A study on the cooling effects of greening in a high-dens Kong

Building and Environment 47, 256-271

DOI: 10.1016/j.buildenv.2011.07.014

Citation Report

#	ARTICLE	IF	CITATIONS
1	Experimental Study on the Radiative Properties of a <i>Sedum lineare</i> Greenroof. Applied Mechanics and Materials, 0, 174-177, 1986-1989.	0.2	2
2	Exploring the Spatial Preferences of Plant Landscape Dynamics around the Buildings in the Humble Administrator's Garden, China. Applied Mechanics and Materials, 0, 174-177, 2997-3001.	0.2	0
3	Knowledge management for urban construction based on symbiosis., 2012,,.		1
4	A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry and Urban Greening, 2012, 11, 351-363.	2.3	684
5	Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 2012, 107, 137-146.	3.4	190
6	Estratégias de melhoria do ambiente térmico diurno em situação de verão de uma fração urbana da cidade de São Paulo. Ambiente ConstruÃdo, 2012, 12, 139-158.	0.2	7
7	Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Building and Environment, 2012, 56, 38-46.	3.0	140
8	Quantification of turbulent heat fluxes for adaptation strategies within urban planning. International Journal of Climatology, 2013, 33, 143-159.	1.5	50
9	Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 2013, 66, 158-172.	3.0	205
10	Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate, 2013, 6, 24-43.	2.4	61
11	Green Spaces Growth Impact on the Urban Microclimate. Procedia, Social and Behavioral Sciences, 2013, 105, 547-557.	0.5	35
12	Carbon dioxide balance assessment of the city of Florence (Italy), and implications for urban planning. Landscape and Urban Planning, 2013, 120, 138-146.	3.4	58
13	The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 86, 100-110.	4.9	71
14	Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, 2013, 60, 93-104.	3.0	237
15	Building integrated concentrating solar systems. , 2013, , 563-606.		0
16	CONTRIBUTION OF GREEN ROOFS AND GREEN WALLS TO ECOSYSTEM SERVICES OF URBAN GREEN. Acta Horticulturae, 2013, , 475-480.	0.1	10
17	QUANTITATIVE STUDY ON GREEN COVERAGE RATIO AND ITS EFFECTIVENESS OF AMBIENT TEMPERATURE REDUCTION IN SURROUNDING TERRACED-HOUSE. Nihon Kenchiku Gakkai Keikakukei Ronbunshu, 2013, 78, 1561-1567.	0.1	1
18	Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE, 2014, 9, e102124.	1.1	38

#	Article	IF	Citations
19	Bowen Ratio Method for Measuring Heat Transfer on Land Cover Change in Establishing Green Patch in Urban Heat Island of Bangkok. Modern Applied Science, 2014, 8, .	0.4	3
20	Urbanity and Urbanization: An Interdisciplinary Review Combining Cultural and Physical Approaches. Land, 2014, 3, 105-130.	1.2	7
21	Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model. Sustainability, 2014, 6, 7013-7029.	1.6	101
22	Numerical Simulation on Cooling Effects of Greening for Alleviating Urban Heat Island Effect in North China. Applied Mechanics and Materials, 0, 675-677, 1227-1233.	0.2	3
23	Validation of ASTER Surface Temperature Data with <i>In Situ </i> li>Measurements to Evaluate Heat Islands in Complex Urban Areas. Advances in Meteorology, 2014, 2014, 1-12.	0.6	22
24	Mitigating the Urban Heat Island Effect in Megacity Tehran. Advances in Meteorology, 2014, 2014, 1-19.	0.6	62
25	An Investigation into Minimizing Urban Heat Island (UHI) Effects: A UK Perspective. Energy Procedia, 2014, 62, 72-80.	1.8	54
26	The Effect of Urban Design on Outdoor Thermal Environment in a Central Business District Area in Singapore. Advanced Materials Research, 2014, 1073-1076, 1428-1432.	0.3	0
27	Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Building and Environment, 2014, 77, 61-76.	3.0	52
28	An assessment indicator for air ventilation and pollutant dispersion potential in an urban canopy with complex natural terrain and significant wind variations. Atmospheric Environment, 2014, 94, 297-306.	1.9	28
29	Urban vegetation structure types as a methodological approach for identifying ecosystem services – Application to the analysis of micro-climatic effects. Ecological Indicators, 2014, 42, 58-72.	2.6	126
30	Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 2014, 103, 682-703.	2.9	1,172
31	Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 2014, 115, 243-257.	1.3	184
32	Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning, 2014, 125, 1-16.	3.4	87
33	State-of-the-art analysis of the environmental benefits of green roofs. Applied Energy, 2014, 115, 411-428.	5.1	562
34	Experimental characterization and implementation of an integrated autoregressive model to predict the thermal performance of vegetal façades. Energy and Buildings, 2014, 72, 309-321.	3.1	19
35	Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental Modelling and Software, 2014, 60, 69-83.	1.9	61
36	Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry and Urban Greening, 2014, 13, 646-654.	2.3	167

#	ARTICLE	IF	Citations
37	Daytime microclimatic impacts of the SOVALP project in summer: A case study in Geneva, Switzerland. Simulation, 2014, 90, 857-873.	1.1	7
38	Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Building and Environment, 2014, 81, 309-319.	3.0	62
39	The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: A case study in Beijing, China. Building and Environment, 2014, 76, 37-43.	3.0	152
40	Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Building and Environment, 2014, 76, 44-53.	3.0	115
41	Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 2014, 128, 35-47.	3.4	326
42	Assessment of three dynamical urban climate downscaling methods: Brussels's future urban heat island under an <scp>A1B</scp> emission scenario. International Journal of Climatology, 2014, 34, 978-999.	1.5	96
43	Vegetation's Role on Modifying Microclimate of Urban Resident. Procedia, Social and Behavioral Sciences, 2015, 202, 400-407.	0.5	20
44	Effects of urban green infrastructure (UGI) on local outdoor microclimate during the growing season. Environmental Monitoring and Assessment, 2015, 187, 732.	1.3	33
45	Lag Time of Heat Conduction in Conditions of Growing Greenery Cover on Flattop-Concrete Roof of Single-Room House with Lightweight-Concrete Walls as Constructed on Narrow Space in Bangkok. Modern Applied Science, 2015, 9, .	0.4	1
46	Rooftop Surface Temperature Analysis in an Urban Residential Environment. Remote Sensing, 2015, 7, 12135-12159.	1.8	54
47	Evaluating the Effects of Fa \tilde{A} sade Greening on Human Bioclimate in a Complex Urban Environment. Advances in Meteorology, 2015, 2015, 1-15.	0.6	73
48	Contribution of Greening and High-Albedo Coatings to Improvements in the Thermal Environment in Complex Urban Areas. Advances in Meteorology, 2015, 2015, 1-14.	0.6	28
49	Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 2015, 59, 657-677.	1.3	92
50	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	2.4	131
51	Cooling performance of residential greenery in localised urban climates: a case study in Shanghai China. International Journal of Environmental Technology and Management, 2015, 18, 478.	0.1	4
52	Numerical analysis on the thermal environment of an old city district during urban renewal. Energy and Buildings, 2015, 89, 18-31.	3.1	32
53	Regulating the damaged thermostat of the citiesâ€"Status, impacts and mitigation challenges. Energy and Buildings, 2015, 91, 43-56.	3.1	185
54	Further Development of the Regional Boundary Layer Model to Study the Impacts of Greenery on the Urban Thermal Environment. Journal of Applied Meteorology and Climatology, 2015, 54, 137-152.	0.6	18

#	Article	IF	CITATIONS
55	An hourly simulation method for outdoor thermal environment evaluation. Building Simulation, 2015, 8, 113-122.	3.0	3
56	Implementation of green building specification credits for better thermal conditions in naturally ventilated school buildings. Building and Environment, 2015, 86, 141-150.	3.0	54
57	Toward the sustainable development of urban areas: An overview of global trends in trials and policies. Land Use Policy, 2015, 48, 199-212.	2.5	104
58	Quantitative detection of urban climate resources and the establishment of an urban climate map (UCMap) system in Beijing. Building and Environment, 2015, 92, 668-678.	3.0	34
59	Comparative microclimate and dewfall measurements at an urban green roof versus bitumen roof. Building and Environment, 2015, 92, 713-723.	3.0	37
60	Multi-purpose rainwater harvesting for water resource recovery and the cooling effect. Water Research, 2015, 86, 116-121.	5.3	50
61	Temporal Statistical Analysis of Urban Heat Islands at the Microclimate Level. Procedia Environmental Sciences, 2015, 26, 91-94.	1.3	6
62	Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban Climate, 2015, 12, 160-182.	2.4	42
63	Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustainable Cities and Society, 2015, 19, 222-235.	5.1	190
64	A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 2015, 93, 245-257.	3.0	138
65	Assessing spatial equality of urban green spaces provision: a case study of Greater Doha in Qatar. Local Environment, 2015, 20, 386-399.	1,1	18
66	Street greenery and its physical and psychological impact on thermal comfort. Landscape and Urban Planning, 2015, 138, 87-98.	3.4	224
67	How high albedo and traditional buildings' materials and vegetation affect the quality of urban microclimate. A case study. Energy and Buildings, 2015, 99, 32-49.	3.1	159
68	Experimental study of the urban microclimate mitigation potential of green roofs and green walls in street canyons. International Journal of Low-Carbon Technologies, 2015, 10, 34-44.	1.2	55
69	Quantifying spatiotemporal pattern of urban greenspace: new insights from high resolution data. Landscape Ecology, 2015, 30, 1165-1173.	1.9	99
71	Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban Forestry and Urban Greening, 2015, 14, 760-771.	2.3	840
72	The impact of surface characteristics on ambient temperature at urban micro scale: comparative field study in two climates. International Journal of Low-Carbon Technologies, 2015, 10, 165-175.	1.2	3
73	Thermal Comfort in High-rise Urban Environments in Singapore. Procedia Engineering, 2015, 121, 2125-2131.	1.2	29

#	Article	IF	CITATIONS
74	Impact of plant evapotranspiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Building and Environment, 2015, 94, 206-217.	3.0	64
75	Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry and Urban Greening, 2015, 14, 178-186.	2.3	182
76	Preferences for street configuration and street tree planting in urban Hong Kong. Urban Forestry and Urban Greening, 2015, 14, 30-38.	2.3	44
77	Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, 2015, 134, 66-75.	3.4	171
78	Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 2015, 134, 127-138.	3.4	749
79	Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 2015, 83, 91-103.	3.0	246
80	Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renewable Energy, 2015, 73, 18-27.	4.3	173
81	Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek City. Journal of Sustainable Development, 2016, 9, 132.	0.1	1
82	Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City. Buildings, 2016, 6, 2.	1.4	29
83	Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity. Sustainability, 2016, 8, 358.	1.6	18
84	Impacts of inâ€canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: numerical investigation using a coupled ⟨scp⟩WRFâ€VUCM⟨/scp⟩ model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2562-2578.	1.0	31
85	Neighborhood socioeconomic disadvantage and urban public green spaces availability: A localized modeling approach to inform land use policy. Land Use Policy, 2016, 57, 470-478.	2.5	83
86	Vegetation and climate-sensitive public places. , 2016, , 111-162.		0
87	Urban climate modeling: Challenges in the tropics. , 2016, , 255-304.		2
88	Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustainable Cities and Society, 2016, 26, 9-26.	5.1	94
89	Urban heat islands in Hong Kong: statistical modeling and trend detection. Natural Hazards, 2016, 83, 885-907.	1.6	48
90	Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: Effect of building shape, separation and orientation. Building and Environment, 2016, 101, 45-63.	3.0	93
91	Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 2016, 103, 262-275.	3.0	182

#	Article	IF	CITATIONS
92	Modelling building proximity to greenery in a three-dimensional perspective using multi-source remotely sensed data. Journal of Spatial Science, 2016, 61, 389-403.	1.0	8
93	Prediction of the root anchorage of native young plants using Bayesian inference. Urban Forestry and Urban Greening, 2016, 19, 237-252.	2.3	5
94	A comparison of model performance between ENVI-met and Austal2000 for particulate matter. Atmospheric Environment, 2016, 145, 392-404.	1.9	40
95	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	2.3	241
96	Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183, 1428-1440.	5.1	86
97	Landscape pattern analysis of green space in central urban area of Zhuhai city. , 2016, , .		1
98	Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environmental Modelling and Software, 2016, 84, 427-439.	1.9	140
99	Improving urban thermal profile with trees and water features. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2016, 169, 66-77.	0.6	3
100	Numerical simulation of the impact of different vegetation species on the outdoor thermal environment. Urban Forestry and Urban Greening, 2016, 18, 138-150.	2.3	82
102	Response of land cover types to land surface temperature derived from Landsat-5 TM in Nanjing Metropolitan Region, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	44
103	Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry and Urban Greening, 2016, 20, 348-357.	2.3	69
104	A simplified assessment of how tree allocation, wind environment, and shading affect human comfort. Urban Forestry and Urban Greening, 2016, 18, 126-137.	2.3	68
105	Experimental and numerical analysis of the energy performance of a large scale intensive green roof system installed on an office building in Athens. Energy and Buildings, 2016, 114, 256-264.	3.1	79
106	Simulation study of dispersion and removal of particulate matter from traffic by road-side vegetation barrier. Environmental Science and Pollution Research, 2016, 23, 6709-6722.	2.7	51
107	An integrated outdoor spaces design procedure to relieve heat stress in hot and humid regions. Building and Environment, 2016, 99, 149-160.	3.0	50
108	The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy and Buildings, 2016, 121, 217-229.	3.1	235
109	Mapping the urban microclimatic spatial distribution in a sub-tropical high-density urban environment. Architectural Science Review, 2016, 59, 370-384.	1.1	21
110	Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landscape and Urban Planning, 2016, 148, 37-50.	3.4	352

#	Article	IF	CITATIONS
111	Predicting urban heat island circulation using CFD. Building and Environment, 2016, 99, 82-97.	3.0	82
112	Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 2016, 217, 22-34.	1.9	95
113	Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. Journal of the Urban Planning and Development Division, ASCE, 2016, 142, .	0.8	36
114	Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 2016, 54, 1002-1017.	8.2	340
115	The impact of environmental and human factors on urban heat and microclimate variability. Building and Environment, 2016, 95, 199-208.	3.0	74
116	Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 2016, 114, 265-274.	3.1	314
117	Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 2016, 114, 2-19.	3.1	343
118	Towards the modelling of pedestrian wind speed using high-resolution digital surface models and statistical methods. Theoretical and Applied Climatology, 2016, 124, 189-203.	1.3	11
119	Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustainable Cities and Society, 2017, 30, 79-96.	5.1	250
120	A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment, 2017, 115, 1-17.	3.0	270
121	Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied Energy, 2017, 192, 178-200.	5.1	65
122	Regulation of outdoor thermal comfort by trees in Hong Kong. Sustainable Cities and Society, 2017, 31, 12-25.	5.1	177
123	Thermal performance of stadium's Field of Play in hot climates. Energy and Buildings, 2017, 139, 702-718.	3.1	10
124	Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential. Energy and Buildings, 2017, 141, 56-68.	3.1	59
125	Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 2017, 584-585, 1040-1055.	3.9	644
126	Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 2017, 144, 681-698.	2.9	96
127	Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 1. Cooling effects of proposed green strategies. Sustainable Cities and Society, 2017, 32, 295-317.	5.1	26
128	The effects of vegetation on indoor thermal comfort: The application of a multi-scale simulation methodology on a residential neighborhood renovation case study. Energy and Buildings, 2017, 146, 1-11.	3.1	37

#	Article	IF	CITATIONS
129	Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, 2017, 120, 93-109.	3.0	106
130	Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustainable Cities and Society, 2017, 32, 523-531.	5.1	47
131	Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot-humid climate (Part II): Evaluation and characterization. Sustainable Cities and Society, 2017, 35, 841-850.	5.1	23
132	A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 2017, 32, 513-522.	5.1	67
133	Climate Change-Oriented Urban Green Network Design: A Decision Support Tool. Series on Computers and Operations Research, 2017, , 255-278.	0.2	4
134	An experimental method to quantitatively analyse the effect of thermal insulation thickness on the summer performance of a vertical green wall. Energy and Buildings, 2017, 150, 132-148.	3.1	33
135	The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy and Buildings, 2017, 149, 91-100.	3.1	80
136	Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landscape and Urban Planning, 2017, 165, 162-171.	3.4	212
137	Assessing the impact of changes in surface cover, human behaviour and climate on energy partitioning across Greater London. Landscape and Urban Planning, 2017, 165, 142-161.	3.4	36
138	A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 2017, 80, 1613-1640.	8.2	398
139	Temperature and cooling demand reduction by green-roof types in different climates and urban densities: A co-simulation parametric study. Energy and Buildings, 2017, 145, 226-237.	3.1	182
140	Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Building and Environment, 2017, 112, 177-189.	3.0	86
141	Multipoint measurement method for air temperature in outdoor spaces and application to microclimate and passive cooling studies for a house. Building and Environment, 2017, 114, 267-280.	3.0	15
142	Smart cooling systems for the urban environment. Using renewable technologies to face the urban climate change. Solar Energy, 2017, 154, 101-111.	2.9	19
143	The influence of small green space type and structure at the street level on urban heat island mitigation. Urban Forestry and Urban Greening, 2017, 21, 203-212.	2.3	159
144	Passive and active cooling for the outdoor built environment – Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy, 2017, 154, 14-33.	2.9	248
145	A semi-empirical model for the effect of trees on the urban wind environment. Landscape and Urban Planning, 2017, 168, 84-93.	3.4	60
146	Quantifying green cover change for sustainable urban planning: A case of Kuala Lumpur, Malaysia. Urban Forestry and Urban Greening, 2017, 27, 287-304.	2.3	51

#	Article	IF	CITATIONS
147	Temporal and spatial variability of urban heat island by geographical location: A case study of Ulsan, Korea. Building and Environment, 2017, 126, 471-482.	3.0	26
148	Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling. Building and Environment, 2017, 125, 502-514.	3.0	105
149	The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 2017, 4, 296-305.	3.2	353
150	Assessing the Cooling Effects of Different Vegetation Settings in a Hong Kong Golf Course. Procedia Environmental Sciences, 2017, 37, 626-636.	1.3	18
151	Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 2017, 34, 293-308.	5.1	105
152	Sub-pixel vs. super-pixel-based greenspace mapping along the urban–rural gradient using high spatial resolution Gaofen-2 satellite imagery: a case study of Haidian District, Beijing, China. International Journal of Remote Sensing, 2017, 38, 6386-6406.	1.3	11
153	Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban Forestry and Urban Greening, 2017, 28, 167-176.	2.3	138
154	Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban Forestry and Urban Greening, 2017, 27, 24-31.	2.3	172
155	Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy and Buildings, 2017, 135, 33-38.	3.1	61
156	Urban–rural differences in nearâ€surface air temperature as resolved by the Central Europe Refined analysis (<scp>CER</scp>): sensitivity to planetary boundary layer schemes and urban canopy models. International Journal of Climatology, 2017, 37, 2063-2079.	1.5	28
157	UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia, 2017, 134, 692-701.	1.8	51
158	Thermal effects of an innovative green wall on building energy performance. Mechanics and Industry, 2017, 18, 104.	0.5	12
159	Deduction of Optimum Surface Design Factors for Enhancement of Outdoor Thermal Environment in a Micro-Scale Unit. Sustainability, 2017, 9, 1381.	1.6	6
160	The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China. Sustainability, 2017, 9, 2310.	1.6	37
161	Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses. Sustainability, 2017, 9, 1656.	1.6	6
162	An Ecological Study of the Association between Area-Level Green Space and Adult Mortality in Hong Kong. Climate, 2017, 5, 55.	1.2	34
163	The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review. Energies, 2017, 10, 2151.	1.6	66
164	Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City. Sustainability, 2017, 9, 882.	1.6	14

#	Article	IF	CITATIONS
165	Could/should improving the urban climate in informal areas of fast-growing cities be an integral part of upgrading processes? Cairo case. Urban Climate, 2018, 24, 63-79.	2.4	23
166	Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 2018, 24, 94-110.	2.4	146
167	Planning for green qualities in the densification of suburban Stockholm–Âopportunities and challenges. Journal of Environmental Planning and Management, 2018, 61, 2613-2635.	2.4	26
168	Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 2018, 134, 155-167.	3.0	193
169	Identifying outdoor thermal risk areas and evaluation of future thermal comfort concerning shading orientation in a traditional settlement. Science of the Total Environment, 2018, 626, 567-580.	3.9	32
170	Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment, 2018, 11, 11-21.	0.8	26
171	Maximum extent of human heat stress reduction on building areas due to urban greening. Urban Forestry and Urban Greening, 2018, 32, 154-167.	2.3	46
172	Urban Green Spaces as a Component of an Ecosystem. , 2018, , 1-32.		4
173	Green infrastructure and urban sustainability. AIP Conference Proceedings, 2018, , .	0.3	3
174	Sustainability-Oriented Urban Renewal and Low-Impact Development Applications in China: Case Study of Yangpu District, Shanghai. Journal of Sustainable Water in the Built Environment, 2018, 4, .	0.9	10
175	Vertical Greenery System in urban tropical climate and its carbon sequestration potential: A review. Ecological Indicators, 2018, 91, 57-70.	2.6	45
176	Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy, 2018, 166, 486-508.	2.9	179
177	Performance of Hong Kong's common trees species for outdoor temperature regulation, thermal comfort and energy saving. Building and Environment, 2018, 137, 157-170.	3.0	161
178	The impact of urban compactness, comfort strategies and energy consumption on tropical urban heat island intensity: A review. Sustainable Cities and Society, 2018, 40, 677-687.	5.1	134
179	Community heterogeneity of aquatic macroinvertebrates in urban ponds at a multi-city scale. Landscape Ecology, 2018, 33, 389-405.	1.9	24
180	Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 2018, 130, 27-39.	3.0	152
181	Modeling the reduction of urban excess heat by green roofs with respect to different irrigation scenarios. Building and Environment, 2018, 131, 174-183.	3.0	50
182	Effects of green roofs' variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban Forestry and Urban Greening, 2018, 29, 223-237.	2.3	48

#	Article	IF	CITATIONS
183	Urban informality, housing insecurity, and social exclusion; concept and case study assessment for sustainable urban development. City, Culture and Society, 2018, 15, 23-36.	1.1	21
184	Impact of urban park's tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban Forestry and Urban Greening, 2018, 32, 1-6.	2.3	127
185	Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 2018, 631-632, 390-406.	3.9	340
186	A method to account for the urban microclimate on the creation of †typical weather year†datasets for building energy simulation, using stochastically generated data. Energy and Buildings, 2018, 165, 270-283.	3.1	48
187	Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International Journal of Biometeorology, 2018, 62, 1199-1209.	1.3	44
188	Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 2018, 131, 455-469.	1.3	82
189	Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change. Urban Climate, 2018, 23, 260-286.	2.4	52
190	Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model. Physics and Chemistry of the Earth, 2018, 103, 115-126.	1.2	42
191	Real-Time Urban Microclimate Analysis Using Internet of Things. IEEE Internet of Things Journal, 2018, 5, 500-511.	5.5	50
192	Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. Agricultural and Forest Meteorology, 2018, 248, 259-274.	1.9	79
193	Defining the environmental performance of neighbourhoods in high-density cities. Building Research and Information, 2018, 46, 540-551.	2.0	13
194	Simulation on the impacts of the street tree pattern on built summer thermal comfort in cold region of China. Sustainable Cities and Society, 2018, 37, 563-580.	5.1	53
195	Modelling the fine-scale spatiotemporal pattern of urban heat island effect using land use regression approach in a megacity. Science of the Total Environment, 2018, 618, 891-904.	3.9	60
196	Combining multi-criteria and space syntax analysis to assess a pedestrian network: the case of Oporto. Journal of Urban Design, 2018, 23, 23-41.	0.6	38
197	Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese–Baroque Historic Conservation Area in Harbin. Sustainability, 2018, 10, 3374.	1.6	7
198	Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools. Climate, 2018, 6, 60.	1.2	49
199	Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings, 2018, 8, 166.	1.4	10
200	Alternative scenarios for ecological urbanizations using ENVI-met model. Environmental Science and Pollution Research, 2018, 25, 26307-26321.	2.7	32

#	Article	IF	CITATIONS
201	Effects of Landscape Design on Urban Microclimate and Thermal Comfort in Tropical Climate. Advances in Meteorology, 2018, 2018, 1-13.	0.6	39
202	Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices. Energies, 2018, 11, 1872.	1.6	8
203	Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Climate, 2018, 26, 188-197.	2.4	119
204	Reducing Seismic Vulnerability and Energy Demand of Cities through Green Infrastructure. Sustainability, 2018, 10, 2591.	1.6	18
205	Sustainable Neighborhood Design in Tropical Climates. , 2018, , 51-73.		3
206	Local variation of outdoor thermal comfort in different urban green spaces in Guangzhou, a subtropical city in South China. Urban Forestry and Urban Greening, 2018, 32, 99-112.	2.3	72
207	"Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India― Urban Climate, 2018, 24, 887-920.	2.4	36
208	Subjective outdoor thermal comfort and urban green space usage in humid-subtropical Hong Kong. Energy and Buildings, 2018, 173, 150-162.	3.1	87
209	Acute Challenges and Solutions for Urban Forestry in Compact and Densifying Cities. Journal of the Urban Planning and Development Division, ASCE, 2018, 144, .	0.8	44
210	Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landscape and Urban Planning, 2018, 179, 55-62.	3.4	98
211	Influence of trees on the outdoor thermal environment in subtropical areas: An experimental study in Guangzhou, China. Sustainable Cities and Society, 2018, 42, 482-497.	5.1	75
212	Data Integration and Web Mapping for Extreme Heat Event Preparedness. , 2018, , 281-289.		1
213	Development of a Distributed Modeling Framework to Estimate Thermal Comfort along 2020 Tokyo Olympic Marathon Course. Atmosphere, 2018, 9, 210.	1.0	9
214	The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China. Forests, 2018, 9, 224.	0.9	65
215	How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy. Renewable Energy, 2018, 127, 920-935.	4.3	63
216	Global pattern of human thermal adaptation and limit of thermal neutrality: Systematic analysis of outdoor neutral temperature. International Journal of Climatology, 2018, 38, 5037-5049.	1.5	23
217	Would LEED-UHI greenery and high albedo strategies mitigate climate change at neighborhood scale in Cairo, Egypt?. Building Simulation, 2018, 11, 1273-1288.	3.0	31
218	Analyzing the ENVI-met microclimate model's performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 2018, 43, 55-76.	5.1	296

#	Article	IF	CITATIONS
219	A bibliometric review of green building research 2000–2016. Architectural Science Review, 2019, 62, 74-88.	1.1	196
220	A review of urban green spaces multifunctionality assessment: A way forward for a standardized assessment and comparability. Ecological Indicators, 2019, 107, 105592.	2.6	29
221	Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea. Sustainability, 2019, 11, 3777.	1.6	16
222	The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea. Sustainability, 2019, 11, 3801.	1.6	8
223	Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City. Energies, 2019, 12, 2320.	1.6	9
224	Comparative study of urban residential design and microclimate characteristics based on ENVI-met simulation. Indoor and Built Environment, 2019, 28, 1200-1216.	1.5	17
225	Effects of horizontal dilation of urban space on shading efficiency in the Muscat region. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2019, 172, 90-101.	0.6	0
226	Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Climate, 2019, 29, 100490.	2.4	41
227	Association of Urban Green Space With Mental Health and General Health Among Adults in Australia. JAMA Network Open, 2019, 2, e198209.	2.8	216
228	Verification of a bioclimatic modeling system in a growing suburb in Melbourne. Science of the Total Environment, 2019, 689, 883-898.	3.9	8
229	Multi-criteria and multiscale assessment of building envelope response-ability to rising heat waves. Sustainable Cities and Society, 2019, 51, 101755.	5.1	14
230	The Cooling Efficiency of Urban Greenery Coverage in a High-density City. IOP Conference Series: Earth and Environmental Science, 2019, 329, 012043.	0.2	2
231	Potential assessment and implementation strategy for roof greening in highly urbanized areas: A case study in Shenzhen, China. Cities, 2019, 95, 102468.	2.7	24
232	Cross-City Convergence in Urban Green Space Coverage in China. Sustainability, 2019, 11, 4707.	1.6	7
234	Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 2019, 694, 133742.	3.9	109
235	Impact of retro-reflective glass façades on the surface temperature of street pavements in business areas of Singapore and Tokyo. IOP Conference Series: Earth and Environmental Science, 2019, 294, 012020.	0.2	0
236	Planning the urban forest: Adding microclimate simulation to the planner's toolkit. Land Use Policy, 2019, 88, 104117.	2.5	24
237	Green Roofs and Greenpass. Buildings, 2019, 9, 205.	1.4	29

#	Article	IF	CITATIONS
238	Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment, 2019, 166, 106407.	3.0	64
239	CFD simulation of urban microclimate: Validation using high-resolution field measurements. Science of the Total Environment, 2019, 695, 133743.	3.9	112
240	Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 2019, 185, 162-179.	3.1	68
241	Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability, 2019, 11, 513.	1.6	45
242	Impact of Morphological Characteristics of Green Roofs on Pedestrian Cooling in Subtropical Climates. International Journal of Environmental Research and Public Health, 2019, 16, 179.	1.2	47
243	Calibration process and parametrization of tropical plants using ENVI-met V4 – Sao Paulo case study. Architectural Science Review, 2019, 62, 112-125.	1.1	23
244	A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 2019, 661, 337-353.	3.9	405
245	Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants' attributes. Sustainable Cities and Society, 2019, 49, 101634.	5.1	93
246	Thermal impact of the orientation and height of vertical greenery on pedestrians in a tropical area. Building Simulation, 2019, 12, 973-984.	3.0	40
247	Developing the Urban Thermal Environment Management and Planning (UTEMP) System to Support Urban Planning and Design. Sustainability, 2019, 11, 2224.	1.6	4
248	Effects of Spatial Pattern of Forest Vegetation on Urban Cooling in a Compact Megacity. Forests, 2019, 10, 282.	0.9	39
249	Omnidirectional connectivity of urban open spaces provides context for local government redevelopment plans. Landscape and Ecological Engineering, 2019, 15, 245-251.	0.7	9
250	Impact of urban characteristics on cooling energy consumption before and after construction of an urban park: The case of Gyeongui line forest in Seoul. Energy and Buildings, 2019, 191, 42-51.	3.1	13
251	Urban green space cooling effect in cities. Heliyon, 2019, 5, e01339.	1.4	292
252	Bioclimatic design strategies: A guideline to enhance human thermal comfort in Cfa climate zones. Journal of Building Engineering, 2019, 25, 100758.	1.6	25
253	Research on the Spatial Pattern Characteristics of the Taihu Lake "Dock Village―Based on Microclimate: A Case Study of Tangli Village. Sustainability, 2019, 11, 368.	1.6	16
254	Evaluation of energy saving potential of an urban green space and its water bodies. Energy and Buildings, 2019, 188-189, 58-70.	3.1	40
255	Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an Urban Growth Boundary. Remote Sensing, 2019, 11, 2683.	1.8	21

#	Article	IF	CITATIONS
256	Overheating in residential areas: role of reflected solar radiation. IOP Conference Series: Materials Science and Engineering, 2019, 687, 055043.	0.3	0
257	Soil organic matter rather than ectomycorrhizal diversity is related to urban tree health. PLoS ONE, 2019, 14, e0225714.	1.1	8
258	Analysis of the Spatial and Temporal Evolution of Land Cover and Heat Island Effects in Six Districts of Chongqing's Main City. Sensors, 2019, 19, 5239.	2.1	6
259	Tree Shade, Temperature, and Human Health: Evidence from Invasive Species-induced Deforestation. Ecological Economics, 2019, 156, 12-23.	2.9	28
260	Evaluating climate change adaptation strategies and scenarios of enhanced vertical and horizontal compactness at urban scale (a case study for Berlin). Landscape and Urban Planning, 2019, 183, 68-78.	3.4	23
261	Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Building Simulation, 2019, 12, 379-393.	3.0	27
262	Urban forest fragments buffer trees from warming and pests. Science of the Total Environment, 2019, 658, 1523-1530.	3.9	34
263	Promoting Citizens' Quality of Life Through Green Urban Planning. Communications in Computer and Information Science, 2019, , 153-175.	0.4	3
264	On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis at Mid-Latitude Sites. Climate, 2019, 7, 1.	1.2	44
265	Mitigating the Local Climatic Change and Fighting Urban Vulnerability. , 2019, , 223-307.		1
266	Thermal and energy performance of two distinct green roofs: Temporal pattern and underlying factors in a subtropical climate. Energy and Buildings, 2019, 185, 247-258.	3.1	38
267	Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Building and Environment, 2019, 147, 482-494.	3.0	62
268	Quantifying the effect of rain events on outdoor thermal comfort in a high-density city, Hong Kong. International Journal of Biometeorology, 2019, 63, 19-27.	1.3	11
269	WSUD and Urban Heat Island Effect Mitigation. , 2019, , 381-407.		4
270	The evapotranspiration process in green roofs: A review. Building and Environment, 2019, 147, 337-355.	3.0	130
271	Decomposition of urban temperatures for targeted climate change adaptation. Environmental Modelling and Software, 2019, 113, 20-28.	1.9	12
272	Spatial pattern of urban green spaces in a long-term compact urbanization processâ€"A case study in China. Ecological Indicators, 2019, 96, 111-119.	2.6	38
273	Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry and Urban Greening, 2019, 37, 42-55.	2.3	78

#	Article	IF	CITATIONS
274	Exploration of applicability of UTCI and thermally comfortable sun and wind conditions outdoors in a subtropical city of Hong Kong. Sustainable Cities and Society, 2020, 52, 101793.	5.1	31
275	Reduced effectiveness of tree planting on micro-climate cooling due to ozone pollution—A modeling study. Sustainable Cities and Society, 2020, 52, 101803.	5.1	16
276	Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM - Population Health, 2020, 10, 100497.	1.3	40
277	Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 2020, 168, 106490.	3.0	70
278	Clustering weather types for urban outdoor thermal comfort evaluation in a tropical area. Theoretical and Applied Climatology, 2020, 139, 659-675.	1.3	18
279	An overview of carbon sequestration of green roofs in urban areas. Urban Forestry and Urban Greening, 2020, 47, 126515.	2.3	99
280	Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46Â786 Australians. International Journal of Epidemiology, 2020, 49, 926-933.	0.9	83
281	The impact of green space structure on physiological equivalent temperature index in open space. Urban Climate, 2020, 31, 100574.	2.4	40
282	The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Building and Environment, 2020, 170, 106614.	3.0	82
283	Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up. Renewable Energy, 2020, 147, 1663-1675.	4.3	31
284	Urbanites' thermal perception in informal settlements of warm-humid Dar es Salaam, Tanzania. Urban Climate, 2020, 31, 100564.	2.4	10
285	Comparison of surface radiation and turbulent heat fluxes in Olympic Forest Park and on a building roof in Beijing, China. Urban Climate, 2020, 31, 100562.	2.4	17
286	Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment, 2020, 170, 106606.	3.0	165
287	Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 2020, 169, 106587.	3.0	28
288	The degree, extent and value of air temperature amelioration by urban green spaces in Bulawayo, Zimbabwe. Southern African Geographical Journal, 2020, 102, 344-355.	0.9	13
289	Modeling of shade creation and radiation modification by four tree species in hot and humid areas: Case study of Guangzhou, China. Urban Forestry and Urban Greening, 2020, 47, 126545.	2.3	12
290	The Impact of Passive Green Technologies on the Microclimate of Historic Urban Structures: The Case Study of Lodz. Atmosphere, 2020, 11, 974.	1.0	8
291	Evaluating the influence of transom window designs on natural ventilation in high-rise residential buildings in Hong Kong. Sustainable Cities and Society, 2020, 62, 102406.	5.1	22

#	Article	IF	CITATIONS
292	Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone. International Journal of Environmental Research and Public Health, 2020, 17, 7093.	1.2	29
293	Effects of land use and land cover pattern on urban temperature variations: A case study in Hong Kong. Urban Climate, 2020, 34, 100693.	2.4	33
294	Investigation of the impacts of microclimate on PV energy efficiency and outdoor thermal comfort. Sustainable Cities and Society, 2020, 62, 102402.	5.1	30
295	Biophilic streets: a design framework for creating multiple urban benefits. Sustainable Earth, 2020, 3, .	1.3	20
296	Passiflora as vertical greenery systems in the building: The effects on the indoor thermal environments. AIP Conference Proceedings, 2020, , .	0.3	0
297	Environmental impact assessment of introducing compact city models by downscaling simulations. Sustainable Cities and Society, 2020, 63, 102424.	5.1	13
298	Research on the relationship between urban morphology and air temperature based on mobile measurement: A case study in Wuhan, China. Urban Climate, 2020, 34, 100671.	2.4	29
299	Wind load prediction on single tree with integrated approach of L-system fractal model, wind tunnel, and tree aerodynamic simulation. AIP Advances, 2020, 10, .	0.6	9
300	Effects of greenery enhancements for the resilience to heat waves: A comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling. Science of the Total Environment, 2020, 747, 141300.	3.9	74
301	Greener neighbourhoods, better memory? A longitudinal study. Health and Place, 2020, 65, 102393.	1.5	26
302	Smart Solutions for Sustainable Citiesâ€"The Re-Coding Experience for Harnessing the Potential of Urban Rooftops. Applied Sciences (Switzerland), 2020, 10, 7112.	1.3	17
303	Urban design parameters for heat mitigation in tropics. Renewable and Sustainable Energy Reviews, 2020, 134, 110362.	8.2	40
304	Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices. Land, 2020, 9, 292.	1.2	29
305	Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community. Indoor and Built Environment, 2022, 31, 1447-1463.	1.5	15
306	Holistic approach to assess co-benefits of local climate mitigation in a hot humid region of Australia. Scientific Reports, 2020, 10, 14216.	1.6	47
307	Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water (Switzerland), 2020, 12, 3577.	1.2	51
308	Evaluation of Light Gradient Boosted Machine Learning Technique in Large Scale Land Use and Land Cover Classification. Environments - MDPI, 2020, 7, 84.	1.5	42
309	A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment. Sustainability, 2020, 12, 8529.	1.6	13

#	Article	IF	CITATIONS
310	Assessing the urban heat island variations and its influencing mechanism in metropolitan areas of Pearl River Delta, South China. Physics and Chemistry of the Earth, 2020, 120, 102953.	1.2	7
311	The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban Forestry and Urban Greening, 2020, 52, 126688.	2.3	37
312	Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands. International Journal of Environmental Research and Public Health, 2020, 17, 2993.	1.2	33
313	Predicting the influence of subtropical trees on urban wind through wind tunnel tests and numerical simulations. Sustainable Cities and Society, 2020, 57, 102116.	5.1	17
314	The maintenance of prefabricated green roofs for preserving cooling performance: A field measurement in the subtropical city of Hangzhou, China. Sustainable Cities and Society, 2020, 61, 102314.	5.1	72
315	London Plane trees (Platanus x acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban Forestry and Urban Greening, 2020, 54, 126746.	2.3	34
316	Associations between urban thermal environment and physical indicators based on meteorological data in Foshan City. Sustainable Cities and Society, 2020, 60, 102288.	5.1	12
317	A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan. Sustainability, 2020, 12, 3952.	1.6	18
318	COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees. Geoscientific Model Development, 2020, 13, 1685-1710.	1.3	37
319	Urban Sustainability: Integrating Ecology in City Design and Planning. Advances in 21st Century Human Settlements, 2020, , 187-204.	0.3	21
320	Short and medium- to long-term impacts of nature-based solutions on urban heat. Sustainable Cities and Society, 2020, 57, 102122.	5.1	36
321	Developing Shopping and Dining Walking Indices Using POIs and Remote Sensing Data. ISPRS International Journal of Geo-Information, 2020, 9, 366.	1.4	3
322	A Data-driven Approach for Sustainable Building Retrofitâ€"A Case Study of Different Climate Zones in China. Sustainability, 2020, 12, 4726.	1.6	10
323	Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustainable Cities and Society, 2020, 61, 102375.	5.1	90
324	Ordinary least squares modelling of urban heat island intensity based on landscape composition and configuration: A comparative study among three megacities along the Yangtze River. Sustainable Cities and Society, 2020, 62, 102381.	5.1	48
325	Assessing the sensitivity of lower atmospheric characteristics to agricultural land use classification over the Lower Mississippi River Alluvial Valley. Theoretical and Applied Climatology, 2020, 142, 305-320.	1.3	2
326	Optimisation of outdoor shading devices with thermal comfort criteria: The case of the Venetian Port of Chania. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012058.	0.2	4
327	A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate, 2020, 32, 100590.	2.4	85

#	Article	IF	CITATIONS
328	Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China. Land, 2020, 9, 57.	1.2	43
329	Cool pavements. , 2020, , 97-125.		6
330	Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation - development and evaluation. Science of the Total Environment, 2020, 719, 137461.	3.9	122
331	Assessment of "lift-up―design's impact on thermal perceptions in the transition process from indoor to outdoor. Sustainable Cities and Society, 2020, 56, 102081.	5.1	17
332	The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Building and Environment, 2020, 174, 106772.	3.0	86
333	CFD simulation of the drag effect of urban trees: Source term modification method revisited at the tree scale. Sustainable Cities and Society, 2020, 56, 102079.	5.1	23
334	Analysing the effects for different scenarios on surrounding environment in a high-density city. Cities, 2020, 99, 102585.	2.7	11
335	Malaria epidemics in India: Role of climatic condition and control measures. Science of the Total Environment, 2020, 712, 136368.	3.9	11
336	Vegetation in different street orientations of aspect ratio (H/W 1:1) to mitigate UHI and reduce buildings' energy in arid climate. Building and Environment, 2020, 172, 106712.	3.0	65
337	A Microclimate Study of Traffic and Pedestrianization Scenarios in a Densely Populated Urban City. Advances in Meteorology, 2020, 2020, 1-8.	0.6	6
338	Modeling the urban heat island mitigation effect of cool coatings in realistic urban morphology. Journal of Cleaner Production, 2020, 264, 121560.	4.6	25
339	Urban Warming and Cities' Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies, 2020, 13, 1414.	1.6	45
340	Sustainable Human–Nature Relations. Advances in 21st Century Human Settlements, 2020, , .	0.3	45
341	Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. Journal of Cleaner Production, 2020, 261, 121183.	4.6	69
342	An in-depth analysis of the effect of trees on human energy fluxes. Urban Forestry and Urban Greening, 2020, 50, 126646.	2.3	25
343	Evidence of Ozone-Induced Visible Foliar Injury in Hong Kong Using Phaseolus Vulgaris as a Bioindicator. Atmosphere, 2020, 11, 266.	1.0	17
344	Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses. Applied Energy, 2021, 281, 116077.	5.1	40
345	Advances in High Performance Computing. Studies in Computational Intelligence, 2021, , .	0.7	2

#	Article	IF	CITATIONS
346	Analyzing the impact of changing landscape pattern and dynamics on land surface temperature in Lucknow city, India. Urban Forestry and Urban Greening, 2021, 58, 126877.	2.3	23
347	On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 2021, 64, 102512.	5.1	40
348	Assessing the Impacts of Urban Land Use Changes on Regional Ecosystem Services According to Urban Green Space Policies Via the Patch-Based Cellular Automata Model. Environmental Management, 2021, 67, 192-204.	1.2	26
349	The effect of kharkhona on outdoor thermal comfort in Hot and dry climate: A case study of Sistan Region in Iran. Sustainable Cities and Society, 2021, 65, 102607.	5.1	6
350	Assessment of green roof benefits on buildings' energy-saving by cooling outdoor spaces in different urban densities in arid cities. Energy, 2021, 219, 119514.	4.5	52
351	Urban structure and its implication of heat stress by using remote sensing and simulation tool. Sustainable Cities and Society, 2021, 65, 102632.	5.1	12
352	Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016. Sustainable Cities and Society, 2021, 64, 102507.	5.1	57
353	Health outcomes of urban green space in China: Evidence from Beijing. Sustainable Cities and Society, 2021, 65, 102604.	5.1	45
354	The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 2021, 274, 115898.	3.7	35
355	Integrated impacts of tree planting and aspect ratios on thermal environment in street canyons by scaled outdoor experiments. Science of the Total Environment, 2021, 764, 142920.	3.9	48
356	Measurements and simulations of energy fluxes over a high-rise and compact urban area in Hong Kong. Science of the Total Environment, 2021, 765, 142718.	3.9	8
357	Sustainable building retrofit model for high-rise, high-density city: a case in Hong Kong. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2021, 174, 69-82.	0.4	2
358	Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of the Total Environment, 2021, 751, 142334.	3.9	96
359	Remote Sensing and GIS for Modelling Green Roofs Potential at Different Urban Scales. Advances in Geospatial Technologies Book Series, 2021, , 251-293.	0.1	1
360	Quantification of heat mitigation by urban green spaces using InVEST modelâ€"a scenario analysis of Nagpur City, India. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	17
361	Influence of grass lawns on the summer thermal environment and microclimate of heritage sites: a case study of Fuling mausoleum, China. Heritage Science, 2021, 9, .	1.0	4
363	Adapting to Climate Change: Green Areas in Cities as Cooling Safeguards., 2021,, 1-15.		1
364	Greenery as a mitigation and adaptation strategy to urban heat. Nature Reviews Earth & Environment, 2021, 2, 166-181.	12.2	183

#	Article	IF	CITATIONS
366	Analysis of the Effects of Floor Area Ratio Change in Urban Street Canyons on Microclimate and Particulate Matter. Energies, 2021, 14, 714.	1.6	8
367	Enhancing Energy Performance and Comfort of Built Environment in Tropical Climates. , 2021, , 137-161.		1
369	Context and background of urban heat island. , 2021, , 1-35.		0
370	Simulating microscale thermal interactions using ENVI-met climate model., 2021, , 179-213.		3
371	Changes of extreme high temperature and heavy precipitation in the Guangdong-Hong Kong-Macao Greater Bay Area. Geomatics, Natural Hazards and Risk, 2021, 12, 1101-1126.	2.0	14
373	Assessing the effects of urban street trees on building cooling energy needs: The role of foliage density and planting pattern. Sustainable Cities and Society, 2021, 65, 102633.	5.1	43
374	Urban heat islands in Hong Kong: Bonding with atmospheric stability. Atmospheric Science Letters, 2021, 22, e1032.	0.8	8
375	Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events. Sustainability, 2021, 13, 2470.	1.6	12
376	Investigating the sans pareil streetscape configuration for creating thermal comfort urban place in Surabaya. IOP Conference Series: Materials Science and Engineering, 2021, 1098, 022021.	0.3	0
377	A single-layer urban canopy model with transmissive radiation exchange between trees and street canyons. Building and Environment, 2021, 191, 107593.	3.0	50
378	Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, 2021, 594, 125940.	2.3	10
379	How do paving and planting strategies affect microclimate conditions and thermal comfort in apartment complexes?. International Journal of Climate Change Strategies and Management, 2021, 13, 97-119.	1.5	5
380	The Impact of Microclimate on the Reproductive Phenology of Female Populus tomentosa in a Micro-Scale Urban Green Space in Beijing. Sustainability, 2021, 13, 3518.	1.6	2
381	Review of heat wave studies and related urban policies in South Asia. Urban Climate, 2021, 36, 100777.	2.4	25
382	On the impact of modified urban albedo on ambient temperature and heat related mortality. Solar Energy, 2021, 216, 493-507.	2.9	31
383	Evaluating the 3D cooling performances of different vegetation combinations in the urban area. Journal of Asian Architecture and Building Engineering, 2022, 21, 1124-1136.	1.2	9
384	The turning point between urban vegetation and artificial surfaces for their competitive effect on land surface temperature. Journal of Cleaner Production, 2021, 292, 126034.	4.6	28
385	The Role of Green Infrastructure in Enhancing Microclimate Conditions: A Case Study of a Low-Rise Neighborhood in Abu Dhabi. Sustainability, 2021, 13, 4260.	1.6	9

#	Article	IF	Citations
386	Analysis of climate impact on urban landscape design adaptation (Case study: Green Lake View, Depok,) Tj ETQq	0.2 rgBT	/Qverlock 10
387	Impacts of Composition and Canopy Characteristics of Plant Communities on Microclimate and Airborne Particles in Beijing, China. Sustainability, 2021, 13, 4791.	1.6	9
388	Green infrastructures for urban sustainability: Issues, implications, and solutions for underdeveloped areas. Urban Forestry and Urban Greening, 2021, 59, 127028.	2.3	37
389	Quantifying the local cooling effects of urban green spaces: Evidence from Bengaluru, India. Landscape and Urban Planning, 2021, 209, 104043.	3.4	51
390	Green space and cardiovascular health in people with type 2 diabetes. Health and Place, 2021, 69, 102554.	1.5	23
391	Combination of Sentinel-2 and PALSAR-2 for Local Climate Zone Classification: A Case Study of Nanchang, China. Remote Sensing, 2021, 13, 1902.	1.8	12
392	High-resolution mesoscale simulation of the microclimatic effects of urban development in the past, present, and future Hong Kong. Urban Climate, 2021, 37, 100850.	2.4	10
393	Tree-configuration and species effects on the indoor and outdoor thermal condition and energy performance of courtyard buildings. Urban Climate, 2021, 37, 100861.	2.4	20
394	A framework of biophilic urbanism for improving climate change adaptability in urban environments. Urban Forestry and Urban Greening, 2021, 61, 127104.	2.3	12
395	Effectiveness of Tree Pattern in Street Canyons on Thermal Conditions and Human Comfort. Assessment of an Urban Renewal Project in Historical District in Lodz (Poland). Atmosphere, 2021, 12, 751.	1.0	9
396	Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities. Sustainability, 2021, 13, 6457.	1.6	5
397	Heat risk assessment based on mobile phone data: case study of Bratislava, Slovakia. Natural Hazards, 2021, 108, 3099-3120.	1.6	6
398	Observational evaluation of outdoor cooling potential of air-source heat pump water heaters. Theoretical and Applied Climatology, 2021, 145, 1007-1025.	1.3	3
399	Long-term association between urban air ventilation and mortality in Hong Kong. Environmental Research, 2021, 197, 111000.	3.7	18
400	Investigations of high-density urban boundary layer under summer prevailing wind conditions with Doppler LiDAR: A case study in Hong Kong. Urban Climate, 2021, 38, 100884.	2.4	18
401	Outdoor thermal performance of green roofs across multiple time scales: A case study in subtropical China. Sustainable Cities and Society, 2021, 70, 102909.	5.1	19
402	Modeling the outdoor cooling impact of highly radiative "super cool―materials applied on roofs. Urban Climate, 2021, 38, 100898.	2.4	21
403	The Added Value of Greenery for Sustainable Building: The Perspective from the Netherlands. Innovative Renewable Energy, 2022, , 1-29.	0.2	0

#	Article	IF	CITATIONS
404	Evaluating the vertical cooling performances of urban vegetation scenarios in a residential environment. Journal of Building Engineering, 2021, 39, 102313.	1.6	18
405	A Feasibility Study for Determining the Sensible Heat Flux to and from Small Green Roofs. Boundary-Layer Meteorology, 2021, 181, 145-166.	1.2	2
406	Contribution Degree of Different Surface Factors in Urban Interior to Urban Thermal Environment. Advances in Meteorology, 2021, 2021, 1-14.	0.6	1
407	A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustainable Cities and Society, 2021, 71, 102971.	5.1	50
408	Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Building and Environment, 2021, 200, 107939.	3.0	107
409	Cooling effect of roof greening with water misting in a cold region during the summer. Environment, Development and Sustainability, 0 , , 1 .	2.7	0
410	Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 2021, 201, 107988.	3.0	34
411	Influence of geometry acquisition method on pedestrian wind simulations. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215, 104665.	1.7	8
412	Strong influence of convective heat transfer efficiency on the cooling benefits of green roof irrigation. Environmental Research Letters, 2021, 16, 084062.	2.2	6
413	Solar Irradiance Reduction Using Optimized Green Infrastructure in Arid Hot Regions: A Case Study in El-Nozha District, Cairo, Egypt. Sustainability, 2021, 13, 9617.	1.6	9
414	Observing the impact of urban morphology and building geometry on thermal environment by high spatial resolution thermal images. Urban Climate, 2021, 39, 100937.	2.4	15
415	Thermal perception in outdoor urban spaces under the Mediterranean climate of Annaba, Algeria. Urban Climate, 2021, 39, 100970.	2.4	9
416	Cooling ranges for urban heat mitigation: continuous cooling effects along the edges of small greenspaces. Landscape and Ecological Engineering, 0 , 1 .	0.7	5
417	Urban cooling factors: Do small greenspaces outperform building shade in mitigating urban heat island intensity?. Urban Forestry and Urban Greening, 2021, 64, 127256.	2.3	14
418	Modeling green roofs' cooling effect in high-density urban areas based on law of diminishing marginal utility of the cooling efficiency: A case study of Xiamen Island, China. Journal of Cleaner Production, 2021, 316, 128277.	4.6	17
419	Urban Greening Strategies for Enhancing Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 85-100.	0.3	2
420	Effect of Tree Species on Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 101-123.	0.3	0
421	Knowledge Map of Urban Morphology and Thermal Comfort: A Bibliometric Analysis Based on CiteSpace. Buildings, 2021, 11, 427.	1.4	18

#	Article	IF	Citations
422	Application of retro-reflective materials in urban buildings: A comprehensive review. Energy and Buildings, 2021, 247, 111137.	3.1	51
423	Review on the cooling potential of green roofs in different climates. Science of the Total Environment, 2021, 791, 148407.	3.9	57
424	A quantitative study for indoor workplace biophilic design to improve health and productivity performance. Journal of Cleaner Production, 2021, 324, 129168.	4.6	22
425	Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landscape and Urban Planning, 2021, 214, 104167.	3.4	47
426	The effect of green roof configurations including trees in a subtropical climate: A co-simulation parametric study. Journal of Cleaner Production, 2021, 317, 128458.	4.6	22
427	Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustainable Cities and Society, 2021, 74, 103172.	5.1	28
428	Exploring the effects of the spatial arrangement and leaf area density of trees on building wall temperature. Building and Environment, 2021, 205, 108295.	3.0	16
429	Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model. Renewable and Sustainable Energy Reviews, 2021, 151, 111578.	8.2	24
430	Optimization of Roof Greening Spatial Planning to Cool Down the Summer of the City. Sustainable Cities and Society, 2021, 74, 103221.	5.1	7
431	Outdoor thermal comfort enhancement using various vegetation species and materials (case study:) Tj ETQq $1\ 1$	0.784314 5.1	rgBT /Overlo
432	3D building configuration as the driver of diurnal and nocturnal land surface temperatures: Application in Beijing's old city. Building and Environment, 2021, 206, 108354.	3.0	29
433	Change of nutrients, microorganisms, and physical properties of exposed extensive green roof substrate. Science of the Total Environment, 2022, 805, 150344.	3.9	8
434	Green Infrastructure to Mitigate Extreme Temperatures in Cities. , 2021, , 403-417.		0
435	Are Biocrusts and Xerophytic Vegetation a Viable Green Roof Typology in a Mediterranean Climate? A Comparison between Differently Vegetated Green Roofs in Water Runoff and Water Quality. Water (Switzerland), 2021, 13, 94.	1.2	12
436	Urban Morphology and Anthropogenic Heat Effect on Land Surface Temperature: Bab Ezzouar (Algiers) Case Study. Environmental Science and Engineering, 2021, , 1819-1827.	0.1	0
438	Assessing the impact of urban geometry on surface urban heat island using complete and nadir temperatures. International Journal of Climatology, 2021, 41, E3219.	1.5	15
439	Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Building and Environment, 2020, 184, 107180.	3.0	42
440	Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands. Science of the Total Environment, 2019, 663, 610-631.	3.9	84

#	Article	IF	CITATIONS
441	Validation of ENVI-met Model with In Situ Measurements Considering Spatial Characteristics of Land Use Types. Journal of the Korean Association of Geographic Information Studies, 2014, 17, 156-172.	0.1	13
442	Comparison of Thermal Effects of Different School Ground Surface Materials. Journal of the Korean Association of Geographic Information Studies, 2015, 18, 28-44.	0.1	3
443	A Comparison between In-situ PET and ENVI-met PET for Evaluating Outdoor Thermal Comfort. KIEAE Journal, 2016, 16, 11-19.	0.1	6
444	Proposição do Ãndice "fração vegetada" e sua relação com alterações na temperatura do ar e no conforto térmico no perÃodo diurno e em situação de verão para Curitiba. Ambiente ConstruÃdo, 2017, 17, 353-371.	0.2	5
445	Bioclimatic conditions under different ground cover types in the greater Athens area, Greece. Global Nest Journal, 2013, 15, 254-260.	0.3	5
446	The Impact of Green Roofs on the Parameters of the Environment in Urban Areasâ€"Review. Atmosphere, 2019, 10, 792.	1.0	33
447	A New Method to Assess Fine-Scale Outdoor Thermal Comfort for Urban Agglomerations. Climate, 2020, 8, 6.	1.2	13
448	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
449	Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy. AIMS Environmental Science, 2016, 3, 58-76.	0.7	29
450	Coupling Real-Time 3D Landscape Models with Microclimate Simulations. International Journal of E-Planning Research, 2013, 2, 1-19.	3.0	6
451	Evaluation and Application of an Online Coupled Modeling System to Assess the Interaction between Urban Vegetation and Air Quality. Aerosol and Air Quality Research, 2018, 18, 693-710.	0.9	10
452	Modelling Urban Thermal Comfort: Evaluating the Impact of the Urban Requalification Project of Praça Duque De Saldanha and Avenida Da República in Lisbon. , 2017, , .		3
453	Urban Sustainability and Climate Issues: The Effect of Physical Parameters of Streetscape on the Thermal Comfort in Urban Public Spaces; Case Study: Karimkhan-e-Zand Street, Shiraz, Iran. Sustainability, 2021, 13, 10886.	1.6	5
454	Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability, 2021, 13, 10923.	1.6	49
455	Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment. Resources, 2021, 10, 109.	1.6	19
456	Evaluating the role of the albedo of material and vegetation scenarios along the urban street canyon for improving pedestrian thermal comfort outdoors. Urban Climate, 2021, 40, 100993.	2.4	47
457	Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai. Urban Forestry and Urban Greening, 2021, 66, 127384.	2.3	32
458	Influences of greening and structures on urban thermal environments: A case study in Xuzhou City, China. Urban Forestry and Urban Greening, 2021, 66, 127386.	2.3	8

#	Article	IF	CITATIONS
459	Horticultural Science's Role in Meeting the Need of Urban Populations. , 2014, , 1047-1086.		2
461	Urban Heat Mitigation Effect of Tree on Microscopic Scale. Journal of People Plants and Environment, 2016, 19, 305-315.	0.1	О
462	A Semi-Empirical Model for Urban Trees Effects on the Wind Environment. SpringerBriefs in Architectural Design and Technology, 2018, , 141-161.	0.3	0
463	Urban Green Spaces as a Component of an Ecosystem. , 2018, , 885-916.		5
464	Urban Green Space Growth Impact on Surface Temperature Distribution. Asian Journal of Environment-Behaviour Studies, 2018, 3, 198-207.	0.4	0
465	ENVI-MET MODEL AS A TOOL FOR MODERN URBAN METEOROLOGICAL STUDIES. Gìdrologìâ, GìdrohìmÃGìdroekologìâ, 2019, , 151-163.	√âì O.O	0
466	Natural Processes of Plants to Maintain a Cool Environment and Aerobic Conditions. Current World Environment Journal, 2019, 14, 03-06.	0.2	0
467	WSN-Based Prediction Model of Microclimate in a City Urbanized Areas Based on Extreme Learning and Kalman Filter. Studies in Computational Intelligence, 2021, , 15-26.	0.7	0
468	Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995-2020). Sustainable Cities and Society, 2022, 76, 103487.	5.1	42
469	Green Infrastructures to Face Climate Change in an Urbanizing World. , 2020, , 207-234.		1
470	Green Infrastructures to Face Climate Change in an Urbanizing World. , 2020, , 1-29.		1
471	A Novel Urban Composition Index Based on Water-Impervious Surface-Pervious Surface (W-I-P) Model for Urban Compositions Mapping Using Landsat Imagery. Remote Sensing, 2021, 13, 3.	1.8	12
472	Adapting to Climate Change: Green Areas in Cities as Cooling Safeguards., 2021,, 2873-2887.		0
473	Climate Integration in Sustainable Urban Planning. Advances in Geospatial Technologies Book Series, 2022, , 152-173.	0.1	0
474	Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Building and Environment, 2022, 207, 108427.	3.0	45
475	Spatial Analysis of the Development Potential of a Commercial District: A Case of Hong Kong. Journal of the Urban Planning and Development Division, ASCE, 2022, 148, .	0.8	О
476	Soğuk İklim Bölgesinde Kamusal Alanda Tasarım Önerilerinin Mikro-İklim Yönünden Değerlendirmesi: Yakutiye Meydanı Örneği. Megaron, 2020, , .	0.1	2
477	Sustainability as a Function of an Area: Application of Multi-Criteria Evaluation in Assessing the Effectiveness of Nature-Based Solutions. Atmosphere, 2021, 12, 1464.	1.0	2

#	Article	IF	Citations
478	Bioclimatic conditions of Lublin based on the Universal Thermal Climate Index (UTCI)., 2020, 24, 118-127.		5
479	Spatially-heterogeneous impacts of surface characteristics on urban thermal environment, a case of the Guangdong-Hong Kong-Macau Greater Bay Area. Urban Climate, 2022, 41, 101034.	2.4	13
480	A study on diurnal microclimate hysteresis and plant morphology of a Buxus sempervirens using PIV, infrared thermography, and X-ray imaging. Agricultural and Forest Meteorology, 2022, 313, 108722.	1.9	2
481	Thermal performance of green façades: Review and analysis of published data. Renewable and Sustainable Energy Reviews, 2022, 155, 111744.	8.2	24
482	The Determination of Priority Areas for the Construction of Green Roofs with Use of the Urban Area Valorisation Method. Sustainability, 2021, 13, 13227.	1.6	0
483	Machine Learning Simulation of Land Cover Impact on Surface Urban Heat Island Surrounding Park Areas. Sustainability, 2021, 13, 12678.	1.6	7
484	Transit-Oriented Developments and Stratified Public Space Networks., 2021,, 1105-1145.		0
485	Urban Microclimate and Outdoor Thermal Comfort of Public Spaces in Warm-Humid Cities: A Comparative Bibliometric Mapping of the Literature. American Journal of Climate Change, 2021, 10, 433-466.	0.5	5
487	Influences of wind direction on the cooling effects of mountain vegetation in urban area. Building and Environment, 2022, 209, 108663.	3.0	9
488	Green space progress or paradox: identifying green space associated gentrification in Beijing. Landscape and Urban Planning, 2022, 219, 104321.	3.4	23
489	Spatiotemporal interaction between urban heat island and urban-construction indicators on the block scale in autumn in a humid and hot climate. Sustainable Cities and Society, 2022, 78, 103638.	5.1	11
490	THE IMPLEMENTATION OF STANDARD APPROACH FOR OPEN SPACE PLANNING IN KUALA LUMPUR. Planning Malaysia, 0, 18, .	0.2	1
491	Optimized greenery configuration to mitigate urban heat: A decade systematic review. Frontiers of Architectural Research, 2022, 11, 466-491.	1.3	23
492	On the Scale Effect of Relationship Identification between Land Surface Temperature and 3D Landscape Pattern: The Application of Random Forest. Remote Sensing, 2022, 14, 279.	1.8	14
493	Review of Urban Heat Island and Building Energy Modeling Approaches. ASME Journal of Engineering for Sustainable Buildings and Cities, 2022, 3, .	0.6	2
494	A review of multi-scale modelling, assessment, and improvement methods of the urban thermal and wind environment. Building and Environment, 2022, 213, 108860.	3.0	33
495	Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. Journal of Cleaner Production, 2022, 338, 130652.	4.6	38
496	Assessing the mitigation performance of building setback from street and the combination with roadside tree planting. Building and Environment, 2022, 212, 108814.	3.0	8

#	Article	IF	CITATIONS
497	Climate-adaptive landscape design: Microclimate and thermal comfort regulation of station square in the Hokuriku Region, Japan. Building and Environment, 2022, 212, 108813.	3.0	18
498	Environmental Effects from Pocket Park Design According to District Planning Patterns—Cases from Xi'an, China. Atmosphere, 2022, 13, 300.	1.0	12
499	The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Science of the Total Environment, 2022, 823, 153806.	3.9	46
500	The effect of increasing surface cover vegetation on urban microclimate and energy demand for building heating and cooling. Building and Environment, 2022, 213, 108867.	3.0	19
501	An Investigation to Identify the Effectiveness of Socioeconomic, Demographic, and Buildings' Characteristics on Surface Urban Heat Island Patterns. Sustainability, 2022, 14, 2777.	1.6	8
502	A Simulation Study on the Characteristics of Sensible Temperature Distribution in Hill-type Low-rise Residential Areas During the Cold Wave Warning Period. Journal of the Korean Housing Association, 2022, 33, 49-61.	0.0	0
503	Architectural Simulations on Spatio-Temporal Changes of Settlement Outdoor Thermal Environment in Guanzhong Area, China. Buildings, 2022, 12, 345.	1.4	4
504	Assessing the local- impacts of heat advection on urban heat islands in Kolkata Metropolitan Area. Urban Climate, 2022, 42, 101139.	2.4	6
505	Impact of green walls on ventilation and heat removal from street canyons: Coupling of thermal and aerodynamic resistance. Building and Environment, 2022, 214, 108945.	3.0	29
506	Coupling mechanism of water and greenery on summer thermal environment of waterfront space in China's cold regions. Building and Environment, 2022, 214, 108912.	3.0	12
507	Urban morphological indicators of urban heat and moisture islands under various sky conditions in a humid subtropical region. Building and Environment, 2022, 214, 108906.	3.0	21
508	A Preferred Road to Mental Restoration in the Chinese Classical Garden. Sustainability, 2022, 14, 4422.	1.6	5
509	A risk index for assessing heat stress mitigation strategies. An application in the Mediterranean context. Journal of Cleaner Production, 2022, 346, 131210.	4.6	7
510	A systematic review advocating a framework and benchmarks for assessing outdoor human thermal perception. Science of the Total Environment, 2022, 833, 155128.	3.9	33
511	Defining a Pedagogical Framework for Integrating Buildings and Landscapes in Conjunction with Social Sustainability Discourse in the Architecture Graduate Design Studio. Sustainability, 2022, 14, 4457.	1.6	1
512	Modelling and optimizing tree planning for urban climate in a subtropical high-density city. Urban Climate, 2022, 43, 101141.	2.4	13
513	Beating the urban heat: Situation, background, impacts and the way forward in China. Renewable and Sustainable Energy Reviews, 2022, 161, 112350.	8.2	152
514	Exploring the evapotranspirative cooling effect of a green façade. Sustainable Cities and Society, 2022, 81, 103822.	5.1	28

#	Article	IF	CITATIONS
515	The Role of Different Planting Types in Mitigating Urban Heat Island Effects. Tarim Bilimleri Dergisi, 0, , .	0.4	O
516	Structural Stability of Urban Trees Using Visual and Instrumental Techniques: A Review. Forests, 2021, 12, 1752.	0.9	11
517	A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 4741.	1.2	26
518	A street-scale simulation model for the cooling performance of urban greenery: Evidence from a high-density city. Sustainable Cities and Society, 2022, 82, 103908.	5.1	14
519	Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate, 2022, 10, 60.	1.2	7
521	"Planned greenspace―or "natural greenspace―in a high-density city with compact environment? An empirical study of osteoporosis among senior population. Building and Environment, 2022, 219, 109117.	3.0	3
522	A Case Study of the Relationship Between Vegetation Coverage and Urban Heat Island in a Coastal City by Applying Digital Twins. Frontiers in Plant Science, 2022, 13, 861768.	1.7	5
523	Evaluation of the Impact Caused by the Snowfall after Storm Filomena on the Arboreal Masses of Madrid. Land, 2022, 11, 667.	1.2	4
524	Microclimatic and Environmental Improvement in a Mediterranean City through the Regeneration of an Area with Nature-Based Solutions: A Case Study. Sustainability, 2022, 14, 5847.	1.6	5
525	An evidence-based framework for designing urban green infrastructure morphology to reduce urban building energy use in a hot-humid climate. Building and Environment, 2022, 219, 109181.	3.0	19
526	Effects of different vertical façade greenery systems on pedestrian thermal comfort in deep street canyons. Urban Forestry and Urban Greening, 2022, 72, 127582.	2.3	11
527	An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landscape and Urban Planning, 2022, 225, 104449.	3.4	20
528	Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation. Journal of the Korean Institute of Landscape Architecture, 2022, 50, 1-22.	0.1	3
529	Monitoring the Impact of Rapid Urbanization on Land Surface Temperature and Assessment of Surface Urban Heat Island Using Landsat in Megacity (Lahore) of Pakistan. Frontiers in Remote Sensing, 2022, 3, .	1.3	8
531	Analyzing the influence of urban morphological features on pedestrian thermal comfort. Urban Climate, 2022, 44, 101192.	2.4	14
532	Effect modifications of green space and blue space on heat–mortality association in Hong Kong, 2008–2017. Science of the Total Environment, 2022, 838, 156127.	3.9	15
533	Modelling the cooling effectiveness of street trees with actual canopy drag and real transpiration rate under representative climatic conditions. Journal of Building Performance Simulation, 0, , 1-14.	1.0	5
534	Evapotranspiration rates and evapotranspirative cooling of green faÃSades under different irrigation scenarios. Energy and Buildings, 2022, 270, 112223.	3.1	21

#	ARTICLE	IF	CITATIONS
535	Recent advances in black box and white-box models for urban heat island prediction: Implications of fusing the two methods. Renewable and Sustainable Energy Reviews, 2022, 165, 112520.	8.2	21
536	SIMULATING COOLING STREET STRATEGIES ON URBAN HEAT ISLANDS EFFECTS: AN EMPIRICAL STUDY FOR BLACKTOWN CITY, AUSTRALIA. Journal of Green Building, 2022, 17, 143-162.	0.4	3
537	Street-view greenspace exposure and objective sleep characteristics among children. Environmental Research, 2022, 214, 113744.	3.7	12
538	Evaluating the impact of tree morphologies and planting densities on outdoor thermal comfort in tropical residential precincts in Singapore. Building and Environment, 2022, 221, 109268.	3.0	16
539	Effects of Urban Tree Planting on Thermal Comfort and Air Quality in the Street Canyon in a Subtropical Climate. SSRN Electronic Journal, 0, , .	0.4	0
540	Effects of Creating Street Greenery in Urban Pedestrian Roads on Microclimates and Particulate Matter Concentrations. Sustainability, 2022, 14, 7887.	1.6	0
541	A clearance pipeline-based method for street tree maintenance information detection using MLS data. Geocarto International, 2024, 37, 15324-15346.	1.7	1
542	Effects of microclimatic factors on stomatal conductance of plants in vertical greenery systems in humid subtropical areas. Sustainable Cities and Society, 2022, 85, 104056.	5.1	7
543	New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 2023, 25, 10485-10531.	2.7	12
544	Evaluating the Cooling Performance of Green Roofs Under Extreme Heat Conditions. Frontiers in Environmental Science, $0,10,1$	1.5	5
545	Quantifying the cooling effect of urban green space: A case from urban parks in a tropical mega metropolitan area (India). Sustainable Cities and Society, 2022, 87, 104062.	5.1	30
546	Quantitative valuation of green roofs' cooling effects under different urban spatial forms in high-density urban areas. Building and Environment, 2022, 222, 109367.	3.0	11
547	A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development, 2023, 15, 379-403.	2.2	8
548	Studying the Effect of Blue-Green Infrastructure on Microclimate and Human Thermal Comfort in Melbourne's Central Business District. Sustainability, 2022, 14, 9057.	1.6	10
549	The Negative Influence of Urban Underground Space Development on Urban Microclimate. Sustainability, 2022, 14, 9836.	1.6	0
550	Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning. International Journal of Environmental Research and Public Health, 2022, 19, 10249.	1.2	2
551	Wind tunnel study on convective heat transfer performance of vegetation canopies with different structures. Building and Environment, 2022, 223, 109470.	3.0	3
552	Assessing Microclimate Impacts of Neighborhood Redesign in a Desert Urban Climate Using ENVI-Met and MaRTy. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
553	Impact of Urban Overheating and Heat-Related Mortality in Hong Kong. Advances in Sustainability Science and Technology, 2022, , 275-292.	0.4	1
554	Comparison of Summer Outdoor Thermal Environment Optimization Strategies in Different Residential Districts in Xi'an, China. Buildings, 2022, 12, 1332.	1.4	8
555	Impactos climáticos no complexo de favelas da maré. PARC: Pesquisa Em Arquitetura E Construção, 0, 13, e022024.	0.3	1
556	The Cooling Effect of an Urban River and Its Interaction with the Littoral Built Environment in Mitigating Heat Stress: A Mobile Measurement Study. Sustainability, 2022, 14, 11700.	1.6	8
557	The Intersection between Heatwaves, High-Rise Living and the Aged: A Narrative Review of the Literature. Atmosphere, 2022, 13, 1461.	1.0	1
558	Analysing impacts of urban morphological variables and density on outdoor microclimate for tropical cities: A review and a framework proposal for future research directions. Building and Environment, 2022, 225, 109646.	3.0	10
559	Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches. Ecosystem Health and Sustainability, 2022, 8, .	1.5	3
560	A Comprehensive Review of Different Types of Green Infrastructure to Mitigate Urban Heat Islands: Progress, Functions, and Benefits. Land, 2022, 11, 1792.	1.2	24
561	Revealing the spatiotemporal characteristics and drivers of the block-scale thermal environment near a large river: Evidences from Shanghai, China. Building and Environment, 2022, 226, 109728.	3.0	4
562	Analytic Hierarchy Processes (AHP) evaluation of green roof- and green wall- based UHI mitigation strategies via ENVI-met simulations. Urban Climate, 2022, 46, 101293.	2.4	25
563	Influences of the thermal environment on pedestrians' thermal perception and travel behavior in hot weather. Building and Environment, 2022, 226, 109687.	3.0	5
564	A review of recent developments in the impact of environmental measures on urban heat island. Sustainable Cities and Society, 2023, 88, 104279.	5.1	19
565	An Analysis of Thermal Environment Change According to Urban Development Project Using ENVI-met Model: Focused on ChangWon. Journal of Climate Change Research, 2022, 13, 659-677.	0.1	0
566	Influencing factors of the thermal environment of urban green space. Heliyon, 2022, 8, e11559.	1.4	7
567	Research Progress and Hotspot Evolution Analysis of Landscape Microclimate: Visual Analysis Based on CNKI and WOS. International Journal of Environmental Research and Public Health, 2022, 19, 15118.	1.2	2
568	New two-step species-level AGB estimation model applied to urban parks. Ecological Indicators, 2022, 145, 109694.	2.6	2
569	Fighting urban climate change—state of the art of mitigation technologies. , 2023, , 227-296.		4
570	Impacts of trees-grass area ratio on thermal environment, energy saving, and carbon benefits. Urban Climate, 2023, 47, 101393.	2.4	10

#	Article	IF	CITATIONS
571	Impact of Urban Park Allocation on Local Geothermal Environment: Case Study of Chaoyang, China. Advances in Science, Technology and Innovation, 2022, , 37-43.	0.2	0
572	A CLIMATE-BASED CRITICAL ANALYSIS OF URBAN HEAT ISLAND ASSESSMENT METHODS AND MITIGATION STRATEGIES. Journal of Green Building, 2022, 17, 129-149.	0.4	2
573	Effects of urban tree planting on thermal comfort and air quality in the street canyon in a subtropical climate. Sustainable Cities and Society, 2023, 91, 104334.	5.1	14
574	Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Systems, 2022, 4, 348-376.	0.6	10
575	Climate-Sensitive Urban Design for Thermal Comfort. Advances in 21st Century Human Settlements, 2023, , 207-262.	0.3	0
576	A predictive analysis of thermal stress in a densifying urban business district under summer daytime conditions in a Mediterranean City. Urban Climate, 2023, 48, 101298.	2.4	3
577	Urban Design Solutions for the Environmental Requalification of Informal Neighbourhoods: The George Dimitrov Neighbourhood, Maputo. Urban Science, 2023, 7, 12.	1.1	0
578	Effect of street design on UHI and energy consumption based on vegetation and street aspect ratio: Taking Harbin as an example. Sustainable Cities and Society, 2023, 92, 104484.	5.1	12
579	Multi-scale climate-sensitive planning framework to mitigate urban heat island effect: A case study in Singapore. Urban Climate, 2023, 49, 101451.	2.4	9
580	Nocturnal influencing patterns on outdoor thermal environmental parameters along an urban road in summer: A perspective of visual index. Urban Climate, 2023, 49, 101511.	2.4	0
581	CUGIC: The Consolidated Urban Green Infrastructure Classification for assessing ecosystem services and biodiversity. Landscape and Urban Planning, 2023, 234, 104726.	3.4	6
582	Exploring the relationship between quality of living and green spaces in cities: Evidence from an Indian megacity region of global south. Land Use Policy, 2023, 129, 106594.	2.5	1
583	Cooling Potential Simulation of Urban Green Space Using Remote Sensing and Web-Based GIS Integration in Panat Nikom Municipality, Thailand. Water Science and Technology Library, 2022, , 325-347.	0.2	0
584	Exploring the Meteorological Impacts of Surface and Rooftop Heat Mitigation Strategies Over a Tropical City. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	8
585	Influence of rooftop mitigation strategies on the thermal environment in a subtropical city. Urban Climate, 2023, 49, 101450.	2.4	4
586	The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks. Remote Sensing, 2023, 15, 1261.	1.8	3
587	Air Pollutants-Induced Environmental Critical Zones in Capital City of India., 2023,, 283-299.		0
588	Assessing the impact of urban greenspace on physical health: An empirical study from Southwest China. Frontiers in Public Health, $0,11,1$	1.3	1

#	ARTICLE	IF	Citations
589	Localizing and prioritizing roof greening opportunities for urban heat island mitigation: insights from the city of Krefeld, Germany. Landscape Ecology, 2023, 38, 1697-1712.	1.9	2
590	The Thermal Effect of Various Local Park Settings: A Simulation-Based Case Study of Sunshine Coast, Australia. Architecture, 2023, 3, 195-212.	0.6	1
591	Simulation of Cooling Island Effect in Blue-Green Space Based on Multi-Scale Coupling Model. Remote Sensing, 2023, 15, 2093.	1.8	3
592	The time-evolving impact of tree size on nighttime street canyon microclimate: Wind tunnel modeling of aerodynamic effects and heat removal. Urban Climate, 2023, 49, 101528.	2.4	4
601	Urban Green Spaces as a Component of an Ecosystem. , 2023, , 165-198.		3
612	Application of microcontroller-based systems in human biometeorology studies: a bibliometric analysis. International Journal of Biometeorology, 2023, 67, 1397-1407.	1.3	1
619	Urban Heat Mitigation Strategies. , 2023, , 21-44.		0
620	GründÃ⊠her im urbanen Raum und ihre Ökosystemleistungen. , 2024, , 165-180.		0
629	Overview on Urban Climate and Microclimate Modeling Tools and Their Role to Achieve the Sustainable Development Goals. Lecture Notes in Mechanical Engineering, 2024, , 247-267.	0.3	0
651	Green Roofs as a Mainstreamed Nature-Based Solution Tackling the Challenge of Biodiversity Loss. , 2024, , 117-137.		О