Evaluation of burst pressure prediction models for line

International Journal of Pressure Vessels and Piping 89, 85-97 DOI: 10.1016/j.ijpvp.2011.09.007

Citation Report

#	Article	IF	CITATIONS
1	Effects on Plasticity and Structural Integrity of Tube Expansion. , 2012, , .		3
2	Analysis of burst tests and long-term hydrostatic tests in produced water pipelines. Engineering Failure Analysis, 2012, 22, 128-140.	1.8	40
3	Numerical implementation of a \$\$J_2\$\$ - and \$\$J_3\$\$ -dependent plasticity model based on a spectral decomposition of the stress deviator. Computational Mechanics, 2013, 52, 1059-1070.	2.2	30
4	Numerical Analysis of the Performances of Bonded Composite Repair with Adhesive Band in Pipeline API X65. Advanced Materials Research, 2014, 875-877, 1101-1105.	0.3	2
5	Influence of yield-to-tensile strength ratio (Y/T) on failure assessment of defect-free and corroded X70 steel pipeline. Journal of Central South University, 2014, 21, 460-465.	1.2	13
6	Reliability analysis of corroded pipes using conjugate HL–RF algorithm based on average shear stress yield criterion. Engineering Failure Analysis, 2014, 46, 104-117.	1.8	65
7	Model error assessment of burst capacity models for energy pipelines containing surface cracks. International Journal of Pressure Vessels and Piping, 2014, 120-121, 80-92.	1.2	18
8	Echo state network based prediction intervals estimation for blast furnace gas pipeline pressure in steel industry. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1041-1046.	0.4	Ο
9	Small Scale Experiments of CO2 Boiling Liquid Expanding Vapor Explosion in Injection Pipes. Energy Procedia, 2014, 61, 782-786.	1.8	4
10	Research on burst pressure for thin-walled elbow and spherical shell made of strength differential materials. Materials Research Innovations, 2015, 19, S5-80-S5-87.	1.0	4
11	Unified Solution of Burst Pressure for Defect-Free Thin Walled Elbows. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .	0.4	3
12	Rupture prediction for induction bends under opening mode bending with emphasis on strain localization. International Journal of Pressure Vessels and Piping, 2015, 135-136, 1-11.	1.2	1
13	Prediction of Burst Pressure of Pipes With Geometric Eccentricity. Journal of Pressure Vessel Technology, Transactions of the ASME, 2015, 137, .	0.4	29
14	Burst pressure analysis of pipes with geometric eccentricity and small thickness-to-diameter ratio. Journal of Petroleum Science and Engineering, 2015, 127, 452-458.	2.1	28
15	Isolating contribution of individual phases during deformation of high strength–high toughness multi-phase pipeline steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 131-135.	2.6	17
16	Pipelines Reliability Analysis Under Corrosion Effect and Residual Stress. Arabian Journal for Science and Engineering, 2015, 40, 3273-3283.	1.1	13
17	Failure analysis of high strength pipeline with single and multiple corrosions. Materials & Design, 2015, 67, 552-557.	5.1	74
18	Failure assessment of X80 pipeline with interacting corrosion defects. Engineering Failure Analysis, 2015, 47, 67-76.	1.8	84

ATION RED

#	Article	IF	CITATIONS
19	The evaluation of the elasto-plastic behavior in case of the honed steel pipes subjected to variable internal pressure. IOP Conference Series: Materials Science and Engineering, 2016, 145, 022036.	0.3	1
20	Failure Analysis of Oil Tubes Containing Corrosion Defects Based on Finite Element Method. International Journal of Electrochemical Science, 2016, , 5180-5196.	0.5	9
21	Investigation of Burst Pressures in PWR Primary Pressure Boundary Components. Nuclear Engineering and Technology, 2016, 48, 236-245.	1.1	6
22	Numerical and theoretical analysis of burst pressures for casings with eccentric wear. Journal of Petroleum Science and Engineering, 2016, 145, 585-591.	2.1	22
23	Application of failure assessment diagram methods to cracked straight pipes and elbows. International Journal of Pressure Vessels and Piping, 2016, 148, 26-35.	1.2	9
24	Strength Criteria Versus Plastic Flow Criteria Used in Pressure Vessel Design and Analysis1. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138, .	0.4	9
25	Yield strength development from high strength steel plate to UOE pipe. Materials and Design, 2016, 89, 1107-1122.	3.3	35
26	Failure analysis of corroded pipelines reinforced with composite repair systems. Engineering Failure Analysis, 2016, 59, 223-236.	1.8	62
27	Finite-Element Evaluation of Burst Pressure Models for Corroded Pipelines. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	9
28	Effects of expansion rate on plasticity and structural integrity of downhole tubular. International Journal of Pressure Vessels and Piping, 2017, 151, 1-10.	1.2	9
29	Failure pressure of medium and high strength pipelines with scratched dent defects. Engineering Failure Analysis, 2017, 78, 29-40.	1.8	29
30	Revisiting burst pressure models for corroded pipelines. Canadian Journal of Civil Engineering, 2017, 44, 485-494.	0.7	24
31	Effect of the Y/T on the burst pressure for corroded pipelines with high strength. Journal of Petroleum Science and Engineering, 2017, 157, 760-766.	2.1	30
32	The Assessment of the Probabilistic Burst of Honed Steel Pipes Based on Elastic Plastic Behavior. Procedia Engineering, 2017, 181, 28-35.	1.2	2
33	The Failure Window Method and Its Application in Pipeline Burst. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	6
34	A weighted average yield criterion and its applications to burst failure of pipeline and three-dimensional forging. Journal of Manufacturing Processes, 2017, 28, 243-252.	2.8	9
35	Nanofillers Reinforced Polymer Composites Wrap to Repair Corroded Steel Pipe Lines. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	10
36	Double circular arc model based on average shear stress yield criterion and its application in the corroded pipe burst. Journal of Petroleum Science and Engineering, 2017, 149, 515-521.	2.1	23

#	Article	IF	CITATIONS
37	Modified response surface method basis harmony search to predict the burst pressure of corroded pipelines. Engineering Failure Analysis, 2018, 89, 177-199.	1.8	88
38	Reliability analysis of low, mid and high-grade strength corroded pipes based on plastic flow theory using adaptive nonlinear conjugate map. Engineering Failure Analysis, 2018, 90, 245-261.	1.8	57
39	Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel. Philosophical Magazine, 2018, 98, 934-958.	0.7	7
40	Assessment Methods and Technical Challenges of Remaining Strength for Corrosion Defects in Pipelines. , 2018, , .		1
41	Failure modes of API 12D tanks with a semicircular-topped rectangular cleanout and stepped shell design. International Journal of Pressure Vessels and Piping, 2018, 165, 145-163.	1.2	7
42	Experimental and numerical study on internal pressure load capacity and failure mechanism of CO2 corroded tubing. Energy, 2018, 158, 1070-1079.	4.5	8
43	Next-generation fracture prediction models for pipes with localized corrosion defects. Engineering Failure Analysis, 2019, 105, 610-626.	1.8	13
44	Reliability analysis of corroded pipelines: Novel adaptive conjugate first order reliability method. Journal of Loss Prevention in the Process Industries, 2019, 62, 103986.	1.7	36
45	The Effect of Internal Pressure on Radial Strain of Steel Pipe Subjected to Monotonic and Cyclic Loading. Materials, 2019, 12, 2849.	1.3	1
46	Reliability assessment of thick high strength pipelines with corrosion defects. International Journal of Pressure Vessels and Piping, 2019, 177, 103982.	1.2	38
47	Fatigue evaluation of API 12D tanks with a semicircular-topped rectangular cleanout and stepped shell design. International Journal of Pressure Vessels and Piping, 2019, 170, 19-29.	1.2	6
48	Reliability analysis of irregular zones in pipelines under both effects of corrosion and residual stress. Engineering Failure Analysis, 2019, 98, 177-188.	1.8	13
49	Reliability assessments of corroded pipelines based on internal pressure – A review. Engineering Failure Analysis, 2019, 98, 190-214.	1.8	116
50	Numerical model for estimating time-dependent reliability of a corroding pipeline over its lifetime. International Journal of Advanced Structural Engineering, 2019, 11, 1-7.	1.3	4
51	An ANNâ€based failure pressure prediction method for buried highâ€strength pipes with stray current corrosion defect. Energy Science and Engineering, 2020, 8, 248-259.	1.9	29
52	A new methodology for the prediction of burst pressure for API 5L X grade flawless pipelines. Ocean Engineering, 2020, 212, 107602.	1.9	15
53	Efficient, scale-bridging simulation of ductile failure in a burst test using damage mechanics. International Journal of Pressure Vessels and Piping, 2020, 188, 104242.	1.2	6
54	Reliability assessment of a subsea pipe-in-pipe system for major failure modes. International Journal of Pressure Vessels and Piping, 2020, 188, 104177.	1.2	27

#	Article	IF	CITATIONS
55	A finite element model for estimating time-dependent reliability of a corroded pipeline elbow. International Journal of Structural Integrity, 2020, 12, 306-321.	1.8	30
56	Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure. International Journal of Hydrogen Energy, 2020, 45, 23142-23150.	3.8	14
57	Uncertainty in reliability of thick high strength pipelines with corrosion defects subjected to internal pressure. International Journal of Pressure Vessels and Piping, 2020, 188, 104170.	1.2	27
58	Uncertainty quantification of burst pressure models of corroded pipelines. International Journal of Pressure Vessels and Piping, 2020, 188, 104208.	1.2	27
59	Mathematical Modeling of Plastic Deformation of a Tube from Dispersion-Hardened Aluminum Alloy in an Inhomogeneous Temperature Field. Crystals, 2020, 10, 1103.	1.0	6
60	Proposal and application of a new yield criterion for metal plastic deformation. Archive of Applied Mechanics, 2020, 90, 1705-1722.	1.2	4
61	Effects of depth in external and internal corrosion defects on failure pressure predictions of oil and gas pipelines using finite element models. Advances in Structural Engineering, 2020, 23, 3128-3139.	1.2	10
62	Reliability of the conventional approach for stress/fatigue analysis of pitting corroded pipelines – Development of a safer approach. Structural Safety, 2020, 85, 101943.	2.8	15
63	Plastic collapse of thin-walled elasto-plastic pipes under internal pressure and superposed axial loading. International Journal of Pressure Vessels and Piping, 2020, 180, 104043.	1.2	2
64	Integrity assessment of functionally graded pipe produced by centrifugal casting subjected to internal pressure: experimental investigation. Archive of Applied Mechanics, 2020, 90, 1723-1736.	1.2	2
65	Design and Optimization of Multistage Tubular–Mandrel System for Down-Hole Expandable Tubular. Arabian Journal for Science and Engineering, 2021, 46, 2083-2095.	1.7	7
66	Through-wall yield ductile burst pressure of high-grade steel tube and casing with and without corroded defect. Marine Structures, 2021, 76, 102902.	1.6	10
67	A Comprehensive Study on Burst Pressure Performance of Aluminum Liner for Hydrogen Storage Vessels. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.4	2
68	A comparative study of burst failure models for assessing remaining strength of corroded pipelines. Journal of Pipeline Science and Engineering, 2021, 1, 36-50.	2.4	43
69	On arginineâ€based polyurethaneâ€blends specific to vascular prostheses. Journal of Applied Polymer Science, 2021, 138, 51247.	1.3	5
70	Prediction of actual limit stresses in a thin-walled pipe loaded with internal pressure and axial tension. Physico-mathematical Modelling and Informational Technologies, 2021, , 35-41.	0.0	0
71	Burst Pressure Prediction of Cylindrical Vessels Using Artificial Neural Network. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.4	14
72	Method of Predicting Necking True Stress in a Thin-Walled Tube Under a Complex Stress State. Strojnicky Casopis, 2020, 70, 101-116.	0.3	3

#	Article	IF	CITATIONS
73	Burst strength assessment of X100 to X120 ultra-high strength corroded pipes. Ocean Engineering, 2021, 241, 110004.	1.9	18
74	ANALYSIS OF COMPOSITE REPAIR SYSTEMS FOR THIN-WALLED METALLIC PIPELINES WITH LOCALIZED CORROSION. , 0, , .		Ο
75	Finite Element Analysis of Pipe Bends under External Loads. Advances in Civil and Industrial Engineering Book Series, 2017, , 209-238.	0.2	0
76	Numerical prediction of the strength of a thin-walled pipe loaded with internal pressure and axial tension taking into account its actual dimensions. Scientific Journal of the Ternopil National Technical University, 2020, 100, 11-19.	0.0	Ο
77	Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review. Engineering Failure Analysis, 2022, 131, 105810.	1.8	56
78	Burst Pressure Prediction of Pipes With Internal Corrosion Defects. Journal of Pressure Vessel Technology, Transactions of the ASME, 2020, 142, .	0.4	8
79	A novel conservative failure model for the fused deposition modeling of polylactic acid specimens. Additive Manufacturing, 2021, 48, 102460.	1.7	10
80	Estimation of Burst Pressure of PVC Pipe Using Average Shear Stress Yield Criterion: Experimental and Numerical Studies. Applied Sciences (Switzerland), 2021, 11, 10477.	1.3	5
81	Temperature-dependent burst failure of polymeric hollow fibers used in heat exchangers. Engineering Failure Analysis, 2022, 131, 105895.	1.8	5
82	Structural integrity assessment of hydrogen-mixed natural gas pipelines based on a new multi-parameter failure criterion. Ocean Engineering, 2022, 247, 110731.	1.9	23
83	Burst Pressure Prediction of Subsea Supercritical CO2 Pipelines. Materials, 2022, 15, 3465.	1.3	1
84	Study on residual strength and life prediction of corroded tubing based on thermal-mechanical coupling XFEM. Ocean Engineering, 2022, 255, 111450.	1.9	5
85	Failure assessment of corroded ultra-high strength pipelines under combined axial tensile loads and internal pressure. Ocean Engineering, 2022, 257, 111438.	1.9	7
86	Generation of synthetic full-scale burst test data for corroded pipelines using the tabular generative adversarial network. Engineering Applications of Artificial Intelligence, 2022, 115, 105308.	4.3	7
87	A mathematical extrapolation-based yield criterion and its application in modeling of burst pressure of defect-free straight pipes. Ocean Engineering, 2022, 263, 112408.	1.9	0
88	Scale-Up of Microwave-Assisted, Continuous Flow, Liquid Phase Reactors: Application to 5-Hydroxymethylfurfural Production. SSRN Electronic Journal, 0, , .	0.4	Ο
89	Artificial neural network models of burst strength for thin-wall pipelines. Journal of Pipeline Science and Engineering, 2022, 2, 100090.	2.4	4
90	Probabilistic safety assessment of the burst strength of corroded pipelines of different steel grades with calibrated strength models. Marine Structures, 2022, 86, 103310.	1.6	12

#	Article	IF	CITATIONS
91	A generalized weighted yield criterion: Theoretical derivation and its application in the plastic failure analysis of pipeline with corroded defects. International Journal of Pressure Vessels and Piping, 2022, 200, 104832.	1.2	1
92	Scale-up of microwave-assisted, continuous flow, liquid phase reactors: Application to 5-Hydroxymethylfurfural production. Chemical Engineering Journal, 2023, 454, 139985.	6.6	15
94	Uncertainty in the Estimation of Partial Safety Factors for Different Steel-Grade Corroded Pipelines. Journal of Marine Science and Engineering, 2023, 11, 177.	1.2	4
95	Integrity assessment of supercritical CO2 transport pipelines. , 2023, 221, 211355.		7
96	Mechanical behavior of metal pipes under internal and external pressure. , 2023, , 133-186.		1
97	Burst Pressure Solutions of Thin and Thick-Walled Cylindrical Vessels. Journal of Pressure Vessel Technology, Transactions of the ASME, 2023, , 1-21.	0.4	2
98	Target Method for the Statistical Processing of the Results of Tensile Testing of Defective Pipes. Materials Science, 2022, 58, 331-342.	0.3	0
99	Recent Advances in Corrosion Assessment Models for Buried Transmission Pipelines. CivilEng, 2023, 4, 391-415.	0.8	3
107	Modeling Reliability for Pipeline Corrosion. , 2024, , 167-183.		0
108	How Corroded Pipelines Fail and How Are They Modeled?. , 2024, , 65-88.		0