MORC Family ATPases Required for Heterochromatin G

Science 336, 1448-1451 DOI: 10.1126/science.1221472

Citation Report

#	ARTICLE	IF	CITATIONS
1	All Packed Up and Ready to Go. Science, 2012, 336, 1391-1392.	6.0	2
2	A Transcription Fork Model for Pol IV and Pol V-Dependent RNA-Directed DNA Methylation. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 205-212.	2.0	73
3	Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation: Figure 1 Genes and Development, 2012, 26, 1769-1773.	2.7	16
5	CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nature Communications, 2012, 3, 1297.	5.8	41
6	A gene loop containing the floral repressor FLC is disrupted in the early phase of vernalization. EMBO Journal, 2012, 32, 140-148.	3.5	140
7	Use of Forward Genetic Screens to Identify Genes Required for RNA-Directed DNA Methylation in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 195-204.	2.0	22
8	Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA. Cell, 2012, 151, 194-205.	13.5	506
9	MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response. Cell Reports, 2012, 2, 1657-1669.	2.9	110
10	MORC proteins and epigenetic regulation. Plant Signaling and Behavior, 2012, 7, 1561-1565.	1.2	14
11	Epigenetic control of transposon transcription and mobility in Arabidopsis. Current Opinion in Plant Biology, 2012, 15, 503-510.	3.5	110
12	The role of long non-coding RNA in transcriptional gene silencing. Current Opinion in Plant Biology, 2012, 15, 517-522.	3.5	151
13	Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Research, 2012, 22, 1640-1649.	5.7	45
14	The genome in space and time: Does form always follow function?. BioEssays, 2012, 34, 800-810.	1.2	20
15	Understanding the chromatin remodeling code. Plant Science, 2013, 211, 137-145.	1.7	9
16	New Insights into the Dynamics of Plant Cell Nuclei and Chromosomes. International Review of Cell and Molecular Biology, 2013, 305, 253-301.	1.6	29
17	Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours. European Journal of Human Genetics, 2013, 21, 1369-1376.	1.4	25
18	Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 2013, 31, 1119-1125.	9.4	1,141
19	High-throughput genome scaffolding from in vivo DNA interaction frequency. Nature Biotechnology, 2013, 31, 1143-1147.	9.4	176

ATION REDO

#	Article	IF	CITATIONS
20	Quantitative Proteomics Reveals Factors Regulating RNA Biology as Dynamic Targets of Stress-induced SUMOylation in Arabidopsis. Molecular and Cellular Proteomics, 2013, 12, 449-463.	2.5	124
21	Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 2013, 64, 839-863.	8.6	1,234
22	Double-Stranded RNA-Binding Protein 4 Is Required for Resistance Signaling against Viral and Bacterial Pathogens. Cell Reports, 2013, 4, 1168-1184.	2.9	45
23	The Hierarchy of the 3D Genome. Molecular Cell, 2013, 49, 773-782.	4.5	632
24	The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 2013, 153, 193-205.	13.5	914
25	Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nature Structural and Molecular Biology, 2013, 20, 566-573.	3.6	164
26	Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7 / ECO1) is required for DNA repair, mitosis and meiosis. Plant Journal, 2013, 75, 927-940.	2.8	34
27	The stochastic silencing phenotype of Arabidopsis <i>morc6</i> mutants reveals a role in efficient <scp>RNA</scp> â€directed <scp>DNA</scp> methylation . Plant Journal, 2013, 75, 836-846.	2.8	38
28	The MORC family. Epigenetics, 2013, 8, 685-693.	1.3	72
29	Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Developmental Dynamics, 2013, 242, 1121-1133.	0.8	26
30	Epigenetic Functions of Smchd1 Repress Gene Clusters on the Inactive X Chromosome and on Autosomes. Molecular and Cellular Biology, 2013, 33, 3150-3165.	1.1	99
31	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	1.5	58
32	The Role of the Arabidopsis Exosome in siRNA–Independent Silencing of Heterochromatic Loci. PLoS Genetics, 2013, 9, e1003411.	1.5	27
33	A complex network framework for unbiased statistical analyses of DNA–DNA contact maps. Nucleic Acids Research, 2013, 41, 701-710.	6.5	32
34	Chemical probes in plant epigenetics studies. Plant Signaling and Behavior, 2013, 8, e25364.	1.2	16
35	Characterization of chromosomal architecture in Arabidopsis by chromosome conformation capture. Genome Biology, 2013, 14, R129.	13.9	79
36	Transgenes and their contributions to epigenetic research. International Journal of Developmental Biology, 2013, 57, 509-515.	0.3	7
37	MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD. Translational Psychiatry, 2014, 4, e429-e429.	2.4	82

#	Article	IF	CITATIONS
38	SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Research, 2014, 24, 1445-1465.	5.7	38
39	Chromatin associations in Arabidopsis interphase nuclei. Frontiers in Genetics, 2014, 5, 389.	1.1	25
40	The SET Domain Proteins SUVH2 and SUVH9 Are Required for Pol V Occupancy at RNA-Directed DNA Methylation Loci. PLoS Genetics, 2014, 10, e1003948.	1.5	152
41	MORC1 represses transposable elements in the mouse male germline. Nature Communications, 2014, 5, 5795.	5.8	108
42	Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nature Communications, 2014, 5, 5876.	5.8	24
43	Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence, 2014, 5, 710-721.	1.8	114
44	The Compromised Recognition of Turnip Crinkle Virus1 Subfamily of Microrchidia ATPases Regulates Disease Resistance in Barley to Biotrophic and Necrotrophic Pathogens. Plant Physiology, 2014, 164, 866-878.	2.3	16
45	DNA methylation as a system of plant genomic immunity. Trends in Plant Science, 2014, 19, 320-326.	4.3	197
46	Cytosolic functions of MORC2 in lipogenesis and adipogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 316-326.	1.9	55
47	RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 2014, 15, 394-408.	7.7	1,309
48	Transcriptional gene silencing by <i>Arabidopsis</i> microrchidia homologues involves the formation of heteromers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7474-7479.	3.3	61
49	Non-CC methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Structural and Molecular Biology, 2014, 21, 64-72.	3.6	690
50	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	2.7	25
51	pENCODE: A Plant Encyclopedia of DNA Elements. Annual Review of Genetics, 2014, 48, 49-70.	3.2	38
52	Non-Coding RNA Transcription and RNA-Directed DNA Methylation in Arabidopsis. Molecular Plant, 2014, 7, 1406-1414.	3.9	28
53	Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis. Molecular Cell, 2014, 55, 694-707.	4.5	283
54	Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila. Molecular Cell, 2014, 55, 678-693.	4.5	264
55	From transposon to chromosome and polyploidy. An update on cytogenetics and genomics of Arabidopsis. Chromosome Research, 2014, 22, 99-101.	1.0	1

#	Article	IF	CITATIONS
56	The GHKL ATPase MORC1 Modulates Species-Specific Plant Immunity in Solanaceae. Molecular Plant-Microbe Interactions, 2015, 28, 927-942.	1.4	12
57	HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinformatics, 2015, 16, 277.	1.2	49
58	One, Two, Three: Polycomb Proteins Hit All Dimensions of Gene Regulation. Genes, 2015, 6, 520-542.	1.0	31
59	siRNA-directed DNA Methylation in Plants. Current Genomics, 2015, 16, 23-31.	0.7	73
60	Stress-induced structural changes in plant chromatin. Current Opinion in Plant Biology, 2015, 27, 8-16.	3.5	154
61	Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Annual Review of Genetics, 2015, 49, 439-459.	3.2	58
62	A specialized histone H1 variant is required for adaptive responses to complex abiotic stress and related DNA methylation in Arabidopsis. Plant Physiology, 2015, 169, pp.00493.2015.	2.3	101
63	Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. International Review of Cell and Molecular Biology, 2015, 315, 183-244.	1.6	29
64	Reduced activity ofArabidopsischromosome-cohesion regulator geneCTF7/ECO1alters cytosine methylation status and retrotransposon expression. Plant Signaling and Behavior, 2015, 10, e1013794.	1.2	3
65	Chromosome domain architecture and dynamic organization of the fission yeast genome. FEBS Letters, 2015, 589, 2975-2986.	1.3	44
66	DNA Damage Repair in the Context of Plant Chromatin. Plant Physiology, 2015, 168, 1206-1218.	2.3	55
67	RNA-Directed DNA Methylation and Transcriptional Silencing in Arabidopsis. , 2015, , 1-11.		0
68	Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis. Plant Cell, 2015, 27, 1788-1800.	3.1	50
69	De Novo Plant Genome Assembly Based on Chromatin Interactions: A Case Study of Arabidopsis thaliana. Molecular Plant, 2015, 8, 489-492.	3.9	70
70	3D genome architecture from populations to single cells. Current Opinion in Genetics and Development, 2015, 31, 36-41.	1.5	27
71	Overexpression of a truncated CTF7 construct leads to pleiotropic defects in reproduction and vegetative growth in Arabidopsis. BMC Plant Biology, 2015, 15, 74.	1.6	3
72	Light signaling controls nuclear architecture reorganization during seedling establishment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2836-44.	3.3	90
73	Battles and hijacks: noncoding transcription in plants. Trends in Plant Science, 2015, 20, 362-371.	4.3	176

#	Article	IF	CITATIONS
74	Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks. BMC Genomics, 2015, 16, 552.	1.2	31
75	DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in <i>Arabidopsis</i> . Genes and Development, 2015, 29, 2183-2202.	2.7	160
76	Chromatin in 3D: progress and prospects for plants. Genome Biology, 2015, 16, 170.	3.8	61
77	Structural and functional diversity of Topologically Associating Domains. FEBS Letters, 2015, 589, 2877-2884.	1.3	269
78	Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3535-44.	3.3	83
79	Long non-coding RNAs and their functions in plants. Current Opinion in Plant Biology, 2015, 27, 207-216.	3.5	389
80	Chromatin-Driven Behavior of Topologically Associating Domains. Journal of Molecular Biology, 2015, 427, 608-625.	2.0	95
81	RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. Annual Review of Plant Biology, 2015, 66, 243-267.	8.6	376
82	Genome-wide analysis of local chromatin packing in <i>Arabidopsis thaliana</i> . Genome Research, 2015, 25, 246-256.	2.4	254
83	Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006092.	1.5	30
84	Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Research, 2017, 45, gkw1273.	6.5	58
85	Genome-Wide Analysis of the Distinct Types of Chromatin Interactions inArabidopsis thaliana. Plant and Cell Physiology, 2016, 58, pcw194.	1.5	8
86	SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis. Molecular Plant, 2016, 9, 1156-1167.	3.9	36
87	Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany, 2016, 67, 3205-3221.	2.4	59
88	MORC3, a Component of PML Nuclear Bodies, Has a Role in Restricting Herpes Simplex Virus 1 and Human Cytomegalovirus. Journal of Virology, 2016, 90, 8621-8633.	1.5	45
89	Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Reports, 2016, 16, 3195-3207.	2.9	40
90	Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5108-16.	3.3	41
91	Pathogen Infection and MORC Proteins Affect Chromatin Accessibility of Transposable Elements and Expression of Their Proximal Genes in Arabidopsis. Molecular Plant-Microbe Interactions, 2016, 29, 674-687.	1.4	11

#	Article	IF	CITATIONS
92	Novel features of telomere biology revealed by the absence of telomeric DNA methylation. Genome Research, 2016, 26, 1047-1056.	2.4	18
93	MTHFD1 controls DNA methylation in Arabidopsis. Nature Communications, 2016, 7, 11640.	5.8	61
94	Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biology, 2016, 17, 182.	3.8	190
95	Restricting retrotransposons: a review. Mobile DNA, 2016, 7, 16.	1.3	341
96	<i>Neurospora</i> chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Research, 2016, 26, 1069-1080.	2.4	64
97	The epigenetic regulator Smchd1 contains a functional GHKL-type ATPase domain. Biochemical Journal, 2016, 473, 1733-1744.	1.7	25
98	High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 2016, 28, 948.	0.1	54
99	The Opposing Actions of Arabidopsis CHROMOSOME TRANSMISSION FIDELITY7 and WINGS APART-LIKE1 and 2 Differ in Mitotic and Meiotic Cells. Plant Cell, 2016, 28, 521-536.	3.1	5
100	Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Seminars in Cell and Developmental Biology, 2016, 59, 118-125.	2.3	69
101	Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma, 2016, 125, 455-469.	1.0	30
102	Morc1 knockout evokes a depression-like phenotype in mice. Behavioural Brain Research, 2016, 296, 7-14.	1.2	20
103	Cell Biology of the Plant Nucleus. Annual Review of Plant Biology, 2017, 68, 139-172.	8.6	87
104	RDM16 and STA1 regulate differential usage of exon/intron in RNA directed DNA methylation pathway. Gene, 2017, 609, 62-67.	1.0	6
105	Chromosome conformation capture-based studies reveal novel features of plant nuclear architecture. Current Opinion in Plant Biology, 2017, 36, 149-157.	3.5	29
106	Arabidopsis proteins with a transposon-related domain act in gene silencing. Nature Communications, 2017, 8, 15122.	5.8	32
107	Hyperactivation of HUSH complex function by Charcot–Marie–Tooth disease mutation in MORC2. Nature Genetics, 2017, 49, 1035-1044.	9.4	105
108	MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality. Developmental Cell, 2017, 41, 408-423.e7.	3.1	69
109	The RNAi Inheritance Machinery of <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 1403-1416.	1.2	129

#	Article	IF	CITATIONS
110	Plant and Human MORC Proteins Have DNA-Modifying Activities Similar to Type II Topoisomerases, but Require One or More Additional Factors for Full Activity. Molecular Plant-Microbe Interactions, 2017, 30, 87-100.	1.4	22
111	The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. Journal of Cellular Physiology, 2017, 232, 928-934.	2.0	35
112	Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in <i>Neurospora crassa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9598-E9607.	3.3	26
113	Similarity between soybean and <i>Arabidopsis</i> seed methylomes and loss of non-CG methylation does not affect seed development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9730-E9739.	3.3	111
114	Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	18
115	Mutation of <i>Arabidopsis SMC4</i> identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes. Genes and Development, 2017, 31, 1601-1614.	2.7	25
116	Plants are not so different. Nature Plants, 2017, 3, 690-691.	4.7	3
117	Ectopic application of the repressive histone modification H3K9me2 establishes post-zygotic reproductive isolation in <i>Arabidopsis thaliana</i> . Genes and Development, 2017, 31, 1272-1287.	2.7	61
118	Long Noncoding RNAs in Plants. Advances in Experimental Medicine and Biology, 2017, 1008, 133-154.	0.8	125
119	Chromatin Conformation Capture-Based Analysis of Nuclear Architecture. Methods in Molecular Biology, 2017, 1456, 15-32.	0.4	7
120	MORC Proteins: Novel Players in Plant and Animal Health. Frontiers in Plant Science, 2017, 8, 1720.	1.7	48
121	A cautionary note on the use of chromosome conformation capture in plants. Plant Methods, 2017, 13, 101.	1.9	1
122	Genomeâ€wide Hiâ€C analysis reveals extensive hierarchical chromatin interactions in rice. Plant Journal, 2018, 94, 1141-1156.	2.8	114
123	Further analysis of barley <scp>MORC</scp> 1 using a highly efficient <scp>RNA</scp> â€guided Cas9 geneâ€editing system. Plant Biotechnology Journal, 2018, 16, 1892-1903.	4.1	75
124	Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms. Nature Communications, 2018, 9, 651.	5.8	58
125	Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1069-E1074.	3.3	51
126	3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Molecular Cytogenetics, 2018, 11, 21.	0.4	61
127	Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature, 2018, 553, 228-232.	13.7	234

#	Article	IF	CITATIONS
128	A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. Genome Research, 2018, 28, 846-858.	2.4	54
129	Entering the Next Dimension: Plant Genomes in 3D. Trends in Plant Science, 2018, 23, 598-612.	4.3	44
130	Aberrant high expression level of MORC2 is a common character in multiple cancers. Human Pathology, 2018, 76, 58-67.	1.1	34
131	Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death and Differentiation, 2018, 25, 2086-2100.	5.0	49
132	Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture. Methods in Molecular Biology, 2018, 1675, 233-246.	0.4	34
133	A Compendium of Methods to Analyze the Spatial Organization of Plant Chromatin. Methods in Molecular Biology, 2018, 1675, 397-418.	0.4	7
134	Lighting the shadows: methods that expose nuclear and cytoplasmic gene regulatory control. Current Opinion in Biotechnology, 2018, 49, 29-34.	3.3	8
135	MORC2 Enhances Tumor Growth by Promoting Angiogenesis and Tumor-Associated Macrophage Recruitment via Wnt/β-Catenin in Lung Cancer. Cellular Physiology and Biochemistry, 2018, 51, 1679-1694.	1.1	22
136	Evolution and Diversification of Small RNA Pathways in Flowering Plants. Plant and Cell Physiology, 2018, 59, 2169-2187.	1.5	26
137	MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. International Journal of Oncology, 2018, 53, 59-72.	1.4	17
138	Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants, 2018, 4, 521-529.	4.7	100
139	A Genomic View of Alternative Splicing of Long Non-coding RNAs during Rice Seed Development Reveals Extensive Splicing and IncRNA Gene Families. Frontiers in Plant Science, 2018, 9, 115.	1.7	31
140	MORC Domain Definition and Evolutionary Analysis of the MORC Gene Family in Green Plants. Genome Biology and Evolution, 2018, 10, 1730-1744.	1.1	19
141	Exploring potential roles for the interaction of MOM1 with SUMO and the SUMO E3 ligase-like protein PIAL2 in transcriptional silencing. PLoS ONE, 2018, 13, e0202137.	1.1	5
142	The <scp>PEAT</scp> protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO Journal, 2018, 37, .	3.5	42
143	Structural conservation in a membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile. Nature Communications, 2018, 9, 3360.	5.8	24
144	Biased gene retention during diploidization in Brassica linked to three-dimensional genome organization. Nature Plants, 2019, 5, 822-832.	4.7	52
145	Tracing the origin and evolution history of methylation-related genes in plants. BMC Plant Biology, 2019, 19, 307.	1.6	59

#	Article	IF	CITATIONS
146	Chromatin Compaction by Small RNAs and the Nuclear RNAi Machinery in C. elegans. Scientific Reports, 2019, 9, 9030.	1.6	19
147	Literature review of baseline information on nonâ€coding RNA (ncRNA) to support the risk assessment of ncRNAâ€based genetically modified plants for food and feed. EFSA Supporting Publications, 2019, 16, 1688E.	0.3	31
148	The Gene-Silencing Protein MORC-1 Topologically Entraps DNA and Forms Multimeric Assemblies to Cause DNA Compaction. Molecular Cell, 2019, 75, 700-710.e6.	4.5	34
149	Review: Chromatin organization in plant and animal stem cell maintenance. Plant Science, 2019, 281, 173-179.	1.7	4
150	MORC2 regulates DNA damage response through a PARP1-dependent pathway. Nucleic Acids Research, 2019, 47, 8502-8520.	6.5	56
152	Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana. Genome Biology, 2019, 20, 120.	3.8	26
153	Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biology, 2019, 20, 87.	3.8	79
154	Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. Frontiers in Plant Science, 2019, 10, 454.	1.7	10
155	Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis. Cell, 2019, 176, 1068-1082.e19.	13.5	124
156	Anaphase-promoting complex/cyclosome regulates RdDM activity by degrading DMS3 in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3899-3908.	3.3	14
158	Dimerization of MORC2 through its C-terminal coiled-coil domain enhances chromatin dynamics and promotes DNA repair. Cell Communication and Signaling, 2019, 17, 160.	2.7	20
159	Three-dimensional chromosome organization in flowering plants. Briefings in Functional Genomics, 2020, 19, 83-91.	1.3	12
160	DNA Methylation Readers in Plants. Journal of Molecular Biology, 2020, 432, 1706-1717.	2.0	18
161	Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant Journal, 2020, 102, 68-84.	2.8	22
162	Spontaneous reactivation of a site-specifically placed transgene independent of copy number or DNA methylation. Journal of Experimental Botany, 2020, 71, 1574-1584.	2.4	1
163	PP7L is essential for MAIL1â€mediated transposable element silencing and primary root growth. Plant Journal, 2020, 102, 703-717.	2.8	9
164	Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. Plant Cell, 2020, 32, 3662-3673.	3.1	35
165	De Novo Variants in the ATPase Module of MORC2 Cause a Neurodevelopmental Disorder with Growth Retardation and Variable Craniofacial Dysmorphism. American Journal of Human Genetics, 2020, 107, 352-363.	2.6	64

#	Article	IF	CITATIONS
166	Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription, 2020, 11, 172-191.	1.7	19
167	Unraveling the 3D Genome Architecture in Plants: Present and Future. Molecular Plant, 2020, 13, 1676-1693.	3.9	48
168	Multifaceted roles of RNA polymerase IV in plant growth and development. Journal of Experimental Botany, 2020, 71, 5725-5732.	2.4	5
169	The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nature Communications, 2020, 11, 2798.	5.8	22
170	Tidying-up the plant nuclear space: domains, functions, and dynamics. Journal of Experimental Botany, 2020, 71, 5160-5178.	2.4	20
171	A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nature Microbiology, 2020, 5, 570-583.	5.9	78
172	The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS Journal, 2020, 287, 4458-4480.	2.2	4
173	Three-dimensional nuclear organization in Arabidopsis thaliana. Journal of Plant Research, 2020, 133, 479-488.	1.2	18
174	Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nature Communications, 2020, 11, 1886.	5.8	102
175	The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana. PLoS Genetics, 2020, 16, e1008324.	1.5	13
176	Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytologist, 2021, 229, 2238-2250.	3.5	40
177	Technologies for Capturing 3D Genome Architecture in Plants. Trends in Plant Science, 2021, 26, 196-197.	4.3	8
178	Nucleolar rDNA folds into condensed foci with a specific combination of epigenetic marks. Plant Journal, 2021, 105, 1534-1548.	2.8	7
179	Modeling the 3D genome of plants. Nucleus, 2021, 12, 65-81.	0.6	4
181	Novel Two-Component System-Like Elements Reveal Functional Domains Associated with Restriction–Modification Systems and paraMORC ATPases in Bacteria. Genome Biology and Evolution, 2021, 13, .	1.1	4
182	The Arabidopsis condensin CAPâ€D subunits arrange interphase chromatin. New Phytologist, 2021, 230, 972-987.	3.5	9
183	FVE promotes RNAâ€directed DNA methylation by facilitating the association of RNA polymerase V with chromatin. Plant Journal, 2021, 107, 467-479.	2.8	5
184	A phase-separated nuclear GBPL circuit controls immunity in plants. Nature, 2021, 594, 424-429.	13.7	79

#	Article	IF	CITATIONS
185	RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genetics, 2021, 17, e1009326.	1.5	24
186	Hi 3.0: Improved Protocol for Genomeâ€Wide Chromosome Conformation Capture. Current Protocols, 2021, 1, e198.	1.3	40
187	Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation. Nature Communications, 2021, 12, 4292.	5.8	28
188	SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Frontiers in Cell and Developmental Biology, 2021, 9, 703795.	1.8	5
189	The developmental trajectories of Toxoplasma stem from an elaborate epigenetic rewiring. Trends in Parasitology, 2022, 38, 37-53.	1.5	12
190	CRISPR/ <i>Sp</i> Cas9â€mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnology Journal, 2022, 20, 89-102.	4.1	29
191	Epigenetics: a catalyst of plant immunity against pathogens. New Phytologist, 2022, 233, 66-83.	3.5	44
193	Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years. Plant and Cell Physiology, 2021, 62, 1648-1661.	1.5	9
194	Fine mapping a CIGS gene controlling dark-green stripe rind in watermelon. Scientia Horticulturae, 2022, 291, 110583.	1.7	13
195	Role of Chromatin Architecture in Plant Stress Responses: An Update. Frontiers in Plant Science, 2020, 11, 603380.	1.7	56
196	DNA methylation-linked chromatin accessibility affects genomic architecture in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	70
197	UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nature Plants, 2021, 7, 184-197.	4.7	30
198	Meiosis: Interactions Between Homologous Chromosomes. , 2014, , 1-34.		2
199	How do histone modifications contribute to transgenerational epigenetic inheritance in <i>C. elegans</i> ?. Biochemical Society Transactions, 2020, 48, 1019-1034.	1.6	19
202	Kits for RNA Extraction, Isolation, and Purification. Materials and Methods, 0, 2, .	0.0	4
203	GFP Antibody. Materials and Methods, 0, 3, .	0.0	1
204	PCR Machines. Materials and Methods, 0, 3, .	0.0	1
205	Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes. PLoS Genetics, 2016, 12, e1005998.	1.5	42

#	Article	IF	CITATIONS
206	Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis. PLoS Genetics, 2016, 12, e1006026.	1.5	43
207	Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genetics, 2017, 13, e1006749.	1.5	33
208	MORC2B is essential for meiotic progression and fertility. PLoS Genetics, 2018, 14, e1007175.	1.5	14
209	A role for MED14 and UVH6 in heterochromatin transcription upon destabilization of silencing. Life Science Alliance, 2018, 1, e201800197.	1.3	14
210	Signal Integration by Cyclin-Dependent Kinase 8 (CDK8) Module and Other Mediator Subunits in Biotic and Abiotic Stress Responses. International Journal of Molecular Sciences, 2021, 22, 354.	1.8	12
211	Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. ELife, 2016, 5, .	2.8	76
212	The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. ELife, 2017, 6, .	2.8	18
213	Clobal profiling of RNA–chromatin interactions reveals co-regulatory gene expression networks in Arabidopsis. Nature Plants, 2021, 7, 1364-1378.	4.7	13
214	The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability. PLoS Genetics, 2021, 17, e1009830.	1.5	10
215	MORC3, a novel MIWI2 association partner, as an epigenetic regulator of piRNA dependent transposon silencing in male germ cells. Scientific Reports, 2021, 11, 20472.	1.6	6
216	Myc Antibody Review. Materials and Methods, 0, 3, .	0.0	0
225	The role of MORC3 in silencing transposable elements in mouse embryonic stem cells. Epigenetics and Chromatin, 2021, 14, 49.	1.8	9
226	The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells, 2021, 10, 2952.	1.8	15
227	Stress Conditions Modulate the Chromatin Interactions Network in Arabidopsis. Frontiers in Genetics, 2021, 12, 799805.	1.1	4
228	CRISPR/SpCas9-mediated KO of epigenetically active MORC proteins increases barley resistance to Bipolaris spot blotch and Fusarium root rot. Journal of Plant Diseases and Protection, 2022, 129, 1005-1011.	1.6	3
229	Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells, 2022, 11, 1048.	1.8	16
230	Taming transposable elements in vertebrates: from epigenetic silencing to domestication. Trends in Genetics, 2022, 38, 529-553.	2.9	59
231	Chromatin remodeling complexes regulate genome architecture in Arabidopsis. Plant Cell, 2022, 34, 2638-2651.	3.1	24

#	Article	IF	CITATIONS
235	Understanding of the various aspects of gene regulatory networks related to crop improvement. Gene, 2022, 833, 146556.	1.0	1
236	Structural and Functional Attributes of Microrchidia Family of Chromatin Remodelers. Journal of Molecular Biology, 2022, 434, 167664.	2.0	3
237	Microrchidia CW-Type Zinc Finger 2, a Chromatin Modifier in a Spectrum of Peripheral Neuropathies. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	4
238	Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
240	Immune priming in plants: from the onset to transgenerational maintenance. Essays in Biochemistry, 2022, 66, 635-646.	2.1	17
241	Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. Current Opinion in Plant Biology, 2022, 69, 102261.	3.5	2
243	Nitrogen starvation induces genomeâ€wide activation of transposable elements in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 2374-2384.	4.1	5
244	DNA polymerase epsilon binds histone H3.1-H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
246	Histone H2B.8 compacts flowering plant sperm through chromatin phase separation. Nature, 2022, 611, 614-622.	13.7	28
247	Single-nucleus RNA-seq reveals that MBD5, MBD6, and SILENZIO maintain silencing in the vegetative cell of developing pollen. Cell Reports, 2022, 41, 111699.	2.9	13
250	Plant mobile domain proteins ensure Microrchidia 1 expression to fulfill transposon silencing. Life Science Alliance, 2023, 6, e202201539.	1.3	0
251	Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Frontiers in Pharmacology, 0, 14, .	1.6	5
252	Structure and mechanism of the plant RNA polymerase V. Science, 2023, 379, 1209-1213.	6.0	9
253	Genome-Scale Analysis of Cellular Restriction Factors That Inhibit Transgene Expression from Adeno-Associated Virus Vectors. Journal of Virology, 2023, 97, .	1.5	2
272	Keep quiet: the HUSH complex in transcriptional silencing and disease. Nature Structural and Molecular Biology, 2024, 31, 11-22.	3.6	0