Driving Oscillatory Activity in the Human Cortex Enhan

Current Biology 22, 403-407 DOI: 10.1016/j.cub.2012.01.024

Citation Report

#	Article	IF	CITATIONS
1	A Role for the Subthalamic Nucleus in Response Inhibition during Conflict. Journal of Neuroscience, 2012, 32, 13396-13401.	1.7	137
2	Oscillatory entrainment of subthalamic nucleus neurons and behavioural consequences in rodents and primates. European Journal of Neuroscience, 2012, 36, 3246-3257.	1.2	15
3	The Functional Importance of Rhythmic Activity in the Brain. Current Biology, 2012, 22, R658-R663.	1.8	329
4	Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation. Science, 2012, 337, 735-737.	6.0	380
5	Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease. Experimental Neurology, 2012, 236, 319-326.	2.0	39
6	Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials. Current Biology, 2013, 23, 1449-1453.	1.8	189
7	The ups and downs of beta oscillations in sensorimotor cortex. Experimental Neurology, 2013, 245, 15-26.	2.0	507
8	MEG studies of sensorimotor rhythms: A review. Experimental Neurology, 2013, 245, 27-39.	2.0	238
9	State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System: What You Think Matters. Journal of Neuroscience, 2013, 33, 17483-17489.	1.7	159
10	Tremor Suppression by Rhythmic Transcranial Current Stimulation. Current Biology, 2013, 23, 436-440.	1.8	278
11	Gamma oscillations in the human basal ganglia. Experimental Neurology, 2013, 245, 72-76.	2.0	107
12	Gearing up for action: Attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band. NeuroImage, 2013, 82, 634-644.	2.1	18
13	Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 2013, 37, 1702-1712.	2.9	432
14	Movement related dynamics of subthalmo-cortical alpha connectivity in Parkinson's disease. NeuroImage, 2013, 70, 132-142.	2.1	40
15	Oscillatory Beta Activity Mediates Neuroplastic Effects of Motor Cortex Stimulation in Humans. Journal of Neuroscience, 2013, 33, 7919-7927.	1.7	52
16	Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behavioural Brain Research, 2013, 241, 1-6.	1.2	134
17	Cortical gamma oscillations: the functional key is activation, not cognition. Neuroscience and Biobehavioral Reviews, 2013, 37, 401-417.	2.9	136
18	Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. Journal of Neural Engineering, 2013, 10, 046009.	1.8	94

#	Article	IF	CITATIONS
19	Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Current Opinion in Neurology, 2013, 26, 662-670.	1.8	220
20	Cognitive Factors Modulate Activity within the Human Subthalamic Nucleus during Voluntary Movement in Parkinson's Disease. Journal of Neuroscience, 2013, 33, 15815-15826.	1.7	33
21	Prestimulus Oscillatory Activity over Motor Cortex Reflects Perceptual Expectations. Journal of Neuroscience, 2013, 33, 1400-1410.	1.7	226
22	Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 2013, 7, 279.	1.0	596
23	Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 2013, 7, 317.	1.0	397
24	Patterned Brain Stimulation, What a Framework with Rhythmic and Noisy Components Might Tell Us about Recovery Maximization. Frontiers in Human Neuroscience, 2013, 7, 325.	1.0	18
25	Modulation of cortical-subcortical networks in Parkinson's disease by applied field effects. Frontiers in Human Neuroscience, 2013, 7, 565.	1.0	16
26	MEG studies of motor cortex gamma oscillations: evidence for a gamma "fingerprint―in the brain?. Frontiers in Human Neuroscience, 2013, 7, 575.	1.0	100
27	It's how you get there: walking down a virtual alley activates premotor and parietal areas. Frontiers in Human Neuroscience, 2014, 8, 93.	1.0	142
28	Now I am ReadyNow I am not: The Influence of Pre-TMS Oscillations and Corticomuscular Coherence on Motor-Evoked Potentials. Cerebral Cortex, 2014, 24, 1708-1719.	1.6	96
29	Modulating Brain Oscillations to Drive Brain Function. PLoS Biology, 2014, 12, e1002032.	2.6	13
30	Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement Inhibition. Current Biology, 2014, 24, 2940-2945.	1.8	122
31	Transcranial Alternating Current Stimulation Attenuates Visual Motion Adaptation. Journal of Neuroscience, 2014, 34, 7334-7340.	1.7	55
32	Better Get Back to Work: A Role for Motor Beta Desynchronization in Incentive Motivation. Journal of Neuroscience, 2014, 34, 1-9.	1.7	40
33	The highs and lows of beta activity in corticoâ€basal ganglia loops. European Journal of Neuroscience, 2014, 39, 1951-1959.	1.2	104
34	Frequency matters: betaâ€band subthalamic nucleus deepâ€brain stimulation induces <scp>P</scp> arkinsonianâ€ike blink abnormalities in normal rats. European Journal of Neuroscience, 2014, 40, 3237-3242.	1.2	14
35	The impact of electrical stimulation techniques on behavior. Wiley Interdisciplinary Reviews: Cognitive Science, 2014, 5, 649-659.	1.4	14
36	A shift from prospective to reactive modulation of beta-band oscillations in Parkinson's disease. NeuroImage, 2014, 100, 507-519.	2.1	38

#	Article	IF	CITATIONS
37	Neurosensory Effects of Transcranial Alternating Current Stimulation. Brain Stimulation, 2014, 7, 823-831.	0.7	44
38	Electrical Control of Epilepsy. Annual Review of Biomedical Engineering, 2014, 16, 483-504.	5.7	34
39	EEG Gamma Band Oscillations Differentiate the Planning of Spatially Directed Movements of the Arm Versus Eye: Multivariate Empirical Mode Decomposition Analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 1083-1096.	2.7	26
40	The functional role of beta oscillations in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S44-S48.	1.1	267
41	Oscillations and the basal ganglia: Motor control and beyond. NeuroImage, 2014, 85, 637-647.	2.1	298
42	Coding complexity in the human motor circuit. Human Brain Mapping, 2015, 36, 5155-5167.	1.9	62
43	Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity. Frontiers in Cellular Neuroscience, 2015, 9, 477.	1.8	154
44	An exploratory data analysis of electroencephalograms using the functional boxplots approach. Frontiers in Neuroscience, 2015, 9, 282.	1.4	11
45	Effects of alternating current stimulation on the healthy and diseased brain. Frontiers in Neuroscience, 2015, 9, 391.	1.4	34
46	Modulating pathological oscillations by rhythmic non-invasive brain stimulation—a therapeutic concept?. Frontiers in Systems Neuroscience, 2015, 9, 33.	1.2	18
47	Brain Networks Responsible for Sense of Agency: An EEG Study. PLoS ONE, 2015, 10, e0135261.	1.1	39
48	Preconscious Prediction of a Driver's Decision Using Intracranial Recordings. Journal of Cognitive Neuroscience, 2015, 27, 1492-1502.	1.1	17
49	Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. Journal of Neurophysiology, 2015, 113, 3574-3587.	0.9	59
50	Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Review of Neurotherapeutics, 2015, 15, 145-167.	1.4	79
51	Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimulation, 2015, 8, 499-508.	0.7	423
52	The subthalamic nucleus, oscillations, and conflict. Movement Disorders, 2015, 30, 328-338.	2.2	85
53	Single trial beta oscillations index time estimation. Neuropsychologia, 2015, 75, 381-389.	0.7	92
54	Identifying Granger causal relationships between neural power dynamics and variables of interest. NeuroImage, 2015, 111, 489-504.	2.1	18

#	Article	IF	CITATIONS
55	Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments. Annals of the New York Academy of Sciences, 2015, 1344, 78-91.	1.8	50
56	Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain, 2015, 138, 1894-1906.	3.7	141
57	Rhythmic Gamma Stimulation Affects Bistable Perception. Journal of Cognitive Neuroscience, 2015, 27, 1298-1307.	1.1	33
58	High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. NeuroImage, 2015, 112, 318-326.	2.1	158
59	Reversing motor adaptation deficits in the ageing brain using nonâ€invasive stimulation. Journal of Physiology, 2015, 593, 3645-3655.	1.3	53
60	The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature Communications, 2015, 6, 8090.	5.8	114
61	Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. European Journal of Applied Physiology, 2015, 115, 2505-2519.	1.2	28
62	The effect of Î ³ -tACS on working memory performance in healthy controls. Brain and Cognition, 2015, 101, 51-56.	0.8	95
63	Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 2015, 19, 13-20.	4.0	202
64	LFP and oscillations—what do they tell us?. Current Opinion in Neurobiology, 2015, 31, 1-6.	2.0	159
65	Enhancing Hebbian Learning to Control Brain Oscillatory Activity. Cerebral Cortex, 2015, 25, 2409-2415.	1.6	49
66	Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens. Journal of Neurophysiology, 2016, 116, 1663-1672.	0.9	8
67	Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability. PLoS ONE, 2016, 11, e0162521.	1.1	50
68	Bad things come easier to the mind but harder to the body: Evidence from brain oscillations. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 768-778.	1.0	11
69	Increased beta rhythm as an indicator of inhibitory mechanisms in tourette syndrome. Movement Disorders, 2016, 31, 384-392.	2.2	18
70	Transcranial alternating current stimulation modulates spontaneous low frequency fluctuations as measured with fMRI. NeuroImage, 2016, 141, 88-107.	2.1	59
71	Delta-Band Oscillations in Motor Regions Predict Hand Selection for Reaching. Cerebral Cortex, 2016, 28, 574-584.	1.6	26
72	Phasic Modulation of Human Somatosensory Perception by Transcranially Applied Oscillating Currents. Brain Stimulation, 2016, 9, 712-719.	0.7	48

#	Article	IF	CITATIONS
73	Information-Based Approaches of Noninvasive Transcranial Brain Stimulation. Trends in Neurosciences, 2016, 39, 782-795.	4.2	191
74	Physiology of Transcranial Direct and Alternating Current Stimulation. , 2016, , 29-46.		14
75	Transcranial alternating current stimulation affects the BOLD signal in a frequency and taskâ€dependent manner. Human Brain Mapping, 2016, 37, 94-121.	1.9	62
76	Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease. Human Brain Mapping, 2016, 37, 2736-2754.	1.9	39
77	Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS. Cerebral Cortex, 2016, 26, 3977-3990.	1.6	104
78	Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. Journal of Neuroscience, 2016, 36, 12053-12065.	1.7	93
79	A New Neuroanatomy of Basal Ganglia Circuitry. , 2016, , 301-315.		0
80	EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements. Journal of Neuroscience, 2016, 36, 11671-11681.	1.7	44
81	Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. Journal of Neurophysiology, 2016, 115, 1556-1576.	0.9	4
82	Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS). Journal of Visualized Experiments, 2016, , e53527.	0.2	12
83	EEG oscillations: From correlation to causality. International Journal of Psychophysiology, 2016, 103, 12-21.	0.5	345
84	A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 2016, 127, 1031-1048.	0.7	998
85	Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS. NeuroImage, 2016, 126, 120-130.	2.1	75
86	Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage, 2016, 140, 4-19.	2.1	271
87	Distinct Î ² Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. Journal of Neuroscience, 2016, 36, 2212-2226.	1.7	152
88	Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation. IEEE Transactions on Biomedical Engineering, 2016, 63, 86-96.	2.5	24
89	Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage, 2016, 140, 89-98.	2.1	144
90	BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS–fMRI study. NeuroImage, 2016, 140, 118-125.	2.1	81

#	Article	IF	CITATIONS
91	Cerebellar Control on Prefrontal-Motor Connectivity During Movement Inhibition. Cerebellum, 2016, 15, 680-687.	1.4	27
92	Modulation of stimulus-induced 20-Hz activity for the tongue and hard palate during tongue movement in humans. Clinical Neurophysiology, 2016, 127, 698-705.	0.7	3
93	Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation. Journal of Neuroscience, 2017, 37, 2325-2335.	1.7	49
94	Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clinical Neurophysiology, 2017, 128, 843-857.	0.7	211
95	Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Structure and Function, 2017, 222, 2891-2906.	1.2	59
96	High-gamma oscillations in the motor cortex during visuo-motor coordination: A tACS interferential study. Brain Research Bulletin, 2017, 131, 47-54.	1.4	36
97	Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA _A Inhibition: A tACS-TMS Study. Journal of Neuroscience, 2017, 37, 4481-4492.	1.7	96
98	Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements. Neuroscience, 2017, 350, 75-84.	1.1	1
99	Movement-related beta oscillations show high intra-individual reliability. NeuroImage, 2017, 147, 175-185.	2.1	49
100	Modulation of Long-Range Connectivity Patterns via Frequency-Specific Stimulation of Human Cortex. Current Biology, 2017, 27, 3061-3068.e3.	1.8	48
101	Closed-loop interaction with the cerebral cortex using a novel micro-ECoG-based implant: the impact of beta vs. gamma stimulation frequencies on cortico-cortical spectral responses. Brain-Computer Interfaces, 2017, 4, 214-224.	0.9	8
102	Effect of training status on beta-range corticomuscular coherence in agonist vs. antagonist muscles during isometric knee contractions. Experimental Brain Research, 2017, 235, 3023-3031.	0.7	34
103	Simultaneous Transcranial Alternating Current Stimulation and Functional Magnetic Resonance Imaging. Journal of Visualized Experiments, 2017, , .	0.2	20
104	Low-beta cortico-pallidal coherence decreases during movement and correlates with overall reaction time. Neurolmage, 2017, 159, 1-8.	2.1	31
105	Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Brain Stimulation, 2017, 10, 1055-1060.	0.7	15
106	The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 53.	2.4	163
107	Personalized brain-computer interface models for motor rehabilitation. , 2017, , .		5
108	Walking-Related Dual-Task Interference in Early-to-Middle-Stage Huntington's Disease: An Auditory Event Related Potential Study. Frontiers in Psychology, 2017, 8, 1292.	1.1	8

#	Article	IF	CITATIONS
109	Cortical Mechanisms of Tongue Sensorimotor Functions in Humans: A Review of the Magnetoencephalography Approach. Frontiers in Human Neuroscience, 2017, 11, 134.	1.0	7
110	Transcranial Alternating Current Stimulation: A Potential Modulator for Pathological Oscillations in Parkinson's Disease?. Frontiers in Neurology, 2017, 8, 185.	1.1	8
111	Modulation of Somatosensory Alpha Rhythm by Transcranial Alternating Current Stimulation at Mu-Frequency. Frontiers in Human Neuroscience, 2017, 11, 432.	1.0	28
112	Transcranial Magnetic Stimulation Reveals Intrinsic Perceptual and Attentional Rhythms. Frontiers in Neuroscience, 2017, 11, 154.	1.4	43
113	Mechanisms for pattern specificity of deep-brain stimulation in Parkinson's disease. PLoS ONE, 2017, 12, e0182884.	1.1	11
114	The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS ONE, 2017, 12, e0189109.	1.1	23
115	Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 2018, 21, 174-187.	7.1	615
116	Motor Cortical Gamma Oscillations: What Have We Learnt and Where Are We Headed?. Current Behavioral Neuroscience Reports, 2018, 5, 136-142.	0.6	64
117	Recent Trends in the Use of Electrical Neuromodulation in Parkinson's Disease. Current Behavioral Neuroscience Reports, 2018, 5, 170-178.	0.6	20
118	Driving working memory with frequencyâ€ŧuned noninvasive brain stimulation. Annals of the New York Academy of Sciences, 2018, 1423, 126-137.	1.8	23
119	Using Animal Models to Improve the Design and Application of Transcranial Electrical Stimulation in Humans. Current Behavioral Neuroscience Reports, 2018, 5, 125-135.	0.6	9
120	Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation. Brain Stimulation, 2018, 11, 734-742.	0.7	52
121	Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. NeuroImage, 2018, 174, 380-392.	2.1	65
122	Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia–thalamic network. Neural Networks, 2018, 98, 283-295.	3.3	19
123	Neurofeedback of SMR and Beta1 Frequencies: An Investigation of Learning Indices and Frequency-Specific Effects. Neuroscience, 2018, 378, 211-224.	1.1	13
124	Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study. Frontiers in Human Neuroscience, 2018, 12, 479.	1.0	53
125	Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait. PLoS ONE, 2018, 13, e0208691.	1.1	14
126	Neural Oscillations and the Initiation of Voluntary Movement. Frontiers in Psychology, 2018, 9, 2509.	1.1	30

#	ARTICLE Auditory stimulation improves motor function and caretaker burden in children with cerebral palsy-	IF 1.1	Citations
128	A randomized double blind study. PLoS ONE, 2018, 13, e0208792. Oscillatory Activity in the Cortex, Motor Thalamus and Nucleus Reticularis Thalami in Acute TTX and Chronic 6-OHDA Dopamine-Depleted Animals. Frontiers in Neurology, 2018, 9, 663.	1.1	12
129	Modulation of Motor Learning Capacity by Transcranial Alternating Current Stimulation. Neuroscience, 2018, 391, 131-139.	1.1	41
130	Reprint of "Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms― Journal of Neuroscience Methods, 2018, 310, 75-88.	1.3	5
131	Effects of Transcranial Alternating Current Stimulation on Repetitive Finger Movements in Healthy Humans. Neural Plasticity, 2018, 2018, 1-10.	1.0	33
132	Transcranial Alternating Current Stimulation With Gamma Oscillations Over the Primary Motor Cortex and Cerebellar Hemisphere Improved Visuomotor Performance. Frontiers in Behavioral Neuroscience, 2018, 12, 132.	1.0	42
133	Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Frontiers in Human Neuroscience, 2018, 12, 211.	1.0	149
134	Reorganization of cortical oscillatory dynamics underlying disinhibition in frontotemporal dementia. Brain, 2018, 141, 2486-2499.	3.7	64
135	Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. Journal of Neuroscience Methods, 2018, 308, 205-218.	1.3	25
136	Safety Aspects, Tolerability and Modeling of Retinofugal Alternating Current Stimulation. Frontiers in Neuroscience, 2019, 13, 783.	1.4	15
137	Altered EEG alpha and theta oscillations characterize apathy in Parkinson's disease during incentivized movement. NeuroImage: Clinical, 2019, 23, 101922.	1.4	13
138	Pulsed Facilitation of Corticospinal Excitability by the Sensorimotor μ-Alpha Rhythm. Journal of Neuroscience, 2019, 39, 10034-10043.	1.7	72
139	Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Behavioural Brain Research, 2019, 376, 112170.	1.2	28
140	State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Scientific Reports, 2019, 9, 12858.	1.6	30
141	Altered motor dynamics in type 1 diabetes modulate behavioral performance. NeuroImage: Clinical, 2019, 24, 101977.	1.4	5
142	Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biology, 2019, 17, e3000479.	2.6	134
143	tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nature Communications, 2019, 10, 266.	5.8	191
144	After-effects of 10†Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimulation, 2019, 12, 1464-1474.	0.7	43

#	Article	IF	CITATIONS
145	Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans. Neuroscience, 2019, 411, 130-139.	1.1	38
146	Direct comparison of oscillatory activity in the motor system of Parkinson's disease and dystonia: A review of the literature and meta-analysis. Clinical Neurophysiology, 2019, 130, 917-924.	0.7	24
147	Analytical bias accounts for some of the reported effects of tACS on auditory perception. Brain Stimulation, 2019, 12, 1001-1009.	0.7	23
148	Motor Task-Dependent Dissociated Effects of Transcranial Random Noise Stimulation in a Finger-Tapping Task Versus a Go/No-Go Task on Corticospinal Excitability and Task Performance. Frontiers in Neuroscience, 2019, 13, 161.	1.4	12
149	Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson's disease: A randomized cross-over trial. NeuroImage: Clinical, 2019, 22, 101768.	1.4	69
150	Rebound or Entrainment? The Influence of Alternating Current Stimulation on Individual Alpha. Frontiers in Human Neuroscience, 2019, 13, 43.	1.0	19
151	10 Hz tACS Over Somatosensory Cortex Does Not Modulate Supra-Threshold Tactile Temporal Discrimination in Humans. Frontiers in Neuroscience, 2019, 13, 311.	1.4	14
152	Cortical beta oscillations are associated with motor performance following visuomotor learning. NeuroImage, 2019, 195, 340-353.	2.1	48
153	Causal Evidence for the Role of Neuronal Oscillations in Top–Down and Bottom–Up Attention. Journal of Cognitive Neuroscience, 2019, 31, 768-779.	1.1	36
154	Attention modulates event-related spectral power in multisensory self-motion perception. NeuroImage, 2019, 191, 68-80.	2.1	8
155	Beta Power May Meditate the Effect of Gamma-TACS on Motor Performance. , 2019, 2019, 5902-5908.		4
156	Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. NeuroImage, 2019, 184, 440-449.	2.1	46
157	Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neurolmage, 2019, 185, 490-512.	2.1	21
158	Parametric effects of transcranial alternating current stimulation on multitasking performance. Brain Stimulation, 2019, 12, 73-83.	0.7	24
159	Functional and Neuroanatomical Bases of Developmental Stuttering: Current Insights. Neuroscientist, 2019, 25, 566-582.	2.6	62
160	Neurophysiological aftereffects of 10â€ [−] Hz and 20â€ [−] Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Brain Research, 2020, 1727, 146542.	1.1	2
161	Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Frontiers in Systems Neuroscience, 2020, 14, 63.	1.2	6
162	The Effect of Transcranial Pulsed Current Stimulation at 4 and 75 Hz on Electroencephalography Theta and High Gamma Band Power: A Pilot Study. Brain Connectivity, 2020, 10, 520-531.	0.8	3

# 163	ARTICLE A direct comparison of the electrophysiological effects of transcranial direct and alternating current stimulation in healthy subjects. Brain Research, 2020, 1747, 147065.	IF 1.1	Citations 9
164	Effects of stimulating the supplementary motor area with a transcranial alternating current for bimanual movement performance. Behavioural Brain Research, 2020, 393, 112801.	1.2	5
165	Cortical Beta Oscillatory Activity Evoked during Reactive Balance Recovery Scales with Perturbation Difficulty and Individual Balance Ability. Brain Sciences, 2020, 10, 860.	1.1	14
166	Mapping of subthalamic nucleus using microelectrode recordings during deep brain stimulation. Scientific Reports, 2020, 10, 19241.	1.6	23
167	The effects of a singleâ€session cathodal transcranial pulsed current stimulation on corticospinal excitability: A randomized shamâ€controlled doubleâ€blinded study. European Journal of Neuroscience, 2020, 52, 4908-4922.	1.2	6
168	Functional and behavioural correlates of shared neuronal noise variability in vision and visual cognition. Current Opinion in Physiology, 2020, 16, 85-97.	0.9	7
169	Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control During a Go/No-Go Task as a Predictive Biomarker in Major Depression. Frontiers in Psychiatry, 2020, 11, 707.	1.3	13
170	Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS. Frontiers in Human Neuroscience, 2020, 14, 366.	1.0	24
171	Beta oscillations during adaptation to inertial and velocity dependent perturbations. , 2020, , .		1
172	Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease. Journal of Neuroscience, 2020, 40, 4788-4796.	1.7	51
173	Targeting Gammaâ€Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Research, 2020, 13, 1051-1071.	2.1	16
174	Gamma frequency band shift of contralateral corticomuscular synchronous oscillations with force strength for hand movement tasks. NeuroReport, 2020, 31, 338-345.	0.6	5
175	Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior. Cell Reports, 2020, 30, 2555-2566.e3.	2.9	36
176	Role of beta-band resting-state functional connectivity as a predictor of motor learning ability. NeuroImage, 2020, 210, 116562.	2.1	24
177	The impact of body posture on intrinsic brain activity: The role of beta power at rest. PLoS ONE, 2020, 15, e0218977.	1.1	4
178	Involvement of the Cortico-Basal Ganglia-Thalamocortical Loop in Developmental Stuttering. Frontiers in Psychology, 2019, 10, 3088.	1.1	79
179	Intervention-induced changes in neural connectivity during motor preparation may affect cortical activity at motor execution. Scientific Reports, 2020, 10, 7326.	1.6	5
180	Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves. Scientific Reports, 2020, 10, 7360.	1.6	7

#	Article	IF	CITATIONS
181	Modulation of gamma oscillations as a possible therapeutic tool for neuropsychiatric diseases: A review and perspective. International Journal of Psychophysiology, 2020, 152, 15-25.	0.5	35
182	Primary motor cortex in Parkinson's disease: Functional changes and opportunities for neurostimulation. Neurobiology of Disease, 2021, 147, 105159.	2.1	48
183	Double-blind disruption of right inferior frontal cortex with TMS reduces right frontal beta power for action stopping. Journal of Neurophysiology, 2021, 125, 140-153.	0.9	20
184	Target Engagement with Transcranial Current Stimulation. , 2021, , 211-242.		0
185	To Go or Not to Go: Degrees of Dynamic Inhibitory Control Revealed by the Function of Grip Force and Early Electrophysiological Indices. Frontiers in Human Neuroscience, 2021, 15, 614978.	1.0	4
186	Physiology of Transcranial Direct and Alternating Current Stimulation. , 2021, , 29-47.		3
187	Multiscale Wavelet Transfer Entropy With Application to Corticomuscular Coupling Analysis. IEEE Transactions on Biomedical Engineering, 2022, 69, 771-782.	2.5	12
189	Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimulation, 2021, 14, 277-283.	0.7	20
190	Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain Sciences, 2021, 11, 478.	1.1	3
191	Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Frontiers in Human Neuroscience, 2021, 15, 640609.	1.0	9
192	Pyramidal cell subtype-dependent cortical oscillatory activity regulates motor learning. Communications Biology, 2021, 4, 495.	2.0	11
193	Understanding the Role of Sensorimotor Beta Oscillations. Frontiers in Systems Neuroscience, 2021, 15, 655886.	1.2	66
194	How cerebral cortex protects itself from interictal spikes: The alpha/beta inhibition mechanism. Human Brain Mapping, 2021, 42, 3352-3365.	1.9	14
195	Boosting brain plasticity in older adults with non-invasive brain co-stimulation. Clinical Neurophysiology, 2021, 132, 1334-1335.	0.7	1
197	The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clinical Neurophysiology, 2021, 132, 1358-1366.	0.7	16
199	Behavioral Induction of a High Beta State in Sensorimotor Cortex Leads to Movement Slowing. Journal of Cognitive Neuroscience, 2021, 33, 1311-1328.	1.1	7
200	The modulation of emotional awareness using non-invasive brain stimulation techniques: a literature review on TMS and tDCS. Journal of Cognitive Psychology, 0, , 1-18.	0.4	2
201	An Overview of Noninvasive Brain Stimulation: Basic Principles and Clinical Applications. Canadian Journal of Neurological Sciences, 2022, 49, 479-492.	0.3	25

#	Article	IF	CITATIONS
202	Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease. Brain, 2022, 145, 224-236.	3.7	57
203	Midfrontal theta as moderator between beta oscillations and precision control. NeuroImage, 2021, 235, 118022.	2.1	9
204	Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Frontiers in Human Neuroscience, 2021, 15, 628229.	1.0	7
205	Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sciences, 2021, 11, 1095.	1.1	8
206	20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability. Journal of Personalized Medicine, 2021, 11, 979.	1.1	6
207	Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage, 2021, 240, 118373.	2.1	16
208	Oscillatory Neural Models of the Basal Ganglia for Action Selection in Healthy and Parkinsonian Cases. Springer Series in Bio-/neuroinformatics, 2017, , 149-189.	0.1	3
209	Application of Transcranial Electric Stimulation (tDCS, tACS, tRNS). European Psychologist, 2016, 21, 4-14.	1.8	32
210	Beta-band modulation in the human hippocampus during a conflict response task. Journal of Neural Engineering, 2020, 17, 066003.	1.8	2
215	Is Transcranial Alternating Current Stimulation Effective in Modulating Brain Oscillations?. PLoS ONE, 2013, 8, e56589.	1.1	92
216	Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation. PLoS ONE, 2017, 12, e0178579.	1.1	42
217	Prediction of movement intention using connectivity within motor-related network: An electrocorticography study. PLoS ONE, 2018, 13, e0191480.	1.1	8
218	Transcranial Alternating Current Stimulation Modulates Risky Decision Making in a Frequency-Controlled Experiment. ENeuro, 2017, 4, ENEURO.0136-17.2017.	0.9	31
219	Neural Networks and Neurofeedback in Parkinson's Disease. NeuroRegulation, 2014, 1, 240-272.	0.7	11
220	Gamma-band modulation in the human amygdala during reaching movements. Neurosurgical Focus, 2020, 49, E4.	1.0	2
221	Beta band oscillations in motor cortex reflect neural population signals that delay movement onset. ELife, 2017, 6, .	2.8	108
222	Analogue closed-loop optogenetic modulation of hippocampal pyramidal cells dissociates gamma frequency and amplitude. ELife, 2018, 7, .	2.8	15
224	Ethics of Functional Neurosurgery. , 2015, , 977-992.		0

#	Article	IF	CITATIONS
227	Toward a Better Understanding of the Cortical Function: Seeing a Full Video. SSRN Electronic Journal, 0, , .	0.4	0
229	Anodal transcranial direct current stimulation with monopolar pulses improves limb use after stroke by enhancing inter-hemispheric coherence. Acta Neurobiologiae Experimentalis, 2019, 79, 291-302.	0.4	2
234	Sensory capability and information integration independently explain the cognitive status of healthy older adults. Scientific Reports, 2020, 10, 22437.	1.6	9
238	No aftereffects of high current density 10ÂHz and 20ÂHz tACS on sensorimotor alpha and beta oscillations. Scientific Reports, 2021, 11, 21416.	1.6	10
240	Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study. Frontiers in Human Neuroscience, 2021, 15, 755748.	1.0	2
241	Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction. Scientific Reports, 2021, 11, 22245.	1.6	9
243	OUP accepted manuscript. Brain, 2022, 145, 11-13.	3.7	0
244	High Gamma and Beta Temporal Interference Stimulation in the Human Motor Cortex Improves Motor Functions. Frontiers in Neuroscience, 2021, 15, 800436.	1.4	26
245	Parkinson's disease: Alterations of motor plasticity and motor learning. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 135-151.	1.0	2
246	The oscillatory effects of rhythmic median nerve stimulation. NeuroImage, 2022, 251, 118990.	2.1	6
247	Differential Effects of 10 and 20 Hz Brain Stimulation in Chronic Stroke: A tACS-fMRI Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 455-464.	2.7	6
248	The Effects of Monophasic Anodal Transcranial Pulsed Current Stimulation on Corticospinal Excitability and Motor Performance in Healthy Young Adults: A Randomized Double-Blinded Sham-Controlled Study. Brain Connectivity, 2022, 12, 260-274.	0.8	3
249	Modulation of Gamma Spectral Amplitude and Connectivity During Reaching Predicts Peak Velocity and Movement Duration. Frontiers in Neuroscience, 2022, 16, 836703.	1.4	5
250	Combined Subthalamic and Nigral Stimulation Modulates Temporal Gait Coordination and Cortical Gait-Network Activity in Parkinson's Disease. Frontiers in Human Neuroscience, 2022, 16, 812954.	1.0	6
252	The Effects of Non-Invasive Brain Stimulation on Quantitative EEG in Patients With Parkinson's Disease: A Systematic Scoping Review. Frontiers in Neurology, 2022, 13, 758452.	1.1	2
253	Gamma-transcranial alternating current stimulation on the cerebellum and supplementary motor area improves bimanual motor skill. Behavioural Brain Research, 2022, 424, 113805.	1.2	8
254	Turning markers into targets – scoping neural circuits for motor neurofeedback training in Parkinson's disease. , 2022, 1, 1-27.		1
255	Frequency-specific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Research, 2022, 1782, 147834.	1.1	18

#	Article	IF	CITATIONS
257	tACS facilitates flickering driving by boosting steady-state visual evoked potentials. Journal of Neural Engineering, 2021, 18, 066042.	1.8	1
258	Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson's disease via the production of glial cell line-derived neurotrophic factor. Brain Stimulation, 2022, 15, 645-653.	0.7	3
266	Connectivity in Large-Scale Resting-State Brain Networks Is Related to Motor Learning: A High-Density EEG Study. Brain Sciences, 2022, 12, 530.	1.1	2
267	Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition. IScience, 2022, 25, 104338.	1.9	12
268	Training the brain to time: the effect of neurofeedback of SMR–Beta1 rhythm on time perception in healthy adults. Experimental Brain Research, 2022, , .	0.7	1
270	Archery Under the (EEG-)Hood: Theta-Lateralization as a Marker for Motor Learning. SSRN Electronic Journal, 0, , .	0.4	0
271	The brain time toolbox, a software library to retune electrophysiology data to brain dynamics. Nature Human Behaviour, 2022, 6, 1430-1439.	6.2	8
272	Clinical neurophysiology of Parkinson's disease and parkinsonism. Clinical Neurophysiology Practice, 2022, 7, 201-227.	0.6	28
273	Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning. Neuroscience, 2022, 499, 23-39.	1.1	1
274	Entrainment of movement-related brain oscillations to improve symptoms in Tourette syndrome. International Review of Movement Disorders, 2022, , 349-361.	0.1	0
276	Spectral specificity of gamma-frequency transcranial alternating current stimulation over motor cortex during sequential movements. Cerebral Cortex, 2023, 33, 5347-5360.	1.6	9
277	Corticomotor Plasticity Underlying Priming Effects of Motor Imagery on Force Performance. Brain Sciences, 2022, 12, 1537.	1.1	7
278	Effects of transcranial alternating current stimulation on motor performance and motor learning for healthy individuals: A systematic review and meta-analysis. Frontiers in Physiology, 0, 13, .	1.3	3
279	Modulation of cortical beta oscillations influences motor vigor: A rhythmic <scp>TMSâ€EEG</scp> study. Human Brain Mapping, 0, , .	1.9	1
281	10 Minutes Frontal 40 Hz tACS—Effects on Working Memory Tested by Luck-Vogel Task. Behavioral Sciences (Basel, Switzerland), 2023, 13, 39.	1.0	2
283	Modulating motor cortical oscillation with coordinated reset multifocal transcranial magnetic stimulation. Journal of Neurophysiology, 0, , .	0.9	0
284	Spatiotemporal organisation of human sensorimotor beta burst activity. ELife, 0, 12, .	2.8	8
285	The Possibility of Increasing the Effectiveness of Correcting Motor Skills and Cognitive Functions Using Noninvasive Brain Stimulation in Humans. Neuroscience and Behavioral Physiology, 2023, 53, 230-241.	0.2	1

#	Article	IF	CITATIONS
286	Changes in sensorimotor cortex oscillatory activity by <scp>orexinâ€A</scp> in the ventrolateral preoptic area of the hypothalamus reflect increased muscle tone. Journal of Neuroscience Research, 2023, 101, 1305-1323.	1.3	0
287	Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiology of Aging, 2023, 129, 72-88.	1.5	3
288	Cross-Frequency Coupling and Intelligent Neuromodulation. Cyborg and Bionic Systems, 2023, 4, .	3.7	10
293	Comparing Transcranial Direct Current Stimulation (tDCS) with Other Non-Invasive Brain Stimulation (NIBS) in the Treatment of Alzheimer's Disease: A Literature Review. Journal of Medical and Biological Engineering, 2023, 43, 362-375.	1.0	2