Tailoring Electrode/Electrolyte Interfacial Properties in Applying Pressure

Advanced Energy Materials 2, 546-552 DOI: 10.1002/aenm.201100529

Citation Report

#	Article	IF	CITATIONS
1	Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters, 2012, 12, 6366-6371.	9.1	182
2	Miniature supercapacitors based on nanocomposite thin films. Microelectronic Engineering, 2013, 111, 52-57.	2.4	13
3	Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review. Ionics, 2013, 19, 1455-1476.	2.4	58
4	Supercapacitors based on nanostructured carbon. Nano Energy, 2013, 2, 159-173.	16.0	505
5	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	3.6	92
6	Nearâ€Infrared Spectrally Selective Plasmonic Electrochromic Thin Films. Advanced Optical Materials, 2013, 1, 215-220.	7.3	123
7	A Gumâ€Like Electrolyte: Safety of a Solid, Performance of a Liquid. Advanced Energy Materials, 2013, 3, 1557-1562.	19.5	51
8	Mechanical-to-Electric Energy Conversion by Mechanically Driven Flow of Electrolytes Confined in Nanochannels. Applied Physics Express, 2013, 6, 015202.	2.4	8
9	Selfâ€Recovering Tough Gel Electrolyte with Adjustable Supercapacitor Performance. Advanced Materials, 2014, 26, 4370-4375.	21.0	172
10	Electromechanical Properties of Polymer Electrolyteâ€Based Stretchable Supercapacitors. Advanced Energy Materials, 2014, 4, 1300844.	19.5	23
11	Recent advances in flexible and stretchable electronic devices via electrospinning. Journal of Materials Chemistry C, 2014, 2, 1209-1219.	5.5	144
12	Carbon Nanotube Fiber Based Stretchable Wire‣haped Supercapacitors. Advanced Energy Materials, 2014, 4, 1300759.	19.5	313
13	Supercapacitor characteristics of pressurized RuO ₂ /carbon powder as binder-free electrodes. RSC Advances, 2014, 4, 48276-48284.	3.6	26
14	High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16761-16769.	10.3	88
15	Laminated Ultrathin Chemical Vapor Deposition Graphene Films Based Stretchable and Transparent High-Rate Supercapacitor. ACS Nano, 2014, 8, 9437-9445.	14.6	240
16	In situ synthesis of SWNTs@MnO 2 /polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy, 2014, 9, 245-251.	16.0	89
17	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	21.0	363
18	Ultraâ€light Hierarchical Graphene Electrode for Binderâ€Free Supercapacitors and Lithiumâ€lon Battery Anodes. Small, 2015, 11, 4922-4930.	10.0	67

ATION REDO

#	Article	IF	CITATIONS
19	A combined salt–hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance. Carbon, 2015, 87, 29-43.	10.3	29
20	Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co ₃ O ₄ nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Advances, 2015, 5, 12700-12709.	3.6	59
21	Characterization of Ag/Ag2SO4 system as reference electrode for in-situ electrochemical studies of advanced aqueous supercapacitors. Journal of Chemical Sciences, 2016, 128, 1011-1017.	1.5	8
22	A comparative study of Ni–Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 30068-30078.	2.8	64
23	Hypergrafted nano-silica modified polymer gel electrolyte for high-performance solid-state supercapacitor. Journal of Solid State Electrochemistry, 2016, 20, 1903-1911.	2.5	11
24	Celluloseâ€based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials, 2017, 7, 1700130.	19.5	175
25	Largeâ€Area, Allâ€Solid, and Flexible Electric Double Layer Capacitors Based on CNT Fiber Electrodes and Polymer Electrolytes. Advanced Materials Technologies, 2017, 2, 1600290.	5.8	66
26	Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	11
27	Polyaniline Enriched Flexible Carbon Nanofibers with Core–Shell Structure for Highâ€Performance Wearable Supercapacitors. Advanced Materials Interfaces, 2017, 4, 1700855.	3.7	36
28	Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Interfaces, 2017, 9, 40645-40654.	8.0	32
29	Smart supercapacitors with deformable and healable functions. Journal of Materials Chemistry A, 2017, 5, 16-30.	10.3	58
30	Tough Ionogelâ€inâ€Mask Hybrid Gel Electrolytes in Supercapacitors with Durable Pressure and Thermal Tolerances. Energy Technology, 2017, 5, 220-224.	3.8	19
31	A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots. Sensors and Actuators A: Physical, 2018, 272, 341-348.	4.1	22
32	Simultaneously Armored and Active Graphene for Transparent and Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1801998.	14.9	59
33	Touch Locating and Stretch Sensing Studies of Conductive Hydrogels with Applications to Soft Robots. Sensors, 2018, 18, 569.	3.8	19
34	Through-plane wettability tuning of fibrous carbon layers via O2 plasma treatment for enhanced water management. Applied Surface Science, 2018, 458, 32-42.	6.1	22
35	One-Pot Synthesis of a Double-Network Hydrogel Electrolyte with Extraordinarily Excellent Mechanical Properties for a Highly Compressible and Bendable Flexible Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 29684-29693.	8.0	98
36	Capillarity-driven assembly of single-walled carbon nanotubes onto nickel wires for flexible wire-shaped supercapacitors. Materials Science for Energy Technologies, 2018, 1, 91-96.	1.8	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	8.1	417
38	Nanocomposites of polypyrrole/graphene nanoplatelets/single walled carbon nanotubes for flexible solid-state symmetric supercapacitor. European Polymer Journal, 2019, 120, 109203.	5.4	42
39	Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Advances, 2019, 1, 2817-2827.	4.6	591
40	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	19.5	74
41	Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 2019, 294, 183-191.	5.2	78
42	Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Advanced Functional Materials, 2020, 30, 1907486.	14.9	20
43	Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chemical Society Reviews, 2020, 49, 7819-7844.	38.1	27
44	Tuning electrochemical performance of carbon-sphere-based supercapacitors by compressive stress. Electrochimica Acta, 2020, 357, 136874.	5.2	27
45	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversibleâ€Compressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	11.2	64
46	Robust and High-Performance Electrodes via Crumpled Au-CNT Forests for Stretchable Supercapacitors. Matter, 2020, 2, 1307-1323.	10.0	26
47	Test cell for electrical double-layer capacitor. Materials Today: Proceedings, 2020, 23, 681-684.	1.8	1
48	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	30.8	166
49	Past, Present and Future of Electrochemical Capacitors: Pseudocapacitance, Aging Mechanisms and Service Life Estimation. Journal of Energy Storage, 2021, 35, 102311.	8.1	36
50	A Highâ€Performance Symmetric Supercapacitor from Porous Activated Carbon under Compression. Energy Technology, 2021, 9, 2100068.	3.8	14
51	Electrochemical performance of potato-derived activated carbon: Effect of compressive stress. Journal of Energy Storage, 2021, 37, 102476.	8.1	8
54	Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 837-864.	12.3	31
55	Compression of surface-wetted carbon-microsphere-based disks. Powder Technology, 2021, 387, 72-79.	4.2	0
56	On the need for simultaneous electrochemical testing of positive and negative electrodes in carbon supercapacitors. Electrochimica Acta, 2021, 384, 138372.	5.2	5

CITATION REPORT

#	Article	IF	CITATIONS
57	In situ deposited multilayer integrated hydrogels for deformable and stretchable supercapacitors. Science China Materials, 2022, 65, 373-382.	6.3	12
58	Synthesis and Characterization of Supercapacitor Materials from Soy. Electrochem, 2021, 2, 534-545.	3.3	2
59	Oxides free materials for symmetric capacitors. , 2022, , 75-94.		0
60	Electrochemical performance of symmetric supercapacitors under compression: Size effects of activated carbon spheres. International Journal of Energy Research, 2022, 46, 12871-12884.	4.5	4
61	Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. Chemosensors, 2022, 10, 223.	3.6	32
62	Electrolyte-Dependent Capacitance of Titanium Dioxide Nanotube Array Electrode Substrate. Journal of Nano Research, 0, 75, 71-80.	0.8	Ο
63	Design and Fabrication of Interdigital Supercapacitors as Force/Acceleration Sensors. Sensors, 2022, 22, 9268.	3.8	1
64	Ion dynamics into different pore size distributions in supercapacitors under compression. Journal of Energy Chemistry, 2023, 80, 110-119.	12.9	5
65	Improving Interfaces in All-Solid-State Supercapacitors Using Polymer-Added Activated Carbon Electrodes. Batteries, 2023, 9, 81.	4.5	2
66	All-in-one integration of polyaniline-polyvinyl alcohol electrode/electrolyte interface for tailorable solid-state supercapacitors. Journal of Energy Storage, 2023, 61, 106701.	8.1	9
67	Generalized modeling and experimental research on the transient response of supercapacitors under compressive mechanical loads. Nano Research, 0, , .	10.4	0
68	An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications. Polymers, 2023, 15, 2272.	4.5	9
69	Inspired by Wood: Thick Electrodes for Supercapacitors. ACS Nano, 2023, 17, 8866-8898.	14.6	38
70	Graphene-based polymer blend nanocomposites for energy storage applications. , 2023, , 271-291.		Ο
71	Supercapacitors: Carbon technology. , 2023, , .		0
72	A high mechanical strength, deformable, fatigue-resistant polyacrylonitrile nanosphere-reinforced gel electrolyte for supercapacitors. Chemical Engineering Journal, 2023, 474, 145701.	12.7	0
73	Nanohole-created carbon nanofibers for graphene-based supercapacitors. Diamond and Related Materials, 2024, 143, 110910.	3.9	0
74	Evaluation of electrochemical performance of supercapacitors from equivalent circuits through cyclic voltammetry and galvanostatic charge/discharge. Journal of Energy Storage, 2024, 86, 111122.	8.1	0

#	Article	IF	CITATIONS
75	Multifunctional Polyoxometalatesâ€Based Ionohydrogels toward Flexible Electronics. Advanced Materials, 0, , .	21.0	0