The use of quaternised chitosan-loaded PMMA to inhibit downregulate the virulence-associated gene expression staphylococcus

Biomaterials

33, 365-377

DOI: 10.1016/j.biomaterials.2011.09.084

Citation Report

#	Article	IF	CITATIONS
1	A case report of a multi-drug resistant bacterial infection in a diabetic patient treated in northeast Brazil. Diabetic Foot & Ankle, 2012, 3, 18656.	2.8	5
2	Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. Journal of Medical Microbiology, 2012, 61, 1179-1193.	0.7	141
3	Combined application of bacterial predation and carbon dioxide aerosols to effectively remove biofilms. Biofouling, 2012, 28, 671-680.	0.8	26
4	Novel Inhibitors of Staphylococcus aureus Virulence Gene Expression and Biofilm Formation. PLoS ONE, 2012, 7, e47255.	1.1	80
5	The use of Antimicrobial-Impregnated PMMA to Manage Periprosthetic Infections: Controversial Issues and the Latest Developments. International Journal of Artificial Organs, 2012, 35, 832-839.	0.7	39
6	Nanomaterialâ€Based Treatments for Medical Deviceâ€Associated Infections. ChemPhysChem, 2012, 13, 2481-2494.	1.0	50
7	Physical characterization and osteogenic activity of the quaternized chitosan-loaded PMMA bone cement. Acta Biomaterialia, 2012, 8, 2166-2174.	4.1	91
8	Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33, 5967-5982.	5.7	874
9	Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications. Science Bulletin, 2013, 58, 4342-4348.	1.7	19
10	A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013, 34, 8533-8554.	5.7	1,111
11	Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis. Journal of Materials Chemistry B, 2013, 1, 3304.	2.9	35
12	Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?. Clinical Microbiology Reviews, 2013, 26, 185-230.	5.7	775
13	Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. International Journal of Molecular Sciences, 2013, 14, 1854-1869.	1.8	271
14	Antibacterial properties and bioactivity of HACC- and HACC–Zein-modified mesoporous bioactive glass scaffolds. Journal of Materials Chemistry B, 2013, 1, 685-692.	2.9	27
15	Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. Journal of Surgical Research, 2013, 183, 204-213.	0.8	83
16	Evolving strategies for preventing biofilm on implantable materials. Materials Today, 2013, 16, 177-182.	8.3	87
17	Effects of 5-aminolevulinic acid–mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an inÂvitro study. Journal of Surgical Research, 2013, 184, 1013-1021.	0.8	68
18	Quaternised chitosan-loaded polymethylmethacrylate bone cement: Biomechanical and histological evaluations. Journal of Orthopaedic Translation, 2013, 1, 57-66.	1.9	11

#	Article	IF	CITATIONS
19	A Daptomycin-Xylitol-loaded Polymethylmethacrylate Bone Cement: How Much Xylitol Should Be Used?. Clinical Orthopaedics and Related Research, 2013, 471, 3149-3157.	0.7	7
20	Ultrasound-Targeted Microbubble Destruction Enhances Human β-Defensin 3 Activity Against Antibiotic-Resistant Staphylococcus Biofilms. Inflammation, 2013, 36, 983-996.	1.7	29
21	Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility. Journal of Materials Science: Materials in Medicine, 2013, 24, 1951-1961.	1.7	61
22	Chitosanâ€heparin polyelectrolyte multilayers on cortical bone: Periosteumâ€mimetic, cytophilic, antibacterial coatings. Biotechnology and Bioengineering, 2013, 110, 609-618.	1.7	34
23	Staphylococcus aureus supernatant induces the release of mouse β-defensin-14 from osteoblasts via the p38 MAPK and NF-κB pathways. International Journal of Molecular Medicine, 2013, 31, 1484-1494.	1.8	15
24	Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. International Journal of Nanomedicine, 2013, 8, 3093.	3.3	83
25	Antibacterial Properties of Magnesium <i>In Vitro</i> and in an <i>In Vivo</i> Model of Implant-Associated Methicillin-Resistant Staphylococcus aureus Infection. Antimicrobial Agents and Chemotherapy, 2014, 58, 7586-7591.	1.4	95
26	The Effect of latrogenic <i>Staphylococcus epidermidis</i> Intercellar Adhesion Operon on the Formation of Bacterial Biofilm on Polyvinyl Chloride Surfaces. Surgical Infections, 2014, 15, 768-773.	0.7	9
27	Antibacterial Surface Treatment for Orthopaedic Implants. International Journal of Molecular Sciences, 2014, 15, 13849-13880.	1.8	264
28	Traditional Chitin and Chitosan Biomaterials Research. , 2014, , 29-50.		1
29	Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration. Colloids and Surfaces B: Biointerfaces, 2014, 116, 72-80.	2.5	45
30	Bone-Implant Interface in Orthopedic Surgery. , 2014, , .		7
31	Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass. Materials Science and Engineering C, 2014, 41, 196-205.	3.8	47
32	Dental materials with antibiofilm properties. Dental Materials, 2014, 30, e1-e16.	1.6	142
33	Quaternized chitosans bind onto preexisting biofilms and eradicate pre-attached microorganisms. Journal of Materials Chemistry B, 2014, 2, 8518-8527.	2.9	36
34	Hydrothermal fabrication of magnetic mesoporous carbonated hydroxyapatite microspheres: biocompatibility, osteoinductivity, drug delivery property and bactericidal property. Journal of Materials Chemistry B, 2014, 2, 2899.	2.9	43
35	<i>In Vivo</i> Effect of Quaternized Chitosan-Loaded Polymethylmethacrylate Bone Cement on Methicillin-Resistant Staphylococcus epidermidis Infection of the Tibial Metaphysis in a Rabbit Model. Antimicrobial Agents and Chemotherapy, 2014, 58, 6016-6023.	1.4	43
36	InÂvitro and inÂvivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 2014, 35, 9114-9125.	5.7	205

#	Article	IF	CITATIONS
37	Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials, 2014, 35, 10033-10045.	5.7	87
38	Antibacterial activity of gemini quaternary ammonium salts. FEMS Microbiology Letters, 2014, 350, 190-198.	0.7	48
39	Fabrication, characterization, and biocompatibility of ethyl cellulose/carbonated hydroxyapatite composite coatings on Ti6Al4V. Journal of Materials Science: Materials in Medicine, 2014, 25, 2059-2068.	1.7	14
40	Chitosan/carbonated hydroxyapatite composite coatings: Fabrication, structure and biocompatibility. Surface and Coatings Technology, 2014, 251, 210-216.	2.2	89
41	X-ray CT and pneumonia inhibition properties of gold–silver nanoparticles for targeting MRSA induced pneumonia. Biomaterials, 2014, 35, 7032-7041.	5.7	38
42	Prevention of infection in external fixator pin sites. Acta Biomaterialia, 2014, 10, 595-603.	4.1	81
43	Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 475-495.	3.3	64
44	Ureteral Stents and Foley Catheters-Associated Urinary Tract Infections: The Role of Coatings and Materials in Infection Prevention. Antibiotics, 2014, 3, 87-97.	1.5	74
45	Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds–an in vitro efficacy study. Scientific Reports, 2015, 5, 13775.	1.6	53
46	Antimicrobial activity of bone cements embedded with organic nanoparticles. International Journal of Nanomedicine, 2015, 10, 6317.	3.3	16
47	Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants. International Journal of Nanomedicine, 2015, 10, 6659.	3.3	59
48	Synthesis and antibacterial characterization of waterborne polyurethanes with gemini quaternary ammonium salt. Science Bulletin, 2015, 60, 1114-1121.	4.3	55
49	Rifamycin Derivatives Are Effective Against Staphylococcal Biofilms In Vitro and Elutable From PMMA. Clinical Orthopaedics and Related Research, 2015, 473, 2874-2884.	0.7	44
50	Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. Journal of Materials Chemistry B, 2015, 3, 1655-1666.	2.9	42
51	Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Materials Science and Engineering C, 2015, 50, 332-340.	3.8	97
52	Nanostructured medical sutures with antibacterial properties. Biomaterials, 2015, 52, 291-300.	5.7	103
53	Ultrasound microbubbles enhance human β-defensin 3 against biofilms. Journal of Surgical Research, 2015, 199, 458-469.	0.8	25
54	A novel microwave recipe for an antibiofilm titanium surface. Materials Science and Engineering C, 2015, 56, 215-222.	3.8	2

#	Article	IF	CITATIONS
55	Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2015, 130, 255-263.	2.5	113
56	Study on inhibitory activity of chitosan-based materials against biofilm producing <i>Pseudomonas</i> aeruginosa strains. Journal of Biomaterials Applications, 2015, 30, 269-278.	1.2	39
57	Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic delivery. International Journal of Pharmaceutics, 2015, 485, 317-328.	2.6	25
58	Drug delivery property, antibacterial performance and cytocompatibility of gentamicin loaded poly(lactic-co-glycolic acid) coating on porous magnesium scaffold. Materials Technology, 2015, 30, B96-B103.	1.5	13
59	Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Advances, 2015, 5, 91082-91092.	1.7	20
60	Synthesis and antimicrobial activity of mesoporous hydroxylapatite/zinc oxide nanofibers. Materials and Design, 2015, 87, 17-24.	3.3	34
61	Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomaterialia, 2015, 26, 236-248.	4.1	453
62	Standards of external fixation in prolonged applications to allow safe conversion to definitive extremity surgery: the Aachen algorithm for acute ex fix conversion. Injury, 2015, 46, S13-S18.	0.7	20
63	Antibiotic susceptibility of ica-positive and ica-negative MRSA in different phases of biofilm growth. Journal of Antibiotics, 2015, 68, 15-22.	1.0	28
64	Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 273-281.	1.6	52
65	The role of microbial biofilms in prosthetic joint infections. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 86, 147-158.	1.2	305
66	Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters. Materials, 2016, 9, 155.	1.3	31
67	Staphylococcus epidermidis and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. Diagnostic Microbiology and Infectious Disease, 2016, 86, 11-14.	0.8	16
68	O-Acrylamidomethyl-2-hydroxypropyltrimethyl ammonium chloride chitosan and silk modified mesoporous bioactive glass scaffolds with excellent mechanical properties, bioactivity and long-lasting antibacterial activity. RSC Advances, 2016, 6, 66938-66948.	1.7	4
69	The use of nanomaterials to treat bone infections. Materials Science and Engineering C, 2016, 67, 822-833.	3.8	33
70	3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohydrate Polymers, 2016, 149, 102-111.	5.1	63
71	A review of chitosan and its derivatives in bone tissue engineering. Carbohydrate Polymers, 2016, 151, 172-188.	5.1	493
72	Preparation and characterization of alginate/HACC/oyster shell powder biocomposite scaffolds for potential bone tissue engineering applications. RSC Advances, 2016, 6, 35577-35588.	1.7	24

#	Article	IF	CITATIONS
73	Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1211-1231.	1.9	22
74	Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomaterialia, 2016, 46, 112-128.	4.1	128
75	Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. ACS Applied Materials & Interfaces, 2016, 8, 28522-28528.	4.0	59
76	Enoxacin-loaded Poly (lactic-co-glycolic acid) Coating on Porous Magnesium Scaffold as a Drug Delivery System: Antibacterial Properties and Inhibition of Osteoclastic Bone Resorption. Journal of Materials Science and Technology, 2016, 32, 865-873.	5.6	16
77	Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: InÂvitro and inÂvivo evaluations. Biomaterials, 2016, 106, 250-263.	5.7	194
78	Tailoring the surface of polymeric nanofibres generated by pressurised gyration. Surface Innovations, 2016, 4, 167-178.	1.4	14
79	Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific Reports, 2016, 6, 32699.	1.6	90
80	Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Research, 2016, 4, 16027.	5.4	54
81	Synthesis and characterization of an injectable and self-curing poly(methyl methacrylate) cement functionalized with a biomimetic chitosan–poly(vinyl alcohol)/nano-sized hydroxyapatite/silver hydrogel. RSC Advances, 2016, 6, 60609-60619.	1.7	17
82	Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether. Lasers in Medical Science, 2016, 31, 297-304.	1.0	18
83	Polysaccharide-based antibiofilm surfaces. Acta Biomaterialia, 2016, 30, 13-25.	4.1	167
84	Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT - Food Science and Technology, 2016, 65, 398-405.	2.5	175
85	Polymers and Composites for Orthopedic Applications. , 2017, , 349-403.		32
86	Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Progress in Polymer Science, 2017, 71, 53-90.	11.8	423
87	Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone. Langmuir, 2017, 33, 5245-5252.	1.6	37
88	Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Advances in Colloid and Interface Science, 2017, 249, 234-247.	7.0	49
89	Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. International Journal of Biological Macromolecules, 2017, 103, 941-947.	3.6	53
90	Insights into chitosan antibiofilm activity against methicillin-resistant <i>Staphylococcus aureus</i> . Journal of Applied Microbiology, 2017, 122, 1547-1557.	1.4	44

#	Article	IF	CITATIONS
91	Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: An inÂvitro and inÂvivo study. Journal of Orthopaedic Translation, 2017, 8, 49-61.	1.9	29
92	Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microbial Pathogenesis, 2017, 102, 42-44.	1.3	40
93	Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. Wound Medicine, 2017, 16, 15-21.	2.7	32
94	Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability. ACS Applied Materials & Interfaces, 2017, 9, 27475-27490.	4.0	19
95	Investigation of chitosan's antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohydrate Polymers, 2017, 174, 369-376.	5.1	19
96	Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification. Colloids and Surfaces B: Biointerfaces, 2017, 149, 322-329.	2.5	41
97	Gemini quaternary ammonium salt waterborne biodegradable polyurethanes with antibacterial and biocompatible properties. Materials Chemistry Frontiers, 2017, 1, 361-368.	3.2	42
98	Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 123-142.	1.7	73
99	Evaluation of antibacterial activity from phytosynthesized silver nanoparticles against medical devices infected with Staphylococcus spp Journal of Taibah University Medical Sciences, 2017, 12, 47-54.	0.5	21
100	Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 2017, 94, 10-27.	3.6	99
101	Polymers against Microorganisms. , 2017, , .		10
102	Antimicrobial/Antifouling Surfaces Obtained by Surface Modification. , 2017, , 95-123.		1
103	Scientific potential of chitosan blending with different polymeric materials: A review. Journal of Plastic Film and Sheeting, 2017, 33, 384-412.	1.3	31
104	Microbial resistance related to antibiotic-loaded bone cement: a historical review. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 3808-3817.	2.3	22
105	Photodynamic inactivation of fibroblasts and inhibition of Staphylococcus epidermidis adhesion and biofilm formation by toluidine blue O. Molecular Medicine Reports, 2017, 15, 1816-1822.	1.1	17
106	Hydroxypropyltrimethyl Ammonium Chloride Chitosan Functionalized-PLGA Electrospun Fibrous Membranes as Antibacterial Wound Dressing: In Vitro and In Vivo Evaluation. Polymers, 2017, 9, 697.	2.0	38
107	Engineering solutions to ureteral stents: Material, Coating and Design. Central European Journal of Urology, 2017, 70, 270-274.	0.2	24
108	Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity. Journal of Biomedical Materials Research - Part A, 2018, 106, 2531-2539.	2.1	53

#	Article	IF	CITATIONS
109	Stimulation of cell responses and bone ingrowth into macro-microporous implants of nano-bioglass/polyetheretherketone composite and enhanced antibacterial activity by release of hinokitiol. Colloids and Surfaces B: Biointerfaces, 2018, 164, 347-357.	2.5	40
110	Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Frontiers in Microbiology, 2018, 9, 2219.	1.5	24
111	N-halamine-based multilayers on titanium substrates for antibacterial application. Colloids and Surfaces B: Biointerfaces, 2018, 170, 382-392.	2.5	16
112	Forsythiaside inhibits bacterial adhesion on titanium alloy and attenuates Ti-induced activation of nuclear factor-l̂ºB signaling-mediated macrophage inflammation. Journal of Orthopaedic Surgery and Research, 2018, 13, 139.	0.9	13
113	Quaternary Ammoniumyl Chitosan Derivatives for Eradication of <i>Staphylococcus aureus</i> Biofilms. Biomacromolecules, 2018, 19, 3649-3658.	2.6	39
114	Preparation of chitosan/poly vinyl alcohol films and their inhibition of biofilm formation against Pseudomonas aeruginosa PAO1. International Journal of Biological Macromolecules, 2018, 118, 2131-2137.	3.6	51
115	Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomaterialia, 2018, 79, 265-275.	4.1	134
116	Effect of polymerizable quaternary ammonium monomer MEIM-x's alkyl chain length and content on bone cement's antibacterial activity and physicochemical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 279-287.	1.5	8
117	Chitosan's biological activity upon skin-related microorganisms and its potential textile applications. World Journal of Microbiology and Biotechnology, 2018, 34, 93.	1.7	11
118	Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration. ACS Biomaterials Science and Engineering, 2019, 5, 5368-5383.	2.6	38
119	Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly(methyl methacrylate) for bone tissue engineering. Biomedical Materials (Bristol), 2019, 14, 025013.	1.7	16
120	Longâ€Term Prevention of Bacterial Infection and Enhanced Osteoinductivity of a Hybrid Coating with Selective Silver Toxicity. Advanced Healthcare Materials, 2019, 8, e1801465.	3.9	53
121	A dual functional boneâ€defectâ€filling material with sequential antibacterial and osteoinductive properties for infected bone defect repair. Journal of Biomedical Materials Research - Part A, 2019, 107, 2360-2370.	2.1	21
122	Quaternary ammonium compound derivatives for biomedical applications. , 2019, , 153-175.		2
123	Mechanistic Insights and Rational Design of a Versatile Surface with Cells/Bacteria Recognition Capability via Orientated Fusion Peptides. Advanced Science, 2019, 6, 1801827.	5.6	11
124	Poly (propylene fumarate)/ <i>î²</i> -calcium phosphate composites for enhanced bone repair. Biomedical Materials (Bristol), 2019, 14, 045002.	1.7	15
125	Antibacterial and cytotoxic assessment of poly (methyl methacrylate) based hybrid nanocomposites. Materials Science and Engineering C, 2019, 100, 886-896.	3.8	26
126	Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 2534-2548.	2.9	180

#	Article	IF	CITATIONS
127	Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. Journal of Materials Chemistry B, 2019, 7, 1951-1961.	2.9	54
128	Antibacterial, Antibiofilm, and Antiadhesive Properties of Different Quaternized Chitosan Derivatives. International Journal of Molecular Sciences, 2019, 20, 6297.	1.8	37
129	Effect of photopolymerized glaze application on bacterial adhesion on ocular acrylic resin surfaces submitted to accelerated ageing. Letters in Applied Microbiology, 2019, 68, 120-127.	1.0	2
130	Activity of gemini quaternary ammonium salts against microorganisms. Applied Microbiology and Biotechnology, 2019, 103, 625-632.	1.7	60
131	Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomaterialia, 2020, 101, 69-101.	4.1	143
132	An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers, 2020, 12, 2878.	2.0	44
133	Influence of several biodegradable components added to pure and nanosilver-doped PMMA bone cements on its biological and mechanical properties. Materials Science and Engineering C, 2020, 117, 111286.	3.8	26
134	Improved osteogenic activity and inhibited bacterial biofilm formation on andrographolide-loaded titania nanotubes. Annals of Translational Medicine, 2020, 8, 987-987.	0.7	9
135	Susceptibility of Mature Staphylococcus Biofilms to Chinese Herbal Decoction Sanhuang Jiedu: An In Vitro Study. BioMed Research International, 2020, 2020, 1-10.	0.9	0
136	Nano-strategies in pursuit of efflux pump activeness in Acinetobacter baumannii and Pseudomonas aeruginosa. Gene Reports, 2020, 21, 100915.	0.4	4
137	Staphylococcus spp. Isolated from Bovine Subclinical Mastitis in Different Regions of Brazil: Molecular Typing and Biofilm Gene Expression Analysis by RT-qPCR. Antibiotics, 2020, 9, 888.	1.5	12
138	Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material. Journal of Materials Chemistry B, 2020, 8, 5606-5619.	2.9	26
139	Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. Advanced Therapeutics, 2020, 3, 2000024.	1.6	82
140	Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiology, 2020, 15, 679-698.	1.0	34
141	Biomaterial-Based Scaffolds as Antibacterial Suture Materials. ACS Biomaterials Science and Engineering, 2020, 6, 3154-3161.	2.6	20
142	Near-Infrared Light Triggered Phototherapy and Immunotherapy for Elimination of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm Infection on Bone Implant. ACS Nano, 2020, 14, 8157-8170.	7.3	133
143	Engineering quaternized chitosan in the 3D bacterial cellulose structure for antibacterial wound dressings. Polymer Testing, 2020, 86, 106490.	2.3	37
144	Magnetic drug-loaded osteoinductive Fe ₃ O ₄ /CaCO ₃ hybrid microspheres system: efficient for sustained release of antibiotics. Journal Physics D: Applied Physics, 2020, 53, 245401.	1.3	9

#	Article	IF	CITATIONS
145	Preparation and characterization of chitosan/poly(vinyl alcohol)/graphene oxide films and studies on their antibiofilm formation activity. Journal of Biomedical Materials Research - Part A, 2020, 108, 2015-2022.	2.1	11
146	Chitosan-based drug delivery systems: From synthesis strategy to osteomyelitis treatment – A review. Carbohydrate Polymers, 2021, 251, 117063.	5.1	90
147	Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 2021, 70, 1182-1201.	1.6	36
148	Improvement of mechanical-antibacterial performances of AR/PMMA with TiO2 and HPQM treated by N-2(aminoethyl)-3-aminopropyl trimethoxysilane. Journal of Reinforced Plastics and Composites, 2021, 40, 477-489.	1.6	1
149	A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioactive Materials, 2021, 6, 1318-1329.	8.6	42
150	Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. Chinese Journal of Polymer Science (English Edition), 2021, 39, 133-146.	2.0	37
151	A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms. Science China Materials, 2021, 64, 1035-1046.	3.5	26
152	Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine Journal, 2021, 21, 1217-1228.	0.6	13
153	Microstructure, anticorrosion, biocompatibility and antibacterial activities of extruded Mgâ^'Znâ^'Mn strengthened with Ca. Transactions of Nonferrous Metals Society of China, 2021, 31, 358-370.	1.7	15
154	Physicochemical and Antimicrobial Properties of Thermosensitive Chitosan Hydrogel Loaded with Fosfomycin. Marine Drugs, 2021, 19, 144.	2.2	7
155	Inhibitory properties of Chinese Herbal Formula SanHuang decoction on biofilm formation by antibiotic-resistant Staphylococcal strains. Scientific Reports, 2021, 11, 7134.	1.6	7
156	Antibacterial and Antibiofilm Formation Activities of Pyridinium-Based Cationic Pillar[5]arene Against <i>Pseudomonas aeruginosa</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 4276-4283.	2.4	12
157	Engineering a novel antibacterial agent with multifunction: Protocatechuic acid-grafted-quaternized chitosan. Carbohydrate Polymers, 2021, 258, 117683.	5.1	32
158	Antimicrobial and biofilm-disrupting nanostructured TiO2 coating demonstrating photoactivity and dark activity. FEMS Microbiology Letters, 2021, 368, .	0.7	6
159	Biofilm-Protected Catheters Nanolaminated by Multiple Atomic-Layer-Deposited Oxide Films. ACS Applied Nano Materials, 2021, 4, 6398-6406.	2.4	1
160	The Use of Zwitterionic Methylmethacrylat Coated Silicone Inhibits Bacterial Adhesion and Biofilm Formation of Staphylococcus aureus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 686192.	2.0	6
161	Biomedical Applications of Quaternized Chitosan. Polymers, 2021, 13, 2514.	2.0	51
162	Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates. Journal of Fungi (Basel, Switzerland), 2021, 7, 718.	1.5	5

#	Article	IF	CITATIONS
163	Dual-functional hybrid quaternized chitosan/Mg/alginate dressing with antibacterial and angiogenic potential for diabetic wound healing. Journal of Orthopaedic Translation, 2021, 30, 6-15.	1.9	20
164	A shape memory and antibacterial cryogel with rapid hemostasis for noncompressible hemorrhage and wound healing. Chemical Engineering Journal, 2022, 428, 131005.	6.6	58
165	Biofilm-Based Implant Infections in Orthopaedics. Advances in Experimental Medicine and Biology, 2015, 830, 29-46.	0.8	134
166	Nanosized-Ag-doped porous β-tricalcium phosphate for biological applications. Materials Science and Engineering C, 2020, 114, 111037.	3.8	17
167	The Potential Role of Increasing the Release of Mouse β- Defensin-14 in the Treatment of Osteomyelitis in Mice: A Primary Study. PLoS ONE, 2014, 9, e86874.	1.1	12
168	Current Developments in Antimicrobial Surface Coatings for Biomedical Applications. Current Medicinal Chemistry, 2015, 22, 2116-2129.	1.2	123
169	Inkjet printed drug-releasing polyelectrolyte multilayers for wound dressings. AIMS Materials Science, 2017, 4, 452-469.	0.7	7
170	In Vitro Study of the Interaction of Innate Immune Cells with Liquid Silicone Rubber Coated with Zwitterionic Methyl Methacrylate and Thermoplastic Polyurethanes. Materials, 2021, 14, 5972.	1.3	7
171	Bone-Implant Interface in Biofilm-Associated Bone and Joint Infections. , 2014, , 239-253.		1
173	Antimicrobial coatings based on chitosan to prevent implant-associated infections: A systematic review. IScience, 2021, 24, 103480.	1.9	29
174	Small-Molecule Compound SYG-180-2-2 to Effectively Prevent the Biofilm Formation of Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 770657.	1.5	6
175	The antibacterial activity and mechanism of polyurethane coating with quaternary ammonium salt. Journal of Polymer Research, 2022, 29, 1.	1.2	12
176	The Role of Aldehydeâ€Functionalized Crosslinkers on the Property of Chitosan Hydrogels. Macromolecular Bioscience, 2022, 22, e2100477.	2.1	6
177	Probiotics-Containing Mucoadhesive Gel for Targeting the Dysbiosis Associated with Periodontal Diseases. International Journal of Dentistry, 2022, 2022, 1-16.	0.5	5
178	Gelatin/gentamicin sulfate-modified PMMA bone cement with proper mechanical properties and high antibacterial ability. Materials Research Express, 2022, 9, 035405.	0.8	6
179	Tranexamic acid protects against implant-associated infection by reducing biofilm formation. Scientific Reports, 2022, 12, 4840.	1.6	5
180	Potential of Metal Oxide Nanoparticles and Nanocomposites as Antibiofilm Agents: Leverages and Limitations. Nanotechnology in the Life Sciences, 2022, , 163-209.	0.4	2
181	Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	23

#	Article	IF	CITATIONS
182	The importance of polymers in the preparation of medical devices for human body applications. , 2022, , 1-39.		0
184	A PEDOT nano-composite for hyperthermia and elimination of urological bacteria. , 2022, , 212994.		1
185	A study on the antibacterial activity and antimicrobial resistance of pyridinium cationic pillar[5]arene against Staphylococcus aureus and Escherichia coli. International Microbiology, 2023, 26, 59-68.	1.1	4
186	Freezing-triggered gelation of quaternized chitosan reinforced with microfibrillated cellulose for highly efficient removal of bilirubin. Journal of Materials Chemistry B, 2022, 10, 8650-8663.	2.9	3
187	Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. International Journal of Nanomedicine, 0, Volume 17, 4525-4546.	3.3	5
188	Antimicrobial potency, prevention ability, and killing efficacy of daptomycin-loaded versus vancomycin-loaded β-tricalcium phosphate/calcium sulfate for methicillin-resistant Staphylococcus aureus biofilms. Frontiers in Microbiology, 0, 13, .	1.5	1
189	The influence of pin material and coatings on the incidence of pin site infection after external fixation. Journal of Limb Lengthening & Reconstruction, 2022, 8, 16.	0.2	3
190	Microbiome and the inflammatory pathway in peri-implant health and disease with an updated review on treatment strategies. Journal of Oral Biology and Craniofacial Research, 2023, 13, 84-91.	0.8	0
191	Why Is Tantalum Less Susceptible to Bacterial Infection?. Journal of Functional Biomaterials, 2022, 13, 264.	1.8	1
192	Fabrication of gentamicin loaded Col-I/HA multilayers modified titanium coatings for prevention of implant infection. Frontiers in Chemistry, 0, 10, .	1.8	1
193	Modified Polysaccharides and their Biomedical Applications: Advancement and Strategies. Current Materials Science, 2022, 16, .	0.2	1
194	A chitosan-based self-healing hydrogel for accelerating infected wound healing. Biomaterials Science, 2023, 11, 4226-4237.	2.6	10