Overexpression of Snail induces epithelial–mesenchy cell–like phenotype in human colorectal cancer cells

Cancer Medicine 1, 5-16 DOI: 10.1002/cam4.4

Citation Report

#	Article	IF	CITATIONS
1	Unravelling cancer stem cell potential. Nature Reviews Cancer, 2013, 13, 727-738.	12.8	723
2	Stem Cell Signaling Pathways in Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 341-349.	1.0	0
3	Strategies for Isolating and Enriching Cancer Stem Cells: Well Begun Is Half Done. Stem Cells and Development, 2013, 22, 2221-2239.	1.1	74
4	TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle, 2013, 12, 1696-1703.	1.3	30
5	Progression of Luminal Breast Tumors Is Promoted by Ménage à Trois between the Inflammatory Cytokine TNF <i>α</i> and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment. Mediators of Inflammation, 2013, 2013, 1-19.	1.4	17
6	<i>\hat{i}</i> -Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. Journal of Pathology, 2013, 231, 210-222.	2.1	76
7	Elevated Snail Expression Mediates Tumor Progression in Areca Quid Chewing-Associated Oral Squamous Cell Carcinoma via Reactive Oxygen Species. PLoS ONE, 2013, 8, e67985.	1.1	35
8	Snail Contributes to the Maintenance of Stem Cell-Like Phenotype Cells in Human Pancreatic Cancer. PLoS ONE, 2014, 9, e87409.	1.1	73
9	Stemness is Derived from Thyroid Cancer Cells. Frontiers in Endocrinology, 2014, 5, 114.	1.5	25
10	Intestinal stem cells and the colorectal cancer microenvironment. World Journal of Gastroenterology, 2014, 20, 1898.	1.4	36
11	Prostaglandin E2 receptor EP2 mediates Snail expression in hepatocellular carcinoma cells. Oncology Reports, 2014, 31, 2099-2106.	1.2	25
12	Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells. BMC Complementary and Alternative Medicine, 2014, 14, 97.	3.7	22
13	Cancer Stem Cells of the Digestive System. Japanese Journal of Clinical Oncology, 2014, 44, 1141-1149.	0.6	9
14	SNAI2 Modulates Colorectal Cancer 5-Fluorouracil Sensitivity through miR145 Repression. Molecular Cancer Therapeutics, 2014, 13, 2713-2726.	1.9	51
15	The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer and Metastasis Reviews, 2014, 33, 441-468.	2.7	59
16	Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 234-254.	1.1	74
17	The effects of shRNA-mediated gene silencing of transcription factor SNAI1 on the biological phenotypes of breast cancer cell line MCF-7. Molecular and Cellular Biochemistry, 2014, 388, 113-121.	1.4	8
18	A nineteen geneâ€based risk score classifier predicts prognosis of colorectal cancer patients. Molecular Oncology, 2014, 8, 1653-1666.	2.1	136

ITATION REDO

# 19	ARTICLE Epithelial to mesenchymal transition might be induced via CD44 isoform switching in colorectal cancer. Journal of Surgical Oncology, 2014, 110, 745-751.	IF 0.8	CITATIONS
20	Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Therapy, 2014, 21, 181-187.	2.2	104
21	Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. Journal of Experimental and Clinical Cancer Research, 2014, 33, 62.	3.5	345
22	Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial–mesenchymal transition and ILK signaling pathway. Experimental and Molecular Pathology, 2014, 96, 411-421.	0.9	12
23	Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumor Biology, 2014, 35, 7335-7342.	0.8	225
24	Fusion of HepG2 cells with mesenchymal stem cells increases cancer-associated and malignant properties: An in vivo metastasis model. Oncology Reports, 2014, 32, 539-547.	1.2	42
25	Overexpression of goosecoid homeobox is associated with chemoresistance and poor prognosis in ovarian carcinoma. Oncology Reports, 2014, 32, 189-198.	1.2	33
26	Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. International Journal of Oncology, 2014, 44, 693-699.	1.4	63
27	TWIST1 and SNAI1 as markers of poor prognosis in human colorectal cancer are associated with the expression of ALDH1 and TGF-Î21. Oncology Reports, 2014, 31, 1380-1388.	1.2	56
28	FH535 inhibited metastasis and growth of pancreatic cancer cells. OncoTargets and Therapy, 2015, 8, 1651.	1.0	8
29	Molecular and Pathogenetic Aspects of Tumor Budding in Colorectal Cancer. Frontiers in Medicine, 2015, 2, 11.	1.2	74
30	Leukocytes: The Double-Edged Sword in Fibrosis. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	35
31	Profilin 2 promotes migration, invasion, and stemness of HT29 human colorectal cancer stem cells. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1438-1446.	0.6	30
32	Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78. Molecular Cancer Therapeutics, 2015, 14, 747-756.	1.9	38
33	Expression of adhesion molecules and epithelial-mesenchymal transition factors in medullary carcinoma of the colorectum. Human Pathology, 2015, 46, 1257-1266.	1.1	7
34	Downregulation of cathepsin L suppresses cancer invasion and migration by inhibiting transforming growth factor-β-mediated epithelial-mesenchymal transition. Oncology Reports, 2015, 33, 1851-1859.	1.2	40
35	Regulation of miRNAs by Agents Targeting the Tumor Stem Cell Markers DCLK1, MSI1, LGR5, and BMI1. Current Pharmacology Reports, 2015, 1, 217-222.	1.5	12
36	p53 regulates cytoskeleton remodeling to suppress tumor progression. Cellular and Molecular Life Sciences, 2015, 72, 4077-4094.	2.4	33

#	Article	IF	Citations
37	Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance. Molecular Oncology, 2015, 9, 1169-1185.	2.1	91
38	Competitive Volumetric Bar-Chart Chip with Real-Time Internal Control for Point-of-Care Diagnostics. Analytical Chemistry, 2015, 87, 3771-3777.	3.2	36
39	High-mobility group Box 1: A novel inducer of the epithelial–mesenchymal transition in colorectal carcinoma. Cancer Letters, 2015, 357, 527-534.	3.2	57
40	Epithelial–Mesenchymal Transitioned Circulating Tumor Cells Capture for Detecting Tumor Progression. Clinical Cancer Research, 2015, 21, 899-906.	3.2	199
41	Endocannabinoid system as a regulator of tumor cell malignancy – biological pathways and clinical significance. OncoTargets and Therapy, 2016, Volume 9, 4323-4336.	1.0	42
42	Celastrol Ameliorates Ulcerative Colitis-Related Colorectal Cancer in Mice via Suppressing Inflammatory Responses and Epithelial-Mesenchymal Transition. Frontiers in Pharmacology, 2015, 6, 320.	1.6	80
43	BRAF and Epithelial-Mesenchymal Transition: Lessons From Papillary Thyroid Carcinoma and Primary Cutaneous Melanoma. Advances in Anatomic Pathology, 2016, 23, 244-271.	2.4	19
44	Inhibition of Growth and Metastasis of Colon Cancer by Delivering 5-Fluorouracil-loaded Pluronic P85 Copolymer Micelles. Scientific Reports, 2016, 6, 20896.	1.6	27
45	MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Molecular Medicine Reports, 2016, 13, 75-82.	1.1	53
46	Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 11-19.	2.0	51
47	Galangin inhibits cell invasion by suppressing the epithelial-mesenchymal transition and inducing apoptosis in renal cell carcinoma. Molecular Medicine Reports, 2016, 13, 4238-4244.	1.1	45
48	Snail controls proliferation of Drosophila ovarian epithelial follicle stem cells, independently of E-cadherin. Developmental Biology, 2016, 414, 142-148.	0.9	9
49	Snail1 expression in human colon cancer DLD-1 cells confers invasive properties without N-cadherin expression. Biochemistry and Biophysics Reports, 2016, 8, 120-126.	0.7	12
50	Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2445-2453.	1.1	24
51	3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Scientific Reports, 2016, 6, 28858.	1.6	22
52	The biological complexity of colorectal cancer: insights into biomarkers for early detection and personalized care. Therapeutic Advances in Gastroenterology, 2016, 9, 861-886.	1.4	44
53	Novel Biomarker Candidates for Colorectal Cancer Metastasis: A Meta-analysis of In Vitro Studies. Cancer Informatics, 2016, 15s4, CIN.S40301.	0.9	18
54	Acquisition of Chemoresistance and Other Malignancy-related Features of Colorectal Cancer Cells Are Incremented by Ribosome-inactivating Stress. Journal of Biological Chemistry, 2016, 291, 10173-10183.	1.6	8

#	Article	IF	Citations
55	Topoisomerase IIα mediates TCF-dependent epithelial–mesenchymal transition in colon cancer. Oncogene, 2016, 35, 4990-4999.	2.6	23
56	Endostatin combined with radiotherapy suppresses vasculogenic mimicry formation through inhibition of epithelial–mesenchymal transition in esophageal cancer. Tumor Biology, 2016, 37, 4679-4688.	0.8	15
57	NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial–mesenchymal transition. Oncogene, 2016, 35, 2266-2278.	2.6	26
58	MicroRNA-30b Suppresses Epithelial-Mesenchymal Transition and Metastasis of Hepatoma Cells. Journal of Cellular Physiology, 2017, 232, 625-634.	2.0	18
59	Stress-Adaptive Response in Ovarian Cancer Drug Resistance. Advances in Protein Chemistry and Structural Biology, 2017, 108, 163-198.	1.0	34
60	Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. International Journal of Oncology, 2017, 50, 252-262.	1.4	64
61	The Snail Family in Normal and Malignant Haematopoiesis. Cells Tissues Organs, 2017, 203, 82-98.	1.3	11
62	Molecular effectors of radiation resistance in colorectal cancer. Precision Radiation Oncology, 2017, 1, 27-33.	0.4	18
63	Emerging Biological Principles of Metastasis. Cell, 2017, 168, 670-691.	13.5	2,208
64	The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner. Biochemical and Biophysical Research Communications, 2017, 484, 726-733.	1.0	29
65	Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library. International Journal of Oncology, 2017, 50, 587-596.	1.4	7
66	E-cadherin: A potential biomarker of colorectal cancer prognosis. Oncology Letters, 2017, 13, 4571-4576.	0.8	64
67	Antagonistic Effects of p53 and HIF1A on microRNA-34a Regulation of PPP1R11 and STAT3 and Hypoxia-induced Epithelial to Mesenchymal Transition in Colorectal Cancer Cells. Gastroenterology, 2017, 153, 505-520.	0.6	127
68	Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT). Purinergic Signalling, 2017, 13, 1-12.	1.1	47
69	The meaning of PIWI proteins in cancer development. Oncology Letters, 2017, 13, 3354-3362.	0.8	36
70	Epithelial-to-mesenchymal transition in tumor progression. Medical Oncology, 2017, 34, 122.	1.2	97
71	Mesenchymal stem cells induce epithelial mesenchymal transition in melanoma by paracrine secretion of transforming growth factor-l². Melanoma Research, 2017, 27, 74-84.	0.6	15
72	Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicology Letters, 2017, 265, 53-60.	0.4	25

#	Article	IF	CITATIONS
73	Low folate metabolic stress reprograms DNA methylationâ€activated sonic hedgehog signaling to mediate cancer stem cellâ€like signatures and invasive tumour stageâ€specific malignancy of human colorectal cancers. International Journal of Cancer, 2017, 141, 2537-2550.	2.3	28
74	An X-ray shielded irradiation assay reveals EMT transcription factors control pluripotent adult stem cell migration <i>in vivo</i> in planarians. Development (Cambridge), 2017, 144, 3440-3453.	1.2	49
75	Diffusion kurtosis imaging evaluating epithelial–mesenchymal transition in colorectal carcinoma xenografts model: a preliminary study. Scientific Reports, 2017, 7, 11424.	1.6	3
76	Filamin A upregulation correlates with Snail-induced epithelial to mesenchymal transition (EMT) and cell adhesion but its inhibition increases the migration of colon adenocarcinoma HT29 cells. Experimental Cell Research, 2017, 359, 163-170.	1.2	29
77	Knockdown of Snail inhibits epithelial–mesenchymal transition of human laryngeal squamous cell carcinoma Hep-2 cells through the vitamin D receptor signaling pathway. Biochemistry and Cell Biology, 2017, 95, 672-678.	0.9	13
78	Cancer stem cells and differentiation therapy. Tumor Biology, 2017, 39, 101042831772993.	0.8	76
79	Lactate dehydrogenase downregulation mediates the inhibitory effect of diallyl trisulfide on proliferation, metastasis, and invasion in tripleâ€negative breast cancer. Environmental Toxicology, 2017, 32, 1390-1398.	2.1	11
80	Expression of epithelial-mesenchymal transition and cancer stem cell markers in colorectal adenocarcinoma: Clinicopathological significance. Oncology Reports, 2017, 38, 1695-1705.	1.2	51
81	Oral cancer stem cells - properties and consequences. Journal of Applied Oral Science, 2017, 25, 708-715.	0.7	29
82	Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer. Oncology Letters, 2018, 15, 1789-1798.	0.8	11
83	Low expression of GATA3 promotes cell proliferation and metastasis in gastric cancer. Cancer Management and Research, 2017, Volume 9, 769-780.	0.9	9
84	Expression and clinical relevance of epithelial and mesenchymal markers in circulating tumor cells from colorectal cancer. Oncotarget, 2017, 8, 9293-9302.	0.8	91
85	TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget, 2017, 8, 863-882.	0.8	49
86	Targeting the Overexpressed YY1 in Cancer Inhibits EMT and Metastasis. Critical Reviews in Oncogenesis, 2017, 22, 49-61.	0.2	36
87	Smad4 and epithelial–mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. Journal of Molecular Histology, 2018, 49, 235-244.	1.0	31
88	Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene, 2018, 37, 3953-3966.	2.6	34
89	miR-145 Antagonizes SNAI1-Mediated Stemness and Radiation Resistance in Colorectal Cancer. Molecular Therapy, 2018, 26, 744-754.	3.7	88
90	Snailâ€mediated cancer stem cellâ€ŀike phenotype in human CNE2 nasopharyngeal carcinoma cell. Head and Neck, 2018, 40, 485-497.	0.9	5

#	Article	IF	CITATIONS
91	CD271 Confers an Invasive and Metastatic Phenotype of Head and Neck Squamous Cell Carcinoma through the Upregulation of Slug. Clinical Cancer Research, 2018, 24, 674-683.	3.2	35
92	Role of Epithelial-Mesenchymal Transition in Tumor Progression. Biochemistry (Moscow), 2018, 83, 1469-1476.	0.7	57
93	Collagen XVII/laminin-5 activates epithelial-to-mesenchymal transition and is associated with poor prognosis in lung cancer. Oncotarget, 2018, 9, 1656-1672.	0.8	39
94	CD44v9 is associated with epithelialâ€mesenchymal transition and poor outcomes in esophageal squamous cell carcinoma. Cancer Medicine, 2018, 7, 6258-6268.	1.3	22
95	One step ahead: miRNA-34 in colon cancer-future diagnostic and therapeutic tool?. Critical Reviews in Oncology/Hematology, 2018, 132, 1-8.	2.0	19
96	Characterisation of mesenchymal colon tumour-derived cells in tumourspheres as a model for colorectal cancer progression. International Journal of Oncology, 2018, 53, 2379-2396.	1.4	18
97	Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer, 2018, 18, 669-680.	12.8	458
98	Oxaliplatin and irinotecan induce heterogenous changes in the EMT markers of metastasizing colorectal carcinoma cells. Experimental Cell Research, 2018, 369, 295-303.	1.2	8
99	Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 185-199.	2.0	39
100	Practical value of identifying circulating tumor cells to evaluate esophageal squamous cell carcinoma staging and treatment efficacy. Thoracic Cancer, 2018, 9, 956-966.	0.8	17
101	MicroRNA-30b targets Snail to impede epithelial-mesenchymal transition in pancreatic cancer stem cells. Journal of Cancer, 2018, 9, 2147-2159.	1.2	32
102	Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Frontiers of Medicine, 2018, 12, 361-373.	1.5	467
103	Knockdown of Uba2 inhibits colorectal cancer cell invasion and migration through downregulation of the Wnt/β atenin signaling pathway. Journal of Cellular Biochemistry, 2018, 119, 6914-6925.	1.2	18
104	The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses, 2018, 10, 408.	1.5	108
105	A set of cancer stem cell homing peptides associating with the glycan moieties of glycosphingolipids. Oncotarget, 2018, 9, 20490-20507.	0.8	6
106	Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Scientific Reports, 2018, 8, 8704.	1.6	56
107	YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death and Disease, 2019, 10, 768.	2.7	28
108	Eâ€cadherinâ€Fc chimera protein matrix enhances cancer stemâ€like properties and induces mesenchymal features in colon cancer cells. Cancer Science, 2019, 110, 3520-3532.	1.7	15

#	Article	IF	CITATIONS
109	Synergistic activation of the NEU4 promoter by p73 and AP2 in colon cancer cells. Scientific Reports, 2019, 9, 950.	1.6	10
110	<i>SATB2-AS1</i> Suppresses Colorectal Carcinoma Aggressiveness by Inhibiting SATB2-Dependent <i>Snail</i> Transcription and Epithelial–Mesenchymal Transition. Cancer Research, 2019, 79, 3542-3556.	0.4	75
111	Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma—A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells, 2019, 8, 234.	1.8	46
112	Regulation of miRNAs by Snail during epithelial-to-mesenchymal transition in HT29 colon cancer cells. Scientific Reports, 2019, 9, 2165.	1.6	23
113	Treatment of cancer stem cells from human colon adenocarcinoma cell line HT-29 with resveratrol and sulindac induced mesenchymal-endothelial transition rate. Cell and Tissue Research, 2019, 376, 377-388.	1.5	29
114	The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells, 2019, 8, 1461.	1.8	13
115	Epithelialâ€mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Developmental Dynamics, 2019, 248, 10-20.	0.8	89
116	Ponicidin inhibits pro-inflammatory cytokine TNF-α-induced epithelial–mesenchymal transition and metastasis of colorectal cancer cells via suppressing the AKT/GSK-3β/Snail pathway. Inflammopharmacology, 2019, 27, 627-638.	1.9	26
117	Deep proteomic analysis of Dnmt1 mutant/hypomorphic colorectal cancer cells reveals dysregulation of epithelial–mesenchymal transition and subcellular re-localization of Beta-Catenin. Epigenetics, 2020, 15, 107-121.	1.3	4
118	DCLK1 Monoclonal Antibody-Based CAR-T Cells as a Novel Treatment Strategy against Human Colorectal Cancers. Cancers, 2020, 12, 54.	1.7	37
119	NKX6.1 Represses Tumorigenesis, Metastasis, and Chemoresistance in Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 5106.	1.8	15
120	IncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Seminars in Cancer Biology, 2021, 75, 38-48.	4.3	129
121	SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes and Diseases, 2022, 9, 95-107.	1.5	16
122	Expression pattern of ALDH1, E-cadherin, Vimentin and Twist in early and late onset sporadic colorectal cancer. Biomarkers in Medicine, 2020, 14, 1371-1382.	0.6	7
123	Regulators of G-protein signaling, RGS2 and RGS4, inhibit protease-activated receptor 4-mediated signaling by forming a complex with the receptor and $Gl\pm$ in live cells. Cell Communication and Signaling, 2020, 18, 86.	2.7	18
124	The SNAIL1 promoter contains G-quadruplex structures regulating its gene expression and DNA replication. Experimental Cell Research, 2020, 394, 112158.	1.2	7
125	Anti-proliferative and Anti-metastatic Potential of High Molecular Weight Secretory Molecules from Probiotic Lactobacillus Reuteri Cell-Free Supernatant Against Human Colon Cancer Stem-Like Cells (HT29-ShE). International Journal of Peptide Research and Therapeutics, 2020, 26, 2619-2631.	0.9	22
126	Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs). Cancers, 2020, 12, 743.	1.7	8

#	Article	IF	CITATIONS
127	Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Translational Oncology, 2020, 13, 100773.	1.7	455
128	Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell International, 2020, 20, 113.	1.8	21
129	Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals, 2021, 14, 60.	1.7	31
129	Cancer Stem Cells and Nucleonin as Drivers of Carcinogenesis. Pharmaceuticals, 2021, 14, 00.	1./	31
130	Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncology Reports, 2021, 45, .	1.2	31
	Dertreit of Concer Stem Calle on Colorectal Concer Molecular Diemerkers, Signaling Dathurus and		
131	Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. International Journal of Molecular Sciences, 2021, 22, 1603.	1.8	14
132	CD166 promotes cancer stem cell-like phenotype via the ECFR/ERK1/2 pathway in the nasopharyngeal	2.0	7
102	carcinoma cell line CNE-2R. Life Sciences, 2021, 267, 118983.	2.0	,
133	Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers, 2021, 13, 1380.	1.7	38
134	How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell International, 2021, 21, 207.	1.8	9
135	The Role of Snail-1 in Thyroid Cancer—What We Know So Far. Journal of Clinical Medicine, 2021, 10,	1.0	4
100	2324.	1.0	т
136	Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer Cells. Nutrition and Cancer, 2021, , 1-11.	0.9	5
	Taurand as disable second table in a second state second state in this is the fact that a second state is a		
137	Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clinical and Translational Imaging, 0, , 1.	1.1	1
139	Anastasis: Return Journey from Cell Death. Cancers, 2021, 13, 3671.	1.7	19
109	Anastasis. Return Journey nom Cen Death. Cancers, 2021, 15, 5071.	1.7	17
140	MiR-146a suppresses the expression of CXCR4 and alters survival, proliferation and migration rate in colorectal cancer cells. Tissue and Cell, 2021, 73, 101654.	1.0	8
141	Role of Hexosamine Biosynthetic Pathway on Cancer Stem Cells: Connecting Nutrient Sensing to Cancer Cell Plasticity. , 2021, , .		0
143	Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal	11	45
143	Cancer Cells through PTEN Deficiency-Mediated Akt Activation. PLoS ONE, 2015, 10, e0126149.	1,1	45
144	Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity. PLoS ONE, 2016, 11, e0150226.	1.1	49
145	An Updated Review of Oral Cancer Stem Cells and Their Stemness Regulation. Critical Reviews in Oncogenesis, 2018, 23, 189-200.	0.2	30
146	Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer	0.0	00
146	stem-like cells in Luminal-A breast tumor cells. Oncotarget, 2016, 7, 81123-81143.	0.8	23

#	Article	IF	CITATIONS
147	Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells. Oncotarget, 2017, 8, 20025-20041.	0.8	35
148	RhoGDI2 promotes epithelial-mesenchymal transition via induction of Snail in gastric cancer cells. Oncotarget, 2014, 5, 1554-1564.	0.8	33
149	Identifying patients with an unfavorable prognosis in early stages of colorectal carcinoma. Oncotarget, 2018, 9, 27423-27434.	0.8	5
150	Transglutaminase 2 maintains a colorectal cancer stem phenotype by regulating epithelial-mesenchymal transition. Oncotarget, 2019, 10, 4556-4569.	0.8	11
151	Dequalinium blocks macrophage-induced metastasis following local radiation. Oncotarget, 2015, 6, 27537-27554.	0.8	34
152	Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells. Oncotarget, 2015, 6, 37526-37543.	0.8	59
153	Preclinical evaluation of biomarkers associated with antitumor activity of MELK inhibitor. Oncotarget, 2016, 7, 18171-18182.	0.8	28
154	ILK Expression in Colorectal Cancer Is Associated with EMT, Cancer Stem Cell Markers and Chemoresistance. Cancer Genomics and Proteomics, 2018, 15, 127-141.	1.0	52
155	Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting Snail‑induced epithelial‑mesenchymal transition. Molecular Medicine Reports, 2020, 21, 2544-2552.	1.1	18
156	The regulatory roles of long noncoding RNAs in the biological behavior of pancreatic cancer. Saudi Journal of Gastroenterology, 2019, 25, 145.	0.5	28
157	Skeletal muscle metastasis with bone metaplasia from colon cancer: A case report and review of the literature. World Journal of Clinical Cases, 2021, 9, 9285-9294.	0.3	6
158	Fatty acid oxidation is a druggable gateway regulating cellular plasticity for driving metastasis in breast cancer. Science Advances, 2021, 7, eabh2443.	4.7	42
159	FBXW11 contributes to stem-cell-like features and liver metastasis through regulating HIC1-mediated SIRT1 transcription in colorectal cancer. Cell Death and Disease, 2021, 12, 930.	2.7	21
160	Dehydroevodiamine inhibits lung metastasis by suppressing survival and metastatic abilities of colorectal cancer cells. Phytomedicine, 2022, 96, 153809.	2.3	7
163	Problems of Cancer Treatment. Part 2. Treatment Based on Modification of Anticancer Immunological Responses in Therapy. Advances in Cell Biology, 2017, 5, 96-112.	1.5	1
165	E-cadherin and Snail Immunoexpression in Colorectal Adenocarcinomas. Current Health Sciences Journal, 2019, 45, 204-209.	0.2	2
166	High expression of is associated with EMAST and poor prognosis in CRC patients. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, S30-S36.	0.6	0
167	Immunogenetics: a tool for anthropological studies. , 2022, , 63-83.		0

#	Article	IF	CITATIONS
168	ZRANB1 enhances stem-cell-like features and accelerates tumor progression by regulating Sox9-mediated USP22/Wnt/β-catenin pathway in colorectal cancer. Cellular Signalling, 2022, 90, 110200.	1.7	14
169	Stemness, Inflammation and Epithelial–Mesenchymal Transition in Colorectal Carcinoma: The Intricate Network. International Journal of Molecular Sciences, 2021, 22, 12891.	1.8	9
170	SNAIL1: Linking Tumor Metastasis to Immune Evasion. Frontiers in Immunology, 2021, 12, 724200.	2.2	27
171	Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm, 2021, 2, 587-617.	3.1	42
172	Comparison of Colorectal Cancer Stem Cells and Oxaliplatin-Resistant Cells Unveils Functional Similarities. Cells, 2022, 11, 511.	1.8	6
173	Predictive Value of Circulating Tumor Cells in Prognosis of Stage III/IV Colorectal Cancer After Oxaliplatin-based First-line Chemotherapy. In Vivo, 2022, 36, 806-813.	0.6	3
174	Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Frontiers in Oncology, 2022, 12, 775238.	1.3	19
175	The value of multi-parameter diffusion and perfusion magnetic resonance imaging for evaluating epithelial-mesenchymal transition in rectal cancer. European Journal of Radiology, 2022, 150, 110245.	1.2	6
177	Long Non-Coding RNAs as Potential Regulators of EMT-Related Transcription Factors in Colorectal Cancer—A Systematic Review and Bioinformatics Analysis. Cancers, 2022, 14, 2280.	1.7	10
178	SNAIL driven by a feed forward loop motif promotes TCFÎ ² induced epithelial to mesenchymal transition. Biomedical Physics and Engineering Express, 2022, 8, 045012.	0.6	2
179	Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin. Cell Reports, 2022, 40, 111390.	2.9	7
180	Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food and Function, 2022, 13, 10994-11007.	2.1	4
181	CAR T-cells for colorectal cancer immunotherapy: Ready to go?. Frontiers in Immunology, 0, 13, .	2.2	11
182	Emerging mechanisms progress of colorectal cancer liver metastasis. Frontiers in Endocrinology, 0, 13, .	1.5	9
183	Trichostatin A inhibits expression of the human SLC2A5 gene via SNAI1/SNAI2 transcription factors and sensitizes colon cancer cells to platinum compounds. European Journal of Pharmacology, 2023, 949, 175728.	1.7	2
184	Resveratrol as sensitizer in colorectal cancer plasticity. Cancer and Metastasis Reviews, 2024, 43, 55-85.	2.7	4