Delineation of Groundwater Potential Zones in Arid Reg GIS Approach

Water Resources Management 26, 2643-2672 DOI: 10.1007/s11269-012-0038-9

Citation Report

#	Article	IF	CITATIONS
1	Artificial Groundwater Recharge Zones Mapping Using Remote Sensing and GIS: A Case Study in Indian Punjab. Environmental Management, 2013, 52, 61-71.	1.2	59
2	Recent literature in cartography and geographic information science. Cartography and Geographic Information Science, 2013, 40, 363-381.	1.4	1
3	Effect of Substitute Water Projects on Tempo-Spatial Distribution of Groundwater Withdrawals in Chikugo-Saga Plain, Japan. Water Resources Management, 2014, 28, 4645-4663.	1.9	4
4	Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Applied Water Science, 2014, 4, 19-38.	2.8	210
5	A Spatial Multi-Criteria Analysis Approach for Locating Suitable Sites for Construction of Subsurface Dams in Northern Pakistan. Water Resources Management, 2014, 28, 5157-5174.	1.9	65
6	Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones. Water Resources Management, 2014, 28, 4449-4466.	1.9	134
7	GIS and SBF for estimating groundwater recharge of a mountainous basin in the Wu River watershed, Taiwan. Journal of Earth System Science, 2014, 123, 503-516.	0.6	26
8	Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arabian Journal of Geosciences, 2014, 7, 1385-1401.	0.6	240
9	Operational applications of remote sensing in groundwater mapping across sub-Saharan Africa. Transactions of the Royal Society of South Africa, 2015, 70, 173-179.	0.8	4
10	Characterization of groundwater potential and artificial recharge sites in Bokaro District, Jharkhand (India), using remote sensing and GIS-based techniques. Environmental Earth Sciences, 2015, 74, 4215-4232.	1.3	40
11	Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: a case study from Wadi Yalamlam basin, Makkah Province, Western Saudi Arabia. Environmental Earth Sciences, 2015, 74, 5129-5142.	1.3	50
12	High Recharge Areas in the Choushui River Alluvial Fan (Taiwan) Assessed from Recharge Potential Analysis and Average Storage Variation Indexes. Entropy, 2015, 17, 1558-1580.	1.1	5
13	Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 2015, 8, 867-883.	1.6	389
14	Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrological Processes, 2015, 29, 395-418.	1.1	116
15	Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 2015, 8, 7059-7071.	0.6	417
16	Delineation of Groundwater Potential Zones of Coastal Groundwater Basin Using Multi-Criteria Decision Making Technique. Water Resources Management, 2016, 30, 4293-4310.	1.9	82
17	Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustainable Water Resources Management, 2016, 2, 419-430.	1.0	112
18	Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustainable Environment Research, 2016, 26, 33-43.	2.1	275

#	Article	IF	CITATIONS
19	Combination of a geographical information system and remote sensing data to map groundwater recharge potential in arid to semi-arid areas: the Haouz Plain, Morocco. Earth Science Informatics, 2016, 9, 465-479.	1.6	30
20	Integrated Assessment of Groundwater for Agricultural Use in Mewat District of Haryana, India Using Geographical Information System (GIS). Journal of the Indian Society of Remote Sensing, 2016, 44, 747-758.	1.2	38
21	Estimation of Groundwater Recharge from the Rainfall and Irrigation in an Arid Environment Using Inverse Modeling Approach and RS. Water Resources Management, 2016, 30, 1939-1951.	1.9	39
22	Grey analytic hierarchy process applied to effectiveness evaluation for groundwater potential zone delineation. Geocarto International, 2017, 32, 1188-1205.	1.7	38
23	Fuzzy logic and multi-criteria methods for groundwater potentiality mapping at Al Fo'ah area, the United Arab Emirates (UAE): an integrated approach. Geocarto International, 2017, 32, 1120-1138.	1.7	34
24	Application of GIS-based data-driven models for groundwater potential mapping in Kuhdasht region of Iran. Geocarto International, 0, , 1-16.	1.7	7
25	Spatial mapping of groundwater potential in Ponnaiyar River basin using probabilistic-based frequency ratio model. Modeling Earth Systems and Environment, 2017, 3, 1.	1.9	18
26	Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spatial Information Research, 2017, 25, 749-756.	1.3	89
27	Groundwater potential mapping using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Research, 2017, 25, 615-626.	1.3	91
28	Earthquake hazard assessment through geospatial model and development of EaHaAsTo tool for visualization: an integrated geological and geoinformatics approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	9
29	Appraising the Accuracy of Multi-Class Frequency Ratio and Weights of Evidence Method for Delineation of Regional Groundwater Potential Zones in Canal Command System. Water Resources Management, 2017, 31, 4399-4413.	1.9	26
30	A forensic look into the lineament, vegetation, groundwater linkage: Study of Ranchi District, Jharkhand (India). Remote Sensing Applications: Society and Environment, 2018, 10, 138-152.	0.8	4
31	Spatiotemporal Relationship Linking Land Use/Land Cover with Groundwater Level. Water Science and Technology Library, 2018, , 41-54.	0.2	1
32	Application of remote sensing, GIS and MCA techniques for delineating groundwater prospect zones in Kashipur block, Purulia district, West Bengal. Applied Water Science, 2018, 8, 1.	2.8	25
33	Spatial analysis of soil resources in the Mewat district in the semiarid regions of Haryana, India. Environment, Development and Sustainability, 2018, 20, 661-680.	2.7	9
34	Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 2018, 172, 2485-2502.	4.6	203
35	Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 2018, 8, 1.	2.8	118
36	Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in BeyÅŸehir Lake Basin, Turkey. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	73

#	Article	IF	CITATIONS
37	Regional Groundwater Assessment of Krishna River Basin Using Integrated GIS Approach. Journal of the Indian Society of Remote Sensing, 2018, 46, 1365-1377.	1.2	21
38	Assessment of Land-use and Land-cover Change and its Impact on Groundwater Quality Using Remote Sensing and GIS Techniques in Raipur City, Chhattisgarh, India. Journal of the Geological Society of India, 2018, 92, 59-66.	0.5	27
39	Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: a study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences, 2018, 77, 1.	1.3	65
40	Potential impacts of climate change on groundwater levels on the Kerdi-Shirazi plain, Iran. Environmental Earth Sciences, 2018, 77, 1.	1.3	17
41	Groundwater prospect mapping using remote sensing, GIS and resistivity survey techniques in Chhokra Nala Raipur district, Chhattisgarh, India. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 595-606.	0.6	11
42	Physicochemical Parameters and Alarming Coliform Count of the Potable Water of Eastern Himalayan State Sikkim: An Indication of Severe Fecal Contamination and Immediate Health Risk. Frontiers in Public Health, 2019, 7, 174.	1.3	30
43	Analytic network process based approach for delineation of groundwater potential zones in Korba district, Central India using remote sensing and GIS. Geocarto International, 2019, , 1-23.	1.7	24
44	Analyzing depletion of groundwater level using operations management and control. Management Decision, 2019, 57, 2997-3014.	2.2	0
45	Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 2019, 9, 100239.	2.3	145
46	Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies, 2019, 24, 100610.	1.0	139
47	Regional Groundwater Potential Analysis Using Classification and Regression Trees. , 2019, , 485-498.		23
48	Terrain Characteristics and their Influence on the Temporal Behaviour of Hydraulic Heads in Kallada River Basin, Kerala. Journal of the Geological Society of India, 2019, 93, 61-67.	0.5	9
49	Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water (Switzerland), 2019, 11, 2656.	1.2	116
50	Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. , 2019, 3, 223-237.		153
51	Delineation of groundwater prospective resources by exploiting geo-spatial decision-making techniques for the Kingdom of Saudi Arabia. Neural Computing and Applications, 2019, 31, 5379-5399.	3.2	19
52	Mapping groundwater potential zones using remote sensing and GIS approach in Jammu Himalaya, Jammu and Kashmir. Geo Journal, 2020, 85, 487-504.	1.7	34
53	Application of multi-criteria decision making technique for the assessment of groundwater potential zones: a study on Birbhum district, West Bengal, India. Environment, Development and Sustainability, 2020, 22, 931-955.	2.7	71
54	Generation of Groundwater Zones for Selection of Prospective Suitable Water Harvesting Structure Sites for Sustainable Water Supply Towards the Agricultural Development. Agricultural Research, 2020, 9, 148-160.	0.9	5

#	Article	IF	CITATIONS
55	Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India. Environment, Development and Sustainability, 2020, 22, 5905-5923.	2.7	56
56	Critical Zone Assessments of an Alluvial Aquifer System Using the Multi-influencing Factor (MIF) and Analytical Hierarchy Process (AHP) Models in Western Iran. Natural Resources Research, 2020, 29, 1163-1191.	2.2	28
57	The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. Catena, 2020, 187, 104421.	2.2	81
58	Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	22
59	Application of Hydrogeological Mapping and Geospatial Analysis to Determine Recharge and Discharge Areas in Sumowono Groundwater Basin. IOP Conference Series: Earth and Environmental Science, 2020, 448, 012024.	0.2	1
60	Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: A study from the upper Kangsabati river basin. Groundwater for Sustainable Development, 2020, 11, 100419.	2.3	58
61	Fuzzy logic algorithm based analytic hierarchy process for delineation of groundwater potential zones in complex topography. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	26
62	Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 2020, 10, 10342.	1.6	220
63	Delineation of groundwater storage and recharge potential zones using RS-GIS-AHP: Application in arable land expansion. Remote Sensing Applications: Society and Environment, 2020, 19, 100354.	0.8	18
64	Characterization of groundwater potential zones using analytic hierarchy process and integrated geomatic techniques in Central Middle Atlas (Morocco). Applied Geomatics, 2020, 12, 323-335.	1.2	18
65	Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water (Switzerland), 2020, 12, 471.	1.2	106
66	Assessment of groundwater potential zones using multi-criteria decision-making technique: a micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustainable Water Resources Management, 2020, 6, 1.	1.0	44
67	A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. International Journal of Digital Earth, 2020, 13, 1408-1429.	1.6	70
68	Synthesizing existing frameworks to identify the potential for Managed Aquifer Recharge in a karstic and semi-arid region using GIS Multi Criteria Decision Analysis. Groundwater for Sustainable Development, 2020, 11, 100390.	2.3	13
69	Delineation of Ground Water Potential Zones in Chinhat Block, District Lucknow, Uttar Pradesh — An Integrated Approach. Journal of the Geological Society of India, 2020, 95, 417-424.	0.5	0
70	Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stochastic Environmental Research and Risk Assessment, 2021, 35, 287-306.	1.9	55
71	Application of DRASTIC model for assessing groundwater vulnerability: a study on Birbhum district, West Bengal, India. Modeling Earth Systems and Environment, 2021, 7, 1225-1239.	1.9	23
72	An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region. Environment, Development and Sustainability, 2021, 23, 495-510.	2.7	31

#	Article	IF	CITATIONS
73	Multi-criteria Decision-Making Approach Using Remote Sensing and GIS for Assessment of Groundwater Resources. Springer Hydrogeology, 2021, , 59-79.	0.1	2
74	Review of GIS Multi-Criteria Decision Analysis for Managed Aquifer Recharge in Semi-Arid Regions. , 2021, , 19-52.		4
76	Application of remote sensing, GIS and geophysical techniques for groundwater potential development in the crystalline basement complex of Ondo State, Southwestern Nigeria. Sustainable Water Resources Management, 2021, 7, 1.	1.0	8
77	Delineation of Groundwater Potential Zones on Lower and Middle Beas Basin Using Remote Sensing and Geographical Information System. Advances in Geographical and Environmental Sciences, 2021, , 87-100.	0.4	0
78	Deciphering prospective groundwater zones in Bankura district, West Bengal: a study using GIS platform and MIF techniques. International Journal of Energy and Water Resources, 2021, 5, 323-341.	1.3	2
79	Application of multi-influence factor (MIF) technique for the identification of suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India. Asia-Pacific Journal of Regional Science, 2021, 5, 797-823.	1.1	17
80	Assessment of groundwater recharge potential in a typical geological transition zone in Bauchi, NE-Nigeria using remote sensing/GIS and MCDA approaches. Heliyon, 2021, 7, e06762.	1.4	17
81	Groundwater Potential Zone Delineation in Hard Rock Terrain for Sustainable Groundwater Development and Management in South Madhya Pradesh, India. Geography, Environment, Sustainability, 2021, 14, 106-121.	0.6	2
82	Integrated multi-criteria analysis for groundwater potential mapping in Precambrian hard rock terranes (North Gujarat), India. Hydrological Sciences Journal, 2021, 66, 961-978.	1.2	21
83	Evaluation of parameter sensitivity for groundwater potential mapping in the mountainous region of Nepal Himalaya. Groundwater for Sustainable Development, 2021, 13, 100562.	2.3	14
84	Assessment of basin-scale groundwater potentiality mapping in drought-prone upper Dwarakeshwar River basin, West Bengal, India, using GIS-based AHP techniques. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	31
85	Delineation of groundwater recharge potential zones using the modeling based on remote sensing, GIS and MIF techniques: a study of Hamirpur District, Himachal Pradesh, India. Modeling Earth Systems and Environment, 0, , 1.	1.9	14
86	Groundwater Potential Zonation using Integration of Remote Sensing and AHP/ANP Approach in North Kashmir, Western Himalaya, India. Remote Sensing of Land, 2021, 5, 41-58.	0.9	10
87	Groundwater depletion susceptibility zonation using TOPSIS model in Bhagirathi river basin, India. Modeling Earth Systems and Environment, 2022, 8, 1711-1731.	1.9	17
89	Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS International Journal of Geo-Information, 2021, 10, 396.	1.4	31
91	Mapping Potential Zones for Groundwater Recharge Using a GIS Technique in the Lower Khwae Hanuman Sub-Basin Area, Prachin Buri Province, Thailand. Frontiers in Earth Science, 2021, 9, .	0.8	13
92	Geospatial and multi-criteria decision approach of groundwater potential zone identification in Cuma sub-basin, Southern Ethiopia. Heliyon, 2021, 7, e07963.	1.4	17
93	Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping. Water Resources Management, 2021, 35, 4415-4433.	1.9	24

#		IF	CITATIONS
11	Effects of urbanisation in a shallow coastal aquifer. An integrated GIS-based case study in Cochin	11	CHATIONS
94	India. Groundwater for Sustainable Development, 2021, 15, 100656.	2.3	9
95	Identification of groundwater potential zones using geospatial approach in Sivagangai district, South India. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	26
100	Recent Hydrogeological Research in India. Proceedings of the Indian National Science Academy, 2016, 82, .	0.5	15
101	Delineation of the Groundwater Potential Using Remote Sensing and GIS: A Case Study of Ulhas Basin, Maharashtra, India. Archiwum Fotogrametrii, Kartografii I Teledetekcji, 2019, 31, 49-64.	0.2	8
102	Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques: A Case Study of the Shatt Al-Arab Basin. Remote Sensing, 2021, 13, 112.	1.8	106
103	Identification of the Groundwater Potential Recharge Zones Using MCDM Models: Full Consistency Method (FUCOM), Best Worst Method (BWM) and Analytic Hierarchy Process (AHP). Water Resources Management, 2021, 35, 4727-4745.	1.9	32
104	Delineation of Potential Groundwater Zone Using RS and GIS: A Review. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 196-203.	0.0	5
105	Application of Remote Sensing, GIS and Hydrogeophysics to Groundwater Exploration in Ogun State: A case study of OGD-Sparklight Estate. Journal of BP Koirala Institute of Health Sciences, 2019, 3, 370-385.	0.1	2
106	Impact of anthropogenic activities on groundwater quality and quantity in Raipur City, Chhattisgarh, India. IOP Conference Series: Earth and Environmental Science, 0, 597, 012006.	0.2	0
107	GEOSPATIAL APPROACH FOR GROUNDWATER EXPLORATION AT UTM JOHOR BAHRU CAMPUS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-4/W16, 711-718.	0.2	0
108	GIS and RS intelligence in delineating the groundwater potential zones in Arid Regions: a case study of southern Aseer, southwestern Saudi Arabia. Applied Water Science, 2022, 12, 1.	2.8	20
109	Modification of Land Use/Land Cover and Its Impact on Groundwater in Peshawar City, Pakistan. Journal of the Indian Society of Remote Sensing, 2022, 50, 159-174.	1.2	6
110	Delineating potential sites for artificial groundwater recharge using a mathematical approach to remote sensing and GIS techniques. Water Science and Technology: Water Supply, 0, , .	1.0	0
111	Assessment of groundwater potential zone for sustainable water resource management in south-western part of Birbhum District, West Bengal. Applied Water Science, 2022, 12, 1.	2.8	15
112	Delineation of groundwater potential zones for Arkavathi sub-watershed, Karnataka, India using remote sensing and GIS. Environmental Challenges, 2021, 5, 100380.	2.0	16
113	Combined geospatial, geophysical and hydrochemical studies on coastal aquifer at Muttom–Mandaikadu area, Tamilnadu, India. Environmental Science and Pollution Research, 2022, , 1.	2.7	3
114	Delineation of groundwater potential zones using cokriging and weighted overlay techniques in the Assin Municipalities of Ghana. Sustainable Water Resources Management, 2022, 8, 1.	1.0	1
115	Use of a GIS-multi-criteria decision analysis and web-based decision support tools for mapping and sharing managed aquifer recharge feasibility in Enfidha plain, NE of Tunisia. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4

#	Article	IF	CITATIONS
116	Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Applied Water Science, 2022, 12, 1.	2.8	11
117	Delineation of groundwater potential zones in the Central Region of Ghana using GIS and fuzzy analytic hierarchy process. Modeling Earth Systems and Environment, 2022, 8, 5305-5326.	1.9	4
118	Understanding the suitability of two MCDM techniques in mapping the groundwater potential zones of semi-arid Bankura District in eastern India. Groundwater for Sustainable Development, 2022, 17, 100727.	2.3	18
127	Determination of Potential Aquifer Recharge Zones Using Geospatial Techniques for Proxy Data of Gilgel Gibe Catchment, Ethiopia. Water (Switzerland), 2022, 14, 1362.	1.2	17
128	Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying. Geo-Spatial Information Science, 2022, 25, 600-618.	2.4	6
129	Multi-criteria ground water potentiality mapping utilizing remote sensing and geophysical data: A case study within Sinai Peninsula, Egypt. Egyptian Journal of Remote Sensing and Space Science, 2022, 25, 765-778.	1.1	8
130	Detection of groundwater potential zones using analytical hierarchical process (AHP) for a tropical river basin in the Western Ghats of India. Environmental Earth Sciences, 2022, 81, .	1.3	4
131	Groundwater prospectivity modeling over the Akatsi Districts in the Volta Region of Ghana using the frequency ratio technique. Modeling Earth Systems and Environment, 2023, 9, 937-955.	1.9	5
132	Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. Journal of Hydrology, 2022, 614, 128501.	2.3	13
133	Application of e-TOPSIS for Ground Water Potentiality Zonation using Morphometric Parameters and Geospatial Technology of Vanvate Lui Basin, Mizoram, NE India. Journal of the Geological Society of India, 2022, 98, 1385-1394.	0.5	5
134	Application of analytical hierarchy process and GIS techniques to delineate the groundwater potential zones in and around Jorhat and Majuli areas of eastern Assam, India. Modeling Earth Systems and Environment, 0, , .	1.9	0
135	Emerging groundwater contaminants: A comprehensive review on their health hazards and remediation technologies. Groundwater for Sustainable Development, 2023, 20, 100868.	2.3	15
136	Volcanic craters and cones in central Kachchh mainland, western India: Potential analogue for the Martian studies?. Journal of Earth System Science, 2022, 131, .	0.6	1
137	Advance mathematical modeling for the delineation of the groundwater potential zone in Guna district, India. Modeling Earth Systems and Environment, O, , .	1.9	0
138	Groundwater potential zone demarcation in the Khadir Island of Kachchh, Western India. Groundwater for Sustainable Development, 2023, 20, 100876.	2.3	6
139	Assessment of rainwater absorption zone in Citarum Watershed using GIS and AHP. IOP Conference Series: Earth and Environmental Science, 2022, 1109, 012055.	0.2	0
140	Groundwater Potential Zone Mapping: Integration of Multi-Criteria Decision Analysis (MCDA) and GIS Techniques for the Al-Qalamoun Region in Syria. ISPRS International Journal of Geo-Information, 2022, 11, 603.	1.4	7
141	Groundwater Depletion Zonation Using Geospatial Technique and TOPSIS in Raipur District, Chhattisgarh, India. , 2023, , 237-251.		1

#	Article	IF	CITATIONS
142	Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches. Urban Climate, 2023, 48, 101415.	2.4	11
143	Delineation of groundwater potential zone for sustainable water resources management using remote sensing-GIS and analytic hierarchy approach in the state of Jharkhand, India. Groundwater for Sustainable Development, 2023, 21, 100908.	2.3	11
144	Geospatial delineation of groundwater recharge potential zones in the Deccan basaltic province, India. Arabian Journal of Geosciences, 2023, 16, .	0.6	2
145	Groundwater potential mapping in Jashore, Bangladesh. Heliyon, 2023, 9, e13966.	1.4	10
146	Land Use Land Cover (LULC) and Surface Water Quality Assessment in and around Selected Dams of Jharkhand using Water Quality Index (WQI) and Geographic Information System (GIS). Journal of the Geological Society of India, 2023, 99, 205-218.	0.5	8
147	Delineation of groundwater potential zones using AHP and CIS techniques: a case study in Barakar river basin, India. Arabian Journal of Geosciences, 2023, 16, .	0.6	1
148	Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Environmental Monitoring and Assessment, 2023, 195, .	1.3	10
149	Groundwater Potential Assessment of Penang Island, Malaysia, Through Integration of Remote Sensing and GIS with Validation by 2D ERT. Natural Resources Research, 2023, 32, 523-541.	2.2	3
150	Delineation of groundwater potential zones using remotely sensed data and GIS-based analytical hierarchy process: Insights from the Geba river basin in Tigray, Northern Ethiopia. Journal of Hydrology: Regional Studies, 2023, 46, 101355.	1.0	2
151	GIS-based groundwater potential site suitability using Arc GIS–weighted overlay techniques in Gelda watershed, upper Lake Tana sub-basin Dera district, Amhara Region, Ethiopia. Arabian Journal of Geosciences, 2023, 16, .	0.6	0
152	Delineation of groundwater potential zones using the AHP technique: a case study of Alipurduar district, West Bengal. Modeling Earth Systems and Environment, 0, , .	1.9	2
153	Multi-criteria decision analysis for groundwater potential zones delineation using geospatial tools and Analytical Hierarchy Process (AHP) in Nand Samand Catchment, Rajasthan, India. Environment, Development and Sustainability, 0, , .	2.7	2
154	Applications of statistical and AHP models in groundwater potential mapping in the Mensa river catchment, Omo river valley, Ethiopia. Modeling Earth Systems and Environment, 2023, 9, 4057-4075.	1.9	2
155	Spatial mapping of water spring potential using four data mining models. Water Science and Technology: Water Supply, 0, , .	1.0	0
156	Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Environmental Research, 2023, 228, 115832.	3.7	33
157	Identifying the groundwater potential zones in Jamsholaghat sub-basin by considering GIS and multi-criteria decision analysis. International Journal of Environmental Science and Technology, 2024, 21, 515-540.	1.8	2
158	Assessment of Groundwater Prospects Zones Using RS, GIS, and MIF Methods. Springer Hydrogeology, 2023, , 317-335.	0.1	3
162	Land Cover Change and Its Impact on Groundwater Resources: Findings and Recommendations. , 0, , .		0