Blue luminescent graphene quantum dots and graphene carbonization degree of citric acid

Carbon 50, 4738-4743

DOI: 10.1016/j.carbon.2012.06.002

Citation Report

#	Article	IF	CITATIONS
6	A general route to make non-conjugated linear polymers luminescent. Chemical Communications, 2012, 48, 10889.	2.2	183
7	Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy and Environmental Science, 2012, 5, 8869.	15.6	790
9	Energy-level structure of nitrogen-doped graphene quantum dots. Journal of Materials Chemistry C, 2013, 1, 4908.	2.7	277
10	Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence, 2013, 1, 042001.	1.1	138
11	Synthesis and photoluminescence of three-dimensional europium-complexed graphene macroassembly. Journal of Materials Chemistry C, 2013, 1 , 5772.	2.7	27
12	Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272.	2.8	1,018
13	Novel graphene oxide/manganese oxide nanocomposites. RSC Advances, 2013, 3, 22857.	1.7	18
14	Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. Journal of Materials Chemistry B, 2013, 1, 4972.	2.9	132
15	UV-assisted production of ferromagnetic graphitic quantum dots from graphite. Carbon, 2013, 57, 346-356.	5.4	25
16	Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine, 2013, 8, 1669-1688.	1.7	99
17	Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon, 2013, 64, 245-251.	5.4	113
18	On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 2013, 5, 13242-13247.	4.0	700
19	Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015.	2.8	1,295
20	Hidden Properties of Carbon Dots Revealed After HPLC Fractionation. Journal of Physical Chemistry Letters, 2013, 4, 239-243.	2.1	108
21	A two-photon ratiometric fluorescence probe for Cupric Ions in Live Cells and Tissues. Scientific Reports, 2013, 3, 2933.	1.6	50
22	Synthesis and photoluminescence of fluorinated graphene quantum dots. Applied Physics Letters, 2013, 102, .	1.5	111
23	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	7.2	2,907
24	Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution. Materials Letters, 2013, 97, 78-80.	1.3	84

#	Article	IF	CITATIONS
25	Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale, 2013, 5, 1810.	2.8	175
26	The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon, 2013, 57, 120-129.	5 . 4	92
27	Luminescence phenomena of biodegradable photoluminescent poly(diol citrates). Chemical Communications, 2013, 49, 6445.	2.2	95
28	Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. Journal of Materials Chemistry C, 2013, 1 , 4676.	2.7	385
29	Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes. ACS Nano, 2013, 7, 6278-6286.	7.3	229
30	Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.	5 . 4	560
31	Recent advances in graphene quantum dots for sensing. Materials Today, 2013, 16, 433-442.	8.3	659
32	Hydrothermal/Solvothermal Synthesis of Graphene Quantum Dots and Their Biological Applications. Nano Biomedicine and Engineering, 2013, 5, .	0.3	39
33	Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Advances, 2013, 3, 26290.	1.7	43
34	Facile ionic-liquid-assisted electrochemical synthesis of size-controlled carbon quantum dots by tuning applied voltages. RSC Advances, 2014, 4, 57615-57619.	1.7	31
35	Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. Journal of Drug Delivery, 2014, 2014, 1-9.	2.5	144
36	An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism. Chinese Physics B, 2014, 23, 128103.	0.7	13
37	Graphene quantum dots and the resonance light scattering technique for trace analysis of phenol in different water samples. Talanta, 2014, 125, 341-346.	2.9	40
38	Graphene quantum dots as sensor for phenols in olive oil. Sensors and Actuators B: Chemical, 2014, 197, 350-357.	4.0	59
39	A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale, 2014, 6, 3868-3874.	2.8	369
40	A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta, 2014, 119, 538-543.	2.9	112
41	Graphene Quantum Dots. Particle and Particle Systems Characterization, 2014, 31, 415-428.	1.2	787
42	Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Analytica Chimica Acta, 2014, 810, 71-78.	2.6	127

#	Article	IF	Citations
43	An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon, 2014, 70, 190-198.	5.4	156
44	A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field. Carbon, 2014, 66, 77-83.	5.4	57
45	Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO ₂ /C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Advances, 2014, 4, 1174-1179.	1.7	48
46	Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids and Surfaces B: Biointerfaces, 2014, 118, 72-76.	2.5	57
47	One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties. RSC Advances, 2014, 4, 7648.	1.7	117
48	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ° induced red-shift emission. Carbon, 2014, 70, 279-286.	5.4	240
49	Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Materials Science in Semiconductor Processing, 2014, 19, 174-178.	1.9	23
50	Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Research Letters, 2014, 9, 108.	3.1	142
51	Graphene-based sensors for detection of heavy metals in water: a review. Analytical and Bioanalytical Chemistry, 2014, 406, 3957-3975.	1.9	163
52	Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon, 2014, 70, 149-156.	5.4	232
53	Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC - Trends in Analytical Chemistry, 2014, 54, 83-102.	5.8	296
54	Graphene Quantum Dots Sensor for the Determination of Graphene Oxide in Environmental Water Samples. Analytical Chemistry, 2014, 86, 12279-12284.	3.2	68
55	A novel fluorescent probe involving a graphene quantum dot–enzyme hybrid system for the analysis of hydroquinone in the presence of toxic resorcinol and catechol. Analytical Methods, 2014, 6, 7420.	1.3	28
56	Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances, 2014, 4, 58084-58089.	1.7	31
57	Wide-bandwidth lasing from C-dot/epoxy nanocomposite Fabry–Perot cavities with ultralow threshold. Journal of Materials Chemistry C, 2014, 2, 1525.	2.7	49
58	Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Advances, 2014, 4, 44504-44508.	1.7	53
59	A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr(<scp>vi</scp>) in aqueous media. RSC Advances, 2014, 4, 52016-52022.	1.7	106
60	Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Advances, 2014, 4, 52583-52589.	1.7	209

#	ARTICLE	IF	CITATIONS
61	Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags. RSC Advances, 2014, 4, 47169-47176.	1.7	46
62	Facile preparation of gadolinium(<scp>iii</scp>) chelates functionalized carbon quantum dot-based contrast agent for magnetic resonance/fluorescence multimodal imaging. Journal of Materials Chemistry B, 2014, 2, 5541-5549.	2.9	53
63	Reversible on/off switching of fluorescence via esterification of carbon dots. RSC Advances, 2014, 4, 36917.	1.7	23
64	Accelerated reducing synthesis of Ag@CDs composite and simultaneous determination of glucose during the synthetic process. RSC Advances, 2014, 4, 3992-3997.	1.7	19
65	Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Advances, 2014, 4, 55709-55715.	1.7	84
66	High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Advances, 2014, 4, 50141-50144.	1.7	98
67	Facile synthesis and photoluminescence of graphene oxide quantum dots and their reduction products. New Journal of Chemistry, 2014, 38, 4970-4974.	1.4	39
68	Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sensors and Actuators B: Chemical, 2014, 202, 741-747.	4.0	95
69	Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. Journal of Materials Chemistry C, 2014, 2, 7477-7481.	2.7	150
70	Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging. Nanoscale, 2014, 6, 9139-9147.	2.8	83
71	Facile method to sort graphene quantum dots by size through ammonium sulfate addition. RSC Advances, 2014, 4, 56848-56852.	1.7	13
72	Highly sensitive fluorescent detection of dihydroxybenzene based on graphene quantum dots. Sensors and Actuators B: Chemical, 2014, 205, 227-233.	4.0	41
73	Preparation and photoluminescent properties of magnetic Ni@SiO2–CDs fluorescent nanocomposites. RSC Advances, 2014, 4, 7435.	1.7	11
74	Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots for Sensitive and Selective Probing Ferric Ions in Living Cells. Analytical Chemistry, 2014, 86, 9846-9852.	3.2	451
75	Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. RSC Advances, 2014, 4, 51658-51665.	1.7	52
76	Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50, 13089-13092.	2.2	145
77	Electrochemiluminescence immunoassay using a paper electrode incorporating porous silver and modified with mesoporous silica nanoparticles functionalized with blue-luminescent carbon dots. Mikrochimica Acta, 2014, 181, 1415-1422.	2.5	30
78	Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale, 2014, 6, 7410-7415.	2.8	201

#	Article	IF	Citations
79	Drastic Change in Photoluminescence Properties of Graphene Quantum Dots by Chromatographic Separation. Advanced Optical Materials, 2014, 2, 983-989.	3.6	73
80	Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. Analyst, The, 2014, 139, 2912.	1.7	33
81	A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. Journal of Materials Chemistry C, 2014, 2, 5028-5035.	2.7	80
82	Synthesis and drug detection performance of nitrogen-doped carbon dots. Journal of Luminescence, 2014, 149, 159-162.	1.5	89
83	Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. Journal of Luminescence, 2014, 153, 73-78.	1.5	95
84	Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chemical Physics Letters, 2014, 595-596, 203-208.	1.2	188
85	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	1.6	759
86	Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the "Abnormal― Aggregation-Induced Photoluminescence Enhancement. Analytical Chemistry, 2014, 86, 4423-4430.	3.2	334
87	Science and Engineering of Graphene Oxide. Particle and Particle Systems Characterization, 2014, 31, 619-638.	1.2	33
88	Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon, 2014, 77, 775-782.	5.4	315
89	Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sensors and Actuators B: Chemical, 2014, 201, 503-510.	4.0	87
92	Fluorescence off-on probe for drug sensing based on graphene oxide's inherent fluorescence. Biomedical Physics and Engineering Express, 2015, 1, 045013.	0.6	1
93	Rupturing C60Molecules into Graphene-Oxide-like Quantum Dots: Structure, Photoluminescence, and Catalytic Application. Small, 2015, 11, 5296-5304.	5.2	39
95	Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. Journal of Materials Chemistry B, 2015, 3, 5532-5543.	2.9	29
96	Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. Journal of Materials Chemistry C, 2015, 3, 6668-6675.	2.7	109
97	Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene. Light: Science and Applications, 2015, 4, e237-e237.	7.7	122
98	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
99	MoO3 fibers and belts: Molten salt synthesis, characterization and optical properties. Ceramics International, 2015, 41, 10839-10843.	2.3	57

#	Article	IF	Citations
100	Gram-Scale Synthesis of Graphene Quantum Dots from Single Carbon Atoms Growth via Energetic Material Deflagration. Chemistry of Materials, 2015, 27, 4319-4327.	3.2	54
101	Synthesis of fluorescent BCN hybrid nanosheets: a highly efficient fluorosensor for rapid, simple, sensitive Ag+ detection. RSC Advances, 2015, 5, 52452-52458.	1.7	13
102	Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chemical Science, 2015, 6, 4846-4850.	3.7	101
103	Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends. Applied Surface Science, 2015, 351, 280-288.	3.1	36
104	Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale, 2015, 7, 10982-10988.	2.8	46
105	Effects of representative quantum dots on microorganisms and phytoplankton: a comparative study. RSC Advances, 2015, 5, 106406-106412.	1.7	14
106	Nitrogen and sulfur codoped graphene quantum dots as a new fluorescent probe for Au ³⁺ ions in aqueous media. RSC Advances, 2015, 5, 107340-107347.	1.7	35
107	Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in Colloid and Interface Science, 2015, 20, 439-453.	3.4	73
108	The carbonization of polyethyleneimine: facile fabrication of N-doped graphene oxide and graphene quantum dots. RSC Advances, 2015, 5, 105855-105861.	1.7	23
109	Facile Microwaveâ€Assisted Solidâ€Phase Synthesis of Highly Fluorescent Nitrogen–Sulfurâ€Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry - A European Journal, 2015, 21, 13004-13011.	1.7	101
110	Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications, 2015, 4, e364-e364.	7.7	366
111	Three Colors Emission from S,N Coâ€doped Graphene Quantum Dots for Visible Light H ₂ Production and Bioimaging. Advanced Optical Materials, 2015, 3, 360-367.	3.6	276
112	Graphene Quantums Dots Combined with Endonuclease Cleavage and Bidentate Chelation for Highly Sensitive Electrochemiluminescent DNA Biosensing. Analytical Chemistry, 2015, 87, 1145-1151.	3.2	66
113	Controllable and mass fabrication of highly luminescent N-doped carbon dots for bioimaging applications. RSC Advances, 2015, 5, 22343-22349.	1.7	13
114	Versatile photoluminescence from graphene and its derivatives. Carbon, 2015, 88, 86-112.	5.4	76
115	Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Advances, 2015, 5, 19773-19789.	1.7	203
116	Flowing electrolytic synthesis of fluorescent carbon nanoparticles and carbon nanosheets. Electrochimica Acta, 2015, 155, 305-311.	2.6	4
117	Nanoreactor-confined synthesis and separation of yellow-luminescent graphene quantum dots with a recyclable SBA-15 template and their application for Fe(III) sensing. Carbon, 2015, 87, 215-225.	5.4	48

#	ARTICLE	IF	CITATIONS
118	In Situ Growth of Surfactant-Free Gold Nanoparticles on Nitrogen-Doped Graphene Quantum Dots for Electrochemical Detection of Hydrogen Peroxide in Biological Environments. Analytical Chemistry, 2015, 87, 1903-1910.	3.2	525
119	Manufacture of nano graphite oxides derived from aqueous glucose solutions and in-situ synthesis of magnetite–graphite oxide composites. Materials Chemistry and Physics, 2015, 153, 202-208.	2.0	3
120	Solvothermal synthesis of oxygen/nitrogen functionalized graphene-like materials with diversified morphology from different carbon sources and their fluorescence properties. Journal of Materials Science, 2015, 50, 1300-1308.	1.7	6
121	Hexagonal Cobalt Oxyhydroxide–Carbon Dots Hybridized Surface: High Sensitive Fluorescence Turn-on Probe for Monitoring of Ascorbic Acid in Rat Brain Following Brain Ischemia. Analytical Chemistry, 2015, 87, 3404-3411.	3.2	168
122	One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale, 2015, 7, 6104-6113.	2.8	161
123	An efficient edge-functionalization method to tune the photoluminescence of graphene quantum dots. Nanoscale, 2015, 7, 5969-5973.	2.8	73
124	Characteristics of graphene quantum dots determined by edge structures: three kinds of dots fabricated using thermal plasma jet. RSC Advances, 2015, 5, 67669-67675.	1.7	11
125	Fe3+-functionalized carbon quantum dots: A facile preparation strategy and detection for ascorbic acid in rat brain microdialysates. Talanta, 2015, 144, 1301-1307.	2.9	56
126	Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 19018-19026.	5.2	48
127	Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Advances, 2015, 5, 66528-66533.	1.7	53
128	Bovine \hat{l} ±-lactalbumin functionalized graphene oxide nano-sheet exhibits enhanced biocompatibility: A rational strategy for graphene-based targeted cancer therapy. Colloids and Surfaces B: Biointerfaces, 2015, 134, 178-187.	2.5	37
129	Universal Fluorescence Biosensor Platform Based on Graphene Quantum Dots and Pyrene-Functionalized Molecular Beacons for Detection of MicroRNAs. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16152-16156.	4.0	126
130	Straightforward Synthesis of Metal Nanoparticles and Hierarchical Porous Metals Assisted by Partial Film Boiling Phenomena. Chemistry of Materials, 2015, 27, 5151-5160.	3.2	9
131	A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination. Biosensors and Bioelectronics, 2015, 74, 1016-1021.	5.3	132
132	Graphene quantum dots in analytical science. TrAC - Trends in Analytical Chemistry, 2015, 72, 93-113.	5.8	183
133	High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios. Langmuir, 2015, 31, 8063-8073.	1.6	175
134	Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application. New Journal of Chemistry, 2015, 39, 7054-7059.	1.4	77
135	Well-controlled layer-by-layer assembly of carbon dot/CdS heterojunctions for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015, 3, 16613-16620.	5 . 2	66

#	Article	IF	CITATIONS
136	One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction. Advanced Powder Technology, 2015, 26, 1273-1280.	2.0	10
137	Carbon dot reduced bimetallic nanoparticles: size and surface plasmon resonance tunability for enhanced catalytic applications. Journal of Materials Chemistry A, 2015, 3, 16354-16360.	5.2	59
138	Graphene-decorated porous ceramics for efficient removal of Cr(<scp>vi</scp>). RSC Advances, 2015, 5, 65982-65990.	1.7	6
139	Controlling the cooperative self-assembly of graphene oxide quantum dots in aqueous solutions. RSC Advances, 2015, 5, 57425-57432.	1.7	32
140	Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon, 2015, 94, 181-188.	5.4	28
141	Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. Journal of Colloid and Interface Science, 2015, 456, 1-6.	5.0	70
142	A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe. Sensors and Actuators B: Chemical, 2015, 221, 7-14.	4.0	92
143	Natural carbon-based dots from humic substances. Scientific Reports, 2015, 5, 10037.	1.6	61
144	Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosensors and Bioelectronics, 2015, 74, 418-422.	5.3	53
145	Electrochemical enantiorecognition of tryptophan enantiomers based on graphene quantum dots–chitosan composite film. Electrochemistry Communications, 2015, 57, 5-9.	2.3	90
146	Masking agent-free and channel-switch-mode simultaneous sensing of Fe ³⁺ and Hg ²⁺ using dual-excitation graphene quantum dots. Analyst, The, 2015, 140, 3925-3928.	1.7	52
147	Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 17-24.	1.3	46
148	Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds. Journal of Alloys and Compounds, 2015, 642, 148-152.	2.8	16
149	A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex–hemin and gold nanoparticles. Biosensors and Bioelectronics, 2015, 70, 54-60.	5. 3	60
150	Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots. RSC Advances, 2015, 5, 43750-43755.	1.7	51
151	Facile synthesis of a highly luminescent carbon dot@silica nanorattle for in vivo bioimaging. RSC Advances, 2015, 5, 46158-46162.	1.7	18
152	Tailoring the edges of graphene quantum dots to establish localized π–π interactions with aromatic molecules. RSC Advances, 2015, 5, 41248-41254.	1.7	19
153	Rational design of nitrogen and sulfur co-doped carbon dots for efficient photoelectrical conversion applications. Journal of Materials Chemistry A, 2015, 3, 11287-11293.	5.2	68

#	Article	IF	CITATIONS
154	Graphene quantum dots as a novel sensing material for low-cost resistive and fast-response humidity sensors. Sensors and Actuators B: Chemical, 2015, 218, 73-77.	4.0	59
155	Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Mikrochimica Acta, 2015, 182, 1723-1731.	2.5	116
156	Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg ²⁺ in aqueous solution. RSC Advances, 2015, 5, 40393-40401.	1.7	127
157	DNA-modified graphene quantum dots as a sensing platform for detection of Hg ²⁺ in living cells. RSC Advances, 2015, 5, 39587-39591.	1.7	43
158	One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions. Talanta, 2015, 142, 131-139.	2.9	151
159	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale, 2015, 7, 10162-10169.	2.8	121
160	Synthesis of graphene oxide dots for excitation-wavelength independent photoluminescence at high quantum yields. Journal of Materials Chemistry C, 2015, 3, 4553-4562.	2.7	39
161	Novel efficient fluorophores synthesized from citric acid. RSC Advances, 2015, 5, 34795-34799.	1.7	111
162	Fluorescent determination of graphene quantum dots in water samples. Analytica Chimica Acta, 2015, 896, 78-84.	2.6	23
163	An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. Journal of Materials Chemistry B, 2015, 3, 9109-9114.	2.9	85
164	Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions. Analytica Chimica Acta, 2015, 888, 173-181.	2.6	44
165	Graphene quantum dots $\hat{\mathbb{I}}^2$ -cyclodextrin nanocomposites: A novel electrochemical chiral interface for tryptophan isomer recognition. Electrochemistry Communications, 2015, 60, 60-63.	2.3	85
166	A facile photoluminescence modulated nanosensor based on nitrogen-doped graphene quantum dots for sulfite detection. New Journal of Chemistry, 2015, 39, 8114-8120.	1.4	42
167	Electronic and Optical Properties of Edge-Functionalized Graphene Quantum Dots and the Underlying Mechanism. Journal of Physical Chemistry C, 2015, 119, 24950-24957.	1.5	136
168	Extraction of preformed graphene oxide from coal: its clenched fist form entrapping large molecules. RSC Advances, 2015, 5, 89076-89082.	1.7	32
169	Multicolor Nitrogen-Doped Carbon Dots for Live Cell Imaging. Journal of Biomedical Nanotechnology, 2015, 11, 780-788.	0.5	63
170	Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. Journal of Molecular Catalysis A, 2015, 409, 102-109.	4.8	130
171	Graphene Quantum Dots-based Photoluminescent Sensor: A Multifunctional Composite for Pesticide Detection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20272-20279.	4.0	121

#	Article	IF	CITATIONS
172	Electrochemical study on the intercalation properties of hydroxyl anion for the reversible conversion of graphene quantum dots into carbon dots. Journal of Electroanalytical Chemistry, 2015, 756, 161-170.	1.9	6
173	Sensing applications of luminescent carbon based dots. Analyst, The, 2015, 140, 7468-7486.	1.7	124
174	Well-Dispersed Chitosan-Graphene Quantum Dots Nanocomposites for Electrochemical Sensing Platform. Journal of the Electrochemical Society, 2015, 162, H884-H889.	1.3	32
175	Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu ²⁺ in Rat Brain. ACS Applied Materials & Interfaces, 2015, 7, 27262-27270.	4.0	74
176	Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst, The, 2015, 140, 1253-1259.	1.7	53
177	Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale, 2015, 7, 2708-2715.	2.8	63
178	Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small, 2015, 11, 1620-1636.	5.2	1,770
179	Investigation of the capacitive performance of tobacco solution reduced graphene oxide. Materials Chemistry and Physics, 2015, 151, 72-80.	2.0	16
180	One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 2015, 68, 1-6.	5.3	141
181	To lose is to gain: Effective synthesis of water-soluble graphene fluoroxide quantum dots by sacrificing certain fluorine atoms from exfoliated fluorinated graphene. Carbon, 2015, 83, 152-161.	5.4	48
182	A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale, 2015, 7, 1872-1878.	2.8	336
183	One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase. Chemical Communications, 2015, 51, 948-951.	2.2	117
184	Novel fluorescence resonance energy transfer optical sensors for vitamin B ₁₂ detection using thermally reduced carbon dots. New Journal of Chemistry, 2015, 39, 501-507.	1.4	118
185	Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon, 2015, 82, 304-313.	5.4	183
186	A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors and Actuators B: Chemical, 2015, 207, 490-497.	4.0	124
187	Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015, 81, 514-524.	5.4	93
188	A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1213-1221.	2.0	60
189	A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics, 2015, 67, 595-600.	5.3	308

#	Article	IF	CITATIONS
190	Graphene Quantum Dots: Syntheses, Properties, and Biological Applications., 2016, , 171-192.		17
191	The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Miniemulsion Polymerization. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	28
192	Graphene Quantum Dots - From Emergence to Nanotheranostic Applications. , 0, , .		10
193	Revisiting Surface Modification of Graphite: Dualâ€Layer Coating for Highâ€Performance Lithium Battery Anode Materials. Chemistry - an Asian Journal, 2016, 11, 1711-1717.	1.7	20
194	lonic liquid-assisted electrochemical exfoliation of carbon dots of different size for fluorescent imaging of bacteria by tuning the water fraction in electrolyte. Mikrochimica Acta, 2016, 183, 2525-2532.	2.5	31
195	Nitrogenâ€Doped Graphene Quantum Dotâ€Decorated ZnO Nanorods for Improved Electrochemical Solar Energy Conversion. Energy Technology, 2016, 4, 950-958.	1.8	55
196	Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18647-18651.	4.0	56
197	Renewable Surface Carbonâ€composite Electrode Bulk Modified with GQDâ€RuCl ₃ Nanoâ€composite for High Sensitive Detection of <scp>l</scp> â€tyrosine. Electroanalysis, 2016, 28, 2559-2564.	1.5	18
199	Ultrafast Method for Selective Design of Graphene Quantum Dots with Highly Efficient Blue Emission. Scientific Reports, 2016, 6, 38423.	1.6	45
200	Bottomâ€Up Fabrication of Singleâ€Layered Nitrogenâ€Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane. Chemistry - A European Journal, 2016, 22, 272-278.	1.7	60
201	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186
202	Chemiluminescence of graphene quantum dots induced by acidic potassium permanganate and its application to quenchometric flow-injection assays of hydroquinone in water. Journal of Luminescence, 2016, 177, 204-208.	1.5	23
203	Graphene Quantum Dots for Theranostics and Bioimaging. Pharmaceutical Research, 2016, 33, 2337-2357.	1.7	118
204	Facile hydrothermal method to prepare graphene quantum dots from graphene oxide with different photoluminescences. RSC Advances, 2016, 6, 40422-40426.	1.7	32
205	Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Advanced Drug Delivery Reviews, 2016, 105, 205-227.	6.6	170
206	Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation. Journal of Luminescence, 2016, 175, 88-93.	1.5	6
207	Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal, 2016, 300, 75-82.	6.6	208
208	Graphene quantum dots as smart probes for biosensing. Analytical Methods, 2016, 8, 4001-4016.	1.3	116

#	Article	IF	CITATIONS
209	Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2016, 4, 3008-3016.	3.2	104
210	Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots. Chemistry of Materials, 2016, 28, 3796-3803.	3.2	18
211	Graphene quantum dot soil moisture sensor. Sensors and Actuators B: Chemical, 2016, 233, 582-590.	4.0	58
212	Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Materials Science and Engineering C, 2016, 67, 478-485.	3.8	77
213	Graphene quantum dots from fishbone carbon nanofibers. RSC Advances, 2016, 6, 48504-48514.	1.7	18
214	An efficient chiral sensing platform based on graphene quantum dot–tartaric acid hybrids. RSC Advances, 2016, 6, 84127-84132.	1.7	24
215	Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. Journal of Materials Chemistry C, 2016, 4, 9027-9035.	2.7	119
216	Facile self-assembly N-doped graphene quantum dots/graphene for oxygen reduction reaction. Electrochimica Acta, 2016, 216, 102-109.	2.6	90
218	<i>ii situ</i> formation of rGO quantum dots during GO reduction via interaction with citric acid in aqueous medium. Materials Research Express, 2016, 3, 105601.	0.8	13
219	Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016, 6, 97990-97994.	1.7	49
220	Developing Modified Graphene Oxide Based Sensor for Lead Ions Detection in Water. ChemistrySelect, 2016, 1, 1751-1755.	0.7	11
221	Blue photoluminescent carbon nanodots from limeade. Materials Science and Engineering C, 2016, 69, 914-921.	3.8	49
222	Green synthetic strategy of BCNO nanostructure and phosphor-based light $\hat{a} \in \text{``Emitting diodes. Journal of Luminescence, 2016, 179, 501-510.}$	1.5	13
223	Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22563-22573.	4.0	161
224	One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale, 2016, 8, 15281-15287.	2.8	209
225	Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14684-14691.	3.8	25
226	Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21002-21010.	4.0	168
227	Highly Pure and Luminescent Graphene Quantum Dots on Silicon Directly Grown by Chemical Vapor Deposition. Particle and Particle Systems Characterization, 2016, 33, 8-14.	1.2	23

#	Article	IF	CITATIONS
228	Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Physical Chemistry Chemical Physics, 2016, 18, 22599-22605.	1.3	47
229	Graphene Quantum Sheets with Multiband Emission: Unravelling the Molecular Origin of Graphene Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 21678-21684.	1.5	31
230	Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon, 2016, 109, 658-665.	5.4	87
231	An ultrasensitive electrochemiluminescence immunosensor based on zeolitic imidazolate frameworks encapsulating spherical graphite crystals. Journal of Electroanalytical Chemistry, 2016, 781, 284-288.	1.9	15
232	C ₉₆ H ₃₀ tailored single-layer and single-crystalline graphene quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 25002-25009.	1.3	17
233	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
234	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
235	Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25454-25460.	4.0	75
236	Graphene quantum dots as a fluorescence-quenching probe for quantitative analysis of Ponceau 4R solution. Analytical Methods, 2016, 8, 7242-7246.	1.3	24
237	Graphene quantum dot functionalized by chitosan and beta-cyclodextrin as a new support nanocomposite material for efficient methanol electrooxidation. Journal of Alloys and Compounds, 2016, 688, 171-186.	2.8	49
238	Graphene quantum dot functionalized by chitosan as an electrically conductive nano-material toward low potential detection: a new platform for interface science. Journal of Materials Science: Materials in Electronics, 2016, 27, 11834-11843.	1.1	27
239	Synthesis of Selfâ€Assembled Spermidineâ€Carbon Quantum Dots Effective against Multidrugâ€Resistant Bacteria. Advanced Healthcare Materials, 2016, 5, 2545-2554.	3.9	151
240	Graphene Oxideâ€Based Sensor for Ultrasensitive Visual Detection of Fluoride. Advanced Science, 2016, 3, 1600217.	5.6	32
241	Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Applied Surface Science, 2016, 387, 1236-1246.	3.1	101
242	Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Scientific Reports, 2016, 6, 21042.	1.6	230
243	Facile synthesis of multi-responsive functional graphene quantum dots for sensing metal cations. RSC Advances, 2016, 6, 103006-103011.	1.7	10
244	Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Advances, 2016, 6, 110775-110788.	1.7	112
245	Optical behaviour of functional groups of graphene oxide. Materials Research Express, 2016, 3, 105604.	0.8	9

#	Article	IF	CITATIONS
246	High-Purity Amino-Functionalized Graphene Quantum Dots Derived from Graphene Hydrogel. Nano, 2016, 11, 1650138.	0.5	1
247	Chemical Nature of Redox-Controlled Photoluminescence of Graphene Quantum Dots by Post-Synthesis Treatment. Journal of Physical Chemistry C, 2016, 120, 26004-26011.	1.5	32
248	Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye. Optical Materials, 2016, 62, 320-327.	1.7	31
249	Fullereneâ€Structural Carbonâ€Based Dots from C ₆₀ Molecules and their Optical Properties. Particle and Particle Systems Characterization, 2016, 33, 916-923.	1.2	9
250	Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chemistry - A European Journal, 2016, 22, 8198-8206.	1.7	59
251	Hybrid Graphene Quantum Dots@Graphene Foam Nanosheets for Dyeâ€6ensitized Solar Cell Electrodes. Energy Technology, 2016, 4, 256-262.	1.8	14
252	Ionic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Advances, 2016, 6, 61292-61300.	1.7	24
253	Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, 2016, , .	0.1	18
254	Carbon Based Dots and Their Luminescent Properties and Analytical Applications. Carbon Nanostructures, 2016, , 161-238.	0.1	9
255	Rapid and facile synthesis of graphene oxide quantum dots with good linear and nonlinear optical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 10926-10933.	1.1	14
256	A new hydrogen cyanide chemiresistor gas sensor based on graphene quantum dots. International Journal of Environmental Analytical Chemistry, 2016, 96, 763-775.	1.8	16
257	Different approaches for sensing captopril based on functionalized graphene quantum dots as photoluminescent probe. Journal of Luminescence, 2016, 179, 83-92.	1.5	11
258	Resolving the source of blue luminescence from alkyl-capped silicon nanoparticles synthesized by laser pulse ablation. Journal of Materials Chemistry C, 2016, 4, 6894-6899.	2.7	9
259	Sensitive determination of tannic acid using blue luminescent graphene quantum dots as fluorophore. RSC Advances, 2016, 6, 59900-59906.	1.7	18
260	One-step synthesis of chiral carbon quantum dots and their enantioselective recognition. RSC Advances, 2016, 6, 59956-59960.	1.7	78
261	Graphene quantum dots decorated with Fe ₃ O ₄ nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of <scp>I</scp> -DOPA in agricultural products. Analytical Methods, 2016, 8, 5861-5868.	1.3	27
262	Nanostructured manganese oxide on frozen smoke: A new water-oxidizing composite. International Journal of Hydrogen Energy, 2016, 41, 2466-2476.	3.8	27
263	Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Physical Chemistry Chemical Physics, 2016, 18, 4800-4806.	1.3	49

#	Article	IF	CITATIONS
264	Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Advances, 2016, 6, 18134-18140.	1.7	57
265	Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and Actuators B: Chemical, 2016, 228, 465-470.	4.0	105
266	A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury(<scp>ii</scp>) ions and biothiols. Analytical Methods, 2016, 8, 1565-1571.	1.3	69
267	Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application. Electrochimica Acta, 2016, 190, 455-462.	2.6	49
268	Nitrogen-Doped Carbon Dots for "green―Quantum Dot Solar Cells. Nanoscale Research Letters, 2016, 11, 27.	3.1	146
269	Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosensors and Bioelectronics, 2016, 78, 23-30.	5.3	205
270	Transformation of crystalline starch nanoparticles into highly luminescent carbon nanodots: Toxicity studies and their applications. Carbohydrate Polymers, 2016, 137, 488-496.	5.1	27
271	Economical, green route to highly fluorescence intensity carbon materials based on ligninsulfonate/graphene quantum dots composites: Application as excellent fluorescent sensing platform for detection of Fe3+ ions. Sensors and Actuators B: Chemical, 2016, 230, 54-60.	4.0	56
272	A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochimica Acta, 2016, 183, 519-542.	2.5	510
273	Sensitive detection of picric acid based on creatinine-capped solid film assembled by nitrogen-doped graphene quantum dots and chitosan. Sensors and Actuators B: Chemical, 2016, 231, 634-640.	4.0	30
274	Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale, 2016, 8, 8618-8632.	2.8	129
275	Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. Journal of Electroanalytical Chemistry, 2016, 769, 48-52.	1.9	64
276	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	1.7	238
277	Fluorescent probes for "off–on―highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 2016, 152, 288-300.	2.9	156
278	Synthesis of Tb4O7 complexed with reduced graphene oxide for Rhodamine-B absorption. Materials Research Bulletin, 2016, 77, 111-114.	2.7	8
279	Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. Journal of Electroanalytical Chemistry, 2016, 767, 84-90.	1.9	61
280	Signal-on fluorescent sensor based on GQDs–MnO ₂ composite for glutathione. Analytical Methods, 2016, 8, 2366-2374.	1.3	28
281	A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dot/Gold Nanoparticle Nanocomposite Modified Electrode for the Determination of Quercetin in Biological Samples. Electroanalysis, 2016, 28, 1322-1330.	1.5	61

#	Article	IF	CITATIONS
282	Facile and Purification-Free Synthesis of Nitrogenated Amphiphilic Graphitic Carbon Dots. Chemistry of Materials, 2016, 28, 1481-1488.	3.2	74
283	Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst, The, 2016, 141, 2676-2681.	1.7	136
284	A sensitive enzyme-free hydrogen peroxide sensor based on a chitosan–graphene quantum dot/silver nanocube nanocomposite modified electrode. Analytical Methods, 2016, 8, 2448-2455.	1.3	29
285	Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Advances, 2016, 6, 23518-23524.	1.7	68
286	Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin. Applied Surface Science, 2016, 368, 122-128.	3.1	37
287	Determination of 2,4-dichlorophenol in water samples using a chemiluminescence system consisting of graphene quantum dots, rhodamine B and cerium(IV) ion. Mikrochimica Acta, 2016, 183, 1219-1225.	2.5	25
288	Determination of dopamine in the presence of ascorbic and uric acids by fluorometric method using graphene quantum dots. Spectroscopy Letters, 2016, 49, 319-325.	0.5	16
289	Fluorescent determination of poly(hexamethylene guanidine) via the aggregates it forms with quantum dots and magnetic nanoparticles. Mikrochimica Acta, 2016, 183, 1079-1087.	2.5	9
290	Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8, 7794-7807.	2.8	393
291	FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Analytica Chimica Acta, 2016, 917, 64-70.	2.6	64
292	Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosensors and Bioelectronics, 2016, 81, 214-220.	5.3	35
293	A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosensors and Bioelectronics, 2016, 81, 143-150.	5.3	109
294	Potassium humate based reduced graphite oxide materials for supercapacitor applications. Electrochimica Acta, 2016, 196, 450-456.	2.6	14
295	Trimethylamine sensing properties of graphene quantum Dots/α-Fe2O3 composites. Journal of Solid State Chemistry, 2016, 237, 284-291.	1.4	37
296	Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Advances, 2016, 6, 27829-27835.	1.7	91
297	Determination of TiO2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe. Mikrochimica Acta, 2016, 183, 781-789.	2.5	28
298	Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione. Sensors and Actuators B: Chemical, 2016, 228, 66-73.	4.0	129
299	Two-step synthesis of highly emissive C/ZnO hybridized quantum dots with a broad visible photoluminescence. Applied Surface Science, 2016, 364, 710-717.	3.1	22

#	Article	IF	CITATIONS
300	Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application. ACS Applied Materials & Dots on Their Properties and Application.	4.0	95
301	Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 2016, 8, 2532-2543.	2.8	443
302	Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta, 2016, 150, 198-205.	2.9	79
303	Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Advances, 2016, 6, 5068-5078.	1.7	43
304	Recent advances in carbon-based dots for electroanalysis. Analyst, The, 2016, 141, 2619-2628.	1.7	29
305	Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of I -cysteine. Biosensors and Bioelectronics, 2016, 77, 1112-1118.	5.3	90
306	Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. Carbon, 2016, 96, 166-173.	5.4	59
307	Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sensors and Actuators B: Chemical, 2016, 223, 689-696.	4.0	195
308	Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensors and Actuators B: Chemical, 2016, 224, 396-403.	4.0	240
309	Pee-dots: biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chemistry, 2016, 18, 243-250.	4.6	169
310	Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical, 2016, 223, 246-251.	4.0	183
311	Solidâ€phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in liveâ€cell imaging. Luminescence, 2016, 31, 746-753.	1.5	44
312	A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 619-624.	2.0	38
313	A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid. Sensors and Actuators B: Chemical, 2016, 222, 728-734.	4.0	77
314	2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosensors and Bioelectronics, 2017, 89, 136-151.	5.3	191
315	Hydrothermal synthesis and photoluminescent mechanistic investigation of highly fluorescent nitrogen doped carbon dots from amino acids. Materials Research Bulletin, 2017, 89, 26-32.	2.7	61
316	Electrochemiluminescence Detection of <i>Escherichia coli</i> O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS Applied Materials & Diterfaces, 2017, 9, 5430-5436.	4.0	150
317	Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrasonics Sonochemistry, 2017, 37, 120-127.	3.8	57

#	Article	IF	CITATIONS
318	A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. Journal of Colloid and Interface Science, 2017, 493, 62-76.	5.0	70
319	One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensors and Actuators B: Chemical, 2017, 245, 868-874.	4.0	93
320	A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots. Talanta, 2017, 166, 1-7.	2.9	79
321	Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor. Analytical Biochemistry, 2017, 521, 31-39.	1.1	76
322	A "Turn-On―thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. Journal of Hazardous Materials, 2017, 328, 117-126.	6.5	102
323	Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Advances, 2017, 7, 11420-11427.	1.7	88
324	Uptake dynamics of graphene quantum dots into primary human blood cells following in vitro exposure. RSC Advances, 2017, 7, 12208-12216.	1.7	27
325	N-doped graphene quantum dots as a novel highly-efficient matrix for the analysis of perfluoroalkyl sulfonates and other small molecules by MALDI-TOF MS. Analytical Methods, 2017, 9, 2014-2020.	1.3	16
326	The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 6493-6497.	1.1	17
327	A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion. Mikrochimica Acta, 2017, 184, 1621-1629.	2.5	50
328	Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11082-11094.	4.0	288
329	Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Analytical Biochemistry, 2017, 523, 1-9.	1.1	77
330	A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 180, 37-43.	2.0	63
331	On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot. Journal of Physical Chemistry C, 2017, 121, 9634-9641.	1.5	72
332	Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. Journal of Materials Chemistry B, 2017, 5, 6471-6489.	2.9	101
333	Paper strip-embedded graphene quantum dots: a screening device with a smartphone readout. Scientific Reports, 2017, 7, 976.	1.6	63
334	Cd1-xMgxTe semiconductor nanocrystal alloys: Synthesis, preparation of nanocomposites with graphene-based materials, and electrochemical detection of lidocaine and epinephrine. Mikrochimica Acta, 2017, 184, 1755-1764.	2.5	11
335	Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B, 2017, 5, 4811-4826.	2.9	151

#	Article	IF	Citations
336	Shedding light on the effective fluorophore structure of high fluorescence quantum yield carbon nanodots. RSC Advances, 2017, 7, 24771-24780.	1.7	101
337	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	5.4	65
338	Complementary experimental and quantum mechanics approaches for exploring the mechanical characteristics of epoxy composites loaded with graphene oxide-polyaniline nanofibers. Journal of Industrial and Engineering Chemistry, 2017, 53, 348-359.	2.9	40
339	Spectroscopic Insights into Carbon Dot Systems. Journal of Physical Chemistry Letters, 2017, 8, 2236-2242.	2.1	111
340	New Avenue for Appendage of Graphene Quantum Dots on Halloysite Nanotubes as Anode Materials for High Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 4930-4940.	3.2	95
341	One-step synthesis of band-tunable N, S co-doped commercial TiO ₂ /graphene quantum dots composites with enhanced photocatalytic activity. RSC Advances, 2017, 7, 23319-23327.	1.7	76
342	Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. Journal of Materials Chemistry B, 2017, 5, 6451-6470.	2.9	37
343	Rapid microwave synthesis of N-doped carbon nanodots with high fluorescence brightness for cell imaging and sensitive detection of iron (III). Optical Materials, 2017, 64, 1-8.	1.7	23
344	Simple method for O-GlcNAc sensitive detection based on graphene quantum dots. RSC Advances, 2017, 7, 31204-31211.	1.7	5
345	Transport properties of graphene quantum dots in glycerol and distilled water. Journal of Molecular Liquids, 2017, 241, 831-838.	2.3	44
346	Highly fluorescent nitrogen-doped graphene quantum dots as a green, economical and facile sensor for the determination of sunitinib in real samples. New Journal of Chemistry, 2017, 41, 6875-6882.	1.4	35
347	Fluorescent carbon dots with tunable emission by dopamine for sensing of intracellular pH, elementary arithmetic operations and a living cell imaging based INHIBIT logic gate. Journal of Materials Chemistry B, 2017, 5, 5265-5271.	2.9	26
348	Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper(II). Journal of Electroanalytical Chemistry, 2017, 797, 113-120.	1.9	39
349	Enzyme-free fluorescence sensing of catechins in green tea using bifunctional graphene quantum dots. Analytical Methods, 2017, 9, 3525-3530.	1.3	9
350	Controllable ionic liquid-assisted electrochemical exfoliation of carbon fibers for the green and large-scale preparation of functionalized graphene quantum dots endowed with multicolor emission and size tunability. Journal of Materials Chemistry C, 2017, 5, 6092-6100.	2.7	30
351	Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode. Talanta, 2017, 174, 243-255.	2.9	75
352	Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application. Journal of Solid State Chemistry, 2017, 253, 103-112.	1.4	21
353	N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	24

#	Article	IF	Citations
354	Ultrasensitive and Selective Sensing of Selenium Using Nitrogen-Rich Ligand Interfaced Carbon Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13448-13456.	4.0	44
355	Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 2017, 5, 3794-3809.	2.9	264
356	Determination of cytochrome c based on its enhancing effect on the electrogenerated chemiluminescence of carbon quantum dots. Mikrochimica Acta, 2017, 184, 2089-2095.	2.5	15
357	Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta, 2017, 168, 269-278.	2.9	68
358	Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: An experimental evidence of localized sp2 carbon subdomain. Carbon, 2017, 118, 524-530.	5.4	29
359	Photoluminescence from amino functionalized graphene quantum dots prepared by electrochemical exfoliation method in the presence of ammonium ions. RSC Advances, 2017, 7, 18340-18346.	1.7	28
360	Supramolecular interactions via hydrogen bonding contributing to citric-acid derived carbon dots with high quantum yield and sensitive photoluminescence. RSC Advances, 2017, 7, 20345-20353.	1.7	50
361	Realization of multiphoton lasing from carbon nanodot microcavities. Nanoscale, 2017, 9, 5957-5963.	2.8	16
362	Titanium carbide (Ti3C2Tx) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon, 2017, 118, 50-57.	5.4	155
363	Smart nanosensors for pesticide detection. , 2017, , 519-559.		18
364	Ultrasensitive optical sensor for hydrogen peroxide using silver nanoparticles synthesized at room temperature by GQDs. Sensors and Actuators B: Chemical, 2017, 247, 648-654.	4.0	27
365	Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Applied Materials Today, 2017, 7, 138-143.	2.3	51
366	Preconcentration and trace determination of copper (II) in Thai food recipes using Fe 3 O 4 @Chi–GQDs nanocomposites as a new magnetic adsorbent. Food Chemistry, 2017, 230, 388-397.	4.2	61
367	Preparation and Characterization of Water-soluble Carbon Quantum Dots/Mesoporous Silica with High Fluorescence Intensity. Chemistry Letters, 2017, 46, 895-898.	0.7	2
368	Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. Carbon, 2017, 118, 319-326.	5.4	129
369	Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inorganic Chemistry Frontiers, 2017, 4, 946-953.	3.0	55
370	Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chemical Engineering Journal, 2017, 320, 570-575.	6.6	123
371	One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. Journal of Colloid and Interface Science, 2017, 492, 1-7.	5.0	112

#	Article	IF	CITATIONS
372	Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.	1.5	517
373	Application of graphene quantum dots as green homogenous nanophotocatalyst in the visible-light-driven photolytic process. Journal of Materials Science: Materials in Electronics, 2017, 28, 5135-5143.	1.1	19
374	Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7, 5251-5261.	1.7	115
375	Graphene Quantum Dots from <i>Mangifera indica</i> : Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chemistry and Engineering, 2017, 5, 1382-1391.	3.2	273
376	D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sensors and Actuators B: Chemical, 2017, 243, 211-220.	4.0	58
377	High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale, 2017, 9, 1028-1032.	2.8	43
378	Graphene quantum dots prepared from glucose as optical sensor for glucose. Journal of Luminescence, 2017, 184, 110-116.	1.5	151
379	Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 81-89.	1.5	8
380	Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe(<scp>iii</scp>) ions detection. RSC Advances, 2017, 7, 50584-50590.	1.7	45
381	Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Applied Materials Today, 2017, 9, 350-371.	2.3	89
382	The acetic acid gas sensing properties of graphene quantum dots (GQDs)–ZnO nanocomposites prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 19164-19173.	1.1	16
383	Poly(bromocresol green)/carbon quantum dots modified electrode for the simultaneous electrochemical determination of guanine and adenine. Journal of Electroanalytical Chemistry, 2017, 806, 158-165.	1.9	24
384	Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9, 17849-17858.	2.8	132
385	Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology, 2017, 28, 495711.	1.3	14
386	Highly Efficient Fluorescent Carbon Quantum Dots: Synthesis, Properties and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 81-111.	0.1	0
387	A fluorescence switching sensor based on graphene quantum dots decorated with Hg ²⁺ and hydrolyzed thioacetamide for highly Ag ⁺ -sensitive and selective detection. RSC Advances, 2017, 7, 48058-48067.	1.7	30
388	Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. New Journal of Chemistry, 2017, 41, 14444-14451.	1.4	30
389	Solid state photoluminescence thermoplastic starch film containing graphene quantum dots. Carbohydrate Polymers, 2017, 176, 220-226.	5.1	72

#	Article	IF	CITATIONS
390	Solvatochromism of bright carbon dots with tunable long-wavelength emission from green to red and their application as solid-state materials for warm WLEDs. RSC Advances, 2017, 7, 41552-41560.	1.7	73
391	Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Advances, 2017, 7, 40973-40989.	1.7	159
392	Rapid Synthesis of C-dots@PGV Nanocomposites Powders for Development of Latent Fingermarks. Bulletin of the Chemical Society of Japan, 2017, 90, 1217-1223.	2.0	11
393	2D Arrangement of Polymer Microsphere Photonic Cavities Doped with Novel Nâ€Rich Carbon Quantum Dots Display Enhanced One―and Twoâ€Photon Luminescence Driven by Optical Resonances. Advanced Optical Materials, 2017, 5, 1700695.	3.6	21
394	Synthesis of graphene oxide nanosheets functionalized by green corrosion inhibitive compounds to fabricate a protective system. Corrosion Science, 2017, 127, 240-259.	3.0	116
395	Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and <i>Citrus japonica</i> via a Microwave-Assisted Method. ACS Omega, 2017, 2, 5196-5208.	1.6	52
396	Turn-on fluorometric NADPH assay using orange emitting graphene oxide quantum dots. Mikrochimica Acta, 2017, 184, 4571-4578.	2.5	5
397	New Insight into the Concept of Carbonization Degree in Synthesis of Carbon Dots to Achieve Facile Smartphone Based Sensing Platform. Scientific Reports, 2017, 7, 11013.	1.6	58
398	Electrochemical recognition of tryptophan enantiomers using self-assembled diphenylalanine structures induced by graphene quantum dots, chitosan and CTAB. Electrochemistry Communications, 2017, 83, 61-66.	2.3	23
399	A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Molecular Catalysis, 2017, 439, 100-107.	1.0	15
400	A turn-on fluorescence aptasensor based on carbon dots for sensitive detection of adenosine. New Journal of Chemistry, 2017, 41, 9230-9235.	1.4	22
401	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layerâ€Structured Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704.	11.1	65
402	Impact of carbon quantum dots on dynamic properties of BSA and BSA/DPPC adsorption layers. Journal of Colloid and Interface Science, 2017, 506, 245-254.	5.0	10
403	Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. Journal of Pharmaceutical Analysis, 2017, 7, 324-331.	2.4	32
404	Introducing Schottky barrier into electrochemical response: A novel adjusting strategy for designing electrochemical sensors. Electrochimica Acta, 2017, 249, 173-178.	2.6	10
405	Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction UV detector. Materials Research Bulletin, 2017, 95, 198-203.	2.7	33
406	Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications. Engineering, 2017, 3, 402-408.	3.2	130
407	2D–Materialsâ€Based Quantum Dots: Gateway Towards Nextâ€Generation Optical Devices. Advanced Optical Materials, 2017, 5, 1700257.	3.6	64

#	Article	IF	CITATIONS
408	Excitation-Independent Dual-Color Carbon Dots: Surface-State Controlling and Solid-State Lighting. ACS Photonics, 2017, 4, 2352-2358.	3.2	91
409	Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30797-30804.	4.0	42
410	Functionalized graphene quantum dots as a fluorescent "off–on―nanosensor for detection of mercury and ethyl xanthate. Research on Chemical Intermediates, 2017, 43, 7457-7470.	1.3	16
411	Core-shell structured polypyrrole/mesoporous SiO2 nanocomposite capped with graphene quantum dots as gatekeeper for irradiation-controlled release of methotrexate. Materials Science and Engineering C, 2017, 81, 206-212.	3.8	34
412	Facile preparation and the stepwise formation mechanistic investigation of gram-scale nitrogen-doped graphene quantum dots. Journal of Materials Chemistry C, 2017, 5, 9174-9180.	2.7	12
413	Adsorption of 1,3,5-Triphenylbenzene Molecules and Growth of Graphene Nanoflakes on Cu(100) Surface *. Chinese Physics Letters, 2017, 34, 116801.	1.3	0
414	Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chemistry of Materials, 2017, 29, 10352-10361.	3.2	126
415	Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega, 2017, 2, 8343-8353.	1.6	213
416	Chiral carbon dots and their effect on the optical properties of photosensitizers. RSC Advances, 2017, 7, 53057-53063.	1.7	48
417	Nanostructured carbon electrode modified with N-doped graphene quantum dots–chitosan nanocomposite: a sensitive electrochemical dopamine sensor. Royal Society Open Science, 2017, 4, 171199.	1.1	59
418	Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. Nanoscale, 2017, 9, 18359-18367.	2.8	8
419	One-Step Synthesis of Nitrogen and Chlorine Co-Doped Carbon Quantum Dots for Detection of Fe3+. Nano, 2017, 12, 1750135.	0.5	16
420	Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. Journal of Molecular Liquids, 2017, 241, 1114-1119.	2.3	87
421	Exceptionally High Payload of the IR780 lodide on Folic Acid-Functionalized Graphene Quantum Dots for Targeted Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22332-22341.	4.0	167
422	Eosinophilic nitrogen-doped carbon dots derived from tribute chrysanthemum for label-free detection of Fe3+ ions and hydrazine. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 247-253.	2.7	32
423	Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene. Journal of Colloid and Interface Science, 2017, 505, 847-857.	5.0	21
424	New paradigms for the synthesis of graphene quantum dots from sustainable bioresources. New Journal of Chemistry, 2017, 41, 8706-8710.	1.4	15
425	High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 502-511.	2.0	71

#	Article	IF	CITATIONS
426	Cerium(III) Ion Sensing Based on Graphene Quantum Dots Fluorescent Turn-Off. Journal of Fluorescence, 2017, 27, 331-338.	1.3	41
427	Dual signal amplification coupling dual inhibition effect for fabricating photoelectrochemical chlorpyrifos biosensor. Sensors and Actuators B: Chemical, 2017, 238, 239-248.	4.0	45
428	One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging. Journal of Materials Chemistry B, 2017, 5, 92-101.	2.9	74
429	One pot synthesis of gold $\hat{a}\in$ carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta, 2017, 166, 357-363.	2.9	65
430	A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosensors and Bioelectronics, 2017, 92, 618-623.	5.3	152
431	DNA methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy. Sensors and Actuators B: Chemical, 2017, 241, 217-223.	4.0	50
432	A graphene quantum dot@Fe 3 O 4 @SiO 2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosensors and Bioelectronics, 2017, 92, 489-495.	5.3	145
433	Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sensors and Actuators B: Chemical, 2017, 241, 779-788.	4.0	78
434	A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors and Actuators B: Chemical, 2017, 240, 949-955.	4.0	178
435	Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chemical Engineering Journal, 2017, 309, 374-380.	6.6	81
436	Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sensors and Actuators B: Chemical, 2017, 238, 346-356.	4.0	112
437	Reduction, dispersity and electrical properties of graphene oxide sheets under low-temperature thermal treatments. Journal of Materials Science: Materials in Electronics, 2017, 28, 729-733.	1.1	10
438	Advances on synthesis of highly luminescent carbon quantum dots by citric acid carbonization. , 2017, , .		1
439	Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots. Sensors, 2017, 17, 2614.	2.1	43
440	The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction. Catalysts, 2017, 7, 1.	1.6	201
441	Properties and Synthesis Strategies of Graphene Quantum Dots. Frontiers in Nanobiomedical Research, 2017, , 1-18.	0.1	0
442	Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging. International Journal of Nanomedicine, 2017, Volume 12, 4349-4360.	3.3	29
443	Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Analytica Chimica Acta, 2018, 1011, 28-34.	2.6	61

#	Article	IF	Citations
444	Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks. Chemical Research in Chinese Universities, 2018, 34, 164-168.	1.3	41
445	Covalent grafting of chelated othoborate ionic liquid on carbon quantum dot towards high performance additives: Synthesis, characterization and tribological evaluation. Tribology International, 2018, 121, 302-309.	3.0	45
446	Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. Journal of Alloys and Compounds, 2018, 748, 818-853.	2.8	77
447	TiO 2 nanoparticles and TiO 2 @graphene quantum dots nancomposites as effective visible/solar light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 357, 90-102.	2.0	70
448	Sensitive immunoassay of von Willebrand factor based on fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 165, 286-292.	2.5	17
449	Effects of chemical bonds between nitrogen and its neighbor carbon atoms on fluorescence properties of carbon quantum dots. Journal of Luminescence, 2018, 197, 285-290.	1.5	21
450	Facilitative effect of graphene quantum dots in MoS ₂ growth process by chemical vapor deposition. Chinese Physics B, 2018, 27, 018101.	0.7	1
451	Carbon quantum dots-Ag nanoparticle complex as a highly sensitive "turn-on―fluorescent probe for hydrogen sulfide: A DFT/TD-DFT study of electronic transitions and mechanism of sensing. Sensors and Actuators B: Chemical, 2018, 264, 404-409.	4.0	30
452	Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using europium(III)-doped carbon dots in a test stripe. Mikrochimica Acta, 2018, 185, 201.	2.5	48
453	Graphene-based optical nanosensors for detection of heavy metal ions. TrAC - Trends in Analytical Chemistry, 2018, 102, 280-289.	5 . 8	101
454	A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application. Applied Surface Science, 2018, 443, 484-491.	3.1	48
455	Photoluminescent reduced graphene oxide quantum dots from latex of Calotropis gigantea for metal sensing, radical scavenging, cytotoxicity, and bioimaging in Artemia salina: A greener route. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 371-379.	1.7	65
456	Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensors and Actuators B: Chemical, 2018, 264, 193-201.	4.0	42
457	Red-emitting carbon dots phosphors: a promising red color convertor toward warm white light emitting diodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 10453-10460.	1.1	6
458	Graphene Quantum Dotsâ€based Electrochemical Biosensor for Catecholamine Neurotransmitters Detection. Electroanalysis, 2018, 30, 1781-1790.	1.5	70
459	Highly fluorescent carbon dots synthesized with binary dopants for "turn off―and "turn off-on― sensing and cell imaging. Sensors and Actuators B: Chemical, 2018, 268, 84-92.	4.0	27
460	Polymer–carbon dot hybrid structure for a self-rectifying memory device by energy level offset and doping. RSC Advances, 2018, 8, 13917-13920.	1.7	4
461	Bandgap engineering of nanosized carbon dots through electron-accepting functionalization. Journal of Industrial and Engineering Chemistry, 2018, 65, 104-111.	2.9	23

#	Article	IF	CITATIONS
462	Third order nonlinear optical properties of graphene quantum dots under continuous wavelength regime at 532â€nm. AIP Conference Proceedings, 2018, , .	0.3	2
463	Tailoring the properties of oxygenated graphene with different oxidation degrees for noble-metal-free photocatalytic hydrogen evolution. Catalysis Today, 2018, 315, 93-102.	2.2	16
464	Carbonized Bambooâ€Derived Carbon Nanodots as Efficient Cathode Interfacial Layers in Highâ€Performance Organic Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800031.	1.9	13
465	Sensitive determination of uric acid by using graphene quantum dots as a new substrate for immobilisation of uric oxidase. IET Nanobiotechnology, 2018, 12, 191-195.	1.9	9
466	Ultraviolet Photoluminescence of Carbon Nanospheres and its Surface Plasmonâ€Induced Enhancement. Small, 2018, 14, e1704239.	5.2	12
467	Fluorescence Modulation of Graphene Quantum Dots Near Structured Silver Nanofilms. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14079-14086.	4.0	18
468	Semiconductorversusgraphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. Journal of Materials Chemistry B, 2018, 6, 2690-2712.	2.9	40
469	A photoluminescence "switch-on―nanosensor composed of nitrogen and sulphur co-doped carbon dots and gold nanoparticles for discriminative detection of glutathione. Analyst, The, 2018, 143, 2083-2089.	1.7	28
470	A new tactics for the detection of S. aureus via paper based geno-interface incorporated with graphene nano dots and zeolites. International Journal of Biological Macromolecules, 2018, 112, 364-370.	3.6	28
471	Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Materials Science and Engineering C, 2018, 87, 50-59.	3.8	221
472	Facile and Green Approach To Prepare Nanostructured Au@MnO ₂ and Its Applications for Catalysis and Fluorescence Sensing of Glutathione in Human Blood. ACS Sustainable Chemistry and Engineering, 2018, 6, 3948-3956.	3.2	56
473	Manganese(<scp>ii</scp>) enhanced fluorescent nitrogen-doped graphene quantum dots: a facile and efficient synthesis and their applications for bioimaging and detection of Hg ²⁺ ions. RSC Advances, 2018, 8, 5902-5911.	1.7	30
474	Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. Journal of Membrane Science, 2018, 553, 17-24.	4.1	166
475	Label-free fluorescence imaging of cytochrome $\langle i \rangle c \langle j \rangle$ in living systems and anti-cancer drug screening with nitrogen doped carbon quantum dots. Nanoscale, 2018, 10, 5342-5349.	2.8	65
476	Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission. Nanoscale, 2018, 10, 4189-4193.	2.8	15
477	Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Communications, 2018, 8, 137-144.	0.8	33
478	Effects of Câ€Related Dangling Bonds and Functional Groups on the Fluorescent and Electrochemiluminescent Properties of Carbonâ€Based Dots. Chemistry - A European Journal, 2018, 24, 4250-4254.	1.7	20
479	The use of S ₂ O ₈ ^{2â°'} and H ₂ O ₂ as novel specific masking agents for highly selective "turn-on―fluorescent switching recognition of CN ^{â°'} and I ^{â°'} based on Hg ²⁺ â€"graphene quantum dots. RSC Advances, 2018. 8. 1407-1417.	1.7	20

#	Article	IF	CITATIONS
480	Chemical modification of group IV graphene analogs. Science and Technology of Advanced Materials, 2018, 19, 76-100.	2.8	33
481	Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 418-424.	10.8	126
482	A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta, 2018, 181, 318-325.	2.9	126
483	Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chemistry, 2018, 20, 1383-1390.	4.6	250
484	Graphene-based nanocomposites: synthesis and their theranostic applications. Journal of Drug Targeting, 2018, 26, 858-883.	2.1	51
485	Preparation of nitrogen-doped carbon using graphene Quantum dots-chitosan as the precursor and its supercapacitive behaviors. International Journal of Biological Macromolecules, 2018, 112, 561-566.	3.6	23
486	Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosensors and Bioelectronics, 2018, 107, 153-162.	5.3	92
487	Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5750-5759.	4.0	201
488	Synthesis and applications of graphene quantum dots: a review. Nanotechnology Reviews, 2018, 7, 157-185.	2.6	260
489	Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Communications, 2018, 8, 132-136.	0.8	18
490	Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate. Luminescence, 2018, 33, 552-558.	1.5	9
491	Photoelectrochemical biosensor for HEN1 RNA methyltransferase detection using peroxidase mimics PtCu NFs and poly(U) polymerase-mediated RNA extension. Biosensors and Bioelectronics, 2018, 103, 32-38.	5.3	26
492	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	2.8	68
493	Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 4726-4737.	3.8	80
494	L-tyrosine methyl ester-stabilized carbon dots as fluorescent probes for the assays of biothiols. Analytica Chimica Acta, 2018, 1006, 83-89.	2.6	21
495	Turn-on fluorescent assay based on purification system via magnetic separation for highly sensitive probing of adenosine. Sensors and Actuators B: Chemical, 2018, 259, 855-861.	4.0	15
496	Graphene Quantumâ€Dotâ€Modified Hexagonal Tubular Carbon Nitride for Visibleâ€Light Photocatalytic Hydrogen Evolution. ChemCatChem, 2018, 10, 1330-1335.	1.8	95
497	Luminescence of lemonâ€derived carbon quantum dot and its potential application in luminescent probe for detection of Mo ⁶⁺ ions. Luminescence, 2018, 33, 545-551.	1.5	36

#	Article	IF	CITATIONS
498	Simultaneous voltammetric determination of guanine and adenine by using a glassy carbon electrode modified with a composite consisting of carbon quantum dots and overoxidized poly(2-aminopyridine). Mikrochimica Acta, 2018, 185, 107.	2.5	15
499	A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Advances, 2018, 8, 1820-1825.	1.7	94
500	Aptamer basedÂelectrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Mikrochimica Acta, 2018, 185, 85.	2.5	24
501	Liquid crystalline multilayer graphene quantum dots with hackelite structures: Characterisation and application for sensing nitrophenols. Sensors and Actuators B: Chemical, 2018, 268, 100-107.	4.0	10
502	Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC - Trends in Analytical Chemistry, 2018, 105, 37-51.	5.8	211
503	Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydrate Polymers, 2018, 195, 453-459.	5.1	90
504	Enhanced performance of porphyrin sensitized solar cell based on graphene quantum dots decorated photoanodes. Optical Materials, 2018, 79, 435-445.	1.7	15
505	Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Optical Materials, 2018, 80, 110-119.	1.7	30
506	NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities. Carbon, 2018, 134, 153-162.	5.4	175
507	Immobilization of ultraviolet absorbers on graphene oxide nanosheets to be utilized as a multifunctional hybrid UV-blocker: A combined density functional theory and practical application. Applied Surface Science, 2018, 447, 135-151.	3.1	18
508	Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Analytica Chimica Acta, 2018, 1023, 115-120.	2.6	69
509	Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceramics International, 2018, 44, 11828-11834.	2.3	87
510	Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation. Chemical Engineering and Processing: Process Intensification, 2018, 126, 222-231.	1.8	66
511	GSH-doped GQDs using citric acid rich-lime oil extract for highly selective and sensitive determination and discrimination of Fe ³⁺ and Fe ²⁺ in the presence of H ₂ O ₂ by a fluorescence "turn-off―sensor. RSC Advances, 2018, 8, 10148-10157.	1.7	22
512	Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012139.	0.3	24
513	Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics. RSC Advances, 2018, 8, 11446-11454.	1.7	84
514	Preparation and biodistribution of 131I-labeled graphene quantum dots. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 685-690.	0.7	14
515	Enhancement of graphene quantum dots based applications via optimum physical chemistry: A review. Biocybernetics and Biomedical Engineering, 2018, 38, 481-497.	3.3	27

#	Article	IF	CITATIONS
516	Ratiometric system based on graphene quantum dots and Eu 3+ for selective detection of tetracyclines. Analytica Chimica Acta, 2018, 1022, 131-137.	2.6	133
517	Selective and sensitive determination of the antidote of heparin using Ag-GQDs by optical methods. Analytical Methods, 2018, 10, 1999-2006.	1.3	7
518	Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 2018, 19, 201-218.	6.2	536
519	Supramolecular nanodots derived from citric acid and beta-amines with high quantum yield and sensitive photoluminescence. Optical Materials, 2018, 77, 48-54.	1.7	19
520	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
522	A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosensors and Bioelectronics, 2018, 99, 28-33.	5.3	122
523	Synthesis of porous materials of high mechanical strength with graphene quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 100-107.	2.3	10
524	A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosensors and Bioelectronics, 2018, 101, 123-128.	5.3	99
525	Facile preparation of zinc oxide nanorods surrounded by graphene quantum dots both synthesized via separate pyrolysis procedures for photocatalyst application. Materials Research Bulletin, 2018, 98, 148-154.	2.7	33
526	Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: All carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance. Tribology International, 2018, 118, 373-380.	3.0	104
527	Graphene quantum dots decorated rutile TiO2 nanoflowers for water splitting application. Journal of Energy Chemistry, 2018, 27, 306-310.	7.1	40
528	Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A. Analytica Chimica Acta, 2018, 1000, 265-272.	2.6	90
529	Preparation of blue-color-emitting graphene quantum dots and their in vitro and in vivo toxicity evaluation. Journal of Industrial and Engineering Chemistry, 2018, 57, 171-180.	2.9	10
530	NH2-rich Carbon Quantum Dots: A protein-responsive probe for detection and identification. Sensors and Actuators B: Chemical, 2018, 255, 2725-2732.	4.0	48
531	An electrochemical method for evaluation the cytotoxicity of fluorene on reduced graphene oxide quantum dots modified electrode. Sensors and Actuators B: Chemical, 2018, 255, 2595-2600.	4.0	17
532	Water-soluble pillar[6]arene functionalized nitrogen-doped carbon quantum dots with excellent supramolecular recognition capability and superior electrochemical sensing performance towards TNT. Sensors and Actuators B: Chemical, 2018, 257, 362-371.	4.0	72
533	Impact of size-controlled p-phenylenediamine (PPDA)-functionalized graphene oxide nanosheets on the GO-PPDA/Epoxy anti-corrosion, interfacial interactions and mechanical properties enhancement: Experimental and quantum mechanics investigations. Chemical Engineering Journal, 2018, 335, 737-755.	6.6	140
534	Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sensors and Actuators B: Chemical, 2018, 258, 88-97.	4.0	90

#	ARTICLE	IF	CITATIONS
535	Colorimetric and fluorescent dual-mode sensing of alkaline phosphatase activity in L-02 cells and its application in living cell imaging based on in-situ growth of silver nanoparticles on graphene quantum dots. Sensors and Actuators B: Chemical, 2018, 258, 461-469.	4.0	36
536	Graphene quantum dots enhance UV photoresponsivity and surface-related sensing speed of zinc oxide nanorod thin films. Materials and Design, 2018, 140, 222-230.	3.3	37
537	Towards high-powered remote WLED based on flexible white-luminescent polymer composite films containing S, N co-doped graphene quantum dots. Chemical Engineering Journal, 2018, 336, 406-415.	6.6	54
538	Electrochemiluminescence of nitrogen- and sulfur-doped graphene quantum dots. Carbon, 2018, 129, 45-53.	5.4	177
539	Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale, 2018, 10, 158-166.	2.8	132
540	Carbon dots with multi-functional groups and the application in proton exchange membranes. Electrochimica Acta, 2018, 260, 92-100.	2.6	29
541	Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. Journal of Materials Science, 2018, 53, 3876-3888.	1.7	14
542	Recent Advances in the Cancer Bioimaging with Graphene Quantum Dots. Current Medicinal Chemistry, 2018, 25, 2876-2893.	1.2	43
543	Concentrated solar irradiation protocols for the efficient synthesis of tri-color emissive carbon dots and photophysical studies. Journal of Materials Chemistry C, 2018, 6, 13013-13022.	2.7	33
544	Construction and comparison of BSA-stabilized functionalized GQD composite fluorescent probes for selective trypsin detection. New Journal of Chemistry, 2018, 42, 17718-17724.	1.4	8
545	Ultra-highly fluorescentÂN doped carbon dots-CdTe QDs nanohybrids with excitation-independent emission in the blue-violet region. RSC Advances, 2018, 8, 35700-35705.	1.7	4
546	Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots. RSC Advances, 2018, 8, 34839-34847.	1.7	16
547	Continuous hydrothermal flow synthesis of graphene quantum dots. Reaction Chemistry and Engineering, 2018, 3, 949-958.	1.9	27
548	Towards Understanding Citric Acid Derived High Quantum Yield Molecular Fluorophores: From Carbon Dots to Spherical Organic Nanocrystals. Journal of Material Science & Engineering, 2018, 07, .	0.2	0
550	Structural and optical properties of upconversion CulnS/ZnS quantum dots. Optical Materials, 2018, 86, 545-549.	1.7	29
551	Preparation of N-doped carbon dots based on starch and their application in white LED. Optical Materials, 2018, 86, 530-536.	1.7	35
552	Graphene quantum dots from chemistry to applications. Materials Today Chemistry, 2018, 10, 221-258.	1.7	539
553	Graphene Oxide Quantum Dot Alters Amyloidogenicity of Hen Egg White Lysozyme via Modulation of Protein Surface Character. Langmuir, 2018, 34, 15283-15292.	1.6	20

#	Article	IF	CITATIONS
554	Facile synthetic Photoluminescent Graphene Quantum dots encapsulated \hat{l}^2 -cyclodextrin drug carrier system for the management of macular degeneration: Detailed analytical and biological investigations. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 244-249.	1.7	17
555	Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 2018, 13, 175.	3.1	104
557	Size Fractionation of Fluorescent Graphene Quantum Dots Using a Cross-Flow Membrane Filtration System. Nanomaterials, 2018, 8, 959.	1.9	7
558	A voltammetric assay for microRNA-25 based on the use of amino-functionalized graphene quantum dots and ss- and ds-DNAs as gene probes. Mikrochimica Acta, 2018, 185, 503.	2.5	21
559	Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chemical Engineering Research and Design, 2018, 139, 321-334.	2.7	84
560	Nitrogen-Doped Graphene Quantum Dot-Combined Sodium 10-Amino-2-methoxyundecanoate: Studies of Proinflammatory Gene Expression and Live Cell Imaging. ACS Omega, 2018, 3, 11982-11992.	1.6	16
561	<i>$N>-Carbamoylmaleimide-treated carbon dots: stabilizing the electrochemical intermediate and extending it for the ultrasensitive detection of organophosphate pesticides. Nanoscale, 2018, 10, 19390-19398.$</i>	2.8	27
562	Role of graphene quantum dots synthesized through pyrolysis in the release behavior of temperature responsive poly (N,N-diethyl acrylamide) hydrogel loaded with doxorubicin. International Journal of Polymer Analysis and Characterization, 2018, 23, 606-620.	0.9	8
563	Simultaneous Determination of Hydroquinone and Catechol using Carbon Glass Electrode Modified with Graphene Quantum Dots. International Journal of Electrochemical Science, 2018, 13, 11250-11262.	0.5	14
564	A Highly Sensitive Dopamine Sensor Based on Graphene Quantum Dots Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2018, 13, 5723-5735.	0.5	25
565	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon Do	4.0	79
566	Spectroscopic and Isothermal Titration Calorimetry Studies of Binding Interactions Between Carbon Nanodots and Serum Albumins. Journal of Solution Chemistry, 2018, 47, 1438-1448.	0.6	8
568	Surface state selective tunable emission of graphene quantum dots exhibiting novel thermal quenching characteristics. Carbon, 2018, 140, 394-403.	5.4	30
569	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
570	Water-soluble, lignin-derived carbon dots with high fluorescent emissions and their applications in bioimaging. Journal of Industrial and Engineering Chemistry, 2018, 66, 387-395.	2.9	50
571	Tailoring Blue-Green Double Emissions in Carbon Quantum Dots via Co-Doping Engineering by Competition Mechanism between Chlorine-Related States and Conjugated π-Domains. Nanomaterials, 2018, 8, 635.	1.9	16
572	High-Performance Ultraviolet Photodetector Based on Graphene Quantum Dots Decorated ZnO Nanorods/GaN Film Isotype Heterojunctions. Nanoscale Research Letters, 2018, 13, 261.	3.1	50
573	Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. International Journal of Nanomedicine, 2018, Volume 13, 4807-4815.	3.3	73

#	Article	IF	CITATIONS
574	Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon, 2018, 140, 616-623.	5.4	70
575	Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin, 2018, 108, 250-254.	2.7	53
576	On-site chemosensing and quantification of Cr(VI) in industrial wastewater using one-step synthesized fluorescent carbon quantum dots. Sensors and Actuators B: Chemical, 2018, 277, 30-38.	4.0	33
577	Bottomâ€Up Synthesis of Carbon Quantum Dots With High Performance Photo―and Electroluminescence. Particle and Particle Systems Characterization, 2018, 35, 1800080.	1.2	23
578	A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions. ACS Energy Letters, 2018, 3, 1443-1449.	8.8	124
579	Tricolor White-Light-Emitting Carbon Dots with Multiple-Cores@Shell Structure for WLED Application. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19796-19805.	4.0	88
580	Effective Determination of Zn ²⁺ , Mn ²⁺ , and Cu ²⁺ Simultaneously By Using Dualâ€Emissive Carbon Dots as Colorimetric Fluorescent Probe. European Journal of Inorganic Chemistry, 2018, 2018, 3418-3426.	1.0	24
581	Self-assembly of graphene quantum dots into hydrogels and cryogels: Dynamic light scattering, UV–Vis spectroscopy and structural investigations. Journal of Molecular Liquids, 2018, 265, 172-180.	2.3	29
582	Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 214-221.	2.0	29
583	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	1.0	49
584	Optimization of graphene quantum dots by chemical exfoliation from graphite powders and carbon nanotubes. Materials Chemistry and Physics, 2018, 215, 104-111.	2.0	23
585	Solvents effect on photoluminescence of nitrogen incorporated graphene oxide using light emitting diode as an excitation source. AIP Conference Proceedings, 2018, , .	0.3	0
586	Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots. Applied Surface Science, 2018, 456, 835-844.	3.1	28
587	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	4.6	166
588	Generation of Vanadium Oxide Quantum Dots with Distinct Fluorescence and Antibacterial Activity via a Roomâ€Temperature Agitation Strategy. ChemNanoMat, 2018, 4, 1048-1053.	1.5	20
589	Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine. Journal of Molecular Liquids, 2018, 266, 548-556.	2.3	51
590	Electrochemical biosensing using N-GQDs: Recent advances in analytical approach. TrAC - Trends in Analytical Chemistry, 2018, 105, 484-491.	5.8	46
591	Luminescence phenomena of carbon dots derived from citric acid and urea – a molecular insight. Nanoscale, 2018, 10, 13889-13894.	2.8	193

#	ARTICLE	IF	CITATIONS
592	Optical study on single-layer photoluminescent graphene oxide nanosheets through a simple and green hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 595-601.	2.0	17
593	Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of Membrane Science, 2018, 563, 903-913.	4.1	55
594	Green synthesis of fluorescent carbon dots from <i>Borassus flabellifer</i> flowers for label-free highly selective and sensitive detection of Fe ³⁺ ions. New Journal of Chemistry, 2018, 42, 13297-13307.	1.4	72
595	Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, 2018, 6, 7944-7970.	2.7	274
596	Facile synthesis of nitrogen and sulfur co-doped carbon dots for multiple sensing capacities: alkaline fluorescence enhancement effect, temperature sensing, and selective detection of Fe ³⁺ ions. New Journal of Chemistry, 2018, 42, 13147-13156.	1.4	26
597	Energy and environmental applications of graphene and its derivatives. , 2018, , 105-129.		3
598	High performance Fe and N-codoped graphene quantum dot supported Pd3Co catalyst with synergistically improved oxygen reduction activity and great methanol tolerance. Solid State Sciences, 2018, 83, 152-160.	1.5	15
599	Citrateâ€Based Fluorescent Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800532.	3.9	51
600	The efficient exfoliation and dispersion of hBN nanoplatelets: advanced application to waterborne anticorrosion coatings. New Journal of Chemistry, 2018, 42, 14433-14443.	1.4	42
601	Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale, 2018, 10, 14824-14829.	2.8	64
602	Tuning the functional groups of carbon quantum dots in thin film nanocomposite membranes for nanofiltration. Journal of Membrane Science, 2018, 564, 394-403.	4.1	161
603	A fluorometric and colorimetric dual-mode sensor based on nitrogen and iron co-doped graphene quantum dots for detection of ferric ions in biological fluids and cellular imaging. New Journal of Chemistry, 2018, 42, 14751-14756.	1.4	34
604	Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots. Journal of CO2 Utilization, 2018, 26, 70-79.	3.3	75
605	Electrocatalytic activity of a push-pull phthalocyanine in the presence of reduced and amino functionalized graphene quantum dots towards the electrooxidation of hydrazine. Journal of Electroanalytical Chemistry, 2018, 820, 146-160.	1.9	28
606	A novel thiol-ene click reaction for preparation of graphene quantum dots and their potential for fluorescence imaging. Materials Science and Engineering C, 2018, 91, 631-637.	3.8	17
607	On-chip analysis of carbon dots effect on yeast replicative lifespan. Analytica Chimica Acta, 2018, 1033, 119-127.	2.6	34
608	Graphene Quantum Dot–Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18192-18201.	4.0	48
609	A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431	- 4 rgΒT /Ον	rerlock 10 Tf

#	Article	IF	CITATIONS
610	Carbon Dot with pH Independent Near-Unity Photoluminescence Quantum Yield in an Aqueous Medium: Electrostatics-Induced FĶrster Resonance Energy Transfer at Submicromolar Concentration. Journal of Physical Chemistry Letters, 2018, 9, 5092-5099.	2.1	30
611	Metal ion sensing and light activated antimicrobial activity of aloe-vera derived carbon dots. Journal of Materials Science: Materials in Electronics, 2018, 29, 17254-17261.	1.1	35
612	Rapid colorimetric flow injection sensing of hypochlorite by functionalized graphene quantum dots. Sensors and Actuators B: Chemical, 2018, 275, 339-349.	4.0	14
613	Electrochemically Exfoliated Carbon Quantum Dots Modified Electrodes for Detection of Dopamine Neurotransmitter. Journal of the Electrochemical Society, 2018, 165, G3112-G3119.	1.3	98
614	Nanostructured Graphene Oxide Dots: Synthesis, Characterization, Photoinduced Electron Transfer Studies, and Detection of Explosives/Biomolecules. ACS Omega, 2018, 3, 9096-9104.	1.6	22
615	Dual detection of Malation and Hg (II) by fluorescence switching of graphene quantum dots. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 308-313.	1.7	13
616	Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Applied Catalysis B: Environmental, 2018, 239, 475-484.	10.8	178
617	Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions. Nanomaterials, 2018, 8, 233.	1.9	82
618	Biomass-waste derived graphene quantum dots and their applications. Carbon, 2018, 140, 77-99.	5.4	202
619	Influence of luminescent graphene quantum dots on trypsin activity. International Journal of Nanomedicine, 2018, Volume 13, 1525-1538.	3.3	20
620	Controlled synthesis of blue luminescent graphene quantum dots from carbonized citric acid: Assessment of methodology, stability, and fluorescence in an aqueous environment. Materials Chemistry and Physics, 2018, 220, 11-22.	2.0	43
621	High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties. Journal of Colloid and Interface Science, 2018, 529, 205-213.	5.0	22
622	Utilising the interface interaction on tris(hydroxymethy)aminomethane-capped carbon dots to enhance the sensitivity and selectivity towards the detection of Co(II) ions. Sensors and Actuators B: Chemical, 2018, 273, 83-92.	4.0	18
623	Targeting N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy <i>in vitro</i> . Nanotechnology, 2018, 29, 355101.	1.3	44
624	Reversible "Off–On―Fluorescence of Zn ²⁺ -Passivated Carbon Dots: Mechanism and Potential for the Detection of EDTA and Zn ²⁺ . Langmuir, 2018, 34, 7767-7775.	1.6	69
625	Ethanol-sensitive nearly aligned ZnO nanorod thin films covered by graphene quantum dots. Materials Letters, 2018, 228, 65-67.	1.3	24
626	Graphene-based materials for application in pharmaceutical nanotechnology., 2018,, 297-329.		4
627	A ratiometric fluorescent composite nanomaterial for RNA detection based on graphene quantum dots and molecular probes. Journal of Materials Chemistry B, 2018, 6, 4380-4384.	2.9	11

#	Article	IF	CITATIONS
628	Surface functionalization of highly luminescent carbon nanodots from Dioscorea hispida with polyethylene glycol and branched polyethyleneimine and their in vitro study. Journal of King Saud University - Science, 2019, 31, 768-779.	1.6	22
629	Graphene quantum dots coated on quartz sand as efficient and lowâ€cost adsorbent for removal of Hg ²⁺ and Pb ²⁺ from aqueous solutions. Environmental Progress and Sustainable Energy, 2019, 38, S24.	1.3	21
630	Synthesis and characterization of polyaniline tailored graphene oxide quantum dot as an advance and highly crystalline carbon-based luminescent nanomaterial for fabrication of an effective anti-corrosion epoxy system on mild steel. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 369-382.	2.7	51
631	A luminescence nanosensor for Ornidazole detection using graphene quantum dots entrapped in silica molecular imprinted polymer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 430-436.	2.0	42
632	Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination. Desalination, 2019, 451, 219-230.	4.0	99
633	A novel voltammetric sensor based on graphene quantum dots-thionine/nano-porous glassy carbon electrode for detection of cisplatin as an anti-cancer drug. Sensors and Actuators B: Chemical, 2019, 299, 126975.	4.0	33
634	Covalent Functionalization of Bovine Serum Albumin with Graphene Quantum Dots for Stereospecific Molecular Recognition. Analytical Chemistry, 2019, 91, 11864-11871.	3.2	53
635	Antimicrobial Activity of Zinc Oxide–Graphene Quantum Dot Nanocomposites: Enhanced Adsorption on Bacterial Cells by Cationic Capping Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 16264-16273.	3.2	59
636	Manipulating the Optical Properties of Carbon Dots by Fineâ€Tuning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	3.6	33
637	Electric field induced tunable electrical hysteresis in poly(methyl methacrylate)/graphene oxide heterostructures. AIP Conference Proceedings, 2019, , .	0.3	3
638	Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Mikrochimica Acta, 2019, 186, 592.	2.5	69
639	Synthesis of smart graphene quantum dots: A benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Applied Surface Science, 2019, 495, 143562.	3.1	27
640	Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Optics and Laser Technology, 2019, 120, 105724.	2.2	40
641	A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics. Progress in Quantum Electronics, 2019, 68, 100226.	3.5	85
642	Development of silver nanoparticles decorated graphene quantum dots for tailored applications. AIP Conference Proceedings, 2019, , .	0.3	0
643	High-throughput Production of ZnO-MoS2-Graphene Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution. Materials, 2019, 12, 2233.	1.3	30
644	Effects of graphene quantum dots interlayer on performance of ZnO-based photodetectors. Applied Surface Science, 2019, 493, 1187-1194.	3.1	14
645	Electrochromic Behavior of Highly Stable, Flexible Electrochromic Electrode Based on Covalently Bonded Polyaniline-Graphene Quantum Dot Composite. Journal of the Electrochemical Society, 2019, 166, H502-H509.	1.3	22

#	Article	IF	CITATIONS
646	Synthesis and evaluation of highâ€temperature properties of butylated graphene oxide composite incorporated SBS (C ₄ H ₉ â€GO/SBS)â€modified asphalt. Journal of Applied Polymer Science, 2019, 136, 48231.	1.3	34
647	Graphene Quantum Dots for Optical Bioimaging. Small, 2019, 15, e1902136.	5.2	162
648	Synthesis and Study of New Luminescent Carbon Particles with High Emission Quantum Yield. Inorganic Materials: Applied Research, 2019, 10, 271-284.	0.1	5
649	Fluorescence Detection of Hydrazine Hydrate Using Carbon Nanodots Synthesized from Mandarin Rind. Applied Mechanics and Materials, 2019, 891, 71-77.	0.2	1
650	A Recyclable Nanocarbon White Emitter via the Synergy between Carbon Dots and Organic Sheet. ACS Sustainable Chemistry and Engineering, 2019, 7, 14677-14684.	3.2	3
651	Graphene quantum dot induced tunable growth of nanostructured MnCo ₂ O _{4.5} composites for high-performance supercapacitors. Sustainable Energy and Fuels, 2019, 3, 2499-2508.	2.5	46
652	Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: an experimental and theoretical investigation. Nanotechnology, 2019, 30, 435704.	1.3	88
653	Enhanced Charge Transport and Excited-State Charge-Transfer Dynamics in a Colloidal Mixture of CdTe and Graphene Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 20512-20521.	1.5	14
654	In situ synthesis process of nanographene and its characteristic. IOP Conference Series: Earth and Environmental Science, 2019, 245, 012045.	0.2	0
655	Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chemistry - A European Journal, 2019, 25, 11963-11974.	1.7	99
656	Nitrogen–Sulfur-Doped Graphene Quantum Dots with Metal Ion-Resistance for Bioimaging. ACS Applied Nano Materials, 2019, 2, 6858-6865.	2.4	40
657	Degradation Mechanism of Methylene Blue by H ₂ O ₂ and Synthesized Carbon Nanodots/Graphitic Carbon Nitride/Fe(II) Composite. Journal of Physical Chemistry C, 2019, 123, 26921-26931.	1.5	37
658	Self-Quenching Origin of Carbon Dots and the Guideline for Their Solid-State Luminescence. Journal of Physical Chemistry C, 2019, 123, 27124-27131.	1.5	36
659	Additiveâ€Free Electrophoretic Deposition of Graphene Quantum Dots Thin Films. Chemistry - A European Journal, 2019, 25, 16573-16581.	1.7	9
660	Microstructural Evolution and Corrosion Behavior of ZnNi-Graphene Oxide Composite Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5896-5913.	1.1	24
661	A novel aspect of functionalized graphene quantum dots in cytotoxicity studies. Toxicology in Vitro, 2019, 61, 104649.	1.1	28
662	Synthesis of Monodisperse Carbon Nanodots with Variable Photoluminescence Spectrum Using Polyaromatic Precursors. Technical Physics Letters, 2019, 45, 940-942.	0.2	2
663	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 2019, 6, 1901316.	5.6	760

#	Article	IF	Citations
664	Facile Synthesis of Nitrogen-Doped Carbon Quantum Dots with Chitosan for Fluorescent Detection of Fe3+. Polymers, 2019, 11, 1731.	2.0	74
665	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.	1.4	41
666	Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review. Current Pharmaceutical Design, 2019, 25, 1455-1476.	0.9	42
668	Unusual excitation wavelength tunable multiple fluorescence from organocyclo-phosphazene microspheres: Crosslinked structure-property relationship. Polymer, 2019, 185, 121942.	1.8	15
669	Green synthesized plasmonic nanostructure decorated TiO2 nanofibers for photoelectrochemical hydrogen production. Solar Energy, 2019, 193, 715-723.	2.9	14
670	Immobilization of Lipases – A Review. Part II: Carrier Materials. ChemBioEng Reviews, 2019, 6, 167-194.	2.6	48
671	Graphene Quantum Dot Embedded Hydrogel for Dissolved Iron Sensing. ChemistrySelect, 2019, 4, 9640-9646.	0.7	13
672	Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Mikrochimica Acta, 2019, 186, 67.	2.5	67
673	One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: investigation of photoluminescence properties. Materials Research Express, 2019, 6, 105615.	0.8	10
674	Poly(cyclotriphosphazeneâ€coâ€tris(4â€hydroxyphenyl)ethane) Microspheres with Intrinsic Excitation Wavelength Tunable Multicolor Photoluminescence. Macromolecular Chemistry and Physics, 2019, 220, 1900256.	1.1	10
675	Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice. Materials Science and Engineering C, 2019, 105, 110094.	3.8	45
676	Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS Nano, 2019, 13, 10366-10375.	7. 3	50
677	Quantification of protein aggregation rates and quenching effects of amylin–inhibitor complexes. Physical Chemistry Chemical Physics, 2019, 21, 20083-20094.	1.3	10
678	Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging. Analytica Chimica Acta, 2019, 1090, 133-142.	2.6	64
679	Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots. RSC Advances, 2019, 9, 28609-28617.	1.7	9
680	Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors, 2019, 19, 3850.	2.1	76
681	Experimental Evaluation of Carbon Dots Stabilized Foam for Enhanced Oil Recovery. Energy & En	2.5	35
682	Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network. Mikrochimica Acta, 2019, 186, 681.	2.5	35

#	Article	IF	CITATIONS
683	Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6503-6512.	2.4	14
684	Biodegradable blends of graphene quantum dots and thermoplastic starch with solid-state photoluminescent and conductive properties. International Journal of Biological Macromolecules, 2019, 139, 367-376.	3.6	20
685	An Unexpected Transformation of Organic Solvents into 2D Fluorescent Quantum Dots during Ultrasonication-Assisted Liquid-Phase Exfoliation. Journal of Physical Chemistry C, 2019, 123, 25412-25421.	1.5	21
686	Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon, 2019, 155, 243-249.	5.4	11
687	Development of a novel SBA-15 templated mesoporous reduced graphitic oxide composite for high performance supercapacitors and fabrication of its device by an electrospinning technique. New Journal of Chemistry, 2019, 43, 16017-16032.	1.4	6
688	Modulation of Surface Energy Transfer Cascade for Reversible Photoluminescence pH Sensing. Chemistry of Materials, 2019, 31, 8121-8128.	3.2	17
689	Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning. Scientific Reports, 2019, 9, 14004.	1.6	226
690	Preparation of multicolored carbon quantum dots using HNO ₃ /HClO ₄ oxidation of graphitized carbon. Journal of Materials Research, 2019, 34, 3428-3438.	1.2	26
691	Photoluminescence enhancement <i>via</i> microwave irradiation of carbon quantum dots derived from solvothermal synthesis of <scp>l</scp> -arginine. New Journal of Chemistry, 2019, 43, 689-695.	1.4	40
692	Facile preparation of N,S-graphene oxide nanosheets as a fluorescence "off–on―sensing platform for sensitive detection of biothiols. New Journal of Chemistry, 2019, 43, 2790-2796.	1.4	5
693	N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imaging. Sensors and Actuators B: Chemical, 2019, 286, 77-85.	4.0	68
694	Carbon Quantum Dots in Nanobiotechnology. Advanced Structured Materials, 2019, , 145-179.	0.3	17
695	Full-color carbon dots with multiple red-emission tuning: on/off sensors, in vitro and in vivo multicolor bioimaging. Journal of Materials Science, 2019, 54, 6815-6825.	1.7	42
696	Technical imprint of polymer nanocomposite comprising graphene quantum dot. Polymer-Plastics Technology and Materials, 2019, 58, 597-617.	0.6	5
697	Graphene Quantum Dots Alter Proliferation and Meiosis of Germ Cells Only in Genetic Females of Japanese Medaka during Early Embryonic Development. ACS Applied Bio Materials, 2019, 2, 737-746.	2.3	2
698	Carbon dots decorated graphene oxide nanosheets prepared by a novel technique with enhanced nonlinear optical properties. AIP Advances, 2019, 9, 015219.	0.6	6
699	Entacapone detection by a GOQDs-molecularly imprinted silica fluorescent chemical nanosensor. Analytical and Bioanalytical Chemistry, 2019, 411, 1075-1084.	1.9	12
700	Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, 2019, , .	0.3	10

#	Article	IF	Citations
701	Functionalization of graphene quantum dots with antimorphine: Design of selective nanosensor for detection of morphine. Materials Letters, 2019, 241, 206-209.	1.3	33
702	Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution <i>via</i> RP-HPLC. Analytical Methods, 2019, 11, 760-766.	1.3	14
703	Interfacial engineering of carbon dots with benzenediboronic acid for fluorescent biosensing. Nanoscale Advances, 2019, 1, 765-771.	2.2	18
704	Highly selective naked eye detection of vitamin B1 in the presence of other vitamins using graphene quantum dots capped gold nanoparticles. New Journal of Chemistry, 2019, 43, 2111-2117.	1.4	19
705	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019 , 11 , 1475 - 1504 .	2.8	134
706	Enhancing electron transport <i>via</i> graphene quantum dot/SnO ₂ composites for efficient and durable flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1878-1888.	5.2	67
707	Tris(2,2'â€bipyridyl)ruthenium(II)â€Nanomaterial Coâ€Reactant Electrochemiluminescence. ChemElectroChem, 2019, 6, 3878-3884.	1.7	20
708	Carbon Quantum Dot Assisted Adsorption of Graphene Oxide to the Oil–Water Interface for Copper Sensing Emulsions. Advanced Materials Interfaces, 2019, 6, 1900392.	1.9	9
709	Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity. Journal of Colloid and Interface Science, 2019, 553, 228-238.	5.0	41
710	Carbon Nanodots Modified with Catechol–Borane Moieties for pH-Stimulated Doxorubicin Delivery: Toward Nuclear Targeting. ACS Applied Nano Materials, 2019, 2, 4333-4341.	2.4	14
711	A green and effective corrosion inhibitor of functionalized carbon dots. Journal of Materials Science and Technology, 2019, 35, 2243-2253.	5.6	115
712	Separating graphene quantum dots by lateral size through gel column chromatography. RSC Advances, 2019, 9, 18898-18901.	1.7	8
713	Selective photoluminescence enhancement of red emitted surface modified poly(p-phenylenediamine) dots: An ultra-sensitive anion photoluminescence sensor for Fâ ⁻² in vitro. Synthetic Metals, 2019, 254, 29-33.	2.1	0
714	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
715	Preparation of Core–Shell CQD@PANI Nanoparticles and Their Electrochemical Properties. ACS Applied Materials & Diterfaces, 2019, 11, 22621-22627.	4.0	26
716	High-Performance Asymmetric Supercapacitor Based on Ternary MnO2-Polyaniline-Reduced Graphene Oxide Quantum Dots Nanocomposite Electrode. Journal of Electronic Materials, 2019, 48, 5088-5098.	1.0	13
717	Nanocomposite of hydrophobic cellulose aerogel/graphene quantum dot/Pd: synthesis, characterization, and catalytic application. RSC Advances, 2019, 9, 17129-17136.	1.7	24
718	An LTCC monolithic microreactor for the synthesis of carbon dots with photoluminescence imaging of the reaction progress. Sensors and Actuators B: Chemical, 2019, 296, 126613.	4.0	30

#	Article	IF	CITATIONS
719	White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor. Journal of Colloid and Interface Science, 2019, 553, 177-185.	5.0	75
720	One-pot pyrolysis preparation of carbon dots as eco-friendly nanoadditives of water-based lubricants. Carbon, 2019, 152, 511-520.	5.4	62
721	Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage. Electrochimica Acta, 2019, 318, 228-235.	2.6	33
722	Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 025005.	0.7	23
723	The Synthesis and Application of Nitrogen-Doped Graphene Quantum Dots on Brilliant Blue Detection. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	15
724	Carbon Dot-Mediated Capillary Electrophoresis Separations of Metallated and Demetallated Forms of Transferrin Protein. Molecules, 2019, 24, 1916.	1.7	13
725	Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. TrAC - Trends in Analytical Chemistry, 2019, 116, 109-121.	5.8	66
726	Graphene quantum dot based micromotors: a size matter. Chemical Communications, 2019, 55, 6795-6798.	2.2	18
727	Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect, 2019, 4, 5619-5627.	0.7	13
728	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
729	Hydrothermal synthesis of a graphene/magnetite/montmorillonite nanocomposite and its ultrasonically assisted methylene blue adsorption. Journal of Materials Science, 2019, 54, 11037-11055.	1.7	41
730	Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact. Tribology Letters, 2019, 67, 1.	1.2	37
731	Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer's drugs: spectroscopic insights. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-16.	2.0	12
732	Pristine and Graphene-Quantum-Dots-Decorated Spinel Nickel Aluminate for Water Remediation from Dyes and Toxic Pollutants. Water (Switzerland), 2019, 11, 953.	1.2	24
733	Chemical structure and in vitro cellular uptake of luminescent carbon quantum dots prepared by solvothermal and microwave assisted techniques. Journal of Colloid and Interface Science, 2019, 549, 150-161.	5.0	26
734	Synthesis of photoluminescent carbon dots and its effect on chondrocytes for knee joint therapy applications. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1321-1325.	1.9	9
735	Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants. Catalysis Communications, 2019, 126, 35-39.	1.6	12
736	Water-sensitive phase-transition of a carbon dot–calcium carbonate composite for moisture detection in organic solvents. Analytical Methods, 2019, 11, 2634-2638.	1.3	7

#	Article	IF	CITATIONS
737	Recent Advancements and New Perspectives of Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 1-32.	0.4	1
738	Superior suppression hydrodehalogenation performance of Pd nanoparticle decorated with metalloid-promoter GQDs for the selective hydrogenation of halonitrobenzenes. Journal of Materials Science, 2019, 54, 10153-10167.	1.7	11
739	Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination, 2019, 464, 94-104.	4.0	64
740	Graphene Nanobuds: A New Second-Generation Phosgene Sensor with Ultralow Detection Limit in Aqueous Solution. ACS Applied Materials & Solution. Solution. ACS Applied Materials & Solution. Solution. ACS Applied Materials & Solution. So	4.0	27
741	Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials, 2019, 9, 634.	1.9	210
742	Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
743	Nonlinear optical responses of carbazole-substituted phthalocyanines conjugated to graphene quantum dots and in thin films. Journal of Luminescence, 2019, 213, 88-97.	1.5	20
744	Fast photogenerated electron transfer in N-GQDs/PTI/ZnO-QDs ternary heterostructured nanosheets for photocatalytic H2 evolution under visible light. Applied Surface Science, 2019, 485, 361-367.	3.1	12
745	<i>An in situ</i> formed graphene oxide–polyacrylic acid composite cage on silicon microparticles for lithium ion batteries <i>via</i> an esterification reaction. Journal of Materials Chemistry A, 2019, 7, 12763-12772.	5.2	31
746	Selective, Sensitive and Label-Free Detection of Fe3+ Ion in Tap Water Using Highly Fluorescent Graphene Quantum Dots. Journal of Fluorescence, 2019, 29, 541-548.	1.3	16
747	DNA supported graphene quantum dots for Ag ion sensing. Nanotechnology, 2019, 30, 255501.	1.3	21
748	Hot-injection strategy for 1-min synthesis of carbon dots from oxygen-containing organic solvents: Toward fluorescence sensing of hemoglobin. Dyes and Pigments, 2019, 165, 429-435.	2.0	24
749	Formation of N-heterocyclic carbon quantum dots and their energy- and electron-transfer properties in photocatalysis. Materials Research Express, 2019, 6, 065023.	0.8	3
750	Graphene Quantum Dots in Electrochemical Sensors/Biosensors. Current Analytical Chemistry, 2019, 15, 103-123.	0.6	87
751	Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Advanced Materials, 2019, 31, e1808283.	11,1	603
752	Low-temperature synthesis of graphene derivatives: mechanism and characterization. Chemical Papers, 2019, 73, 1997-2006.	1.0	6
753	Synthesis of Carbon Quantum Dot Nanoparticles Derived from Byproducts in Bio-Refinery Process for Cell Imaging and In Vivo Bioimaging. Nanomaterials, 2019, 9, 387.	1.9	128
754	Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications. Electrochimica Acta, 2019, 305, 278-284.	2.6	30

#	Article	IF	CITATIONS
755	Electrocatalytic Activity of Asymmetrical Cobalt Phthalocyanines in the Presence of N Doped Graphene Quantum Dots: The Pushâ€pull Effects of Substituents. Electroanalysis, 2019, 31, 891-904.	1.5	20
756	Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher. Mikrochimica Acta, 2019, 186, 276.	2.5	16
757	Fabrication of graphene-based electrochemical capacitors through reactive inverse matrix assisted pulsed laser evaporation. Applied Surface Science, 2019, 484, 245-256.	3.1	16
758	Determination of uranium in environmental sample by nanosensor graphene quantum dots. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 757-763.	0.7	13
759	Synthesis of green fluorescent carbon materials using byproducts of the sulfite-pulping procedure residue for live cell imaging and Ag+ ion determination. Materials Science and Engineering C, 2019, 102, 917-922.	3.8	11
760	Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods. Talanta, 2019, 201, 90-95.	2.9	30
761	Ultrasensitive graphene quantum dots-based catalytic hairpin assembly amplification resonance light scattering assay for p53 mutant DNA detection. Sensors and Actuators B: Chemical, 2019, 291, 42-47.	4.0	26
762	An "off-on―fluorescent sensor for copper ion using graphene quantum dots based on oxidation of l-cysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 320-325.	2.0	17
763	Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS Sensors, 2019, 4, 645-653.	4.0	23
764	A Practical Guide to Prepare and Synthetically Modify Graphene Quantum Dots. Advanced Functional Materials, 2019, 29, 1808740.	7.8	81
765	Graphene Quantum Dots Modified Screenâ€printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. Electroanalysis, 2019, 31, 838-843.	1.5	27
766	Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. Journal of Applied Electrochemistry, 2019, 49, 423-432.	1.5	41
767	Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings. Journal of Adhesion Science and Technology, 2019, 33, 834-860.	1.4	48
768	Graphene quantum dots as nanoprobes for fluorescent detection of propofol in emulsions. Royal Society Open Science, 2019, 6, 181753.	1.1	25
769	Polyaniline-Derived Nitrogen-Doped Graphene Quantum Dots for the Ultratrace Level Electrochemical Detection of Trinitrophenol and the Effective Differentiation of Nitroaromatics: Structure Matters. ACS Sustainable Chemistry and Engineering, 2019, 7, 6732-6743.	3.2	63
770	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	2.8	301
771	Influence of Group Modification at the Edges of Carbon Quantum Dots on Fluorescent Emission. Nanoscale Research Letters, 2019, 14, 241.	3.1	49
772	Facile Synthesis of Water-Soluble, Highly-Fluorescent Graphene Quantum Dots from Graphene Oxide Reduction for Efficient Cell Labelling. Journal of Carbon Research, 2019, 5, 77.	1.4	8

#	Article	IF	CITATIONS
773	A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 251, 114455.	1.7	36
774	Facile Approach To Synthesize Nitrogen- and Oxygen-Rich Carbon Quantum Dots for pH Sensor, Fluorescent Indicator, and Invisible Ink Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 19669-19678.	3.2	55
775	pH-Dependent photoluminescence "switch-on―nanosensors composed of silver nanoparticles and nitrogen and sulphur co-doped carbon dots for discriminative detection of biothiols. Analyst, The, 2019, 144, 7057-7063.	1.7	10
776	Lignite-derived carbon quantum dot/TiO2 heterostructure nanocomposites: photoinduced charge transfer properties and enhanced visible light photocatalytic activity. New Journal of Chemistry, 2019, 43, 18355-18368.	1.4	28
777	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
778	Highly Photoluminescent Carbon Dots Derived from Discarded Chewing Gum: toward Multiple Sensing of pH, Ferric Ion, and Adenosine Triphosphate. ChemistrySelect, 2019, 4, 12807-12814.	0.7	14
779	GQDs/PEDOT Bilayer Films Modified Electrode as a Novel Electrochemical Sensing Platform for Rutin Detection. International Journal of Electrochemical Science, 2019, 14, 11000-11011.	0.5	11
780	Fabrication of graphene quantum dots/chitosan composite film and its catalytic reduction for 4-nitrophenol. Ferroelectrics, 2019, 548, 124-132.	0.3	2
781	Synthesis and characterization of graphene quantum dots. Physical Sciences Reviews, 2019, 5, .	0.8	9
782	Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon, 2019, 5, e02940.	1.4	51
783	Hydrochromic carbon dots as smart sensors for water sensing in organic solvents. Nanoscale Advances, 2019, 1, 4258-4267.	2.2	36
784	An efficient flexible graphene-based light-emitting device. Nanoscale Advances, 2019, 1, 4745-4754.	2.2	22
785	Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Applied Surface Science, 2019, 463, 283-291.	3.1	162
786	Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 448-453.	2.0	29
787	Chemical Interaction in Nitrogenâ€Doped Graphene Quantum Dots/Graphitic Carbon Nitride Heterostructures with Enhanced Photocatalytic H ₂ Evolution. Energy Technology, 2019, 7, 1800589.	1.8	32
788	Fluorescent sensor for indirect measurement of methyl parathion based on alkaline-induced hydrolysis using N-doped carbon dots. Talanta, 2019, 192, 368-373.	2.9	54
789	Enhancement of Dyeâ€sensitized Solar Cells Efficiency Using Graphene Quantum Dots as Photoanode. Bulletin of the Korean Chemical Society, 2019, 40, 56-61.	1.0	31
790	Enhanced removal and detection of benzo[a]pyrene in environmental water samples using carbon dots-modified magnetic nanocomposites. Ecotoxicology and Environmental Safety, 2019, 170, 383-390.	2.9	25

#	Article	IF	CITATIONS
791	Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchemical Journal, 2019, 145, 1050-1057.	2.3	36
792	l-tryptophan adsorption differentially changes the optical behaviour of pseudo-enantiomeric cysteine-functionalized quantum dots: Towards chiral fluorescent biosensors. Sensing and Bio-Sensing Research, 2019, 22, 100251.	2.2	12
793	Multi-fluorescent cationic carbon dots for solid-state fingerprinting. Journal of Luminescence, 2019, 208, 428-436.	1.5	25
794	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
795	Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose, 2019, 26, 2363-2373.	2.4	27
796	Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst. Diamond and Related Materials, 2019, 91, 64-73.	1.8	41
797	Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecules, 2019, 122, 954-961.	3.6	92
798	Synthesis of novel organic-inorganic hybrid fluorescent microspheres and their applications as Fe(III), Hg(II) and biothiols probes. Talanta, 2019, 195, 713-719.	2.9	25
799	Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. International Journal of Biological Macromolecules, 2019, 123, 389-397.	3.6	99
800	Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the "on-off-on―fluorescence principle. Applied Surface Science, 2019, 469, 911-916.	3.1	102
801	A fluorescent aptamer/carbon dots based assay for Cytochrome c protein detection as a biomarker of cell apoptosis. Methods and Applications in Fluorescence, 2019, 7, 015005.	1.1	17
802	Electrochemiluminescence sensor for pentoxifylline detection using Au nanoclusters@graphene quantum dots as an amplified electrochemiluminescence luminophore. Sensors and Actuators B: Chemical, 2019, 282, 927-935.	4.0	33
803	<i>Citrus limetta</i> Organic Waste Recycled Carbon Nanolights: Photoelectro Catalytic, Sensing, and Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 502-512.	3.2	33
804	Applicability of AuNPs@N-GQDs nanocomposite in the modeling of the amplified electrochemical lbuprofen aptasensing assay by monitoring of riboflavin. Bioelectrochemistry, 2019, 126, 38-47.	2.4	35
805	Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation. Journal of Membrane Science, 2019, 572, 504-511.	4.1	69
806	Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence †turn-off†sensor probe for selective detection of Cu2+. Applied Surface Science, 2019, 476, 468-480.	3.1	165
807	Separation of Spectroscopically Uniform Nanographenes. Chemistry - an Asian Journal, 2019, 14, 1786-1791.	1.7	10
808	Surface Engineering of Carbon Nanodots (C-Dots) for Biomedical Applications. , 2019, , 137-188.		8

#	Article	IF	CITATIONS
809	Fluorescent Graphene Quantum Dots for the Determination of Metal Ions., 2019,, 215-239.		1
810	Graphene Quantum Dots-Doped Thin Film Nanocomposite Polyimide Membranes with Enhanced Solvent Resistance for Solvent-Resistant Nanofiltration. ACS Applied Materials & Interfaces, 2019, 11, 6527-6540.	4.0	99
811	Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane. Journal of Membrane Science, 2019, 576, 36-47.	4.1	43
812	Bismuth vanadate/graphene quantum dot: A new nanocomposite for photoelectrochemical determination of dopamine. Sensors and Actuators B: Chemical, 2019, 285, 248-253.	4.0	45
813	Detection of hydroquinone with a novel fluorescence probe based on the enzymatic reaction of graphite phase carbon nitride quantum dots. Talanta, 2019, 194, 493-500.	2.9	29
814	Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives. , 2019, , 77-107.		6
815	Production and properties of top-down and bottom-up graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 315-324.	2.3	23
816	Highly photoluminescent label free probe for Chromium (II) ions using carbon quantum dots co-doped with nitrogen and phosphorous. Journal of Luminescence, 2019, 206, 540-546.	1.5	24
817	Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. Sensors and Actuators B: Chemical, 2019, 281, 689-697.	4.0	42
818	Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochimica Acta, 2019, 295, 498-506.	2.6	65
819	Positive curvature in Stern-Volmer plot described by a generalized model for static quenching. Journal of Luminescence, 2019, 206, 518-522.	1.5	50
820	Enhanced photoelectric performance of CdSe by graphene quantum dot modification. Materials Research Express, 2019, 6, 015906.	0.8	5
821	Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance. Carbon, 2019, 142, 337-345.	5.4	53
822	Functionalized nitrogen doped graphene quantum dots and bimetallic Au/Ag core-shell decorated imprinted polymer for electrochemical sensing of anticancerous hydroxyurea. Biosensors and Bioelectronics, 2019, 127, 10-18.	5.3	49
823	A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchemical Journal, 2019, 145, 899-907.	2.3	52
824	Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sensors and Actuators B: Chemical, 2019, 283, 363-372.	4.0	94
825	Enhance the electrical conductivity and charge storage of nematic phase by doping OD photoluminescent graphene was prepared with small organic molecule as a new array quantum dot liquid crystal displays. Journal of Molecular Liquids, 2019, 276, 290-295.	2.3	15
826	An ultrasensitive electrochemiluminescence assay for Hg2+ through graphene quantum dots and poly(5-formylindole) nanocomposite. Sensors and Actuators B: Chemical, 2019, 282, 824-830.	4.0	57

#	Article	IF	CITATIONS
827	Selective sensing of curcumin using L-cysteine derived blue luminescent graphene quantum dots. Materials Research Bulletin, 2019, 110, 32-38.	2.7	14
828	Strong reverse saturable absorption and negative nonlinear refractive index in S and N co-doped GQDs at 532â€nm CW laser. Materials Letters, 2019, 235, 19-22.	1.3	3
829	Sensitive assay of pharmaceutical amines in environmental samples and formulations by oxygenated graphene quantum dots. Measurement: Journal of the International Measurement Confederation, 2019, 132, 292-302.	2.5	3
830	Continuous wave laser induced nonlinear optical response of nitrogen doped graphene oxide. Optik, 2019, 178, 384-393.	1.4	28
831	Tribological behaviors of Ni-modified citric acid carbon quantum dot particles as a green additive in polyethylene glycol. Friction, 2020, 8, 182-197.	3.4	49
832	Carbon-based adsorbents., 2020,, 83-127.		4
833	Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. Journal of Materials Science, 2020, 55, 1198-1215.	1.7	50
834	Nitrogenâ€Functionalized Graphene Quantum Dots: A Versatile Platform for Integrated Optoelectronic Devices. Chemical Record, 2020, 20, 429-439.	2.9	11
835	Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential. Applied Surface Science, 2020, 502, 144128.	3.1	50
836	A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. Journal of Hazardous Materials, 2020, 381, 121019.	6.5	231
837	Flexible supercapacitor electrode based on lignosulfonate-derived graphene quantum dots/graphene hydrogel. Organic Electronics, 2020, 78, 105407.	1.4	27
838	Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry, 2020, 309, 125690.	4.2	56
839	One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance. Journal of Applied Electrochemistry, 2020, 50, 71-79.	1.5	14
840	Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Materials Chemistry and Physics, 2020, 239, 122266.	2.0	6
841	Manipulation of 3D nanocarbon hybrids toward synthesis of N-doped graphene quantum dots with high photoluminescence quantum yield. Journal of Luminescence, 2020, 219, 116827.	1.5	13
842	Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118021.	2.0	61
843	Graphene quantum dots redefine nanobiomedicine. Materials Science and Engineering C, 2020, 110, 110651.	3.8	129
844	Graphene quantum dots for energy storage and conversion: from fabrication to applications. Materials Chemistry Frontiers, 2020, 4, 421-436.	3.2	96

#	Article	IF	CITATIONS
845	Ionic liquid-functionalized graphene quantum dots as an efficient quasi-solid-state electrolyte for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2288-2297.	1.1	25
846	Non-covalent functionalization of graphene oxide using self-assembly of silver-triphenylphosphine for bactericidal formulations. Materials Chemistry and Physics, 2020, 243, 122598.	2.0	18
847	Blue luminescent graphene quantum dot conjugated cysteamine functionalized-gold nanoparticles (GQD-AuNPs) for sensing hazardous dye Erythrosine B. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117960.	2.0	26
848	Enhancing forward osmosis (FO) performance of polyethersulfone/polyamide (PES/PA) thin-film composite membrane via the incorporation of GQDs@UiO-66-NH particles. Journal of Water Process Engineering, 2020, 33, 101107.	2.6	41
849	Functionalized carbon nanomaterials for advanced anode catalysts of fuel cells., 2020,, 223-263.		4
850	An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1â€M HCl solution. Journal of Alloys and Compounds, 2020, 815, 152338.	2.8	86
851	Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. Journal of Materials Research and Technology, 2020, 9, 1380-1388.	2.6	9
852	Nanomodified Screen-Printed Electrode for direct determination of Aflatoxin B1 in malted barley samples. Sensors and Actuators B: Chemical, 2020, 307, 127547.	4.0	30
853	A graphene quantum dots-Pb2+ based fluorescent switch for selective and sensitive determination of D-penicillamine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117924.	2.0	16
854	Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. International Journal of Biological Macromolecules, 2020, 150, 1121-1129.	3.6	95
855	One-pot synthesis of highly fluorescent boron and nitrogen co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ions in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112255.	2.0	25
856	Boost the performance of inverted perovskite solar cells with PEDOT:PSS/Graphene quantum dots composite hole transporting layer. Organic Electronics, 2020, 78, 105575.	1.4	28
857	Synthesis and catalytic application of Pd/PdO/Fe ₃ O ₄ @polymerâ€like graphene quantum dots. Applied Organometallic Chemistry, 2020, 34, e5311.	1.7	18
858	A comparative study on the preparation methods and properties of coalâ€based fluorescent carbon nanoparticles. Surface and Interface Analysis, 2020, 52, 98-109.	0.8	5
859	Synthesis of graphene quantum dots and their applications in drug delivery. Journal of Nanobiotechnology, 2020, 18, 142.	4.2	142
860	CQDs@NiO: An Efficient Tool for CH4 Sensing. Applied Sciences (Switzerland), 2020, 10, 6251.	1.3	20
861	Core-shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy and Environment, 2020, 5, 461-472.	4.7	31
862	Carbon nanodots as dual role of crosslinking and reinforcing chloroprene rubber. Composites Communications, 2020, 22, 100441.	3.3	20

#	Article	IF	CITATIONS
863	Interfacial engineering of reduced graphene oxide for high-performance supercapacitor materials. Journal of Electroanalytical Chemistry, 2020, 878, 114679.	1.9	7
864	Green synthesis of fluorescent graphene quantum dots and its application in selective curcumin detection. Current Applied Physics, 2020, 20, 1226-1236.	1.1	30
865	Zinc Oxide Sensitized Graphene Quantum Dots "ZnOâ€GQDs― A Hybrid Concept to Study Charge Transfer and its Catalytic Applicability to Synthesize Tetrasubstituted Propargylamines. Asian Journal of Organic Chemistry, 2020, 9, 2162-2169.	1.3	8
866	A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano, 2020, 7, 3710-3734.	2.2	88
867	Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment. Journal of Water Process Engineering, 2020, 38, 101652.	2.6	47
868	High-flux nanofiltration membranes prepared with \hat{l}^2 -cyclodextrin and graphene quantum dots. Journal of Membrane Science, 2020, 612, 118465.	4.1	44
869	Microwave-assisted exfoliation and tearing of graphene oxide in the presence of TiO2 nanoparticles. Results in Physics, 2020, 18, 103200.	2.0	14
870	Enhancing anti-interference ability of molecularly imprinted ratiometric fluorescence sensor via differential strategy demonstrated by the detection of bovine hemoglobin. Sensors and Actuators B: Chemical, 2020, 322, 128581.	4.0	17
871	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Dots. I	1.8	67
872	Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching, and Interfacial Reactions. Langmuir, 2020, 36, 14432-14442.	1.6	43
873	Incorporation of Core–Shell-Structured Zwitterionic Carbon Dots in Thin-Film Nanocomposite Membranes for Simultaneously Improved Perm-Selectivity and Antifouling Properties. ACS Applied Materials & Diterfaces, 2020, 12, 53215-53229.	4.0	34
874	Electrophoretic extraction of highly monodispersed graphene quantum dots from widely polydispersed bulk and its cytotoxicity effect against cancer cells. Microchemical Journal, 2020, 159, 105391.	2.3	5
875	Solvent Effect on Structural Elucidation of Photoluminescent Graphitic Carbon Nanodots. ACS Omega, 2020, 5, 20409-20416.	1.6	10
876	Detecting Mercury (II) and Thiocyanate Using "Turn-on―Fluorescence of Graphene Quantum Dots. Journal of Fluorescence, 2020, 30, 1181-1187.	1.3	14
877	Avenue to Large-Scale Production of Graphene Quantum Dots from High-Purity Graphene Sheets Using Laboratory-Grade Graphite Electrodes. ACS Omega, 2020, 5, 18831-18841.	1.6	23
878	Curcumin Complexed with Graphene Derivative for Breast Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 6284-6296.	2.3	29
879	Fabrication of organic nanocomposite of polyaniline for enhanced electrochemical performance. Journal of Energy Storage, 2020, 31, 101700.	3.9	17
880	pH-sensitive ternary Fe3O4/GQDs@G hybrid microspheres; Synthesis, characterization and drug delivery application. Journal of Alloys and Compounds, 2020, 846, 156419.	2.8	44

#	Article	IF	CITATIONS
881	Graphene quantum dot-stabilized gold nanoparticles as a new colorimetric probe for in situ quantification of phenytoin in biological samples. Microchemical Journal, 2020, 159, 105331.	2.3	3
882	Efficiency improvement of luminescent solar concentrators using upconversion nitrogen-doped graphene quantum dots. Journal of Power Sources, 2020, 476, 228647.	4.0	22
883	Graphene quantum dots/ZnO nanocomposite: Synthesis, characterization, mechanistic investigations of photocatalytic and antibacterial activities. Chemical Physics Letters, 2020, 761, 138009.	1.2	21
884	Carbon dot induces tolerance to arsenic by regulating arsenic uptake, reactive oxygen species detoxification and defense-related gene expression in Cicer arietinum L. Plant Physiology and Biochemistry, 2020, 156, 78-86.	2.8	13
885	Graphene quantum dots: Emerging organic materials with remarkable and tunable luminescence features. Tetrahedron Letters, 2020, 61, 152554.	0.7	20
886	Graphene Oxide-Coated Gold Nanorods: Synthesis and Applications. Nanomaterials, 2020, 10, 2149.	1.9	21
887	A nanoprobe for ratiometric imaging of glutathione in living cells based on the use of a nanocomposite prepared from dual-emission carbon dots and manganese dioxide nanosheets. Mikrochimica Acta, 2020, 187, 537.	2.5	11
888	Efficient White Electrochemiluminescent Emission From Carbon Quantum Dot Films. Frontiers in Chemistry, 2020, 8, 580022.	1.8	25
889	Graphene oxide sheets and quantum dots inhibit \hat{l}_{\pm} -synuclein amyloid formation by different mechanisms. Nanoscale, 2020, 12, 19450-19460.	2.8	33
890	Simple method for fabrication of metal-organic framework within a carboxymethylcellulose/graphene quantum dots matrix as a carrier for anticancer drug. International Journal of Biological Macromolecules, 2020, 164, 2301-2311.	3.6	38
891	Hydrothermal Synthesis of Carbon Nanoâ€Onions from Citric Acid. Chemistry - an Asian Journal, 2020, 15, 3428-3431.	1.7	16
892	Linear versus Branched Peptide with Same Amino Acid Sequence for Legumain†argeting in Macrophages: Targeting Efficiency and Bioimaging Potential. ChemistrySelect, 2020, 5, 9911-9919.	0.7	2
893	New water-soluble colorimetric pH and metal ione sensor based on graphene quantum dot modified with alizarine red S. Scientific Reports, 2020, 10, 14185.	1.6	15
894	Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Scientific Reports, 2020, 10, 14327.	1.6	27
895	Triple Phase Inversion of Emulsions Stabilized by Amphiphilic Graphene Oxide and Cationic Surfactants. ACS Omega, 2020, 5, 23524-23532.	1.6	5
896	Electrochemical Detection of Bisphenol A Based on N-Doped Carbon Quantum Dots@Carbon Nanotubes Composite. Journal of Nanoscience and Nanotechnology, 2020, 20, 7610-7617.	0.9	4
897	Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Scientific Reports, 2020, 10, 12333.	1.6	68
898	One-Step Synthesis of the Nitrogen and Sulfur Codoped Carbon Dots for Detection of Lead and Copper lons in Aqueous Solution. Journal of Sensors, 2020, 2020, 1-8.	0.6	9

#	Article	IF	CITATIONS
899	Cytotoxicity and Bioimaging Study for NHDF and HeLa Cell Lines by Using Graphene Quantum Pins. Nanomaterials, 2020, 10, 2550.	1.9	4
900	Thermoregulating Papers Containing Fabricated Microencapsulated Phase Change Materials through Pickering Emulsion Templating. Industrial & Engineering Chemistry Research, 2020, 59, 20253-20268.	1.8	13
901	Antifouling PVDF Membrane by Surface Covalently Anchoring Functionalized Graphene Quantum Dots. Industrial &	1.8	12
902	Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2020, 8, 23930-23938.	5.2	95
903	An electrochemiluminescence aptasensor for the ultrasensitive detection of aflatoxin B1 based on gold nanorods/graphene quantum dots-modified poly(indole-6-carboxylic acid)/flower-gold nanocomposite. Microchemical Journal, 2020, 157, 104959.	2.3	40
904	Molecular Dynamics Insights into the Structural and Water Transport Properties of a Forward Osmosis Polyamide Thin-Film Nanocomposite Membrane Modified with Graphene Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 14447-14457.	1.8	22
905	Polyaniline and quantum dot-based nanostructures: Developments and perspectives. Journal of Plastic Film and Sheeting, 2020, 36, 430-447.	1.3	6
906	Direct Dual Z-Scheme Bi ₂ WO ₆ /GQDs/WO ₃ Inverse Opals for Enhanced Photocatalytic Activities under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 7921-7927.	3.2	55
907	Poly (ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum dots with antimicrobial activity. Environmental Science and Pollution Research, 2020, 27, 26845-26855.	2.7	24
908	Nitrogen-Doped Graphene Quantum Dots for Remarkable Solar Hydrogen Production. ACS Applied Energy Materials, 2020, 3, 5322-5332.	2.5	55
909	Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale, 2020, 12, 10956-10963.	2.8	24
910	Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption. Scientific Reports, 2020, 10, 7074.	1.6	36
911	Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. Nano Express, 2020, 1, 010011.	1.2	8
912	Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. International Journal of Molecular Sciences, 2020, 21, 3712.	1.8	77
913	Carbon-based dots for the electrochemical production of hydrogen peroxide. Chemical Communications, 2020, 56, 7609-7612.	2.2	14
914	Fabrication of a novel electrochemical aptasensor assisted by a novel computerized monitoring system for real-time determination of the prostate specific antigen: A computerized experimental method brought elegancy. Microchemical Journal, 2020, 157, 104898.	2.3	24
915	The fine-structure characteristics and isopropanol/water dehydration through pervaporation composite membranes improved with graphene quantum dots. Separation and Purification Technology, 2020, 247, 116956.	3.9	15
916	â€~Microwave assisted facile green synthesis of carrageenan carbon dots(CDs) and their interaction with <i>Hisbiscus Rosa sinensis</i> leaf cells'. International Journal of Environmental Analytical Chemistry, 2022, 102, 2697-2713.	1.8	6

#	Article	IF	CITATIONS
917	Fabricating a signal-off photoelectrochemical sensor based on BiPO4-graphene quantum dots nanocomposites for sensitive and selective detection of hydroquinone. Journal of Electroanalytical Chemistry, 2020, 868, 114177.	1.9	11
918	How porosity affects the emission of fluorescent carbon dot-silica porous composites. Microporous and Mesoporous Materials, 2020, 305, 110302.	2.2	11
919	Selective homocysteine detection of nitrogen-doped graphene quantum dots: Synergistic effect of surface catalysis and photoluminescence sensing. Synthetic Metals, 2020, 267, 116432.	2.1	11
920	Investigating the Properties of Cetyltrimethylammonium Bromide/Hydroxylated Graphene Quantum Dots Thin Film for Potential Optical Detection of Heavy Metal Ions. Materials, 2020, 13, 2591.	1.3	24
921	Facile and label-free fluorescence sensing of \hat{l}^2 -galactosidase activity by graphene quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118594.	2.0	8
922	Synthesis of photoluminescent glycodendrimer with terminal \hat{l}^2 -cyclodextrin molecules as a biocompatible pH-sensitive carrier for doxorubicin delivery. Carbohydrate Polymers, 2020, 246, 116658.	5.1	61
923	A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors' performance: Synthesis and application. FlatChem, 2020, 22, 100171.	2.8	44
924	The effect of graphene oxide nanosheets (GONSs) and graphene oxide quantum dots (GOQDs) on corrosion resistance enhancement of Ni–Fe nanocomposite coatings. Jom, 2020, 72, 4495-4504.	0.9	10
925	Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale, 2020, 12, 17222-17237.	2.8	54
926	Potential of Graphene Nanodots in Cellular Imaging and Raman Mapping. Nano, 2020, 15, 2050098.	0.5	1
927	Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment. Journal of Cleaner Production, 2020, 270, 122458.	4.6	55
928	Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opinion on Drug Delivery, 2020, 17, 1151-1164.	2.4	34
929	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
930	Excitation-Independent Blue-Emitting Carbon Dots from Mesoporous Aminosilica Nanoreactor for Bioanalytical Application. ACS Applied Nano Materials, 2020, 3, 3652-3664.	2.4	16
931	Amphiphilic fluorescent carbon nanodots as a selective nanoprobe for nitrite and tetracycline both in aqueous and organic solutions. New Journal of Chemistry, 2020, 44, 5120-5126.	1.4	21
932	Waste to wealth translation of e-waste to plasmonic nanostructures for surface-enhanced Raman scattering. Applied Nanoscience (Switzerland), 2020, 10, 1615-1623.	1.6	11
933	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
934	Preparation and characterization of seleniumâ€decorated graphene quantum dots with high afterglow for application in photodynamic therapy. Luminescence, 2020, 35, 891-896.	1.5	7

#	Article	IF	CITATIONS
935	Culn-ethylxanthate, a "Versatile Precursor―for Photosensitization of Graphene-Quantum Dots and Nanocatalyzed Synthesis of Imidazopyridines with Ideal Green Chemistry Metrics. ACS Sustainable Chemistry and Engineering, 2020, 8, 5544-5557.	3.2	17
936	Electrode modified with graphene quantum dots supported in chitosan for electrochemical methods and non-linear deconvolution of spectra for spectrometric methods: approaches for simultaneous determination of triclosan and methylparaben. Mikrochimica Acta, 2020, 187, 250.	2.5	31
937	Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water. RSC Advances, 2020, 10, 12119-12128.	1.7	31
938	Chemically Functionalized Twoâ€Dimensional Carbon Materials. Chemistry - an Asian Journal, 2020, 15, 2316-2328.	1.7	15
939	Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2020, 151, 1153-1162.	0.9	15
940	One-pot synthesized citric acid-modified bimetallic PtNi hollow nanospheres as peroxidase mimics for colorimetric detection of human serum albumin. Materials Science and Engineering C, 2020, 116, 111231.	3.8	24
941	Interparticle distance as a key factor for controlling the dual-emission properties of carbon dots. Physical Chemistry Chemical Physics, 2020, 22, 20227-20237.	1.3	22
942	CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Advances, 2020, 10, 24190-24202.	1.7	40
943	Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. International Journal of Biological Macromolecules, 2020, 162, 501-511.	3.6	92
944	A Novel Route to High-Quality Graphene Quantum Dots by Hydrogen-Assisted Pyrolysis of Silicon Carbide. Nanomaterials, 2020, 10, 277.	1.9	14
945	Dual amplification in a fluorometric acetamiprid assay by using an aptamer, G-quadruplex/hemin DNAzyme, and graphene quantum dots functionalized with D-penicillamine and histidine. Mikrochimica Acta, 2020, 187, 158.	2.5	21
946	Urea-based synthesis of magnetite nanoparticles and its composite with graphene oxide: structural and magnetic characterization. Journal of Materials Science: Materials in Electronics, 2020, 31, 7490-7498.	1.1	1
947	Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler. Carbon, 2020, 162, 318-327.	5.4	32
948	Graphene Quantum Dots with High Yield and High Quality Synthesized from Low Cost Precursor of Aphanitic Graphite. Nanomaterials, 2020, 10, 375.	1.9	40
949	Yellow emissive nitrogen-doped graphene quantum dots as a label-free fluorescent probe for Fe3+ sensing and bioimaging. Diamond and Related Materials, 2020, 104, 107749.	1.8	34
950	Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicology in Vitro, 2020, 65, 104796.	1.1	29
951	A review of carbon quantum dots and their applications in wastewater treatment. Advances in Colloid and Interface Science, 2020, 278, 102124.	7.0	176
952	Optimization of the interaction of graphene quantum dots with lipase for biological applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2471-2483.	1.6	8

#	Article	IF	CITATIONS
953	Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin. Food Chemistry, 2020, 317, 126457.	4.2	64
954	Polyaromatic hydrocarbon inner-structured carbon nanodots for interfacial enhancement of carbon fiber composite. RSC Advances, 2020, 10, 411-423.	1.7	1
955	A Facile Microwave-Assisted Hydrothermal Synthesis of Graphene Quantum Dots for Organic Solar Cell Efficiency Improvement. Journal of Nanomaterials, 2020, 2020, 1-8.	1.5	23
956	Pd immobilized on hybrid of magnetic graphene quantum dots and cyclodextrin decorated chitosan: An efficient hydrogenation catalyst. International Journal of Biological Macromolecules, 2020, 150, 441-448.	3.6	36
957	Simultaneous determination of Hg(II) and Cu(II) in water samples using fluorescence quenching sensor of N-doped and N,K co-doped graphene quantum dots. Arabian Journal of Chemistry, 2020, 13, 3714-3723.	2.3	21
958	Graphene quantum dots: efficient mechanosynthesis, white-light and broad linear excitation-dependent photoluminescence and growth inhibition of bladder cancer cells. Dalton Transactions, 2020, 49, 2308-2316.	1.6	12
959	Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions. Journal of Materials Science and Technology, 2020, 43, 144-153.	5.6	55
960	Study on the interactions between graphene quantum dots and $Hg(II)$: Unraveling the origin of photoluminescence quenching of graphene quantum dots by $Hg(II)$. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124551.	2.3	11
961	Synthesis of nanoâ€silver from Navicula cincta and the evaluation of its antimicrobial activity. Micro and Nano Letters, 2020, 15, 119-124.	0.6	5
962	Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Analytica Chimica Acta, 2020, 1116, 16-26.	2.6	26
963	Carbon quantum dots interfacial modified graphene/silicon Schottky barrier solar cell. Journal of Alloys and Compounds, 2020, 835, 155268.	2.8	21
964	Non-high temperature method to synthesize carbon coated TiO2 nano-dendrites for enhanced wide spectrum photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2020, 571, 412-418.	5.0	20
965	Wettability Alteration in Carbonate Reservoirs by Carbon Nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124819.	2.3	38
966	Effect of Co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 7247-7259.	1.1	17
967	Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon, 2020, 165, 9-17.	5.4	76
968	Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chemistry, 2020, 321, 126682.	4.2	56
969	Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. International Journal of Biological Macromolecules, 2020, 156, 648-659.	3.6	61
970	A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112523.	2.0	15

#	Article	lF	Citations
971	Fabrication and characterization of graphene quantum dots thin film for reducing cross-sectional heat transfer through smart window. Materials Research Bulletin, 2020, 127, 110861.	2.7	5
972	pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Materials Science and Engineering C, 2020, 112, 110888.	3.8	41
973	A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor. Journal of Cleaner Production, 2020, 264, 121682.	4.6	103
974	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
975	Shape-dependant photocatalytic and antimicrobial activity of ZnO nanostructures when conjugated to graphene quantum dots. Journal of Environmental Chemical Engineering, 2020, 8, 103930.	3.3	20
976	Highly Efficient Orange Emissive Graphene Quantum Dots Prepared by Acid-Free Method for White LEDs. ACS Sustainable Chemistry and Engineering, 2020, 8, 6657-6666.	3.2	37
977	Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polymer Chemistry, 2020, 11, 3217-3224.	1.9	28
978	Core-Shell Nanostructures of Graphene-Wrapped CdS Nanoparticles and TiO2 (CdS@G@TiO2): The Role of Graphene in Enhanced Photocatalytic H2 Generation. Catalysts, 2020, 10, 358.	1.6	19
979	Novel hybrid supercapacitor based on ferrocenyl modified graphene quantum dot and polypyrrole nanocomposite. Electrochimica Acta, 2020, 345, 136207.	2.6	38
980	Fluorescence mechanism of xylan-derived carbon dots: Toward investigation on excitation-related emission behaviors. Journal of Luminescence, 2020, 223, 117199.	1.5	14
981	Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sensors and Actuators B: Chemical, 2020, 314, 128059.	4.0	115
982	Pd nanoparticles/graphene quantum dot supported on chitosan as a new catalyst for the reduction of nitroarenes to arylamines. Journal of the Iranian Chemical Society, 2021, 18, 1243-1250.	1.2	10
983	Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125854.	2.3	24
984	A functional ratio fluorescence sensor platform based on the graphene/Mn-ZnS quantum dots loaded with molecularly imprinted polymer for selective and visual detection sinapic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118845.	2.0	27
985	Computational evaluation of the mechanical properties of synthesized graphene quantum dots under consideration of defects. Carbon Letters, 2021, 31, 427-440.	3.3	5
986	Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating. Journal of Materials Science and Technology, 2021, 67, 226-236.	5.6	123
987	Microfluidic synthesis of robust carbon dots-functionalized photonic crystals. Chemical Engineering Journal, 2021, 405, 126539.	6.6	13
988	Investigation into the Catalytic Performance of Cu(II) Supported Graphene Quantum Dots Modified NiFe2O4 as a Proficient Nano-Catalyst in the Synthesis of Propargylasmines. Catalysis Letters, 2021, 151, 1444-1455.	1.4	9

#	Article	IF	CITATIONS
989	A novel and selective multi-emission chemiluminescence system for the quantification of deltamethrin in food samples. Sensors and Actuators B: Chemical, 2021, 327, 128927.	4.0	20
990	A novel dual-excitation and dual-emission fluorescent probe CDs–COO–F for hydrazine detection in aqueous solutions and living cells. Dyes and Pigments, 2021, 184, 108831.	2.0	9
991	Difference between ammonia and urea on nitrogen doping of graphene quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125703.	2.3	23
992	Graphene Oxide for Integrated Photonics and Flat Optics. Advanced Materials, 2021, 33, e2006415.	11.1	72
993	Hollow molecularly imprinted microspheres made by $w/o/w$ double Pickering emulsion polymerization stabilized by graphene oxide quantum dots targeted for determination of l-cysteine concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125978.	2.3	9
994	Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. Journal of Environmental Chemical Engineering, 2021, 9, 104803.	3.3	34
995	A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. Journal of Environmental Chemical Engineering, 2021, 9, 104878.	3.3	39
996	Polymerizationâ€Driven Photoluminescence in Alkanolamineâ€Based Câ€Dots. Chemistry - A European Journal, 2021, 27, 2543-2550.	1.7	10
997	Recent advances in the modification of carbon-based quantum dots for biomedical applications. Materials Science and Engineering C, 2021, 120, 111756.	3.8	104
998	A Critical Review of Graphene Quantum Dots: Synthesis and Application in Biosensors. Nano, 2021, 16, 2130001.	0.5	11
999	Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots. Desalination, 2021, 498, 114811.	4.0	52
1000	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie - International Edition, 2021, 60, 5864-5870.	7.2	29
1001	A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta, 2021, 224, 121828.	2.9	102
1002	A glycine-functionalized graphene quantum dots synthesized by a facile post-modification strategy for a sensitive and selective fluorescence sensor of mercury ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119090.	2.0	30
1003	Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie, 2021, 133, 5928-5934.	1.6	3
1004	Synthesis of blue and green emitting carbon-based quantum dots (CBQDs) and their cell viability against colon and bladder cancer cell lines. Materials Letters, 2021, 283, 128790.	1.3	10
1005	Grapheneâ€Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2006949.	7.8	81
1006	An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG. Bioelectrochemistry, 2021, 137, 107671.	2.4	30

#	ARTICLE	IF	CITATIONS
1007	Photoluminescence of graphene quantum dots enhanced by microwave post-treatment. Chemical Engineering Journal, 2021, 405, 126714.	6.6	18
1008	Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications. Materials Chemistry Frontiers, 2021, 5, 627-658.	3.2	63
1009	Carbon and graphene quantum dots in fuel cell application: An overview. International Journal of Energy Research, 2021, 45, 1396-1424.	2.2	59
1010	Cu(II)â€supported graphene quantum dots modified NiFe ₂ O ₄ : A green and efficient catalyst for the synthesis of 4Hâ€pyrimido[2,1â€b]benzothiazoles in water. Journal of the Chinese Chemical Society, 2021, 68, 121-130.	0.8	14
1011	A facile, two-step synthesis and characterization of Fe3O4–LCysteine–graphene quantum dots as a multifunctional nanocomposite. Applied Nanoscience (Switzerland), 2021, 11, 849-860.	1.6	30
1012	One-step hydrothermal synthesis of chiral carbon dots with high asymmetric catalytic activity for an enantioselective direct aldol reaction. Chemical Communications, 2021, 57, 3680-3683.	2.2	31
1013	Functionalized graphene oxide materials for the fluorometric sensing of various analytes: a mini review. Materials Advances, 2021, 2, 6197-6212.	2.6	16
1014	Application of nanoparticles as a chemical sensor for analysis of environmental samples., 2021,, 257-277.		0
1015	â€~Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications'. Methods and Applications in Fluorescence, 2021, 9, 012001.	1.1	20
1016	Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg(<scp>ii</scp>). New Journal of Chemistry, 2021, 45, 4617-4625.	1.4	29
1017	Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances, 2021, 11, 2253-2291.	1.7	10
1018	Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomaterials Science, 2021, 9, 3127-3135.	2.6	4
1019	Boron-doped and serine and histidine-functionalized graphene quantum dots with strong yellow fluorescence emissions for highly sensitive detection of carbofuran in cucumber and cabbage. New Journal of Chemistry, 2021, 45, 17258-17265.	1.4	12
1020	Fluorescent graphene oxide derived from carbonized citric acid for copper(II) ions detection. Rare Metals, 2021, 40, 1443-1450.	3.6	9
1021	Carbon dots as naked eye sensors. Analyst, The, 2021, 146, 2463-2474.	1.7	27
1022	Cancer antigen 125 assessment using carbon quantum dots for optical biosensing for the early diagnosis of ovarian cancer. RSC Advances, 2021, 11, 31047-31057.	1.7	15
1023	Preparation of bottom-up graphene oxide using citric acid and tannic acid, and its application as a filler for polypropylene nanocomposites. RSC Advances, 2021, 11, 7663-7671.	1.7	5
1024	Tuning optical properties of nitrogen-doped carbon dots through fluorescence resonance energy transfer using Rhodamine B for the ratiometric sensing of mercury ions. Analytical Methods, 2021, 13, 1857-1865.	1.3	12

#	Article	IF	CITATIONS
1025	Colloidal semiconductor nanocrystals: synthesis, optical nonlinearity, and related device applications. Journal of Materials Chemistry C, 2021, 9, 6686-6721.	2.7	8
1026	Perspectives on nanocomposite with polypyrrole and nanoparticles. , 2021, , 103-128.		0
1027	Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties., 2021,, 23-48.		0
1028	Recent advances in graphene quantum dot-based optical and electrochemical (bio)analytical sensors. Materials Advances, 2021, 2, 5513-5541.	2.6	50
1029	One-step synthesis of fluorescent graphene quantum dots as an effective fluorescence probe for vanillin detection. RSC Advances, 2021, 11, 9121-9129.	1.7	20
1030	Polymer nanocomposite membranes for wastewater treatment., 2021,, 605-672.		0
1031	Synthesis, characterization, and applications of graphene quantum dots., 2021,, 247-297.		0
1032	Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices. Energy and Environmental Materials, 2022, 5, 201-214.	7.3	38
1033	Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers, 2021, 13, 745.	2.0	32
1034	Graphene Oxide Quantum Dots Promote Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth via the Wnt/ \hat{l}^2 -Catenin Signaling Pathway. Stem Cells International, 2021, 2021, 1-12.	1.2	8
1035	Facile synthesis of graphene quantum dots and their optical characterization. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 638-642.	1.0	4
1036	Structural engineering design of carbon dots for lubrication. Chinese Chemical Letters, 2021, 32, 2693-2714.	4.8	30
1037	Carbon Dotâ€Based Biosensors. Advanced NanoBiomed Research, 2021, 1, 2000042.	1.7	12
1038	Design and development of a portable resistive sensor based on αâ€MnO ₂ /GQD nanocomposites for trace quantification of Pb(II) in water. IET Nanobiotechnology, 2021, 15, 505-511.	1.9	9
1039	Study on Nano Graphene Oxide Used to Enhance the Stability of Emulsion. IOP Conference Series: Earth and Environmental Science, 2021, 692, 032020.	0.2	0
1040	Citric acid modified waste cigarette filters for adsorptive removal of methylene blue dye from aqueous solution. Journal of Applied Polymer Science, 2021, 138, 50655.	1.3	12
1041	Preparation of Technetium Labeled-Graphene Quantum Dots and Investigation of Their Bio Distribution. Journal of Cluster Science, 2022, 33, 965-973.	1.7	1
1042	Nitrogen-doped carbon dots aid in the separation of ssDNA molecules of different length by capillary transient isotachophoresis (ctITP) with laser-induced fluorescence (LIF) detection. Journal of Chromatography A, 2021, 1641, 461990.	1.8	7

#	Article	IF	CITATIONS
1043	Cobalt-Doped Zinc Oxide Nanoparticle–MoS ₂ Nanosheet Composites as Broad-Spectrum Bactericidal Agents. ACS Applied Nano Materials, 2021, 4, 4361-4370.	2.4	18
1044	Functionalised Graphene Quantum Dots for Cholesterol Detection in Human Blood Serum. Journal of Fluorescence, 2021, 31, 847-852.	1.3	3
1045	Aggregation induced emission transformation of liquid and solid-state N-doped graphene quantum dots. Carbon, 2021, 175, 576-584.	5.4	30
1046	A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications. Frontiers in Energy Research, 2021, 9, .	1.2	54
1047	Carbon-based $0D/1D/2D$ assembly with desired structures and defect states as non-metal bifunctional electrocatalyst for zinc-air battery. Journal of Colloid and Interface Science, 2021, 588, 184-195.	5.0	15
1049	Graphene Quantum Dots from Partially Unzipped Multi-Walled Carbon Nanotubes: Promising Materials for Oxygen Electrodes. Journal of the Electrochemical Society, 2021, 168, 044514.	1.3	5
1050	Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose. Nanotechnology, 2021, 32, 295504.	1.3	3
1051	N-Doped Carbon Dots Synthesized from Ethylene Glycol and \hat{I}^2 -Alanine for Detection of Cr(VI) and 4-Nitrophenol via Photoluminescence Quenching. ACS Applied Nano Materials, 2021, 4, 3444-3454.	2.4	52
1052	A bio-sensing platform based on graphene quantum dots for label free electrochemical detection of progesterone. Materials Today: Proceedings, 2022, 48, 583-586.	0.9	4
1053	Recent advances in synthesis and biological applications of graphene quantum dots. Journal of the Indian Chemical Society, 2021, 98, 100069.	1.3	6
1054	Gold Nanoparticles/Titania/Graphene Oxide Composite as a New Efficient Aerobic Oxidation Photocatalyst. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 1621-1629.	0.7	1
1055	Formation of Mercury Droplets at Ambient Conditions through the Interaction of Hg(II) with Graphene Quantum Dots. Inorganic Chemistry, 2021, 60, 7834-7843.	1.9	5
1056	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	9.5	116
1057	Fluorescence Probe Based on Graphene Quantum Dots for Selective, Sensitive and Visualized Detection of Formaldehyde in Food. Sustainability, 2021, 13, 5273.	1.6	7
1058	A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea. Scientific Reports, 2021, 11, 10554.	1.6	47
1059	Graphene quantum dots prepared from dried lemon leaves and microcrystalline mosaic structure. Luminescence, 2021, 36, 1365-1376.	1.5	10
1060	N,S-Codoped Carbon Dots with Red Fluorescence and Their Cellular Imaging. ACS Applied Bio Materials, 2021, 4, 4973-4981.	2.3	18
1061	Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review. , 2021, 3, 889-911.		116

#	Article	IF	CITATIONS
1062	Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Science of the Total Environment, 2021, 770, 145370.	3.9	28
1063	Applications of novel quantum dots derived from layered materials in cancer cell imaging. FlatChem, 2021, 27, 100246.	2.8	16
1064	Unusual Reactivity of Graphene Quantum Dot-Wrapped Silver Nanoparticles with Hg(II): Spontaneous Growth of Hg Flowers and Their Electrocatalytic Activity. Inorganic Chemistry, 2021, 60, 8200-8210.	1.9	4
1065	Spider Silk Inspired Robust and Photoluminescent Soybeanâ€Proteinâ€Based Materials. Macromolecular Materials and Engineering, 2021, 306, 2100155.	1.7	2
1066	Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126280.	2.3	39
1067	One-pot synthesis of nitrogen-doped carbon dots for highly sensitive determination of cobalt ions and biological imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119541.	2.0	18
1068	Simultaneous adsorption of Cu(II) ions and poly(acrylic acid) on the hybrid carbon-mineral nanocomposites with metallic elements. Journal of Hazardous Materials, 2021, 412, 125138.	6.5	22
1069	Curcumin loaded on graphene nanosheets induced cell death in mammospheres from MCF-7 and primary breast tumor cells. Biomedical Materials (Bristol), 2021, 16, 045040.	1.7	11
1070	Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Analytica Chimica Acta, 2021, 1166, 338548.	2.6	37
1071	Graphene quantum dots based magnetic nanoparticles as a promising delivery system for controlled doxorubicin release. Journal of Molecular Liquids, 2021, 331, 115746.	2.3	19
1072	Graphene quantum dots-based heterogeneous catalysts. New Carbon Materials, 2021, 36, 449-467.	2.9	16
1073	Hemin Covalently Functionalized Carbon Nanobranch with Enzymeâ€Like and Photocatalytic Activities for Synergistic Dye Degradation and Antibacterial Therapy. Advanced Sustainable Systems, 2021, 5, 2100103.	2.7	6
1074	Size Effect of Graphene Quantum Dots on Photoluminescence. Molecules, 2021, 26, 3922.	1.7	29
1075	One-Pot Microwave-Assisted Synthesis of Carbon Dots and in vivo and in vitro Antimicrobial Photodynamic Applications. Frontiers in Microbiology, 2021, 12, 662149.	1.5	44
1076	In-situ growth of graphene quantum dots modified MoS2 membrane on tubular ceramic substrate with high permeability for both water and organic solvent. Journal of Membrane Science, 2021, 627, 119247.	4.1	12
1077	In vivo imaging of neuroblastomas using GD2-targeting graphene quantum dots. Journal of Pediatric Surgery, 2021, 56, 1227-1232.	0.8	8
1078	Cesium-Doped Graphene Quantum Dots as Ratiometric Fluorescence Sensors for Blood Glucose Detection. ACS Applied Nano Materials, 2021, 4, 8437-8446.	2.4	31
1079	Graphene Quantum Dots-Ornamented Waterborne Epoxy-Based Fluorescent Adhesive via Reversible Addition–Fragmentation Chain Transfer-Mediated Miniemulsion Polymerization: A Potential Material for Art Conservation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36307-36319.	4.0	15

#	Article	IF	CITATIONS
1080	Improving Physical Properties of Polypropylene Nanocomposites by a Natural Resource-Based Bottom-up Graphene Oxide Filler. Macromolecular Research, 2021, 29, 487-493.	1.0	5
1081	Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. Small, 2021, 17, e2102091.	5.2	36
1082	Preparation, characterization and the supercapacitive behaviors of electrochemically reduced graphene quantum dots/polypyrrole hybrids. Electrochimica Acta, 2021, 385, 138435.	2.6	18
1083	Preparation and properties of bifunctional Gd2O3/GQD composite nanoparticles. Journal of Rare Earths, 2022, 40, 1118-1125.	2.5	8
1084	Tuneable properties of carbon quantum dots by different synthetic methods. Journal of Nanostructure in Chemistry, 2022, 12, 565-580.	5.3	27
1085	Precise Blood Glucose Sensing by Nitrogen-Doped Graphene Quantum Dots for Tight Control of Diabetes. Journal of Sensors, 2021, 2021, 1-14.	0.6	12
1086	Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renewable and Sustainable Energy Reviews, 2021, 144, 110999.	8.2	67
1087	Synthesis of polyaniline nanotubes decorated with graphene quantum dots: Structural & mp; electrochemical studies. Electrochimica Acta, 2021, 388, 138614.	2.6	15
1088	Yellow Fluorescent Nitrogen and Bromine Co-doped Graphene Quantum Dots for Bioimaging. ACS Applied Nano Materials, 2021, 4, 8564-8571.	2.4	14
1089	Modulation of red-light emission from carbon quantum dots in acid-based environment and the detection of chromium (â¢) ions. Journal of Materials Science and Technology, 2021, 83, 58-65.	5.6	22
1090	U-Shaped Optical Fiber Probes Coated with Electrically Doped GQDs for Humidity Measurements. Polymers, 2021, 13, 2696.	2.0	11
1091	Self-organized hierarchically porous carbon coated on carbon cloth for high-performance freestanding supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2021, 895, 115456.	1.9	18
1092	Application of graphene quantum dots in the detection of Hg2+ and ClOâ ⁻ and analysis of detection mechanism. Diamond and Related Materials, 2021, 117, 108454.	1.8	7
1093	Single-layered graphene quantum dots with self-passivated layer from xylan for visual detection of trace chromium(VI). Chemical Engineering Journal, 2022, 435, 131833.	6.6	23
1094	Frequency-responsive cooperativity of graphene oxide complexes under a low AC bulk electric field. Journal of Molecular Liquids, 2021, 335, 116151.	2.3	3
1095	Carbon dots: An innovative luminescent nanomaterial. Aggregate, 2022, 3, e108.	5.2	31
1096	Aquaâ€processable carbon quantum dot–assisted resilient polymer binder for advanced lithiumâ€sulfur batteries. International Journal of Energy Research, 2021, 45, 21050-21057.	2.2	6
1097	Extraction of tetrahedral CuCl anode from the waste copper etchant and surface modification with graphene quantum dots. Ionics, 2021, 27, 4383-4391.	1.2	5

#	Article	IF	CITATIONS
1098	Green Synthesized Cu@Carbon Quantum Dots for Histidine and Arsenate Sensing. IEEE Sensors Journal, 2021, 21, 16464-16468.	2.4	2
1099	Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Scientific Reports, 2021, 11, 16148.	1.6	29
1100	Red fluorescent nanoprobe based on Ag@Au nanoparticles and graphene quantum dots for H2O2 determination and living cell imaging. Mikrochimica Acta, 2021, 188, 291.	2.5	7
1101	Top-Down N-Doped Carbon Quantum Dots for Multiple Purposes: Heavy Metal Detection and Intracellular Fluorescence. Nanomaterials, 2021, 11, 2249.	1.9	38
1102	Enhanced selectivity of microfluidic gas sensors by modifying microchannel geometry and surface chemistry with graphene quantum dots. Sensors and Actuators B: Chemical, 2021, 342, 130050.	4.0	17
1103	Simultaneous Electrodeposition of Reduced Graphene Quantum Dots/Copper Oxide Nanocomposite on the Surface of Carbon Ceramic Electrode for the Electroanalysis of Adenine and Guanine. Electroanalysis, 0, , .	1.5	1
1104	Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for <i>In Vitro</i> Cell Imaging and Metal Ion Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43952-43962.	4.0	34
1105	Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small, 2022, 18, e2102683.	5.2	151
1106	Evaluation of different covalent crosslinking agents into valsartan-loaded sericin and alginate particles for modified release. Powder Technology, 2021, 390, 240-255.	2.1	12
1107	GQD embedded bacterial cellulose nanopaper based multi-layered filtration membranes assembly for industrial dye and heavy metal removal in wastewater. Cellulose, 2021, 28, 10385-10398.	2.4	8
1108	A simple method to achieve a directional and resonant random lasing emission using graphene quantum dots as scattering elements. Physica B: Condensed Matter, 2021, 616, 413133.	1.3	2
1109	Electrochemical detection of cortisol on graphene quantum dots modified electrodes using a rationally truncated high affinity aptamer. Applied Nanoscience (Switzerland), 2021, 11, 2577-2588.	1.6	13
1110	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	1.2	48
1111	Preparation of Fe ₃ O ₄ @Câ€dots as a recyclable magnetic nanocatalyst using <scp><i>Elaeagnus angustifolia</i></scp> and its application for the green synthesis of formamidines. Applied Organometallic Chemistry, 2021, 35, e6387.	1.7	7
1112	Effect of reaction parameters on the corrosion inhibition behavior of N-doped carbon dots for metal in 1ÂM HCl solution. Journal of Molecular Liquids, 2021, 338, 116783.	2.3	41
1113	Highly selective fluorometric detection of para-nitrophenol from its isomers by nitrogen-doped graphene quantum dots. Microchemical Journal, 2021, 168, 106389.	2.3	15
1114	Waste derived approach towards wealthy fluorescent N-doped graphene quantum dots for cell imaging and H2O2 sensing applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120453.	2.0	19
1115	A novel cationic surfactant synthesized from carbon quantum dots and the versatility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127088.	2.3	7

#	Article	IF	CITATIONS
1116	The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 2021, 127, 387-398.	2.7	16
1117	Synergistic effects of graphene quantum dots and carbodiimide in promoting resin–dentin bond durability. Dental Materials, 2021, 37, 1498-1510.	1.6	15
1118	Competition of the roles of π-conjugated domain between emission center and quenching origin in the photoluminescence of carbon dots depending on the interparticle separation. Carbon, 2021, 183, 560-570.	5.4	28
1119	An off-on fluorescent probe based on graphene quantum dots intercalated hydrotalcite for determination of ascorbic acid and phytase. Sensors and Actuators B: Chemical, 2021, 345, 130353.	4.0	28
1120	A green path to extract carbon quantum dots by coconut water: Another fluorescent probe towards Fe3+ ions. Particuology, 2021, 58, 251-258.	2.0	20
1121	Graphene oxide/graphene quantum dots: A platform for probing ds-DNA-dimethoate interaction and dimethoate sensing. Journal of Electroanalytical Chemistry, 2021, 899, 115678.	1.9	6
1122	The importance of surface states in N-doped carbon quantum dots. Carbon, 2021, 183, 1-11.	5.4	71
1123	Near-infrared-activated Z-scheme NaYF4:Yb/Tm@Ag3PO4/Ag@g-C3N4 photocatalyst for enhanced H2 evolution under simulated solar light irradiation. Chemical Engineering Journal, 2021, 421, 129687.	6.6	77
1124	Gold nanostar@graphene quantum dot as a new colorimetric sensing platform for detection of cysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120010.	2.0	17
1125	Graphene quantum dots functionalized with Bovine Serum Albumin for sensing of hypochlorite ions. Materials Chemistry and Physics, 2021, 273, 125088.	2.0	6
1126	Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions. Applied Surface Science, 2021, 565, 150526.	3.1	63
1127	Chemical analysis and identification the fluorophores of photoluminescent carbon dots beyond infrared and X-ray photoelectron energy spectra. Dyes and Pigments, 2021, 195, 109750.	2.0	4
1128	Amphiphilicity-adaptable graphene quantum dots to stabilize pH-responsive pickering emulsions at a very low concentration. Journal of Colloid and Interface Science, 2021, 601, 106-113.	5.0	19
1129	Effect of graphene oxide on the deterioration of cement pastes exposed to citric and sulfuric acids. Cement and Concrete Composites, 2021, 124, 104252.	4.6	16
1130	Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119967.	2.0	20
1131	An enamel-inspired bioactive material with multiscale structure and antibacterial adhesion property. Bioactive Materials, 2022, 7, 491-503.	8.6	18
1132	Structure, morphology and modelling studies of polyvinylalcohol nanocomposites reinforced with nickel oxide nanoparticles and graphene quantum dots. Environmental Research, 2022, 203, 111842.	3.7	28
1133	CHAPTER 1. Carbon Nanostructures: Drug Delivery and Beyond. RSC Nanoscience and Nanotechnology, 2021, , 1-38.	0.2	3

#	Article	IF	CITATIONS
1134	Synthesis of Graphene Quantum Dots Decorated With Se, Eu and Ag As Photosensitizer and Study of Their Potential to Use in Photodynamic Therapy. Journal of Fluorescence, 2021, 31, 551-557.	1.3	12
1135	Highly efficient solar photocatalytic degradation of a textile dye by TiO2/graphene quantum dots nanocomposite. Photochemical and Photobiological Sciences, 2021, 20, 87-99.	1.6	28
1136	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
1137	Novel environmentally friendly fuel: The effect of adding graphene quantum dot (GQD) nanoparticles with ethanol-biodiesel blends on the performance and emission characteristics of a diesel engine. NanoImpact, 2021, 21, 100294.	2.4	34
1138	The selective deprotonation of carbon quantum dots for fluorescence detection of phosphate and visualization of latent fingerprints. Nanoscale, 2021, 13, 13057-13064.	2.8	32
1139	Hydrothermal synthesis of biocompatible nitrogen doped graphene quantum dots. Energy and Environment, 2021, 32, 1170-1182.	2.7	11
1140	Preparation of graphene quantum dots with glycine as nitrogen source and its interaction with human serum albumin. Luminescence, 2021, 36, 894-903.	1.5	3
1141	Recent advances in heteroatom-doped graphene quantum dots for sensing applications. RSC Advances, 2021, 11, 25586-25615.	1.7	56
1142	Enhancement of sensitivity for dichlorvos detection by a low-weight gelator based on bolaamphiphile amino acid derivatives decorated with a hybrid graphene quantum dot/enzyme/hydrogel. Materials Chemistry Frontiers, 2021, 5, 6850-6859.	3.2	7
1143	BSA–AuNPs@Tb–AMP metal–organic frameworks for ratiometric fluorescence detection of DPA and Hg ²⁺ . Luminescence, 2017, 32, 1277-1282.	1.5	31
1144	Preparation and Capacitance Properties of Graphene Quantum Dot/NiFeâ^Layered Doubleâ€Hydroxide Nanocomposite. European Journal of Inorganic Chemistry, 2021, 2021, 258-266.	1.0	6
1145	Synthesis, Characterization and Applications of Graphene Quantum Dots. Advanced Structured Materials, 2017, , 65-120.	0.3	3
1146	Synthesis of Quantum Dots. , 2020, , 13-29.		1
1147	Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting. Chemical Engineering Journal, 2020, 397, 125487.	6.6	41
1148	Citric acid coated K2GdF7:Ce/Tb nanocrystals for broad and reversible photoluminescence pH sensing. Journal of Alloys and Compounds, 2020, 834, 155223.	2.8	5
1149	Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO 2 nanocomposites. Materials Research Bulletin, 2018, 97, 428-435.	2.7	49
1150	Green and low-cost electrospun membranes from polycaprolactone/graphene oxide for Bisphenol A sensing. Materials Letters, 2020, 274, 128014.	1.3	13
1151	Hydroxyl rich graphene quantum dots for the determination of Hg(II) in the presence of large concentration of major interferents and in living cells. Microchemical Journal, 2020, 157, 104915.	2.3	7

#	Article	IF	CITATIONS
1152	Graphene quantum dot decorated magnetic graphene oxide filled polyvinyl alcohol hybrid hydrogel for removal of dye pollutants. Journal of Molecular Liquids, 2020, 302, 112591.	2.3	42
1153	Graphene quantum dots wrapped square-plate-like MnO2 nanocomposite as a fluorescent turn-on sensor for glutathione. Talanta, 2020, 219, 121180.	2.9	38
1154	Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Analytical Chemistry, 2021, 93, 3112-3121.	3.2	21
1155	Designing a Rare DNA-Like Double Helical Microfiber Superstructure via Self-Assembly of In Situ Carbon Fiber-Encapsulated WO∢sub>3–∢i>x∢/i>⟨i>x√sub> Nanorods as an Advanced Supercapacitor Material. ACS Applied Materials & Interfaces, 2021, 13, 1288-1300.	4.0	37
1156	Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chemical Communications, 2013, 49, 5079.	2.2	98
1157	Effect of plasma polarity on the synthesis of graphene quantum dots by atmospheric-pressure microplasmas. Nanotechnology, 2020, 31, 485001.	1.3	11
1158	Manganese–nitrogen and gadolinium–nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. Nanotechnology, 2021, 32, 095103.	1.3	20
1159	Resonant random laser emission from graphene quantum dots doped dye solution. Laser Physics, 2020, 30, 115003.	0.6	7
1160	A Label-Free Aptasensor for the Detection of Ochratoxin A Based on Competitive Molecule-Level Interactions. Journal of the Electrochemical Society, 2020, 167, 147518.	1.3	4
1161	Electrochemical UV Sensor Using Carbon Quantum Dot/Graphene Semiconductor. Journal of the Electrochemical Society, 2018, 165, H3001-H3007.	1.3	6
1162	Preparation of Graphene Quantum Dots and Their Biological Applications. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 337.	0.6	9
1163	Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. Journal of Carbon Research, 2021, 7, 2.	1.4	38
1164	Research Progress of Graphene-Based Flexible Humidity Sensor. Sensors, 2020, 20, 5601.	2.1	42
1165	Carbon Quantum Dots: A Safe Tool to Learn about Quantum Phenomenon in Nanomaterials. Journal of Laboratory Chemical Education, 2017, 5, 48-54.	1.0	9
1166	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
1167	Fe3+ Catalyzing Detection of H2o2 in the Presence of Thioglycolic Acid by Ratiometric Fluorescence Sensor of N-Doped Graphene Quantum Dots/Rhodamine B. SSRN Electronic Journal, 0, , .	0.4	0
1168	Graphene quantum dots as nanosensor for rapid and label-free dual detection of Cu2+ and tiopronin by means of fluorescence "on–off–on―switching: mechanism and molecular logic gate. New Journal of Chemistry, 2021, 45, 20649-20659.	1.4	3
1169	Shedding Light on Graphene Quantum Dots: Key Synthetic Strategies, Characterization Tools, and Cutting-Edge Applications. Materials, 2021, 14, 6153.	1.3	12

#	Article	IF	CITATIONS
1170	Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide. Journal of Hazardous Materials, 2022, 424, 127566.	6.5	28
1171	Inkjet Printed Disposable Highâ€Rate Onâ€Paper Microsupercapacitors. Advanced Functional Materials, 2022, 32, 2108773.	7.8	36
1172	Transparent graphene quantum dot/amorphous TiO2 nanocomposite sol as homogeneous-like photocatalyst. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	5
1173	Electrochemical impedimetric analysis of different dimensional (0Dâ€"2D) carbon nanomaterials for effective biosensing of L-tyrosine. Measurement Science and Technology, 2022, 33, 014002.	1.4	2
1174	One-Pot Synthesis of Bright Blue Luminescent N-Doped GQDs: Optical Properties and Cell Imaging. Nanomaterials, 2021, 11, 2798.	1.9	16
1175	A facile method to control the morphologies of barium sulfate particles by using carboxylic carbon quantum dots as a regulator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127668.	2.3	1
1176	Graphene quantum dot and iron co-doped TiO2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. Ecotoxicology and Environmental Safety, 2021, 226, 112855.	2.9	22
1177	Preparation and Optical Properties of Graphene Quantum Dots Containing Nitrogen. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 1123.	0.6	0
1178	Factors affecting photoluminescence of structures based on citric acid and ethylenediamine. , 2019, , .		0
1180	High luminescent fluorophore synthesized at atmospheric pressure from citric acid and ethylenediamine. , 2019, , .		0
1181	Facile strategy for preparing the composite of MoS2 microspheres and N/S dual-doped graphene stabilized by graphene quantum dots for all-solid-state asymmetric supercapacitor. Journal of Alloys and Compounds, 2022, 894, 162492.	2.8	18
1182	Synergetic effect of carbon dot at cellulose nanofiber for sustainable metal-free photocatalyst. Cellulose, 2021, 28, 11261-11274.	2.4	7
1183	Photoelectrochemical and photosensing study of nitrogen doped carbon nanoparticles sensitized TiO2 nanorods. Diamond and Related Materials, 2021, 120, 108683.	1.8	8
1184	Nitrogen-Doped Carbon Quantum Dot-Anchored Hydrogels for Visual Recognition of Dual Metal Ions through Reversible Fluorescence Response. ACS Sustainable Chemistry and Engineering, 2021, 9, 15190-15201.	3.2	19
1185	L-cysteine functionalized graphene quantum dots for sub-ppb detection of As (III). Nanotechnology, 2021, 33, .	1.3	1
1186	Role of surface oxygen-containing functional groups of graphene oxide quantum dots on amyloid fibrillation of two model proteins. PLoS ONE, 2020, 15, e0244296.	1.1	7
1187	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5.4	163
1188	Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. Journal of Membrane Science, 2022, 642, 119944.	4.1	25

#	Article	IF	CITATIONS
1189	A hybrid optical strategy based on graphene quantum dots and gold nanoparticles for selective determination of gentamicin in the milk and egg samples. Food Chemistry, 2022, 370, 131312.	4.2	19
1190	Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. , 2020, , 133-161.		2
1191	Synthesis and Applications of Graphene Quantum Dots. RSC Smart Materials, 2020, , 131-173.	0.1	0
1192	Fluorescent Carbon Nanostructures. , 2020, , 357-399.		0
1193	Highly Sensitive and Selective Detection of Glutathione Using Ultrasonic Aided Synthesis of Novel Graphene Quantum Dots Embedded Over Amine-Funtionalized Silica Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
1194	Facile oxidation reaction to produce monolayered highly crystalline nitrogen-doped graphene quantum dots. Applied Surface Science, 2022, 578, 151919.	3.1	6
1195	D-GQDs Modified Epoxy Resin Enhances the Thermal Conductivity of AlN/Epoxy Resin Thermally Conductive Composites. Polymers, 2021, 13, 4074.	2.0	12
1196	Homostructured graphene oxide-graphene quantum dots nanocomposite-based membranes with tunable interlayer spacing for the purification of butanol. Separation and Purification Technology, 2022, 283, 120166.	3.9	13
1197	Effect of polymer–graphene-quantum-dot solution on enhanced oil recovery performance. Journal of Molecular Liquids, 2022, 349, 118092.	2.3	7
1198	Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging. ACS Omega, 2021, 6, 32904-32916.	1.6	17
1199	Visualizing hypochlorous acid production by human neutrophils with fluorescent graphene quantum dots. Nanotechnology, 2022, 33, 095101.	1.3	5
1200	Fabrication of GQD-Electrodeposited Screen-Printed Carbon Electrodes for the Detection of the CRP Biomarker. ACS Omega, 2021, 6, 32528-32536.	1.6	14
1201	Novel Ce@N-CDs as green corrosion inhibitor for metal in acidic environment. Journal of Molecular Liquids, 2022, 349, 118155.	2.3	9
1202	Carbon dots for virus detection and therapy. Mikrochimica Acta, 2021, 188, 430.	2.5	34
1203	An Enzymatic Multiplexed Impedimetric Sensor Based on \hat{l}_{\pm} -MnO2/GQD Nano-Composite for the Detection of Diabetes and Diabetic Foot Ulcer Using Micro-Fluidic Platform. Chemosensors, 2021, 9, 339.	1.8	12
1204	Synthesis of Graphene Quantum Dots and Fabrication of Humidity Sensor. Lecture Notes in Electrical Engineering, 2022, , 407-415.	0.3	0
1205	Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchemical Journal, 2022, 173, 107046.	2.3	10
1206	Lignin-based fluorescence-switchable graphene quantum dots for Fe3+ and ascorbic acid detection. International Journal of Biological Macromolecules, 2022, 194, 254-263.	3.6	19

#	Article	IF	CITATIONS
1207	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.5	0
1208	Nonpolar Graphene Quantum Dot-Based Hydrophobic Coating from Microwave-Assisted Treatment of Styrofoam Waste. ACS Sustainable Chemistry and Engineering, 2022, 10, 1070-1077.	3.2	6
1209	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022, 4, 353-376.	2.2	46
1210	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	3.2	29
1211	Stable static zinc-iodine redox battery constructed with graphene quantum dots coated graphite felt. Journal of Power Sources, 2022, 520, 230861.	4.0	6
1212	Fabrication and characterization of high-performance forward-osmosis membrane by introducing manganese oxide incited graphene quantum dots. Journal of Environmental Management, 2022, 305, 114335.	3.8	17
1213	Highly selective fluorescence probe for imidacloprid measurement based on fluorescence resonance energy transfer. Microchemical Journal, 2022, 175, 107172.	2.3	13
1214	Effective Exciton Life Elongation Through Decoration of Graphene Quantum Dots on Nitrogen Doped TiO ₂ with Superior Dye Decolorization Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	1
1215	Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, and bioimaging., 2022,, 41-77.		0
1216	Facile Synthesis and Outstanding Supercapacitor Performance of Ternary Nanocomposite of Silver Particles Decorated N/S Dual-Doped Graphene and MoS ₂ Microspheres Stabilized by Graphene Quantum Dots. Journal of the Electrochemical Society, 2022, 169, 020525.	1.3	2
1217	Structural evolution of carbon dots during low temperature pyrolysis. Nanoscale, 2022, 14, 910-918.	2.8	21
1218	Highly sensitive and selective detection of glutathione using ultrasonic aided synthesis of graphene quantum dots embedded over amine-functionalized silica nanoparticles. Ultrasonics Sonochemistry, 2022, 82, 105868.	3.8	20
1219	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. Small, 2022, 18, e2105831.	5.2	31
1220	2D graphene/FeOCl heterojunctions with enhanced tribology performance as a lubricant additive for liquid paraffin. RSC Advances, 2022, 12, 2759-2769.	1.7	1
1221	Zwitterionic Graphene Quantum Dots to Stabilize Pickering Emulsions for Controlled-Release Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7486-7492.	4.0	10
1222	Highly Sensitive Fingerprint Detection under UV Light on Non-Porous Surface Using Starch-Powder Based Luminol-Doped Carbon Dots (N-CDs) from Tender Coconut Water as a Green Carbon Source. Nanomaterials, 2022, 12, 400.	1.9	12
1223	Engineering pyridinic and pyrrolic N-enriched graphene quantum dots to strengthen metal-support interactions for highly efficient methanol oxidation. Journal of Materials Science, 2022, 57, 3252-3267.	1.7	4
1224	Biocompatible and nuclear penetrating carbon quantum dots for photoresistive bioimaging applications in animal cell lines. Gene Reports, 2022, 26, 101519.	0.4	4

#	Article	IF	CITATIONS
1225	Design of few-layered 1T-MoS2 by supramolecular-assisted assembly with N-doped carbon quantum dots for supercapacitor. Journal of Electroanalytical Chemistry, 2022, 908, 116093.	1.9	17
1226	Upgrading of flax powder and short fibers into high value-added products. Journal of Environmental Chemical Engineering, 2022, 10, 107195.	3.3	O
1227	Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability. Renewable and Sustainable Energy Reviews, 2022, 157, 111993.	8.2	41
1228	Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon, 2022, 190, 319-328.	5.4	49
1229	A quantum dot intercalated robust covalent organic framework membrane for ultrafast proton conduction. Journal of Materials Chemistry A, 2022, 10, 6616-6622.	5.2	11
1230	Assessing the electrocatalytic activity of a localized push-pull system in cobalt phthalocyanine/graphene quantum dot hybrids. Materials Chemistry and Physics, 2022, 280, 125842.	2.0	2
1231	Quantitative removal of $Hg(II)$ as $Hg(0)$ using carbon cloths coated graphene quantum dots and their silver nanoparticles composite and application of $Hg(0)$ for the sensitive determination of nitrobenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128542.	2.3	4
1232	Comparative analysis of characterization techniques of GQDs-based photovoltaic applications: A review. Optik, 2022, 255, 168709.	1.4	4
1233	A Static Three-Chamber Zinc-Polyiodide Redox Battery for Decoupling of Active Anions and Cations. SSRN Electronic Journal, 0, , .	0.4	0
1234	Efficient anchoring of CuO nanoparticles on Ugi four-component-functionalized graphene quantum dots: colloidal soluble nanoplatform with great photoluminescent and antibacterial properties. Reaction Chemistry and Engineering, 2022, 7, 1210-1218.	1.9	3
1235	Synthesis and characterization of high quantum yield graphene quantum dots via pyrolysis of glutamic acid and aspartic acid. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	3
1236	Hydrophobic@amphiphilic hybrid nanostructure of iron-oxide and graphene quantum dot surfactant as a theranostic platform. OpenNano, 2022, 6, 100037.	1.8	1
1237	Structural defects in graphene quantum dots: A review. International Journal of Quantum Chemistry, 2022, 122, .	1.0	17
1238	Enhancing the Photodegradation Property of NO through the Construction of a SrTiO ₃ /GQDs/NH ₂ -UiO-66 Heterojunction. Industrial & Engineering Chemistry Research, 2022, 61, 3550-3560.	1.8	6
1239	Probing the Interaction of Heavy and Transition Metal Ions with Silver Nanoparticles Decorated on Graphene Quantum Dots by Spectroscopic and Microscopic Methods. Langmuir, 2022, 38, 4442-4451.	1.6	2
1240	Study on the ultraviolet absorbing properties of cotton fabric finished with boron and nitrogen co-doped carbon dots. Journal of Coatings Technology Research, 2022, 19, 1077-1086.	1.2	4
1241	A ratiometric fluorescence platform based on carbon dots for visual and rapid detection of copper(II) and fluoroquinolones. Mikrochimica Acta, 2022, 189, 144.	2.5	15
1242	The synergistic effect of peracetic acid activated by graphene oxide quantum dots in the inactivation of <i>E. coli</i> and organic dye removal with LED reactor light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 268-281.	0.9	4

#	Article	IF	CITATIONS
1243	Fluorescence Quenching of Graphene Quantum Dots by Chloride Ions: A Potential Optical Biosensor for Cystic Fibrosis. Frontiers in Materials, 2022, 9, .	1.2	4
1244	Development of an Electrodeposited Graphene Quantum Dot Electrode for the Electrochemical Detection of Câ€Reactive Protein (CRP) Biomarker. ChemistrySelect, 2022, 7, .	0.7	4
1245	TRAIL/S-layer/graphene quantum dot nanohybrid enhanced stability and anticancer activity of TRAIL on colon cancer cells. Scientific Reports, 2022, 12, 5851.	1.6	7
1246	Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance. Separation and Purification Technology, 2022, 293, 121035.	3.9	12
1247	Nanocoating on cotton fabric with nitrogen-doped graphene quantum dots/titanium dioxide/PVA: an erythemal UV protection and photoluminescent finishing. Journal of Materials Research and Technology, 2022, 18, 2435-2450.	2.6	14
1248	Engineering of macroscale graphene oxide quantum dots skeleton membrane via electrostatic spraying method. Journal of Membrane Science, 2022, 650, 120428.	4.1	8
1249	Photothermal/NO combination therapy from plasmonic hybrid nanotherapeutics against breast cancer. Journal of Controlled Release, 2022, 345, 417-432.	4.8	9
1250	Graphene quantum dots: Synthesis, optical properties and navigational applications against cancer. Materials Today Communications, 2022, 31, 103359.	0.9	15
1251	Quantifying H2O2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121191.	2.0	5
1252	Switchable two-color graphene quantum dot as a promising fluorescence probe to highly sensitive pH detection and bioimaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 275, 121028.	2.0	6
1253	Electrophoresis-Aided Biomimetic Mineralization System Using Graphene Oxide for Regeneration of Hydroxyapatite on Dentin. Materials, 2022, 15, 199.	1.3	2
1254	Fluorescence Quenching Probe Based on Graphene Quantum Dots for Detection of Copper Ion in Water. Integrated Ferroelectrics, 2022, 222, 56-68.	0.3	2
1255	Laser Direct Writing of Graphene Quantum Dots inside a Transparent Polymer. Nano Letters, 2022, 22, 775-782.	4.5	18
1256	Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803138.	2.0	10
1257	Polyimide composite films reinforced by graphene quantum dots. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-9.	1.0	8
1258	Functional carbon dots from a mild oxidation of coal liquefaction residue. Fuel, 2022, 322, 124216.	3.4	16
1260	Folic Acid-Functionalized Carbon Dot-Enabled Starvation Therapy in Synergism with Paclitaxel against Breast Cancer. ACS Applied Bio Materials, 2022, 5, 2389-2402.	2.3	8
1261	Post-synthetic modification of graphene quantum dots bestows enhanced biosensing and antibiofilm ability: efficiency facet. RSC Advances, 2022, 12, 12310-12320.	1.7	12

#	Article	IF	CITATIONS
1262	Pyrolysis and Solvothermal Synthesis for Carbon Dots: Role of Purification and Molecular Fluorophores. Langmuir, 2022, 38, 6148-6157.	1.6	16
1263	Intrinsic specificity of plain ammonium citrate carbon dots for Helicobacter pylori: Interfacial mechanism, diagnostic translation and general revelation. Materials Today Bio, 2022, 15, 100282.	2.6	2
1264	Improving Thermal and Photostability of Polymer Solar Cells by Robust Interface Engineering. Small, 2022, 18, e2107834.	5. 2	8
1265	N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish. Food Chemistry, 2022, 390, 133156.	4.2	19
1266	Enzymeless glucose sensor based on disposable Ecoflex®/graphite thermoplastic composite substrate modified with Au@GQDs. Sensors and Actuators Reports, 2022, 4, 100102.	2.3	9
1267	Facile and green synthesis of carbon nanodots from environmental pollutants for cell imaging and Fe ³⁺ detection. New Journal of Chemistry, 2022, 46, 12581-12588.	1.4	5
1268	In-sera selectivity detection of catecholamine neurotransmitters using covalent composite of cobalt phthalocyanine and aminated graphene quantum dots. Microchemical Journal, 2022, 180, 107605.	2.3	8
1269	Fast, eco-friendly synthesis of blue luminescent nitrogen-doped graphene quantum dots in glycerol. Optical and Quantum Electronics, 2022, 54, .	1.5	1
1270	A step forward toward quantum dots based perovskite solar cells in an ambient environment. Optical Materials, 2022, 129, 112538.	1.7	9
1271	Response surface methodology optimization for the synthesis of N, S-codoped carbon dots and its application for tetracyclines detection. Chemosphere, 2022, 303, 135145.	4.2	10
1272	Melamine Sponge Functionalized with Carbon Nanodots: A New Sorbent for the Extraction of PAHs and Musks from Complex Environmental Samples Prior to Their Determination by GC-MS. SSRN Electronic Journal, 0, , .	0.4	0
1273	Carbonaceous Nanocomposites Derived from Waste Material for Wastewater Treatment. ACS Symposium Series, 0, , 43-73.	0.5	0
1274	Amphiphilic carbon dots as high-efficiency corrosion inhibitor for N80 steel in HCl solution: Performance and mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129457.	2.3	8
1275	Green and efficient synthesis of carbon quantum dots from cordia myxa L. and their application in photocatalytic degradation of organic dyes. Journal of Molecular Structure, 2022, 1266, 133456.	1.8	17
1276	Multichannel Differentiation of Trace Elements Based on Carbon Quantum Dots. SSRN Electronic Journal, $0, , .$	0.4	0
1277	Recent Advances in Inflammatory Diagnosis with Graphene Quantum Dots Enhanced SERS Detection. Biosensors, 2022, 12, 461.	2.3	22
1278	基于碳ç,¹ï¼^CDs)å•视åŒ−伿"Ÿå™°çš"ç"究进展. Scientia Sinica Chimica, 2022, , .	0.2	0
1279	Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect, 2022, 7, .	0.7	5

#	Article	IF	Citations
1280	Synthesis of magnetic graphene quantum dots–chitosan nanocomposite: an efficient adsorbent for removal of Pb2+ from aqueous solution. International Journal of Environmental Science and Technology, 2022, 19, 11447-11458.	1.8	4
1281	Preparation, Crystallization Behavior, Simultaneous Spectroscopic and Rheological Characterization of Polyphenylene Sulfide/Graphene Quantum Dots Nanocomposites. Macromolecular Chemistry and Physics, 0, , 2200149.	1.1	2
1282	Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O. Nanomaterials, 2022, 12, 2351.	1.9	3
1283	Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry - A European Journal, 2022, 28, .	1.7	21
1284	A Highly Sensitive, Breathable, and Biocompatible Wearable Sensor Based on Nanofiber Membrane for Pressure and Humidity Monitoring. Macromolecular Materials and Engineering, 2022, 307, .	1.7	7
1285	A Multifunctional Nanoplatform Based on Graphene Quantum Dotsâ€Cobalt Ferrite for Monitoring of Drug Delivery and Fluorescence/Magnetic Resonance Bimodal Cellular Imaging. Advanced NanoBiomed Research, 2022, 2, .	1.7	6
1286	A static three-chamber zinc-polyiodide redox battery for decoupling of active anions and cations. Journal of Energy Storage, 2022, 54, 105258.	3.9	1
1287	Self-powered Vs. high speed ZnO-based photodetectors. Materials Research Bulletin, 2022, 155, 111950.	2.7	7
1288	The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview. Nanomaterials, 2022, 12, 2515.	1.9	7
1289	Synthesis of luminescent graphene quantum dots from biomass waste materials for energyâ€related applications—An overview. Energy Storage, 2023, 5, .	2.3	29
1290	Synthesis of Nitrogenâ€doped Carbon Nanodots from Triâ€isopropanolamine and the Application in Cell Imaging. ChemistrySelect, 2022, 7, .	0.7	1
1291	Melamine sponge functionalized with carbon nanodots for the extraction of polyaromatic hydrocarbons and musks from environmental samples prior to their determination by gas chromatography-mass spectrometry. Journal of Chromatography A, 2022, 1679, 463375.	1.8	2
1292	New ZnFe2O4@SiO2@graphene quantum dots as an effective nanocarrier for targeted DOX delivery and CT-DNA binder. Journal of Molecular Liquids, 2022, 363, 119904.	2.3	8
1293	Ultravioletâ€shielding and water resistance properties of graphene quantum dots/ polyvinyl alcohol composite-based film., 2020, 30, 90-96.		6
1294	An effective, novel, and cheap carbon paste electrode for naproxen estimation. Reviews in Analytical Chemistry, 2022, 41, 168-179.	1.5	4
1295	Coupling of Hydrophobic Graphene Quantum Dots with Photochromic Molecule for Fabrication of Transparent Photo-Responsive Polymeric Films Manifesting Fret Functioning. SSRN Electronic Journal, 0, , .	0.4	0
1297	Structural and functional study of fluorescent carbon dots synthesized from lemon-peel via one step microwave irradiation method. IOP Conference Series: Materials Science and Engineering, 2022, 1248, 012053.	0.3	0
1298	Preparation of novel fluorescent probe based on carbon dots for sensing and imaging Fe(III) and pyrophosphate in cells and zebrafish. Analytical and Bioanalytical Chemistry, 2022, 414, 7609-7622.	1.9	6

#	Article	IF	Citations
1299	Green Synthesis of Fluorescent Carbon Dots from Ocimum basilicum L. Seed and Their Application as Effective Photocatalyst in Pollutants Degradation. Journal of Cluster Science, 2023, 34, 1569-1581.	1.7	2
1300	Graphene Quantum Dotsâ€Modified Resorcinolâ€Formaldehyde Resin for Efficient Hydrogen Peroxide Production. Solar Rrl, 2022, 6, .	3.1	9
1301	A robust electrochemical sensing platform for the detection of erlotinib based on nitrogen-doped graphene quantum dots/copper nanoparticles-polyaniline-graphene oxide nanohybrid. Nanotechnology, 0, , .	1.3	0
1302	Waste biomass-derived CQDs and Ag-CQDs as a sensing platform for Hg2+ ions. Sustainable Chemistry and Pharmacy, 2022, 29, 100813.	1.6	7
1303	In-situ intercalated pyrolytic graphene/serpentine hybrid as an efficient lubricant additive in paraffin oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129929.	2.3	20
1304	Microwave irradiation and color converting film application of carbon dots originated from wasted toner powder. Materials Research Bulletin, 2022, 156, 111999.	2.7	2
1305	Graphene-quantum-dots-decorated NiAl2O4 nanostructure as supercapacitor and electrocatalyst in biosensing. Materials Today Communications, 2022, 33, 104166.	0.9	8
1306	Facile preparation of highly fluorescent nitrogen-doped graphene quantum dots for sensitive Fe3+detection. Optics and Laser Technology, 2022, 156, 108542.	2.2	4
1307	Nitrogen-doped Graphene Oxide: Production and its Applications in Onepot Five-component Reaction of Highly Substituted Tetrahydropyridines. Letters in Organic Chemistry, 2023, 20, 239-249.	0.2	1
1308	Highly Specific Silver Ion Detection by Fluorescent Carbon Quantum Dots. Chemosensors, 2022, 10, 362.	1.8	7
1309	Enhancement of polypyrrole electrochemical performance with graphene quantum dots in polypyrrole nanoparticle/graphene quantum dot composites. Journal of Electroanalytical Chemistry, 2022, 923, 116767.	1.9	11
1310	Distinctive sensing nanotool for free and nanoencapsulated quercetin discrimination based on S,N co-doped graphene dots. Analytica Chimica Acta, 2022, 1230, 340406.	2.6	2
1311	2D mesoporous silica-confined CsPbBr3 nanocrystals and N-doped graphene quantum dot: A self-enhanced quaternary composite structures for electrochemiluminescence analysis. Biosensors and Bioelectronics, 2022, 216, 114664.	5.3	9
1312	Sonochemical synthesized BaMoO4/ZnO nanocomposites as electrode materials: A comparative study on GO and GQD employed in hydrogen storage. Ultrasonics Sonochemistry, 2022, 90, 106167.	3.8	4
1313	Ball-milled graphene quantum dots for enhanced anti-cancer drug delivery. OpenNano, 2022, 8, 100072.	1.8	8
1314	Efficient photocatalysis of carbon coupled TiO2 to degrade pollutants in wastewater – A review. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100737.	1.7	13
1315	Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation. Chemosphere, 2022, 308, 136333.	4.2	18
1316	Carbon dots-based electrochemical sensors. , 2023, , 109-136.		3

#	Article	IF	CITATIONS
1317	The synthesis of carbon dots by folic acid and utilized as sustainable probe and paper sensor for Hg2+ sensing and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121865.	2.0	11
1318	Ultra-small carbon dots for sensing and imaging of chemical species. , 2023, , 255-270.		0
1319	2d Mesoporous Silica-Confined Cspbbr3perovskite Nanocrystals and N-Doped Graphene Quantum Dot: A Self-Enhanced Quaternary Composite Structures for Electrochemiluminescence Analysis. SSRN Electronic Journal, 0, , .	0.4	0
1320	Carbon Quantum Dots. Nanotechnology in the Life Sciences, 2022, , 75-102.	0.4	0
1321	Quantum Dots: Potential Cell Imaging Agent. , 2022, , 191-207.		1
1322	Quantum Dots: Synthesis, Properties, and Applications. Nanotechnology in the Life Sciences, 2022, , 11-45.	0.4	0
1323	DO carbon nanoparticles: Carbon nanodots and graphene oxide quantum dots. , 2022, , 505-527.		0
1324	Synthesis of Photoluminescentcomposite Based on Graphene Quantum Dot@Zif-11: A Novel Sensor for Extremely Efficient Nano-Molar Detection of Cn SSRN Electronic Journal, 0, , .	0.4	O
1325	Synthesis of Nitrogen-Doped Graphene Quantum Dots from Sucrose Carbonization. Applied Sciences (Switzerland), 2022, 12, 8686.	1.3	7
1326	ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts, 2022, 12, 952.	1.6	8
1327	A Review on Graphene Quantum Dots for Electrochemical Detection of Emerging Pollutants. Journal of Fluorescence, 2022, 32, 2223-2236.	1.3	6
1328	Dye Plants Derived Carbon Dots for Flexible Secure Printing. Nanomaterials, 2022, 12, 3168.	1.9	3
1329	Graphene Quantum Dots with Blue and Yellow Luminescence Fabricated by Modulating Intercalation State. Materials, 2022, 15, 6567.	1.3	2
1330	Effect of dual modification with citric acid combined with ultrasonication on hydrolysis kinetics, morphology and structure of corn starch dispersions. International Journal of Biological Macromolecules, 2022, 222, 1688-1699.	3.6	6
1331	Synthesis, optical, dielectric, and magneto-dielectric properties of graphene quantum dots (GQDs). Journal of Materials Research, 2022, 37, 3459-3469.	1.2	6
1332	Citric Acid-Based Carbon Dots and Their Application in Energy Conversion. ACS Applied Electronic Materials, 2022, 4, 4231-4257.	2.0	15
1333	Fabrication and optical properties of sulfur- and nitrogen-doped graphene quantum dots by the microwave–hydrothermal approach. Journal of Nanoparticle Research, 2022, 24, .	0.8	4
1334	Graphene quantum dots based MnFe2O4@SiO2 magnetic nanostructure as a pH-sensitive fluorescence resonance energy transfer (FRET) system to enhance the anticancer effect of the drug. International Journal of Pharmaceutics, 2022, 628, 122254.	2.6	4

#	Article	IF	CITATIONS
1335	S, N Co-Doped Graphene Quantum Dots for Novel Quantum Dots Solar Cell. International Journal of Nanoscience, 2022, 21, .	0.4	3
1336	Degradation characteristics of p-nitrophenol and atenolol by carbon nitride modified by graphene quantum dots. Environmental Technology (United Kingdom), 2024, 45, 972-987.	1.2	0
1337	Carbon quantum dots as ROS-generator and -scavenger: A comprehensive review. Dyes and Pigments, 2023, 208, 110784.	2.0	15
1338	Application of artificial neural networks for the prediction of performance and exhaust emissions in IC engine using biodiesel-diesel blends containing quantum dot based on carbon doped. Energy Conversion and Management: X, 2022, 16, 100304.	0.9	2
1339	C-CdTe Quantum Dots as Dual-Wavelength Fluorescence and Colorimetric Probes to Detect Hydrogen Peroxide, Hydroxyl Radicals, and Iron(II) in Serum. ACS Applied Nano Materials, 2022, 5, 15875-15884.	2.4	2
1340	A Hydrothermal Method to Generate Carbon Quantum Dots from Waste Bones and Their Detection of Laundry Powder. Molecules, 2022, 27, 6479.	1.7	4
1341	A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry. Journal of Thermal Analysis and Calorimetry, 2023, 148, 505-516.	2.0	1
1342	Metal-organic framework/carboxymethyl starch/graphene quantum dots ternary hybrid as a pH sensitive anticancer drug carrier for co-delivery of curcumin and doxorubicin. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104573.	2.7	17
1343	Carbon-based nanostructures for cancer therapy and drug delivery applications. Journal of Materials Chemistry B, 2022, 10, 9944-9967.	2.9	11
1344	Boosting lithium–sulfur battery performance using a phosphating nano-sulfur anchored on graphene framework anode. Journal of Power Sources, 2023, 553, 232269.	4.0	6
1345	A composite adsorbent of graphene quantum dots, mesoporous carbon, and molecularly imprinted polymer to extract nonsteroidal anti-inflammatory drugs in milk. Mikrochimica Acta, 2022, 189, .	2.5	2
1346	Coupling of hydrophobic graphene quantum dots with photochromic molecule for fabrication of transparent photo-responsive polymeric films manifesting FRET functioning. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437, 114420.	2.0	3
1347	Review on thin-film nanocomposite membranes with various quantum dots for water treatments. Journal of Industrial and Engineering Chemistry, 2023, 118, 19-32.	2.9	12
1348	Fabrication of Multilayered Biofunctional Material with an Enamel-like Structure. International Journal of Molecular Sciences, 2022, 23, 13810.	1.8	0
1349	Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS Applied Materials & Environmental Nanoprobes. ACS Applied Materials & Environmental Nanoprobes.	4.0	13
1350	Carbon dots for all-in-one detection and degradation: The role of photoinduced electron transfer. Journal of Environmental Chemical Engineering, 2022, 10, 108951.	3.3	7
1351	Recent advances in the graphene quantum dot-based biological and environmental sensors. Sensors and Actuators Reports, 2022, 4, 100130.	2.3	3
1352	Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications. RSC Advances, 2022, 13, 701-719.	1.7	9

#	Article	IF	CITATIONS
1353	Effects of graphene quantum dots on microstructure, optical and gas sensing properties of coral-like ZnCo2O4 nanoparticles. Physica B: Condensed Matter, 2023, 650, 414439.	1.3	5
1354	Ultrafine nitrogen-doped graphene quantum dot structure and antibacterial activities against Bacillus subtilis 3610. Materials Chemistry and Physics, 2023, 295, 127135.	2.0	5
1355	Interactive behavior of graphene quantum dots towards noble metal surfaces. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115596.	1.3	8
1356	Lemon-juice derived highly efficient S-GQD/GO composite as a photocatalyst for regeneration of coenzyme under solar light. Main Group Chemistry, 2023, 22, 129-141.	0.4	0
1357	Polyindole-Derived Nitrogen-Doped Graphene Quantum Dots-Based Electrochemical Sensor for Dopamine Detection. Biosensors, 2022, 12, 1063.	2.3	4
1358	On-Site Application of Solar-Activated Membrane (Cr–Mn-Doped TiO2@Graphene Oxide) for the Rapid Degradation of Toxic Textile Effluents. Membranes, 2022, 12, 1178.	1.4	1
1359	Graphene Quantum Dot-Enabled Nanocomposites as Luminescence- and Surface-Enhanced Raman Scattering Biosensors. Chemosensors, 2022, 10, 498.	1.8	5
1360	Aggregation in carbon dots. Aggregate, 2022, 3, .	5.2	40
1361	Optical Properties of Tricarboxylic Acid-Derived Carbon Dots. ACS Omega, 2022, 7, 44093-44102.	1.6	2
1362	<scp> </scp> â€Arginine Modified Lignin Composite Carbon Quantum Dots Fluorescent Probe for Cr(VI) Detection. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	2
1363	Green preparation of carbon quantum dots and its silver nanoparticles composite against carbapenem-resistant Acinetobacter baumannii. Applied Nanoscience (Switzerland), 2023, 13, 4109-4118.	1.6	3
1364	Layered Double Hydroxide/Graphene Quantum Dots as a New Sorbent for the Dispersive Solid-Phase Microextraction of Selected Benzophenones, Phenols, and Parabens. Molecules, 2022, 27, 8388.	1.7	2
1365	Plasmonic Copper activated ZnO Microarrays for Efficient Photoelectrocatalytic Applications. Chemistry - an Asian Journal, 0, , .	1.7	0
1366	Effective protection of high-performance dopamine-based corrosion inhibitor on metal surface. Materials Chemistry and Physics, 2023, 296, 127231.	2.0	4
1367	Visible Light-Induced Reactive Yellow 145 Discoloration: Structural and Photocatalytic Studies of Graphene Quantum Dot-Incorporated TiO ₂ . ACS Omega, 2023, 8, 3007-3016.	1.6	1
1368	Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers, 2023, 15, 405.	2.0	5
1369	Fabrication of white light emitting diodes via high yield surface passivated carbon quantum dots doped with terbium. RSC Advances, 2023, 13, 1974-1984.	1.7	4
1370	Graphene quantum dots functionalised with rhamnolipid produced from bioconversion of palm kernel oil by <i>Pseudomonas stutzeri</i> BK-AB12MT as a photocatalyst. RSC Advances, 2023, 13, 2949-2962.	1.7	1

#	Article	IF	CITATIONS
1371	Chitosan/carboxymethyl starch bio-coated naproxen@GQDs/Copper glutamate MOFs: A new system for colon-specific drug delivery relay on the special structure of the used polymers. European Polymer Journal, 2023, 184, 111802.	2.6	8
1372	Paper-based electrodes with nitrogen-doped graphene quantum dots for detection of copper ions via electrochemiluminescence. Materials Chemistry and Physics, 2023, 296, 127300.	2.0	6
1373	Complete Degradation of Glassy Carbon Microspheres into Carbon Nanostructures: Implications for Sensing. ACS Applied Nano Materials, 2023, 6, 792-803.	2.4	1
1374	Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter, 2023, 6, 728-760.	5.0	24
1375	Graphene and graphene oxide: Application in luminescence and solar cell., 2023,, 107-133.		1
1376	Emerging Trends of Carbonâ€Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19,	5.2	33
1377	Photodetector applications of carbon and graphene quantum dots., 2023,, 105-133.		0
1378	Functionalized graphene nanomaterials: Next-generation nanomedicine., 2023,, 3-18.		2
1379	Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). Nanomaterials, 2023, 13, 554.	1.9	5
1380	Solid-Phase Pyrolysis Synthesis of Highly Fluorescent Nitrogen/Sulfur Codoped Graphene Quantum Dots for Selective and Sensitive Diversity Detection of Cr(VI). Langmuir, 2023, 39, 1538-1547.	1.6	6
1381	Water-soluble graphene quantum dotâ€based polymer nanoparticles with internal donor/acceptor heterojunctions for efficient and selective detection of cancer cells. Journal of Colloid and Interface Science, 2023, 637, 389-398.	5.0	4
1382	Graphene-based organic-inorganic hybrid quantum dots for organic pollutants treatment. , 2023, , 133-155.		0
1383	One-pot synthesis of N-doped carbon dots from microwave-irradiated egg white: application to raspberry ketone assay by photo-induced charge transfer fluorescence sensing. Chemical Papers, 2023, 77, 3867-3879.	1.0	3
1384	Hydrogen Bond-Enabled High-ICE Anode for Lithium-Ion Battery Using Carbonized Citric Acid-Coated Silicon Flake in PAA Binder. ACS Omega, 2023, 8, 8001-8010.	1.6	3
1385	Outstanding lubrication properties of carbon dot-based ionic liquids. Journal of Molecular Liquids, 2023, 376, 121458.	2.3	6
1386	A simple fluorescent "Turn off-on―sensor based on P, N-doped graphene quantum dots for Hg2+ and Cysteine determination. Sensors and Actuators A: Physical, 2023, 356, 114362.	2.0	6
1387	Synthesis of photoluminescent composite based on graphene quantum dot@ZIF-11: A novel sensor for extremely efficient nano-molar detection of CN–. Microchemical Journal, 2023, 189, 108494.	2.3	2
1388	Low-pressure thin-film composite nanofiltration membranes with enhanced selectivity and antifouling property for effective dye/salt separation. Journal of Colloid and Interface Science, 2023, 641, 197-214.	5.0	13

#	Article	IF	CITATIONS
1390	TiO ₂ –NGQD composite photocatalysts with switchable photocurrent response. Nanoscale, 2023, 15, 2788-2797.	2.8	4
1391	Metal and nitrogen coâ€doped carbon dots in the sensitized solar cells. Applied Organometallic Chemistry, 2023, 37, .	1.7	0
1392	Study on the corrosion inhibition of biomass carbon quantum dot self- aggregation on Q235 steel in hydrochloric acid. Arabian Journal of Chemistry, 2023, 16, 104605.	2.3	12
1393	Top-down synthesis and enhancing device adaptability of graphene quantum dots. Nanotechnology, 2023, 34, 185601.	1.3	5
1394	Copper tungstate (CuWO4)/graphene quantum dots (GQDs) composite photocatalyst for enhanced degradation of phenol under visible light irradiation. Results in Physics, 2023, 45, 106253.	2.0	13
1395	Carbon Dots Based Photoinduced Reactions: Advances and Perspective. Advanced Science, 2023, 10, .	5.6	20
1396	Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts, 2023, 13, 422.	1.6	21
1397	pH-Switchable Pickering miniemulsion enabled by carbon quantum dots for quasi-homogenized biphasic catalytic system. Chemical Communications, 2023, 59, 3261-3264.	2.2	6
1398	Synthesis of Fluorescent Carbon Quantum Dots Doped Graphitic Carbon Nitride and Its Application as Fe3+ Sensors. Journal of Cluster Science, 2023, 34, 2591-2607.	1.7	2
1399	N, F-doped graphene quantum dots effectively inhibit the fibrillization of amyloid-beta peptide (1–42). Materials Chemistry and Physics, 2023, 299, 127522.	2.0	0
1401	Graphene quantum dots (GQDs) decorated Co-Zn ferrite: Structural, morphological, dielectric, and magnetic properties. Journal of Magnetism and Magnetic Materials, 2023, 570, 170548.	1.0	9
1402	Current trends in carbon-based quantum dots development from solid wastes and their applications. Environmental Science and Pollution Research, 2023, 30, 45528-45554.	2.7	4
1403	Recent Advances of Carbon Dots with Afterglow Emission. Small, 2023, 19, .	5.2	31
1404	Graphene quantum dots for heavy metal detection and removal. , 2023, , 157-181.		0
1405	Graphene quantum dots application in bacterial and viral pathogen disinfection., 2023,, 47-65.		0
1406	Graphene and its quantum dots. , 2023, , 1-25.		0
1407	Graphene quantum dots: A comprehensive overview. Open Chemistry, 2023, 21, .	1.0	9
1408	Synergistic impact of nanoarchitectured GQDs-AgNCs(APTS) modified glassy carbon electrode in the electrochemical detection of guanine and adenine. Journal of Electroanalytical Chemistry, 2023, 934, 117302.	1.9	2

#	Article	IF	CITATIONS
1409	Photoluminescent Carbon Dots: A New Generation Nanocarbon Material. Materials Horizons, 2023, , 231-256.	0.3	0
1410	Recent Advancement of Luminescent Graphene Quantum Dots for Energy-Related Applications. Materials Horizons, 2023, , 147-164.	0.3	0
1411	Alkylamine-Confined Thickness-Tunable Synthesis of Co(OH) < sub>2 < /sub>-CoO Nanosheets toward Oxygen Evolution Catalysis. ACS Nano, 2023, 17, 5861-5870.	7.3	10
1412	Development of High-Performance Polymer Electrolyte Membranes through the Application of Quantum Dot Coatings to Nafion Membranes. ACS Applied Materials & 15616-15624.	4.0	4
1413	A preliminary study on the luminescence of carbon nanodots formation prepared from thermally treated biologically active compounds via simple extraction method. AIP Conference Proceedings, 2023, , .	0.3	0
1414	Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. Journal of Functional Biomaterials, 2023, 14, 166.	1.8	6
1415	Preparation of ZnO-graphene quantum dots nanocomposite embedded in chitosan biopolymer as an efficient adsorbent for Cd $<$ sup $>$ 2+ $<$ /sup $>$ ions removal from aqueous solutions. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	1.8	0
1416	Highly sensitive colorimetric assay for penconazole using gold nanostar-graphene quantum dot composite. Analytical Sciences, 0, , .	0.8	0
1417	Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics, 2023, 15, 1170.	2.0	8
1418	Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. Advanced Science, 2023, 10, .	5.6	13
1419	Controllable construction of ultrathin graphene quantum dots/polyamide nanofilms via electrospray interfacial polymerization. Separation and Purification Technology, 2023, 317, 123831.	3.9	3
1424	Safe Appraisal of Carbon Nanoparticles in Pollutant Sensing. Environmental Contamination Remediation and Management, 2023, , 229-261.	0.5	0
1428	Graphene-based Smart Energy Materials for Fuel and Solar Cell Applications. , 2023, , 136-167.		0
1435	Therapeutic and imaging applications of quantum dots. , 2023, , 211-237.		0
1437	Emerging trends of quantum dots in detection and treatment of animal viruses., 2023,, 95-117.		0
1438	Graphene quantum dot-based nanocomposite hydrogels as anticancer drug delivery systems. , 2023, , 181-198.		0
1463	Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review. Materials Advances, 2023, 4, 4272-4293.	2.6	5
1465	Environmental Applications of Carbon-Based Supercapacitors. Materials Horizons, 2024, , 373-387.	0.3	O

Article IF Citations