The COMPASS Family of Histone H3K4 Methylases: Med Development and Disease Pathogenesis

Annual Review of Biochemistry 81, 65-95

DOI: 10.1146/annurev-biochem-051710-134100

Citation Report

#	Article	IF	CITATIONS
1	ATX1-Generated H3K4me3 Is Required for Efficient Elongation of Transcription, Not Initiation, at ATX1-Regulated Genes. PLoS Genetics, 2012, 8, e1003111.	1.5	99
2	Chromatin and epigenetic regulation of pre-mRNA processing. Human Molecular Genetics, 2012, 21, R90-R96.	1.4	80
3	Radiation-induced alterations in histone modification patterns and their potential impact on short-term radiation effects. Frontiers in Oncology, 2012, 2, 117.	1.3	12
4	A Subset of Mixed Lineage Leukemia Proteins Has Plant Homeodomain (PHD)-mediated E3 Ligase Activity. Journal of Biological Chemistry, 2012, 287, 43410-43416.	1.6	33
5	Enhancer-associated H3K4 monomethylation by Trithorax-related, the <i>Drosophila</i> homolog of mammalian Mll3/Mll4. Genes and Development, 2012, 26, 2604-2620.	2.7	327
6	The RNA polymerase II CTD coordinates transcription and RNA processing. Genes and Development, 2012, 26, 2119-2137.	2.7	513
7	Transcription in the Absence of Histone H3.2 and H3K4 Methylation. Current Biology, 2012, 22, 2253-2257.	1.8	112
8	Introduction to Theme "Chromatin, Epigenetics, and Transcription― Annual Review of Biochemistry, 2012, 81, 61-64.	5.0	34
9	The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis. Annual Review of Biochemistry, 2012, 81, 65-95.	5.0	896
10	The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1093-1097.	3.6	165
11	The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chemical Reviews, 2013, 113, 8491-8522.	23.0	101
12	SET1 and p300 Act Synergistically, through Coupled Histone Modifications, in Transcriptional Activation by p53. Cell, 2013, 154, 297-310.	13.5	147
13	Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends in Plant Science, 2013, 18, 633-643.	4.3	74
14	Histone H2B ubiquitin ligase RNF20 is required for <i>MLL</i> -rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3901-3906.	3.3	103
15	Transcription-associated histone modifications and cryptic transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 84-97.	0.9	160
16	Histone modifications for human epigenome analysis. Journal of Human Genetics, 2013, 58, 439-445.	1.1	371
17	The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers. Molecular and Cellular Biology, 2013, 33, 4745-4754.	1.1	329
18	The Drosophila COMPASS-like Cmi-Trr coactivator complex regulates dpp/BMP signaling in pattern formation. Developmental Biology, 2013, 380, 185-198.	0.9	13

#	ARTICLE	IF	CITATIONS
19	Chromatin structure, pluripotency and differentiation. Experimental Biology and Medicine, 2013, 238, 259-270.	1.1	24
20	Discovery of MLL1 binding units, their localization to CpG Islands, and their potential function in mitotic chromatin. BMC Genomics, 2013, 14, 927.	1.2	16
21	Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells. Cell and Bioscience, 2013, 3, 39.	2.1	84
22	Regulation of transcription by the MLL2 complex and MLL complex–associated AKAP95. Nature Structural and Molecular Biology, 2013, 20, 1156-1163.	3.6	51
23	Dynamic changes of the epigenetic landscape during cellular differentiation. Epigenomics, 2013, 5, 701-713.	1.0	13
24	Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. Blood, 2013, 121, 4847-4853.	0.6	61
25	SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends in Biochemical Sciences, 2013, 38, 621-639.	3.7	244
26	Bridging the transgenerational gap with epigenetic memory. Trends in Genetics, 2013, 29, 176-186.	2.9	198
27	Modification of Enhancer Chromatin: What, How, and Why?. Molecular Cell, 2013, 49, 825-837.	4.5	1,200
28	Histone Crosstalk: H2Bub and H3K4 Methylation. Molecular Cell, 2013, 49, 1019-1020.	4.5	20
29	De novo mutations in histone-modifying genes in congenital heart disease. Nature, 2013, 498, 220-223.	13.7	798
30	Induction of Activation-Induced Cytidine Deaminase–Targeting Adaptor 14-3-3γ Is Mediated by NF-κB–Dependent Recruitment of CFP1 to the 5′-CpG-3′–Rich <i>14-3-3γ</i> Promoter and Is Sustaine Journal of Immunology, 2013, 191, 1895-1906.	doby E2A.	14
31	Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiology, 2013, 162, 1694-1705.	2.3	93
32	Drosophila SETs Its Sights on Cancer: Trr/MLL3/4 COMPASS-Like Complexes in Development and Disease. Molecular and Cellular Biology, 2013, 33, 1698-1701.	1.1	20
33	The Chromatin Landscape of Kaposi's Sarcoma-Associated Herpesvirus. Viruses, 2013, 5, 1346-1373.	1.5	60
34	The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation. PLoS Genetics, 2013, 9, e1003776.	1.5	45
35	The Dynamics of HCF-1 Modulation of Herpes Simplex Virus Chromatin during Initiation of Infection. Viruses, 2013, 5, 1272-1291.	1.5	34
36	Coordinated Cell Type–Specific Epigenetic Remodeling in Prefrontal Cortex Begins before Birth and Continues into Early Adulthood. PLoS Genetics, 2013, 9, e1003433.	1.5	68

#	Article	IF	Citations
37	The genetic basis of diffuse large B-cell lymphoma. Current Opinion in Hematology, 2013, 20, 336-344.	1.2	54
38	The <i>Drosophila</i> Ortholog of <i>MLL3</i> and <i>MLL4</i> , <i>trithorax related</i> , Functions as a Negative Regulator of Tissue Growth. Molecular and Cellular Biology, 2013, 33, 1702-1710.	1.1	40
39	Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes and Development, 2013, 27, 1787-1799.	2.7	440
40	Quantitative Dissection and Stoichiometry Determination of the Human SET1/MLL Histone Methyltransferase Complexes. Molecular and Cellular Biology, 2013, 33, 2067-2077.	1.1	202
42	TET Proteins and 5-Methylcytosine Oxidation in the Immune System. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 1-10.	2.0	28
43	A double take on bivalent promoters. Genes and Development, 2013, 27, 1318-1338.	2.7	699
44	Histone H3 lysine methylation in cognition and intellectual disability disorders. Learning and Memory, 2013, 20, 570-579.	0.5	52
46	Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics, 2013, 8, 79-91.	1.3	53
47	Trithorax Genes in Prostate Cancer. , 0, , .		0
48	Deep Sequencing Reveals New Aspects of Progesterone Receptor Signaling in Breast Cancer Cells. PLoS ONE, 2014, 9, e98404.	1.1	12
49	Divergence and Selectivity of Expression-Coupled Histone Modifications in Budding Yeasts. PLoS ONE, 2014, 9, e101538.	1.1	7
50	The Set1/COMPASS Histone H3 Methyltransferase Helps Regulate Mitosis With the CDK1 and NIMA Mitotic Kinases in <i>Aspergillus nidulans</i> Senetics, 2014, 197, 1225-1236.	1.2	20
51	Deconvoluting MLL1-dependent pathways in hematopoiesis and leukemogenesis. Leukemia Supplements, 2014, 3, S9-S10.	0.1	0
52	Histone Lysine Methylation in Diabetic Nephropathy. Journal of Diabetes Research, 2014, 2014, 1-9.	1.0	23
53	Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex. PLoS Genetics, 2014, 10, e1004740.	1.5	37
54	MRTF-A steers an epigenetic complex to activate endothelin-induced pro-inflammatory transcription in vascular smooth muscle cells. Nucleic Acids Research, 2014, 42, 10460-10472.	6.5	44
55	Minireview: Pioneer Transcription Factors in Cell Fate Specification. Molecular Endocrinology, 2014, 28, 989-998.	3.7	45
56	MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex. Journal of Cell Science, 2014, 127, 4645-57.	1.2	70

#	ARTICLE	IF	Citations
57	Cfp1 is required for gene expression-dependent H3K4 trimethylation and H3K9 acetylation in embryonic stem cells. Genome Biology, 2014, 15, 451.	3.8	77
58	Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1361-1366.	3.3	225
59	Psip1/Ledgf p75 restrains <i>Hox</i> gene expression by recruiting both trithorax and polycomb group proteins. Nucleic Acids Research, 2014, 42, 9021-9032.	6.5	26
61	The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification. Nucleic Acids Research, 2014, 42, 6901-6920.	6.5	47
62	Histones and Their Modifications in Ovarian Cancer ââ,¬â€œ Drivers of Disease and Therapeutic Targets. Frontiers in Oncology, 2014, 4, 144.	1.3	46
63	Chromatin modification by the RNA Polymerase II elongation complex. Transcription, 2014, 5, e988093.	1.7	43
64	Nucleosomal packaging of eukaryotic DNA and regulation of transcription. Biopolymers and Cell, 2014, 30, 413-425.	0.1	1
65	Epigenetic modifications in prostate cancer. Epigenomics, 2014, 6, 415-426.	1.0	43
66	Systems Analysis of Chromatin-Related Protein Complexes in Cancer., 2014,,.		0
67	Erk1/2 Activity Promotes Chromatin Features and RNAPII Phosphorylation at Developmental Promoters in Mouse ESCs. Cell, 2014, 156, 678-690.	13.5	144
68	Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1362-1372.	0.9	430
69	The impact of chromatin dynamics on plant light responses and circadian clock function. Journal of Experimental Botany, 2014, 65, 2895-2913.	2.4	58
70	A Novel Microscopy-Based High-Throughput Screening Method to Identify Proteins That Regulate Global Histone Modification Levels. Journal of Biomolecular Screening, 2014, 19, 287-296.	2.6	5
71	Enhancer Malfunction in Cancer. Molecular Cell, 2014, 53, 859-866.	4.5	156
72	Reciprocal regulatory links between cotranscriptional splicing and chromatin. Seminars in Cell and Developmental Biology, 2014, 32, 2-10.	2.3	27
73	A New Bump in the Epigenetic Landscape. Molecular Cell, 2014, 53, 857-858.	4.5	5
74	Enhancer biology and enhanceropathies. Nature Structural and Molecular Biology, 2014, 21, 210-219.	3.6	259
75	An unexpected journey: Lysine methylation across the proteome. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1395-1403.	0.9	83

#	Article	IF	CITATIONS
76	Mechanisms of epigenetic memory. Trends in Genetics, 2014, 30, 230-236.	2.9	207
77	MLL3 Is a Haploinsufficient 7q Tumor Suppressor in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 652-665.	7.7	274
78	Histone target selection within chromatin: an exemplary case of teamwork. Genes and Development, 2014, 28, 1029-1041.	2.7	70
79	Challenges and opportunities in targeting the menin–MLL interaction. Future Medicinal Chemistry, 2014, 6, 447-462.	1.1	63
80	The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis. Cell Reports, 2014, 7, 1239-1247.	2.9	110
81	The genetics of cognitive epigenetics. Neuropharmacology, 2014, 80, 83-94.	2.0	78
82	Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation. Genes and Development, 2014, 28, 115-120.	2.7	46
83	Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nature Genetics, 2014, 46, 1311-1320.	9.4	572
84	Poised chromatin in the mammalian germ line. Development (Cambridge), 2014, 141, 3619-3626.	1.2	70
85	Epigenetics in Intellectual Disability. , 2014, , 369-393.		1
86	Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science, 2014, 345, 1065-1070.	6.0	163
87	Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130514.	1.8	113
88	Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex. Cell Reports, 2014, 8, 449-459.	2.9	66
89	H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional Consistency. Cell, 2014, 158, 673-688.	13.5	404
90	ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes?. Current Opinion in Plant Biology, 2014, 21, 75-82.	3.5	63
91	hSETD1A Regulates Wnt Target Genes and Controls Tumor Growth of Colorectal Cancer Cells. Cancer Research, 2014, 74, 775-786.	0.4	63
92	Programmable on-chip DNA compartments as artificial cells. Science, 2014, 345, 829-832.	6.0	237
93	Sequential histone-modifying activities determine the robustness of transdifferentiation. Science, 2014, 345, 826-829.	6.0	69

#	Article	IF	CITATIONS
94	Transcriptional Regulation by Trithorax-Group Proteins. Cold Spring Harbor Perspectives in Biology, 2014, 6, a019349-a019349.	2.3	103
95	Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics and Chromatin, 2014, 7, 6.	1.8	77
96	C/EBPα: critical at the origin of leukemic transformation. Journal of Experimental Medicine, 2014, 211, 1-4.	4.2	27
97	Mll2 Controls Cardiac Lineage Differentiation of Mouse Embryonic Stem Cells by Promoting H3K4me3 Deposition at Cardiac-Specific Genes. Stem Cell Reviews and Reports, 2014, 10, 643-652.	5. 6	17
98	SPR-5 and MET-2 function cooperatively to reestablish an epigenetic ground state during passage through the germ line. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9509-9514.	3.3	43
99	Histone-Mediated Transgenerational Epigenetics. , 2014, , 87-103.		1
100	eQTL Mapping of Transposon Silencing Reveals a Position-Dependent Stable Escape from Epigenetic Silencing and Transposition of <i>AtMu1</i> in the <i>Arabidopsis</i> Lineage. Plant Cell, 2014, 26, 3261-3271.	3.1	12
101	Feedback Control of Set1 Protein Levels Is Important for Proper H3K4 Methylation Patterns. Cell Reports, 2014, 6, 961-972.	2.9	42
102	Hitting the †mark†: Interpreting lysine methylation in the context of active transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1353-1361.	0.9	74
103	A Role for WDR5 in Integrating Threonine 11 Phosphorylation to Lysine 4 Methylation on Histone H3 during Androgen Signaling and in Prostate Cancer. Molecular Cell, 2014, 54, 613-625.	4.5	121
104	Structural analysis of the KANSL1/WDR5/KANSL2 complex reveals that WDR5 is required for efficient assembly and chromatin targeting of the NSL complex. Genes and Development, 2014, 28, 929-942.	2.7	88
105	The SUMO-Specific Isopeptidase SENP3 Regulates MLL1/MLL2 Methyltransferase Complexes and Controls Osteogenic Differentiation. Molecular Cell, 2014, 55, 47-58.	4.5	58
106	Sensing cellular states—signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell and Tissue Research, 2014, 356, 477-493.	1.5	13
107	Examining the impact of gene variants on histone lysine methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1463-1476.	0.9	29
108	Krebs cycle intermediates regulate DNA and histone methylation: Epigenetic impact on the aging process. Ageing Research Reviews, 2014, 16, 45-65.	5.0	95
109	Loss-of-Function Variants in Schizophrenia Risk and SETD1A as a Candidate Susceptibility Gene. Neuron, 2014, 82, 773-780.	3.8	174
110	The DPY30 subunit in SET1/MLL complexes regulates the proliferation and differentiation of hematopoietic progenitor cells. Blood, 2014, 124, 2025-2033.	0.6	51
111	Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood, 2015, 126, 2491-2501.	0.6	180

#	Article	IF	CITATIONS
112	Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Reports, 2015, 16, 1609-1619.	2.0	196
113	CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Scientific Reports, 2015, 5, 16791.	1.6	24
114	Histone <scp>H3K4</scp> methylation regulates hyphal growth, secondary metabolism and multiple stress responses in <scp><i>F</i></scp> <i>usarium graminearum</i> . Environmental Microbiology, 2015, 17, 4615-4630.	1.8	93
115	Evolving Catalytic Properties of the MLL Family SET Domain. Structure, 2015, 23, 1921-1933.	1.6	67
116	Histone Methylation and STATâ€3 Differentially Regulate Interleukinâ€6–Induced Matrix Metalloproteinase Gene Activation in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis and Rheumatology, 2016, 68, 1111-1123.	2.9	70
117	Physical Interactions and Functional Coordination between the Core Subunits of Set1/Mll Complexes and the Reprogramming Factors. PLoS ONE, 2015, 10, e0145336.	1.1	26
118	HIV Tat controls RNA Polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells. ELife, $2015,4,$	2.8	47
119	Involvement of histone H2B monoubiquitination in the regulation of mouse preimplantation development. Journal of Reproduction and Development, 2015, 61, 179-184.	0.5	12
120	MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene, 2015, 34, 5570-5581.	2.6	63
121	Multiple levels of epigenetic control for bone biology and pathology. Bone, 2015, 81, 733-738.	1.4	18
122	Molecular epigenetic switches in neurodevelopment in health and disease. Frontiers in Behavioral Neuroscience, 2015, 9, 120.	1.0	16
123	Divergence of transcriptional landscape occurs early in B cell activation. Epigenetics and Chromatin, 2015, 8, 20.	1.8	28
124	WD Repeat-containing Protein 5 (WDR5) Localizes to the Midbody and Regulates Abscission. Journal of Biological Chemistry, 2015, 290, 8987-9001.	1.6	29
125	An Lnc RNA (GAS5)/SnoRNA-derived piRNA induces activation of TRAIL gene by site-specifically recruiting MLL/COMPASS-like complexes. Nucleic Acids Research, 2015, 43, 3712-3725.	6.5	100
126	Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1645-1652.	1.1	33
127	H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Research, 2015, 43, 4937-4949.	6.5	34
128	Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification. Nucleic Acids Research, 2015, 43, gkv837.	6.5	21
129	Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nature Communications, 2015, 6, 10195.	5.8	72

#	Article	IF	CITATIONS
130	The Emerging Role of Epigenetics in the Regulation of Female Puberty. Endocrine Development, 2016, 29, 1-16.	1.3	52
131	Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics, 2015, 7, 503-519.	1.0	143
132	<i>Setd1a</i> regulates progenitor Bâ€cellâ€toâ€precursor Bâ€cell development through histone H3 lysine 4 trimethylation and <i>lg heavyâ€chain</i> rearrangement. FASEB Journal, 2015, 29, 1505-1515.	0.2	28
133	Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 328-341.	0.9	15
134	Core promoters in transcription: old problem, new insights. Trends in Biochemical Sciences, 2015, 40, 165-171.	3.7	108
135	Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2015, 80, 23-33.	0.9	70
136	The physical size of transcription factors is key to transcriptional regulation in chromatin domains. Journal of Physics Condensed Matter, 2015, 27, 064116.	0.7	67
137	Chromatin signatures of cancer. Genes and Development, 2015, 29, 238-249.	2.7	171
138	A phosphorylation switch on RbBP5 regulates histone H3 Lys4 methylation. Genes and Development, 2015, 29, 123-128.	2.7	42
139	Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2900-2905.	3.3	106
140	Multi-layered global gene regulation in mouse embryonic stem cells. Cellular and Molecular Life Sciences, 2015, 72, 199-216.	2.4	6
141	Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnology Advances, 2015, 33, 856-872.	6.0	34
142	Cooperative Transcriptional Activation of Antimicrobial Genes by STAT and NF-ÎB Pathways by Concerted Recruitment of the Mediator Complex. Cell Reports, 2015, 12, 300-312.	2.9	58
143	Sound of silence: the properties and functions of repressive Lys methyltransferases. Nature Reviews Molecular Cell Biology, 2015, 16, 499-513.	16.1	161
144	Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biology, 2015, , 29-42.	0.3	4
145	The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genetics, 2015, 208, 178-191.	0.2	122
146	Targeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyond. Experimental Hematology, 2015, 43, 673-684.	0.2	97
147	Somatic cancer mutations in the MLL3-SET domain alter the catalytic properties of the enzyme. Clinical Epigenetics, 2015, 7, 36.	1.8	36

#	Article	IF	CITATIONS
148	PAQR3 modulates H3K4 trimethylation by spatial modulation of the regulatory subunits of COMPASS-like complexes in mammalian cells. Biochemical Journal, 2015, 467, 415-424.	1.7	9
149	Histone Methyltransferase SET1 Mediates Angiotensin Il–Induced Endothelin-1 Transcription and Cardiac Hypertrophy in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1207-1217.	1.1	47
150	Apelin protects against acute renal injury by inhibiting TGF- \hat{l}^21 . Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1278-1287.	1.8	72
151	Histone methylations in heart development, congenital and adult heart diseases. Epigenomics, 2015, 7, 321-330.	1.0	61
152	Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Reports, 2015, 16, 803-812.	2.0	69
153	Establishing pluripotency in early development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 626-636.	0.9	44
154	Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method. Molecular and Cellular Proteomics, 2015, 14, 1148-1158.	2.5	82
155	A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2015, 82, 48-58.	0.9	95
156	Neuronal Kmt2a/Mll1 Histone Methyltransferase Is Essential for Prefrontal Synaptic Plasticity and Working Memory. Journal of Neuroscience, 2015, 35, 5097-5108.	1.7	126
157	Serine and SAM Responsive Complex SESAME Regulates Histone Modification Crosstalk by Sensing Cellular Metabolism. Molecular Cell, 2015, 60, 408-421.	4.5	136
158	Differential genetic interactions of yeast stress response <scp>MAPK</scp> pathways. Molecular Systems Biology, 2015, 11, 800.	3.2	47
159	PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell, 2015, 162, 1003-1015.	13.5	196
160	Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials, 2015, 70, 12-22.	5.7	87
161	Trithorax and Polycomb group-dependent regulation: a tale of opposing activities. Development (Cambridge), 2015, 142, 2876-2887.	1.2	131
162	Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. Journal of Biological Chemistry, 2015, 290, 28329-28342.	1.6	68
163	Interaction of the Jhd2 Histone H3 Lys-4 Demethylase with Chromatin Is Controlled by Histone H2A Surfaces and Restricted by H2B Ubiquitination. Journal of Biological Chemistry, 2015, 290, 28760-28777.	1.6	10
164	s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways. Cell Metabolism, 2015, 22, 633-645.	7.2	105
165	Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nature Medicine, 2015, 21, 1190-1198.	15.2	372

#	Article	IF	CITATIONS
166	The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Molecular and Cellular Biology, 2015, 35, 3714-3725.	1.1	10
167	Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nature Reviews Molecular Cell Biology, 2015, 16, 593-610.	16.1	515
168	Mutant p53 and chromatin regulation. Nature, 2015, 525, 199-200.	13.7	26
169	Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature, 2015, 525, 206-211.	13.7	386
170	Jmjd3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity. Developmental Cell, 2015, 35, 568-583.	3.1	73
171	Polycomb and Trithorax factors in transcriptional and epigenetic regulation. , 2015, , 63-94.		2
172	Epigenetic gene regulation and stem cell function. , 2015, , 149-181.		0
173	Genetically altered cancer epigenome. , 2015, , 265-289.		1
174	MKL1 is an epigenetic modulator of TGF- \hat{l}^2 induced fibrogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1219-1228.	0.9	49
175	SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes. Nature Communications, 2015, 6, 8257.	5.8	47
176	Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Molecular Cell, 2015, 60, 460-474.	4.5	80
177	Environmental epigenetic inheritance through gametes and implications for human reproduction. Human Reproduction Update, 2015, 21, 194-208.	5.2	128
178	Epigenetic regulation of adult stem cell function. FEBS Journal, 2015, 282, 1589-1604.	2.2	28
179	Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. Journal of Hepatology, 2015, 62, 165-174.	1.8	69
180	Histone Methyltransferase hSETD1A is a Novel Regulator of Metastasis in Breast Cancer. Molecular Cancer Research, 2015, 13, 461-469.	1.5	53
181	O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Letters, 2015, 356, 244-250.	3.2	122
182	Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene, 2015, 34, 2461-2470.	2.6	22
183	Epigenetic regulation of female puberty. Frontiers in Neuroendocrinology, 2015, 36, 90-107.	2.5	108

#	Article	IF	CITATIONS
184	Role of RbBP5 and H3K4me3 in the vicinity of Snail transcription start site during epithelial-mesenchymal transition in prostate cancer cell. Oncotarget, 2016, 7, 65553-65567.	0.8	17
185	Inhibition of MLL1 histone methyltransferase brings the developmental clock back to naÃ-ve pluripotency. Stem Cell Investigation, 2016, 3, 58-58.	1.3	3
186	Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget, 2016, 7, 40594-40620.	0.8	49
188	Linking Core Promoter Classes to Circadian Transcription. PLoS Genetics, 2016, 12, e1006231.	1.5	7
189	Impacts of Histone Lysine Methylation onÂChromatin., 2016,, 25-53.		0
190	Aberrant DNA methylation of acute myeloid leukemia and colorectal cancer in a Chinese pedigree with a MLL3 germline mutation. Tumor Biology, 2016, 37, 12609-12618.	0.8	3
191	Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals. Molecular Cell, 2016, 63, 167-178.	4.5	424
192	Divergent transcription and epigenetic directionality of human promoters. FEBS Journal, 2016, 283, 4214-4222.	2.2	22
193	Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates <i>MCL1</i> Preâ€mRNA Splicing. Journal of Cellular Physiology, 2016, 231, 2196-2204.	2.0	13
194	G9a and ZNF644 Physically Associate to Suppress Progenitor Gene Expression during Neurogenesis. Stem Cell Reports, 2016, 7, 454-470.	2.3	24
195	Polycomb PRC2 complex mediates epigenetic silencing of a critical osteogenic master regulator in the hippocampus. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1043-1055.	0.9	15
196	Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes and Development, 2016, 30, 1187-1197.	2.7	21
197	The molecular mechanics of mixed lineage leukemia. Oncogene, 2016, 35, 5215-5223.	2.6	68
198	Disruption of Methionine Metabolism in <i>Drosophila melanogaster</i> lmpacts Histone Methylation and Results in Loss of Viability. G3: Genes, Genomes, Genetics, 2016, 6, 121-132.	0.8	19
199	Structure-based design and synthesis of small molecular inhibitors disturbing the interaction of MLL1-WDR5. European Journal of Medicinal Chemistry, 2016, 118, 1-8.	2.6	38
200	Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Research, 2016, 44, gkw327.	6.5	39
201	Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood, 2016, 128, 1101-1111.	0.6	115
202	Efficient differentiation of murine embryonic stem cells requires the binding of CXXC finger protein 1 to DNA or methylated histone H3-Lys4. Gene, 2016, 594, 1-9.	1.0	24

#	Article	IF	Citations
203	Polycomb and trithorax opposition in development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 659-688.	5.9	37
204	A New Chromatin–Cytoskeleton Link in Cancer. Molecular Cancer Research, 2016, 14, 1173-1175.	1.5	3
205	Tug of war: adding and removing histone lysine methylation in Arabidopsis. Current Opinion in Plant Biology, 2016, 34, 41-53.	3. 5	121
206	Preparation, Biochemical Analysis, and Structure Determination of SET Domain Histone Methyltransferases. Methods in Enzymology, 2016, 573, 209-240.	0.4	5
207	Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, 2016, , .	0.2	2
208	Epigenetics, Enhancers, and Cancer. Energy Balance and Cancer, 2016, , 29-53.	0.2	1
209	Knockdown of Histone Methyltransferase hSETD1A Inhibits Progression, Migration, and Invasion in Human Hepatocellular Carcinoma. Oncology Research, 2016, 24, 239-245.	0.6	3
210	Epigenetic control of the tumor microenvironment. Epigenomics, 2016, 8, 1671-1687.	1.0	66
211	Chromatin Modifications in DNA Repair and Cancer., 2016,, 487-509.		0
212	Epigenetics of hematopoiesis and hematological malignancies. Genes and Development, 2016, 30, 2021-2041.	2.7	125
213	Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation. Cell Reports, 2016, 16, 3146-3156.	2.9	48
214	Oneâ€carbon metabolism and epigenetics: understanding the specificity. Annals of the New York Academy of Sciences, 2016, 1363, 91-98.	1.8	289
215	Enhancer deregulation in cancer and other diseases. BioEssays, 2016, 38, 1003-1015.	1.2	79
216	Undercover: gene control by metabolites and metabolic enzymes. Genes and Development, 2016, 30, 2345-2369.	2.7	192
217	The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Scientific Reports, 2016, 6, 25901.	1.6	35
219	Dpy30 is critical for maintaining the identity and function of adult hematopoietic stem cells. Journal of Experimental Medicine, 2016, 213, 2349-2364.	4.2	48
220	MLL3/MLL4/COMPASS Family on Epigenetic Regulation of Enhancer Function and Cancer. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026427.	2.9	122
221	An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS. Molecular Cell, 2016, 63, 318-328.	4.5	60

#	Article	IF	CITATIONS
222	Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks. Current Topics in Developmental Biology, 2016, 118, 205-244.	1.0	19
223	Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics, 2016, 204, 1447-1460.	1.2	7
224	Nascent Connections: R-Loops and Chromatin Patterning. Trends in Genetics, 2016, 32, 828-838.	2.9	176
225	The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer. Human Molecular Genetics, 2016, 25, ddw362.	1.4	26
226	A hitâ€andâ€run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 2016, 35, 162-175.	3.5	299
228	Computational inference of a genomic pluripotency signature in human and mouse stem cells. Biology Direct, 2016, 11, 47.	1.9	5
229	H3K4 Methyltransferase Set1a Is A Key Oct4 Coactivator Essential for Generation of Oct4 Positive Inner Cell Mass. Stem Cells, 2016, 34, 565-580.	1.4	49
230	Diversity and Divergence of Dinoflagellate Histone Proteins. G3: Genes, Genomes, Genetics, 2016, 6, 397-422.	0.8	38
231	Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2016, 76, 4861-4871.	0.4	72
232	KAT8 Regulates Androgen Signaling in Prostate Cancer Cells. Molecular Endocrinology, 2016, 30, 925-936.	3.7	24
233	Epigenetic balance of gene expression by Polycomb and COMPASS families. Science, 2016, 352, aad9780.	6.0	407
234	Conservation and divergence of the histone code in nucleomorphs. Biology Direct, 2016, 11, 18.	1.9	12
235	Application of recombinant TAF3 PHD domain instead of anti-H3K4me3 antibody. Epigenetics and Chromatin, 2016, 9, 11.	1.8	18
236	Chromatin Regulators in Pancreas Development and Diabetes. Trends in Endocrinology and Metabolism, 2016, 27, 142-152.	3.1	24
237	Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C). Journal of Biological Chemistry, 2016, 291, 6060-6070.	1.6	28
238	Epigenetic Regulation. Advances in Experimental Medicine and Biology, 2016, 879, 1-25.	0.8	29
239	Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Molecular and Cellular Biology, 2016, 36, 615-627.	1.1	53
240	The Double-Strand Break Landscape of Meiotic Chromosomes Is Shaped by the Paf1 Transcription Elongation Complex in <i>Saccharomyces cerevisiae</i>). Genetics, 2016, 202, 497-512.	1.2	10

#	Article	IF	Citations
241	The arginine methyltransferase PRMT5 regulates CIITA-dependent MHC II transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 687-696.	0.9	17
242	SETD1A induced miRNA network suppresses the p53 gene expression module. Cell Cycle, 2016, 15, 487-488.	1.3	4
243	SON and Its Alternatively Spliced Isoforms Control MLL Complex-Mediated H3K4me3 and Transcription of Leukemia-Associated Genes. Molecular Cell, 2016, 61, 859-873.	4.5	41
244	8. Diffuse large B-cell lymphoma. , 2016, , 139-170.		0
245	Histone Modifications in Ageing and Lifespan Regulation. Current Molecular Biology Reports, 2016, 2, 26-35.	0.8	30
246	UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes and Development, 2016, 30, 508-521.	2.7	104
247	KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development (Cambridge), 2016, 143, 810-821.	1.2	100
248	Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-Î ² signaling. International Journal of Biochemistry and Cell Biology, 2016, 71, 35-43.	1.2	40
249	Design of a fluorescent ligand targeting the S-adenosylmethionine binding site of the histone methyltransferase MLL1. Organic and Biomolecular Chemistry, 2016, 14, 631-638.	1.5	12
250	Navigating yeast genome maintenance with functional genomics. Briefings in Functional Genomics, 2016, 15, 119-129.	1.3	5
251	Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochemistry and Cell Biology, 2016, 94, 1-11.	0.9	37
252	Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma, 2017, 254, 3-16.	1.0	234
253	Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Molecular Cell, 2017, 65, 460-475.e6.	4.5	81
254	<scp>MKL</scp> 1 is an epigenetic mediator of <scp>TNF</scp> â€Î±â€induced proinflammatory transcription in macrophages by interacting with <scp>ASH</scp> 2. FEBS Letters, 2017, 591, 934-945.	1.3	20
255	Diverse roles of WDR5-RbBP5-ASH2L-DPY30 (WRAD) complex in the functions of the SET1 histone methyltransferase family. Journal of Biosciences, 2017, 42, 155-159.	0.5	23
256	A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2017, 7, 343-353.	0.8	6
257	Targeting human SET1/MLL family of proteins. Protein Science, 2017, 26, 662-676.	3.1	49
258	Acidic domains differentially read histone H3 lysine 4 methylation status and are widely present in chromatin-associated proteins. Science China Life Sciences, 2017, 60, 138-151.	2.3	6

#	Article	IF	CITATIONS
259	RNA Binding by Histone Methyltransferases Set1 and Set2. Molecular and Cellular Biology, 2017, 37, .	1.1	31
260	TWIST1-WDR5- <i>Hottip</i> Regulates <i>Hoxa9</i> Chromatin to Facilitate Prostate Cancer Metastasis. Cancer Research, 2017, 77, 3181-3193.	0.4	102
261	The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes. Nucleic Acids Research, 2017, 45, 7180-7190.	6. 5	35
262	Writing, erasing and reading histone lysine methylations. Experimental and Molecular Medicine, 2017, 49, e324-e324.	3.2	800
263	Modulation of gene expression dynamics by co-transcriptional histone methylations. Experimental and Molecular Medicine, 2017, 49, e326-e326.	3.2	57
264	The histone 3 lysine 4 methyltransferase Setd1b is a maternal effect gene required for the oogenic gene expression program. Development (Cambridge), 2017, 144, 2606-2617.	1.2	44
265	MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis. Developmental Cell, 2017, 41, 605-622.e7.	3.1	53
267	SET DOMAIN GROUP701 encodes a H3K4â€methytransferase and regulates multiple key processes of rice plant development. New Phytologist, 2017, 215, 609-623.	3.5	44
268	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
269	PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355, 1324-1330.	6.0	217
270	Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature, 2017, 544, 185-190.	13.7	245
271	WDR5 in porcine preimplantation embryos: expression, regulation of epigenetic modifications and requirement for early developmentâ€. Biology of Reproduction, 2017, 96, 758-771.	1.2	18
272	PI3K/AKT-mediated upregulation of WDR5 promotes colorectal cancer metastasis by directly targeting ZNF407. Cell Death and Disease, 2017, 8, e2686-e2686.	2.7	82
273	Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. Annual Review of Cancer Biology, 2017, 1, 425-446.	2.3	36
274	Is H3K4me3 instructive for transcription activation?. BioEssays, 2017, 39, 1-12.	1.2	373
275	Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis, 2017, 55, e23009.	0.8	8
276	PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis. Molecular Biology of the Cell, 2017, 28, 488-499.	0.9	90
277	Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell, 2017, 168, 59-72.e13.	13.5	99

#	Article	IF	CITATIONS
278	The Epigenetic Paradox of Pluripotent ES Cells. Journal of Molecular Biology, 2017, 429, 1476-1503.	2.0	35
279	A cryptic Tudor domain links BRWD2/PHIP to COMPASS-mediated histone H3K4 methylation. Genes and Development, 2017, 31, 2003-2014.	2.7	54
280	Histone H3K4 monomethylation catalyzed by Trr and mammalian COMPASS-like proteins at enhancers is dispensable for development and viability. Nature Genetics, 2017, 49, 1647-1653.	9.4	168
281	Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications. Canadian Journal of Cardiology, 2017, 33, 1543-1555.	0.8	64
282	Clinical impact of <scp>KMT</scp> 2C and <scp>SPRY</scp> 4 expression levels in intensively treated younger adult acute myeloid leukemia patients. European Journal of Haematology, 2017, 99, 544-552.	1.1	5
283	Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes and Development, 2017, 31, 1732-1737.	2.7	68
284	Drug Discovery and Chemical Biology of Cancer Epigenetics. Cell Chemical Biology, 2017, 24, 1120-1147.	2.5	47
285	UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition. Cell Reports, 2017, 21, 628-640.	2.9	106
286	Striking a balance: regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 12301-12310.	6.5	19
287	Transcription-associated events affecting genomic integrity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160288.	1.8	22
288	Regulation of Inflammatory Signaling in Health and Disease. Advances in Experimental Medicine and Biology, 2017, , .	0.8	7
289	Emerging Roles for Epigenetic Programming in the Control of Inflammatory Signaling Integration in Heath and Disease. Advances in Experimental Medicine and Biology, 2017, 1024, 63-90.	0.8	7
290	The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocrine-Related Cancer, 2017, 24, T119-T134.	1.6	71
291	Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Molecular and Cellular Biology, 2017, 37, .	1.1	42
292	The SET1 Complex Selects Actively Transcribed Target Genes via Multivalent Interaction with CpG Island Chromatin. Cell Reports, 2017, 20, 2313-2327.	2.9	86
293	Coactivators and general transcription factors have two distinct dynamic populations dependent on Atranscription. EMBO Journal, 2017, 36, 2710-2725.	3.5	19
294	MKL1 defines the H3K4Me3 landscape for NF- \hat{l}^{P} B dependent inflammatory response. Scientific Reports, 2017, 7, 191.	1.6	53
295	KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions. Cell Reports, 2017, 20, 538-548.	2.9	77

#	Article	IF	CITATIONS
296	The C. elegans SET-2/SET1 histone H3 Lys4 (H3K4) methyltransferase preserves genome stability in the germline. DNA Repair, 2017, 57, 139-150.	1.3	49
297	Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment. Molecular and Cellular Biology, 2017, 37, .	1.1	31
298	Polycomb and Trithorax Group Genes in <i>Drosophila</i> . Genetics, 2017, 206, 1699-1725.	1.2	173
299	The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics, 2017, 18, 643-658.	7.7	414
300	TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Current Biology, 2017, 27, 3579-3590.e6.	1.8	63
301	A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes and Development, 2017, 31, 2056-2066.	2.7	55
302	iTRAQ-Based Proteomic Analysis of Neonatal Kidney from Offspring of Protein Restricted Rats Reveals Abnormalities in Intraflagellar Transport Proteins. Cellular Physiology and Biochemistry, 2017, 44, 185-199.	1.1	32
303	Histone Marks in the †Driver†Seat†: Functional Roles in Steering the Transcription Cycle. Trends in Biochemical Sciences, 2017, 42, 977-989.	3.7	132
304	Determinants of Histone H3K4 Methylation Patterns. Molecular Cell, 2017, 68, 773-785.e6.	4.5	158
305	Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Science Advances, 2017, 3, e1700191.	4.7	70
306	Structural Insight into Recognition of Methylated Histone H3K4 by Set3. Journal of Molecular Biology, 2017, 429, 2066-2074.	2.0	9
307	The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory. Journal of Molecular Biology, 2017, 429, 2011-2029.	2.0	28
308	Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes and Development, 2017, 31, 2222-2234.	2.7	68
309	DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMC Genomics, 2017, 18, 964.	1.2	80
310	Pharmacologic Targeting of Chromatin Modulators As Therapeutics of Acute Myeloid Leukemia. Frontiers in Oncology, 2017, 7, 241.	1.3	21
311	Primetime for Learning Genes. Genes, 2017, 8, 69.	1.0	10
312	MYC Modulation around the CDK2/p27/SKP2 Axis. Genes, 2017, 8, 174.	1.0	58
313	Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis. International Journal of Molecular Sciences, 2017, 18, 905.	1.8	82

#	Article	IF	Citations
314	Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant–Pathogenic Fusarium Species. Frontiers in Microbiology, 2016, 07, 2144.	1.5	42
315	Regulation of Cellular Identity by Polycomb and Trithorax Proteins. , 2017, , 165-189.		1
316	Hypothalamic epigenetics driving female puberty. Journal of Neuroendocrinology, 2018, 30, e12589.	1.2	41
317	Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes and Development, 2018, 32, 202-223.	2.7	171
318	Meiotic Recombination: Mixing It Up in Plants. Annual Review of Plant Biology, 2018, 69, 577-609.	8.6	169
319	Genetics of diffuse large B-cell lymphoma. Blood, 2018, 131, 2307-2319.	0.6	186
320	Interrogating the Functions of PRDM9 Domains in Meiosis. Genetics, 2018, 209, 475-487.	1.2	23
321	Feedback regulation by antagonistic epigenetic factors potentially maintains homeostasis in Drosophila. Journal of Cell Science, 2018, 131, .	1.2	1
322	Epigenetic and non-epigenetic functions of the RYBP protein in development and disease. Mechanisms of Ageing and Development, 2018, 174, 111-120.	2.2	7
323	Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types. Journal of Molecular Endocrinology, 2018, 61, R13-R24.	1.1	16
324	An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Science Advances, 2018, 4, eaap8747.	4.7	55
325	The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. Plant Physiology, 2018, 176, 2761-2771.	2.3	43
326	PKA â€binding domain of AKAP 8 is essential for direct interaction with DPY 30 protein. FEBS Journal, 2018, 285, 947-964.	2.2	11
327	De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. Human Genetics, 2018, 137, 95-104.	1.8	60
328	Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nature Communications, 2018, 9, 57.	5.8	58
329	MLL5 suppresses antiviral innate immune response by facilitating STUB1-mediated RIG-I degradation. Nature Communications, 2018, 9, 1243.	5.8	36
330	Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene, 2018, 660, 68-79.	1.0	20
331	Structural and functional analysis of the DOT1L–AF10 complex reveals mechanistic insights into MLL-AF10-associated leukemogenesis. Genes and Development, 2018, 32, 341-346.	2.7	17

#	Article	IF	CITATIONS
332	Upon Infection, Cellular WD Repeat-Containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. Journal of Virology, 2018, 92, .	1.5	23
333	Expression of p27Kip1 and p18Ink4c in human multiple endocrine neoplasia type 1-related pancreatic neuroendocrine tumors. Journal of Endocrinological Investigation, 2018, 41, 655-661.	1.8	11
334	RhoJ promotes hypoxia induced endothelialâ€toâ€mesenchymal transition by activating WDR5 expression. Journal of Cellular Biochemistry, 2018, 119, 3384-3393.	1.2	19
335	YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	1
336	Induction of a Long Noncoding RNA Transcript, NR_045064, Promotes Defense Gene Transcription and Facilitates Intestinal Epithelial Cell Responses against <i>Cryptosporidium</i> Infection. Journal of Immunology, 2018, 201, 3630-3640.	0.4	22
337	Architecture and subunit arrangement of the complete Saccharomyces cerevisiae COMPASS complex. Scientific Reports, 2018, 8, 17405.	1.6	14
338	Functions and mechanisms of epigenetic inheritance in animals. Nature Reviews Molecular Cell Biology, 2018, 19, 774-790.	16.1	335
339	Genetic and Epigenetic Deregulation of Enhancers in Cancer. , 2018, , .		0
340	Molecular Programming of Perivascular Stem Cell Precursors. Stem Cells, 2018, 36, 1890-1904.	1.4	25
342	Stress-responsive and metabolic gene regulation are altered in low S-adenosylmethionine. PLoS Genetics, 2018, 14, e1007812.	1.5	24
343	Structural Analysis of the Ash2L/Dpy-30 Complex Reveals a Heterogeneity in H3K4 Methylation. Structure, 2018, 26, 1594-1603.e4.	1.6	26
344	Histone Modifications in Aging: The Underlying Mechanisms and Implications. Current Stem Cell Research and Therapy, 2018, 13, 125-135.	0.6	48
345	A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Reports, 2018, 19, .	2.0	11
346	Role of transcription complexes in the formation of the basal methylation pattern in early development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10387-10391.	3.3	23
347	SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nature Communications, 2018, 9, 4194.	5.8	84
348	Crosstalk among Set1 complex subunits involved in H2B ubiquitylation-dependent H3K4 methylation. Nucleic Acids Research, 2018, 46, 11129-11143.	6.5	19
349	DPY30 is required for the enhanced proliferation, motility and epithelial-mesenchymal transition of epithelial ovarian cancer cells. International Journal of Molecular Medicine, 2018, 42, 3065-3072.	1.8	12
350	Aberrant expression of SETD1A promotes survival and migration of estrogen receptor αâ€positive breast cancer cells. International Journal of Cancer, 2018, 143, 2871-2883.	2.3	32

#	Article	IF	CITATIONS
351	Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nature Communications, 2018, 9, 3633.	5.8	29
352	Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiological Reviews, 2018, 98, 2453-2475.	13.1	76
353	Metabolic regulation of chromatin modifications and gene expression. Journal of Cell Biology, 2018, 217, 2247-2259.	2.3	163
354	Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nature Medicine, 2018, 24, 758-769.	15.2	125
355	MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Molecular Cell, 2018, 70, 825-841.e6.	4.5	123
356	Heterochromatin Modulation and PCG Control of Gene Expression Mediated by Noncoding RNA in Cancer. , 2018, , 359-372.		0
357	The histone methyltransferase SETD1A regulates thrombomodulin transcription in vascular endothelial cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 752-761.	0.9	48
358	The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice. ELife, 2018, 7, .	2.8	34
359	Dissecting KMT2D missense mutations in Kabuki syndrome patients. Human Molecular Genetics, 2018, 27, 3651-3668.	1.4	49
360	Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nature Communications, 2018, 9, 2583.	5.8	35
361	The Role of Chromosome Deletions in Human Cancers. Advances in Experimental Medicine and Biology, 2018, 1044, 135-148.	0.8	10
363	Myocardin-related transcription factor A (MRTF-A) mediates doxorubicin-induced PERP transcription in colon cancer cells. Biochemical and Biophysical Research Communications, 2018, 503, 1732-1739.	1.0	7
364	Nuclear dynamics of the Set1C subunit Spp1 prepares meiotic recombination sites for break formation. Journal of Cell Biology, 2018, 217, 3398-3415.	2.3	16
365	Cross-talk between Lysine-Modifying Enzymes Controls Site-Specific DNA Amplifications. Cell, 2018, 174, 803-817.e16.	13.5	34
366	WDR5 supports colon cancer cells by promoting methylation of H3K4 and suppressing DNA damage. BMC Cancer, 2018, 18, 673.	1,1	30
367	Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope. Frontiers in Endocrinology, 2018, 9, 58.	1.5	20
368	Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells, 2018, 7, 17.	1.8	79
369	Born to run: control of transcription elongation by RNA polymerase II. Nature Reviews Molecular Cell Biology, 2018, 19, 464-478.	16.1	304

#	Article	IF	CITATIONS
370	Enhancer Logic and Mechanics in Development and Disease. Trends in Cell Biology, 2018, 28, 608-630.	3.6	146
371	CFP1 coordinates histone H3 lysine-4 trimethylation and meiotic cell cycle progression in mouse oocytes. Nature Communications, 2018, 9, 3477.	5.8	51
372	H3K4me3 and Wdr82 are associated with tumor progression and a favorable prognosis in human colorectal cancer. Oncology Letters, 2018, 16, 2125-2134.	0.8	27
373	Crystal Structure of the COMPASS H3K4 Methyltransferase Catalytic Module. Cell, 2018, 174, 1106-1116.e9.	13.5	75
374	Structure and Conformational Dynamics of a COMPASS Histone H3K4 Methyltransferase Complex. Cell, 2018, 174, 1117-1126.e12.	13.5	84
375	Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genetics, 2018, 14, e1007245.	1.5	24
376	TrxG Complex Catalytic and Non-catalytic Activity Play Distinct Roles in Pancreas Progenitor Specification and Differentiation. Cell Reports, 2019, 28, 1830-1844.e6.	2.9	10
377	Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis. Journal of Molecular Medicine, 2019, 97, 1521-1533.	1.7	44
378	The COMPASS Family Protein ASH2L Mediates Corticogenesis via Transcriptional Regulation of Wnt Signaling. Cell Reports, 2019, 28, 698-711.e5.	2.9	25
379	The Unexpected Noncatalytic Roles of Histone Modifiers in Development and Disease. Trends in Genetics, 2019, 35, 645-657.	2.9	29
380	Gene redundancy and gene compensation: An updated view. Journal of Genetics and Genomics, 2019, 46, 329-333.	1.7	44
381	SETD1A protects from senescence through regulation of the mitotic gene expression program. Nature Communications, 2019, 10, 2854.	5.8	37
382	Functional diversity of inhibitors tackling the differentiation blockage of MLL-rearranged leukemia. Journal of Hematology and Oncology, 2019, 12, 66.	6.9	22
383	H3K4me2 functions as a repressive epigenetic mark in plants. Epigenetics and Chromatin, 2019, 12, 40.	1.8	51
384	Recapitulation and Reversal of Schizophrenia-Related Phenotypes in Setd1a-Deficient Mice. Neuron, 2019, 104, 471-487.e12.	3.8	79
385	Epigenetic synthetic lethality approaches in cancer therapy. Clinical Epigenetics, 2019, 11, 136.	1.8	26
386	Physical and functional interaction between SET1/COMPASS complex component CFP-1 and a Sin3S HDAC complex in C. elegans. Nucleic Acids Research, 2019, 47, 11164-11180.	6.5	54
387	A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer & Metabolism, 2019, 7, 9.	2.4	6

#	Article	IF	CITATIONS
388	A non-canonical monovalent zinc finger stabilizes the integration of Cfp1 into the H3K4 methyltransferase complex COMPASS. Nucleic Acids Research, 2020, 48, 421-431.	6.5	6
389	GATA3 recruits UTX for gene transcriptional activation to suppress metastasis of breast cancer. Cell Death and Disease, 2019, 10, 832.	2.7	30
390	Structural Basis of H2B Ubiquitination-Dependent H3K4 Methylation by COMPASS. Molecular Cell, 2019, 76, 712-723.e4.	4.5	80
391	Regulation of Gene Expression and Replication Initiation by Nonâ€Coding Transcription: A Model Based on Reshaping Nucleosomeâ€Depleted Regions. BioEssays, 2019, 41, 1900043.	1.2	11
392	Organization and regulation of gene transcription. Nature, 2019, 573, 45-54.	13.7	431
393	The Role of Dynamic Histone Modifications in Learning Behavior. Current Topics in Behavioral Neurosciences, 2019, 42, 127-157.	0.8	4
394	Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism. Frontiers in Microbiology, 2019, 10, 1759.	1.5	23
395	Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature, 2019, 573, 445-449.	13.7	134
396	Chromatin-Remodeled State in Lymphoma. Current Hematologic Malignancy Reports, 2019, 14, 439-450.	1.2	4
397	Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. Journal of Biomedical Science, 2019, 26, 64.	2.6	36
398	The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex. Nucleic Acids Research, 2019, 47, 10086-10103.	6.5	15
399	<p>DPY30 regulates cervical squamous cell carcinoma by mediating epithelial–mesenchymal transition (EMT)</p> . OncoTargets and Therapy, 2019, Volume 12, 7139-7147.	1.0	12
400	DNA Methylation of Enhancer Elements in Myeloid Neoplasms: Think Outside the Promoters?. Cancers, 2019, 11, 1424.	1.7	21
401	A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes, 2019, 10, 770.	1.0	3
402	The internal interaction in RBBP5 regulates assembly and activity of MLL1 methyltransferase complex. Nucleic Acids Research, 2019, 47, 10426-10438.	6.5	16
403	A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Seminars in Cancer Biology, 2019, 57, 72-78.	4.3	18
404	The lysineâ€specific methyltransferase <scp>KMT</scp> 2C/ <scp>MLL</scp> 3 regulates <scp>DNA</scp> repair components in cancer. EMBO Reports, 2019, 20, .	2.0	93
405	Class II transactivator (CIITA) mediates IFN-γ induced eNOS repression by enlisting SUV39H1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 163-172.	0.9	50

#	Article	IF	CITATIONS
406	Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biology, 2019, 20, 100.	3.8	56
407	The Roles of Hippo Signaling Transducers Yap and Taz in Chromatin Remodeling. Cells, 2019, 8, 502.	1.8	45
408	De Novo and Inherited SETD1A Variants in Early-onset Epilepsy. Neuroscience Bulletin, 2019, 35, 1045-1057.	1.5	33
409	Specific inhibition of DPY30 activity by ASH2L-derived peptides suppresses blood cancer cell growth. Experimental Cell Research, 2019, 382, 111485.	1.2	20
410	A Role for FACT in RNA Polymerase II Promoter-Proximal Pausing. Cell Reports, 2019, 27, 3770-3779.e7.	2.9	41
411	Hematopoietic stem and progenitor cell proliferation and differentiation requires the trithorax protein Ash2l. Scientific Reports, 2019, 9, 8262.	1.6	24
412	Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Molecular Microbiology, 2019, 112, 837-853.	1.2	16
413	Why are so many MLL lysine methyltransferases required for normal mammalian development?. Cellular and Molecular Life Sciences, 2019, 76, 2885-2898.	2.4	54
414	COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. Cancer Letters, 2019, 458, 56-65.	3.2	121
415	Histone Modifications., 2019,, 47-72.		6
416	Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Reports, 2019, 27, 1742-1754.e6.	2.9	34
417	Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Molecular Genetics and Metabolism, 2019, 127, 31-44.	0.5	44
418	Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian Journal of Clinical Biochemistry, 2019, 34, 123-132.	0.9	16
419	Serotonylation: A novel histone H3 marker. Signal Transduction and Targeted Therapy, 2019, 4, 15.	7.1	17
420	Epigenetic drug library screening identified an LSD1 inhibitor to target UTX-deficient cells for differentiation therapy. Signal Transduction and Targeted Therapy, 2019, 4, 11.	7.1	17
421	PRISMA: Protein Interaction Screen on Peptide Matrix Reveals Interaction Footprints and Modifications- Dependent Interactome of Intrinsically Disordered C/EBPβ. IScience, 2019, 13, 351-370.	1.9	31
422	Brahma related gene 1 (BRG1) regulates breast cancer cell migration and invasion by activating MUC1 transcription. Biochemical and Biophysical Research Communications, 2019, 511, 536-543.	1.0	11
423	An interaction between BRG1 and histone modifying enzymes mediates lipopolysaccharideâ€induced proinflammatory cytokines in vascular endothelial cells. Journal of Cellular Biochemistry, 2019, 120, 13216-13225.	1.2	25

#	Article	IF	CITATIONS
424	Molecular pathogenesis of germinal centerâ€derived B cell lymphomas. Immunological Reviews, 2019, 288, 240-261.	2.8	53
425	<scp>CFP</scp> â€1 interacts with <scp>HDAC</scp> 1/2 complexes in <i>C.Âelegans</i> development. FEBS Journal, 2019, 286, 2490-2504.	2.2	6
426	Threonine Catabolism: An Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells. , 2019, , $1585-1604$.		0
427	PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature, 2019, 568, 259-263.	13.7	344
428	PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Reports, 2019, 27, 294-306.e5.	2.9	49
429	Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Seminars in Cancer Biology, 2019, 59, 112-124.	4.3	113
430	The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology, 2019, 109, 208-217.	1.2	16
431	Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Research, 2019, 47, 3434-3449.	6.5	29
432	Transcriptional addiction in mixed lineage leukemia: new avenues for target therapies. Blood Science, 2019, 1, 50-56.	0.4	1
433	Nuclear Pore Proteins in Regulation of Chromatin State. Cells, 2019, 8, 1414.	1.8	39
434	Epigenetic modifications of histones in cancer. Genome Biology, 2019, 20, 245.	3.8	322
435	An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nature Communications, 2019, 10, 5713.	5.8	70
436	Glycolysis regulates gene expression by promoting the crosstalk between H3K4 trimethylation and H3K14 acetylation in Saccharomyces cerevisiae. Journal of Genetics and Genomics, 2019, 46, 561-574.	1.7	12
437	Functional genomic approaches to elucidate the role of enhancers during development. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 12, e1467.	6.6	19
439	Developmental ROS individualizes organismal stress resistance and lifespan. Nature, 2019, 576, 301-305.	13.7	151
440	Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development. New Phytologist, 2019, 221, 1101-1116.	3.5	53
441	Mllâ€COMPASS complexes mediate H3K4me3 enrichment and transcription of the osteoblast master gene Runx2/p57 in osteoblasts. Journal of Cellular Physiology, 2019, 234, 6244-6253.	2.0	15
442	The Role of Histone Methylation and Methyltransferases in Gene Regulation. , 2019, , 31-84.		3

#	Article	IF	CITATIONS
443	Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics and Chromatin, 2019, 12, 7.	1.8	113
444	Structural insights into trans-histone regulation of H3K4 methylation by unique histone H4 binding of MLL3/4. Nature Communications, 2019, 10, 36.	5.8	30
445	Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen <i>Heterobasidion parviporum</i> . Epigenetics, 2019, 14, 16-40.	1.3	11
446	Angiotensin II induced CSF1 transcription is mediated by a crosstalk between different epigenetic factors in vascular endothelial cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 1-11.	0.9	58
447	Global role for coactivator complexes in RNA polymerase II transcription. Transcription, 2019, 10, 29-36.	1.7	18
448	Evolution of Our Understanding of the Hyperparathyroid Syndromes: A Historical Perspective. Journal of Bone and Mineral Research, 2019, 34, 22-37.	3.1	23
449	Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood, 2019, 133, 306-318.	0.6	26
450	Autophagy in C. elegans development. Developmental Biology, 2019, 447, 103-125.	0.9	32
451	A chromatin modulator sustains self-renewal and enables differentiation of postnatal neural stem and progenitor cells. Journal of Molecular Cell Biology, 2020, 12, 4-16.	1.5	14
452	The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesisâ€related genes to facilitate <i>Botrytis cinerea</i> virulence. New Phytologist, 2020, 225, 930-947.	3.5	27
453	Epigenetic modification of H3K4 and oxidative stress are involved in MC‣Râ€induced apoptosis in testicular cells of SD rats. Environmental Toxicology, 2020, 35, 277-291.	2.1	17
454	CFP1-dependent histone H3K4 trimethylation in murine oocytes facilitates ovarian follicle recruitment and ovulation in a cell-nonautonomous manner. Cellular and Molecular Life Sciences, 2020, 77, 2997-3012.	2.4	19
455	<i>ULTRAPETALA1</i> maintains <i>Arabidopsis</i> root stem cell niche independently of <i>ARABIDOPSIS TRITHORAX1</i> New Phytologist, 2020, 225, 1261-1272.	3.5	16
456	HBx Protein Contributes to Liver Carcinogenesis by H3K4me3 Modification Through Stabilizing WD Repeat Domain 5 Protein. Hepatology, 2020, 71, 1678-1695.	3.6	42
457	Ezh2â€dependent H3K27me3 modification dynamically regulates vitamin D3â€dependent epigenetic control of CYP24A1 gene expression in osteoblastic cells. Journal of Cellular Physiology, 2020, 235, 5404-5412.	2.0	6
458	Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Developmental Cell, 2020, 52, 88-103.e18.	3.1	15
459	Endothelium-mediated contributions to fibrosis. Seminars in Cell and Developmental Biology, 2020, 101, 78-86.	2.3	50
460	Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nature Genetics, 2020, 52, 95-105.	9.4	69

#	Article	IF	CITATIONS
461	Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. Journal of Integrative Plant Biology, 2020, 62, 104-117.	4.1	90
462	Set1/COMPASS repels heterochromatin invasion at euchromatic sites by disrupting Suv39/Clr4 activity and nucleosome stability. Genes and Development, 2020, 34, 99-117.	2.7	26
463	Histone Lysine Methylation Dynamics Control < i>EGFR < /i>DNA Copy-Number Amplification. Cancer Discovery, 2020, 10, 306-325.	7.7	31
464	<i>Wide Grain 7</i> increases grain width by enhancing H3K4me3 enrichment in the <i>OsMADS1</i> promoter in rice (<i>Oryza sativa</i> L.). Plant Journal, 2020, 102, 517-528.	2.8	25
465	Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194603.	0.9	8
466	Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Research, 2020, 48, 12151-12168.	6.5	28
467	Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers, 2020, 12, 3462.	1.7	26
468	The Drosophila MLR COMPASS-like complex regulates bantam miRNA expression differentially in the context of cell fate. Developmental Biology, 2020, 468, 41-53.	0.9	2
469	Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nature Genetics, 2020, 52, 1271-1281.	9.4	209
470	A small UTX stabilization domain of Trr is conserved within mammalian MLL3-4/COMPASS and is sufficient to rescue loss of viability in null animals. Genes and Development, 2020, 34, 1493-1502.	2.7	14
471	The phenomenal epigenome in neurodevelopmental disorders. Human Molecular Genetics, 2020, 29, R42-R50.	1.4	38
472	Restoring MLL reactivates latent tumor suppression-mediated vulnerability to proteasome inhibitors. Oncogene, 2020, 39, 5888-5901.	2.6	6
473	Establishment and function of chromatin modification at enhancers. Open Biology, 2020, 10, 200255.	1.5	13
474	Function and Regulation of Histone H3 Lysine-4 Methylation During Oocyte Meiosis and Maternal-to-Zygotic Transition. Frontiers in Cell and Developmental Biology, 2020, 8, 597498.	1.8	24
475	HCF-1 promotes cell cycle progression by regulating the expression of CDC42. Cell Death and Disease, 2020, 11, 907.	2.7	6
476	<p>WDR5 Promotes Proliferation and Correlates with Poor Prognosis in Oesophageal Squamous Cell Carcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 10525-10534.	1.0	8
477	Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Theranostics, 2020, 10, 10016-10030.	4.6	21
478	LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6Chigh to Ly6Cint/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discovery, 2020, 6, 87.	3.1	18

#	Article	IF	Citations
479	Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells, 2020, 9, 2721.	1.8	13
480	High-Throughput Flow Cytometry Combined with Genetic Analysis Brings New Insights into the Understanding of Chromatin Regulation of Cellular Quiescence. International Journal of Molecular Sciences, 2020, 21, 9022.	1.8	10
481	Histone Modifications in Stem Cell Development and Their Clinical Implications. Stem Cell Reports, 2020, 15, 1196-1205.	2.3	17
482	Conversion of Germ Cells to Somatic Cell Types in C. elegans. Journal of Developmental Biology, 2020, 8, 24.	0.9	3
483	Transcriptional regulation by the KMT2 histone H3K4 methyltransferases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194545.	0.9	9
484	Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194567.	0.9	82
485	Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Molecular Psychiatry, 2021, 26, 2013-2024.	4.1	43
486	H2B ubiquitylation enhances H3K4 methylation activities of human KMT2 family complexes. Nucleic Acids Research, 2020, 48, 5442-5456.	6.5	29
487	The MLL/SET family and haematopoiesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194579.	0.9	14
488	Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nature Genetics, 2020, 52, 615-625.	9.4	76
489	Untangling the Epigenetic Imbalance in B cell Lymphoma. Current Pharmacology Reports, 2020, 6, 110-120.	1.5	1
490	The role of SETD1A and SETD1B in development and disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194578.	0.9	12
491	Novel therapeutic strategies for MLL-rearranged leukemias. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194584.	0.9	8
492	<i>Kdm6a</i> Deficiency Activates Inflammatory Pathways, Promotes M2 Macrophage Polarization, and Causes Bladder Cancer in Cooperation with <i>p53</i> Dysfunction. Clinical Cancer Research, 2020, 26, 2065-2079.	3.2	80
493	Lysine 4 of histone H3.3 is required for embryonic stem cell differentiation, histone enrichment at regulatory regions and transcription accuracy. Nature Genetics, 2020, 52, 273-282.	9.4	37
494	The Effect of Increased miR-16-1 Levels in Mouse Embryos on Epigenetic Modification, Target Gene Expression, and Developmental Processes. Reproductive Sciences, 2020, 27, 2197-2210.	1.1	2
495	An Interplay Between MRTF-A and the Histone Acetyltransferase TIP60 Mediates Hypoxia-Reoxygenation Induced iNOS Transcription in Macrophages. Frontiers in Cell and Developmental Biology, 2020, 8, 484.	1.8	23
496	Exploring the Histone Acetylation Cycle in the Protozoan Model Tetrahymena thermophila. Frontiers in Cell and Developmental Biology, 2020, 8, 509.	1.8	10

#	Article	IF	CITATIONS
497	Coordinated regulation of cellular identity–associated H3K4me3 breadth by the COMPASS family. Science Advances, 2020, 6, eaaz4764.	4.7	37
498	Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. Journal of Experimental Biology, 2020, 223, .	0.8	18
499	Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. International Journal of Molecular Sciences, 2020, 21, 4510.	1.8	12
500	Ubiquitin E3 Ligase AaBre1 Responsible for H2B Monoubiquitination Is Involved in Hyphal Growth, Conidiation and Pathogenicity in Alternaria alternata. Genes, 2020, 11, 229.	1.0	2
501	The Methyltransferase AflSet1 Is Involved in Fungal Morphogenesis, AFB1 Biosynthesis, and Virulence of Aspergillus flavus. Frontiers in Microbiology, 2020, 11, 234.	1.5	23
502	Phenotypic expansion of <i>KMT2Dâ€</i> related disorder: Beyond Kabuki syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 1053-1065.	0.7	23
503	Invited Review: Epigenetics in neurodevelopment. Neuropathology and Applied Neurobiology, 2020, 46, 6-27.	1.8	34
504	The role of histone modifications in leukemogenesis. Journal of Biosciences, 2020, 45, 1.	0.5	4
505	Epigenetic plasticity of enhancers in cancer. Transcription, 2020, 11, 26-36.	1.7	23
506	A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct fromKabuki syndrome. Genetics in Medicine, 2020, 22, 867-877.	1.1	41
507	Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. FEBS Journal, 2020, 287, 2891-2902.	2.2	51
508	<p>ASH2L-Promoted HOXC8 Gene Expression Plays a Role in Mixed Lineage Leukemia-Rearranged Acute Leukemia</p> . OncoTargets and Therapy, 2020, Volume 13, 381-387.	1.0	2
509	The Drosophila MLR COMPASS complex is essential for programming cis-regulatory information and maintaining epigenetic memory during development. Nucleic Acids Research, 2020, 48, 3476-3495.	6.5	8
510	FBXW7 Triggers Degradation of KMT2D to Favor Growth of Diffuse Large B-cell Lymphoma Cells. Cancer Research, 2020, 80, 2498-2511.	0.4	19
511	KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell, 2020, 37, 599-617.e7.	7.7	137
512	Genetic Interactions of Histone Modification Machinery Set1 and PAF1C with the Recombination Complex Rec114-Mer2-Mei4 in the Formation of Meiotic DNA Double-Strand Breaks. International Journal of Molecular Sciences, 2020, 21, 2679.	1.8	7
513	The potential underlying mechanism of the leukemia caused by <i>MLL</i> å€fusion and potential treatments. Molecular Carcinogenesis, 2020, 59, 839-851.	1.3	6
514	Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Molecular Oncology, 2020, 14, 1397-1409.	2.1	26

#	ARTICLE	IF	CITATIONS
515	A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cellular and Molecular Life Sciences, 2020, 77, 4031-4047.	2.4	7
516	The complex activities of the SET1/MLL complex core subunits in development and disease. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194560.	0.9	34
517	Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cellular and Molecular Life Sciences, 2021, 78, 1011-1027.	2.4	10
518	Targeting post-translational histone modifying enzymes in glioblastoma. , 2021, 220, 107721.		58
519	SAGA and TFIID: Friends of TBP drifting apart. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194604.	0.9	22
520	Gene repression in S. cerevisiae—looking beyond Sir-dependent gene silencing. Current Genetics, 2021, 67, 3-17.	0.8	7
521	Advances in bladder cancer biology and therapy. Nature Reviews Cancer, 2021, 21, 104-121.	12.8	320
522	UTX maintains the functional integrity of the murine hematopoietic system by globally regulating aging-associated genes. Blood, 2021, 137, 908-922.	0.6	23
523	SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics, 2021, 16, 469-487.	1.3	27
524	COMPASS and SWI/SNF complexes in development and disease. Nature Reviews Genetics, 2021, 22, 38-58.	7.7	142
525	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13
526	Preventing phenotypic plasticity in cancer to mitigate therapy resistance., 2021,, 119-160.		0
527	Follicular lymphoma dynamics. Advances in Immunology, 2021, 150, 43-103.	1.1	19
528	Acute stress drives global repression through two independent RNA polymerase II stalling events in Saccharomyces. Cell Reports, 2021, 34, 108640.	2.9	13
529	Exposure to p40 in Early Life Prevents Intestinal Inflammation in Adulthood Through Inducing a Long-Lasting Epigenetic Imprint on TGF \hat{I}^2 . Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1327-1345.	2.3	10
530	H3K4 trimethylation dynamics impact diverse developmental and environmental responses in plants. Planta, 2021, 253, 4.	1.6	13
531	Epigenetic Control of Osteogenic Lineage Commitment. Frontiers in Cell and Developmental Biology, 2020, 8, 611197.	1.8	13
532	Epigenetics in intellectual disability. , 2021, , 489-517.		0

#	Article	IF	CITATIONS
533	KDM6A promotes imatinib resistance through YY1-mediated transcriptional upregulation of TRKA independently of its demethylase activity in chronic myelogenous leukemia. Theranostics, 2021, 11, 2691-2705.	4.6	20
534	Unlocking the Secrets of the Regenerating Fish Heart: Comparing Regenerative Models to Shed Light on Successful Regeneration. Journal of Cardiovascular Development and Disease, 2021, 8, 4.	0.8	10
535	Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy. Cell Reports, 2021, 34, 108751.	2.9	13
536	Immunophenotypic Spectrum and Genomic Landscape of Refractory Celiac Disease Type II. American Journal of Surgical Pathology, 2021, 45, 905-916.	2.1	24
537	The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers. Cell Reports, 2021, 34, 108742.	2.9	27
538	A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. ELife, 2021, 10, .	2.8	6
540	Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Research, 2021, 49, 2569-2582.	6.5	15
541	Histone H3Q5 serotonylation stabilizes H3K4 methylation and potentiates its readout. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
542	The COMPASSâ€like complex modulates fungal development and pathogenesis by regulating H3K4me3â€mediated targeted gene expression in <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2021, 22, 422-439.	2.0	18
543	A Functional Taxonomy of Tumor Suppression in Oncogenic KRAS–Driven Lung Cancer. Cancer Discovery, 2021, 11, 1754-1773.	7.7	35
544	Allosteric regulation of histone lysine methyltransferases: from context-specific regulation to selective drugs. Biochemical Society Transactions, 2021, 49, 591-607.	1.6	4
545	Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants. International Journal of Molecular Sciences, 2021, 22, 3472.	1.8	17
546	Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Frontiers in Cell and Developmental Biology, 2021, 9, 654028.	1.8	63
550	DNA Damage and the Aging Epigenome. Journal of Investigative Dermatology, 2021, 141, 961-967.	0.3	8
552	The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells, 2021, 10, 1074.	1.8	5
553	Set d1a Plays Pivotal Roles for the Survival and Proliferation of Retinal Progenitors via Histone Modifications of Uhrf1., 2021, 62, 1.		4
554	Not just a writer: PRC2 as a chromatin reader. Biochemical Society Transactions, 2021, 49, 1159-1170.	1.6	17
556	H3K4 Methylation in Aging and Metabolism. Epigenomes, 2021, 5, 14.	0.8	9

#	Article	IF	CITATIONS
557	Cancer-epigenetic function of the histone methyltransferase KMT2D and therapeutic opportunities for the treatment of KMT2D-deficient tumors. Oncotarget, 2021, 12, 1296-1308.	0.8	19
558	Sex dependent alteration of epigenetic marks after chronic morphine treatment in mice organs. Food and Chemical Toxicology, 2021, 152, 112200.	1.8	1
559	New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Current Genetics, 2021, 67, 695-705.	0.8	8
560	Histone Methyltransferase SETD1A Induces Epithelial-Mesenchymal Transition to Promote Invasion and Metastasis Through Epigenetic Reprogramming of Snail in Gastric Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 657888.	1.8	11
561	Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. Biology, 2021, 10, 581.	1.3	16
562	Sequence determinants, function, and evolution of CpG islands. Biochemical Society Transactions, 2021, 49, 1109-1119.	1.6	25
563	Biology of Germinal Center B Cells Relating to Lymphomagenesis. HemaSphere, 2021, 5, e582.	1.2	11
564	Activation of TC10-Like Transcription by Lysine Demethylase KDM4B in Colorectal Cancer Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 617549.	1.8	14
565	Migration and Adhesion of B-Lymphocytes to Specific Microenvironments in Mantle Cell Lymphoma: Interplay between Signaling Pathways and the Epigenetic Landscape. International Journal of Molecular Sciences, 2021, 22, 6247.	1.8	5
566	The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nature Genetics, 2021, 53, 1022-1035.	9.4	38
567	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	4.5	18
568	Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB Journal, 2021, 35, e21790.	0.2	5
569	Histone methyltransferase <scp>SETD1A</scp> participates in lung cancer progression. Thoracic Cancer, 2021, 12, 2247-2257.	0.8	8
570	PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nature Communications, 2021, 12, 4592.	5.8	18
571	The H3K4 methyltransferase SETD1A is required for proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochemical and Biophysical Research Communications, 2021, 561, 120-127.	1.0	6
572	Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics, 2022, 17, 220-238.	1.3	7
573	A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 698254.	1.8	7
575	A systematic analysis of <i>Trypanosoma brucei</i> chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Research, 2021, 31, 2138-2154.	2.4	33

#	Article	IF	Citations
576	Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. Journal of Biological Chemistry, 2021, 297, 100939.	1.6	13
577	Emerging Principles in the Transcriptional Control by YAP and TAZ. Cancers, 2021, 13, 4242.	1.7	25
578	The Functions of Hepatitis B Virus Encoding Proteins: Viral Persistence and Liver Pathogenesis. Frontiers in Immunology, 2021, 12, 691766.	2.2	33
579	Structure, Activity and Function of the MLL2 (KMT2B) Protein Lysine Methyltransferase. Life, 2021, 11, 823.	1.1	10
580	Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Scientific Reports, 2021, 11, 15912.	1.6	29
581	Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Frontiers in Cell and Developmental Biology, 2021, 9, 736935.	1.8	18
582	Kaposi's sarcoma-associated herpesvirus promotes mesenchymal-to-endothelial transition by resolving the bivalent chromatin of PROX1 gene. PLoS Pathogens, 2021, 17, e1009847.	2.1	8
583	Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis. Diagnostics, 2021, 11, 1739.	1.3	4
584	MLL3 is a de novo cause of endocrine therapy resistance. Cancer Medicine, 2021, 10, 7692-7711.	1.3	6
586	Plant defense compound triggers mycotoxin synthesis by regulating H2B ub1 and H3K4 me2/3 deposition. New Phytologist, 2021, 232, 2106-2123.	3.5	13
587	Terpyridine Zn(II) Complexes with Azide Units for Visualization of Histone Deacetylation in Living Cells under STED Nanoscopy. ACS Sensors, 2021, 6, 3978-3984.	4.0	3
588	The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. Journal of Experimental Medicine, 2021, 218, .	4.2	10
589	The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules, 2021, 11, 143.	1.8	11
590	Histone Demethylase UTX/KDM6A Regulates Glioblastoma Progression Through Modulating the Tumor Microenvironment. SSRN Electronic Journal, 0, , .	0.4	0
591	Post-translational modification analysis of Saccharomyces cerevisiae histone methylation enzymes reveals phosphorylation sites of regulatory potential. Journal of Biological Chemistry, 2021, 296, 100192.	1.6	10
592	Exploring Chromatin Readers Using High-Accuracy Quantitative Mass Spectrometry-Based Proteomics. , 2014, , 133-148.		2
593	Transcription Through Chromatin. , 2014, , 427-489.		2
594	Histone Methylation in Chromatin Signaling. , 2014, , 213-256.		4

#	Article	IF	Citations
595	Pathology and Molecular Pathogenesis of DLBCL and Related Entities. Methods in Molecular Biology, 2019, , 41-73.	0.4	2
596	Epigenetic Regulation of Chromatin in Prostate Cancer. Advances in Experimental Medicine and Biology, 2019, 1210, 379-407.	0.8	10
597	8 Coordination of Fungal Secondary Metabolism and Development. , 2020, , 173-205.		2
598	Threonine Catabolism: an Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells. , 2017, , 1-20.		2
599	Histone Methylation in Heart Development and Cardiovascular Disease. Cardiac and Vascular Biology, 2016, , 125-146.	0.2	1
600	TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cellular and Molecular Life Sciences, 2020, 77, 4325-4346.	2.4	41
601	The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Advances in Therapy, 2020, 37, 3059-3082.	1.3	61
602	Hansel, Gretel, and the Consequences of Failing to Remove Histone Methylation Breadcrumbs. Trends in Genetics, 2020, 36, 160-176.	2.9	6
603	Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity. Trends in Cancer, 2017, 3, 372-386.	3.8	252
604	Men1 disruption in Nkx3.1-deficient mice results in ARlow/CD44+ microinvasive carcinoma development with the dysregulated AR pathway. Oncogene, 2021, 40, 1118-1127.	2.6	4
605	${\sf H3K4}$ methylation at active genes mitigates transcription-replication conflicts during replication stress. Nature Communications, 2020, $11,809$.	5.8	41
617	Hijacking a key chromatin modulator creates epigenetic vulnerability for MYC-driven cancer. Journal of Clinical Investigation, 2018, 128, 3605-3618.	3.9	26
618	Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. Journal of Clinical Investigation, 2018, 128, 4413-4428.	3.9	44
619	Cfp1 is required for gene expression dependent H3K4me3 and H3K9 acetylation in embryonic stem cells. Genome Biology, 2014, 15, 451.	13.9	1
620	Recent advances in understanding intestinal stem cell regulation. F1000Research, 2019, 8, 72.	0.8	7
622	A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genetics, 2016, 12, e1005884.	1.5	38
623	Dot1-Dependent Histone H3K79 Methylation Promotes the Formation of Meiotic Double-Strand Breaks in the Absence of Histone H3K4 Methylation in Budding Yeast. PLoS ONE, 2014, 9, e96648.	1.1	20
624	Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance. PLoS ONE, 2016, 11, e0155840.	1.1	20

#	Article	IF	CITATIONS
625	Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics. PLoS ONE, 2016, 11, e0155931.	1.1	13
626	Histone modifications as regulators of life and death in Saccharomyces cerevisiae. Microbial Cell, 2016, 3, 1-13.	1.4	16
627	Whole-exome analysis in osteosarcoma to identify a personalized therapy. Oncotarget, 2017, 8, 80416-80428.	0.8	37
628	Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Oncotarget, 2014, 5, 6338-6352.	0.8	9
629	The nuclear-cytoplasmic trafficking of a chromatin-modifying and remodelling protein (KMT2C), in osteosarcoma. Oncotarget, 2018, 9, 30624-30634.	0.8	5
630	Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition <i>via</i> LSD1 targeting. Oncotarget, 2016, 7, 17616-17630.	0.8	62
631	Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae, 2020, 12, 66-85.	1.7	12
632	Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in <i>Monascus purpureus</i> . Journal of Applied Biological Chemistry, 2019, 62, 157-165.	0.2	3
633	Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead. ELife, 2014, 3 , .	2.8	25
634	Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase. ELife, 2014, 3, e04506.	2.8	26
635	MAF1 represses CDKN1A through a Pol III-dependent mechanism. ELife, 2015, 4, e06283.	2.8	18
636	Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. ELife, 2016, 5, .	2.8	107
637	Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis. ELife, $2016, 5, .$	2.8	16
638	Cooperation between a hierarchical set of recruitment sites targets the X chromosome for dosage compensation. ELife, 2017, 6, .	2.8	28
639	Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. ELife, 2020, 9, .	2.8	79
640	MKL1 mediates TNF- \hat{l}_{\pm} induced pro-inflammatory transcription by bridging the crosstalk between BRG1 and WDR5. Journal of Biomedical Research, 2019, 33, 164.	0.7	6
641	MLL1 is regulated by KSHV LANA and is important for virus latency. Nucleic Acids Research, 2021, 49, 12895-12911.	6.5	6
642	Epigenetic and transcriptional regulation of GnRH gene under altered metabolism and ageing. Nucleus (India), 2021, 64, 343-357.	0.9	3

#	Article	IF	CITATIONS
643	Reprogramming of the epigenome in neurodevelopmental disorders. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 73-112.	2.3	10
644	Decoding the function of bivalent chromatin in development and cancer. Genome Research, 2021, 31, 2170-2184.	2.4	48
646	Global properties of regulatory sequences are predicted by transcription factor recognition mechanisms. Genome Biology, 2021, 22, 285.	3.8	3
647	Quantitative Proteomics Characterization of Chromatin-Remodeling Complexes in Health and Disease. , 2014, , 177-196.		0
648	Histone Methyltransferase Complexes in Transcription, Development, and Cancer., 2014,, 33-47.		0
649	Role of the Trithorax (MLL): HOX Axis in HSC Development, Function, and Leukemia. Epigenetics and Human Health, 2014, , 175-204.	0.2	0
651	Effects of Paf1 complex components on H3K4 methylation in budding yeast. Korean Journal of Microbiology, 2016, 52, 487-494.	0.2	0
665	Zmiany genetyczne w chÅ,oniaku rozlanym z dużych komórek B. Acta Haematologica Polonica, 2019, 50, 204-214.	0.1	1
671	Two families with TET3-related disorder showing neurodevelopmental delay with craniofacial dysmorphisms. Journal of Human Genetics, 2022, 67, 157-164.	1.1	16
672	Epigenetic and Transcriptional Regulation of the Reproductive Hypothalamus. Masterclass in Neuroendocrinology, 2020, , 207-235.	0.1	0
674	Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. ELife, 2021, 10 , .	2.8	12
675	Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS Journal, 2023, 290, 321-339.	2.2	11
676	Myeloid transformation by <i>MLLENL</i> depends strictly on C/EBP. Life Science Alliance, 2021, 4, e202000709.	1.3	5
677	Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells. Yale Journal of Biology and Medicine, 2016, 89, 539-563.	0.2	9
678	Pancreatic Cancer, A Mis-interpreter of the Epigenetic Language. Yale Journal of Biology and Medicine, 2016, 89, 575-590.	0.2	12
680	Prediction of transcription factor binding sites with an attention augmented convolutional neural network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	2
681	Postnatal expression of the lysine methyltransferase SETD1B is essential for learning and the regulation of neuronâ€enriched genes. EMBO Journal, 2022, 41, e106459.	3.5	7
682	The Chromatin State during Gonadal Sex Determination. Sexual Development, 2021, 15, 308-316.	1.1	5

#	Article	IF	CITATIONS
684	Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Progress in Retinal and Eye Research, 2022, 89, 101030.	7.3	18
685	Glucocorticoid caused lactic acid accumulation and damage in human chondrocytes via ROS-mediated inhibition of Monocarboxylate Transporter 4. Bone, 2022, 155, 116299.	1.4	7
687	Mutation bias reflects natural selection in Arabidopsis thaliana. Nature, 2022, 602, 101-105.	13.7	206
688	Histone Methylation Regulates Gene Expression in the Round Spermatids to Set the RNA Payloads of Sperm. Reproductive Sciences, 2022, 29, 857-882.	1.1	7
689	Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins, 2022, 14, 96.	1.5	12
690	Histone 3 lysine 4 monomethylation supports activation of transcription in S. cerevisiae during nutrient stress. Current Genetics, 2022, 68, 181-194.	0.8	6
691	SMYD5 is a histone H3-specific methyltransferase mediating mono-methylation of histone H3 lysine 36 and 37. Biochemical and Biophysical Research Communications, 2022, 599, 142-147.	1.0	5
692	Bivalent-histone-marked immediate-early gene regulation is vital for VEGF-responsive angiogenesis. Cell Reports, 2022, 38, 110332.	2.9	11
694	The role of histone modifications in leukemogenesis. Journal of Biosciences, 2020, 45, .	0.5	0
695	DDX21 Interacts with WDR5 to Promote Colorectal Cancer Cell Proliferation by Activating CDK1 Expression. Journal of Cancer, 2022, 13, 1530-1539.	1.2	5
696	Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer, 2022, 8, 101-112.	0.2	4
697	Role of Histone Post-Translational Modifications in Inflammatory Diseases. Frontiers in Immunology, 2022, 13, 852272.	2.2	27
698	Menin directs regionalized decidual transformation through epigenetically setting PTX3 to balance FGF and BMP signaling. Nature Communications, 2022, 13, 1006.	5.8	8
700	Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells, 2022, 11, 1113.	1.8	12
702	OsASHL1 and OsASHL2, two members of the COMPASS-like complex, control floral transition and plant development in rice. Journal of Genetics and Genomics, 2022, 49, 870-880.	1.7	5
704	Loss of SET1/COMPASS methyltransferase activity reduces lifespan and fertility in <i>Caenorhabditis elegans</i> . Life Science Alliance, 2022, 5, e202101140.	1.3	6
705	Epigenetic regulation of T cell development. International Reviews of Immunology, 2023, 42, 82-90.	1.5	7
709	Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in <i>Drosophila melanogaster</i> . Genetics, 2022, , .	1.2	2

#	Article	IF	Citations
710	A gonadal mosaicism novel KMT2D mutation identified by haplotype construction and clone sequencing strategy. Clinica Chimica Acta, 2022, 531, 197-203.	0.5	2
714	KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nature Cancer, 2022, 3, 753-767.	5.7	41
715	The Set1 Histone H3K4 Methyltransferase Contributes to Azole Susceptibility in a Species-Specific Manner by Differentially Altering the Expression of Drug Efflux Pumps and the Ergosterol Gene Pathway. Antimicrobial Agents and Chemotherapy, 2022, 66, e0225021.	1.4	10
717	The Ash2l SDI Domain Is Required to Maintain the Stability and Binding of DPY30. Cells, 2022, 11, 1450.	1.8	0
718	Pervasive male-biased expression throughout the germline-specific regions of the sea lamprey genome supports key roles in sex differentiation and spermatogenesis. Communications Biology, 2022, 5, 434.	2.0	5
719	SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to mediate dietary restriction-induced autophagy and longevity. Autophagy, 2023, 19, 224-240.	4.3	3
720	H3K4me3 recognition by the COMPASS complex facilitates the restoration of this histone mark following DNA replication. Science Advances, 2022, 8, eabm6246.	4.7	14
721	Suleiman-El-Hattab syndrome: a histone modification disorder caused by TASP1 deficiency. Human Molecular Genetics, 2022, 31, 3083-3094.	1.4	3
722	UvKmt2-Mediated H3K4 Trimethylation Is Required for Pathogenicity and Stress Response in Ustilaginoidea virens. Journal of Fungi (Basel, Switzerland), 2022, 8, 553.	1.5	3
723	Kabuki syndrome stem cell models reveal locus specificity of histone methyltransferase 2D (KMT2D/MLL4). Human Molecular Genetics, 2022, 31, 3715-3728.	1.4	2
724	The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell and Bioscience, 2022, 12, .	2.1	8
725	Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia, 2022, 36, 2064-2075.	3.3	15
726	Dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging. Nature Communications, 2022, 13, .	5.8	9
728	An in vitro model of neuronal ensembles. Nature Communications, 2022, 13, .	5.8	10
729	Mechanisms of chromatin-based epigenetic inheritance. Science China Life Sciences, 2022, 65, 2162-2190.	2.3	16
730	The <i>Arabidopsis</i> DREAM complex antagonizes WDR5A to modulate histone H3K4me2/3 deposition for a subset of genome repression. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
732	The MLL3/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program. Life Science Alliance, 2022, 5, e202201572.	1.3	4
734	Induction of senescence upon loss of the Ash2l core subunit of H3K4 methyltransferase complexes. Nucleic Acids Research, 2022, 50, 7889-7905.	6.5	6

#	Article	IF	CITATIONS
735	Direct assessment of histone function using histone replacement. Trends in Biochemical Sciences, 2023, 48, 53-70.	3.7	3
736	PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Research, 2022, 50, 7856-7872.	6.5	6
737	Molecular epigenetic mechanisms for the memory of temperature stresses in plants. Journal of Genetics and Genomics, 2022, 49, 991-1001.	1.7	12
738	Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells, 2022, 11, 2404.	1.8	14
740	Adipocyte-mediated epigenomic instability in human T-ALL cells is cytotoxic and phenocopied by epigenetic-modifying drugs. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
741	Regulation, functions and transmission of bivalent chromatin during mammalian development. Nature Reviews Molecular Cell Biology, 2023, 24, 6-26.	16.1	51
742	Epigenetic regulator Cfp1 safeguards male meiotic progression by regulating meiotic gene expression. Experimental and Molecular Medicine, 2022, 54, 1098-1108.	3.2	5
743	Bisphenol A exposure causes testicular toxicity by targeting DPY30-mediated post-translational modification of PI3K/AKT signaling in mice. Ecotoxicology and Environmental Safety, 2022, 243, 113996.	2.9	9
744	Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genetics, 2022, 268-269, 1-21.	0.2	0
745	Epigenetic therapy and DNA damage response. , 2022, , 227-252.		0
746	Euchromatin factors HULC and Set1C affect heterochromatin organization and mating-type switching in fission yeast <i>Schizosaccharomyces pombe</i> . Genes and Genetic Systems, 2022, 97, 123-138.	0.2	3
747	Histone–lysine N-methyltransferase 2 (KMT2) complexes – a new perspective. Mutation Research - Reviews in Mutation Research, 2022, 790, 108443.	2.4	8
748	Combined Kdm6a and Trp53 Deficiency DrivesÂthe Development of Squamous Cell Skin Cancer in Mice. Journal of Investigative Dermatology, 2023, 143, 232-241.e6.	0.3	1
750	Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie, 2022, 202, 146-158.	1.3	4
751	Decoding histone ubiquitylation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
752	Dynamic regulation of DNA methylation and histone modifications in response to abiotic stresses in plants. Journal of Integrative Plant Biology, 2022, 64, 2252-2274.	4.1	16
753	The SPARC complex defines RNAPII promoters in Trypanosoma brucei. ELife, 0, 11, .	2.8	7
754	TRIB3 Modulates PPARÎ ³ -Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 10535.	1.8	2

#	Article	IF	CITATIONS
755	Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells $\hat{a} \in \mathbb{C}^*$ implication in the microbiota-host mutualism. Frontiers in Immunology, 0, 13, .	2.2	6
756	Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Frontiers in Molecular Biosciences, 0, 9, .	1.6	8
757	Thyroid Hormone–mediated Histone Modification Protects Cortical Neurons From the Toxic Effects of Hypoxic Injury. Journal of the Endocrine Society, 2022, 6, .	0.1	2
758	The DPY30-H3K4me3 Axis-Mediated PD-L1 Expression in Melanoma. Journal of Inflammation Research, 0, Volume 15, 5595-5609.	1.6	1
759	Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy. Nature Communications, 2022, 13, .	5.8	7
760	ASXL1/2 mutations and myeloid malignancies. Journal of Hematology and Oncology, 2022, 15, .	6.9	8
761	Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
763	Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development. Developmental Biology, 2022, 492, 14-24.	0.9	3
764	Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nature Genetics, 2022, 54, 1664-1674.	9.4	52
767	Epigenetic factor competition reshapes the EMT landscape. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
768	Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 12081.	1.8	7
771	Parallel functional annotation of cancer-associated missense mutations in histone methyltransferases. Scientific Reports, 2022, 12, .	1.6	2
772	<i>Arabidopsis</i> Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. Journal of Integrative Plant Biology, 2022, 64, 2438-2454.	4.1	5
773	[PRION+] States Are Associated with Specific Histone H3 Post-Translational Modification Changes. Pathogens, 2022, 11, 1436.	1.2	0
774	<scp>UTX</scp> deficiency in neural stem/progenitor cells results in impaired neural development, fetal ventriculomegaly, and postnatal death. FASEB Journal, 2022, 36, .	0.2	1
776	Toward Understanding the Role of Chromatin in Secondary Metabolite Gene Regulation in the Rice Pathogen Fusarium fujikuroi., 2023,, 283-306.		0
777	DPY30 promotes the growth and survival of osteosarcoma cell by regulating the PI3K/AKT signal pathway. European Journal of Histochemistry, 2022, 67, .	0.6	0
778	Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation. Nucleic Acids Research, 2023, 51, 84-98.	6.5	2

#	ARTICLE	IF	CITATIONS
779	Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Scientific Reports, 2022, 12, .	1.6	5
780	G-quadruplexes sense natural porphyrin metabolites for regulation of gene transcription and chromatin landscapes. Genome Biology, 2022, 23, .	3.8	8
781	Genome-wide analysis of epigenetic and transcriptional changes in the pathogenesis of RGSV in rice. Frontiers in Plant Science, $0,13,13$	1.7	1
782	Hierarchical assembly of the MLL1 core complex regulates H3K4 methylation and is dependent on temperature and component concentration. Journal of Biological Chemistry, 2023, , 102874.	1.6	3
783	Histone H3K4 Methyltransferase PeSet1 Regulates Colonization, Patulin Biosynthesis, and Stress Responses of <i>Penicillium expansum</i>). Microbiology Spectrum, 2023, 11, .	1.2	3
784	Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Advances in Cancer Research, 2023, , 387-421.	1.9	0
785	The role of histone methylation in renal cell cancer: an update. Molecular Biology Reports, 0, , .	1.0	0
787	Epigenetic control of skin immunity. Immunological Medicine, 2023, 46, 62-68.	1.4	0
788	Identification of novel Mendelian disorders of the epigenetic machinery (MDEMs)-associated functional mutations and neurodevelopmental disorders. QJM - Monthly Journal of the Association of Physicians, 2023, 116, 355-364.	0.2	2
789	Histone methyltransferase SETD1A interacts with notch and promotes notch transactivation to augment ovarian cancer development. BMC Cancer, 2023, 23, .	1.1	2
790	S-adenosylmethionine synthases specify distinct H3K4me3 populations and gene expression patterns during heat stress. ELife, 0, 12, .	2.8	4
792	Molecular insight into the SETD1A/B N-terminal region and its interaction with WDR82. Biochemical and Biophysical Research Communications, 2023, 658, 136-140.	1.0	1
793	Epigenetic modification of <i>CSDE1</i> locus dictates immune recognition of nascent tumorigenic cells. Science Translational Medicine, 2023, 15, .	5.8	7
794	H3K4me2 cooperates with Wnt/TCF7L2 to regulate TDRD1 and promote chicken spermatogonia stem cell formation. Poultry Science, 2023, 102, 102552.	1.5	0
795	Rare diseases of epigenetic origin: Challenges and opportunities. Frontiers in Genetics, 0, 14, .	1.1	3
796	Epigenetic regulation during 1,25-dihydroxyvitamin D3-dependent gene transcription. Vitamins and Hormones, 2023, , 51-74.	0.7	0
797	ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model. Journal of the American Society of Nephrology: JASN, 2023, 34, 988-1002.	3.0	0
798	Retinoblastoma-Binding Protein 5 Regulates H3K4 Methylation Modification to Inhibit the Proliferation of Melanoma Cells by Inactivating the Wnt/l²-Catenin and Epithelial-Mesenchymal Transition Pathways. Journal of Oncology, 2023, 2023, 1-19.	0.6	2

#	Article	IF	CITATIONS
799	H3K4 Methylation Promotes Expression of Mitochondrial Dynamics Regulators to Ensure Oocyte Quality in Mice. Advanced Science, 2023, 10, .	5.6	3
800	JMJ28 guides sequence-specific targeting of ATX1/2-containing COMPASS-like complex in Arabidopsis. Cell Reports, 2023, 42, 112163.	2.9	5
802	H3K4me3 regulates RNA polymerase II promoter-proximal pause-release. Nature, 2023, 615, 339-348.	13.7	76
803	Epigenetics as a versatile regulator of fibrosis. Journal of Translational Medicine, 2023, 21, .	1.8	8
804	KMT2D acetylation by CREBBP reveals a cooperative functional interaction at enhancers in normal and malignant germinal center B cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
806	A pair of readers of bivalent chromatin mediate formation of Polycomb-based "memory of cold―in plants. Molecular Cell, 2023, 83, 1109-1124.e4.	4.5	10
808	Wds-Mediated H3K4me3 Modification Regulates Lipid Synthesis and Transport in Drosophila. International Journal of Molecular Sciences, 2023, 24, 6125.	1.8	0
809	Postbiotics Implication in the Microbiota-Host Intestinal Epithelial Cells Mutualism. Probiotics and Antimicrobial Proteins, 0 , , .	1.9	2
811	Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death and Differentiation, 2023, 30, 1430-1436.	5.0	3
812	Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Current Genetics, 2023, 69, 91-114.	0.8	0
843	Alterations of histone modifications in cancer. , 2024, , 85-172.		0
848	Functional epigenomics: chromatin complexity untangled. Nature Structural and Molecular Biology, 2023, 30, 1403-1405.	3.6	0
851	Epigenetic regulation: Histone modifying enzymes as targets for novel therapeutics., 2024,, 430-452.		0
877	The dynamics and functional mechanisms of H2B mono-ubiquitination. , 2024, 2, .		0
879	Molecular Pathogenesis of B-Cell Lymphomas. , 2024, , 309-333.		0