The median of a random fuzzy number. The 1-norm dist

Fuzzy Sets and Systems 200, 99-115 DOI: 10.1016/j.fss.2011.11.004

Citation Report

#	ARTICLE	IF	CITATIONS
1	A fuzzy taxonomy for e-Health projects. International Journal of Machine Learning and Cybernetics, 2013, 4, 487-504.	2.3	10
2	Bertoluzza et al.'s metric as a basis for analyzing fuzzy data. Metron, 2013, 71, 307-322.	0.6	3
3	Change point analysis of imprecise time series. Fuzzy Sets and Systems, 2013, 225, 23-38.	1.6	16
4	A generalized L1-type metric between fuzzy numbers for an approach to central tendency of fuzzy data. Information Sciences, 2013, 242, 22-34.	4.0	23
5	Comparing the Representativeness of the 1-norm Median for Likert and Free-response Fuzzy Scales. Studies in Fuzziness and Soft Computing, 2013, , 87-98.	0.6	2
6	SAFD — An R Package for Statistical Analysis of Fuzzy Data. Studies in Fuzziness and Soft Computing, 2013, , 107-118.	0.6	11
7	Rejoinder on "A distance-based statistical analysis of fuzzy number-valued data― International Journal of Approximate Reasoning, 2014, 55, 1601-1605.	1.9	21
8	A parameterized metric between fuzzy numbers and its parameter interpretation. Fuzzy Sets and Systems, 2014, 245, 101-115.	1.6	13
9	Robust clustering of imprecise data. Chemometrics and Intelligent Laboratory Systems, 2014, 136, 58-80.	1.8	40
10	Self-Organizing Maps for imprecise data. Fuzzy Sets and Systems, 2014, 237, 63-89.	1.6	16
11	Central tendency for symmetric random fuzzy numbers. Information Sciences, 2014, 278, 599-613.	4.0	5
12	Comments on "A distance-based statistical analysis of fuzzy number-valued data―by the SMIRE research group. International Journal of Approximate Reasoning, 2014, 55, 1575-1577.	1.9	2
13	Some applications of the study of the image of a fuzzy number: Countable fuzzy numbers, operations, regression and a specificity-type ordering. Fuzzy Sets and Systems, 2014, 257, 204-216.	1.6	11
14	Fuzzy Rating Scale-Based Questionnaires and Their Statistical Analysis. IEEE Transactions on Fuzzy Systems, 2015, 23, 111-126.	6.5	77
15	Fuzziness in data analysis: Towards accuracy and robustness. Fuzzy Sets and Systems, 2015, 281, 260-271.	1.6	18
16	An Overview on the Statistical Central Tendency for Fuzzy Data Sets. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2015, 23, 105-132.	0.9	4
17	A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China. Agricultural Water Management, 2015, 155, 53-66.	2.4	46
18	The fuzzy characterizing function of the distribution of a random fuzzy number. Applied Mathematical Modelling, 2015, 39, 4044-4056.	2.2	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Bagged fuzzy clustering for fuzzy data: An application to a tourism market. Knowledge-Based Systems, 2015, 73, 335-346.	4.0	39
20	Estimation of a Fuzzy Regression Model Using Fuzzy Distances. IEEE Transactions on Fuzzy Systems, 2016, 24, 344-359.	6.5	38
21	Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy rating scale?. Information Sciences, 2016, 360, 131-148.	4.0	34
22	Fuzzy Central Tendency Measures. Studies in Fuzziness and Soft Computing, 2016, , 65-83.	0.6	0
23	M-estimators of location for interval-valued random elements. Chemometrics and Intelligent Laboratory Systems, 2016, 156, 115-127.	1.8	5
24	The mean square error of a random fuzzy vector based on the support function and the Steiner point. Fuzzy Sets and Systems, 2016, 292, 347-363.	1.6	3
25	M-Estimates of Location for the Robust Central Tendency of Fuzzy Data. IEEE Transactions on Fuzzy Systems, 2016, 24, 945-956.	6.5	17
26	Fuzzy segmentation of postmodern tourists. Tourism Management, 2016, 55, 297-308.	5.8	67
27	Robust scale estimators for fuzzy data. Advances in Data Analysis and Classification, 2017, 11, 731-758.	0.9	8
28	On possibilistic representations of fuzzy intervals. Information Sciences, 2017, 405, 33-54.	4.0	14
29	Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data. International Journal of Approximate Reasoning, 2017, 88, 128-147.	1.9	16
30	A hypothesis testing-based discussion on the sensitivity of means of fuzzy data with respect to data shape. Fuzzy Sets and Systems, 2017, 328, 54-69.	1.6	15
31	Frontiers in Computational Intelligence. Studies in Computational Intelligence, 2018, , .	0.7	0
32	Fuzzy Random Variables à la Kruse & Meyer and à la Puri & Ralescu: Key Differences and Coincidences. Studies in Computational Intelligence, 2018, , 21-29.	0.7	3
33	Advantages of M-estimators of location for fuzzy numbers based on Tukey's biweight loss function. International Journal of Approximate Reasoning, 2018, 93, 219-237.	1.9	9
34	Empirical analysis of the maximum asymptotic bias of location estimators for fuzzy number-valued data. International Journal of Approximate Reasoning, 2019, 113, 1-13.	1.9	6
35	Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational Intelligence Magazine, 2019, 14, 31-44.	3.4	40
36	On the approximation of a membership function by empirical quantile functions. International Journal of Approximate Reasoning, 2020, 124, 133-146.	1.9	6

CITATION REPORT

#	Article	IF	CITATIONS
37	A fuzzy segmentation analysis of airline passengers in the U.S. based on service satisfaction Research in Transportation Business and Management, 2020, 37, 100550.	1.6	9
38	Permutation k-sample Goodness-of-Fit Test for Fuzzy Data. , 2020, , .		6
39	Location-Free Robust Scale Estimates for Fuzzy Data. IEEE Transactions on Fuzzy Systems, 2021, 29, 1682-1694.	6.5	5
40	Discrete and Smoothed Resampling Methods for Interval-Valued Fuzzy Numbers. IEEE Transactions on Fuzzy Systems, 2021, 29, 599-611.	6.5	9
41	Fuzzy rating scales: Does internal consistency of a measurement scale benefit from coping with imprecision and individual differences in psychological rating?. Information Sciences, 2021, 550, 91-108.	4.0	5
42	Statistical depth for fuzzy sets. Fuzzy Sets and Systems, 2022, 443, 58-86.	1.6	8
43	On depth-based fuzzy trimmed means and a notion of depth specifically defined for fuzzy numbers. Fuzzy Sets and Systems, 2021, , .	1.6	3
44	The Wabl/Ldev/Rdev Median of a Random Fuzzy Number and Statistical Properties. Advances in Intelligent Systems and Computing, 2015, , 143-150.	0.5	4
45	Scale Equivariant Alternative for Fuzzy M-Estimators of Location. Studies in Systems, Decision and Control, 2018, , 733-743.	0.8	2
46	Empirical Comparison of the Performance of Location Estimates of Fuzzy Number-Valued Data. Advances in Intelligent Systems and Computing, 2019, , 191-199.	0.5	2
47	Arithmetic and Distance-Based Approach to the Statistical Analysis of Imprecisely Valued Data. Studies in Fuzziness and Soft Computing, 2013, , 1-18.	0.6	6
48	Analyzing data from a fuzzy rating scale-based questionnaire. A case study. Psicothema, 2015, 27, 182-91.	0.7	23
49	A fixed-shape fuzzy median of a fuzzy sample. , 2013, , .		0
50	Comparing the Medians of a Random Interval Defined by Means of Two Different L 1 Metrics. Studies in Fuzziness and Soft Computing, 2013, , 75-86.	0.6	3
51	Empirical Sensitivity Analysis on the Influence of the Shape of Fuzzy Data on the Estimation of Some Statistical Measures. Advances in Intelligent Systems and Computing, 2015, , 123-131.	0.5	3
52	Study of the choice of the weighting measure φ on the φ-wabl/ldev/rdev median. , 0, , .		0
53	An analysis of the median of a fuzzy random variable based on Zadeh's extension principle. , 0, , .		0
54	On the Robustness of Absolute Deviations with Fuzzy Data. Advances in Intelligent Systems and Computing, 2015, , 133-141.	0.5	0

CITATION REPORT

#	Article	IF	CITATIONS
56	Descriptive Comparison of the Rating Scales Through Different Scale Estimates: Simulation-Based Analysis. Advances in Intelligent Systems and Computing, 2019, , 9-16.	0.5	1
57	Case Study-Based Sensitivity Analysis of Scale Estimates w.r.t. the Shape of Fuzzy Data. Advances in Intelligent Systems and Computing, 2019, , 157-165.	0.5	0
58	Applying Statistical Methods withÂImprecise Data to Quality Control in Cheese Manufacturing. Studies in Systems, Decision and Control, 2019, , 127-147.	0.8	8
59	Bootstrap Methods forÂFuzzy Data. Lecture Notes in Networks and Systems, 2022, , 28-47.	0.5	1
60	A bi-level multi-objective programming model for water resources management under compound uncertainties in Dongjiang River Basin, Greater Bay Area of China. Journal of Contaminant Hydrology, 2022, 248, 104020.	1.6	3