A Strategy for Dramatically Enhancing the Selectivity o Aggregationâ€Induced Emission towards Biomacromol

Chemistry - A European Journal 18, 7278-7286 DOI: 10.1002/chem.201103638

Citation Report

#	Article	IF	Citations
1	Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 23726.	6.7	761
2	Water-soluble graphene sheets with large optical limiting response via non-covalent functionalization with polyacetylenes. Journal of Materials Chemistry, 2012, 22, 22624.	6.7	34
3	Switching the emission of di(4-ethoxyphenyl)dibenzofulvene among multiple colors in the solid state. Science China Chemistry, 2013, 56, 1173-1177.	4.2	24
4	Conjugated Polyelectrolytes with Aggregationâ€Enhanced Emission Characteristics: Synthesis and their Biological Applications. Chemistry - an Asian Journal, 2013, 8, 2436-2445.	1.7	41
5	Fluorescent Organic Nanoparticles of Biginelli-Based Molecules: Recognition of Hg ²⁺ and Cl [–] in an Aqueous Medium. Inorganic Chemistry, 2013, 52, 13830-13832.	1.9	64
6	Aggregation induced emission characteristics of maleimide derivatives. RSC Advances, 2013, 3, 22246.	1.7	33
7	From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chemical Communications, 2013, 49, 2491.	2.2	123
8	Aggregation-Induced Emission Materials: the Art of Conjugation and Rotation. , 0, , 127-153.		1
9	Applications of Aggregation-Induced Emission Materials in Biotechnology. , 2013, , 259-274.		0
10	Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9, 4564.	1.2	175
11	Waterâ€Soluble Tetraphenylethene Derivatives as Fluorescent "Lightâ€Up―Probes for Nucleic Acid Detection and Their Applications in Cell Imaging. Chemistry - an Asian Journal, 2013, 8, 1806-1812.	1.7	65
12	Fluorescence turn-on detection of DNA based on the aggregation-induced emission of conjugated poly(pyridinium salt)s. Polymer Chemistry, 2013, 4, 4045.	1.9	40
13	Bioprobes Based on AIE Fluorogens. Accounts of Chemical Research, 2013, 46, 2441-2453.	7.6	1,607
14	STIMULUS RESPONSIVE LUMINESCENT MATERIALS: CRYSTALLIZATION-INDUCED EMISSION ENHANCEMENT. Journal of Molecular and Engineering Materials, 2013, 01, 1340010.	0.9	8
15	A Fluorescent and Colorimetric Sensor for Nanomolar Detection of Co ²⁺ in Water. ChemPhysChem, 2014, 15, 3933-3937.	1.0	15
16	Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating. Applied and Environmental Microbiology, 2014, 80, 1739-1749.	1.4	13
17	Salt-Responsive Self-Assembly of Luminescent Hydrogel with Intrinsic Gelation-Enhanced Emission. ACS Applied Materials & Interfaces, 2014, 6, 757-762.	4.0	71
18	Fluorescent Aptasensor Based on Aggregation-Induced Emission Probe and Graphene Oxide. Analytical Chemistry, 2014, 86, 298-303.	3.2	92

#	Article	IF	CITATIONS
19	Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B, 2014, 2, 4134-4141.	2.9	58
20	Synthesis, Structure, Photoluminescence, and Electroluminescence of Siloles that Contain Planar Fluorescent Chromophores. Chemistry - an Asian Journal, 2014, 9, 2937-2945.	1.7	23
21	Imaging Intracellular Anticancer Drug Delivery by Self-Assembly Micelles with Aggregation-Induced Emission (AIE Micelles). ACS Applied Materials & Interfaces, 2014, 6, 5212-5220.	4.0	150
22	A dual functional AEE fluorogen as a mitochondrial-specific bioprobe and an effective photosensitizer for photodynamic therapy. Chemical Communications, 2014, 50, 14451-14454.	2.2	79
23	Superior Fluorescent Probe for Detection of Cardiolipin. Analytical Chemistry, 2014, 86, 1263-1268.	3.2	59
24	Multiple stimuli-responsive and reversible fluorescence switches based on a diethylamino-functionalized tetraphenylethene. Journal of Materials Chemistry C, 2015, 3, 9103-9111.	2.7	61
25	Aggregation-induced emission of siloles. Chemical Science, 2015, 6, 5347-5365.	3.7	487
26	Bioinspired preparation of thermo-responsive graphene oxide nanocomposites in an aqueous solution. Polymer Chemistry, 2015, 6, 5876-5883.	1.9	62
27	A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay. Scientific Reports, 2015, 4, 4272.	1.6	73
28	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	23.0	6,279
29	AIE probes towards biomolecules: the improved selectivity with the aid of graphene oxide. Science China Chemistry, 2015, 58, 1800-1809.	4.2	59
30	Hydrogen-bond assisted, aggregation-induced emission of digitonin. RSC Advances, 2015, 5, 100176-100183.	1.7	15
31	An imidazole-containing core-substituted naphthalene diimide: Fluorescent sensing properties toward copper ion and optimized selectivity by tuning the solvent medium. Sensors and Actuators B: Chemical, 2015, 207, 827-832.	4.0	13
32	A photostable AIE fluorogen for lysosome-targetable imaging of living cells. Journal of Materials Chemistry B, 2016, 4, 5412-5417.	2.9	28
33	Functionalization of graphene by a TPE-containing polymer using nitrogen-based nucleophiles. Polymer Chemistry, 2016, 7, 4054-4062.	1.9	16
34	Tunable Supramolecular Interactions of Aggregationâ€Induced Emission Probe and Graphene Oxide with Biomolecules: An Approach toward Ultrasensitive Labelâ€Free and "Turnâ€On―DNA Sensing. Small, 2016, 12 6613-6622.	2,5.2	75
35	Aggregationâ€Induced Emission for Highly Selective and Sensitive Fluorescent Biosensing and Cell Imaging. Journal of Polymer Science Part A, 2017, 55, 653-659.	2.5	16
36	BSA-coated fluorescent organic–inorganic hybrid silica nanoparticles: preparation and drug delivery. New Journal of Chemistry, 2017, 41, 1637-1644.	1.4	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	A fluorescent light-up aggregation-induced emission probe for screening gefitinib-sensitive non-small cell lung carcinoma. Biomaterials Science, 2017, 5, 792-799.	2.6	13
38	Label-free detection for SNP using AIE probes and carbon nanotubes. Sensors and Actuators B: Chemical, 2017, 253, 92-96.	4.0	26
39	Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Science China Chemistry, 2019, 62, 1090-1098.	4.2	269
40	Aggregation-Induced Emission Fluorophore-Based Molecular Beacon for Differentiating Tumor and Normal Cells by Detecting the Specific and False-Positive Signals. ACS Biomaterials Science and Engineering, 2019, 5, 3618-3630.	2.6	13
41	Fluorogenic Detection and Characterization of Proteins by Aggregationâ€Induced Emission Methods. Chemistry - A European Journal, 2019, 25, 5824-5847.	1.7	66
42	AlEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chemistry - an Asian Journal, 2019, 14, 689-699.	1.7	12
43	AIE active TPE mesogens with p6mm columnar and Im3m cubic mesophases and white light emission property. Journal of Molecular Liquids, 2020, 298, 112079.	2.3	10
44	A graphene oxide-aided triple helical aggregation-induced emission biosensor for highly specific detection of charged collagen peptides. Journal of Materials Chemistry B, 2020, 8, 6027-6033.	2.9	9
45	Nucleic acids induced peptide-based AIE nanoparticles for fast cell imaging. Chinese Chemical Letters, 2021, 32, 1571-1574.	4.8	12
46	Fluorescent Aptasensor Based on Aggregation-Induced Emission Probe and Carbon nanomaterials. , 2019, , 307-316.		0
47	Aggregation-induced emission shining in the biomedical field: From bench to bedside. Engineered Regeneration, 2021, 2, 206-218.	3.0	4
48	Target-triggering, signal-amplified chemo/bio-sensors based on aggregation-induced emission luminogens. Cell Reports Physical Science, 2022, 3, 100743.	2.8	4
49	Insights into AIE materials: A focus on biomedical applications of fluorescence. Frontiers in Chemistry, 0, 10, .	1.8	9