What's in a name? The Columbia (Paleopangaea/Nuna) s

Gondwana Research 21, 987-993 DOI: 10.1016/j.gr.2011.12.002

Citation Report

#	Article	IF	CITATIONS
1	<i>c</i> . 1.85 Ga HP granulite-facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: evidence from U–Pb zircon dating of mafic granulites. Journal of the Geological Society, 2012, 169, 511-514.	0.9	86
2	Detrital zircon U–Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: Implications on Proterozoic supercontinent history. Precambrian Research, 2012, 206-207, 1-16.	1.2	138
3	Precambrian crustal evolution of the South China Block and its relation to supercontinent history: Constraints from U–Pb ages, Lu–Hf isotopes and REE geochemistry of zircons from sandstones and granodiorite. Precambrian Research, 2012, 208-211, 19-48.	1.2	89
4	Neoproterozoic granulites from the northeastern margin of the Tarim Craton: Petrology, zircon U–Pb ages and implications for the Rodinia assembly. Precambrian Research, 2012, 212-213, 21-33.	1.2	107
5	The 1420Ma IndiavaÃ-Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications for the Columbia supercontinent. Gondwana Research, 2012, 22, 956-973.	3.0	52
6	Did natural fission of 235U in the earth lead to formation of the supercontinent Columbia?. Geoscience Frontiers, 2012, 3, 369-374.	4.3	16
7	Geochronology, geochemistry and petrogenesis of Neoproterozoic basalts from Sugetbrak, northwest Tarim block, China: Implications for the onset of Rodinia supercontinent breakup. Precambrian Research, 2012, 220-221, 158-176.	1.2	64
8	Gondwana collision. Mineralogy and Petrology, 2013, 107, 631-634.	0.4	22
9	Not-so-suspect terrane: Constraints on the crustal evolution of the Rudall Province. Precambrian Research, 2013, 235, 131-149.	1.2	28
10	Evidence for late Paleoproterozoic (ca 1690–1665Ma) high- to ultrahigh-temperature metamorphism in southern Australia: Implications for Proterozoic supercontinent models. Gondwana Research, 2013, 23, 617-640.	3.0	36
11	Using detrital zircon ages and Hf isotopes to identify 1.48–1.45Ga sedimentary basins and fingerprint sources of exotic 1.6–1.5Ga grains in southwestern Laurentia. Precambrian Research, 2013, 231, 409-421.	1.2	45
12	The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 2013, 4, 681-691.	4.3	160
13	Mesoproterozoic intraplate magmatic †barcode' record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Research, 2013, 230, 103-118.	1.2	122
14	Nature of magmatism and sedimentation at a Columbia active margin: Insights from combined U–Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Research, 2013, 23, 1040-1052.	3.0	100
15	Ca. 1.5Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos, 2013, 168-169, 85-98.	0.6	99
16	U–Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos, 2013, 174, 157-174.	0.6	79
17	Reconstructing pre-Pangean supercontinents. Bulletin of the Geological Society of America, 2013, 125, 1735-1751.	1.6	225
18	Speculations on the mechanisms for the formation and breakup of supercontinents. Geoscience Frontiers, 2013, 4, 185-194.	4.3	83

#	Article	IF	CITATIONS
19	The ca. 1380Ma Mashak igneous event of the Southern Urals. Lithos, 2013, 174, 109-124.	0.6	72
20	Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U–Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences, 2013, 78, 54-70.	1.0	121
22	First precise U–Pb baddeleyite ages of 1500Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos, 2013, 174, 144-156.	0.6	80
23	Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the assembly of supercontinent Columbia (Nuna). Lithos, 2013, 174, 196-216.	0.6	84
24	Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent. Lithos, 2013, 174, 125-143.	0.6	87
25	Evolution of Archaean crust in the Dharwar craton: The Nd isotope record. Precambrian Research, 2013, 227, 227-246.	1.2	109
26	Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent. Precambrian Research, 2013, 228, 102-116.	1.2	83
27	Tectonic framework and evolution of the Tarim Block in NW China. Gondwana Research, 2013, 23, 1306-1315.	3.0	295
28	Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: A review. Precambrian Research, 2013, 238, 93-110.	1.2	40
29	Paleoproterozoic collisional orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia supercontinent. Precambrian Research, 2013, 228, 1-19.	1.2	74
30	A review of the â^1⁄41600ÂMa sedimentation, volcanism, and tectono-thermal events in the Singhbhum craton, Eastern India. Geoscience Frontiers, 2013, 4, 277-287.	4.3	38
31	Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos, 2013, 174, 175-195.	0.6	72
32	Paleomagnetism of ca. 2.3Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: Constraints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Research, 2013, 228, 164-176.	1.2	37
33	Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Bulletin of the Geological Society of America, 2013, 125, 1053-1078.	1.6	265
34	Geochemistry and zircon U–Pb–Hf isotopes of the late Paleoproterozoic Jianping diorite–monzonite–syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting. Lithos, 2013, 162-163, 175-194.	0.6	86
35	U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas Drâa Inlier of the Anti-Atlas of Morocco: Newly identified 1380 Ma event in the West African Craton. Lithos, 2013, 174, 85-98.	0.6	82
36	Continental velocity through Precambrian times: The link to magmatism, crustal accretion and episodes of global cooling. Geoscience Frontiers, 2013, 4, 7-36.	4.3	31
37	Late Paleoproterozoic terrane accretion in northwestern Canada and the case for circum-Columbian orogenesis. Precambrian Research, 2013, 224, 512-528.	1.2	61

#	Article	IF	CITATIONS
38	New palaeomagnetic and rock magnetic results on Mesoproterozoic kimberlites from the Eastern Dharwar craton, southern India: Towards constraining India's position in Rodinia. Precambrian Research, 2013, 224, 588-596.	1.2	17
39	Metallogeny during continental outgrowth in the Columbia supercontinent: Isotopic characterization of the Zhaiwa Mo–Cu system in the North China Craton. Ore Geology Reviews, 2013, 51, 43-56.	1.1	66
40	Recycled Detrital Quartz Grains Are Sedimentary Rock Fragments Indicating Unconformities: Examples from the Chhattisgarh Supergroup, Bastar Craton, India. Journal of Sedimentary Research, 2013, 83, 368-376.	0.8	15
42	New data on detrital zircons from the sandstones of the lower Cambrian Brusov Formation (White) Tj ETQq1 1 collision. International Geology Review, 2014, 56, 1945-1963.	0.784314 r 1.1	gBT /Overloc 28
43	Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton. Precambrian Research, 2014, 248, 17-38.	1.2	54
44	Pinning northeastern Australia to northwestern Laurentia in the Mesoproterozoic. Precambrian Research, 2014, 249, 88-99.	1.2	53
45	Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent. Precambrian Research, 2014, 244, 100-122.	1.2	98
46	Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Research, 2014, 25, 1202-1215.	3.0	205
47	Geochronology and geochemistry of meta-mafic dykes in the Quanji Massif, NW China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent. Precambrian Research, 2014, 249, 33-56.	1.2	55
48	Ore deposits in relation to Solid Earth dynamics and surface environment: Preface. Ore Geology Reviews, 2014, 56, 373-375.	1.1	8
49	A detrital zircon U–Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gondwana Research, 2014, 26, 348-364.	3.0	119
50	Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russian Geology and Geophysics, 2014, 55, 120-143.	0.3	78
51	Carbonate platform development in a Paleoproterozoic extensional basin, Vempalle Formation, Cuddapah Basin, India. Journal of Asian Earth Sciences, 2014, 91, 263-279.	1.0	27
52	Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U–Pb geochronology and Nd–Hf isotopes of a granite–charnockite suite in southwestern Zhejiang. Lithos, 2014, 184-187, 259-280.	0.6	59
53	The provenance of northern Kalahari Basin sediments and growth history of the southern Congo Craton reconstructed by U–Pb ages of zircons from recent river sands. International Journal of Earth Sciences, 2014, 103, 579-595.	0.9	17
54	Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore Geology Reviews, 2014, 63, 265-295.	1.1	57
55	Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambrian Research, 2014, 241, 85-103.	1.2	47
56	Metallogeny associated with the Palaeo-Mesoproterozoic Columbia supercontinent cycle: A synthesis of major metallic deposits. Ore Geology Reviews, 2014, 56, 415-422.	1.1	26

	CHATION N	EPORT	
#	Article	IF	CITATIONS
57	Precambrian geodynamics and metallogeny of the Indian shield. Ore Geology Reviews, 2014, 57, 1-28.	1.1	39
58	Towards Columbia: Paleomagnetism of 1980–1960Ma Surumu volcanic rocks, Northern Amazonian Craton. Precambrian Research, 2014, 244, 123-138.	1.2	36
59	Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic–Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: A test of an Australia-Baltica connection within Rodinia. Precambrian Research, 2014, 244, 288-305.	1.2	37
60	Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: Implications for breakup of the Columbia supercontinent. Precambrian Research, 2014, 241, 29-43.	1.2	65
61	Statistical cyclicity of the supercontinent cycle. Geophysical Research Letters, 2014, 41, 2351-2358.	1.5	35
62	The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China. Precambrian Research, 2014, 254, 210-225.	1.2	64
63	Geochemistry and geochronology of the Precambrian high-grade metamorphic complex in the Southern Central Tianshan ophiolitic mélange, NW China. Precambrian Research, 2014, 254, 129-148.	1.2	65
64	Did plate tectonics shutdown in the Palaeoproterozoic? A view from the Siderian geologic record. Gondwana Research, 2014, 26, 803-815.	3.0	50
65	From Rodinia to Gondwana with the â€~SAMBA' model—A distant view from Baltica towards Amazonia and beyond. Precambrian Research, 2014, 244, 226-235.	1.2	133
66	The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U–Pb geochronology and Hf isotope. Journal of Asian Earth Sciences, 2014, 95, 17-32.	1.0	20
67	Was there SAMBA in Columbia? Paleomagnetic evidence from 1790Ma Avanavero mafic sills (northern) Tj ETQq	0 0 0 rgBT	⁻ /Oyerlock 10
68	Reprint of "Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: A review― Precambrian Research, 2014, 244, 5-22.	1.2	27
69	The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence. Gondwana Research, 2014, 25, 797-819.	3.0	130
70	Strange attractors, spiritual interlopers and lonely wanderers: The search for pre-Pangean supercontinents. Geoscience Frontiers, 2014, 5, 155-166.	4.3	126
71	The dilemma of the Jiaodong gold deposits: Are they unique?. Geoscience Frontiers, 2014, 5, 139-153.	4.3	404
72	Proterozoic evolution of Eastern Dharwar and Bastar cratons, India – An overview of the intracratonic basins, craton margins and mobile belts. Journal of Asian Earth Sciences, 2014, 91, 230-251.	1.0	52
73	Late Palaeoproterozoic post-collisional magmatism in the North China Craton: geochemistry, zircon U–Pb geochronology, and Hf isotope of the pyroxenite–gabbro–diorite suite from Xinghe, Inner Mongolia. International Geology Review, 2014, 56, 959-984.	1.1	12
74	Geochemistry and detrital zircon U–Pb and Hf isotopes of the paragneiss suite from the Quanji massif, SE Tarim Craton: Implications for Paleoproterozoic tectonics in NW China. Journal of Asian Earth Sciences, 2014, 95, 33-50.	1.0	45

#	Article	IF	CITATIONS
75	Dynamic sedimentation of Paleoproterozoic continental margin iron formation, Labrador Trough, Canada: Paleoenvironments and sequence stratigraphy. Sedimentary Geology, 2014, 309, 48-65.	1.0	20
76	Petrogenesis of the crater-facies Tokapal kimberlite pipe, IndrÄvati Basin, Central India. Geoscience Frontiers, 2014, 5, 781-790.	4.3	7
77	The supercontinent cycle: A retrospective essay. Gondwana Research, 2014, 25, 4-29.	3.0	549
78	Driving forces of plate motion and continental drift: Revisited. Journal of the Geological Society of Japan, 2015, 121, 429-445.	0.2	2
79	Late Proterozoic Transitions in Climate, Oxygen, and Tectonics, and the Rise of Complex Life. The Paleontological Society Papers, 2015, 21, 47-82.	0.8	20
80	Palaeoproterozoic magmatic–metamorphic history of the Quanji Massif, Northwest China: implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?. International Geology Review, 2015, 57, 1772-1790.	1.1	34
81	The role of sedimentology, oceanography, and alteration on the δ 56 Fe value of the Sokoman Iron Formation, Labrador Trough, Canada. Geochimica Et Cosmochimica Acta, 2015, 164, 205-220.	1.6	23
82	Zircon U-Pb geochronology, Hf isotopic composition, and geological implications of the Neoproterozoic meta-sedimentary rocks in Suizhou-Zaoyang area, the northern Yangtze Block. Science China Earth Sciences, 2015, 58, 1910-1923.	2.3	15
83	Tectonic and sedimentary linkages between the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic, ca. 1.60–1.40 Ga. Lithosphere, 2015, 7, 465-472.	0.6	36
84	Constraints on the Statherian evolution of the intraplate rifting in a Paleo-Mesoproterozoic paleocontinent: New stratigraphic and geochronology record from the eastern São Francisco craton. Gondwana Research, 2015, 28, 668-688.	3.0	59
85	Early to Late Paleoproterozoic magmatism in NE Brazil: The Alto MoxotÃ ³ Terrane and its tectonic implications for the Pre-West Gondwana assembly. Journal of South American Earth Sciences, 2015, 58, 188-209.	0.6	55
86	Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior – Evidence from the Proterozoic Cuddapah basin, India. Journal of Structural Geology, 2015, 77, 62-81.	1.0	15
87	Chapter 3 The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Geological Society Memoir, 2015, 43, 29-54.	0.9	81
88	Sedimentary petrology and detrital zircon U–Pb and Lu–Hf constraints of Mesoproterozoic intracratonic sequences in the Espinha§o Supergroup: Implications for the Archean and Proterozoic evolution of the São Francisco Craton. Precambrian Research, 2015, 266, 227-245.	1.2	39
89	A hypothesis for Proterozoic-Phanerozoic supercontinent cyclicity, with implications for mantle convection, plate tectonics and Earth system evolution. Tectonophysics, 2015, 662, 434-453.	0.9	5
90	Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambrian Research, 2015, 259, 243-261.	1.2	79
91	Paleomagnetism of the Ulkan massif (SE Siberian platform) and the apparent polar wander path for Siberia in late Paleoproterozoic–early Mesoproterozoic times. Precambrian Research, 2015, 259, 58-77.	1.2	29
92	Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85Ga Michigamme Formation, Michigan, USA. Sedimentary Geology, 2015, 319, 24-39.	1.0	56

ARTICLE IF CITATIONS # An Example of Synorogenic Sediment-Hosted Copper Mineralization: Geologic and Geochronologic Evidence from the Paleoproterozoic Nussir Deposit, Finnmark, Arctic Norway. Economic Geology, 93 21 1.8 2015, 110, 677-689. The structural, metamorphic and magmatic evolution of Mesoproterozoic orogens. Precambrian 94 1.2 Research, 2015, 265, 1-9. Correlations between the North China Craton and the Indian Shield: Constraints from regional 95 4.3 9 metallogeny. Geoscience Frontiers, 2015, 6, 861-873. Paleoproterozoic (ca. 2.1–2.0Ga) arc magmatism in the Fuping Complex: Implications for the tectonic 96 1.2 evolution of the Trans-North China Orogen. Precambrian Research, 2015, 268, 16-32. The Precambrian tectonic evolution of the western Jiangnan Orogen and western Cathaysia Block: 97 Evidence from detrital zircon age spectra and geochemistry of clastic rocks. Precambrian Research, 1.2 35 2015, 268, 33-60. Orosirian (ca. 1.96ÂGa) mafic crust of the northwestern SÃŁo Francisco Craton margin: Petrography, geochemistry and geochronology of amphibolites from the Rio Preto fold belt basement, NE Brazil. Journal of South American Earth Sciences, 2015, 59, 95-111. Paleoproterozoic crustal growth in the North China Craton: Evidence from the $L\tilde{A}^{1/4}$ liang Complex. 99 1.2 125 Precambrian Research, 2015, 263, 197-231. Geochemistry and petrogenesis of Paleo–Mesoproterozoic mafic dyke swarms from northern Bastar craton, central India: Geodynamic implications in reference to Columbia supercontinent. Gondwana 3.0 Research, 2015, 28, 1061-1078. Charnockite magmatism during a transitional phase: Implications for late Paleoproterozoic ridge 101 1.2 59 subduction in the North China Craton. Precambrian Research, 2015, 261, 188-216. Chapter 4 Lithostratigraphic, geochronological and depositional framework of the Precambrian basins of the Aravalli Mountains and adjoining areas, Rajasthan, India. Geological Society Memoir, 2015, 43, 55-65. Zircon U–Pb–Hf isotope systematics and geochemistry of Helong granite-greenstone belt in Southern Jilin Province, China: Implications for Neoarchean crustal evolution of the northeastern margin of 103 1.2 68 North China Craton. Precambrian Research, 2015, 271, 254-277. Role of crustal contribution in the early stage of the Damara Orogen, Namibia: New constraints from combined U–Pb and Lu–Hf isotopes from the Goas Magmatic Complex. Gondwana Research, 2015, 28, 3.0 961-986. Near-orthogonal deformation successions in the poly-deformed Paleoproterozoic Martimo belt: 105 Implications for the tectonic evolution of Northern Fennoscandia. Precambrian Research, 2015, 270, 1.2 30 22-38. Neoarchean intra-oceanic arc system in the Western Liaoning Province: Implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth-Science 162 Reviews, 2015, 150, 329-364. Continental growth and reworking on the edge of the Columbia and Rodinia supercontinents; 107 1.86–0.9ÂĞa accretionary orogeny in southwest Fennoscandia. International Geology Review, 2015, 57, 80 1.1 1582-1606. 1.23 Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 2015, 27, 1407-1418. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids. 109 3.079 Gondwana Research, 2015, 27, 228-243. Paleomagnetic study on mid-Paleoproterozoic rocks from the Rio de la Plata craton: Implications for 19 Atlantica. Gondwana Research, 2015, 27, 1534-1549.

#	Article	IF	CITATIONS
111	The Pre-Mesozoic crustal evolution of the Cathaysia Block, South China: Insights from geological investigation, zircon U–Pb geochronology, Hf isotope and REE geochemistry from the Wugongshan complex. Gondwana Research, 2015, 28, 225-245.	3.0	23
112	U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: New clues for the early crustal evolution of southeastern South China. Gondwana Research, 2015, 27, 1586-1598.	3.0	39
113	Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U–Pb–Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 2015, 27, 300-325.	3.0	73
114	Age constraints on crystal-tuff from the Espinhaço Supergroup — Insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo–São Francisco Craton. Gondwana Research, 2015, 27, 363-376.	3.0	95
115	Supercontinent integrity between 0.8 and 0.6 Ga: the nemesis of Rodinia?. Geological Society Special Publication, 2015, 389, 69-81.	0.8	3
116	Paleomagnetism of the Amazonian Craton and its role in paleocontinents. Brazilian Journal of Geology, 2016, 46, 275-299.	0.3	45
117	Early Mesoproterozoic (1.6–1.5ÂGa) granulite facies events in the Ongole domain: geodynamic significance and global correlation. Journal of Metamorphic Geology, 2016, 34, 765-784.	1.6	15
118	Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China. Journal of Earth Science (Wuhan, China), 2016, 27, 529-544.	1.1	13
119	Crustal evolution and metallogeny in relation to mantle dynamics: A perspective from P-wave tomography of the South China Block. Lithos, 2016, 263, 3-14.	0.6	23
120	A Paleoproterozoic (Orosirian) Ophiolitic Mélange, North Yangzte Craton. Acta Geologica Sinica, 2016, 90, 215-216.	0.8	7
121	Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity. Geology of Ore Deposits, 2016, 58, 263-283.	0.2	15
122	Mesoproterozoic continental breakup in NW China: Evidence from gray gneisses from the North Wulan terrane. Precambrian Research, 2016, 281, 521-536.	1.2	37
123	Precambrian. , 2016, , 19-28.		1
124	Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambrian Research, 2016, 282, 1-20.	1.2	28
125	Paleoproterozoic meta-carbonates from the central segment of the Trans-North China Orogen: Zircon U–Pb geochronology, geochemistry, and carbon and oxygen isotopes. Precambrian Research, 2016, 284, 14-29.	1.2	42
126	Formation of a future supercontinent through plate motion–driven flow coupled with mantle downwelling flow. Geology, 2016, 44, 755-758.	2.0	24
127	The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China. Gondwana Research, 2016, 39, 14-40.	3.0	48
128	History of the West African Neoproterozoic Ocean: Key to the geotectonic history of circum-Atlantic Peri-Gondwana (Adrar Souttouf Massif, Moroccan Sahara). Gondwana Research, 2016, 29, 220-233.	3.0	43

#	Article	IF	CITATIONS
129	Palaeomagnetism and U–Pb geochronology of <i>c.</i> 1570 Ma intrusives from Ãland archipelago, SW Finland – implications for Nuna. Geological Society Special Publication, 2016, 424, 95-118.	0.8	13
130	U-Pb baddeleyite dating of the Proterozoic Pará de Minas dyke swarm in the São Francisco craton (Brazil) – implications for tectonic correlation with the Siberian, Congo and North China cratons. Gff, 2016, 138, 219-240.	0.4	53
131	Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U–Pb ages and sedimentologic and structural evidence. Tectonophysics, 2016, 668-669, 65-81.	0.9	69
132	New U–Pb baddeleyite age, and AMS and paleomagnetic data for dolerites in the Lake Onega region belonging to the 1.98–1.95ÂGa regional Pechenga–Onega Large Igneous Province. Gff, 2016, 138, 54-78.	0.4	19
133	Four-dimensional context of Earth's supercontinents. Geological Society Special Publication, 2016, 424, 1-14.	0.8	58
134	U–Pb zircon geochronology and geochemistry of Paleoproterozoic magmatic suite from East Sarmatian Orogen: Tectonic implications on Columbia supercontinent. Precambrian Research, 2016, 273, 165-184.	1.2	21
135	Reassessment of AguapeÃ-(Salto do Céu) paleomagnetic pole, Amazonian Craton and implications for Proterozoic supercontinents. Precambrian Research, 2016, 272, 1-17.	1.2	17
136	Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India. Mineralogy and Petrology, 2016, 110, 269-293.	0.4	13
137	Paleoproterozoic closure of an Australia–Laurentia seaway revealed by megaclasts of an obducted volcanic arc in Yukon, Canada. Gondwana Research, 2016, 33, 115-133.	3.0	23
138	Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 2016, 32, 105-121.	3.0	95
139	Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geological Society Special Publication, 2016, 424, 83-94.	0.8	101
140	The Australo-Antarctic Columbia to Gondwana transition. Gondwana Research, 2016, 29, 136-152.	3.0	93
141	Petrogenesis of Mesoproterozoic lamproite dykes from the Garledinne (Banganapalle) cluster, south-western Cuddapah Basin, southern India. Mineralogy and Petrology, 2016, 110, 247-268.	0.4	14
142	Fossil oceanic subduction zone beneath the western margin of the Trans-North China Orogen: Magnetotelluric evidence from the Lüliang Complex. Precambrian Research, 2017, 303, 54-74.	1.2	11
143	Petrology, phase equilibria modelling and zircon U–Pb geochronology of Paleoproterozoic mafic granulites from the Fuping Complex, North China Craton. Journal of Metamorphic Geology, 2017, 35, 517-540.	1.6	62
144	A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Research, 2017, 293, 13-38.	1.2	74
145	Detrital zircon U–Pb ages and whole-rock geochemistry of the Neoproterozoic Paulistana and Santa Filomena complexes, Borborema Province, northeastern Brazil: implications for source area composition, provenance, and tectonic setting. International Geology Review, 2017, 59, 1861-1884.	1.1	13
146	U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences. Precambrian Research, 2017, 293, 91-111.	1.2	56

#	Article	IF	Citations
147	The Columbia supercontinent revisited. Gondwana Research, 2017, 50, 67-83.	3.0	212
148	Evidence for transition from a continental forearc to a collisional pro-foreland basin in the eastern Trans-Hudson Orogen: Detrital zircon provenance analysis in the Labrador Trough, Canada. Precambrian Research, 2017, 296, 181-194.	1.2	16
149	Mesoproterozoic (â^¼1.4 Ga) A-type gneissic granites in the Xilinhot terrane, NE China: First evidence for the break-up of Columbia in the eastern CAOB. Precambrian Research, 2017, 296, 20-38.	1.2	53
150	São Francisco Craton, Eastern Brazil. Regional Geology Reviews, 2017, , .	1.2	30
151	India and Antarctica in the Precambrian: a brief analysis. Geological Society Special Publication, 2017, 457, 339-351.	0.8	13
152	Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton. Gondwana Research, 2017, 49, 106-129.	3.0	41
153	A Thesis on Life, the Universe and Almost Everything. Astronomers' Universe, 2017, , 385-442.	0.0	0
154	The São Francisco Basin. Regional Geology Reviews, 2017, , 117-143.	1.2	9
155	Paleo-Mesoproterozoic arc-accretion along the southwestern margin of the Amazonian craton: The Juruena accretionary orogen and possible implications for Columbia supercontinent. Journal of South American Earth Sciences, 2017, 73, 223-247.	0.6	42
156	The origin of the <i>c</i> . 1.7 Ga gabbroic intrusion in the Hekou area, SW China: constraints from SIMS U–Pb zircon geochronology and elemental and Nd isotopic geochemistry. Geological Magazine, 2017, 154, 286-304.	0.9	20
158	The Gondwana Correlations. , 2017, , 351-395.		0
159	An introduction to the crustal evolution of India and Antarctica: the supercontinent connection. Geological Society Special Publication, 2017, 457, 1-6.	0.8	9
160	The Laurentia – West Greenland connection at 1.9 Ga: New insights from the Rinkian fold belt. Gondwana Research, 2017, 51, 289-309.	3.0	13
161	Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia. Precambrian Research, 2017, 299, 151-176.	1.2	50
162	Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China. Journal of Asian Earth Sciences, 2017, 147, 95-115.	1.0	17
163	The Grenvillian Namaqua fold belt adjacent to the western Kaapvaal Craton: 2. Archaean Craton and supercontinent connections. Precambrian Research, 2017, 300, 289-314.	1.2	11
164	Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, 2017, 277, 356-375.	0.6	51
165	Timing of magmatism and migmatization in the 2.0–1.8ÂGa accretionary Svecokarelian orogen, south-central Sweden. International Journal of Earth Sciences, 2017, 106, 783-810.	0.9	11

#	Article	IF	CITATIONS
166	Gravity and magnetic modelling of layered mafic–ultramafic intrusions in large igneous province plume centre regions: case studies from the 1.27 Ga Mackenzie, 1.38 Ga Kunene–Kibaran, 0.06 Ga Deccan, and 0.13–0.08 Ga High Arctic events. Canadian Journal of Earth Sciences, 2017, 54, 290-310.	0.6	28
167	Mesoproterozoic geomagnetic reversal asymmetry in light of new paleomagnetic and geochronological data for the Häne dyke swarm, Finland: Implications for the Nuna supercontinent. Precambrian Research, 2017, 288, 1-22.	1.2	22
168	Deciphering Sedimentary Provenance and Timing of Sedimentation From a Suite of Metapelites From the Chotanagpur Granite Gneissic Complex, India. , 2017, , 453-486.		14
169	Coupled U–Pb dating and Hf isotopic analysis of detrital zircons from Bayan Obo Group in Inner Mongolia: Constraints on the evolution of the Bayan Obo rift belt. Geological Journal, 2018, 53, 2649-2664.	0.6	30
170	Zircon geochronology of deformed alkaline rocks along the Eastern Ghats Belt margin: India–Antarctica connection and the Enderbia continent. Precambrian Research, 2018, 310, 407-424.	1.2	37
171	A 1.88†Ga giant radiating mafic dyke swarm across southern India and Western Australia. Precambrian Research, 2018, 308, 58-74.	1.2	45
172	Mesoproterozoic magmatic suites from the central-western Korean Peninsula: Imprints of Columbia disruption in East Asia. Precambrian Research, 2018, 306, 155-173.	1.2	24
173	Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton: an overview from the central segment of the Trans-North China Orogen. Earth-Science Reviews, 2018, 182, 1-27.	4.0	148
174	Palaeoâ€Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, northeast Tarim Craton: geochronology, geochemistry and implications for evolution of Columbia. Geological Journal, 2018, 53, 120-138.	0.6	17
175	Secular change in lifetime of granitic crust and the continental growth: A new view from detrital zircon ages of sandstones. Geoscience Frontiers, 2018, 9, 1099-1115.	4.3	18
176	Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research, 2018, 309, 271-289.	1.2	56
177	The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation. Geological Magazine, 2018, 155, 45-58.	0.9	27
178	Geochemical and Srâ€Nd isotopic records of Paleoproterozoic metavolcanics and mafic intrusive rocks from the West African Craton: Evidence for petrogenesis and tectonic setting. Geological Journal, 2018, 53, 725-741.	0.6	5
179	Paleoproterozoic Nb–enriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent. Geoscience Frontiers, 2018, 9, 577-590.	4.3	21
180	Voyage of the Indian subcontinent since Pangea breakup and driving force of supercontinent cycles: Insights on dynamics from numerical modeling. Geoscience Frontiers, 2018, 9, 1279-1292.	4.3	22
181	Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt. International Journal of Earth Sciences, 2018, 107, 729-755.	0.9	16
182	A sedimentary overlap assemblage links Australia to northwestern Laurentia at 1.6†Ga. Precambrian Research, 2018, 305, 19-39.	1.2	21
183	High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P–T–t evolution and tectonic implications. Journal of Asian Earth Sciences, 2018, 154, 255-270.	1.0	34

#	Article	IF	CITATIONS
184	Pattern of Continental Growth and Its Secular Change. Journal of Geography (Chigaku Zasshi), 2018, 127, 705-721.	0.1	3
186	Dynamics of three-layer convection in a two-dimensional spherical domain with a growing innermost layer: Implications for whole solid-earth dynamics. Physics of Fluids, 2018, 30, 096601.	1.6	4
187	A 1.9â€Ga Mélange Along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 2018, 37, 3610-3646.	1.3	49
188	The Anti-Atlas Pan-African Belt (Morocco): Overview and pending questions. Comptes Rendus - Geoscience, 2018, 350, 279-288.	0.4	54
189	Reassembly of the Dharwar and Bastar cratons at ca. 1 Ga: Evidence from multiple tectonothermal events along the Karimnagar granulite belt and Khammam schist belt, southern India. Journal of Earth System Science, 2018, 127, 1.	0.6	9
190	Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian–Cambrian Transition Levels) and the Tectonic Nature of Teya–Chapa Depression (Northeastern Yenisei Ridge). Doklady Earth Sciences, 2018, 479, 286-289.	0.2	6
191	Crustal evolution in the South Tianshan Terrane: Constraints from detrital zircon geochronology and implications for continental growth in the Central Asian Orogenic Belt. Geological Journal, 2019, 54, 1379-1400.	0.6	12
192	Supercontinents: myths, mysteries, and milestones. Geological Society Special Publication, 2019, 470, 39-64.	0.8	34
193	Insights into orogenic processes from drab schists and minor intrusions: Southern São Francisco Craton, Brazil. Lithos, 2019, 346-347, 105146.	0.6	4
194	Why Study the Geomagnetic Field?. , 2019, , 7-29.		0
195	Influence of convection regimes of two-layer thermal convection with large viscosity contrast on the thermal and mechanical states at the interface of the two layers: Implications for dynamics in the present-day and past Earth. Physics of Fluids, 2019, 31, 106603.	1.6	4
196	Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China. Earth-Science Reviews, 2019, 198, 102946.	4.0	69
197	Paleomagnetic confirmation of the "unorthodox―configuration of Atlantica between 2.1 and 2.0†Ga. Precambrian Research, 2019, 334, 105447.	1.2	16
198	Pressure-temperature-time path of Paleoproterozoic khondalites from Claudio shear zone (southern) Tj ETQq1 1 American Earth Sciences, 2019, 94, 102250.	0.784314 0.6	rgBT /Over 1
199	The southern São Francisco Craton puzzle: Insights from aerogeophysical and geological data. Journal of South American Earth Sciences, 2019, 94, 102203.	0.6	5
200	Reappraisal of the Sumé Complex: geochemistry and geochronology of metaigneous rocks and implications for Paleoproteorozoic subduction-accretion events in the Borborema Province, NE Brazil. Brazilian Journal of Geology, 2019, 49, .	0.3	6
201	The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents. Earth-Science Reviews, 2019, 196, 102860.	4.0	16
202	The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles. Earth-Science Reviews, 2019, 193, 260-298.	4.0	32

#	Article	IF	CITATIONS
203	Statherian-Calymmian (ca. 1.6â€ ⁻ Ga) magmatism in the Alto Moxotó Terrane, Borborema Province, northeast Brazil: Implications for within-plate and coeval collisional tectonics in West Gondwana. Journal of South American Earth Sciences, 2019, 91, 116-130.	0.6	20
204	On mantle drag force for the formation of a next supercontinent as estimated from a numerical simulation model of global mantle convection. Terra Nova, 2019, 31, 135-149.	0.9	7
205	The current status of orogenesis in the Central Indian Tectonic Zone: A view from its Southern Margin. Geological Journal, 2019, 54, 2912-2934.	0.6	68
206	Uâ€Pb Ages and Hf Isotope of Zircons from a Carbonatite Dyke in the Bayan Obo Feâ€REE Deposit in Inner Mongolia: its Geological Significance. Acta Geologica Sinica, 2019, 93, 1783-1796.	0.8	2
207	Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian Shield Mapped Using Google Earthâ,,¢ Images and ArcGISâ,,¢, and Links with Large Igneous Provinces. Springer Geology, 2019, , 335-390.	0.2	20
208	Petrography, geochemistry, and Nd isotope systematics of metaconglomerates and matrix-rich metasedimentary rocks: implications for the provenance and tectonic setting of the Labrador Trough, Canada. Canadian Journal of Earth Sciences, 2019, 56, 672-687.	0.6	5
209	Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 2019, 173, 1-14.	1.6	70
210	A New Synthetic Geological Map of the Tuareg Shield: An Overview of Its Global Structure and Geological Evolution. Springer Geology, 2019, , 83-107.	0.2	24
211	Ca. 2.0†Ga mafic dikes in the Kongling Complex, South China: Implications for the reconstruction of Columbia. Journal of Asian Earth Sciences, 2019, 169, 323-335.	1.0	21
212	The ~1.85†Ga carbonatite in north China and its implications on the evolution of the Columbia supercontinent. Gondwana Research, 2019, 65, 125-141.	3.0	11
213	Evolutionary exobiology: towards the qualitative assessment of biological potential on exoplanets. International Journal of Astrobiology, 2019, 18, 204-208.	0.9	8
214	Plate tectonic modelling: review and perspectives. Geological Magazine, 2019, 156, 208-241.	0.9	24
215	Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Expanding the Dharwar craton southward. Tectonophysics, 2019, 760, 4-22.	0.9	31
216	U-Pb baddeleyite ages of key dyke swarms in the Amazonian Craton (CarajÃjs/Rio Maria and Rio Apa) Tj ETQq1 1 329, 138-155.	0.784314 1.2	rgBT /Oved 41
217	Supercontinents and the case for Pannotia. Geological Society Special Publication, 2019, 470, 65-86.	0.8	43
218	Large geographic and temporal extensions of the RÃo de la Plata Craton, South America, and its metacratonic eastern margin. International Geology Review, 2019, 61, 56-85.	1.1	50
219	Cratonic basins and the Wilson cycle: a perspective from the ParnaÃba Basin, Brazil. Geological Society Special Publication, 2019, 470, 463-477.	0.8	8
220	Petrology and geochemistry of TTG and K-rich Paleoproterozoic Birimian granitoids of the West African Craton (Ghana): Petrogenesis and tectonic implications. Precambrian Research, 2020, 336, 105492.	1.2	7

#	Article	IF	CITATIONS
221	The long life of SAMBA connection in Columbia: A paleomagnetic study of the 1535ÂMa MucajaÃ-Complex, northern Amazonian Craton, Brazil. Gondwana Research, 2020, 80, 285-302.	3.0	12
222	Age, provenance and tectonic setting of metasedimentary sequences of the Gurupi Belt and São LuÃs cratonic fragment, northern Brazil: Broadening the understanding of the Proterozoic-Early Cambrian tectonic evolution. Precambrian Research, 2020, 351, 105950.	1.2	7
223	Pannotia's mantle signature: the quest for supercontinent identification. Geological Society Special Publication, 2021, 503, 41-61.	0.8	8
224	Pannotia: in defence of its existence and geodynamic significance. Geological Society Special Publication, 2021, 503, 13-39.	0.8	34
225	Pannotia under prosecution. Geological Society Special Publication, 2021, 503, 63-81.	0.8	12
226	Baltica (East European Craton) and Atlantica (Amazonian and West African Cratons) in the Proterozoic: The pre-Columbia connection. Earth-Science Reviews, 2020, 210, 103378.	4.0	13
227	Towards resolving the â€~jigsaw puzzle' and age-fossil inconsistency within East Gondwana. Precambrian Research, 2020, 345, 105775.	1.2	36
228	Origin and tectonic significance of the metavolcanic rocks and mafic enclaves from the Palaeoproterozoic Birimian Terrane, SE West African Craton, Ghana. Geological Magazine, 2020, 157, 1349-1366.	0.9	2
229	The ~1.97ÂGa dioritic block in the Hong'an Terrane, central China: syn-collisional alkaline magmatism at the northern margin of the Yangtze Block. Precambrian Research, 2020, 342, 105713.	1.2	10
230	Two phases of Paleoproterozoic orogenesis in the Tarim Craton: Implications for Columbia assembly. Gondwana Research, 2020, 83, 201-216.	3.0	19
231	Metallogenic Setting and Evolution of the Pados-Tundra Cr-Bearing Ultramafic Complex, Kola Peninsula: Evidence from Sm–Nd and U–Pb Isotopes. Minerals (Basel, Switzerland), 2020, 10, 186.	0.8	9
232	Ferrodoleritic dykes in the Tarim Craton signal Neoproterozoic breakup of Rodinia supercontinent. Journal of Asian Earth Sciences, 2020, 200, 104476.	1.0	7
233	Chapter 2 Regional context and lithotectonic framework of the 2.0–1.8 Ga Svecokarelian orogen, eastern Sweden. Geological Society Memoir, 2020, 50, 19-26.	0.9	7
234	The Rio Apa Terrane reviewed: U Pb zircon geochronology and provenance studies provide paleotectonic links with a growing Proterozoic Amazonia. Earth-Science Reviews, 2020, 202, 103089.	4.0	17
235	The Vaasa Migmatitic Complex (Svecofennian Orogen, Finland): Buildup of a LPâ€HT Dome During Nuna Assembly. Tectonics, 2020, 39, e2019TC005583.	1.3	9
236	Petrogenesis of mafic dykes from the western Bastar craton of Central India and their relation to outgrowth of Columbia supercontinent. Mineralogy and Petrology, 2020, 114, 243-262.	0.4	4
237	lce, Fire, or Fizzle: The Climate Footprint of Earth's Supercontinental Cycles. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008464.	1.0	14
238	U-Pb and Lu-Hf isotope systematics on detrital zircon from the southern São Francisco Craton's Neoproterozoic passive margin: Tectonic implications. Journal of South American Earth Sciences, 2020, 100, 102539.	0.6	20

#	Article	IF	CITATIONS
239	Geochronology and geochemistry of granodiorite at Jinwozi Au deposit: Tectonomagmatic evolution for Palaeozoic Beishan Orogen (Central Asian Orogenic Belt) in <scp>NW</scp> China. Geological Journal, 2020, 55, 6779-6798.	0.6	2
240	Continental Drift with Deep Cratonic Roots. Annual Review of Earth and Planetary Sciences, 2021, 49, 117-139.	4.6	9
241	The role of megacontinents in the supercontinent cycle. Geology, 2021, 49, 402-406.	2.0	64
242	New constraints for paleogeographic reconstructions at ca. 1.88ÂGa from geochronology and paleomagnetism of the CarajA¡s dyke swarm (eastern Amazonia). Precambrian Research, 2021, 353, 106039.	1.2	12
243	Terrane Accretion Within the Arabian-Nubian Shield. Regional Geology Reviews, 2021, , 221-266.	1.2	1
244	Structural Set Ups. Springer Mineralogy, 2021, , 107-250.	0.4	0
245	A Paleoproterozoic complex in the Hong'an orogenic belt, central China: New evidence for a Paleoproterozoic collisional orogenic belt in the Yangtze Block. Acta Petrologica Sinica, 2021, 37, 2123-2152.	0.3	2
246	Mesoproterozoic ⁴⁰ Ar– ³⁹ Ar ages of some lamproites from the Cuddapah Basin and Eastern Dharwar Craton, southern India: implications for diamond provenance of the Banganapalle Conglomerates, age of the Kurnool Group and Columbia tectonics. Geological Society Special Publication. 2022. 513. 157-178.	0.8	6
247	Crustal evolution of the Paleoproterozoic Ubendian Belt (SW Tanzania) western margin: A Central African Shield amalgamation tale. Gondwana Research, 2021, 91, 286-306.	3.0	20
248	Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean. Earth-Science Reviews, 2021, 215, 103554.	4.0	10
249	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	12.2	102
250	Mineralization proximal to the final Nuna suture in northeastern Australia. Gondwana Research, 2021, 92, 54-71.	3.0	7
251	Comparative geological evolution of the Borborema Province and São Francisco Craton (eastern) Tj ETQqO 0 0 paleogeographic reconstructions. Precambrian Research, 2021, 355, 106119.	rgBT /Ove 1.2	rlock 10 Tf 50 13
252	888–444 Ma Global Plate Tectonic Reconstruction With Emphasis on the Formation of Gondwana. Frontiers in Earth Science, 2021, 9, .	0.8	9
253	Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Research, 2021, 357, 106153.	1.2	9
254	Late Paleoproterozoic mafic magmatism and the Kalahari craton during Columbia assembly. Geology, 2021, 49, 1375-1380.	2.0	4
255	Existence of the Dharwar–Bastar–Singhbhum (DHABASI) megacraton since 3.35 Ga: constraints from the Precambrian large igneous province record. Geological Society Special Publication, 2022, 518, 173-196.	0.8	10
256	Petrogenesis and tectonic implications of the neoproterozoic mafic-ultramafic rocks in the western Jiangnan Orogen: Insights from in situ analysis of clinopyroxenes. Lithos, 2021, 392-393, 106156.	0.6	1

#	Article	IF	CITATIONS
257	Large igneous provinces of the Amazonian Craton and their metallogenic potential in Proterozoic times. Geological Society Special Publication, 2022, 518, 493-529.	0.8	8
258	Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. Journal of Earth Science (Wuhan, China), 2021, 32, 1332-1358.	1.1	31
259	The age of the lower crust of the central part of the Columbia supercontinent: A review of zircon data. Gondwana Research, 2021, 96, 37-55.	3.0	5
260	LIPs, orogens and supercontinents: The ongoing saga. Gondwana Research, 2021, 96, 105-121.	3.0	36
261	Early Cretaceous Greater Kerguelen Large Igneous Province and its plumbing systems: A contemplation on concurrent magmatic records of the eastern Indian Shield and adjoining regions. Geological Journal, 2022, 57, 681-693.	0.6	10
262	Detrital zircon U-Pb-Hf isotopes from the Yanliao intracontinental rift sediments: Implications for multiple phases of Neoarchean-Paleoproterozoic juvenile crustal growth in the North China Craton. Gondwana Research, 2021, 96, 76-88.	3.0	2
263	Origin and Precambrian paleogeography of the North Wulan terrane, northwestern China: A coherent model of the Tarim–Qilian–Quanji continent during the Columbia–Rodinia supercontinent cycle. Gondwana Research, 2022, 101, 132-155.	3.0	11
264	Structural and Tectonic Framework of Neoproterozoic Basement of Egypt: From Gneiss Domes to Transpression Belts. Regional Geology Reviews, 2020, , 81-129.	1.2	19
265	Tracking India Within Precambrian Supercontinent Cycles. Springer Geology, 2020, , 105-143.	0.2	3
266	The Egyptian Nubian Shield Within the Frame of the Arabian–Nubian Shield. Regional Geology Reviews, 2021, , 15-51.	1.2	8
267	Geodynamic Context of Metallogeny. Springer Geology, 2017, , 293-347.	0.2	1
268	Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, 2017, 172, 87-106.	4.0	138
269	Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 2020, 207, 103172.	4.0	171
270	Fennoscandia before Nuna/Columbia: Paleomagnetism of 1.98–1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications. Precambrian Research, 2017, 292, 1-12.	1.2	20
271	On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 2019, 35, 2299-2324.	0.3	21
272	Paleo-Mesoproterozoic Nuna supercycle. , 2021, , 499-548.		12
273	Precambrian supercontinents and supercycles—an overview. , 2021, , 1-50.		5
274	The Precambrian drift history and paleogeography of RÃo de la Plata craton. , 2021, , 243-261.		4

#	Article	IF	CITATIONS
275	The Precambrian paleogeography of Laurentia. , 2021, , 109-153.		15
276	The Precambrian drift history and paleogeography of the Kalahari Craton. , 2021, , 377-422.		4
277	Phanerozoic paleogeography and Pangea. , 2021, , 577-603.		2
278	The Precambrian drift history and paleogeography of Amazonia. , 2021, , 207-241.		10
279	The Precambrian drift history and paleogeography of India. , 2021, , 305-332.		8
280	The Precambrian drift history and paleogeography of Baltica. , 2021, , 155-205.		7
281	LinkingÂâ^¼1.4–0.8ÂGa volcano-sedimentary records in eastern Central Asian orogenic belt with southern Laurentia in supercontinent cycles. Gondwana Research, 2022, 105, 416-431.	3.0	11
283	Mineral Evolution <subtitle>Episodic Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and Biosphere</subtitle> . , 2014, , .		9
284	The Evolution of Modern Continents. , 2018, , 83-154.		0
285	Geochemistry of Late Palaeoproterozoic (1.69 Ga) Aâ€type Mayong granitoids in Shillong Plateau, northâ€east India: Implication for anorogenic magmatism during Columbia Supercontinent cycle. Geological Journal, 2022, 57, 662-680.	0.6	5
286	Petrogenesis of the Chaihulanzi Gneiss and its Tectonic Implications for the North China Craton. Acta Geologica Sinica, 2021, 95, 2016-2032.	0.8	1
287	Ca . 1.7 Ga Magmatism on Southwestern Margin of the Yangtze Block: Response to the Breakup of Columbia. Acta Geologica Sinica, 2020, 94, 2031.	0.8	2
288	Detrital zircon U–Pb and Hf signatures of Paleo-Mesoproterozoic strata in the Priest River region, northwestern USA: A record of Laurentia assembly and Nuna tenure. Precambrian Research, 2021, 367, 106445.	1.2	8
289	Precambrian metamorphic basement of the southern Lhasa terrane, Tibet. Precambrian Research, 2022, 368, 106478.	1.2	8
290	Early Pennsylvanian sediment routing to the Ouachita Basin (southeastern United States) and barriers to transcontinental sediment transport sourced from the Appalachian orogen based on detrital zircon U-Pb and Hf analysis. , 2022, 18, 350-369.		5
291	Influence of continental rifting on sedimentation and its provenance and geodynamic implications: An example from late Paleoproterozoic Chandil Formation, eastern India. Earth-Science Reviews, 2022, 225, 103868.	4.0	2
292	Construction of the Continental Asia in Phanerozoic: A Review. Acta Geologica Sinica, 2022, 96, 26-51.	0.8	21
294	The provenance of Danubian loess. Earth-Science Reviews, 2022, 226, 103920.	4.0	17

ARTICLE IF CITATIONS Episodic Proterozoic magmatism in Northwest Bangladesh: Implications for Columbia/Nuna and 295 0.6 2 Rodinia reconstructions. Lithos, 2022, 412-413, 106586. A2-Type Granites from the Bastar Craton, South-Central India, and Their Implication in Archéan-Paleoproterozoic Tectonics in Indian Peninsula. Lithosphere, 2022, 2022, . Three-dimensional crustal and upper-mantle resistivity structure of Alberta, Canada: implications for 298 1.0 2 Precambrian tectonics. Geophysical Journal International, 2022, 230, 1679-1698. A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in 299 3.0 the Songnen Massif and Duobaoshan terrane. Gondwana Research, 2022, 107, 325-338. Spatioâ€"temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model 300 1.2 10 for final Nuna assembly. Precambrian Research, 2022, 372, 106602. Archean to Paleoproterozoic crustal evolution of the southern Yangtze Block (South China): U–Pb age and Hf-isotope of zircon xenocrysts from the Paleozoic diamondiferous kimberlites. Précambrian Research, 2022, 374, 106651. 1.2 Late Paleoproterozoic orogenic evolution of the northern Tarim Craton, NW China: Insights from phase equilibrium modeling and zircon U-Pb geochronology of metapelitic granulite in the Kuluketage area. Gondwana Research, 2022, 106, 351-366. 302 3.0 9 Geochemistry of Proterozoic and Cambrian granites from Meghalaya Plateau, northâ€east India: Implication on petrogenesis of postâ€collisional, transitional from lâ€type to Aâ€type felsic magmatism. Geological Journal, 2022, 57, 1476-1510. 0.6 Lithospheric plate tectonics and mass extinctions of biological species. IOP Conference Series: Earth 304 0.2 2 and Environmental Science, 2021, 946, 012009. Revisiting mafic dykes of Bornholm – Implications for Baltica in supercontinent Nuna at 1.3ÂGa. 1.2 Precambrian Research, 2021, 367, 106444. Geological history and supercontinent cycles of the Arctic. Bulletin of the Geological Society of 306 1.6 1 America, 0, , . Circa 1.50–1.45 Ga metasedimentary rocks in southwestern Laurentia provide distinctive records of Mesoproterozoic regional orogenesis and craton interactions., 2023, 137-149. Provenance and depositional setting of the Buem structural unit (Ghana): Implications for the paleogeographic reconstruction of the West African and Amazonian cratons in Rodinia. Condwana 308 3.0 1 Research, 2022, 109, 183-204. A review of the Precambrian tectonic evolution of the Aravalli Craton, northwestern India: Structural, metamorphic and geochronological perspectives from the basement complexes and supracrustal sequences. Earth-Science Reviews, 2022, 232, 104098. 309 4.0 The Columbia supercontinent: Retrospective, status, and a statistical assessment of paleomagnetic 310 3.0 17 poles used in reconstructions. Gondwana Research, 2022, 110, 143-164. Recording the largest gabbro-anorthositic complex worldwide: The Kunene Complex (KC), SW Angola. 1.2 Precambrian Research, 2022, 379, 106790. Metamorphism and geochronology of garnet mica schists from the Kuluketage area: Implications for 312 reconstructions of the Tarim Craton in supercontinent Columbia. Precambrian Research, 2022, 379, 1.2 3 106806. Geochemical and geochronological constraints on the Mesoproterozoic Red Granite Suite, Kunene 1.2 AMCG Complex of Angola and Namibia. Precambrian Research, 2022, 379, 106821.

#	Article	IF	CITATIONS
314	Post-collisional magmatism in NE Australia during Mesoproterozoic supercontinent Nuna: Insights from new zircon U Pb and Lu Hf data. Lithos, 2022, 428-429, 106827.	0.6	2
315	Paleoproterozoic Plate Tectonics Recorded in the Northern Margin Orogen, North China Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	7
316	Paleoproterozoic crustal evolution of the northern Borborema Province, NE Brazil: Insights from high-grade metamorphic rocks of the Canindé do Ceará Complex. Precambrian Research, 2023, 384, 106941.	1.2	1
317	Quantitative methods for the analysis of comparative geological data: Large igneous province barcoding and supercontinent reconstruction. Precambrian Research, 2023, 385, 106949.	1.2	0
319	A Paradigm Shift: North China Craton's North Margin Orogen Is the Collisional Suture With the Columbia Supercontinent. Geochemistry, Geophysics, Geosystems, 2023, 24, .	1.0	2
320	Why supercontinents became shorter lived as the Earth evolved. Science Bulletin, 2023, 68, 436-440.	4.3	1
321	How Mantle Convection Drives the Supercontinent Cycle: Mechanism, Driving Force, and Substantivity. , 2023, , 197-221.		0
322	A new view of the Pangea supercontinent with an emphasis on the East Asian blocks. Earth and Planetary Science Letters, 2023, 611, 118143.	1.8	2
323	The drift history of the Dharwar Craton and India from 2.37 Ga to 1.01ÂGa with refinements for an initial Rodinia configuration. Geoscience Frontiers, 2023, 14, 101581.	4.3	3
324	Geochemistry, geochronology and metamorphism of high-pressure mafic granulites in the Huai'an Complex, North China Craton: Implications for the tectonic evolution of the Paleoproterozoic orogeny. Precambrian Research, 2023, 387, 106973.	1.2	3
325	A dynamic 2000—540†Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 2023, 238, 104336.	4.0	26
326	Mesoproterozoic basins (Yukon, Canada) in the evolution of supercontinent Columbia. Canadian Journal of Earth Sciences, 2023, 60, 912-973.	0.6	3
327	U-Pb ages of detrital zircon and monazite from beach placers in Sri Lanka: Implications for configuration of the Columbia supercontinent. Journal of Asian Earth Sciences, 2023, 251, 105668.	1.0	2
336	Plate Tectonics and Global Dynamics of Biodiversity. , 0, , .		0

Past and present dynamics of the iron biogeochemical cycle. , 2024, , .

0