-Fe ₂ O ₃ @Y ₂ O ₃ :Eu ³⁺ Bifunctional Hollow Microspheres for Drug Delivery. Journal of Physical Chemistry C, 2017, 121, 20279-20286.	1.5	15
220	Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials, 2017, 147, 39-52.	5.7	52
221	Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules. Nanoscale, 2017, 9, 15441-15452.	2.8	67
222	Upconversion Nanoparticles/Hyaluronate–Rose Bengal Conjugate Complex for Noninvasive Photochemical Tissue Bonding. ACS Nano, 2017, 11, 9979-9988.	7.3	81
223	Trifunctional Fe ₃ O ₄ /CaP/Alginate Core–Shell–Corona Nanoparticles for Magnetically Guided, pH-Responsive, and Chemically Targeted Chemotherapy. ACS Biomaterials Science and Engineering, 2017, 3, 2366-2374.	2.6	34

#	Article	IF	CITATIONS
224	Time-sequenced drug delivery approaches towards effective chemotherapeutic treatment of glioma. Materials Horizons, 2017, 4, 977-996.	6.4	14
225	Enhancing Upconversion Luminescence of LiYF ₄ :Yb,Er Nanocrystals by Cd ²⁺ Doping and Core–Shell Structure. Journal of Physical Chemistry C, 2017, 121, 18909-18916.	1.5	49
227	Tumor-targeted small molecule for dual-modal imaging-guided phototherapy upon near-infrared excitation. Journal of Materials Chemistry B, 2017, 5, 9405-9411.	2.9	37
228	Exceptionally High Payload of the IR780 lodide on Folic Acid-Functionalized Graphene Quantum Dots for Targeted Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 22332-22341.	4.0	167
229	Magnetic Nanomaterials for Therapy. , 0, , 393-438.		2
230	Synthesis and characterization of Na(Gd0.5Lu0.5)F4: Nd3+,a core-shell free multifunctional contrast agent. Journal of Alloys and Compounds, 2017, 695, 280-285.	2.8	10
231	Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Materials Science and Engineering C, 2017, 71, 584-593.	3.8	66
232	Effective tracking of bone mesenchymal stem cells <i>in vivo</i> by magnetic resonance imaging using melaninâ€based gadolinium ³⁺ nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 131-137.	2.1	19
233	Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opinion on Drug Delivery, 2017, 14, 123-136.	2.4	81
234	Targeted Nanomaterials for Phototherapy. Nanotheranostics, 2017, 1, 38-58.	2.7	135
235	Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles. Theranostics, 2017, 7, 1976-1989.	4.6	37
236	Smart Materials Meet Multifunctional Biomedical Devices: Current and Prospective Implications for Nanomedicine. Frontiers in Bioengineering and Biotechnology, 2017, 5, 80.	2.0	43
237	Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. Nanoscale, 2018, 10, 6270-6276.	2.8	39
238	Silicon nanowire-based multifunctional platform for chemo-photothermal synergistic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 3876-3883.	2.9	8
239	Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Transactions, 2018, 47, 3931-3939.	1.6	88
240	Plasmono-magnetic material for precise photothermal heating. RSC Advances, 2018, 8, 2660-2666.	1.7	0
241	Stable gadolinium based nanoscale lyophilized injection for enhanced MR angiography with efficient renal clearance. Biomaterials, 2018, 158, 74-85.	5.7	37
242	Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy. Chemistry of Materials, 2018, 30, 526-539.	3.2	103

#	Article	IF	CITATIONS
243	Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped K _{0.3} Bi _{0.7} F _{2.4} upconversion nanoparticles. Nanoscale, 2018, 10, 1394-1402.	2.8	45
244	One-Pot Synthesis of a Bismuth Selenide Hexagon Nanodish Complex for Multimodal Imaging-Guided Combined Antitumor Phototherapy. Molecular Pharmaceutics, 2018, 15, 1941-1953.	2.3	25
245	Recent advances in functional nanomaterials for light–triggered cancer therapy. Nano Today, 2018, 19, 146-187.	6.2	453
246	Cellular internalization of polypeptide-based nanoparticles: effects of size, shape and surface morphology. Biomaterials Science, 2018, 6, 3251-3261.	2.6	15
247	Multifunctional Rare-Earth Element Nanocrystals for Cell Labeling and Multimodal Imaging. ACS Biomaterials Science and Engineering, 2018, 4, 3578-3587.	2.6	14
248	How can nanotechnology help the fight against breast cancer?. Nanoscale, 2018, 10, 11719-11731.	2.8	42
249	Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. International Journal of Nanomedicine, 2018, Volume 13, 2321-2336.	3.3	53
250	Nanostructured biomimetic, bioresponsive, and bioactive biomaterials. , 2018, , 35-65.		1
251	Iron Oxide Nanoparticles in Photothermal Therapy. Molecules, 2018, 23, 1567.	1.7	222
252	Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 2018, 61, 1243-1260.	4.2	17
253	A Novel Histochemical Staining Approach for Rareâ€Earthâ€Based Nanoprobes. Advanced Therapeutics, 2018, 1, 1800005.	1.6	11
254	Classification of Green Nanoparticles. , 2018, , 37-65.		0
255	Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials, 2019, 219, 119370.	5.7	92
256	Multifunctional NaYF4:Yb,Er@PE3@Fe3O4 nanocomposites for magnetic-field-assisted upconversion imaging guided photothermal therapy of cancer cells. Dalton Transactions, 2019, 48, 12850-12857.	1.6	14
257	Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today, 2019, 29, 100797.	6.2	141
258	Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Materials Science and Engineering C, 2019, 105, 110097.	3.8	50
259	Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Research Letters, 2019, 14, 188.	3.1	172
261	An intelligent nanoplatform for simultaneously controlled chemo-, photothermal, and photodynamic therapies mediated by a single NIR light. Chemical Engineering Journal, 2019, 362, 679-691.	6.6	83

#	Article	IF	CITATIONS
262	Multifunctional Fe ₃ O ₄ @Polydopamine@DNA-Fueled Molecular Machine for Magnetically Targeted Intracellular Zn ²⁺ Imaging and Fluorescence/MRI Guided Photodynamic-Photothermal Therapy. Analytical Chemistry, 2019, 91, 7850-7857.	3.2	58
263	Co-precipitation Synthesis of Near-infrared Iron Oxide Nanocrystals on Magnetically Targeted Imaging and Photothermal Cancer Therapy via Photoablative Protein Denature. Nanotheranostics, 2019, 3, 236-254.	2.7	14
264	A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy. Biomaterials, 2019, 216, 119254.	5.7	95
265	Expanding the toolbox for lanthanide-doped upconversion nanocrystals. Journal Physics D: Applied Physics, 2019, 52, 383002.	1.3	27
266	808â€ [−] nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Materials Science and Engineering C, 2019, 100, 260-268.	3.8	40
267	Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges. Nano Today, 2019, 25, 38-67.	6.2	100
268	A novel strategy for markedly enhancing the green upconversion emission in Er3+/Yb3+ co-doped VO2. Journal of Alloys and Compounds, 2019, 791, 593-600.	2.8	14
269	Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8â^'x Y x Yb0.17Er0.03F4 solid solutions. Laser Physics Letters, 2019, 16, 035604.	0.6	3
270	Self-Calibrated Double Luminescent Thermometers Through Upconverting Nanoparticles. Frontiers in Chemistry, 2019, 7, 267.	1.8	34
271	Physics, Electrochemistry, Photochemistry, and Photoelectrochemistry of Hybrid Nanoparticles. , 2019, , 95-123.		7
272	Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: review study. Drug Metabolism Reviews, 2019, 51, 12-41.	1.5	68
273	Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling. Biochemical and Biophysical Research Communications, 2019, 511, 207-213.	1.0	39
274	Hyperthermia Treatments. , 2019, , 241-263.		4
275	Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. Magnetochemistry, 2019, 5, 67.	1.0	92
276	Lanthanide-doped mesoporous MCM-41 nanoparticles as a novel optical–magnetic multifunctional nanobioprobe. RSC Advances, 2019, 9, 40835-40844.	1.7	6
277	Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis and Photodynamic Therapy, 2019, 25, 177-192.	1.3	59
278	Environmental Nanotechnology. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
279	Multifunctional nanoclusters of NaYF4:Yb3+,Er3+ upconversion nanoparticle and gold nanorod for simultaneous imaging and targeted chemotherapy of bladder cancer. Materials Science and Engineering C, 2019, 97, 784-792.	3.8	34

#	Article	IF	CITATIONS
280	Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications. Drug Discovery Today, 2019, 24, 835-844.	3.2	73
281	Graphene quantum dots-decorated hollow copper sulfide nanoparticles for controlled intracellular drug release and enhanced photothermal-chemotherapy. Journal of Materials Science, 2020, 55, 1184-1197.	1.7	29
282	Single-step formulation of levodopa-based nanotheranostics – strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics. Biomaterials Science, 2020, 8, 1615-1621.	2.6	10
283	Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines, 2020, 11, 866.	1.4	52
284	Multimodal Stokes and Anti-Stokes luminescent thermometers based on GdP5O14 co-doped with Cr3+ and Nd3+ ions. Chemical Engineering Journal, 2020, 402, 126197.	6.6	42
285	Near-Infrared Responsive Phase-Shifted Nanoparticles for Magnetically Targeted MR/US Imaging and Photothermal Therapy of Cancer. Frontiers in Bioengineering and Biotechnology, 2020, 8, 599107.	2.0	11
286	Development of fluorescence/MR dual-modal manganese-nitrogen-doped carbon nanosheets as an efficient contrast agent for targeted ovarian carcinoma imaging. Journal of Nanobiotechnology, 2020, 18, 175.	4.2	15
287	Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 2020, 17, 657-674.	12.5	1,622
288	Zoledronate and SPIO dual-targeting nanoparticles loaded with ICG for photothermal therapy of breast cancer tibial metastasis. Scientific Reports, 2020, 10, 13675.	1.6	22
289	Progress, challenges, and future of nanomedicine. Nano Today, 2020, 35, 101008.	6.2	135
290	Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics, 2020, 3, 2000061.	1.6	68
291	Recent Advances of Polyaniline-Based Biomaterials for Phototherapeutic Treatments of Tumors and Bacterial Infections. Bioengineering, 2020, 7, 94.	1.6	23
292	Poly(acrylic acid) nanocomposites: Design of advanced materials. Journal of Plastic Film and Sheeting, 2021, 37, 409-428.	1.3	20
293	Upconverting nanoparticles: potential for a new heat regulating materials. , 2020, , 265-283.		0
294	Synthesis and the characterization for transition metal-ion based photonics: Broadband near-IR emission properties of nickel ion doped NaSbO3 ceramics. Ceramics International, 2021, 47, 776-781.	2.3	2
295	MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 2021, 11, 579-601.	4.6	62
296	Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Science China Chemistry, 2021, 64, 157-164.	4.2	4
297	Polymer–Inorganic Colloidal Nanocomposites. RSC Nanoscience and Nanotechnology, 2021, , 123-160.	0.2	0

#	Article	IF	CITATIONS
298	Multispectral upconversion nanoparticles for near infrared encoding of wearable devices. RSC Advances, 2021, 11, 21897-21903.	1.7	4
299	First-Principles Calculation of Photoelectric Property in Upconversion Materials through In3+ Doping. Journal of Chemical Information and Modeling, 2021, 61, 881-890.	2.5	2
300	Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS Nano, 2021, 15, 3709-3735.	7.3	82
301	Iron Oxide-Based Magneto-Optical Nanocomposites for In Vivo Biomedical Applications. Biomedicines, 2021, 9, 288.	1.4	23
302	One-pot green synthesis of I@CNDs-Fe3O4 hybrid nanoparticles from kelp for multi-modal imaging in vivo. Materials Science and Engineering C, 2021, 124, 112037.	3.8	5
303	Linear tunable NIR emission via selective doping of Ni2+ ion into ZnX2O4 (X=Al, Ga, Cr) spinel matrix. Ceramics International, 2021, 47, 17678-17683.	2.3	23
304	Photodynamic Therapy—Current Limitations and Novel Approaches. Frontiers in Chemistry, 2021, 9, 691697.	1.8	215
305	Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics, 2021, 13, 948.	2.0	3
306	Hybrid nanoparticles based on ortho ester-modified pluronic L61 and chitosan for efficient doxorubicin delivery. International Journal of Biological Macromolecules, 2021, 183, 1596-1606.	3.6	6
307	Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. Materials Science and Engineering C, 2021, 127, 112190.	3.8	10
308	A nanocomposite of rare earth upconversion nanoparticles and nanodiamonds for dual-mode imaging and drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126815.	2.3	13
309	Imaging and therapeutic capabilities of the AuNPs@MnCO3/Mn3O4, coated with PAA and integrated with folic acid, doxorubicin and propidium iodide for murine breast cancer. Journal of Drug Delivery Science and Technology, 2022, 67, 102818.	1.4	7
310	Safety and efficacy of citric acid-upconverting nanoparticles for multimodal biological imaging in BALB/c mice. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102485.	1.3	1
311	Tumor-targeted Gd-doped mesoporous Fe ₃ O ₄ nanoparticles for T ₁ /T ₂ MR imaging guided synergistic cancer therapy. Drug Delivery, 2021, 28, 787-799.	2.5	9
312	Metal-organic Frameworks-based Composites and Their Photothermal Applications. Acta Chimica Sinica, 2021, 79, 967.	0.5	10
313	Health Benefits and Potential Risks of Nanostructured Materials. Environmental Chemistry for A Sustainable World, 2019, , 109-142.	0.3	1
314	Lanthanide Luminescence Enhancement of Core–Shell Magnetite–SiO ₂ Nanoparticles Covered with Chain-Structured Helical Eu/Tb Complexes. ACS Omega, 2020, 5, 32930-32938.	1.6	7
315	Recent Advances in Magnetic Upconversion Nanocomposites for Bioapplications. Current Pharmaceutical Design, 2019, 25, 2007-2015.	0.9	5

#	Article	IF	CITATIONS
317	The Application of Up-conversion Nanoparticles Materials in Cancer Diagnosis and Therapy. , 2016, , .		0
318	Upconversion Nanoparticles for Gastric Cancer Targeted Imaging and Therapy. Translational Medicine Research, 2017, , 239-270.	0.0	2
319	CHAPTER 3. Applications of Magnetic Nanoparticles in Multi-modal Imaging. RSC Drug Discovery Series, 2018, , 53-85.	0.2	2
320	Targeted Photothermal Therapy of Melanoma in C57BL/6 Mice using Fe3O4@Au Core-shell Nanoparticles and Near-infrared Laser. Journal of Biomedical Physics and Engineering, 2021, 11, 29-38.	0.5	6
321	Application of UCNPs in Bio-imaging and Treatment. , 2019, , 235-244.		0
322	Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics, 2022, 6, 143-160.	2.7	26
323	Mono- to few-layer non-van der Waals 2D lanthanide-doped NaYF ₄ nanosheets with upconversion luminescence. 2D Materials, 2021, 8, 015005.	2.0	3
324	Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln(3+) (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging. Cancer Biology and Medicine, 2015, 12, 175-83.	1.4	7
325	Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Advanced Science, 2022, 9, e2103971.	5.6	29
326	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.5	0
327	The influence of Gd-DOTA conjugating ratios to PLGA-PEG micelles encapsulated IR-1061 on bimodal over-1000 nm near-infrared fluorescence and magnetic resonance imaging. Biomaterials Science, 2022, 10, 1217-1230.	2.6	10
329	Recent advances in upconversion nanoparticle-based nanocomposites for gas therapy. Chemical Science, 2022, 13, 1883-1898.	3.7	35
330	Nanomaterials for Biophotonics. , 2023, , 67-91.		0
331	Upconversion-luminescent nanomaterials for biomedical applications. , 2022, , 337-374.		0
332	Integration of Au Nanosheets and GdOF:Yb,Er for NIR-I and NIR-II Light-Activated Synergistic Theranostics. ACS Applied Materials & amp; Interfaces, 2022, 14, 3809-3824.	4.0	13
333	Real-Space Image of Charged Patches in Tunable-Size Nanocrystals. Materials, 2022, 15, 1455.	1.3	0
334	Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Seminars in Cancer Biology, 2022, 86, 1086-1104.	4.3	25
335	Synthesis of Fe3O4/PDA Nanocomposites for Osteosarcoma Magnetic Resonance Imaging and Photothermal Therapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, 844540.	2.0	2

#	Article	IF	CITATIONS
339	Nanotechnological strategies for prostate cancer imaging and diagnosis. Science China Chemistry, 2022, 65, 1498-1514.	4.2	8
340	Upconversion nanomaterials and delivery systems for smart photonic medicines and healthcare devices. Advanced Drug Delivery Reviews, 2022, 188, 114419.	6.6	11
341	Hyaluronate–Black Phosphorus–Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer. Biomacromolecules, 2022, 23, 3602-3611.	2.6	6
342	Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Advances in Colloid and Interface Science, 2022, 308, 102753.	7.0	46
343	A Reconfigurable Nanophotonic Heterostructure Engineered by a DNA Origami Switch. ChemPlusChem, 0, , .	1.3	0
344	Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. Journal of Controlled Release, 2022, 352, 652-672.	4.8	6
345	Multifunctional Superparticles for Magnetically Targeted NIRâ€II Imaging and Photodynamic Therapy. Advanced Science, 2023, 10, .	5.6	14
346	Smart nanomaterials in the medical industry. , 2023, , 23-50.		0
347	Advances in nanoparticles-based approaches in cancer theranostics. OpenNano, 2023, 12, 100152.	1.8	8
348	Capture, sterilization and determination platform of foodborne pathogen based on Halbach ring-mediated magnetic filter. Sensors and Actuators B: Chemical, 2023, 388, 133844.	4.0	0
351	Lanthanides in bioimaging. , 2023, , 541-647.		0
352	Magnetic particles for drug delivery. , 2023, , 259-304.		0
356	Hybrid functional materials and their applications. , 2023, , .		0
358	A Futuristic Approach on the Multifunctionality of Nanomaterials. Advances in Chemical and Materials Engineering Book Series, 2024, , 1-36.	0.2	0