Great expectations: can artificial molecular machines de

Chemical Society Reviews 41, 19-30

DOI: 10.1039/c1cs15262a

Citation Report

#	Article	IF	CITATIONS
1	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 1990, , 277-288.	0.5	4
2	Artificial molecular rotors and motors on surfaces: STM reveals and triggers. Soft Matter, 2012, 8, 9053.	1.2	54
3	Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications, 2012, 3, 1270.	5.8	622
4	Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 2012, 75, 126001.	8.1	2,247
5	Radically Enhanced Molecular Switches. Journal of the American Chemical Society, 2012, 134, 16275-16288.	6.6	84
6	Microscopic reversibility as the organizing principle of molecular machines. Nature Nanotechnology, 2012, 7, 684-688.	15.6	150
7	W-Band Time-Resolved Electron Paramagnetic Resonance Study of Light-Induced Spin Dynamics in Copper–Nitroxide-Based Switchable Molecular Magnets. Journal of the American Chemical Society, 2012, 134, 16319-16326.	6.6	39
8	Breaking the limits with silylenes. Nature Chemistry, 2012, 4, 525-526.	6.6	52
9	Metal Migration Processes in Homo- and Heterobimetallic Bismuth(III)–Lead(II) Porphyrin Complexes: Emergence of Allosteric Newton's Cradle-like Devices. Journal of the American Chemical Society, 2012, 134, 16017-16032.	6.6	22
10	Chiral Supramolecular Switches Based on (<i>R</i>)â€Binaphthalene–Bipyridinium Guests and Cucurbituril Hosts. Chemistry - A European Journal, 2012, 18, 16911-16921.	1.7	53
12	The Chameleonic Nature of Diazaperopyrenium Recognition Processes. Angewandte Chemie - International Edition, $2012, 51, 11872-11877$.	7.2	25
13	Redox divergent conversion of a [2]rotaxane into two distinct degenerate partners with different shuttling dynamics. Chemical Science, 2012, 3, 2314.	3.7	45
14	Mechanostereochemistry and the mechanical bond. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2849-2880.	1.0	51
15	Reversible modulation of helicity in a binaphthyl–bipyridinium species and its cucurbit[8]uril complexes. Chemical Communications, 2012, 48, 7577.	2.2	43
16	Blue-Colored, Linear Rigid-Axle [2]Pseudorotaxanes: Metal-Binding Properties, Crystal Structures, and Blue/Red Dichroism. Inorganic Chemistry, 2012, 51, 3156-3160.	1.9	10
17	Deposition of Ordered Layers of Tetralactam Macrocycles and Ether Rotaxanes on Pyridine-Terminated Self-Assembled Monolayers on Gold. Journal of the American Chemical Society, 2012, 134, 16289-16297.	6.6	31
18	Azobenzene Photoisomerization under High External Pressures: Testing the Strength of a Light-Activated Molecular Muscle. Journal of Physical Chemistry B, 2012, 116, 9860-9865.	1.2	45
19	Modular Synthesis of Bipyridinium Oligomers and Corresponding Donor–Acceptor Oligorotaxanes with Crown Ethers. Organic Letters, 2012, 14, 5066-5069.	2.4	21

#	Article	IF	CITATIONS
20	Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin. Journal of the American Chemical Society, 2012, 134, 17613-17619.	6.6	99
21	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2012, , 537-556.	0.5	2
22	Multiply biphenyl substituted zinc(II) porphyrin and phthalocyanine as components for molecular materials. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1293-1302.	0.4	11
23	Driving and Controlling Molecular Surface Rotors with a Terahertz Electric Field. ACS Nano, 2012, 6, 5242-5248.	7.3	35
24	Molecular motor speed limits. Nature Chemistry, 2012, 4, 523-525.	6.6	8
25	Cu(I)/Cu(II) templated functional pseudorotaxanes and rotaxanes. Journal of Chemical Sciences, 2012, 124, 1229-1237.	0.7	10
26	Thermally-Induced Phase Transition of Pseudorotaxane Crystals: Changes in Conformation and Interaction of the Molecules and Optical Properties of the Crystals. Journal of the American Chemical Society, 2012, 134, 17932-17944.	6.6	61
27	Merging Constitutional and Motional Covalent Dynamics in Reversible Imine Formation and Exchange Processes. Journal of the American Chemical Society, 2012, 134, 9446-9455.	6.6	156
28	Metal–organic frameworks with dynamic interlocked components. Nature Chemistry, 2012, 4, 456-460.	6.6	260
29	Dynamic imine chemistry. Chemical Society Reviews, 2012, 41, 2003.	18.7	989
30	[2]Pseudorotaxanes from T-Shaped Benzimidazolium Axles and [24]Crown-8 Wheels. Organic Letters, 2012, 14, 2484-2487.	2.4	52
31	Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex. Journal of the American Chemical Society, 2012, 134, 3061-3072.	6.6	123
32	The effects of conformation on the noncovalent bonding interactions in a bistable donor–acceptor [3]catenane. Chemical Communications, 2012, 48, 9245.	2.2	17
33	Synthesis and Evaluation of Molecular Rotors with Large and Bulky <i>tert</i> -Butyldiphenylsilyloxy-Substituted Trityl Stators. Journal of Organic Chemistry, 2012, 77, 6887-6894.	1.7	20
34	Rapid thermally assisted donor–acceptor catenation. Chemical Communications, 2012, 48, 9141.	2.2	8
35	A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays. Nature Chemistry, 2012, 4, 757-762.	6.6	171
36	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827.	18.7	277
37	A rigid donor–acceptor daisy chain dimer. Chemical Communications, 2012, 48, 6791.	2.2	22

#	Article	IF	CITATIONS
38	A multi-component CuAAC â€~click' approach to an <i>exo</i> functionalised pyridyl-1,2,3-triazole macrocycle: synthesis, characterisation, Cu(I) and Ag(I) complexes. Supramolecular Chemistry, 2012, 24, 492-498.	1.5	14
42	Photoactivated Directionally Controlled Transit of a Nonâ€Symmetric Molecular Axle Through a Macrocycle. Angewandte Chemie - International Edition, 2012, 51, 4223-4226.	7.2	109
43	Design Strategy for DNA Rotaxanes with a Mechanically Reinforced PX100 Axle. Angewandte Chemie - International Edition, 2012, 51, 6771-6775.	7.2	48
44	Tris(spiroborate)‶ype Anionic Nanocycles. Chemistry - an Asian Journal, 2012, 7, 1529-1532.	1.7	17
45	Anionâ€Induced Shuttling of a Naphthalimide Triazolium Rotaxane. Chemistry - A European Journal, 2012, 18, 7100-7108.	1.7	48
46	A Flexible Copper(I)-Complexed [4]Rotaxane Containing Two Face-to-Face Porphyrinic Plates that Behaves as a Distensible Receptor. Chemistry - A European Journal, 2012, 18, 8366-8376.	1.7	24
47	Dy ^{III} ―and Yb ^{III} â€Curcuminoid Compounds: Original Fluorescent Singleâ€ion Magnet and Magnetic Nearâ€iR Luminescent Species. Chemistry - A European Journal, 2012, 18, 11545-11549.	1.7	64
48	Mechanically Interlocked Molecules Assembled by π–π Recognition. ChemPlusChem, 2012, 77, 159-185.	1.3	100
49	Great expectations: can artificial molecular machines deliver on their promise?. Chemical Society Reviews, 2012, 41, 19-30.	18.7	796
50	Anion-Directed Formation and Degradation of an Interlocked Metallohelicate. Journal of the American Chemical Society, 2012, 134, 10987-10997.	6.6	116
51	Cooperative self-assembly: producing synthetic polymers with precise and concise primary structures. Chemical Society Reviews, 2012, 41, 5881.	18.7	114
52	Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angewandte Chemie - International Edition, 2012, 51, 1611-1615.	7.2	119
53	Redoxâ€switchable Intramolecular <i>Ï€â^Ï€</i> â€Stacking of Perylene Bisimide Dyes in a Cyclophane. Advanced Materials, 2013, 25, 410-414.	11.1	80
54	Photoresponsive receptors for binding and releasing anions. Journal of Physical Organic Chemistry, 2013, 26, 79-86.	0.9	78
55	Exploring the Programmable Assembly of a Polyoxometalate–Organic Hybrid via Metal Ion Coordination. Journal of the American Chemical Society, 2013, 135, 13425-13432.	6.6	78
56	A phenanthroline–terpyridine hybrid as a chameleon-type ligand in a reversible metallosupramolecular rearrangement. Dalton Transactions, 2013, 42, 12840.	1.6	19
57	Electrochemically Driven Cupâ€andâ€Ball Cu ^I and Cu ^{II} Complexes. Chemistry - A European Journal, 2013, 19, 10611-10618.	1.7	10
59	Understanding the dynamics behind photoisomerization of lightâ€driven molecular rotary motors. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2013, 3, 427-437.	6.2	10

#	Article	IF	CITATIONS
60	Acid-Base-Controlled Stereoselective Metalation of Overhanging Carboxylic Acid Porphyrins: Consequences for the Formation of Heterobimetallic Complexes. Chemistry - A European Journal, 2013, 19, 11021-11038.	1.7	19
61	Construction of Hetero[<i>n</i>]rotaxanes by Use of Polyfunctional Rotaxane Frameworks. Journal of Organic Chemistry, 2013, 78, 11560-11570.	1.7	39
62	A Computational Investigation of a Molecular Switch. Journal of Chemical Education, 2013, 90, 1528-1532.	1.1	9
63	Molecular actuators driven by cooperative spin-state switching. Nature Communications, 2013, 4, 2607.	5.8	221
64	Manipulating Liquid rystal Properties Using a pH Activated Hydrazone Switch. Angewandte Chemie - International Edition, 2013, 52, 10734-10739.	7.2	76
65	Molecular Switch Based on Very Weak Association between BPX26C6 and Two Recognition Units. Organic Letters, 2013, 15, 5742-5745.	2.4	21
66	Intramolecular redox-induced dimerization in a viologen dendrimer. Journal of Materials Chemistry C, 2013, 1, 2302.	2.7	40
67	Conformational Polymorphism and Isomorphism of Molecular Rotors with Fluoroaromatic Rotators and Mestranol Stators. Crystal Growth and Design, 2013, 13, 5107-5115.	1.4	23
68	A Water-Soluble pH-Triggered Molecular Switch. Journal of the American Chemical Society, 2013, 135, 17691-17694.	6.6	70
69	Thoughts on an education. Nature Nanotechnology, 2013, 8, 794-796.	15.6	3
70	Light-Driven Linear Helical Supramolecular Polymer Formed by Molecular-Recognition-Directed Self-Assembly of Bis(<i>p</i> -sulfonatocalix[4]arene) and Pseudorotaxane. Journal of the American Chemical Society, 2013, 135, 5990-5993.	6.6	247
71	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2013, , 497-517.	0.5	2
73	Dynamic topomerization of Cu(<scp>i</scp>)-complexed pseudorotaxanes. Chemical Communications, 2013, 49, 1261-1263.	2.2	21
74	A "nano-windmill―driven by a flux of water vapour: a comparison to the rotating ATPase. Nanoscale, 2013, 5, 9732.	2.8	41
75	Fast, Reversible, and General Photomechanical Motion in Single Crystals of Various Azo Compounds Using Visible Light. Advanced Materials, 2013, 25, 1796-1800.	11.1	155
76	Catalytic chemical transformations with conformationally dynamic catalytic systems. Catalysis Science and Technology, 2013, 3, 41-57.	2.1	40
77	The imaginary is real. Nature Nanotechnology, 2013, 8, 10-11.	15.6	6
78	From the bottom up: dimensional control and characterization in molecular monolayers. Chemical Society Reviews, 2013, 42, 2725-2745.	18.7	153

#	Article	IF	CITATIONS
79	Molecular machines muscle up. Nature Nanotechnology, 2013, 8, 9-10.	15.6	83
80	Expanding the Scope of the Anion Templated Synthesis of Interlocked Structures. Accounts of Chemical Research, 2013, 46, 571-586.	7.6	176
81	Synthesis of a four-component [3] catenane using three distinct noncovalent interactions. Organic and Biomolecular Chemistry, 2013 , 11 , 27 - 30 .	1.5	20
82	Ï€-Dimerization of viologen subunits around the core of C60 from twelve to six directions. Chemical Science, 2013, 4, 1462.	3.7	47
83	Perspectives in Chemistryâ€"Steps towards Complex Matter. Angewandte Chemie - International Edition, 2013, 52, 2836-2850.	7.2	534
86	Stimuliâ€Responsive Folding and Unfolding of a Polymer Bearing Multiple Cerium(IV) Bis(porphyrinate) Joints: Mechanoâ€imitation of the Action of a Folding Ruler. Angewandte Chemie - International Edition, 2013, 52, 397-400.	7.2	25
87	Asymmetric Catalysis with Bis(hydroxyphenyl)diamides/Rareâ€Earth Metal Complexes. Angewandte Chemie - International Edition, 2013, 52, 223-234.	7.2	59
88	Material Drag Phenomena in Nanotubes. Chemical Reviews, 2013, 113, 3372-3390.	23.0	42
89	A molecular production line. Nature Chemistry, 2013, 5, 260-262.	6.6	23
90	Interlocked host molecules for anion recognition and sensing. Coordination Chemistry Reviews, 2013, 257, 2434-2455.	9.5	138
91	New approaches to the synthesis of strapped porphyrin containing bipyridinium [2]rotaxanes. New Journal of Chemistry, 2013, 37, 893-900.	1.4	7
92	Autonomous Shuttling Driven by an Oscillating Reaction: Proof of Principle in a Cucurbit[7]uril-Bodipy Pseudorotaxane. Organic Letters, 2013, 15, 1012-1015.	2.4	37
93	A catalytically driven organometallic molecular motor. Nanoscale, 2013, 5, 1301-1304.	2.8	39
94	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
95	Induction of Motion in a Synthetic Molecular Machine: Effect of Tuning the Driving Force. Chemistry - A European Journal, 2013, 19, 5566-5577.	1.7	25
96	Redoxâ€Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host–Guest Interactions. Angewandte Chemie - International Edition, 2013, 52, 5731-5735.	7.2	199
97	General Strategy for the Synthesis of Rigid Weak-Link Approach Platinum(II) Complexes: Tweezers, Triple-Layer Complexes, and Macrocycles. Inorganic Chemistry, 2013, 52, 5876-5888.	1.9	30
98	Threeâ€Dimensional Architectures Incorporating Stereoregular Donor–Acceptor Stacks. Chemistry - A European Journal, 2013, 19, 8457-8465.	1.7	28

#	Article	IF	CITATIONS
99	Synthesis, Rotational Dynamics, and Photophysical Characterization of a Crystalline Linearly Conjugated Phenyleneethynylene Molecular Dirotor. Journal of Organic Chemistry, 2013, 78, 5293-5302.	1.7	33
100	A stimuli-responsive "smart probe―for selective monitoring of multiple-cations via differential analyses. Analyst, The, 2013, 138, 3356.	1.7	13
101	Guestâ€Induced Unidirectional Dual Rotary and Twisting Motions of a Spiroborateâ€Based Doubleâ€Stranded Helicate Containing a Bisporphyrin Unit. Angewandte Chemie - International Edition, 2013, 52, 6849-6853.	7.2	63
102	Trigonal prismatic bicyclocalixaromatics, synthesis and structures. Supramolecular Chemistry, 2013, 25, 409-415.	1.5	5
103	Amphidynamic Crystals of a Steroidal Bicyclo[2.2.2]octane Rotor: A High Symmetry Group That Rotates Faster than Smaller Methyl and Methoxy Groups. Journal of the American Chemical Society, 2013, 135, 10388-10395.	6.6	62
104	Toward Directionally Controlled Molecular Motions and Kinetic Intra- and Intermolecular Self-Sorting: Threading Processes of Nonsymmetric Wheel and Axle Components. Journal of the American Chemical Society, 2013, 135, 9924-9930.	6.6	91
105	Synthetic small-molecule walkers at work. Chemical Science, 2013, 4, 3031.	3.7	30
106	Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. Journal of the American Chemical Society, 2013, 135, 18609-18620.	6.6	112
107	Sequence-Programmable Multicomponent Multilayers of Nanometer-Sized Tetralactam Macrocycles on Gold Surfaces. Journal of Physical Chemistry C, 2013, 117, 18980-18985.	1.5	16
108	In situ manipulation of catalyst performance via the photocontrolled aggregation/dissociation state of the catalyst. Chemical Communications, 2013, 49, 4628.	2.2	38
109	Photoresponsive Molecules in Wellâ€Defined Nanoscale Environments. Advanced Materials, 2013, 25, 302-312.	11.1	57
110	Organic Switches for Surfaces and Devices. Advanced Materials, 2013, 25, 331-348.	11.1	142
111	Approximate photochemical dynamics of azobenzene with reactive force fields. Journal of Chemical Physics, 2013, 139, 224303.	1.2	21
112	Mechanically Interlaced and Interlocked Donor–Acceptor Foldamers. Advances in Polymer Science, 2013, , 271-294.	0.4	18
113	An Interwoven Metalâ€Organic Framework Combining Mechanically Interlocked Linkers and Interpenetrated Networks. Chemistry - A European Journal, 2013, 19, 14076-14080.	1.7	42
114	An Automatic Molecular Dispenser of Chloride. Chemistry - A European Journal, 2013, 19, 3729-3734.	1.7	8
115	The struggle for control. Nature Nanotechnology, 2013, 8, 888-890.	15.6	4
117	Solarâ€Powered Nanomechanical Transduction from Crystalline Molecular Rotors. Advanced Materials, 2013, 25, 3324-3328.	11.1	23

#	ARTICLE	IF	CITATIONS
120	Enhanced Diffusion, Chemotaxis, and Pumping by Active Enzymes: Progress toward an Organizing Principle of Molecular Machines. ACS Nano, 2014, 8, 11917-11924.	7.3	16
121	An Aesthetics of the Invisible: Nanotechnology and Informatic Matter. Theory, Culture and Society, 2014, 31, 99-121.	1.3	6
122	Light-Operated Machines Based on Threaded Molecular Structures. Topics in Current Chemistry, 2014, 354, 1-34.	4.0	31
123	Energetically Demanding Transport in a Supramolecular Assembly. Journal of the American Chemical Society, 2014, 136, 14702-14705.	6.6	72
124	[2]Pseudorotaxane formation between rigid Y-shaped 2,4,5-triphenylimidazolium axles and [24]crown-8 ether wheels. Organic and Biomolecular Chemistry, 2014, 12, 4824.	1.5	14
126	Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions. Organic and Biomolecular Chemistry, 2014, 12, 6089-6093.	1.5	25
127	Fluctuation-induced transport of two coupled particles: Effect of the interparticle interaction. Journal of Chemical Physics, 2014, 140, 214108.	1.2	7
128	Operations and Thermodynamics of an Artificial Rotary Molecular Motor in Solution. ChemPhysChem, 2014, 15, 1834-1840.	1.0	3
129	Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products. Journal of the American Chemical Society, 2014, 136, 17438-17441.	6.6	113
130	Development of an Electrically Driven Molecular Motor. Chemical Record, 2014, 14, 834-840.	2.9	8
131	A Toggle Nanoswitch Alternately Controlling Two Catalytic Reactions. Angewandte Chemie - International Edition, 2014, 53, 14255-14259.	7.2	81
132	Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes. Topics in Current Chemistry, 2014, 354, 139-162.	4.0	36
133	Distortional Supramolecular Isomers of Polyrotaxane Coordination Polymers: Photoreactivity and Sensing of Nitro Compounds. Angewandte Chemie, 2014, 126, 5697-5701.	1.6	26
134	Functional interlocked systems. Chemical Society Reviews, 2014, 43, 99-122.	18.7	265
135	Topological isomerism in a chiral handcuff catenane. Chemical Science, 2014, 5, 90-100.	3.7	24
136	Bioinspired Chemistry Based on Minimalistic Pseudopeptides. Accounts of Chemical Research, 2014, 47, 112-124.	7.6	58
137	An acid/base switchable and reversibly cross-linkable polyrotaxane. Polymer Chemistry, 2014, 5, 3994-4001.	1.9	53
138	The topological and chemical implications of introducing oriented rings to [3]catenanes. Supramolecular Chemistry, 2014, 26, 192-201.	1.5	5

#	Article	IF	CITATIONS
139	Conversion of light into macroscopic helical motion. Nature Chemistry, 2014, 6, 229-235.	6.6	646
140	An Electrochemically and Thermally Switchable Donor–Acceptor [<i>c</i> 2]Daisy Chain Rotaxane. Angewandte Chemie - International Edition, 2014, 53, 1953-1958.	7.2	62
141	Bidirectional Chemical Communication between Nanomechanical Switches. Angewandte Chemie - International Edition, 2014, 53, 4709-4713.	7.2	58
142	Photochromic Molecular Gyroscope with Solid State Rotational States Determined by an Azobenzene Bridge. Journal of Organic Chemistry, 2014, 79, 1611-1619.	1.7	69
143	Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks. Topics in Current Chemistry, 2014, 354, 213-251.	4.0	20
144	Controlling Covalent Connection and Disconnection with Light. Angewandte Chemie - International Edition, 2014, 53, 8784-8787.	7.2	73
145	Metal–Organic Frameworks with Mechanically Interlocked Pillars: Controlling Ring Dynamics in the Solid-State via a Reversible Phase Change. Journal of the American Chemical Society, 2014, 136, 7403-7409.	6.6	127
146	Dynamic heteroleptic metal-phenanthroline complexes: from structure to function. Dalton Transactions, 2014, 43, 3815-3834.	1.6	117
147	Photochemically Controlled Molecular Machines with Sequential Logic Operation. Israel Journal of Chemistry, 2014, 54, 553-567.	1.0	10
148	Distortional Supramolecular Isomers of Polyrotaxane Coordination Polymers: Photoreactivity and Sensing of Nitro Compounds. Angewandte Chemie - International Edition, 2014, 53, 5591-5595.	7.2	170
149	An electrochemically switchable foldamer $\hat{a} \in \hat{a}$ a surprising feature of a rotaxane with equivalent stations. Chemical Science, 2014, 5, 2836.	3.7	22
150	A Highly Luminescent Tetramer from a Weakly Emitting Monomer: Acid―and Redox ontrolled Multiple Complexation by Cucurbit[7]uril. Chemistry - A European Journal, 2014, 20, 7054-7060.	1.7	12
151	Principal Component Analysis (PCA)-Assisted Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): A Versatile Method for the Investigation of Self-Assembled Monolayers and Multilayers as Precursors for the Bottom-Up Approach of Nanoscaled Devices. Analytical Chemistry, 2014, 86, 5740-5748.	3.2	14
152	Hydrazone-based switches, metallo-assemblies and sensors. Chemical Society Reviews, 2014, 43, 1963.	18.7	499
153	Self-Assembly of Tetraphenylethene-Based [2]Catenane Driven by Acid–Base-Controllable Molecular Switching and Its Enabled Aggregation-Induced Emission. Organic Letters, 2014, 16, 5564-5567.	2.4	33
155	Photoâ€Chemopropulsion – Lightâ€Stimulated Movement of Microdroplets. Advanced Materials, 2014, 26, 7339-7345.	11.1	64
157	Light-Induced Contraction and Extension of Single Macromolecules on a Modified Graphite Surface. ACS Nano, 2014, 8, 11987-11993.	7.3	19
158	Metal-binding studies of linear rigid-axle [2]pseudorotaxanes with in situ generated anionic metal halide complexes. CrystEngComm, 2014, 16, 7320.	1.3	7

#	Article	IF	CITATIONS
159	The self-complexation of mono-urea-functionalized pillar[5] arenes with abnormal urea behaviors. Chemical Communications, 2014, 50, 1317-1319.	2.2	53
160	Restraining the motion of a ligand for modulating the structural phase transition in two isomorphic polar coordination polymers. Dalton Transactions, 2014, 43, 9008-9011.	1.6	12
161	A novel family of structurally stable double stranded DNA catenanes. Chemical Communications, 2014, 50, 6091-6093.	2.2	35
162	Theoretical Study on Conformation Dynamics of Three-Station Molecular Shuttle in Different Environments and its Influence on NMR Chemical Shifts and Binding Interactions. Journal of Physical Chemistry A, 2014, 118, 9032-9044.	1.1	13
163	Mechanistic Evaluation of Motion in Redox-Driven Rotaxanes Reveals Longer Linkers Hasten Forward Escapes and Hinder Backward Translations. Journal of the American Chemical Society, 2014, 136, 6373-6384.	6.6	48
164	Facile assembly of light-driven molecular motors onto a solid surface. Chemical Communications, 2014, 50, 12641-12644.	2.2	18
165	Potential-controlled rotaxane molecular shuttles based on electron-deficient macrocyclic complexes. Chemical Communications, 2014, 50, 13718-13721.	2.2	10
166	Photo-tuning of highly selective wetting in inverse opals. Soft Matter, 2014, 10, 1325-1328.	1.2	20
167	A Rotary Molecular Motor Gated by Electrical Energy. Organic Letters, 2014, 16, 6100-6103.	2.4	15
168	Tetratopic pyrimidineâ€"hydrazone ligands modified with terminal hydroxymethyl and acryloyl arms and their Pb(<scp>ii</scp>), Zn(<scp>ii</scp>), Cu(<scp>ii</scp>) and Ag(<scp>i</scp>) complexes. Dalton Transactions, 2014, 43, 8205-8218.	1.6	9
169	Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chemical Communications, 2014, 50, 82-84.	2.2	20
170	Probing the mobility of catenane rings in single molecules. Chemical Science, 2014, 5, 1449.	3.7	50
171	CuAAC "click―active-template synthesis of functionalised [2]rotaxanes using small exo-substituted macrocycles: how small is too small?. Chemical Communications, 2014, 50, 7044-7047.	2.2	34
172	[1.1.1]Cryptand: directions for its use as a variable-pH kinetic molecular device. New Journal of Chemistry, 2014, 38, 561-567.	1.4	5
173	A trio of nanoswitches in redox-potential controlled communication. Chemical Communications, 2014, 50, 13254-13257.	2.2	33
174	Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nature Chemistry, 2014, 6, 1079-1083.	6.6	111
175	Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chemical Communications, 2014, 50, 5128-5142.	2.2	237
176	Self-assembly of pseudorotaxane films with thermally reversible crystal phases and optical properties. Journal of Materials Chemistry C, 2014, 2, 2061-2068.	2.7	3

#	ARTICLE	IF	CITATIONS
177	Synthesis and characterization of spin-labelled [2]rotaxanes containing tetrathiafulvalene and 1,5-dioxynaphthalene molecular stations. Organic Chemistry Frontiers, 2014, 1, 477.	2.3	14
178	Processive Catalysis. Angewandte Chemie - International Edition, 2014, 53, 11420-11428.	7.2	72
179	Photo-responsive [2]catenanes: synthesis and properties. Organic and Biomolecular Chemistry, 2014, 12, 7702-7711.	1.5	25
180	Construction of rotacatenanes using rotaxane and catenane frameworks. Organic and Biomolecular Chemistry, 2014, 12, 4862-4871.	1.5	16
181	A Lewis acid-mediated conformational switch. Organic and Biomolecular Chemistry, 2014, 12, 7937-7941.	1.5	10
182	Highly efficient synthesis of a tristable molecular shuttle and its controlled motion under chemical stimuli. Organic and Biomolecular Chemistry, 2014, 12, 6937.	1.5	13
183	Control of Surface Wettability Using Tripodal Light-Activated Molecular Motors. Journal of the American Chemical Society, 2014, 136, 3219-3224.	6.6	131
184	Light-Driven Molecular Motors: Imines as Four-Step or Two-Step Unidirectional Rotors. Journal of the American Chemical Society, 2014, 136, 13114-13117.	6.6	241
185	Two Switchable Star-Shaped [1](<i>n</i>)Rotaxanes with Different Multibranched Cores. Organic Letters, 2014, 16, 4940-4943.	2.4	46
186	lodideâ€Induced Shuttling of a Halogen―and Hydrogenâ€Bonding Twoâ€Station Rotaxane. Angewandte Chemie - International Edition, 2014, 53, 11854-11858.	7.2	50
187	Structural Transition in the Perovskite-like Bimetallic Azido Coordination Polymers: (NMe4)2[B′·B″(N3)6] (B′ = Cr3+, Fe3+; B″ = Na+, K+). Crystal Growth and Design, 2014, 14, 3903-39	0 9 .4	46
188	Ground-State Kinetics of Bistable Redox-Active Donor–Acceptor Mechanically Interlocked Molecules. Accounts of Chemical Research, 2014, 47, 482-493.	7.6	107
189	Evaluation of Hydrogen-Bond Acceptors for Redox-Switchable Resorcin[4]arene Cavitands. Journal of the American Chemical Society, 2014, 136, 3852-3858.	6.6	39
191	Emergent Ion-Gated Binding of Cationic Host–Guest Complexes within Cationic M ₁₂ L ₂₄ Molecular Flasks. Journal of the American Chemical Society, 2014, 136, 12027-12034.	6.6	94
192	Circuit Topology of Proteins and Nucleic Acids. Structure, 2014, 22, 1227-1237.	1.6	44
193	A pillar[5] arene and crown ether fused bicyclic host: synthesis, guest discrimination and simultaneous binding of two guests with different shapes, sizes and electronic constitutions. Chemical Communications, 2014, 50, 10460-10463.	2.2	70
194	Five additional macrocycles that allow Na ⁺ ion-templated threading of guest units featuring a single urea or amide functionality. Organic and Biomolecular Chemistry, 2014, 12, 2907-2917.	1.5	6
195	Molecular Stirrers in Action. Journal of the American Chemical Society, 2014, 136, 14924-14932.	6.6	54

#	Article	IF	CITATIONS
196	Mechanical Bonds and Topological Effects in Radical Dimer Stabilization. Journal of the American Chemical Society, 2014, 136, 11011-11026.	6.6	47
197	Rotation of a Bulky Triptycene in the Solid State: Toward Engineered Nanoscale Artificial Molecular Machines. Journal of the American Chemical Society, 2014, 136, 8871-8874.	6.6	62
198	Development of Redox-Switchable Resorcin[4]arene Cavitands. Accounts of Chemical Research, 2014, 47, 2096-2105.	7.6	107
199	Structural Dynamics of Overcrowded Alkene-Based Molecular Motors during Thermal Isomerization. Journal of Organic Chemistry, 2014, 79, 927-935.	1.7	49
200	Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions. Journal of the American Chemical Society, 2014, 136, 4714-4723.	6.6	122
201	An ExBox [2]catenane. Chemical Science, 2014, 5, 2724.	3.7	33
202	A Light-Gated Molecular Brake with Antilock and Fluorescence Turn-On Alarm Functions: Application of Singlet-State Adiabatic Cis â†' Trans Photoisomerization. Journal of Organic Chemistry, 2014, 79, 6321-6325.	1.7	22
203	A move in the right direction. Nature Nanotechnology, 2014, 9, 331-332.	15.6	4
204	Tetrapodal Molecular Switches and Motors: Synthesis and Photochemistry. Journal of Organic Chemistry, 2014, 79, 7032-7040.	1.7	27
205	Active-template synthesis of "click―[2]rotaxane ligands: self-assembly of mechanically interlocked metallo-supramolecular dimers, macrocycles and oligomers. Chemical Science, 2014, 5, 4283-4290.	3.7	49
206	Simple Hydrazone Building Blocks for Complicated Functional Materials. Accounts of Chemical Research, 2014, 47, 2141-2149.	7.6	154
207	Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. Journal of the American Chemical Society, 2014, 136, 14245-14254.	6.6	42
208	Fast redox-triggered shuttling motions in a copper rotaxane based on a phenanthroline–terpyridine conjugate. Organic and Biomolecular Chemistry, 2014, 12, 7572-7580.	1.5	10
209	Tuning the Rotation Rate of Light-Driven Molecular Motors. Journal of Organic Chemistry, 2014, 79, 4446-4455.	1.7	56
210	Rotaxane-Based Molecular Muscles. Accounts of Chemical Research, 2014, 47, 2186-2199.	7.6	461
211	Reversible dimerization of viologen radicals covalently linked to a calixarene platform: Experimental and theoretical aspects. Comptes Rendus Chimie, 2014, 17, 505-511.	0.2	20
212	No-Pumping Theorem for Many Particle Stochastic Pumps. Physical Review Letters, 2014, 112, 050601.	2.9	20
214	A monomer–dimer nanoswitch that mimics the working principle of the SARS-CoV 3CLpro enzyme controls copper-catalysed cyclopropanation. Dalton Transactions, 2014, 43, 10977-10982.	1.6	30

#	Article	IF	CITATIONS
217	- Synthesis, Structure, and Electronic and Photophysical Properties of Donor–Acceptor Cyclophanes. , 2014, , 114-155.		O
220	Complexations between Oxacalixcrowns and Secondary Ammonium Salts and €onstruction of an Oxacalixcrownâ€Based [2]Rotaxane. European Journal of Organic Chemistry, 2015, 2015, 6270-6277.	1.2	5
222	A Ca2+-, Mg2+-, and Zn2+-Based Dendritic Contractile Nanodevice with Two pH-Dependent Motional Functions. Angewandte Chemie - International Edition, 2015, 54, 14570-14574.	7.2	12
224	Selfâ€Healing, Expansion–Contraction, and Shapeâ€Memory Properties of a Preorganized Supramolecular Hydrogel through Host–Guest Interactions. Angewandte Chemie - International Edition, 2015, 54, 8984-8987.	7.2	454
225	A Small Molecule Walks Along a Surface Between Porphyrin Fences That Are Assembled Inâ€Situ. Angewandte Chemie, 2015, 127, 7207-7211.	1.6	7
227	Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β yclodextrin Dimers. Angewandte Chemie - International Edition, 2015, 54, 9376-9380.	7.2	111
228	Negative differential electrical resistance of a rotational organic nanomotor. Beilstein Journal of Nanotechnology, 2015, 6, 2332-2337.	1.5	4
229	Discrete multiporphyrin pseudorotaxane assemblies from di- and tetravalent porphyrin building blocks. Beilstein Journal of Organic Chemistry, 2015, 11, 748-762.	1.3	3
230	Protein-Induced Supramolecular Disassembly of Amphiphilic Polypeptide Nanoassemblies. Journal of the American Chemical Society, 2015, 137, 7286-7289.	6.6	82
231	The eternal youth of azobenzene: new photoactive molecular and supramolecular devices. Pure and Applied Chemistry, 2015, 87, 537-545.	0.9	35
232	Theoretical insight into azobis-(benzo-18-crown-6) ether combined with the alkaline earth metal cations. Computational and Theoretical Chemistry, 2015, 1066, 28-33.	1.1	16
233	Discrete and polymeric complexes formed from cobalt(<scp>ii</scp>), 4,4′-bipyridine and 2-sulfoterephthalate: synthetic, crystallographic and magnetic studies. CrystEngComm, 2015, 17, 4502-4511.	1.3	8
234	Photoreversible [2] Catenane via the Host–Guest Interactions between a Palladium Metallacycle and β-Cyclodextrin. Inorganic Chemistry, 2015, 54, 11807-11812.	1.9	26
235	Fuel-Controlled Reassembly of Metal–Organic Architectures. ACS Central Science, 2015, 1, 504-509.	5.3	89
236	Sunlight-powered kHz rotation of a hemithioindigo-based molecular motor. Nature Communications, 2015, 6, 8406.	5.8	160
237	Irrelevance of the Power Stroke for the Directionality, Stopping Force, and Optimal Efficiency of Chemically Driven Molecular Machines. Biophysical Journal, 2015, 108, 291-303.	0.2	60
238	Nanotechnology in biorobotics: opportunities and challenges. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	16
239	Electrochemically and Chemically Induced Redox Processes in Molecular Machines. ChemElectroChem, 2015, 2, 475-496.	1.7	39

#	Article	IF	CITATIONS
240	Chemically and Electrochemically Triggered Assembly of Viologen Radicals: Towards Multiaddressable Molecular Switches. Chemistry - A European Journal, 2015, 21, 2090-2106.	1.7	32
241	Rational molecular designs for drastic acceleration of the color-fading speed of photochromic naphthopyrans. Chemical Communications, 2015, 51, 3057-3060.	2.2	36
242	A fluorescent bistable [2]rotaxane molecular switch on SiO ₂ nanoparticles. Chemical Communications, 2015, 51, 4973-4976.	2.2	57
243	Controlling association kinetics in the formation of donor–acceptor pseudorotaxanes. Tetrahedron Letters, 2015, 56, 3591-3594.	0.7	22
244	Light and Chemically Driven Molecular Machines Showing a Unidirectional Four-State Switching Cycle. Journal of Organic Chemistry, 2015, 80, 1887-1895.	1.7	20
245	Photodriven [2]rotaxane–[2]catenane interconversion. Chemical Communications, 2015, 51, 2810-2813.	2.2	23
246	Single Molecular Machines and Motors. Advances in Atom and Single Molecule Machines, 2015, , .	0.0	6
247	Aromatic plane effect study in pseudorotaxane construction between †Texas-sized†molecular box and carboxylate anions. Tetrahedron Letters, 2015, 56, 820-823.	0.7	6
248	Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotechnology, 2015, 10, 161-165.	15.6	301
249	Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chemical Society Reviews, 2015, 44, 4415-4432.	18.7	149
250	Redox-dependent self-sorting toggles a rotary nanoswitch. Organic and Biomolecular Chemistry, 2015, 13, 8937-8944.	1.5	11
251	A Platform for Change. Supramolecular Chemistry, 2015, 27, 567-570.	1.5	10
252	Redox Control of the Binding Modes of an Organic Receptor. Journal of the American Chemical Society, 2015, 137, 11057-11068.	6.6	55
253	A prominent dielectric material with extremely high-temperature and reversible phase transition in the high thermally stable perovskite-like architecture. Journal of Materials Chemistry C, 2015, 3, 6350-6358.	2.7	26
254	Light-driven bending of diarylethene mixed crystals. Chemical Science, 2015, 6, 5746-5752.	3.7	58
255	Mechanically selflocked chiral gemini-catenanes. Nature Communications, 2015, 6, 7590.	5.8	172
256	Crystalline arrays of molecular rotors with TIPS-trityl and phenolic-trityl stators using phenylene, 1,2-difluorophenylene and pyridine rotators. RSC Advances, 2015, 5, 55201-55208.	1.7	21
257	Stochastic pumping of particles with zero-range interactions. New Journal of Physics, 2015, 17, 055015.	1.2	4

#	Article	IF	CITATIONS
258	Template-directed nonenzymatic oligonucleotide synthesis: lessons from synthetic chemistry. Pure and Applied Chemistry, 2015, 87, 205-218.	0.9	8
259	A [2]rota[2]catenane, constructed from a pillar[5]arene-crown ether fused double-cavity macrocycle: synthesis and structural characterization. Chemical Communications, 2015, 51, 13882-13885.	2.2	40
260	What causes tumbling of altro- \hat{l} ±-CD derivatives? Insight from computer simulations. RSC Advances, 2015, 5, 57309-57317.	1.7	5
261	Mechanically Interlocked Linkers inside Metal–Organic Frameworks: Effect of Ring Size on Rotational Dynamics. Journal of the American Chemical Society, 2015, 137, 9643-9651.	6.6	98
262	Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS Nano, 2015, 9, 7746-7768.	7.3	385
263	A novel dynamic pseudo[1]rotaxane based on a mono-biotin-functionalized pillar[5]arene. Organic Chemistry Frontiers, 2015, 2, 1013-1017.	2.3	38
264	Light driven bent linear supramolecular polymer. Tetrahedron, 2015, 71, 3216-3220.	1.0	2
265	A Small Molecule Walks Along a Surface Between Porphyrin Fences That Are Assembled Inâ€Situ. Angewandte Chemie - International Edition, 2015, 54, 7101-7105.	7.2	26
266	Stimuli-Responsive Metal–Ligand Assemblies. Chemical Reviews, 2015, 115, 7729-7793.	23.0	863
267	Electrostatic Kinetic Barriers in the Threading/Dethreading Motion of a Rotaxane-like Complex. Organic Letters, 2015, 17, 1858-1861.	2.4	19
268	An artificial molecular pump. Nature Nanotechnology, 2015, 10, 547-553.	15.6	420
269	Crystal structures, phase transitions, and switchable dielectric behaviors: comparison of a series of N-heterocyclic ammonium perchlorates. Dalton Transactions, 2015, 44, 8221-8231.	1.6	23
270	Coupled Molecular Switching Processes in Ordered Mono- and Multilayers of Stimulus-Responsive Rotaxanes on Gold Surfaces. Journal of the American Chemical Society, 2015, 137, 4382-4390.	6.6	51
271	A molecular shuttle that operates inside a metal–organic framework. Nature Chemistry, 2015, 7, 514-519.	6.6	247
272	Lightâ€Gated Molecular Brakes Based on Pentiptyceneâ€Incorporated Azobenzenes. Chemistry - an Asian Journal, 2015, 10, 989-997.	1.7	16
273	Dethreading of Tetraalkylsuccinamide-Based [2]Rotaxanes for Preparing Benzylic Amide Macrocycles. Journal of Organic Chemistry, 2015, 80, 10049-10059.	1.7	39
274	From self-sorted coordination libraries to networking nanoswitches for catalysis. Chemical Communications, 2015, 51, 14956-14968.	2.2	70
275	Dynamic Signaling Cascades: Reversible Covalent Reaction-Coupled Molecular Switches. Journal of the American Chemical Society, 2015, 137, 14220-14228.	6.6	27

#	Article	IF	CITATIONS
276	Polymer Mechanochemistry. Topics in Current Chemistry, 2015, , .	4.0	27
277	Binding of carboxylatopillar[5]arene with alkyl and aryl ammonium salts in aqueous medium. RSC Advances, 2015, 5, 85791-85798.	1.7	14
278	Synthesis of a Lightâ€Driven Motorized Nanocar. Asian Journal of Organic Chemistry, 2015, 4, 1308-1314.	1.3	15
279	Unidirectional rotary motion in achiral molecular motors. Nature Chemistry, 2015, 7, 890-896.	6.6	134
280	Huxley's Model for Muscle Contraction Revisited: The Importance of Microscopic Reversibility. Topics in Current Chemistry, 2015, 369, 285-316.	4.0	9
281	Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11161-11168.	3.3	83
282	Design and Synthesis of Nonequilibrium Systems. ACS Nano, 2015, 9, 8672-8688.	7.3	128
283	A four-unit [c2]daisy chain connected by hydrogen bonds. Chemical Communications, 2015, 51, 15253-15256.	2.2	7
284	Artificial Molecular Machines. Chemical Reviews, 2015, 115, 10081-10206.	23.0	1,586
285	Photomechanical Energy Conversion Using Polymer Brush Dissociation. Macromolecules, 2015, 48, 6703-6712.	2.2	1
286	Multicomponent Self-Assembled Metal–Organic [3]Rotaxanes. Journal of the American Chemical Society, 2015, 137, 12966-12976.	6.6	37
287	Reversible Photocapture of a [2]Rotaxane Harnessing a Barbiturate Template. Journal of Organic Chemistry, 2015, 80, 988-996.	1.7	19
288	Photoinduced guest transformation promotes translocation of guest from hydroxypropyl-l²-cyclodextrin to cucurbit[7]uril. Chemical Communications, 2015, 51, 1349-1352.	2.2	14
289	A heterometallic macrocycle as a redox-controlled molecular hinge. Dalton Transactions, 2015, 44, 2252-2258.	1.6	13
290	Ion-mediated conformational switches. Chemical Science, 2015, 6, 1630-1639.	3.7	90
291	Molecular Popâ€up Toy: A Molecular Machine Based on Folding/Unfolding Motion of Alkyl Chains Bound to a Host. Chemistry - an Asian Journal, 2015, 10, 154-159.	1.7	16
292	Regulating signal enhancement with coordination-coupled deprotonation of a hydrazone switch. Chemical Science, 2015, 6, 209-213.	3.7	47
293	Acid–Base Driven Ligand Exchange with Palladium(II) "Click―Complexes. Asian Journal of Organic Chemistry, 2015, 4, 208-211.	1.3	8

#	Article	IF	CITATIONS
294	Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotechnology, 2015, 10, 70-75.	15.6	367
295	Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle. ChemistryOpen, 2015, 4, 18-21.	0.9	20
296	Bulk Inclusions of Pyridazineâ€Based Molecular Rotors in Tris(o â€phenylenedioxy)cyclotriphosphazene (TPP). Advanced Functional Materials, 2016, 26, 5718-5732.	7.8	21
297	Kontrollierte Faltungs― Bewegungs―und konstitutionelle Dynamik in polyheterocyclischen molekularen StrÃ ¤ gen. Angewandte Chemie, 2016, 128, 4200-4225.	1.6	23
298	Enantiopure Functional Molecular Motors Obtained by a Switchable Chiralâ€Resolution Process. Chemistry - A European Journal, 2016, 22, 7054-7058.	1.7	17
299	Cyclic Zinc(II) Bisporphyrinâ€Based Molecular Switches: Supramolecular Control of Complexationâ€Mediated Conformational Switching and Photoinduced Electron Transfer. Chemistry - A European Journal, 2016, 22, 5607-5619.	1.7	27
300	Wholly Synthetic Molecular Machines. ChemPhysChem, 2016, 17, 1780-1793.	1.0	120
301	Selfâ€Propelled Microâ€∤Nanomotors Based on Controlled Assembled Architectures. Advanced Materials, 2016, 28, 1060-1072.	11.1	203
302	Tetranitro-oxacalix[4]crown-Based Host–Guest Recognition Motif and a Related [2]Rotaxane-Based Molecular Switch. Journal of Organic Chemistry, 2016, 81, 6457-6462.	1.7	4
303	Structural Changes of a Doubly Spinâ€Labeled Chemically Driven Molecular Shuttle Probed by PELDOR Spectroscopy. Chemistry - A European Journal, 2016, 22, 8745-8750.	1.7	11
304	A photoswitchable rotaxane operating in monolayers on solid support. Chemical Communications, 2016, 52, 14458-14461.	2.2	21
305	Microelectromechanical systems integrating molecular spin crossover actuators. Applied Physics Letters, 2016, 109, .	1.5	38
306	Host-guest interaction of rotaxane assembly through selective detection of ferric ion: Insight into hemin sensing and switching with sodium ascorbate. Dyes and Pigments, 2016, 131, 49-59.	2.0	15
307	Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chemical Communications, 2016, 52, 6765-6768.	2.2	54
308	Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Physical Chemistry Chemical Physics, 2016, 18, 16738-16747.	1.3	33
309	A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation. European Physical Journal B, 2016, 89, 1.	0.6	2
310	Man-made molecular machines: membrane bound. Chemical Society Reviews, 2016, 45, 6118-6129.	18.7	110
311	Directional Molecular Transportation Based on a Catalytic Stopper-Leaving Rotaxane System. Journal of the American Chemical Society, 2016, 138, 5652-5658.	6.6	53

#	Article	IF	CITATIONS
312	Oligorotaxane Radicals under Orders. ACS Central Science, 2016, 2, 89-98.	5.3	47
313	Catenation of Homochiral Metal–Organic Nanocages or Nanotubes. Inorganic Chemistry, 2016, 55, 5095-5097.	1.9	14
314	Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nature Chemistry, 2016, 8, 625-632.	6.6	366
315	A1/A2-Diamino-Substituted Pillar[5]arene-Based Acid–Base-Responsive Host–Guest System. Journal of Organic Chemistry, 2016, 81, 3877-3881.	1.7	45
316	Superior anion induced shuttling behaviour exhibited by a halogen bonding two station rotaxane. Chemical Science, 2016, 7, 5171-5180.	3.7	47
317	Photoactuators for Direct Opticalâ€toâ€Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation. Advanced Materials, 2016, 28, 10548-10556.	11.1	129
318	Allosteric Regulation of the Rotational Speed in a Light-Driven Molecular Motor. Journal of the American Chemical Society, 2016, 138, 13597-13603.	6.6	80
319	Direct Observation of a Dark State in the Photocycle of a Light-Driven Molecular Motor. Journal of Physical Chemistry A, 2016, 120, 8606-8612.	1.1	36
320	Kinetic Master Equation Modeling of an Artificial Protein Pump. Journal of Physical Chemistry C, 2016, 120, 14495-14501.	1.5	6
321	Highly Flexible, Tough, and Selfâ€Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromolecular Rapid Communications, 2016, 37, 86-92.	2.0	207
322	One-dimensional supramolecular columnar structure of trans-syn-trans-dicyclohexano [18] crown-6 and organic ammonium cations. CrystEngComm, 2016, 18, 7959-7964.	1.3	16
323	Diffusion-Controlled Rotation of Triptycene in a Metal–Organic Framework (MOF) Sheds Light on the Viscosity of MOF-Confined Solvent. ACS Central Science, 2016, 2, 608-613.	5. 3	71
324	Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23404-23411.	4.0	47
325	Spectroscopic and Theoretical Identification of Two Thermal Isomerization Pathways for Bistable Chiral Overcrowded Alkenes. Chemistry - A European Journal, 2016, 22, 13478-13487.	1.7	30
326	Cooperative Switching in Nanofibers of Azobenzene Oligomers. Scientific Reports, 2016, 6, 25605.	1.6	31
327	Optical vs. chemical driving for molecular machines. Faraday Discussions, 2016, 195, 583-597.	1.6	61
328	A spiro-type ammonium based switchable dielectric material with two sequential reversible phase transitions above room temperature. RSC Advances, 2016, 6, 74117-74123.	1.7	14
329	Design of [2]rotaxane through image threshold segmentation of electrostatic potential image. Journal of Computational Chemistry, 2016, 37, 2228-2241.	1.5	2

#	Article	IF	CITATIONS
330	Synthesis and Photoisomerization of Substituted Dibenzofulvene Molecular Rotors. Chemistry - A European Journal, 2016, 22, 11291-11302.	1.7	12
331	Formation of a Polythreaded, Metal–Organic Framework Utilizing an Interlocked Hexadentate, Carboxylate Linker. European Journal of Inorganic Chemistry, 2016, 2016, 4524-4529.	1.0	17
332	Intrinsic irreversibility limits the efficiency of multidimensional molecular motors. Physical Review E, 2016, 93, 052109.	0.8	10
333	Synthesis, Structure, and Local Molecular Dynamics for Crystalline Rotors Based on Hecogenin/Botogenin Steroidal Frameworks. Crystal Growth and Design, 2016, 16, 5698-5709.	1.4	12
334	Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. CheM, 2016, 1, 766-775.	5.8	121
335	A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 14242-14245.	6.6	114
336	Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout. Chemical Communications, 2016, 52, 14085-14088.	2.2	19
339	Hierarchical Selfâ€Assembly of Supramolecular Muscleâ€Like Fibers. Angewandte Chemie - International Edition, 2016, 55, 703-707.	7.2	91
340	Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials. ChemPhysChem, 2016, 17, 1759-1768.	1.0	36
341	Dethreading of a Photoactive Azobenzeneâ€Containing Molecular Axle from a Crown Ether Ring: A Computational Investigation. ChemPhysChem, 2016, 17, 1913-1919.	1.0	17
342	Controlled Folding, Motional, and Constitutional Dynamic Processes of Polyheterocyclic Molecular Strands. Angewandte Chemie - International Edition, 2016, 55, 4130-4154.	7.2	78
343	Reversible Photoisomerization of Spiropyran on the Surfaces of Au ₂₅ Nanoclusters. ChemPhysChem, 2016, 17, 1805-1809.	1.0	28
344	Controlled Directional Motions of Molecular Vehicles, Rotors, and Motors: From Metallic to Silicon Surfaces, a Strategy to Operate at Higher Temperatures. ChemPhysChem, 2016, 17, 1742-1751.	1.0	16
345	A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nature Chemistry, 2016, 8, 860-866.	6.6	142
346	Fully reversible three-state interconversion of metallosupramolecular architectures. Chemical Communications, 2016, 52, 8749-8752.	2.2	17
347	Solvent- and anion-induced interconversions of metal–organic cages. Chemical Communications, 2016, 52, 8745-8748.	2.2	31
348	Self-assembly of pseudo-rotaxane and rotaxane complexes using an electrostatic slippage approach. Chemical Communications, 2016, 52, 9526-9529.	2.2	21
349	The Physics and Physical Chemistry of Molecular Machines. ChemPhysChem, 2016, 17, 1719-1741.	1.0	120

#	Article	IF	Citations
351	Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coordination Chemistry Reviews, 2016, 308, 395-408.	9.5	206
352	Solid State Characterization of Bridged Steroidal Molecular Rotors: Effect of the Rotator Fluorination on Their Crystallization. Crystal Growth and Design, 2016, 16, 1599-1605.	1.4	11
353	Computational Design of a Family of Light-Driven Rotary Molecular Motors with Improved Quantum Efficiency. Journal of Physical Chemistry Letters, 2016, 7, 105-110.	2.1	67
354	Performance of some DFT functionals with dispersion on modeling of the translational isomers of a solvent-switchable [2]rotaxane. Journal of Molecular Structure, 2016, 1107, 31-38.	1.8	13
355	A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nature Communications, 2016, 7, 10591.	5.8	259
356	How molecular motors extract order from chaos (a key issues review). Reports on Progress in Physics, 2016, 79, 032601.	8.1	43
357	Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates. Chemical Communications, 2016, 52, 4006-4009.	2.2	19
358	Crystal Fluidity Reflected by Fast Rotational Motion at the Core, Branches, and Peripheral Aromatic Groups of a Dendrimeric Molecular Rotor. Journal of the American Chemical Society, 2016, 138, 4650-4656.	6.6	53
359	Allosteric Regulation of Unidirectional Spring-like Motion of Double-Stranded Helicates. Journal of the American Chemical Society, 2016, 138, 4852-4859.	6.6	59
360	A multiple-responsive water-soluble [3]pseudorotaxane constructed by pillar[5]arene-based molecular recognition and disulfide bond connection. RSC Advances, 2016, 6, 740-744.	1.7	5
361	Supramolecular complexes of bambusurils with dialkyl phosphates. Supramolecular Chemistry, 2016, 28, 810-816.	1.5	17
362	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.0	1
363	Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 2016, 325, 125-134.	9.5	46
364	[2]Rotaxanes comprising a macrocylic Hamilton receptor obtained using active template synthesis: synthesis and guest complexation. Supramolecular Chemistry, 2016, 28, 733-741.	1.5	13
365	Topoisomerase-Based Preparation and AFM Imaging of Multi-Interlocked Circular DNA. Bioconjugate Chemistry, 2016, 27, 616-620.	1.8	10
366	Ferrocene-containing non-interlocked molecular machines. Chemical Communications, 2016, 52, 2451-2464.	2.2	81
367	Construction of a hetero pseudo [2]rota[2]catenane. Chinese Chemical Letters, 2016, 27, 155-158.	4.8	4
368	Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chemical Society Reviews, 2017, 46, 5588-5619.	18.7	375

#	Article	IF	CITATIONS
369	Optical Distinction between "Slow―and "Fast―Translational Motion in Degenerate Molecular Shuttles. Angewandte Chemie, 2017, 129, 6232-6237.	1.6	10
370	Optical Distinction between "Slow―and "Fast―Translational Motion in Degenerate Molecular Shuttles. Angewandte Chemie - International Edition, 2017, 56, 6136-6141.	7.2	38
371	Poly(ionic liquid)-based nanogels and their reversible photo-mediated association and dissociation. Polymer Chemistry, 2017, 8, 1146-1154.	1.9	12
372	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie - International Edition, 2017, 56, 2608-2612.	7.2	47
373	Orthogonal switching in four-state azobenzene mixed-dimers. Chemical Communications, 2017, 53, 3323-3326.	2.2	40
374	Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect. Inorganic Chemistry, 2017, 56, 3227-3237.	1.9	25
375	Networking Nanoswitches for ON/OFF Control of Catalysis. Journal of the American Chemical Society, 2017, 139, 4270-4273.	6.6	62
376	Functioning via host–guest interactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 313-330.	0.9	22
377	Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core. Organic Letters, 2017, 19, 1402-1405.	2.4	45
378	Metal–organic frameworks utilising an interlocked, hexadentate linker containing a tetra-carboxylate axle and a bis(pyridine) wheel. Dalton Transactions, 2017, 46, 2462-2470.	1.6	19
379	Organic Molecular Layer with High Electrochemical Bistability: Synthesis, Structure, and Properties of a Dynamic Redox System with Lipoate Units for Binding to Au(111). ChemPlusChem, 2017, 82, 1043-1047.	1.3	2
380	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie, 2017, 129, 2652-2656.	1.6	38
381	Enhanced photo-responsiveness in a photoswitchable system model: emergent hormetic catalysis. Physical Chemistry Chemical Physics, 2017, 19, 12890-12897.	1.3	2
382	Reprogrammable Assembly of Molecular Motor on Solid Surfaces via Dynamic Bonds. Small, 2017, 13, 1700480.	5. 2	9
383	Alkali Metal Ion-enhanced Threading of a Perylenediimide-bound Polymer Chain through a Double-stranded Spiroborate Helicate with a Bisporphyrin Unit. Chemistry Letters, 2017, 46, 970-972.	0.7	2
384	The lubricating role of water in the shuttling of rotaxanes. Chemical Science, 2017, 8, 5087-5094.	3.7	35
385	Antibody-powered nucleic acid release using a DNA-based nanomachine. Nature Communications, 2017, 8, 15150.	5.8	108
386	A Bistable Microelectromechanical System Actuated by Spinâ€Crossover Molecules. Angewandte Chemie, 2017, 129, 8186-8190.	1.6	23

#	Article	IF	CITATIONS
387	A Bistable Microelectromechanical System Actuated by Spinâ€Crossover Molecules. Angewandte Chemie - International Edition, 2017, 56, 8074-8078.	7.2	48
388	Asymmetric Synthesis of Second-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2017, 82, 5027-5033.	1.7	14
389	Stimuli-responsive polymeric materials functioning via host–guest interactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 88, 85-104.	0.9	22
390	Transmission of chirality through space and across length scales. Nature Nanotechnology, 2017, 12, 410-419.	15.6	189
391	Cationâ€Driven Selfâ€Assembly of a Gold(I)â€Based Metalloâ€Tweezer. Angewandte Chemie - International Edition, 2017, 56, 9786-9790.	7.2	59
392	In situ control of polymer helicity with a non-covalently bound photoresponsive molecular motor dopant. Chemical Communications, 2017, 53, 6393-6396.	2.2	47
393	Cationâ€Driven Selfâ€Assembly of a Gold(I)â€Based Metalloâ€Tweezer. Angewandte Chemie, 2017, 129, 9918-9	9226	26
394	Catalytic Applications of Pyridineâ€Containing Macrocyclic Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 3589-3603.	1.0	46
395	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics, 2017, 19, 23658-23676.	1.3	56
396	QTAIM and Stress Tensor Characterization of Intramolecular Interactions Along Dynamics Trajectories of a Light-Driven Rotary Molecular Motor. Journal of Physical Chemistry A, 2017, 121, 4778-4792.	1.1	17
397	Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane. Journal of the American Chemical Society, 2017, 139, 9026-9037.	6.6	64
398	The added value of small-molecule chirality in technological applications. Nature Reviews Chemistry, 2017, 1, .	13.8	465
399	A hyaluronidase/temperature dual-responsive supramolecular assembly based on the anionic recognition of calixpyridinium. Chemical Communications, 2017, 53, 7517-7520.	2.2	24
400	Hydrazone switches and things in between. Chemical Communications, 2017, 53, 6674-6684.	2.2	125
401	Rotaxanes composed of dibenzo-24-crown-8 and macrocyclic transition metal complexing tetraimine units. New Journal of Chemistry, 2017, 41, 6004-6013.	1.4	4
402	Stereospecific Winding of Polycyclic Aromatic Hydrocarbons into Trinacria Propellers. Chemistry - A European Journal, 2017, 23, 15348-15354.	1.7	9
403	Locked synchronous rotor motion in a molecular motor. Science, 2017, 356, 964-968.	6.0	114
405	Construction of Crown Etherâ€Stoppering [3]Rotaxanes Based on <i>N</i> à€Hetero Crown Ether Host. Chinese Journal of Chemistry, 2017, 35, 1050-1056.	2.6	2

#	Article	IF	CITATIONS
406	An efficient artificial molecular pump. Tetrahedron, 2017, 73, 4849-4857.	1.0	55
407	Ring Shuttling Controls Macroscopic Motion in a Threeâ€Dimensional Printed Polyrotaxane Monolith. Angewandte Chemie, 2017, 129, 4523-4528.	1.6	14
408	Mastering the non-equilibrium assembly and operation of molecular machines. Chemical Society Reviews, 2017, 46, 5491-5507.	18.7	233
409	Supramolecular Materials Cross-Linked by Host–Guest Inclusion Complexes: The Effect of Side Chain Molecules on Mechanical Properties. Macromolecules, 2017, 50, 3254-3261.	2.2	72
410	Novel highly-flexible, acid-resistant and self-healing host-guest transparent multilayer films. Applied Surface Science, 2017, 411, 303-314.	3.1	31
411	Controlled Sol–Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers. Journal of the American Chemical Society, 2017, 139, 4923-4928.	6.6	117
412	Fluorineâ€Substituted Molecular Motors with a Quaternary Stereogenic Center. Chemistry - A European Journal, 2017, 23, 6643-6653.	1.7	12
413	NMR investigation of substituent effects on strength the intramolecular hydrogen bonding interaction in X–phenylhydrazones switches: A theoretical study. Chemical Physics Letters, 2017, 676, 6-11.	1.2	6
414	Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotechnology, 2017, 12, 540-545.	15.6	190
415	Ring Shuttling Controls Macroscopic Motion in a Threeâ€Dimensional Printed Polyrotaxane Monolith. Angewandte Chemie - International Edition, 2017, 56, 4452-4457.	7.2	64
416	Rotational Dynamics of Diazabicyclo [2.2.2] octane in Isomorphous Halogen-Bonded Co-crystals: Entropic and Enthalpic Effects. Journal of the American Chemical Society, 2017, 139, 843-848.	6.6	71
417	PolyWhips: Directional Particle Transport by Gradientâ€Directed Growth and Stiffening of Supramolecular Assemblies. Advanced Materials, 2017, 29, 1604430.	11.1	5
418	Five-State Rotary Nanoswitch. Journal of Organic Chemistry, 2017, 82, 343-352.	1.7	13
419	Dynamic self-assembly of â€~living' polymeric chains. Chemical Physics Letters, 2017, 668, 14-18.	1.2	8
420	Self-organization towards complex multi-fold meso-helices in the structures of Wells–Dawson polyoxometalate-based hybrid materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 3371-3376.	5.2	70
421	Azobenzene: A Photoactive Building Block for Supramolecular Architectures. Chemical Record, 2017, 17, 700-712.	2.9	24
422	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie - International Edition, 2017, 56, 291-296.	7.2	13
423	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie, 2017, 129, 297-302.	1.6	8

#	Article	IF	CITATIONS
424	Dynamic Pseudorotaxane Crystals Containing Metallocene Complexes. Scientific Reports, 2017, 7, 14195.	1.6	12
425	Bistable [<i><c i="">>2] Daisy Chain Rotaxanes as Reversible Muscle-like Actuators in Mechanically Active Gels. Journal of the American Chemical Society, 2017, 139, 14825-14828.</c></i>	6.6	112
426	A pHâ€Dependent, Mechanically Interlocked Switch: Organometallic [2]Rotaxane vs. Organic [3]Rotaxane. Angewandte Chemie - International Edition, 2017, 56, 15733-15736.	7.2	73
427	Guest control of a hydrogen bond-catalysed molecular rotor. Chemical Communications, 2017, 53, 12469-12472.	2.2	14
428	Rotationally Active Ligands: Dialingâ€Up Multiple Interlocked Coâ€Conformations for Silver(I) Coordination. Chemistry - A European Journal, 2017, 23, 14163-14166.	1.7	22
429	Unidirectional rotation of cholesteric droplets driven by UV-light irradiation. Soft Matter, 2017, 13, 6569-6575.	1.2	22
430	Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chemical Society Reviews, 2017, 46, 5536-5550.	18.7	208
432	Direct Observation of Hemithioindigoâ€Motor Unidirectionality. Angewandte Chemie, 2017, 129, 14728-14731.	1.6	13
433	Direct Observation of Hemithioindigoâ€Motor Unidirectionality. Angewandte Chemie - International Edition, 2017, 56, 14536-14539.	7.2	64
434	Single-atom fabrication with electron and ion beams: From surfaces and two-dimensional materials toward three-dimensional atom-by-atom assembly. MRS Bulletin, 2017, 42, 637-643.	1.7	28
436	Multiple noncovalent interaction constructed polymeric supramolecular crystals: recognition of butyl viologen by <i>para</i> -dicyclohexanocucurbit[6]uril and $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2,\hat{l}',\hat{l}'\hat{a}\in^2$ -tetramethylcucurbit[6]uril. Organic Chemistry Frontiers, 2017, 4, 2422-2427.	2.3	8
437	Syntheses of metallo-pseudorotaxanes, rotaxane and post-synthetically functionalized rotaxane: a comprehensive spectroscopic study and dynamic properties. Dalton Transactions, 2017, 46, 13300-13313.	1.6	12
438	Molecular Borromean Rings Based on Dihalogenated Ligands. CheM, 2017, 3, 110-121.	5.8	94
439	The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angewandte Chemie - International Edition, 2017, 56, 11060-11078.	7.2	568
440	Nanoscale Ion Pump Derived from a Biological Water Channel. Journal of Physical Chemistry B, 2017, 121, 7899-7906.	1.2	8
441	Supramolecular five-component nano-oscillator. Chemical Communications, 2017, 53, 9709-9712.	2.2	14
442	Ultrafast Molecular Rotors and Their CO ₂ Tuning in MOFs with Rodâ€Like Ligands. Chemistry - A European Journal, 2017, 23, 11210-11215.	1.7	45
443	Die Kunst, klein zu bauen: von molekularen Schaltern bis zu Motoren (Nobelâ€Aufsatz). Angewandte Chemie, 2017, 129, 11206-11226.	1.6	124

#	Article	IF	Citations
444	Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 50
445	Responsiveness and Morphology Study of Dual Stimuliâ€Controlled Supramolecular Polymer. Macromolecular Rapid Communications, 2017, 38, 1700358.	2.0	7
446	Introducing Stable Radicals into Molecular Machines. ACS Central Science, 2017, 3, 927-935.	5.3	102
447	Validity of the no-pumping theorem in systems with finite-range interactions between particles. Physical Review E, 2017, 95, 012159.	0.8	1
448	Ein pHâ€abhägiger, mechanisch verzahnter Schalter: organometallisches [2]Rotaxan und organisches [3]Rotaxan. Angewandte Chemie, 2017, 129, 15939-15942.	1.6	15
449	Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels. Nanoscale, 2017, 9, 18456-18466.	2.8	15
450	Mechanisch verzahnte Moleküle (MIMs) – molekulare Shuttle, Schalter und Maschinen (Nobelâ€Aufsatz). Angewandte Chemie, 2017, 129, 11244-11277.	1.6	154
451	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	18.7	241
452	Surface Inclusion of Unidirectional Molecular Motors in Hexagonal Tris(<i>>o</i> >-phenylene)cyclotriphosphazene. Journal of the American Chemical Society, 2017, 139, 10486-10498.	6.6	52
453	Towards the directional transport of molecules on surfaces. Tetrahedron, 2017, 73, 4858-4863.	1.0	3
454	Protonâ€Gated Photoisomerization of Aminoâ€Substituted Dibenzofulvene Rotors. ChemPhysChem, 2017, 18, 59-63.	1.0	6
455	A Light―and Electricityâ€Driven Molecular Pushing Motor. European Journal of Organic Chemistry, 2017, 2017, 1308-1317.	1.2	16
456	A theoretical study of the excited-state decay of acylhydrazones. International Journal of Quantum Chemistry, 2017, 117, e25330.	1.0	2
457	Properties and emerging applications of mechanically interlocked ligands. Chemical Communications, 2017, 53, 298-312.	2.2	155
458	Photochromic Torsional Switch (PTS): a light-driven actuator for the dynamic tuning of π-conjugation extension. Chemical Science, 2017, 8, 361-365.	3.7	15
459	50 Years of Structure and Bonding – The Anniversary Volume. Structure and Bonding, 2017, , .	1.0	2
460	How molecular motors work – insights from the molecular machinist's toolbox: the Nobel prize in Chemistry 2016. Chemical Science, 2017, 8, 840-845.	3.7	107
461	Supramolecular Polymeric Materials Containing Cyclodextrins. Chemical and Pharmaceutical Bulletin, 2017, 65, 330-335.	0.6	29

#	Article	IF	CITATIONS
463	Stepwise, Protecting Group Free Synthesis of [4]Rotaxanes. Molecules, 2017, 22, 89.	1.7	13
464	Spacer Lengthâ€Independent Shuttling of the Pillar[5]arene Ring in Neutral [2]Rotaxanes. Chemistry - A European Journal, 2018, 24, 6325-6329.	1.7	20
465	Stochastically pumped adaptation and directional motion of molecular machines. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9405-9413.	3.3	34
466	Molecular machines for catalysis. Nature Reviews Chemistry, 2018, 2, .	13.8	104
467	Hierarchical Coâ€Assembly Enhanced Direct Ink Writing. Angewandte Chemie - International Edition, 2018, 57, 5105-5109.	7.2	25
468	Controllable Adsorption of CO ₂ on Smart Adsorbents: An Interplay between Amines and Photoresponsive Molecules. Chemistry of Materials, 2018, 30, 3429-3437.	3.2	49
469	Directional Shuttling of a Stimuliâ€Responsive Coneâ€Like Macrocycle on a Singleâ€State Symmetric Dumbbell Axle. Angewandte Chemie - International Edition, 2018, 57, 7809-7814.	7.2	56
470	Simulations of optically switchable molecular machines for particle transport. Journal of Computational Chemistry, 2018, 39, 1433-1443.	1.5	4
471	Hierarchical Coâ€Assembly Enhanced Direct Ink Writing. Angewandte Chemie, 2018, 130, 5199-5203.	1.6	16
472	A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angewandte Chemie, 2018, 130, 6364-6368.	1.6	2
473	A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angewandte Chemie - International Edition, 2018, 57, 6256-6260.	7.2	18
474	Electronic Communication between two [10]cycloparaphenylenes and Bis(azafullerene) (C ₅₉ N) ₂ Induced by Cooperative Complexation. Angewandte Chemie - International Edition, 2018, 57, 6930-6934.	7.2	55
475	Elektronische Kommunikation zwischen zwei [10]Cycloparaphenylenen und Bisazafulleren (C ₅₉ N) ₂ induziert durch kooperative Komplexierung. Angewandte Chemie, 2018, 130, 7046-7050.	1.6	23
476	Atomistic simulation of the coupled adsorption and unfolding of protein GB1 on the polystyrenes nanoparticle surface. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	9
477	Oscillating Emission of [2]Rotaxane Driven by Chemical Fuel. Organic Letters, 2018, 20, 1046-1049.	2.4	62
478	From Coordination Chemistry to Adaptive Chemistry. Advances in Inorganic Chemistry, 2018, 71, 3-78.	0.4	33
479	Nâ^'C Axially Chiral Anilines: Electronic Effect on Barrier to Rotation and A Remote Proton Brake. Chemistry - A European Journal, 2018, 24, 4453-4458.	1.7	24
480	Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coordination Chemistry Reviews, 2018, 358, 125-152.	9.5	175

#	Article	IF	Citations
481	Artificial Molecular Machines in Nanotheranostics. ACS Nano, 2018, 12, 7-12.	7.3	73
482	Ion Selectivity in Nonpolymeric Thermosensitive Systems Induced by Waterâ€Attenuated Supramolecular Recognition. Chemistry - A European Journal, 2018, 24, 3854-3861.	1.7	28
483	Coupling Mechanical and Electrical Properties in Spin Crossover Polymer Composites. Advanced Materials, 2018, 30, 1705275.	11.1	76
484	[2]Catenanes Displaying Switchable Gin-Trap-Like Motion. Journal of Organic Chemistry, 2018, 83, 5619-5628.	1.7	7
485	Fault detection and analysis of bistable rotaxane molecular electronic switch - A simulation approach. Journal of Experimental Nanoscience, 2018, 13, 144-159.	1.3	3
486	Synthesis and Isomerization Behavior of a Macrocycle with Four Photoresponsive Moieties. Organic Letters, 2018, 20, 2055-2058.	2.4	4
487	Efficient Multicomponent Active Template Synthesis of Catenanes. Journal of the American Chemical Society, 2018, 140, 4787-4791.	6.6	52
488	Thermal <i>E</i> / <i>Z</i> Isomerization in First Generation Molecular Motors. Journal of Organic Chemistry, 2018, 83, 4800-4804.	1.7	12
489	Lightâ€Induced Cyclization of A [c 2]Daisyâ€Chain Rotaxane to Form a Shrinkable Doubleâ€Lasso Macrocycle. Asian Journal of Organic Chemistry, 2018, 7, 902-905.	1.3	7
490	Quantum chemical design of rotary molecular motors. International Journal of Quantum Chemistry, 2018, 118, e25405.	1.0	20
491	Shapeâ€Shifting Azo Dye Polymers: Towards Sunlightâ€Driven Molecular Devices. Macromolecular Rapid Communications, 2018, 39, 1700253.	2.0	70
492	Molecular Switches for any pH: A Systematic Study of the Versatile Coordination Behaviour of Cyclam Scorpionands. Chemistry - A European Journal, 2018, 24, 1573-1585.	1.7	11
494	Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions. Chemical Science, 2018, 9, 1050-1057.	3.7	29
495	Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment. Chemical Communications, 2018, 54, 427-444.	2.2	39
496	Braking of a Lightâ€Driven Molecular Rotary Motor by Chemical Stimuli. Chemistry - A European Journal, 2018, 24, 81-84.	1.7	25
497	Rotative Single Molecular Motors on Metallic Surfaces. , 2018, , 803-809.		1
498	Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. Journal of the American Chemical Society, 2018, 140, 17308-17315.	6.6	156
499	Driving a Liquid Crystal Phase Transition Using a Photochromic Hydrazone. Journal of the American Chemical Society, 2018, 140, 13623-13627.	6.6	73

#	Article	IF	CITATIONS
500	Stimuli-Responsive Luminescent Bis-Tridentate Ru(II) Complexes toward the Design of Functional Materials. Inorganic Chemistry, 2018, 57, 12010-12024.	1.9	18
501	Muscle-like Artificial Molecular Actuators for Nanoparticles. CheM, 2018, 4, 2670-2684.	5.8	99
502	Functional Supramolecular Materials Formed by Non-covalent Bonds., 2018,, 183-225.		2
503	Multistimuli-Responsive Enaminitrile Molecular Switches Displaying H ⁺ -Induced Aggregate Emission, Metal Ion-Induced Turn-On Fluorescence, and Organogelation Properties. Journal of the American Chemical Society, 2018, 140, 13640-13643.	6.6	46
504	Photoactive Molecularâ€Based Devices, Machines and Materials: Recent Advances. European Journal of Inorganic Chemistry, 2018, 2018, 4589-4603.	1.0	24
505	Acylhydrazone Switches: <i>E/Z</i> Stability Reversed by Introduction of Hydrogen Bonds. European Journal of Organic Chemistry, 2018, 2018, 7046-7050.	1.2	12
506	Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles. ACS Nano, 2018, 12, 10932-10938.	7.3	40
507	Concave–Convex π–π Template Approach Enables the Synthesis of [10]Cycloparaphenylene–Fullerene [2]Rotaxanes. Journal of the American Chemical Society, 2018, 140, 13413-13420.	6.6	119
508	Light-driven exchange between extended and contracted lasso-like isomers of a bistable [1]rotaxane. Organic and Biomolecular Chemistry, 2018, 16, 6980-6987.	1.5	26
509	Tetrathiafulvalene – a redox-switchable building block to control motion in mechanically interlocked molecules. Beilstein Journal of Organic Chemistry, 2018, 14, 2163-2185.	1.3	59
510	Übertragung unidirektionaler molekularer Motorrotation auf eine rämlich getrennte Biarylachse. Angewandte Chemie, 2018, 130, 11231-11235.	1.6	18
511	Lightâ€Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angewandte Chemie - International Edition, 2018, 57, 10515-10519.	7.2	56
512	Controlling Dual Molecular Pumps Electrochemically. Angewandte Chemie - International Edition, 2018, 57, 9325-9329.	7. 2	64
513	Photoswitchable double bonds: Synthetic strategies for tunability and versatility. Journal of Physical Organic Chemistry, 2018, 31, e3858.	0.9	42
514	Controlling Dual Molecular Pumps Electrochemically. Angewandte Chemie, 2018, 130, 9469-9473.	1.6	15
515	Micromachiningâ€Compatible, Facile Fabrication of Polymer Nanocomposite Spin Crossover Actuators. Advanced Functional Materials, 2018, 28, 1801970.	7.8	42
516	Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nature Chemistry, 2018, 10, 132-138.	6.6	330
517	Chirality in rotaxanes and catenanes. Chemical Society Reviews, 2018, 47, 5266-5311.	18.7	222

#	ARTICLE	IF	CITATIONS
518	Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 74.
519	Lightâ€Gated Rotation in a Molecular Motor Functionalized with a Dithienylethene Switch. Angewandte Chemie, 2018, 130, 10675-10679.	1.6	17
520	A Nanosized Phenyleneâ€Ethynyleneâ€Butadiynylene [2]Catenane. Chemistry - A European Journal, 2018, 24, 12006-12009.	1.7	11
521	Transmission of Unidirectional Molecular Motor Rotation to a Remote Biaryl Axis. Angewandte Chemie - International Edition, 2018, 57, 11064-11068.	7.2	51
522	Directional Shuttling of a Stimuliâ€Responsive Coneâ€Like Macrocycle on a Singleâ€State Symmetric Dumbbell Axle. Angewandte Chemie, 2018, 130, 7935-7940.	1.6	20
523	Hierarchical tandem assembly of planar [3×3] building units into {3×[3×3]} oligomers: mixed-valency, electrical conductivity and magnetism. Chemical Science, 2018, 9, 7498-7504.	3.7	23
524	New molecular switch architectures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9414-9422.	3.3	182
525	Rapid macroscale shape morphing of 3D-printed polyrotaxane monoliths amplified from pH-controlled nanoscale ring motions. Journal of Materials Chemistry C, 2018, 6, 11956-11960.	2.7	36
526	Multistimuli Responsive Supramolecular Polymeric Nanoparticles Formed by Calixpyridinium and Chondroitin 4â€Sulfate. ChemistrySelect, 2018, 3, 2789-2794.	0.7	10
527	Motor-like Properties of Nonmotor Enzymes. Biophysical Journal, 2018, 114, 2174-2179.	0.2	13
528	Design, Synthesis, and Isomerization Studies of Light-Driven Molecular Motors for Single Molecular Imaging. Journal of Organic Chemistry, 2018, 83, 6025-6034.	1.7	16
529	A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. Journal of the American Chemical Society, 2018, 140, 11091-11100.	6.6	49
530	Synthesis, Photophysical, Electrochemical, and Halochromic Properties of <i>peri</i> -Naphthoindigo. Organic Letters, 2018, 20, 5027-5031.	2.4	8
531	Fulgides as Light-Driven Molecular Rotary Motors: Computational Design of a Prototype Compound. Journal of Physical Chemistry Letters, 2018, 9, 4995-5001.	2.1	48
532	A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 2018, 51, 4688-4693.	2.2	60
533	From Self-Sorting of Dynamic Metal–Ligand Motifs to (Supra)Molecular Machinery in Action. Advances in Inorganic Chemistry, 2018, 71, 135-175.	0.4	20
534	Stimuli-Responsive Drug-Delivery Systems Based on Supramolecular Nanovalves. Matter, 2019, 1, 345-368.	5.0	159
535	Photoefficient 2 nd generation molecular motors responsive to visible light. Chemical Science, 2019, 10, 8768-8773.	3.7	37

#	Article	IF	CITATIONS
536	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie - International Edition, 2019, 58, 15136-15141.	7.2	32
537	Toward Electrochemical Studies on the Nanometer and Atomic Scales: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 9735-9780.	7.3	32
538	Individualâ€Molecule Perspective Analysis of Chemical Reaction Networks: The Case of a Lightâ€Driven Supramolecular Pump. Angewandte Chemie - International Edition, 2019, 58, 14341-14348.	7.2	30
539	Controlling interfacial interactions of supramolecular assemblies by light-responsive overcrowded alkenes. Chemical Communications, 2019, 55, 10292-10295.	2.2	7
540	Selective Carbon Material Engineering for Improved MEMS and NEMS. Micromachines, 2019, 10, 539.	1.4	33
541	Precise Manipulation of Temperatureâ€Driven Chirality Switching of Molecular Universal Joints through Solvent Mixing. Chemistry - A European Journal, 2019, 25, 12526-12537.	1.7	30
542	DNase I-Responsive Calixpyridinium-Mediated DNA Aggregation. Langmuir, 2019, 35, 10505-10511.	1.6	11
543	Association of liquid-assisted grinding with aging accelerates the inherently slow slipping-on of a dibenzo-24-crown-8 over the <i>N</i> -hydroxysuccinimide ester of an ammonium-containing thread. RSC Advances, 2019, 9, 21587-21590.	1.7	12
544	The role of sulfate and its corresponding S(IV)+NO2 formation pathway during the evolution of haze in Beijing. Science of the Total Environment, 2019, 687, 741-751.	3.9	20
545	Tumbling of Anisole Units in Calixarene Promotes Its Shuttling in Rotaxanes. Journal of Physical Chemistry C, 2019, 123, 18050-18055.	1.5	4
546	The "twinkling star―materials: highly superior molecular switches for bioimaging. Science China Chemistry, 2019, 62, 657-658.	4.2	0
547	Adaptable Overhanging Carboxylic Acid Porphyrins: Towards Molecular Assemblies through Unusual Coordination Modes. European Journal of Inorganic Chemistry, 2019, 2019, 3005-3014.	1.0	3
548	A Redox-Switchable Molecular Zipper. Journal of the American Chemical Society, 2019, 141, 18308-18317.	6.6	28
549	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie, 2019, 131, 15280-15285.	1.6	16
550	Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angewandte Chemie - International Edition, 2019, 58, 18003-18010.	7.2	56
551	Selektive Synthese von Iridium(III)â€Metalla[2]catenanen durch PrÃørganisation der Komponenten Ã⅓ber Ï€â€Ï€â€Wechselwirkungen. Angewandte Chemie, 2019, 131, 5941-5946.	1.6	12
552	Individualâ€Molecule Perspective Analysis of Chemical Reaction Networks: The Case of a Lightâ€Driven Supramolecular Pump. Angewandte Chemie, 2019, 131, 14479-14486.	1.6	4
553	Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angewandte Chemie, 2019, 131, 18171-18178.	1.6	36

#	ARTICLE	IF	CITATIONS
554	Dynamic Interconversion between Solomon Link and Trapezoidal Metallacycle Ensembles Accompanying Conformational Change of the Linker. Chemistry - A European Journal, 2019, 25, 15687-15693.	1.7	19
555	Naphtho[1,2â€ <i>b</i> :5,6â€ <i>b</i> aꀲ]dithiophene Building Blocks and their Complexation with Cyclobis(paraquatâ€ <i>p</i> i>â€phenylene). European Journal of Organic Chemistry, 2019, 2019, 7532-7540.	1.2	4
556	Chiroptical inversion of a planar chiral redox-switchable rotaxane. Chemical Science, 2019, 10, 10003-10009.	3.7	46
557	Stimuli-responsive dynamic pseudorotaxane crystals. Materials Chemistry Frontiers, 2019, 3, 2258-2269.	3.2	13
558	Controlling Molecular Switching via Chemical Functionality: Ethyl vs Methoxy Rotors. Journal of Physical Chemistry C, 2019, 123, 23738-23746.	1.5	9
559	Imitating nonequilibrium steady states using time-varying equilibrium force in many-body diffusive systems. Physical Review E, 2019, 100, 032104.	0.8	2
560	Asymmetric Molecular Rotors Based on Steroidal Fragments. Organic Building Blocks Displaying Versatile Supramolecular Steroid-Stacking Interactions. Crystal Growth and Design, 2019, 19, 6114-6126.	1.4	4
561	Catalytic transport of molecular cargo using diffusive binding along a polymer track. Nature Chemistry, 2019, 11, 359-366.	6.6	21
562	Gel-based soft actuators driven by light. Journal of Materials Chemistry B, 2019, 7, 4234-4242.	2.9	40
563	Stimuli-Responsive Near-Infrared Emissive Os(II)–Terpyridine Complexes with a Sense of Logic. ACS Omega, 2019, 4, 2241-2255.	1.6	2
564	pHâ€Controlled Multiple Interconversion between Cucurbit[7]urilâ€Based Molecular Shuttle, [3]Pseudorotaxane and [2]Pseudorotaxane. Asian Journal of Organic Chemistry, 2019, 8, 339-343.	1.3	10
565	A pillar[5]arene-based molecular grapple of hexafluorophosphate. Chinese Chemical Letters, 2019, 30, 957-960.	4.8	3
566	Metal–Organic Frameworks with Targetâ€Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie - International Edition, 2019, 58, 6600-6604.	7.2	161
567	High-temperature phase transitions, switchable dielectric behaviors and barocaloric effects in three new organic molecule-based crystals. New Journal of Chemistry, 2019, 43, 154-161.	1.4	8
568	Effector responsive hydroformylation catalysis. Chemical Science, 2019, 10, 7389-7398.	3.7	16
569	The Motion of an Azobenzene Lightâ€Controlled Switch: A Joint Theoretical and Experimental Approach. ChemSystemsChem, 2019, 1, e1900003.	1.1	2
570	Azo-MOFs showing controllable framework flexibility and consequently fine-tuned photomechanical crystal motion. Journal of Solid State Chemistry, 2019, 277, 182-186.	1.4	7
571	Domino Palladium-Catalyzed Double Norbornene Insertion/Annulation Reaction: Expeditious Synthesis of Overcrowded Tetrasubstituted Olefins. Organic Letters, 2019, 21, 4350-4354.	2.4	9

#	Article	IF	Citations
572	Biological Macrocycle: Supramolecular Hydrophobic Guest Transport System Based on Nanodiscs with Photodynamic Activity. Langmuir, 2019, 35, 7824-7829.	1.6	5
573	Selective Synthesis of Discrete Monoâ€, Interlockedâ€, and Borromean Ring Ensembles Based on a <i>Ï€</i> â€Electronâ€Deficient Ligand. Chemistry - an Asian Journal, 2019, 14, 2712-2718.	1.7	18
574	Towards a light driven molecular assembler. Communications Chemistry, 2019, 2, .	2.0	19
575	Temperature―and Lightâ€Regulated Gas Transport in a Liquid Crystal Polymer Network. Advanced Functional Materials, 2019, 29, 1900857.	7.8	12
576	Lightâ€Responsive (Supra)Molecular Architectures: Recent Advances. Advanced Optical Materials, 2019, 7, 1900392.	3.6	35
577	Threading-gated photochromism in [2]pseudorotaxanes. Chemical Science, 2019, 10, 5104-5113.	3.7	20
578	Molecular Swings as Highly Active Ion Transporters. Angewandte Chemie, 2019, 131, 8118-8122.	1.6	12
579	Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angewandte Chemie, 2019, 131, 8137-8141.	1.6	5
580	Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules, 2019, 52, 2659-2668.	2.2	83
581	Directional Transportation of a Helic[6]arene along a Nonsymmetric Molecular Axle. Journal of Organic Chemistry, 2019, 84, 5872-5876.	1.7	15
582	Highly Selective Synthesis of Iridium(III) Metalla[2]catenanes through Component Preâ€Orientation by Ï€â‹â‹ā‹ï€â€Stacking. Angewandte Chemie - International Edition, 2019, 58, 5882-5886.	7.2	59
583	Unidirectional rotary motion in a metal–organic framework. Nature Nanotechnology, 2019, 14, 488-494.	15.6	162
584	Photoâ€Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Advanced Optical Materials, 2019, 7, 1900033.	3.6	60
585	Computational design of metal-supported molecular switches: transient ion formation during lightand electron-induced isomerisation of azobenzene. Journal of Physics Condensed Matter, 2019, 31, 044003.	0.7	2
586	pH-Controlled Fluorescence Probes for Rotaxane Isomerization. Journal of Physical Chemistry C, 2019, 123, 11304-11309.	1.5	9
587	Design and photoisomerization dynamics of a new family of synthetic 2-stroke light driven molecular rotary motors. Chemical Communications, 2019, 55, 5247-5250.	2.2	34
588	Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angewandte Chemie - International Edition, 2019, 58, 8053-8057.	7.2	23
589	The influence of metal-complexing macrocycle size on intramolecular movement in rotaxanes. Dalton Transactions, 2019, 48, 6546-6557.	1.6	3

#	Article	IF	CITATIONS
590	Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. Journal of Organic Chemistry, 2019, 84, 5790-5802.	1.7	34
591	Molecular Swings as Highly Active Ion Transporters. Angewandte Chemie - International Edition, 2019, 58, 8034-8038.	7.2	37
592	Formulation and Implementation of the Spin-Restricted Ensemble-Referenced Kohn–Sham Method in the Context of the Density Functional Tight Binding Approach. Journal of Chemical Theory and Computation, 2019, 15, 3021-3032.	2.3	10
593	Self-sorting processes in a stimuli-responsive supramolecular systems based on cucurbituril, cyclodextrin and bisstyryl guests. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 94, 201-210.	0.9	5
594	A [5]Rotaxaneâ€Based Photosensitizer for Photodynamic Therapy. European Journal of Organic Chemistry, 2019, 2019, 3534-3541.	1.2	20
595	Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4816-4821.	3.3	95
596	Unsymmetric Bistable [<i><c i="">>2]Daisy Chain Rotaxanes which Combine Two Types of Electroactive Stoppers. European Journal of Organic Chemistry, 2019, 2019, 3421-3432.</c></i>	1.2	11
597	Room-temperature phosphorescent γ-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan. Chemical Communications, 2019, 55, 3156-3159.	2.2	62
598	Metal–Organic Frameworks with Targetâ€Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie, 2019, 131, 6672-6676.	1.6	17
599	Probabilistic Approach in Thermodynamics. , 2019, , 711-791.		1
600	Tetrathiafulvalene-calix[4]pyrrole: a versatile synthetic receptor for electron-deficient planar and spherical guests. Organic and Biomolecular Chemistry, 2019, 17, 2594-2613.	1.5	21
601	Dynamic Diffractive Patterns in Helix-Inverting Cholesteric Liquid Crystals. ACS Applied Materials & Liquid Crystals.	4.0	24
602	Design of photo-activated molecular machines: highlights from the past ten years. Chemical Communications, 2019, 55, 12595-12602.	2.2	34
603	Shape-Persistent Actuators from Hydrazone Photoswitches. Journal of the American Chemical Society, 2019, 141, 1196-1200.	6.6	135
604	Thermodynamic costs of dynamic function in active soft matter. Current Opinion in Solid State and Materials Science, 2019, 23, 28-40.	5.6	13
605	The Supramolecular Chemistry of Strained Carbon Nanohoops. Angewandte Chemie - International Edition, 2020, 59, 559-573.	7.2	162
606	Supramolekulare Chemie von gespannten Kohlenstoffnanoreifen. Angewandte Chemie, 2020, 132, 567-582.	1.6	65
607	Photo- and Redox-Driven Artificial Molecular Motors. Chemical Reviews, 2020, 120, 200-268.	23.0	355

#	Article	IF	CITATIONS
608	Building machines with DNA molecules. Nature Reviews Genetics, 2020, 21, 5-26.	7.7	198
609	Remote control of the reversible assembly/disassembly of supramolecular aggregates. Supramolecular Chemistry, 2020, 32, 133-138.	1.5	4
610	Light-Activated Organic Molecular Motors and Their Applications. Chemical Reviews, 2020, 120, 79-124.	23.0	152
611	From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036.	11.1	155
612	Anion- and solvent induced modulation of photophysical properties of a luminescent bimetallic Ru(II) complex: Experimental and TD-DFT study. Inorganica Chimica Acta, 2020, 502, 119337.	1.2	4
613	Molecular Switches and Motors Powered by Orthogonal Stimuli. European Journal of Organic Chemistry, 2020, 2020, 7254-7283.	1.2	21
614	Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors. Journal of Organic Chemistry, 2020, 85, 10670-10680.	1.7	10
615	Rectification in Nonequilibrium Parity Violating Metamaterials. Physical Review X, 2020, 10, .	2.8	7
616	Manufacturing at nanoscale. , 2020, , 41-63.		0
617	Dipodal Molecular Device as Fluorescent Sensor for Na(I) Detection. Journal of Applied Spectroscopy, 2020, 87, 893-903.	0.3	2
618	Mechanically interlocked 3D multi-material micromachines. Nature Communications, 2020, 11, 5957.	5.8	48
619	Strategies for the Synthesis of Enantiopure Mechanically Chiral Molecules. CheM, 2020, 6, 1914-1932.	5.8	62
620	Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes. Chemical Science, 2020, 11, 8469-8475.	3.7	19
621	Boosted molecular mobility during common chemical reactions. Science, 2020, 369, 537-541.	6.0	62
622	Smart Polymers for Advanced Applications: A Mechanical Perspective Review. Frontiers in Materials, 2020, 7, .	1.2	40
623	Bottom-Up: Can Supramolecular Tools Deliver Responsiveness from Molecular Motors to Macroscopic Materials?. Matter, 2020, 3, 355-370.	5.0	58
624	A light-operated pillar[6]arene-based molecular shuttle. Chemical Communications, 2020, 56, 10871-10874.	2,2	18
625	Hierarchical fibrous structures for muscleâ€inspired softâ€actuators: A review. Applied Materials Today, 2020, 20, 100772.	2.3	30

#	Article	IF	CITATIONS
626	Stimuliâ€Responsive Resorcin[4]arene Cavitands: Toward Visibleâ€Lightâ€Activated Molecular Grippers. Chemistry - A European Journal, 2020, 26, 11451-11461.	1.7	7
627	Robust Dynamics of Synthetic Molecular Systems as a Consequence of Broken Symmetry. Symmetry, 2020, 12, 1688.	1.1	2
628	Photoinduced Mechanical Motions of Pseudorotaxane Crystals Composed of Azobenzene and Ferrocenyl Groups on an Axle and a Crown Ether Ring. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50002-50010.	4.0	17
629	Molecular Rotors in a Metal–Organic Framework: Muons on a Hyper-Fast Carousel. Nano Letters, 2020, 20, 7613-7618.	4.5	12
630	Pillar[5]arene-Based [2]Rotaxane: Synthesis, Characterization, and Application in a Coupling Reaction. Inorganic Chemistry, 2020, 59, 11915-11919.	1.9	24
631	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	13.8	97
632	Systems Approach of Photoisomerization Metrology for Single-Crystal Optical Actuators: A Case Study of [Ru(SO ₂)(NH ₃) ₄ Cl]Cl. Journal of Physical Chemistry C, 2020, 124, 28230-28243.	1.5	7
633	Statistical Mechanical Model of Gas Adsorption in a Metal–Organic Framework Harboring a Rotaxane Molecular Shuttle. Langmuir, 2020, 36, 13112-13123.	1.6	4
634	Tuning Aqueous Supramolecular Polymerization by an Acidâ€Responsive Conformational Switch. Chemistry - A European Journal, 2020, 26, 10005-10013.	1.7	9
635	Driving Smart Molecular Systems by Artificial Molecular Machines. Advanced Intelligent Systems, 2020, 2, 1900169.	3.3	17
636	Covalent Postâ€Assembly Modification: A Synthetic Multipurpose Tool in Supramolecular Chemistry. ChemPlusChem, 2020, 85, 1249-1269.	1.3	22
637	Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chemical Science, 2020, 11, 4322-4331.	3.7	30
638	Direct matter disassembly via electron beam control: electron-beam-mediated catalytic etching of graphene by nanoparticles. Nanotechnology, 2020, 31, 245303.	1.3	4
639	AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. Journal of the American Chemical Society, 2020, 142, 5985-5990.	6.6	31
640	Relayed Proton Brake in N-Pyridyl-2-iso-propylaniline Derivative: Two Brakes with One Proton. Journal of Organic Chemistry, 2020, 85, 5109-5113.	1.7	6
641	The Future of Molecular Machines. ACS Central Science, 2020, 6, 347-358.	5.3	220
642	Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nature Chemistry, 2020, 12, 595-602.	6.6	65
643	Integrating the Mechanical Bond into Metal-Organic Frameworks. CheM, 2020, 6, 1604-1612.	5.8	51

#	Article	IF	CITATIONS
644	Fast motion of molecular rotors in metal–organic framework struts at very low temperatures. Nature Chemistry, 2020, 12, 845-851.	6.6	79
645	Free-Energy Landscape of Stepwise, Directional Motion in Multiple Molecular Switches. Journal of Physical Chemistry C, 2020, 124, 6448-6453.	1.5	3
646	Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor. Angewandte Chemie, 2020, 132, 5779-5786.	1.6	20
647	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
648	Templateâ€Free Selfâ€Assembly of Molecular Trefoil Knots and Double Trefoil Knots Featuring Cp*Rh Building Blocks. Chemistry - A European Journal, 2020, 26, 5093-5099.	1.7	13
649	Influence of Hydrogen/Fluorine Substitution on Structure, Thermal Phase Transitions, and Internal Molecular Motion of Aromatic Residues in the Crystal Lattice of Steroidal Rotors. Crystal Growth and Design, 2020, 20, 2202-2216.	1.4	8
650	A Circuit Topology Approach to Categorizing Changes in Biomolecular Structure. Frontiers in Physics, 2020, 8, .	1.0	13
651	Ultrafast Excited State Dynamics in a First Generation Photomolecular Motor. ChemPhysChem, 2020, 21, 594-599.	1.0	13
652	Photoactivated Artificial Molecular Machines that Can Perform Tasks. Advanced Materials, 2020, 32, e1906064.	11.1	83
653	Active and Unidirectional Acceleration of Biaryl Rotation by a Molecular Motor. Angewandte Chemie - International Edition, 2020, 59, 5730-5737.	7.2	50
654	Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature. Journal of the American Chemical Society, 2020, 142, 8473-8482.	6.6	75
655	Visible-Light-Driven Rotation of Molecular Motors in a Dual-Function Metal–Organic Framework Enabled by Energy Transfer. Journal of the American Chemical Society, 2020, 142, 9048-9056.	6.6	86
656	Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand. Beilstein Journal of Nanotechnology, 2020, 11, 466-479.	1.5	11
657	Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. National Science Review, 2021, 8, nwaa135.	4.6	36
658	A high- <i>T</i> _c organic-ionic phase transition crystal obtained from a trivalent cation. CrystEngComm, 2021, 23, 264-267.	1.3	1
659	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	2.2	62
660	Theoretical research of second generation molecular motor with unidirectional rotary motion. Journal of Physical Organic Chemistry, 2021, 34, e4175.	0.9	1
661	Synthesis, photochemical isomerization and photophysical properties of hydrazide–hydrazone derivatives. New Journal of Chemistry, 2021, 45, 1651-1657.	1.4	8

#	Article	IF	CITATIONS
662	pH-Responsive colorimetric, emission and redox switches based on Ru(ii)–terpyridine complexes. Dalton Transactions, 2021, 50, 186-196.	1.6	9
663	Mediating Reaction Orthogonality in Polymer and Materials Science. Angewandte Chemie - International Edition, 2021, 60, 1748-1781.	7.2	49
664	Gesteuerte Reaktionsorthogonalitäin der Polymer―und Materialwissenschaft. Angewandte Chemie, 2021, 133, 1774-1809.	1.6	7
665	Spin-labelled mechanically interlocked molecules as models for the interpretation of biradical EPR spectra. Chemical Science, 2021, 12, 8385-8393.	3.7	4
666	Molecular Robotics., 2021,, 1-17.		2
667	Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chemical Science, 2021, 12, 4361-4366.	3.7	33
668	Efficient one-pot synthesis of [3]catenanes based on Pt(<scp>ii</scp>) metallacycles with a flexible building block. Organic Chemistry Frontiers, 2021, 8, 5280-5288.	2.3	3
669	A mechanically self-locked gemini-[1]rotaxane-assembled microsphere and its properties on <scp>I</scp> -Arg controlled reversible morphology and fluorescence changes. Journal of Materials Chemistry C, 2021, 9, 10347-10353.	2.7	3
670	Low-energy optical switching of SO ₂ linkage isomerisation in single crystals of a ruthenium-based coordination complex. RSC Advances, 2021, 11, 13183-13192.	1.7	6
671	Red/green-light emission in continuous dielectric phase transition materials: [Me ₃ NVinyl] ₂ [MnX ₄] (X = Cl, Br). RSC Advances, 2021, 11, 2329-2336.	1.7	5
672	Photophysics of First-Generation Photomolecular Motors: Resolving Roles of Temperature, Friction, and Medium Polarity. Journal of Physical Chemistry A, 2021, 125, 1711-1719.	1.1	8
673	Recent Progress in DNA Motor-Based Functional Systems. ACS Applied Bio Materials, 2021, 4, 2251-2261.	2.3	17
675	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie, 2021, 133, 8332-8338.	1.6	10
676	Synthesis and exploring the excited-state PES of photochromic hydrogen bond-assembled [2]rotaxane based on 1,3-Diazabicyclo-[3.1.0]hex-3-enes. Research on Chemical Intermediates, 2021, 47, 2557-2572.	1.3	3
677	An Integrated Design of a Polypseudorotaxaneâ€Based Sea Cucumber Mimic. Angewandte Chemie, 2021, 133, 10274-10281.	1.6	3
678	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie - International Edition, 2021, 60, 8251-8257.	7.2	49
679	An Integrated Design of a Polypseudorotaxaneâ€Based Sea Cucumber Mimic. Angewandte Chemie - International Edition, 2021, 60, 10186-10193.	7.2	17
681	From molecular to supramolecular electronics. Nature Reviews Materials, 2021, 6, 804-828.	23.3	169

#	Article	IF	CITATIONS
683	Emergent behavior in nanoconfined molecular containers. CheM, 2021, 7, 919-947.	5.8	93
684	Molecular Pumps and Motors. Journal of the American Chemical Society, 2021, 143, 5569-5591.	6.6	141
686	Dual Electroactivity in a Covalent Organic Network with Mechanically Interlocked Pillar[5]arenes. Chemistry - A European Journal, 2021, 27, 9589-9596.	1.7	7
687	Rational design and synthesis of a task-specific porous organic framework featured azobenzene as a photoresponsive low-energy CO2 adsorbent. Journal of Solid State Chemistry, 2021, 297, 122049.	1.4	8
688	Overtemperature-protection intelligent molecular chiroptical photoswitches. Nature Communications, 2021, 12, 2600.	5.8	66
689	Structural, Hirshfeld surface studies and computation of interaction energies of 4-Amino-N-(3-chloropyrazin-2-yl)benzene-1-Sulfonamide organic compound. Materials Today: Proceedings, 2022, 49, 817-823.	0.9	2
690	Dimeric Indenofluoreneâ€Extended Tetrathiafulvalene Motif for Enhanced Intramolecular Complexation. European Journal of Organic Chemistry, 2021, 2021, 3537-3544.	1.2	8
691	Radical-pairing-induced molecular assembly and motion. Nature Reviews Chemistry, 2021, 5, 447-465.	13.8	55
692	Stimuli-Responsive Molecular Switches and Logic Devices Based on Ru(II)–Terpyridyl–Imidazole Coordination Motif. Journal of Physical Chemistry B, 2021, 125, 8919-8931.	1.2	11
693	Assigning Optical Absorption Transitions with Light-Induced Crystal Structures: Case Study of a Single-Crystal Nanooptomechanical Transducer. Journal of Physical Chemistry C, 2021, 125, 15711-15723.	1.5	4
694	A synthetic tubular molecular transport system. Nature Communications, 2021, 12, 4393.	5.8	23
695	Electron Transfer Inside a Decaferrocenylated Rotaxane Analyzed by Fast Scan Cyclic Voltammetry and Impedance Spectroscopy. ChemElectroChem, 2021, 8, 3506-3511.	1.7	4
696	Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules, 2021, 54, 8067-8076.	2.2	27
697	Giant Shapeâ€persistent Tetrahedral Porphyrin System: Lightâ€induced Charge Separation. Chemistry - A European Journal, 2021, 27, 16250-16259.	1.7	4
698	Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption. Molecules, 2021, 26, 4993.	1.7	2
699	Cascade Dynamics of Multiple Molecular Rotors in a MOF: Benchmark Mobility at a Few Kelvins and Dynamics Control by CO ₂ . Journal of the American Chemical Society, 2021, 143, 13082-13090.	6.6	20
700	Photochemical Energy Conversion with Artificial Molecular Machines. Energy & Samp; Fuels, 2021, 35, 18900-18914.	2.5	13
701	Studies of novel trifluoroacetylated diaryl hydrazone molecular photoswitches in solution and in the solid state. New Journal of Chemistry, 2021, 45, 12471-12478.	1.4	2

#	Article	IF	CITATIONS
702	Coupling the Individual Motions of the Machine-like Components of Zirconium(IV) Organic Frameworks. CheM, 2021, 7, 14-16.	5.8	2
703	Probing the Electrostatic Barrier of Tetrathiafulvalene Dications using a Tetraâ€stable Donor–Acceptor [2]Rotaxane. Chemistry - A European Journal, 2020, 26, 6165-6175.	1.7	7
704	Donor–Acceptor π–π Stacking Interactions: From Small Molecule Complexes to Healable Supramolecular Polymer Networks. Advances in Polymer Science, 2015, , 143-166.	0.4	17
705	Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. Journal of the American Chemical Society, 2021, 143, 442-452.	6.6	72
706	Master curve of boosted diffusion for 10 catalytic enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29435-29441.	3.3	30
707	N′-[1-(Pyrazin-2-yl)ethylidene]pyrazine-2-carbohydrazide. IUCrData, 2018, 3, .	0.1	1
708	[c2]Daisy Chain Rotaxanes as Molecular Muscles. CCS Chemistry, 0, , 83-96.	4.6	28
709	Lightâ€Driven Spiral Deformation of Supramolecular Helical Microfibers by Localized Photoisomerization. Advanced Optical Materials, 2022, 10, 2101267.	3.6	6
710	Electron Transfer Regulated by Rotational Motion within Coordination Environment. Bulletin of Japan Society of Coordination Chemistry, 2012, 59, 48-55.	0.1	0
711	Design and Synthesis of Rotaxanes Aimed at the Development of Actuating and Locomotional Functions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 158-159.	0.0	0
712	Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions. Advances in Atom and Single Molecule Machines, 2015, , 127-141.	0.0	0
713	Chapter 12. Pillararene-related Macrocycles. Monographs in Supramolecular Chemistry, 2015, , 278-307.	0.2	2
716	Multi-Scale Energy Harvesting. , 2018, , 157-185.		0
717	Methyl 4-{ <i>N</i> ′-[(1 <i>E</i>)-1-(pyrazin-2-yl)ethylidene]hydrazinecarbonyl}benzoate. IUCrData, 2018, 3,	0.1	0
718	Functional Rotaxanes. , 2019, , 1-34.		0
719	Artificial molecular machine at work: production of polyrotaxanes with precision. Science Bulletin, 2020, 65, 1964-1965.	4.3	9
720	Sequence-sorted redox-switchable hetero[3]rotaxanes. Organic Chemistry Frontiers, 2021, 9, 64-74.	2.3	7
721	<i>N</i> ′-(2-Hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide monohydrate. IUCrData, 2020, 5, .	0.1	O

#	Article	IF	CITATIONS
722	Functional Rotaxanes., 2020,, 277-310.		4
724	Rigid Polymer Network-Based Autonomous Photoswitches Working in the Solid State Encoded by Room-Temperature Phosphorescence. Langmuir, 2021, 37, 14398-14406.	1.6	5
725	Collective dynamics of molecular rotors in periodic mesoporous organosilica: a combined solid-state ² H-NMR and molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2022, 24, 666-673.	1.3	5
726	Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. Journal of the American Chemical Society, 2022, 144, 2022-2033.	6.6	140
727	Quantitative Inâ \in Situ NMR Illumination for Excitation and Kinetic Analysis of Molecular Motor Intermediates. ChemPhotoChem, 0, , .	1.5	4
728	Quantifying the barrier for the movement of cyclobis(paraquat-p-phenylene) over the dication of monopyrrolotetrathiafulvalene. Organic and Biomolecular Chemistry, 2022, , .	1.5	3
729	Remotely controllable supramolecular rotor mounted inside a porphyrinic cage. CheM, 2022, 8, 543-556.	5.8	24
730	Active Mechanical Threading by a Molecular Motor. Angewandte Chemie, 0, , .	1.6	9
731	Active Mechanical Threading by a Molecular Motor**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
732	Nanovehicles and boron clusters. , 2022, , 291-319.		3
733	Fluorescence Quenching by Redox Molecular Pumping. Journal of the American Chemical Society, 2022, 144, 3572-3579.	6.6	17
734	Electro-mechanically switchable hydrocarbons based on [8]annulenes. Nature Communications, 2022, 13, 860.	5.8	10
735	Insights from an information thermodynamics analysis of a synthetic molecular motor. Nature Chemistry, 2022, 14, 530-537.	6.6	54
736	Reversible Photoresponsive Modulation of Osmotic Pressure via Macromolecular Host–Guest Interaction. ACS Macro Letters, 2022, 11, 537-542.	2.3	3
737	Machine Learning in Materials Chemistry: An Invitation. Machine Learning With Applications, 2022, 8, 100265.	3.0	12
738	A light-fuelled nanoratchet shifts a coupled chemical equilibrium. Nature Nanotechnology, 2022, 17, 159-165.	15.6	41
739	Noncovalently bound and mechanically interlocked systems using pillar[<i>n</i>]arenes. Chemical Society Reviews, 2022, 51, 3648-3687.	18.7	59
742	Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity. Nature Communications, 2022, 13, 2291.	5.8	19

#	Article	IF	CITATIONS
743	Generalized Formulation of the Density Functional Tight Binding-Based Restricted Ensemble Kohn–Sham Method with Onsite Correction to Long-Range Correction. Journal of Chemical Theory and Computation, 2022, 18, 3391-3409.	2.3	2
744	Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science, 2022, 13, 8253-8264.	3.7	19
745	Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. Chinese Chemical Letters, 2023, 34, 107558.	4.8	16
746	Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angewandte Chemie, 2022, 134, .	1.6	3
747	Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
749	Molecular mechanics of gloveâ€like re(I) metallacycles: Toward lightâ€activated molecular catchers. Journal of the Chinese Chemical Society, 0, , .	0.8	2
750	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie, 0, , .	1.6	4
751	The Influence of Strain on the Rotation of an Artificial Molecular Motor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
752	A Roadmap for Mechanically Interlocked Molecular Junctions at Nanoscale. ACS Applied Nano Materials, 2022, 5, 13874-13886.	2.4	9
753	Chemically Driven Rotatory Molecular Machines. Angewandte Chemie, 2022, 134, .	1.6	6
754	Chemically Driven Rotatory Molecular Machines. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
755	On the Computational Design of Azobenzene-Based Multi-State Photoswitches. International Journal of Molecular Sciences, 2022, 23, 8690.	1.8	1
756	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24
757	The Story of the Little Blue Box: A Tribute to Siegfried Hþnig. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
758	The Story of the Little Blue Box: A Tribute to Siegfried Hýnig. Angewandte Chemie, 2023, 135, .	1.6	0
759	Surface-Mounted Dipolar Molecular Rotors Driven by External Electric Field, As Revealed by Torque Analyses. ACS Omega, 2022, 7, 35159-35169.	1.6	2
760	"Vermellogens―and the Development of CB[8]-Based Supramolecular Switches Using pH-Responsive and Non-Toxic Viologen Analogues. Journal of the American Chemical Society, 2022, 144, 19127-19136.	6.6	3
761	A series of entangled MOFs constructed from flexible dipyridyl piperazine and rigid dicarboxylate: interpenetration, self-penetration, and polycatenation. CrystEngComm, 2022, 24, 7906-7914.	1.3	1

#	Article	IF	Citations
762	Synthesizing the biochemical and semiconductor worlds: <i>the future of nucleic acid nanotechnology</i> . Nanoscale, 2022, 14, 15586-15595.	2.8	2
763	Photochemically driven molecular machines based on coordination compounds., 2022,,.		O
764	Coupled Rocking Motion in a Light-Driven Rotary Molecular Motor. Journal of Organic Chemistry, 2024, 89, 1-8.	1.7	2
765	Amplification of integrated microscopic motions of high-density [2] rotaxanes in mechanically interlocked networks. Nature Communications, 2022, 13, .	5.8	17
766	Meta-stable initial condition for improving the switching probability in azobenzene derivatives on surface. Applied Surface Science, 2023, 612, 155747.	3.1	1
767	Optimizing dynamical functions for speed with stochastic paths. Journal of Chemical Physics, 2022, 157, .	1.2	1
768	Thermal and (Thermo-Reversible) Photochemical Cycloisomerization of 1 <i>H</i> -2-Benzo[<i>c</i>)oxocins: From Synthetic Applications to the Development of a New T-Type Molecular Photoswitch. Journal of the American Chemical Society, 2023, 145, 645-657.	6.6	6
769	Lightâ€fueled transformations of a dynamic cageâ€based molecular system. Angewandte Chemie, 0, , .	1.6	O
770	Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metalâ€Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
771	Moving forward in the semantic soup of artificial molecular machine taxonomy. Nature Nanotechnology, 2022, 17, 1231-1234.	15.6	6
772	Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
773	Lightâ€Fueled Transformations of a Dynamic Cageâ€Based Molecular System. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
774	Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[<i>n</i>) luril homologues and derivatives. Chemical Society Reviews, 2023, 52, 1428-1455.	18.7	34
775	Kinetic Barrier Diagrams to Visualize and Engineer Molecular Nonequilibrium Systems. Small, 2023, 19, .	5.2	15
776	Supramolecules: Future Challenges and Perspectives. , 2022, , 319-328.		0
777	Dithienyletheneâ€Based Single Molecular Photothermal Linear Actuator. Angewandte Chemie, 2023, 135, .	1.6	1
778	Dithienyletheneâ€Based Single Molecular Photothermal Linear Actuator. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
779	Magnetic Switchability via Thermal-Induced Structural Phase Transitions in Molecular Solids. Magnetochemistry, 2023, 9, 80.	1.0	0

IF CITATIONS ARTICLE 6

Exploration of molecular machines in supramolecular soft robotic systems. Advances in Colloid and Interface Science, 2023, 315, 102892. 780 **7.**0