Oxidative Annulation of βâ€Aminoporphyrins into Pyr

Angewandte Chemie - International Edition 51, 2894-2897

DOI: 10.1002/anie.201108037

Citation Report

#	Article	IF	CITATIONS
1	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 1990, , 277-288.	0.5	4
2	Palladium-catalyzed Kumada Coupling Reaction of Bromoporphyrins with Silylmethyl Grignard Reagents: Preparation of Silylmethyl-substituted Porphyrins as a Multipurpose Synthon for Fabrication of Porphyrin Systems. Journal of Organic Chemistry, 2012, 77, 10488-10497.	3.2	28
4	Intermolecular Oxidative Annulation of 2â€Aminoanthracenes to Diazaacenes and Aza[7]helicenes. Angewandte Chemie - International Edition, 2012, 51, 10333-10336.	13.8	143
5	A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins. Chemical Society Reviews, 2013, 42, 8049.	38.1	167
6	\hat{l}^2 -Functionalized zinc(II)aminoporphyrins by direct catalytic hydrogenation. Tetrahedron Letters, 2013, 54, 110-113.	1.4	13
7	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2013, , 497-517.	0.5	2
8	Fused porphyrinoids as promising near-infrared absorbing dyes. Journal of Materials Chemistry C, 2013, 1, 2500.	5.5	193
9	Î ² -Pyrazino-fused tetrarylporphyrins. Dyes and Pigments, 2013, 99, 136-143.	3.7	25
10	Oxidation of 2-amino-substituted BODIPYs providing pyrazine-fused BODIPY trimers. Chemical Communications, 2014, 50, 2715-2717.	4.1	43
11	Oxidative skeletal rearrangement of $1,1\hat{a}\in^2$ -binaphthalene-2, $2\hat{a}\in^2$ -diamines (BINAMs) <i>via</i> Câ\elleq^C bond cleavage and nitrogen migration: a versatile synthesis of U-shaped azaacenes. Chemical Communications, 2014, 50, 10291-10294.	4.1	47
12	Pentaceneâ€Fused Diporphyrins. Chemistry - A European Journal, 2014, 20, 13865-13870.	3.3	15
13	C,C―and N,Câ€Coupled Dimers of 2â€Aminotetraphenylporphyrins: Regiocontrolled Synthesis, Spectroscopic Properties, and Quantumâ€Chemical Calculations. Chemistry - A European Journal, 2014, 20, 3998-4006.	3.3	26
14	Facile dearomatisation of porphyrins using palladium-catalysed hydrazination: the 5,15-diiminoporphodimethenes and their redox products. Tetrahedron, 2014, 70, 517-532.	1.9	9
15	Discrete Atomic Layers at the Molecular Level. Journal of the Physical Society of Japan, 2015, 84, 121016.	1.6	2
16	Synthesis of Tetrahydrothiophene and Thiophene-fused Porphyrin. Chemistry Letters, 2015, 44, 1515-1517.	1.3	17
17	Oxidative Coupling of an Enaminoporphyrin: Câ^'C, Nâ^'N Linkages or Both?. Asian Journal of Organic Chemistry, 2015, 4, 1294-1300.	2.7	6
18	Ring-fused porphyrins: extension of π-conjugation significantly affects the aromaticity and optical properties of the porphyrin π-systems and the Lewis acidity of the central metal ions. Physical Chemistry Chemical Physics, 2015, 17, 15001-15011.	2.8	41
19	Ambient temperature synthesis of β,β′-fused nickel(ii) pyrrolo[1,2-a]pyrazinoporphyrins via a DBSA-catalyzed Pictet–Spengler approach. Organic and Biomolecular Chemistry, 2015, 13, 1836-1845.	2.8	25

#	ARTICLE	IF	Citations
20	Synthesis of Highly Twisted and Fully π-Conjugated Porphyrinic Oligomers. Journal of the American Chemical Society, 2015, 137, 142-145.	13.7	75
21	Conjugated porphyrin arrays: synthesis, properties and applications for functional materials. Chemical Society Reviews, 2015, 44, 943-969.	38.1	567
22	An atomically thin ferromagnetic half-metallic pyrazine-fused Mn-porphyrin sheet: a slow spin relaxation system. Journal of Materials Chemistry C, 2016, 4, 9069-9077.	5.5	18
23	Pictet–Spengler Synthesis of Quinolineâ€Fused Porphyrins and Phenanthrolineâ€Fused Diporphyrins. Angewandte Chemie, 2016, 128, 13232-13236.	2.0	7
24	Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chemical Reviews, 2016, 116, 12564-12649.	47.7	1,989
25	Study of Multiporphyrin Compounds as Colorimetric Sittingâ€Atop Metal Complexes: Synthesis and Photophysical Studies. ChemPlusChem, 2016, 81, 143-153.	2.8	8
26	Pictet–Spengler Synthesis of Quinolineâ€Fused Porphyrins and Phenanthrolineâ€Fused Diporphyrins. Angewandte Chemie - International Edition, 2016, 55, 13038-13042.	13.8	32
27	Control of Conformation and Chirality of Nonplanar Ï€â€Conjugated Diporphyrins Using Substituents and Axial Ligands. Chemistry - an Asian Journal, 2016, 11, 936-942.	3.3	12
28	Nitrogenâ∈Bridged Metallodiazaporphyrin Dimers: Synergistic Effects of Nitrogen Bridges and <i>meso</i> å∈Nitrogen Atoms on Structure and Properties. Chemistry - an Asian Journal, 2017, 12, 816-821.	3.3	15
29	Surprising Outcomes of Classic Ringâ€Expansion Conditions Applied to Octaethyloxochlorin, 1. Baeyer–Villigerâ€Oxidation Conditions. European Journal of Organic Chemistry, 2017, 2017, 1820-1825.	2.4	13
30	Acid–Base Properties of a Freebase Form of a Quadruply Ring-Fused Porphyrin—Stepwise Protonation Induced by Rigid Ring-Fused Structure. Journal of Organic Chemistry, 2017, 82, 322-330.	3.2	13
31	One-pot synthesis of new isatin-porphyrin conjugates by the palladium Buchwald-Hartwig methodology involving \hat{I}^2 -aminoporphyrinatonickel(II) and 3-ketal isatin derivatives. Dyes and Pigments, 2017, 139, 247-254.	3.7	6
32	Embedding heteroatoms: an effective approach to create porphyrin-based functional materials. Dalton Transactions, 2017, 46, 13322-13341.	3.3	42
33	Pyridineâ€Fused Bis(Norcorrole) through Hantzschâ€Type Cyclization: Enhancement of Antiaromaticity by an Aromatic Bridge. Angewandte Chemie - International Edition, 2017, 56, 10810-10814.	13.8	59
34	Pyridineâ€Fused Bis(Norcorrole) through Hantzschâ€Type Cyclization: Enhancement of Antiaromaticity by an Aromatic Bridge. Angewandte Chemie, 2017, 129, 10950-10954.	2.0	16
35	Synthesis and photophysical properties of novel pyridine fused chlorophyll a derivatives. Dyes and Pigments, 2017, 146, 189-198.	3.7	14
36	Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chemical Reviews, 2017, 117, 2910-3043.	47.7	360
37	Innovative Synthesis and Functions of Curved π-Conjugated Molecules. Bulletin of the Chemical Society of Japan, 2018, 91, 829-838.	3.2	22

#	ARTICLE	IF	Citations
38	Revisiting 2,3-diaminoporphyrins: key synthons for heterocycle-appended porphyrins. Dyes and Pigments, 2018, 156, 243-249.	3.7	19
39	NH Tautomerism of a Quadruply Fused Porphyrin: Rigid Fused Structure Delays the Proton Transfer. Journal of Physical Chemistry B, 2018, 122, 316-327.	2.6	2
40	Selective Formation of Helical Tetrapyrrinâ€fused Porphyrins by Oxidation of betaâ€toâ€beta Linked mesoâ€Aminoporphyrin Dimers. Chemistry - A European Journal, 2018, 25, 1711-1715.	3.3	6
41	A Divergent Approach to β-Pyrazine-Fused meso-TetraphenylÂdiporphyrins. SynOpen, 2018, 02, 0133-0137.	1.7	6
42	An unusual $[4 + 2]$ fusion strategy to forge meso-N/O-heteroarene-fused (quinoidal) porphyrins with intense near-infrared Q-bands. Chemical Science, 2019, 10, 7274-7280.	7.4	20
43	Synthesis of Ï€â€Functional Molecules through Oxidation of Aromatic Amines. Chemistry - an Asian Journal, 2019, 14, 2514-2523.	3.3	19
44	lon-pairing assemblies based on π-extended dipyrrolylquinoxalines. Chemical Communications, 2019, 55, 326-329.	4.1	6
45	Heterocycle-appended porphyrins: synthesis and challenges. Coordination Chemistry Reviews, 2020, 407, 213108.	18.8	33
46	Simultaneous Implementation of <i>N</i> -Heterocycle-Fused Bridge and Modified Pyrrole Unit on Ni(II) Porphyrin Dimers. Organic Letters, 2020, 22, 6001-6005.	4.6	14
47	Development of synthetic protocols for porphyrins and their analogs based on distorted structures $\hat{a} \in \mathbb{R}^n$ a SPP/JPP Young Investigator Award paper. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1258-1271.	0.8	0
48	A panchromatic pyrazine-fused porphyrin dimer. Mendeleev Communications, 2020, 30, 162-164.	1.6	9
49	Synthesis and Properties of NitroHPHAC: The First Example of Substitution Reaction on HPHAC. Molecules, 2020, 25, 2486.	3.8	7
50	First imidazole-fused carbaporphyrinoid and its conversion to a N-heterocyclic carbene precursor. Chemical Communications, 2020, 56, 4836-4839.	4.1	11
51	Changes in porphyrin's conjugation based on synthetic and post-synthetic modifications. ChemistrySelect, 2023, 8, 157-211.	1.5	0
52	Two- and three-dimensional \hat{l}^2 , \hat{l}^2 \hat{a} \in 2-N-heterocycle fused porphyrins: concise construction, singlet oxygen production and electro-catalytic hydrogen evolution reaction. Organic Chemistry Frontiers, 0, , .	4.5	5
53	Synthesis of Heteroatom-Containing Curved π-Conjugated Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 37-44.	0.1	0
54	Patent Filing System and Examination in India: An Overview in the Context of Process and Product in Chemistry. Journal of Scientific Research, 2020, 64, 192-198.	0.2	0
55	Regio- and Stereoselective Aryl(aroyl)methylenenation of Pyropheophorbide and Syntheses of Chlorophyllous Chlorin Derivatives. Chinese Journal of Organic Chemistry, 2022, 42, 1111.	1.3	0

CITATION REPORT

#	Article	IF	CITATION
56	Ï€-Expanded pyrazinoporphyrins for photocatalysis: How many rings are required?. Dyes and Pigments, 2023, 210, 110935.	3.7	3
57	Cascade Amination and Aza-6π-Annulation-Aromatization Strategy for the Synthesis of β-Pyrimidine-Fused Porphyrins. Journal of Organic Chemistry, 2023, 88, 7302-7310.	3.2	2
58	Regioselective Synthesis of Directly Connected BODIPY Dimers through Oxidative Coupling of α-Amino-Substituted BODIPYs. Organic Letters, 2023, 25, 5055-5060.	4.6	1
59	N-Heterocycle-fused Ni(II) porphyrin dimers upon heating of meso-amino Ni(II) porphyrins in nitrobenzene. Organic Chemistry Frontiers, 0 , , .	4.5	0