The superfamily of hemeâ
 ${\ensuremath{\mathbb C}}$ copper oxygen reduct
ases:

Biochimica Et Biophysica Acta - Bioenergetics 1817, 629-637 DOI: 10.1016/j.bbabio.2011.09.020

Citation Report

#	Article	IF	CITATIONS
2	Copper Starvation-inducible Protein for Cytochrome Oxidase Biogenesis in Bradyrhizobium japonicum. Journal of Biological Chemistry, 2012, 287, 38812-38823.	1.6	50
3	Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Frontiers in Microbiology, 2012, 3, 371.	1.5	53
4	Low Rates of Lateral Gene Transfer among Metabolic Genes Define the Evolving Biogeochemical Niches of Archaea through Deep Time. Archaea, 2012, 2012, 1-23.	2.3	12
5	Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. IUBMB Life, 2013, 65, 217-226.	1.5	33
6	Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 114-135.	0.5	300
7	On the universal core of bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 79-93.	0.5	153
8	The Copper Metallome in Prokaryotic Cells. Metal lons in Life Sciences, 2013, 12, 417-450.	2.8	64
9	Functions of the hydrophilic channels in protonmotive cytochrome <i>c</i> oxidase. Journal of the Royal Society Interface, 2013, 10, 20130183.	1.5	87
10	Regulation of Cytochrome <i>c</i> - and Quinol Oxidases, and Piezotolerance of Their Activities in the Deep-Sea Piezophile <i>Shewanella violacea</i> DSS12 in Response to Growth Conditions. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1522-1528.	0.6	15
11	Evolution of Mitochondria Reconstructed from the Energy Metabolism of Living Bacteria. PLoS ONE, 2014, 9, e96566.	1.1	52
12	Exploring O2 Diffusion in A-Type Cytochrome c Oxidases: Molecular Dynamics Simulations Uncover Two Alternative Channels towards the Binuclear Site. PLoS Computational Biology, 2014, 10, e1004010.	1.5	22
13	Bioenergetic Evolution in Proteobacteria and Mitochondria. Genome Biology and Evolution, 2014, 6, 3238-3251.	1.1	60
14	A structural and functional perspective on the evolution of the heme–copper oxidases. FEBS Letters, 2014, 588, 3787-3792.	1.3	26
15	Structures of reduced and ligandâ€bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1258-1271.	1.5	29
16	The evolution of respiratory O ₂ /NO reductases: an out-of-the-phylogenetic-box perspective. Journal of the Royal Society Interface, 2014, 11, 20140196.	1.5	38
17	The K ^C Channel in the <i>cbb</i> ₃ -Type Respiratory Oxygen Reductase from Rhodobacter capsulatus Is Required for Both Chemical and Pumped Protons. Journal of Bacteriology, 2014, 196, 1825-1832.	1.0	2
18	Free energy conversion in the LUCA: Quo vadis?. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 982-988.	0.5	20
19	Biochemical and Biophysical Characterization of the Two Isoforms of cbb3-Type Cytochrome c Oxidase from Pseudomonas stutzeri. Journal of Bacteriology, 2 <u>014, 196, 472-482.</u>	1.0	20

#	Article	IF	CITATIONS
20	Conserved evolutionary units in the hemeâ€copper oxidase superfamily revealed by novel homologous protein families. Protein Science, 2014, 23, 1220-1234.	3.1	10
21	Role of <i>norEF</i> in Denitrification, Elucidated by Physiological Experiments with Rhodobacter sphaeroides. Journal of Bacteriology, 2014, 196, 2190-2200.	1.0	10
22	Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: Enzymatic activity and active site structure. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1019-1026.	0.5	12
23	Prediction of high- and low-affinity quinol-analogue-binding sites in the <i>aa</i> 3 and <i>bo</i> 3 terminal oxidases from <i>Bacillus subtilis</i> and <i>Escherichia coli</i> . Biochemical Journal, 2014, 461, 305-314.	1.7	32
24	Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1810-1820.	0.5	27
25	<i>Sinorhizobium meliloti</i> Controls Nitric Oxide–Mediated Post-Translational Modification of a <i>Medicago truncatula</i> Nodule Protein. Molecular Plant-Microbe Interactions, 2015, 28, 1353-1363.	1.4	37
26	Cytochrome cbb3 of Thioalkalivibrio is a Na+-pumping cytochrome oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7695-7700.	3.3	28
27	Complete genome and gene expression analyses ofAsaia bogorensisreveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen. DNA Research, 2015, 22, 357-366.	1.5	14
28	The two transmembrane helices of CcoP are sufficient for assembly of the cbb3-type heme-copper oxygen reductase from Vibrio cholerae. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1231-1239.	0.5	8
29	The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Advances in Microbial Physiology, 2015, 66, 1-53.	1.0	21
30	The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum : A membrane-bound complex oxidizing ferrous iron. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 717-728.	0.5	53
31	Protein chaperones mediating copper insertion into the Cu A site of the aa 3 -type cytochrome c oxidase of Paracoccus denitrificans. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 202-211.	0.5	21
32	Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments. Scientific Reports, 2016, 6, 39034.	1.6	31
33	Exploring membrane respiratory chains. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1039-1067.	0.5	70
35	CtaM Is Required for Menaquinol Oxidase <i>aa</i> ₃ Function in Staphylococcus aureus. MBio, 2016, 7, .	1.8	34
36	Using Biosynthetic Models of Hemeâ€Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Israel Journal of Chemistry, 2016, 56, 773-790.	1.0	28
37	Structure and Function of Bacterial Cytochrome c Oxidases. Advances in Photosynthesis and Respiration, 2016, , 307-329.	1.0	2
38	When Did Hemes Enter the Scene of Life? On the Natural History of Heme Cofactors and Heme-Containing Enzymes. Advances in Photosynthesis and Respiration, 2016, , 13-24.	1.0	4

#	Article	IF	CITATIONS
39	The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases. Journal of Biological Inorganic Chemistry, 2016, 21, 39-52.	1.1	55
40	Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 759-771.	0.5	20
41	All the O ₂ Consumed by <i>Thermus thermophilus</i> Cytochrome ba ₃ Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry, 2016, 55, 1265-1278.	1.2	17
42	Dynamics of the K ^B Proton Pathway in Cytochrome <i>ba</i> ₃ from <i>Thermus thermophilus</i> . Israel Journal of Chemistry, 2017, 57, 424-436.	1.0	6
43	Searching for the low affinity ubiquinone binding site in cytochrome bo3 from Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 366-370.	0.5	8
44	Insights into proton translocation in cbb 3 oxidase from MD simulations. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 396-406.	0.5	5
45	Mitochondrial cytochrome <i>c</i> oxidase: catalysis, coupling and controversies. Biochemical Society Transactions, 2017, 45, 813-829.	1.6	81
46	Location of the Substrate Binding Site of the Cytochrome <i>bo</i> ₃ Ubiquinol Oxidase from <i>Escherichia coli</i> . Journal of the American Chemical Society, 2017, 139, 8346-8354.	6.6	17
47	Multifunctional Cytochrome <i>c</i> : Learning New Tricks from an Old Dog. Chemical Reviews, 2017, 117, 13382-13460.	23.0	189
50	Insights into functions of the H channel of cytochrome <i>c</i> oxidase from atomistic molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10339-E10348.	3.3	35
51	Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases. Nature Chemistry, 2017, 9, 257-263.	6.6	126
52	Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707. Frontiers in Microbiology, 2017, 8, 1223.	1.5	7
53	Respiratory Pathways Reconstructed by Multi-Omics Analysis in Melioribacter roseus, Residing in a Deep Thermal Aquifer of the West-Siberian Megabasin. Frontiers in Microbiology, 2017, 8, 1228.	1.5	13
54	Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 333-341.	0.5	5
55	Exposure of Bacillus subtilis to silver inhibits activity of cytochrome c oxidase in vivo via interaction with SCO, the CuA assembly protein. Metallomics, 2018, 10, 735-744.	1.0	1
56	The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16, 263-276.	13.6	2,269
57	Pseudomonas pseudoalcaligenes KF 707 grown with biphenyl expresses a cytochrome caa 3 oxidase that uses cytochrome c 4 as electron donor. FEBS Letters, 2018, 592, 901-915.	1.3	4
58	Gene expression of terminal oxidases in two marine bacterial strains exposed to nanomolar oxygen concentrations. FEMS Microbiology Ecology, 2018, 94, .	1.3	12

	CITATION	CITATION REPORT	
# 59	ARTICLE Cytochrome <i>aa</i> ₃ Oxygen Reductase Utilizes the Tunnel Observed in the Crystal	IF 1.2	CITATIONS 5
60	Proton pumping by cytochrome c oxidase – A 40†year anniversary. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 692-698.	0.5	46
62	Redox Activity of Cytochromes from the Respiratory Chain. , 2018, , 451-469.		1
63	An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science, 2018, 362, .	6.0	117
64	Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews, 2018, 118, 10840-11022.	23.0	166
65	Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 705-711.	0.5	4
66	The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on NorQ and NorD accessory proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1051-1058.	0.5	18
67	Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 712-724.	0.5	10
68	Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. Journal of Materials Chemistry A, 2018, 6, 13254-13262.	5.2	156
69	The H channel is not a proton transfer path in yeast cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 717-723.	0.5	10
70	Engineered Enzymes and Bioinspired Catalysts for Energy Conversion. ACS Energy Letters, 2019, 4, 2168-2180.	8.8	53
71	The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions. Structure and Bonding, 2019, , 153-173.	1.0	5
72	In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 148088.	0.5	21
73	Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. Frontiers in Microbiology, 2019, 10, 499.	1.5	30
74	The number and type of oxygen-utilizing enzymes indicates aerobic vs. anaerobic phenotype. Free Radical Biology and Medicine, 2019, 140, 84-92.	1.3	13
75	Tracing the Pathways of Waters and Protons in Photosystem II and Cytochrome c Oxidase. Inorganics, 2019, 7, 14.	1.2	15
76	Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry, 2019, 127, 76-86.	2.4	26
77	Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo–electron microscopy. Science Advances, 2019, 5, eaax1803.	4.7	14

#	Article	IF	CITATIONS
78	Monomeric structure of an active form of bovine cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19945-19951.	3.3	36
79	Fine Tuning of Functional Features of the Cu _A Site by Loop-Directed Mutagenesis. Inorganic Chemistry, 2019, 58, 2149-2157.	1.9	15
80	The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane–associated copper-binding protein. Journal of Biological Chemistry, 2019, 294, 4027-4044.	1.6	34
81	Structure of the cytochrome <i>aa</i> _{<i>3</i>} -600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TMO is part of the quinol binding site. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 872-876.	3.3	21
82	Genome wide transcriptomic analysis of the soil ammonia oxidizing archaeon <i>Nitrososphaera viennensis</i> upon exposure to copper limitation. ISME Journal, 2020, 14, 2659-2674.	4.4	33
83	On the evolution of cytochrome oxidases consuming oxygen. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148304.	0.5	9
84	Involvement of the cbb3-Type Terminal Oxidase in Growth Competition of Bacteria, Biofilm Formation, and in Switching between Denitrification and Aerobic Respiration. Microorganisms, 2020, 8, 1230.	1.6	6
85	Insights into the Metabolism and Evolution of the Genus <i>Acidiphilium</i> , a Typical Acidophile in Acid Mine Drainage. MSystems, 2020, 5, .	1.7	31
86	Membrane Protein Modified Electrodes in Bioelectrocatalysis. Catalysts, 2020, 10, 1427.	1.6	7
87	Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy and Environmental Science, 2020, 13, 2310-2340.	15.6	81
88	Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 49, 3107-3141.	18.7	84
89	Biological and Bioinspired Inorganic N–N Bond-Forming Reactions. Chemical Reviews, 2020, 120, 5252-5307.	23.0	48
90	Ancestry and adaptive radiation of Bacteroidetes as assessed by comparative genomics. Systematic and Applied Microbiology, 2020, 43, 126065.	1.2	17
91	Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. MSystems, 2020, 5, .	1.7	33
92	A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9349-9355.	3.3	32
93	Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. ISME Journal, 2021, 15, 1810-1825.	4.4	74
94	Terminal Oxidase Cytochrome bd Protects Bacteria Against Hydrogen Sulfide Toxicity. Biochemistry (Moscow), 2021, 86, 22-32.	0.7	15
95	Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chemical Reviews, 2021, 121, 1804-1844.	23.0	30

#	Article	IF	CITATIONS
96	YtkA (CtaK) and YozB (CtaM) function in the biogenesis of cytochrome c oxidase in Bacillus subtilis. Molecular Microbiology, 2021, 116, 184-199.	1.2	6
97	The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cellular Microbiology, 2021, 23, e13338.	1.1	19
98	Effect of respiratory inhibitors and quinone analogues on the aerobic electron transport system of Eikenella corrodens. Scientific Reports, 2021, 11, 8987.	1.6	1
99	Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Frontiers in Molecular Biosciences, 2021, 8, 667758.	1.6	33
100	ROS Defense Systems and Terminal Oxidases in Bacteria. Antioxidants, 2021, 10, 839.	2.2	59
101	Peroxide stimulated transition between the ferryl intermediates of bovine cytochrome c oxidase. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148447.	0.5	3
102	Microaerobic Lifestyle at Nanomolar O ₂ Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. MSystems, 2021, 6, e0025021.	1.7	12
103	Aerobic Respiration and Its Regulation in the Metal Reducer Shewanella oneidensis. Frontiers in Microbiology, 2021, 12, 723835.	1.5	4
104	Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. Environmental Science & Amp; Technology, 2021, 55, 12683-12693.	4.6	10
105	Đ¢ĐµÑ€Đ¼Đ,Đ½Đ°Đ»ÑŒĐ½Đ°Ñ•Đ¾ĐºÑĐ,ĐаĐа цĐ,Ñ,Đ¾ÑÑ€Đ¾Đ¼ bd Đ∙Đ°Ñ‰Đ,Ñ‰Đ°ĐµÑ, бĐ)°Đ€ΪλοĐμÑ	l€ĐợĐ, Đ¾Ñ, Ì
105 106	Đ¢ĐµÑ€Đ¼Đ,Đ½Đ°Đ»ÑŒĐ½Đ°Ñ•Đ¾Đ°ÑĐ,ĐаĐа цĐ,Ñ,Đ¾ÑÑ€Đ¾Đ¼ bd ĐĐ°Ñ‰Đ,Ñ‰Đ°ĐµÑ, бĐ A †Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75.	Ͽ°Đ€ΪλΩĐμÑ 9.0	9€ÐţÐ, оÑ, Í 71
105 106 107	D¢ĐµÑ€Đ¼Đ,Đ½Đ°Đ»ÑŒĐ½Đ°Ñ•Đ¾Đ°ÑĐ,ĐаЕа цĐ,Ñ,Đ¾ÑÑ€Đ¾Đ¼ bd Đ•Đ°Ñ‰Đ,Ñ‰Đ°ĐµÑ, бĐ A †Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83.	Ο°Đ€ιÑ¢ĐμÑ 9.0 0.7	9€ÐţÐ, оÑ, Í 71 2
105 106 107 108	∂¢∂µÑ€∂¼∂,∂½∂°∂»ŇŒ∂½∂°Ň-∂¾∂°Ň∂,∂∂°∂-∂°Ň†∂,Ň,∂¾ŇŇ€∂¾∂1¼ bd ∂-∂°Ň‰∂,҉∂°∂µŇ, ∂±€ A â€ ⁻ Build and Retrieveâ€ [™] methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome & lt;ji>c</i> oxidase. Biophysics and Physicobiology, 2021, 18, 186-195.)°Đ€ιλָĐμÑ 9.0 0.7 0.5	P€ÐţÐ, оÑ, P 71 2 3
105 106 107 108	D¢DµÑ€D¼D,D½D°D»ÑŒD½D°Ñ-D¾D°ND,D D°D-D° цD,Ñ,D¾NN€D¾D¼ bd D·D°N‰D,N‰D°DµÑ, D±E A ‰Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome & & & & & & & & & & & & & & & & & & &	0°Đθλ¢ĐμÑ 9.0 0.7 0.5 0.8	I€ÐçÐ, Ð¾Ñ I 71 2 3 1
105 106 107 108 109	D¢DµÑ€D¼4D,D½D°D»ÑŒD½D°Ñ-D¾D°D,D°Ñ†D,Ñ,D¾ÑÑ€D¾D¼ bd D-D°Ñ‰D,щD°DµÑ, D±E A †Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome & klt;i> oxidase. Biophysics and Physicobiology, 2021, 18, 186-195. Structure and Function of Membrane-bound Bacterial Nitric Oxide Reductases. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 334-350. The active form of quinol-dependent nitric oxide reductase from <i>Neisseria meningitidis</i> is a dimer. IUCrJ, 2020, 7, 404415.	0°Đθλ¢ĐμÑ 9.0 0.7 0.5 0.8 1.0	P€ÐçÐ, оÑ, P 71 2 3 1 10
105 106 107 108 109 112	D¢ĐµÑ€Đ¼ĐĐĐ¾Đ°ĐऔŒĐ½Đ°ÑĐĐĐĐĐĐаĐа цĐ,Ñ,Đ¾ÑÑ€Đ¾Đ¼ bd ĐĐ°Ñ‰Đ,Ñ‰Đ°ĐµÑ, бĐ A †Build and Retrieve' methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome & klt;i> c&kt/i> oxidase. Biophysics and Physicobiology, 2021, 18, 186-195. Structure and Function of Membrane-bound Bacterial Nitric Oxide Reductases. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 334-350. The active form of quinol-dependent nitric oxide reductase from <i>Neisseria meningitidis</i> is a dimer. IUCrl, 2020, 7, 404-415. Cytochrome c Oxidase Biogenesis and Metallochaperone Interactions: Steps in the Assembly Pathway of a Bacterial Complex. PLoS ONE, 2017, 12, e0170037.	 D°Đθλ¢ĐμΝ 9.0 0.7 0.5 0.8 1.0 1.1 	P€ÐçÐ, оÑ, P 71 2 3 1 10 23
105 106 107 108 109 112 113 114	DcDµÑ€D¼D,D½D°D»ÑCED½D°Ñ-D¾D°ÑD,D D°D-D° цD,Ñ,D¾ÑÑ€D¾D¼ bd D-D°Ñ‰D,щD°DµÑ, D±E A †"Build and Retrieve〙 methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 2021, 18, 69-75. Thermodynamics of the P-type Ferryl Form of Bovine Cytochrome c Oxidase. Biochemistry (Moscow), 2021, 86, 74-83. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome & klt;i>c oxidase. Biophysics and Physicobiology, 2021, 18, 186-195. Structure and Function of Membrane-bound Bacterial Nitric Oxide Reductases. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 334-350. The active form of quinol-dependent nitric oxide reductase from <i>Neisseria meningitidis</i> is a dimer. IUCrJ, 2020, 7, 404-415. Cytochrome c Oxidase Biogenesis and Metallochaperone Interactions: Steps in the Assembly Pathway of a Bacterial Complex. PLOS ONE, 2017, 12, e0170037. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. International Journal of Molecular Sciences, 2021, 22, 10852.	р°Ðе́й¢ÐµÑ 9.0 0.7 0.5 0.8 1.0 1.1	E€D,D, D¾Ñ, K 71 2 3 1 23 15

#	Article	IF	CITATIONS
116	Cytochrome c Oxidase: Insight into Functions from Studies of the Yeast S. cerevisiae Homologue. , 2017, , 65-79.		0
119	Importance of Electron Flow in Microbiological Metabolism. , 2020, , 13-32.		1
120	Crystal Structure of an Active Form of Monomeric Cytochrome <i>c</i> Oxidase from Bovine Heart. Seibutsu Butsuri, 2020, 60, 276-279.	0.0	0
121	Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. International Journal of Molecular Sciences, 2021, 22, 12688.	1.8	23
122	Targeting the cytochrome bc1 complex for drug development in M. tuberculosis: review. Molecular Diversity, 2022, 26, 2949-2965.	2.1	5
123	Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Analytical Chemistry, 2022, 94, 1499-1509.	3.2	37
124	How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiology Reviews, 2022, 46, .	3.9	26
125	A Narrative Review on Oral and Periodontal Bacteria Microbiota Photobiomodulation, through Visible and Near-Infrared Light: From the Origins to Modern Therapies. International Journal of Molecular Sciences, 2022, 23, 1372.	1.8	19
126	Complex Interplay of Heme-Copper Oxidases with Nitrite and Nitric Oxide. International Journal of Molecular Sciences, 2022, 23, 979.	1.8	6
127	The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews, 2021, 121, 14682-14905.	23.0	109
128	Recent Progress on Feâ€Based Single/Dualâ€Atom Catalysts for Zn–Air Batteries. Small, 2022, 18, e2106635.	5.2	47
129	Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase. Journal of Biological Chemistry, 2022, 298, 101799.	1.6	7
133	Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria. Microorganisms, 2022, 10, 926.	1.6	4
134	The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants, 2022, 11, 1222.	2.2	6
135	Bioenergetics and Reactive Nitrogen Species in Bacteria. International Journal of Molecular Sciences, 2022, 23, 7321.	1.8	8
136	The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton- /anion- exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 317, 121770.	10.8	53
137	Bio-inspired catalysis. , 2022, , .		0
138	The â€~oxygen' in oxygen minimum zones. Environmental Microbiology, 2022, 24, 5332-5344.	1.8	10

#	Article	IF	CITATIONS
139	Something old, something new, something borrowed, something blue: the anaerobic microbial ancestry of aerobic respiration. Trends in Microbiology, 2023, 31, 135-141.	3.5	4
140	Evidence for Assimilatory Nitrate Reduction as a Previously Overlooked Pathway of Reactive Nitrogen Transformation in Estuarine Suspended Particulate Matter. Environmental Science & Technology, 2022, 56, 14852-14866.	4.6	16
141	Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome c Oxidase. International Journal of Molecular Sciences, 2022, 23, 12580.	1.8	2
143	Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants, 2022, 11, 2487.	2.2	7
144	Identifying antibiotics based on structural differences in the conserved allostery from mitochondrial heme-copper oxidases. Nature Communications, 2022, 13, .	5.8	2
145	Mineral-catalysed formation of marine NO and N2O on the anoxic early Earth. Nature Geoscience, 2022, 15, 1056-1063.	5.4	7
146	Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biology, 2023, 21, .	1.7	0
147	QM Calculations Revealed that Outer-Sphere Electron Transfer Boosted O–O Bond Cleavage in the Multiheme-Dependent Cytochrome <i>bd</i> Oxygen Reductase. Inorganic Chemistry, 2023, 62, 4066-4075.	1.9	1
148	A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nature Microbiology, 2023, 8, 651-665.	5.9	5
150	Four billion years of microbial terpenome evolution. FEMS Microbiology Reviews, 2023, 47, .	3.9	7
151	Interaction of Terminal Oxidases with Amphipathic Molecules. International Journal of Molecular Sciences, 2023, 24, 6428.	1.8	1