Synthesis of Largeâ€Area MoS₂ Atomic Lag

Advanced Materials 24, 2320-2325 DOI: 10.1002/adma.201104798

Citation Report

#	Article	IF	CITATIONS
1	Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. Journal of Physical Chemistry Letters, 2012, 3, 3652-3656.	4.6	290
2	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	31.5	13,346
3	Effects of strain on band structure and effective masses in MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2012, 86, .</mml:math 	3.2	405
4	Large-scale 2D electronics based on single-layer MoS <inf>2</inf> grown by chemical vapor deposition. , 2012, , .		51
5	Integrated Circuits Based on Bilayer MoS ₂ Transistors. Nano Letters, 2012, 12, 4674-4680.	9.1	1,526
6	Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 24753.	6.7	205
7	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4, 6637.	5.6	621
8	Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS. ACS Nano, 2012, 6, 8868-8877.	14.6	137
10	An MoS _{<i>x</i>} Structure with High Affinity for Adsorbate Interaction. Angewandte Chemie - International Edition, 2012, 51, 10284-10288.	13.8	13
11	Preparation of MoS ₂ â€Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes. Small, 2012, 8, 3517-3522.	10.0	393
12	Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chemical Communications, 2012, 48, 7687.	4.1	174
13	Inspired by strain. Nature Photonics, 2012, 6, 804-806.	31.4	22
14	Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 21057.	6.7	210
15	van der Waals Epitaxy of MoS ₂ Layers Using Graphene As Growth Templates. Nano Letters, 2012, 12, 2784-2791.	9.1	888
17	Thickness-Dependent Interfacial Coulomb Scattering in Atomically Thin Field-Effect Transistors. Nano Letters, 2013, 13, 3546-3552.	9.1	285
18	Joined edges in MoS ₂ : metallic and half-metallic wires. Journal of Physics Condensed Matter, 2013, 25, 312201.	1.8	21
19	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Applied Physics Letters, 2013, 103, .	3.3	96
20	Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS ₂ . Nano Letters, 2013, 13, 4212-4216.	9.1	558

#	Article	IF	CITATIONS
21	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	9.1	512
22	Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews, 2013, 42, 8187.	38.1	386
23	Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition. RSC Advances, 2013, 3, 17287.	3.6	41
24	Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. Journal of Materials Chemistry C, 2013, 1, 6411.	5.5	50
25	Layer Thinning and Etching of Mechanically Exfoliated MoS ₂ Nanosheets by Thermal Annealing in Air. Small, 2013, 9, 3314-3319.	10.0	229
26	Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum. Chemical Physics Letters, 2013, 588, 198-202.	2.6	124
27	A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. Journal of Chemical Physics, 2013, 139, 174702.	3.0	73
28	MoS ₂ Nanocrystals Confined in a DNA Matrix Exhibiting Energy Transfer. Langmuir, 2013, 29, 11471-11478.	3.5	31
29	Direct imprinting of MoS2 flakes on a patterned gate for nanosheet transistors. Journal of Materials Chemistry C, 2013, 1, 7803.	5.5	50
30	Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie - International Edition, 2013, 52, 13162-13185.	13.8	441
31	Atomic-layer triangular WSe ₂ sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013, 24, 465705.	2.6	120
32	Layer-Controlled, Wafer-Scale, and Conformal Synthesis of Tungsten Disulfide Nanosheets Using Atomic Layer Deposition. ACS Nano, 2013, 7, 11333-11340.	14.6	324
33	Valley Carrier Dynamics in Monolayer Molybdenum Disulfide from Helicity-Resolved Ultrafast Pump–Probe Spectroscopy. ACS Nano, 2013, 7, 11087-11093.	14.6	213
34	HfO ₂ on MoS ₂ by Atomic Layer Deposition: Adsorption Mechanisms and Thickness Scalability. ACS Nano, 2013, 7, 10354-10361.	14.6	237
35	Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X=S, Se, Te). Physica B: Condensed Matter, 2013, 419, 66-75.	2.7	92
36	Formation of cylindrical micro-lens array in fused silica glass using laser irradiations. , 2013, , .		7
37	Comparative study on MoS2 and WS2 for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 12302-12309.	7.1	193
38	Possible doping strategies for MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub></mml:math> monolayers: An <i>ab initio</i> study. Physical Review R_2013_88	3.2	489

#	ARTICLE	IF	CITATIONS
39	Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 2013, 88, .	3.2	737
40	Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3, 21675.	3.6	62
41	Controlled Growth of High-Quality Monolayer WS ₂ Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013, 7, 8963-8971.	14.6	696
42	Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Letters, 2013, 13, 253-258.	9.1	310
43	Graphene-Like Two-Dimensional Materials. Chemical Reviews, 2013, 113, 3766-3798.	47.7	3,761
44	CTAB-assisted synthesis of single-layer MoS ₂ –graphene composites as anode materials of Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2202-2210.	10.3	410
45	Extraordinary Room-Temperature Photoluminescence in Triangular WS ₂ Monolayers. Nano Letters, 2013, 13, 3447-3454.	9.1	1,375
46	Electrical control of optical properties of monolayer MoS2. Solid State Communications, 2013, 155, 49-52.	1.9	182
47	Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42, 1934.	38.1	1,809
48	Interlayer Breathing and Shear Modes in Few-Trilayer MoS ₂ and WSe ₂ . Nano Letters, 2013, 13, 1007-1015.	9.1	576
49	Vapor–Solid Growth of High Optical Quality MoS ₂ Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013, 7, 2768-2772.	14.6	389
50	Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>systems. Physical Review B, 2013, 87, .</mml:math 	3.2	494
51	Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013, 13, 1852-1857.	9.1	612
52	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	13.6	8,051
53	Chemically Exfoliated MoS ₂ as Nearâ€Infrared Photothermal Agents. Angewandte Chemie - International Edition, 2013, 52, 4160-4164.	13.8	575
54	Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	9.1	2,036
55	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	13.7	655
56	High oncentration Aqueous Dispersions of MoS ₂ . Advanced Functional Materials, 2013, 23, 3577-3583.	14.9	271

#	Article	IF	CITATIONS
57	Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors. Applied Physics Letters, 2013, 102, 043116.	3.3	35
58	Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe ₂ Field Effect Transistors. Nano Letters, 2013, 13, 1983-1990.	9.1	833
59	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	14.6	4,062
60	Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates: A Case Study of SnSe ₂ . Journal of Physical Chemistry C, 2013, 117, 6469-6475.	3.1	86
61	Layer-by-Layer Thinning of MoS ₂ by Plasma. ACS Nano, 2013, 7, 4202-4209.	14.6	387
62	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	14.9	443
63	Seeing Twoâ€Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy. Small, 2013, 9, 3253-3258.	10.0	11
64	display="inline"> <mml:mi>n</mml:mi> -type and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-type conductivity of MoS<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:math< td=""><td>3.2</td><td>257</td></mml:math<></mml:msub></mml:math </mml:math 	3.2	257
65	Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2013, 117, 9042-9047.	3.1	602
66	Few-Layer MoS ₂ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013, 7, 3905-3911.	14.6	584
67	High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Applied Physics Letters, 2013, 102, .	3.3	217
68	Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>_x</i> Grown on Grapheneâ€Protected 3D Ni Foams. Advanced Materials, 2013, 25, 756-760.	21.0	693
69	Atomically Flat, Large‣ized, Twoâ€Đimensional Organic Nanocrystals. Small, 2013, 9, 990-995.	10.0	51
70	Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58, 1244-1315.	32.8	684
71	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561.	27.5	1,896
72	Photosensor Device Based on Few‣ayered WS ₂ Films. Advanced Functional Materials, 2013, 23, 5511-5517.	14.9	546
73	Statistical Study of Deep Submicron Dual-Gated Field-Effect Transistors on Monolayer Chemical Vapor Deposition Molybdenum Disulfide Films. Nano Letters, 2013, 13, 2640-2646.	9.1	197
74	Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Applied Physics Letters, 2013, 102, .	3.3	201

ARTICLE IF CITATIONS # Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 75 3.3 380 3, 1839. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. 3.3 753 Scientific Reports, 2013, 3, 1866. Highâ€Gain Phototransistors Based on a CVD MoS₂ Monolayer. Advanced Materials, 2013, 25, 77 21.0 891 3456-3461. Probing Symmetry Properties of Few-Layer MoS₂ and h-BN by Optical Second-Harmonic 9.1 848 Generation. Nano Letters, 2013, 13, 3329-3333. Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 79 3.3 1,185 3. . MoS₂ Transistors Fabricated <i>via</i> Plasma-Assisted Nanoprinting of Few-Layer MoS₂ Flakes into Large-Area Arrays. ACS Nano, 2013, 7, 5870-5881. 14.6 114 Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor. Applied Physics Letters, 2013, 81 201 3.3 102, . Carbon-Based Nanomaterials From a Historical Perspective. Proceedings of the IEEE, 2013, 101, 1522-1535. 21.3 56 83 Large area single crystal (0001) oriented MoS2. Applied Physics Letters, 2013, 102, . 3.3 200 84 Tunneling Transistors Based on Graphene and 2-D Crystals. Proceedings of the IEEE, 2013, 101, 1585-1602. 21.3 Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. 27.5 2,326 85 Nature Materials, 2013, 12, 850-855. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622. 9.1 86 1,766 Controlled Synthesis and Transfer of Large-Area WS₂ Sheets: From Single Layer to Few 87 14.6 534 Layers. ACS Nano, 2013, 7, 5235-5242. Line Defects in Molybdenum Disulfide Layers. Journal of Physical Chemistry C, 2013, 117, 10842-10848. 3.1 High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling 89 3.6 76 exfoliation. RSC Advances, 2013, 3, 13193. High-Performance, Highly Bendable MoS₂ Transistors with High-K Dielectrics for Flexible 14.6 445 Low-Power Systems. ACS Nano, 2013, 7, 5446-5452. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013, 12, 754-759. 91 27.5 1,590 Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional 9.1 1,681 Monolayer Materials. Nano Letters, 2013, 13, 3664-3670.

#	Article	IF	CITATIONS
93	Defect-induced conductivity anisotropy in MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>monolayers. Physical Review B, 2013, 88, .</mml:math 	3.2	144
94	Second harmonic microscopy of monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	3.2	539
95	Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Physical Chemistry Chemical Physics, 2013, 15, 18464.	2.8	89
96	Semiconductor to metal transition in bilayer transition metals dichalcogenides <i>MX</i> ₂ (<i>M</i> = Mo, W; <i>X</i> = S, Se, Te). Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065015.	2.0	58
98	Charge Dynamics and Electronic Structures of Monolayer MoS ₂ Films Grown by Chemical Vapor Deposition. Applied Physics Express, 2013, 6, 125801.	2.4	73
99	Transient terahertz spectroscopy of mono- and tri-layer CVD-grown MoS <inf>2</inf> . , 2013, , .		0
100	Molybdenum disulfide dc contact MEMS shunt switch. Journal of Micromechanics and Microengineering, 2013, 23, 045026.	2.6	12
101	Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide. Journal of Physics Condensed Matter, 2013, 25, 252201.	1.8	75
102	Effect of biaxial strain on structural and electronic properties of graphene / boron nitride hetero bi-layer structure. , 2014, , .		2
103	Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application. Journal of Applied Physics, 2014, 116, .	2.5	44
104	Preparation, Applications of Two-Dimensional Graphene-like Molybdenum Disulfide. Integrated Ferroelectrics, 2014, 158, 26-42.	0.7	20
105	Electronic and transport properties of V-shaped defect zigzag MoS 2 nanoribbons. Chinese Physics B, 2014, 23, 047307.	1.4	11
106	Chemical Solution Based MoS2 Thin Film Deposition Based on Dimensional Reduction. Materials Research Society Symposia Proceedings, 2014, 1675, 215-218.	0.1	1
107	Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions. Applied Physics Letters, 2014, 105, .	3.3	42
108	Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Applied Physics Letters, 2014, 105, .	3.3	317
109	Photoluminescence of MoS ₂ Prepared by Effective Grinding-Assisted Sonication Exfoliation. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	30
110	A review: the method for synthesis MoS _{2 monolayer. International Journal of Nanomanufacturing, 2014, 10, 489.}	0.3	8
111	Detrimental influence of catalyst seeding on the device properties of CVD-grown 2D layered materials: A case study on MoSe2. Applied Physics Letters, 2014, 105, .	3.3	22

#	ARTICLE	IF	CITATIONS
112	Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS_2). Optics Express, 2014, 22, 31113.	3.4	310
113	Hole mobility enhancement and <i>p</i> -doping in monolayer WSe ₂ by gold decoration. 2D Materials, 2014, 1, 034001.	4.4	134
114	Excitons in a mirror: Formation of "optical bilayers―using MoS2 monolayers on gold substrates. Applied Physics Letters, 2014, 104, .	3.3	31
115	Epitaxial growth of large area single-crystalline few-layer MoS2 with high space charge mobility of 192 cm2 Vâ^'1 sâ~'1. Applied Physics Letters, 2014, 105, .	3.3	57
116	Pure valley- and spin-entangled states in aMoS2-based bipolar transistor. Physical Review B, 2014, 90, .	3.2	13
117	Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters, 2014, 105, .	3.3	107
118	Nanocrystallineâ€Grapheneâ€Tailored Hexagonal Boron Nitride Thin Films. Angewandte Chemie - International Edition, 2014, 53, 11493-11497.	13.8	24
119	Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method. ACS Nano, 2014, 8, 12185-12198.	14.6	288
120	Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers. Journal of Applied Physics, 2014, 116, .	2.5	66
121	Doping against the Native Propensity of MoS ₂ : Degenerate Hole Doping by Cation Substitution. Nano Letters, 2014, 14, 6976-6982.	9.1	574
122	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials, 2014, 26, 1735-1739.	21.0	77
123	Folding two dimensional crystals by swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 39-43.	1.4	12
124	MoS2: A First-Principles Perspective. Lecture Notes in Nanoscale Science and Technology, 2014, , 103-128.	0.8	4
126	Highly Uniform Trilayer Molybdenum Disulfide for Waferâ€6cale Device Fabrication. Advanced Functional Materials, 2014, 24, 6389-6400.	14.9	99
127	Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for Highâ€Efficiency Hydrogen Production. Advanced Materials, 2014, 26, 3100-3104.	21.0	204
128	Ultrafast Transient Terahertz Conductivity of Monolayer MoS ₂ and WSe ₂ Grown by Chemical Vapor Deposition. ACS Nano, 2014, 8, 11147-11153.	14.6	191
129	Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Materials, 2014, 2, . Measurement of the optical dielectric function of monolayer transition-metal	5.1	93
130	dichalcogenides: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Mo</mml:mi><mml:mi mathvariant="normal">S<mml:msub><mml:mi< td=""><td>:mg>9.2</td><td>nl:msub> 1,017</td></mml:mi<></mml:msub></mml:mi </mml:msub></mml:mn></mml:msub></mml:math 	:mg>9.2	nl:msub> 1,017

mathvariant="normal">e</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>,<mml:matl

#	Article	IF	CITATIONS
131	The effects of surface polarity and dangling bonds on the electronic properties of monolayer and bilayer MoS2 on α-quartz. New Journal of Physics, 2014, 16, 113055.	2.9	19
132	Formation and stability of point defects in monolayer rhenium disulfide. Physical Review B, 2014, 89, .	3.2	151
133	Domain engineering of physical vapor deposited two-dimensional materials. Applied Physics Letters, 2014, 105, .	3.3	13
134	MoS2 nanotube field effect transistors. AIP Advances, 2014, 4, .	1.3	46
135	Investigation of the optical properties of MoS ₂ thin films using spectroscopic ellipsometry. Applied Physics Letters, 2014, 104, 103114.	3.3	255
136	Synthesis, characterization and engineering of two-dimensional transition metal dichalcogenides. , 2014, , .		0
137	Novel layered two-dimensional semiconductors as the building blocks for nano-electronic/photonic systems. Proceedings of SPIE, 2014, , .	0.8	0
138	The Application of Nanostructure MoS2 Materials in Energy Storage and Conversion. Lecture Notes in Nanoscale Science and Technology, 2014, , 237-268.	0.8	6
140	Tunable Electronic and Dielectric Properties of Molybdenum Disulfide. Lecture Notes in Nanoscale Science and Technology, 2014, , 53-76.	0.8	7
141	Fabrication and investigation of the optoelectrical properties of MoS2/CdS heterojunction solar cells. Nanoscale Research Letters, 2014, 9, 662.	5.7	19
142	2â€Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS _{2(1–x)} Se _{2x} Monolayers. Advanced Materials, 2014, 26, 1399-1404.	21.0	334
143	Defect-Dominated Doping and Contact Resistance in MoS ₂ . ACS Nano, 2014, 8, 2880-2888.	14.6	690
144	Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Letters, 2014, 14, 1354-1361.	9.1	129
145	Centered Honeycomb NiSe ₂ Nanoribbons: Structure and Electronic Properties. Journal of Physical Chemistry C, 2014, 118, 3295-3304.	3.1	27
146	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7, 511-517.	10.4	331
147	Taiwan's science miracle. Physics Today, 2014, 67, 45-50.	0.3	0
148	Band Gapâ€Tunable Molybdenum Sulfide Selenide Monolayer Alloy. Small, 2014, 10, 2589-2594.	10.0	109
149	Synthesis and Optical Properties of Largeâ€Area Singleâ€Crystalline 2D Semiconductor WS ₂ Monolayer from Chemical Vapor Deposition. Advanced Optical Materials, 2014, 2, 131-136.	7.3	513

#	Article	IF	CITATIONS
150	Direct Synthesis of van der Waals Solids. ACS Nano, 2014, 8, 3715-3723.	14.6	253
151	Supercapacitor Electrodes Obtained by Directly Bonding 2D MoS ₂ on Reduced Graphene Oxide. Advanced Energy Materials, 2014, 4, 1301380.	19.5	426
152	Benchmarking Transition Metal Dichalcogenide MOSFET in the Ultimate Physical Scaling Limit. IEEE Electron Device Letters, 2014, 35, 402-404.	3.9	47
153	Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014, 2, 8981-8987.	10.3	552
154	Second Harmonic Generation from Artificially Stacked Transition Metal Dichalcogenide Twisted Bilayers. ACS Nano, 2014, 8, 2951-2958.	14.6	388
155	Hierarchical MoS ₂ nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 2014, 6, 5351-5358.	5.6	197
156	Quantitative Chemistry and the Discrete Geometry of Conformal Atom-Thin Crystals. ACS Nano, 2014, 8, 1136-1146.	14.6	27
157	Vapor Phase Growth and Imaging Stacking Order of Bilayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2014, 118, 9203-9208.	3.1	47
158	Few-Layer MoS ₂ : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.	14.6	1,181
159	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	6.1	144
160	Graphene/MoS ₂ Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Advanced Materials, 2014, 26, 4838-4844.	21.0	290
161	Graphene/MoS ₂ Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Letters, 2014, 14, 3055-3063.	9.1	554
162	Two-Dimensionally Grown Single-Crystal Silicon Nanosheets with Tunable Visible-Light Emissions. ACS Nano, 2014, 8, 6556-6562.	14.6	55
163	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	14.6	694
164	Macroscopic Properties of Restacked, Redoxâ€Liquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities. Advanced Functional Materials, 2014, 24, 4969-4977.	14.9	4
165	Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS ₂ and WS ₂ Monolayers. Nano Letters, 2014, 14, 3185-3190.	9.1	683
166	Large-Area Synthesis of Monolayer and Few-Layer MoSe ₂ Films on SiO ₂ Substrates. Nano Letters, 2014, 14, 2419-2425.	9.1	376
167	Scalable Growth of High-Quality Polycrystalline MoS ₂ Monolayers on SiO ₂ with Tunable Grain Sizes. ACS Nano, 2014, 8, 6024-6030.	14.6	263

#	Article	IF	CITATIONS
168	High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS ₂ Transistors. ACS Nano, 2014, 8, 5304-5314.	14.6	610
169	Synthesis of two-dimensional β-Ga ₂ O ₃ nanosheets for high-performance solar blind photodetectors. Journal of Materials Chemistry C, 2014, 2, 3254-3259.	5.5	167
170	Large-Area Synthesis of Highly Crystalline WSe ₂ Monolayers and Device Applications. ACS Nano, 2014, 8, 923-930.	14.6	885
171	Vapor-phase growth and characterization of Mo _{1â^'x} W _x S ₂ (0 ≤ â‰)¤Ţ	j ETQq1 1 5.6	0.784314 125
172	Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. Journal of Physical Chemistry Letters, 2014, 5, 285-291.	4.6	98
173	Two-Dimensional Nanosheets and Layered Hybrids of MoS ₂ and WS ₂ through Exfoliation of Ammoniated MS ₂ (M = Mo,W). Journal of Physical Chemistry C, 2014, 118, 1386-1396.	3.1	218
174	Facile Synthesis of Hollow MoS2 Microspheres/Amorphous Carbon Composites and Their Lithium Storage Properties. Electrochimica Acta, 2014, 117, 145-152.	5.2	61
175	Lithium ion battery applications of molybdenum disulfide (MoS ₂) nanocomposites. Energy and Environmental Science, 2014, 7, 209-231.	30.8	1,172
176	Growth of noble metal nanoparticles on single-layer TiS ₂ and TaS ₂ nanosheets for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 797-803.	30.8	323
177	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS ₂ nanosheets and the enhanced catalytic activity of Pd–MoS ₂ for methanol oxidation. Nanoscale, 2014, 6, 5762-5769.	5.6	311
178	Role of the Seeding Promoter in MoS ₂ Growth by Chemical Vapor Deposition. Nano Letters, 2014, 14, 464-472.	9.1	633
179	Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 1102-1120.	14.6	2,307
180	High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5, 2995.	12.8	655
181	Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature Communications, 2014, 5, 3087.	12.8	370
182	Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 5979-5985.	10.3	258
183	Strong optical nonlinearity of CVD-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2as probed by wavelength-dependent second-harmonic generation. Physical Review B, 2014, 90, .</mml:mn></mml:msub></mml:math 	n a. 2 <td>l:ໝອບ><!--ຫ</td--></td>	l:ໝອບ> ຫ</td
184	Graphene Oxide as a Promising Hole Injection Layer for MoS ₂ -Based Electronic Devices. ACS Nano, 2014, 8, 11432-11439.	14.6	68
185	Origin of the Phase Transition in Lithiated Molybdenum Disulfide. ACS Nano, 2014, 8, 11447-11453.	14.6	111

		CITATION REPORT		
#	Article		IF	CITATIONS
186	Three-Dimensional Spirals of Atomic Layered MoS ₂ . Nano Letters, 2014, 14	1, 6418-6423.	9.1	161
187	Mode-locking of Er-doped fiber laser using a multilayer MoS_2 thin film as a saturable at both anomalous and normal dispersion regimes. Optics Express, 2014, 22, 23732.	bsorber in	3.4	142
188	Growth of Large-Scale and Thickness-Modulated MoS ₂ Nanosheets. ACS A & amp; Interfaces, 2014, 6, 21215-21222.	pplied Materials	8.0	140
189	Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapo MoS2. APL Materials, 2014, 2, .	r deposited	5.1	155
190	Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS ₂ and WS ₂ . Nano Letters, 2014, 14, 6842-6849.		9.1	251
191	Direct vapor phase growth process and robust photoluminescence properties of large a layers. Nano Research, 2014, 7, 1759-1768.	rea MoS2	10.4	109
192	Synthesis and characterization of flower-like WS2 nanospheres via a facile hydrotherma Journal of Materials Science: Materials in Electronics, 2014, 25, 4300-4305.	l route.	2.2	22
193	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physic 2014, 90, .	cal Review B,	3.2	106
194	Computational synthesis of single-layer GaN on refractory materials. Applied Physics Let	ters, 2014, 105,	3.3	46
195	Novel micro-rings of molybdenum disulfide (MoS2). Nanoscale, 2014, 6, 14652-14656.		5.6	21
196	Enhanced Electrocatalytic Activity of MoS _{<i>x</i>} on TCNQ-Treated Electro Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 17679-	ode for 17685.	8.0	78
197	Two-dimensional materials for electronic applications. MRS Bulletin, 2014, 39, 711-718.		3.5	104
198	Single-Layer MoS ₂ with Sulfur Vacancies: Structure and Catalytic Application Physical Chemistry C, 2014, 118, 5346-5351.	on. Journal of	3.1	260
199	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodet Nano, 2014, 8, 8582-8590.	ection. ACS	14.6	515
200	CVD synthesis of large-area, highly crystalline MoSe ₂ atomic layers on diver and application to photodetectors. Nanoscale, 2014, 6, 8949.	se substrates	5.6	418
201	Controlling sulphur precursor addition for large single crystal domains of WS ₂ 222	ub>.	5.6	149
202	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour de Nature Communications, 2014, 5, 5246.	position.	12.8	453
203	The characteristics of n- and p-type dopants in SnS2monolayer nanosheets. Physical Che Chemical Physics, 2014, 16, 19674.	emistry	2.8	98

#	Article	IF	Citations
204	Solid-state reaction synthesis of two-dimensional CuGaSe2nanosheets for high performance photodetectors. Physical Chemistry Chemical Physics, 2014, 16, 19340.	2.8	19
205	Controlled mechanical cleavage of bulk niobium diselenide to nanoscaled sheet, rod, and particle structures for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11382-11390.	10.3	45
206	Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation. ACS Nano, 2014, 8, 11567-11575.	14.6	47
207	Novel chemical route for atomic layer deposition of MoS ₂ thin film on SiO ₂ /Si substrate. Nanoscale, 2014, 6, 14453-14458.	5.6	174
208	Screw-Dislocation-Driven Growth of Two-Dimensional Few-Layer and Pyramid-like WSe ₂ by Sulfur-Assisted Chemical Vapor Deposition. ACS Nano, 2014, 8, 11543-11551.	14.6	146
209	Ultrafast Electronic and Structural Response of Monolayer MoS ₂ under Intense Photoexcitation Conditions. ACS Nano, 2014, 8, 10734-10742.	14.6	49
210	Nanoelectronic circuits based on two-dimensional atomic layer crystals. Nanoscale, 2014, 6, 13283-13300.	5.6	49
212	Vertically aligned MoS ₂ /MoO _x heterojunction nanosheets for enhanced visible-light photocatalytic activity and photostability. CrystEngComm, 2014, 16, 9025-9032.	2.6	58
213	Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale, 2014, 6, 12250-12272.	5.6	323
214	Saltâ€Assisted Highâ€Throughput Synthesis of Single―and Fewâ€Layer Transition Metal Dichalcogenides and Their Application in Organic Solar Cells. Small, 2014, 10, 4651-4657.	10.0	94
215	IMPROVEMENT IN MOBILITY AND CONDUCTIVITY OF FEW-LAYER MoS ₂ FILMS. International Journal of Modern Physics B, 2014, 28, 1450028.	2.0	4
216	Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications. Nanoscale, 2014, 6, 12682-12689.	5.6	105
217	Characteristics of p-type Mg-doped GaS and GaSe nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 18799.	2.8	44
218	Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Communications, 2014, 5, 4543.	12.8	372
219	Step-by-Step Fracture of Two-Layer Stacked Graphene Membranes. ACS Nano, 2014, 8, 10246-10251.	14.6	34
220	Spectroscopic Signatures for Interlayer Coupling in MoS ₂ –WSe ₂ van der Waals Stacking. ACS Nano, 2014, 8, 9649-9656.	14.6	288
221	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	5.6	166
222	Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. Journal of Applied Physics, 2014, 116, .	2.5	92

	CITATION RE	PORT	
#	Article	IF	Citations
223	MoS ₂ Transistors Operating at Gigahertz Frequencies. Nano Letters, 2014, 14, 5905-5911.	9.1	161
224	Trion-Induced Negative Photoconductivity in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m Physical Review Letters. 2014. 113. 166801.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	ıml ⁷ t8n>2<	/mml:mn> </td
225	Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS ₂ . ACS Nano, 2014, 8, 10551-10558.	14.6	281
226	Inkjet Printing of MoS ₂ . Advanced Functional Materials, 2014, 24, 6524-6531.	14.9	210
227	Patternable Largeâ€Scale Molybdenium Disulfide Atomic Layers Grown by Goldâ€Assisted Chemical Vapor Deposition. Angewandte Chemie - International Edition, 2014, 53, 1266-1269.	13.8	111
228	Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609, 172-183.	2.6	141
229	Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS ₂ on Metal Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15966-15971.	8.0	74
230	Development of a novel method to grow mono-/few-layered MoS ₂ films and MoS ₂ –graphene hybrid films for supercapacitor applications. CrystEngComm, 2014, 16, 10845-10855.	2.6	118
231	Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy, 2014, 8, 183-195.	16.0	129
232	What's Next for Low-Dimensional Materials?. Materials Research Letters, 2014, 2, 1-9.	8.7	15
233	Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS ₂ . Nano Letters, 2014, 14, 4314-4321.	9.1	258
234	Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nature Nanotechnology, 2014, 9, 611-617.	31.5	374
235	Monolayer MoS ₂ Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317-8322.	14.6	1,081
236	Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials, 2014, 13, 1096-1101.	27.5	872
237	The Study of Spinâ€Valley Coupling in Atomically Thin Group VI Transition Metal Dichalcogenides. Advanced Materials, 2014, 26, 5504-5507.	21.0	26
238	Stacking of Two-Dimensional Materials in Lateral and Vertical Directions. Chemistry of Materials, 2014, 26, 4891-4903.	6.7	96
239	Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS ₂ , WS ₂ , and Their Bilayer Heterostructures. Nano Letters, 2014, 14, 5097-5103.	9.1	512
240	Structure and electronic properties of transition metal dichalcogenide MX2 (MÂ=ÂMo, W, Nb; XÂ=ÂS, Se) monolayers with grain boundaries. Materials Chemistry and Physics, 2014, 147, 1068-1073.	4.0	26

		CITATION REPORT		
#	Article		IF	CITATIONS
241	Pulsed laser fabricated few-layer MoS 2 on silver. Chemical Physics Letters, 2014, 610-62	11, 284-287.	2.6	24
242	Universal ac conduction in large area atomic layers of CVD-grown MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2014, 89, .</mml:math 		3.2	27
243	Direct Imaging of Band Profile in Single Layer MoS ₂ on Graphite: Quasipart Metallic Edge States, and Edge Band Bending. Nano Letters, 2014, 14, 2443-2447.	icle Energy Gap,	9.1	402
244	Twoâ€Dimensional Material Membranes: An Emerging Platform for Controllable Mass Tr Applications. Small, 2014, 10, 4521-4542.	ansport	10.0	115
245	Large-Area Single-Layer MoSe ₂ and Its van der Waals Heterostructures. AC 6655-6662.	S Nano, 2014, 8,	14.6	206
246	Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides. Journal of Chemical Society, 2014, 136, 14670-14673.	the American	13.7	151
247	Atomic layer deposition of a MoS ₂ film. Nanoscale, 2014, 6, 10584-10588.		5.6	335
248	<i>Ab initio</i> synthesis of single-layer III-V materials. Physical Review B, 2014, 89, .		3.2	112
249	Ultrathin Cu ₇ S ₄ nanosheets-constructed hierarchical hollow c one-step synthesis based on Kirkendall effect and catalysis property. Journal of Materials 2014, 2, 4574-4579.	ubic cages: Chemistry A,	10.3	36
250	Scalable high-mobility MoS ₂ thin films fabricated by an atmospheric pressurvapor deposition process at ambient temperature. Nanoscale, 2014, 6, 12792-12797.	re chemical	5.6	73
251	Dielectric Screening of Excitons and Trions in Single-Layer MoS ₂ . Nano Lett 5569-5576.	ers, 2014, 14,	9.1	520
252	Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Comm 2014, 5, 4966.	unications,	12.8	533
253	Towards large area and continuous MoS ₂ atomic layers via vapor-phase gro vapor sulfurization. Nanotechnology, 2014, 25, 405702.	wth: thermal	2.6	54
254	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnology, 2014, 9, 1024-1030.	ure	31.5	1,056
255	Orienting MoS2 flakes into ordered films. Journal of Materials Science, 2014, 49, 7353-7	<i>'</i> 359.	3.7	2
256	A Universal Method for Preparation of Noble Metal Nanoparticleâ€Decorated Transition Dichalcogenide Nanobelts. Advanced Materials, 2014, 26, 6250-6254.	Metal	21.0	71
257	Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique 2014, 14, 4682-4686.	. Nano Letters,	9.1	67
258	Dendritic, Transferable, Strictly Monolayer MoS ₂ Flakes Synthesized on SrTiO ₃ Single Crystals for Efficient Electrocatalytic Applications. ACS Nano 8617-8624.	, 2014, 8,	14.6	158

#	Article	IF	CITATIONS
259	Preparation and characterization of few-layer MoS ₂ nanosheets and their good nonlinear optical responses in the PMMA matrix. Nanoscale, 2014, 6, 9713-9719.	5.6	98
260	Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6, 9889-9924.	5.6	888
261	Postgrowth Tuning of the Bandgap of Single-Layer Molybdenum Disulfide Films by Sulfur/Selenium Exchange. ACS Nano, 2014, 8, 4672-4677.	14.6	101
262	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	2.8	56
263	Synthesis of well-defined functional crystals by high temperature gas-phase reactions. Science Bulletin, 2014, 59, 2135-2143.	1.7	4
264	Cytotoxicity of Exfoliated Transitionâ€Metal Dichalcogenides (MoS ₂ , WS ₂ , and) Tj ETQ 2014, 20, 9627-9632.	2q1 1 0.78 3.3	4314 rgBT / 358
265	Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Communications, 2014, 5, 4214.	12.8	832
266	Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate. ACS Nano, 2014, 8, 5323-5329.	14.6	211
267	Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides. Journal of Applied Physics, 2014, 116, .	2.5	77
268	Chemical vapor deposition of twisted bilayer and few-layer MoSe ₂ over SiO _{<i>x</i>} substrates. Nanotechnology, 2014, 25, 365603.	2.6	15
269	Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale, 2014, 6, 13314-13327.	5.6	127
270	Wafer Scale Synthesis and High Resolution Structural Characterization of Atomically Thin MoS ₂ Layers. Advanced Functional Materials, 2014, 24, 7461-7466.	14.9	102
271	Synthesis of Atomically Thin <inline-formula><tex-math>\${f MoS}_{f 2}\$</tex-math></inline-formula> Triangles and Hexagrams and Their Electrical Transport Properties. IEEE Nanotechnology Magazine, 2014, 13, 749-754.	2.0	21
272	Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide. ACS Nano, 2014, 8, 7930-7937.	14.6	121
273	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	14.6	404
274	Preparation of MoS ₂ –MoO ₃ Hybrid Nanomaterials for Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2014, 53, 12560-12565.	13.8	133
275	Tunable electronic structures of <i>p</i> -type Mg doping in AlN nanosheet. Journal of Applied Physics, 2014, 116, .	2.5	33
276	Etching-free patterning method for electrical characterization of atomically thin MoSe ₂ films grown by chemical vapor deposition. Nanoscale, 2014, 6, 12376-12382.	5.6	27

#	Article	IF	CITATIONS
277	Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104, .	3.3	178
278	Tuning On–Off Current Ratio and Field-Effect Mobility in a MoS ₂ –Graphene Heterostructure <i>via</i> Schottky Barrier Modulation. ACS Nano, 2014, 8, 5790-5798.	14.6	240
279	Low-Frequency Noise in Bilayer MoS ₂ Transistor. ACS Nano, 2014, 8, 5633-5640.	14.6	89
280	Heterostructural bilayers of graphene and molybdenum disulfide: Configuration types, band opening and enhanced light response. Superlattices and Microstructures, 2014, 68, 56-65.	3.1	7
281	Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 319-367.	12.3	125
282	Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS ₂ . Nano Letters, 2014, 14, 3033-3040.	9.1	464
283	Vertical Heterostructures of Layered Metal Chalcogenides by van der Waals Epitaxy. Nano Letters, 2014, 14, 3047-3054.	9.1	135
284	Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Advances, 2014, 4, 26407.	3.6	49
285	Facile Synthesis of Ultrathin Lepidocrocite Nanosheets from Layered Precursors. Chemistry - an Asian Journal, 2014, 9, 1563-1569.	3.3	4
286	MoS ₂ Quantum Dot-Interspersed Exfoliated MoS ₂ Nanosheets. ACS Nano, 2014, 8, 5297-5303.	14.6	630
287	Large-Area Atomically Thin MoS ₂ Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano, 2014, 8, 6902-6910.	14.6	400
288	Resonant Tunneling through Discrete Quantum States in Stacked Atomic-Layered MoS2. Nano Letters, 2014, 14, 2381-2386.	9.1	40
289	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	14.6	112
290	Probing substrate-dependent long-range surface structure of single-layer and multilayer < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mi>Mo < mml:mi> < mml:mi> < mml:mi> > < mml:mi> > > by low-energy electron microscopy and microproped diffraction. Physical Paview B, 2014, 89	3.2	16
291	Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Materials Today, 2014, 17, 184-193.	14.2	143
292	Transport Properties of Monolayer MoS ₂ Grown by Chemical Vapor Deposition. Nano Letters, 2014, 14, 1909-1913.	9.1	431
293	Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Materials Research Bulletin, 2014, 55, 221-228.	5.2	85
294	Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. Journal of Hazardous Materials, 2014, 276, 207-215.	12.4	170

#	Article	IF	CITATIONS
295	Controllable Synthesis of Band-Gap-Tunable and Monolayer Transition-Metal Dichalcogenide Alloys. Frontiers in Energy Research, 2014, 2, .	2.3	84
296	Electromechanical Properties of Small Transition-Metal Dichalcogenide Nanotubes. Inorganics, 2014, 2, 155-167.	2.7	18
297	Two-dimensional layered transition-metal dichalcogenides for versatile properties and applications. MRS Bulletin, 2015, 40, 558-563.	3.5	39
298	Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.	3.5	43
299	AACVD of Molybdenum Sulfide and Oxide Thin Films From Molybdenum(V)â€based Singleâ€source Precursors ^{**} . Chemical Vapor Deposition, 2015, 21, 71-77.	1.3	21
301	Multi-layered MoS2 film formed by high-temperature sputtering for enhancement-mode nMOSFETs. Japanese Journal of Applied Physics, 2015, 54, 04DN08.	1.5	53
302	Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Scientific Reports, 2015, 5, 15103.	3.3	110
303	Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports, 2015, 5, 15718.	3.3	100
304	Properties of two-dimensional graphene-like materials. Nanomaterials and Energy, 2015, 4, 18-29.	0.2	5
305	Native defects in bulk and monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2first principles. Physical Review B, 2015, 91, .</mml:mn></mml:msub></mml:math 	n a. 2 <td>l:m3ab></td>	l:m 3a b>
306	Observation of interlayer phonon modes in van der Waals heterostructures. Physical Review B, 2015, 91,	3.2	174
307	between <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mrow><mml:mi mathvariant="bold">Mo<mml:msub><mml:mi mathvariant="bold">S</mml:mi><mml:mn mathvariant="bold">2</mml:mn </mml:msub></mml:mi </mml:mrow></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow>and<mml:math< td=""><td>3.2</td><td>30</td></mml:math<></mml:mrow></mml:math 	3.2	30
308	Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Physical Review B, 2015, 91, .	3.2	18
309	Intervalley biexcitons and many-body effects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	n a. 2 <td>l:msub></td>	l:m su b>
310	two-dimensional transition metal dichalcogenides <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	CITATIONS
315	Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Scientific Reports, 2015, 5, 18712.	3.3	83
316	Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer. Scientific Reports, 2015, 5, 16374.	3.3	102
317	Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector. Scientific Reports, 2015, 5, 15313.	3.3	129
318	Graphene and 2D crystal tunnel transistors. , 0, , 144-174.		0
319	Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure. Journal of Applied Physics, 2015, 118, .	2.5	19
320	Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers. Applied Physics Letters, 2015, 107, .	3.3	18
321	Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films. Scientific Reports, 2015, 5, 16996.	3.3	155
322	Growth of centimeter-scale atomically thin MoS ₂ films by pulsed laser deposition. APL Materials, 2015, 3, 056103.	5.1	115
323	Gate tunable monolayer MoS2/InP heterostructure solar cells. Applied Physics Letters, 2015, 107, .	3.3	53
324	Hopping conduction in <i>p</i> -type MoS2 near the critical regime of the metal-insulator transition. Applied Physics Letters, 2015, 107, .	3.3	20
325	Near bandgap second-order nonlinear optical characteristics of MoS2 monolayer transferred on transparent substrates. Applied Physics Letters, 2015, 107, .	3.3	36
326	Synthesis and characterization of Mo and W compounds containing aminothiolate ligand for disulfide materials. Polyhedron, 2015, 100, 199-205.	2.2	3
327	WS_2 saturable absorber for dissipative soliton mode locking at 106 and 155 Âμm. Optics Express, 2015, 23, 27509.	3.4	187
328	Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes. Small, 2015, 11, 5520-5527.	10.0	29
329	Performances of Liquidâ€Exfoliated Transition Metal Dichalcogenides as Hole Injection Layers in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2015, 25, 4512-4519.	14.9	91
330	Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS ₂). Advanced Materials, 2015, 27, 4640-4648.	21.0	203
331	Lateral Builtâ€In Potential of Monolayer MoS ₂ –WS ₂ Inâ€Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015, 27, 6431-6437.	21.0	191
332	All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS ₂ /Graphene Heterostructures. Advanced Materials, 2015, 27, 7086-7092.	21.0	132

#	Article	IF	CITATIONS
333	Ultrathin SnSe ₂ Flakes Grown by Chemical Vapor Deposition for Highâ€Performance Photodetectors. Advanced Materials, 2015, 27, 8035-8041.	21.0	460
334	Lowâ€Temperature Synthesis of Large‧cale Molybdenum Disulfide Thin Films Directly on a Plastic Substrate Using Plasmaâ€Enhanced Chemical Vapor Deposition. Advanced Materials, 2015, 27, 5223-5229.	21.0	180
335	Single‣tep Exfoliation and Covalent Functionalization of MoS ₂ Nanosheets by an Organosulfur Reaction. Chemistry - A European Journal, 2015, 21, 15583-15588.	3.3	31
336	BNâ€Enabled Epitaxy of Pb _{1–<i>x</i>} Sn <i>_x</i> Se Nanoplates on SiO ₂ /Si for Highâ€Performance Midâ€Infrared Detection. Small, 2015, 11, 5388-5394.	10.0	41
337	Giant twoâ€photon absorption in monolayer MoS ₂ . Laser and Photonics Reviews, 2015, 9, 427-434.	8.7	161
338	Kinetic Nature of Grain Boundary Formation in Asâ€Grown MoS ₂ Monolayers. Advanced Materials, 2015, 27, 4069-4074.	21.0	130
339	Ultrasensitive Phototransistors Based on Few‣ayered HfS ₂ . Advanced Materials, 2015, 27, 7881-7887.	21.0	176
340	Pristine Basal―and Edgeâ€Planeâ€Oriented Molybdenite MoS ₂ Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21, 7170-7178.	3.3	133
341	CVD Growth of MoS ₂ â€based Twoâ€dimensional Materials. Chemical Vapor Deposition, 2015, 21, 241-259.	1.3	167
342	Hierarchical MoS ₂ @Carbon Microspheres as Advanced Anodes for Liâ€lon Batteries. Chemistry - A European Journal, 2015, 21, 18187-18191.	3.3	52
343	Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging. Small, 2015, 11, 4158-4164.	10.0	178
344	Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics. Electronics (Switzerland), 2015, 4, 1033-1061.	3.1	21
345	A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets. AIP Advances, 2015, 5, .	1.3	19
346	Scalable large nanosheets of transition metal disulphides through exfoliation of amine intercalated MS ₂ [M = Mo, W] in organic solvents. RSC Advances, 2015, 5, 51176-51182.	3.6	28
347	Optical Absorption of Armchair MoS ₂ Nanoribbons: Enhanced Correlation Effects in the Reduced Dimension. Journal of Physical Chemistry C, 2015, 119, 13901-13906.	3.1	20
348	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	14.6	97
349	Single-Crystal Atomic-Layered Molybdenum Disulfide Nanobelts with High Surface Activity. ACS Nano, 2015, 9, 6478-6483.	14.6	72
350	Room-temperature ferromagnetism in Co doped MoS ₂ sheets. Physical Chemistry Chemical Physics, 2015, 17, 15822-15828.	2.8	73

		CITATION RE	PORT	
#	Article		IF	CITATIONS
351	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015,	5, 10378.	3.3	28
352	Chemical Vapor Deposition Growth of Monolayer WSe ₂ with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015, 9, 6119-6127.	ce	14.6	340
353	Flexible MoS ₂ Field-Effect Transistors for Gate-Tunable Piezoresistive Strair Applied Materials & Interfaces, 2015, 7, 12850-12855.	Sensors. ACS	8.0	127
354	Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostruc Chemical Communications, 2015, 51, 11213-11216.	ctures.	4.1	21
355	Full-range electrical characteristics of WS2 transistors. Applied Physics Letters, 2015, 10	16, .	3.3	50
356	Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method 2015, 119, 204-208.	l. Vacuum,	3.5	30
357	Synthesis of molybdenum disulfide/carbon aerogel composites for supercapacitors elect application. Journal of Electroanalytical Chemistry, 2015, 752, 33-40.	rode material	3.8	72
358	Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimens Semiconductors. Nano Letters, 2015, 15, 4374-4380.	ional	9.1	107
359	Mechanical stabilities and nonlinear properties of monolayer Gallium selenide under tens Physics Letters B, 2015, 29, 1550049.	sion. Modern	1.9	8
360	Atomically Thick Ptâ€Cu Nanosheets: Selfâ€Assembled Sandwich and Nanoringâ€Like S Materials, 2015, 27, 2013-2018.	tructures. Advanced	21.0	106
361	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband ultrafast Er:fiber laser. Nano Research, 2015, 8, 1522-1534.	tunable	10.4	256
362	Influences of carrier gas flow rate on the morphologies of MoS2 flakes. Chemical Physics 2015, 631-632, 30-33.	s Letters,	2.6	32
363	Synthesis of two-dimensional materials for beyond graphene devices. Proceedings of SP	E, 2015, , .	0.8	1
364	Two-dimensional materials for low power and high frequency devices. Proceedings of SP	IE, 2015, , .	0.8	0
365	Controlled Synthesis of ZrS ₂ Monolayer and Few Layers on Hexagonal Bord Journal of the American Chemical Society, 2015, 137, 7051-7054.	on Nitride.	13.7	178
366	Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal allo Chemical Communications, 2015, 51, 10961-10964.	ys.	4.1	40
367	Functionalized graphene and other two-dimensional materials for photovoltaic devices: and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	device design	38.1	283
368	Prospect of large scale 2D transition metal dichalcogenides nanophotonics for optical communications. , 2015, , .			Ο

#	Article	IF	CITATIONS
369	A new method of ethanol catalytic deposition of MoS2 on tapered fiber for photonic application. , 2015, , .		0
370	Electrical study of indium doped magnesium zinc oxide by spray pyrolysis. , 2015, , .		Ο
371	Nanometre-scale identification of grain boundaries in MoS ₂ through molecular decoration. Nanotechnology, 2015, 26, 475702.	2.6	7
372	Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2015, 10, 446.	5.7	34
373	Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan, 2015, 84, 121013.	1.6	24
374	Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Advances, 2015, 5, 98700-98708.	3.6	42
375	Large-area MoS ₂ grown using H ₂ S as the sulphur source. 2D Materials, 2015, 2, 044005.	4.4	78
376	Chemical vapor deposition growth of a periodic array of single-layer MoS ₂ islands via lithographic patterning of an SiO ₂ /Si substrate. 2D Materials, 2015, 2, 045014.	4.4	29
377	Facile fabrication of wafer-scale MoS ₂ neat films with enhanced third-order nonlinear optical performance. Nanoscale, 2015, 7, 2978-2986.	5.6	58
378	Controllable Schottky Barriers between MoS2 and Permalloy. Scientific Reports, 2014, 4, 6928.	3.3	68
379	Electronic, magnetic, optical, and edge-reactivity properties of semiconducting and metallic WS 2 nanoribbons. 2D Materials, 2015, 2, 015002.	4.4	24
380	Advances in MoS2-Based Field Effect Transistors (FETs). Nano-Micro Letters, 2015, 7, 203-218.	27.0	143
381	Highly crystalline MoS2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2015, 106,	3.3	117
382	Structural and optical properties of MoS2 layers grown by successive two-step chemical vapor deposition method. Thin Solid Films, 2015, 587, 47-51.	1.8	16
383	Controlling Grain Size and Continuous Layer Growth in Two-Dimensional MoS ₂ Films for Nanoelectronic Device Application. IEEE Nanotechnology Magazine, 2015, 14, 238-242.	2.0	18
384	WS2 mode-locked ultrafast fiber laser. Scientific Reports, 2015, 5, 7965.	3.3	406
385	Structural, surface and mechanical characterization of spray-deposited molybdenum disulfide thin films. Materials Science in Semiconductor Processing, 2015, 31, 582-587.	4.0	12
386	Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4294-4301.	3.1	178

#	Article	IF	CITATIONS
387	Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates. Applied Physics Letters, 2015, 106, .	3.3	74
388	Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 2015, 6, 6298.	12.8	358
389	Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015, 6, 6128.	12.8	259
390	Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS ₂ for Fast Photodetection Application. Nano Letters, 2015, 15, 506-513.	9.1	430
391	Field Effect Transistors with Current Saturation and Voltage Gain in Ultrathin ReS ₂ . ACS Nano, 2015, 9, 363-370.	14.6	169
392	Large-area synthesis of monolayer WSe ₂ on a SiO ₂ /Si substrate and its device applications. Nanoscale, 2015, 7, 4193-4198.	5.6	128
393	Electrochemical synthesis of molybdenum sulfide semiconductor. Materials Science in Semiconductor Processing, 2015, 32, 31-39.	4.0	21
394	Photoluminescence and Raman mapping characterization of WS ₂ monolayers prepared using top-down and bottom-up methods. Journal of Materials Chemistry C, 2015, 3, 2589-2592.	5.5	37
395	MoS2 Quantum Dot: Effects of Passivation, Additional Layer, and h-BN Substrate on Its Stability and Electronic Properties. Journal of Physical Chemistry C, 2015, 119, 1565-1574.	3.1	24
396	Controllable synthesis of high quality monolayer WS ₂ on a SiO ₂ /Si substrate by chemical vapor deposition. RSC Advances, 2015, 5, 15795-15799.	3.6	61
397	Multilayered MoS2 nanoflakes bound to carbon nanotubes as electron acceptors in bulk heterojunction inverted organic solar cells. Organic Electronics, 2015, 17, 275-280.	2.6	21
398	Oneâ€Pot, Facile, and Versatile Synthesis of Monolayer MoS ₂ /WS ₂ Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2015, 25, 1127-1136.	14.9	738
399	Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano, 2015, 9, 825-830.	14.6	101
400	Photoluminescence Quenching and Charge Transfer in Artificial Heterostacks of Monolayer Transition Metal Dichalcogenides and Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 555-563.	14.6	183
401	Microlandscaping of Au Nanoparticles on Few-Layer MoS ₂ Films for Chemical Sensing. Small, 2015, 11, 1792-1800.	10.0	113
402	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 7495-7514.	3.6	288
403	In situ synthesis of MoS ₂ on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Advances, 2015, 5, 10134-10138.	3.6	29
404	Fewâ€Layer MoS ₂ –Organic Thinâ€Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate. Small, 2015, 11, 2132-2138.	10.0	28

#	Article	IF	CITATIONS
405	Optical, Vibrational, and Structural Properties of MoS ₂ Nanoparticles Obtained by Exfoliation and Fragmentation via Ultrasound Cavitation in Isopropyl Alcohol. Journal of Physical Chemistry C, 2015, 119, 3791-3801.	3.1	97
406	Synthesis and Transport Properties of Large-Scale Alloy Co _{0.16} Mo _{0.84} S ₂ Bilayer Nanosheets. ACS Nano, 2015, 9, 1257-1262.	14.6	79
407	Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small, 2015, 11, 2192-2199.	10.0	20
408	MoS 2 and semiconductors in the flatland. Materials Today, 2015, 18, 20-30.	14.2	179
409	Strain-Induced Magnetism in Single-Layer MoS ₂ : Origin and Manipulation. Journal of Physical Chemistry C, 2015, 119, 2822-2827.	3.1	70
410	Wavelength Tunable Microdisk Cavity Light Source with a Chemically Enhanced MoS ₂ Emitter. Nano Letters, 2015, 15, 1967-1971.	9.1	64
411	Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6, 6293.	12.8	1,124
412	Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence. Scientific Reports, 2015, 5, 8440.	3.3	146
413	Pd coated MoS 2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. Journal of Power Sources, 2015, 284, 68-76.	7.8	73
414	Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015, 44, 2757-2785.	38.1	1,034
415	Single layers of WS ₂ nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 11945-11950.	5.6	104
416	Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chemical Society Reviews, 2015, 44, 7715-7736.	38.1	353
417	Band alignment of atomic layer deposited high-k Al2O3/multilayer MoS2 interface determined by X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2015, 650, 502-507.	5.5	21
418	Scalable synthesis of two-dimensional antimony telluride nanoplates down to a single quintuple layer. RSC Advances, 2015, 5, 59320-59325.	3.6	12
419	Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of Materials Chemistry C, 2015, 3, 8634-8641.	5.5	29
420	Epitaxial growth of a monolayer WSe ₂ -MoS ₂ lateral p-n junction with an atomically sharp interface. Science, 2015, 349, 524-528.	12.6	1,009
421	Water-exfoliated MoS2 catalyst with enhanced photoelectrochemical activities. Catalysis Communications, 2015, 70, 53-57.	3.3	14
422	A Method Toward Fabricating Semiconducting 3R-NbS ₂ Ultrathin Films. Journal of Physical Chemistry C, 2015, 119, 19763-19771.	3.1	50

#	Article	IF	CITATIONS
423	Morphology engineering of monolayer MoS 2 by adjusting chemical environment during growth. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 292-296.	2.7	10
424	Au and Ti induced charge redistributions on monolayer WS ₂ . Chinese Physics B, 2015, 24, 077301.	1.4	1
425	Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. ACS Nano, 2015, 9, 8822-8832.	14.6	132
426	Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS ₂ thin film. Nanoscale, 2015, 7, 14476-14482.	5.6	114
427	Conduction Mechanisms in CVD-Grown Monolayer MoS ₂ Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Letters, 2015, 15, 5052-5058.	9.1	92
428	Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. Journal of Materials Chemistry A, 2015, 3, 14307-14317.	10.3	169
429	Manipulating the Thermal Conductivity of Monolayer MoS ₂ via Lattice Defect and Strain Engineering. Journal of Physical Chemistry C, 2015, 119, 16358-16365.	3.1	161
430	Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS ₂ and MoS ₂ Monolayer and Few-Layer Films. ACS Nano, 2015, 9, 7142-7150.	14.6	322
431	Plasma-Assisted Synthesis of High-Mobility Atomically Layered Violet Phosphorus. ACS Applied Materials & Interfaces, 2015, 7, 13723-13727.	8.0	47
432	Giant enhancement of light emission from nanoscale Bi2Se3. Applied Physics Letters, 2015, 106, 243107.	3.3	18
433	Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Scientific Reports, 2015, 5, 10426.	3.3	51
434	Molecular-beam epitaxy of monolayer and bilayer WSe ₂ : a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Materials, 2015, 2, 034004.	4.4	128
435	Characterization of the structural defects in CVD-grown monolayered MoS ₂ using near-field photoluminescence imaging. Nanoscale, 2015, 7, 11909-11914.	5.6	92
436	Molecular-beam epitaxy of monolayer MoSe ₂ : growth characteristics and domain boundary formation. New Journal of Physics, 2015, 17, 053023.	2.9	80
437	Quantum spin Hall effect in two-dimensional transition-metal dichalcogenide haeckelites. Physical Review B, 2015, 91, .	3.2	80
438	Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Research, 2015, 8, 2881-2890.	10.4	91
439	Radio Frequency Transistors and Circuits Based on CVD MoS ₂ . Nano Letters, 2015, 15, 5039-5045.	9.1	144
440	Excitons in ultrathin organic-inorganic perovskite crystals. Physical Review B, 2015, 92, .	3.2	263

#	Article	IF	CITATIONS
441	Strain engineering in semiconducting two-dimensional crystals. Journal of Physics Condensed Matter, 2015, 27, 313201.	1.8	381
442	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	3.3	155
443	Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications, 2015, 6, 7666.	12.8	524
444	Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific Reports, 2015, 5, 10440.	3.3	49
445	Anomalous lattice vibrations of monolayer MoS ₂ probed by ultraviolet Raman scattering. Physical Chemistry Chemical Physics, 2015, 17, 14561-14568.	2.8	36
446	A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.	38.1	115
447	Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature Communications, 2015, 6, 7311.	12.8	382
448	Phosphorene: Fabrication, Properties, and Applications. Journal of Physical Chemistry Letters, 2015, 6, 2794-2805.	4.6	680
449	Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate. Scientific Reports, 2015, 5, 11756.	3.3	48
450	Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26, 292001.	2.6	101
451	Direct and Scalable Deposition of Atomically Thin Low-Noise MoS ₂ Membranes on Apertures. ACS Nano, 2015, 9, 7352-7359.	14.6	79
452	Modifying the Interlayer Interaction in Layered Materials with an Intense IR Laser. Physical Review Letters, 2015, 114, 116102.	7.8	22
453	Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015, 1, 33-44.	5.7	597
454	Flux method growth of bulk MoS ₂ single crystals and their application as a saturable absorber. CrystEngComm, 2015, 17, 4026-4032.	2.6	35
455	Pressure confinement effect in MoS ₂ monolayers. Nanoscale, 2015, 7, 9075-9082.	5.6	56
456	MoS ₂ Nanosheet–Pd Nanoparticle Composite for Highly Sensitive Room Temperature Detection of Hydrogen. Advanced Science, 2015, 2, 1500004.	11.2	123
457	Semiconductors grown large and thin. Nature, 2015, 520, 631-632.	27.8	36
458	Synthesis of Atomically Thin Transition Metal Disulfides for Charge Transport Layers in Optoelectronic Devices. ACS Nano, 2015, 9, 4146-4155.	14.6	94

#	Article	IF	CITATIONS
459	Controlled Preferential Oxidation of Grain Boundaries in Monolayer Tungsten Disulfide for Direct Optical Imaging. ACS Nano, 2015, 9, 3695-3703.	14.6	119
460	Metal-atom-induced charge redistributions and their effects on the electrical contacts to WS ₂ monolayers. Physica Status Solidi (B): Basic Research, 2015, 252, 1783-1791.	1.5	2
461	Layered MoS ₂ grown on <i>c</i> â€sapphire by pulsed laser deposition. Physica Status Solidi - Rapid Research Letters, 2015, 9, 187-191.	2.4	130
462	Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano, 2015, 9, 5510-5519.	14.6	166
463	Wafer-scale synthesis of thickness-controllable MoS ₂ films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system. Nanoscale, 2015, 7, 9311-9319.	5.6	82
464	Grain boundary in phosphorene and its unique roles on C and O doping. Europhysics Letters, 2015, 109, 47003.	2.0	12
465	High-performance n-MoS ₂ /i-SiO ₂ /p-Si heterojunction solar cells. Nanoscale, 2015, 7, 8304-8308.	5.6	99
466	Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 4882-4890.	14.6	157
467	Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS ₂ and ultra high-k gate dielectric PZT. Nanoscale, 2015, 7, 8695-8700.	5.6	121
468	Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annual Review of Materials Research, 2015, 45, 1-27.	9.3	537
469	Enhanced Magnetic Anisotropies of Single Transition-Metal Adatoms on a Defective MoS2 Monolayer. Scientific Reports, 2015, 5, 9361.	3.3	68
470	Multi-layered MoS ₂ phototransistors as high performance photovoltaic cells and self-powered photodetectors. RSC Advances, 2015, 5, 45239-45248.	3.6	27
471	Fine tunable aqueous solution synthesis of textured flexible SnS2 thin films and nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 9282-9287.	2.8	9
472	Controlled van der Waals Epitaxy of Monolayer MoS ₂ Triangular Domains on Graphene. ACS Applied Materials & Interfaces, 2015, 7, 5265-5273.	8.0	120
473	Growth and Optical Properties of High-Quality Monolayer WS ₂ on Graphite. ACS Nano, 2015, 9, 4056-4063.	14.6	162
474	Ultrafast and Low Temperature Synthesis of Highly Crystalline and Patternable Few-Layers Tungsten Diselenide by Laser Irradiation Assisted Selenization Process. ACS Nano, 2015, 9, 4346-4353.	14.6	39
475	Enhanced Light Emission from Large-Area Monolayer MoS ₂ Using Plasmonic Nanodisc Arrays. Nano Letters, 2015, 15, 2700-2704.	9.1	346
476	High-quality, large-area MoSe ₂ and MoSe ₂ /Bi ₂ Se ₃ heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale, 2015, 7, 7896-7905.	5.6	122

#	Article	IF	CITATIONS
477	A predictive approach to CVD of crystalline layers of TMDs: the case of MoS ₂ . Nanoscale, 2015, 7, 7802-7810.	5.6	117
478	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research, 2015, 3, A30.	7.0	185
479	Vertical ultrathin MoS ₂ nanosheets on a flexible substrate as an efficient counter electrode for dye-sensitized solar cells. Nanoscale, 2015, 7, 10459-10464.	5.6	70
480	Stabilization and Band-Gap Tuning of the 1T-MoS ₂ Monolayer by Covalent Functionalization. Chemistry of Materials, 2015, 27, 3743-3748.	6.7	297
481	Tunable Direct Bandgap Optical Transitions in MoS ₂ Nanocrystals for Photonic Devices. ACS Photonics, 2015, 2, 760-768.	6.6	126
482	Reduced Graphene Oxideâ€Modified Carbon Nanotube/Polyimide Film Supported MoS ₂ Nanoparticles for Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 2693-2700.	14.9	113
483	Fabrication of High-Performance Ultrathin In ₂ O ₃ Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano, 2015, 9, 4572-4582.	14.6	156
484	Observation of Excitonic Rydberg States in Monolayer MoS ₂ and WS ₂ by Photoluminescence Excitation Spectroscopy. Nano Letters, 2015, 15, 2992-2997.	9.1	327
485	Vertical 2D Heterostructures. Annual Review of Materials Research, 2015, 45, 85-109.	9.3	153
486	Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015, 73, 44-126.	32.8	1,152
487	Role of hydrogen in the chemical vapor deposition growth of MoS ₂ atomic layers. Nanoscale, 2015, 7, 8398-8404.	5.6	62
488	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	14.9	554
489	Bandstructure modulation of two-dimensional WSe2 by electric field. Journal of Applied Physics, 2015, 117, .	2.5	29
490	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	3.3	72
491	Gold nanoparticles on MoS 2 layered crystal flakes. Materials Chemistry and Physics, 2015, 158, 89-95.	4.0	36
492	Large-Area Epitaxial Monolayer MoS ₂ . ACS Nano, 2015, 9, 4611-4620.	14.6	712
493	Growth of large-area atomically thin MoS_2 film via ambient pressure chemical vapor deposition. Photonics Research, 2015, 3, 110.	7.0	17
494	Large-scale two-dimensional MoS_2 photodetectors by magnetron sputtering. Optics Express, 2015, 23, 13580.	3.4	93

#	Article	IF	CITATIONS
495	MoS2 oxygen sensor with gate voltage stress induced performance enhancement. Applied Physics Letters, 2015, 107, .	3.3	27
496	Large-Area, Transfer-Free, Oxide-Assisted Synthesis of Hexagonal Boron Nitride Films and Their Heterostructures with MoS ₂ and WS ₂ . Journal of the American Chemical Society, 2015, 137, 13060-13065.	13.7	110
497	Interference effect on optical signals of monolayer MoS2. Applied Physics Letters, 2015, 107, .	3.3	51
498	Synthesis and Application of Monolayer Semiconductors (June 2015). IEEE Journal of Quantum Electronics, 2015, 51, 1-10.	1.9	13
499	Synthesis of Large-Area Highly Crystalline Monolayer Molybdenum Disulfide with Tunable Grain Size in a H ₂ Atmosphere. ACS Applied Materials & Interfaces, 2015, 7, 22587-22593.	8.0	47
500	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	14.6	1,726
501	Adsorption of alkali, alkaline-earth, simple and 3 <i>d</i> transition metal, and nonmetal atoms on monolayer MoS2. AIP Advances, 2015, 5, .	1.3	43
502	Single- and few-layer ZrS2 as efficient photocatalysts for hydrogen production under visible light. International Journal of Hydrogen Energy, 2015, 40, 15503-15509.	7.1	50
503	Two dimensional atomically thin MoS ₂ nanosheets and their sensing applications. Nanoscale, 2015, 7, 19358-19376.	5.6	217
504	Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3. Nature Communications, 2015, 6, 8593.	12.8	91
505	Emerging energy applications of two-dimensionalÂlayered transition metal dichalcogenides. Nano Energy, 2015, 18, 293-305.	16.0	236
506	Carrier Injection and Scattering in Atomically Thin Chalcogenides. Journal of the Physical Society of Japan, 2015, 84, 121011.	1.6	7
507	Tellurium-Assisted Low-Temperature Synthesis of MoS ₂ and WS ₂ Monolayers. ACS Nano, 2015, 9, 11658-11666.	14.6	123
508	Effect of precursor on growth and morphology of MoS2 monolayer and multilayer. Journal of Physics and Chemistry of Solids, 2015, 87, 32-37.	4.0	47
509	Control of Light-Matter Interaction in 2D Atomic Crystals Using Microcavities. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.9	5
510	Effect of structural defects on electronic and magnetic properties of pristine and Mn-doped MoS2 monolayer. Solid State Communications, 2015, 220, 31-35.	1.9	41
511	Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015, 5, 75500-75518.	3.6	105
512	Ultrafast Intrinsic Photoresponse and Direct Evidence of Sub-gap States in Liquid Phase Exfoliated MoS2Thin Films. Scientific Reports, 2015, 5, 11272.	3.3	57

#	Article	IF	CITATIONS
513	Monolayers of WxMo1â^'xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015, 106, .	3.3	99
514	Graphite edge controlled registration of monolayer MoS2 crystal orientation. Applied Physics Letters, 2015, 106, 181904.	3.3	34
515	Facile fabrication of a ultraviolet tunable MoS2/ <i>p</i> -Si junction diode. Applied Physics Letters, 2015, 106, .	3.3	21
516	Electrical and Optical Characterization of MoS ₂ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015, 9, 8044-8053.	14.6	185
517	Nanoscale Mapping of Layer-Dependent Surface Potential and Junction Properties of CVD-Grown MoS ₂ Domains. Journal of Physical Chemistry C, 2015, 119, 20136-20142.	3.1	54
518	Two-Dimensional Atomic Crystals: Paving New Ways for Nanoelectronics. Journal of Electronic Materials, 2015, 44, 4080-4097.	2.2	6
519	Engineering Vertical Aligned MoS 2 on Graphene Sheet Towards Thin Film Lithium Ion Battery. Electrochimica Acta, 2015, 178, 476-483.	5.2	50
520	Functional Nanomaterial Devices. , 2015, , 155-193.		0
521	Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews, 2015, 44, 8859-8876.	38.1	917
522	Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. Journal of Alloys and Compounds, 2015, 653, 369-378.	5.5	20
523	Three-Dimensional Heterostructures of MoS ₂ Nanosheets on Conducting MoO ₂ as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 23328-23335.	8.0	150
524	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	10.4	94
525	Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6, 8616.	12.8	604
526	Large-Area Growth of Uniform Single-Layer MoS2 Thin Films by Chemical Vapor Deposition. Nanoscale Research Letters, 2015, 10, 388.	5.7	61
527	Noncovalent Molecular Doping of Twoâ€Ðimensional Materials. ChemNanoMat, 2015, 1, 542-557.	2.8	41
528	Synthesis and sensor applications of MoS ₂ -based nanocomposites. Nanoscale, 2015, 7, 18364-18378.	5.6	202
529	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	12.8	526
530	Growth and humidity-dependent electrical properties of bulk-like MoS ₂ thin films on Si. RSC Advances, 2015, 5, 74329-74335.	3.6	27

#	Article	IF	CITATIONS
531	Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science, 2015, 6, 6705-6716.	7.4	206
532	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	10.3	97
533	Pulse-Width Saturation and Kelly-Sideband Shift in a Graphene-Nanosheet Mode-Locked Fiber Laser with Weak Negative Dispersion. Physical Review Applied, 2015, 3, .	3.8	14
534	Direct Growth of Single- and Few-Layer MoS ₂ on h-BN with Preferred Relative Rotation Angles. Nano Letters, 2015, 15, 6324-6331.	9.1	172
535	Dynamic Structural Response and Deformations of Monolayer MoS ₂ Visualized by Femtosecond Electron Diffraction. Nano Letters, 2015, 15, 6889-6895.	9.1	93
536	Fast and Efficient Preparation of Exfoliated 2H MoS ₂ Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Letters, 2015, 15, 5956-5960.	9.1	603
537	Sulfur vacancy activated field effect transistors based on ReS ₂ nanosheets. Nanoscale, 2015, 7, 15757-15762.	5.6	44
538	Nanoimprint-Assisted Shear Exfoliation (NASE) for Producing Multilayer MoS ₂ Structures as Field-Effect Transistor Channel Arrays. ACS Nano, 2015, 9, 8773-8785.	14.6	48
539	Effect of processing parameters on microstructure of MoS2 ultra-thin films synthesized by chemical vapor deposition method. AIP Advances, 2015, 5, 067119.	1.3	11
540	Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Applied Physics Letters, 2015, 106, .	3.3	167
541	Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides. Journal of Physical Chemistry C, 2015, 119, 23231-23237.	3.1	164
542	Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.	12.8	578
543	Band alignment of HfO2/multilayer MoS2 interface determined by <i>x</i> -ray photoelectron spectroscopy: Effect of CHF3 treatment. Applied Physics Letters, 2015, 107, .	3.3	24
544	Synthesis of monolayer MoS <inf>2</inf> with seed promoters by chemical vapor deposition at low temperature. , 2015, , .		0
545	Electronic Properties of MoS ₂ –WS ₂ Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015, 9, 9868-9876.	14.6	283
546	Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today, 2015, 10, 559-592.	11.9	107
547	Manganese Doping of Monolayer MoS ₂ : The Substrate Is Critical. Nano Letters, 2015, 15, 6586-6591.	9.1	357
548	Solvothermal synthesis of MoS ₂ nanospheres in DMF–water mixed solvents and their catalytic activity in hydrocracking of diphenylmethane. RSC Advances, 2015, 5, 79724-79728.	3.6	13

#	Article	IF	CITATIONS
549	Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping. , 2015, , .		1
550	The electronic and optical properties of MoS _{2(1â^'x)} Se _{2x} and MoS _{2(1â^'x)} Te _{2x} monolayers. Physical Chemistry Chemical Physics, 2015, 17, 26166-26174.	2.8	60
551	Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nature Communications, 2015, 6, 8294.	12.8	277
552	Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015, 2, .	12.1	143
553	Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS ₂ . Nano Letters, 2015, 15, 8289-8294.	9.1	67
554	2D crystals of transition metal dichalcogenide and their iontronic functionalities. 2D Materials, 2015, 2, 044004.	4.4	28
555	Large-area WSe ₂ electric double layer transistors on a plastic substrate. Japanese Journal of Applied Physics, 2015, 54, 06FF06.	1.5	10
556	In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 2014, 4, 7582.	3.3	89
557	Valley-selective optical Stark effect in monolayerÂWS2. Nature Materials, 2015, 14, 290-294.	27.5	479
558	Monolayer MoS ₂ Growth on Au Foils and On‣ite Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	14.9	66
559	Growth of wafer-scale MoS ₂ monolayer by magnetron sputtering. Nanoscale, 2015, 7, 2497-2503.	5.6	225
560	CO catalytic oxidation on iron-embedded monolayer MoS2. Applied Surface Science, 2015, 328, 71-77.	6.1	100
561	Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 2015, 44, 2681-2701.	38.1	786
562	Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties. Accounts of Chemical Research, 2015, 48, 65-72.	15.6	262
563	Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015, 15, 410-415.	9.1	285
564	Band Engineering for Novel Twoâ€Đimensional Atomic Layers. Small, 2015, 11, 1868-1884.	10.0	96
565	Inorganic Graphene Analogs. Annual Review of Materials Research, 2015, 45, 29-62.	9.3	40
566	Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS ₂ /WS ₂ Heterostructures. Nano Letters, 2015, 15, 486-491.	9.1	337

#	Article	IF	CITATIONS
567	Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Letters, 2015, 15, 346-353.	9.1	284
568	Formation of Hexagonal Boron Nitride by Metal Atomic Vacancy-Assisted B–N Molecular Diffusion. ACS Nano, 2015, 9, 633-638.	14.6	19
569	Large Area Growth and Electrical Properties of p-Type WSe ₂ Atomic Layers. Nano Letters, 2015, 15, 709-713.	9.1	372
570	Hybrid 2D–0D MoS ₂ –PbS Quantum Dot Photodetectors. Advanced Materials, 2015, 27, 176-180.	21.0	638
571	Mechanics of freelyâ€suspended ultrathin layered materials. Annalen Der Physik, 2015, 527, 27-44.	2.4	145
572	Synthesis and Defect Investigation of Two-Dimensional Molybdenum Disulfide Atomic Layers. Accounts of Chemical Research, 2015, 48, 31-40.	15.6	140
573	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	9.1	136
574	From two-dimensional materials to heterostructures. Progress in Surface Science, 2015, 90, 21-45.	8.3	123
575	Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Applied Surface Science, 2015, 325, 27-32.	6.1	132
576	Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2015, 44, 2664-2680.	38.1	694
577	Realization of high Curie temperature ferromagnetism in atomically thin MoS ₂ and WS ₂ nanosheets with uniform and flower-like morphology. Nanoscale, 2015, 7, 650-658.	5.6	94
578	Semiconductor Solar Superabsorbers. Scientific Reports, 2014, 4, 4107.	3.3	13
579	Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Scientific Reports, 2014, 4, 3826.	3.3	771
580	Mechanical stabilities and nonlinear properties of monolayer Gallium sulfide under tension. Superlattices and Microstructures, 2015, 80, 80-90.	3.1	5
581	Epitaxial growth of few-layer MoS ₂ (0001) on FeS ₂ {100}. Chemical Communications, 2015, 51, 537-540.	4.1	9
582	TiO2-based solar cells sensitized by chemical-bath-deposited few-layer MoS2. Journal of Power Sources, 2015, 275, 943-949.	7.8	27
583	Controlled Vapor Phase Growth of Single Crystalline, Two-Dimensional GaSe Crystals with High Photoresponse. Scientific Reports, 2014, 4, 5497.	3.3	222
584	Chemical Vapor Deposition of Two-Dimensional Crystals. , 2015, , 785-833.		2

#	Article	IF	CITATIONS
585	Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.	38.1	709
586	Layer-controlled CVD growth of large-area two-dimensional MoS ₂ films. Nanoscale, 2015, 7, 1688-1695.	5.6	387
587	Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews, 2015, 44, 2587-2602.	38.1	334
588	Heterojunction Hybrid Devices from Vapor Phase Grown MoS2. Scientific Reports, 2014, 4, 5458.	3.3	80
589	Perpendicularly Oriented MoSe ₂ /Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small, 2015, 11, 414-419.	10.0	276
590	Synthesis Strategies about 2D Materials. , 0, , .		11
591	Exfoliated MoS2 in Water without Additives. PLoS ONE, 2016, 11, e0154522.	2.5	98
592	Properties of single-layer MoS ₂ film fabricated by combination of sputtering deposition and post deposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55.06CF01	1.5	16
593	Improving crystalline quality of sputtering-deposited MoS ₂ thin film by postdeposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55, 04EJ07.	1.5	26
594	The Positive Effects of Hydrophobic Fluoropolymers on the Electrical Properties of MoS2 Transistors. Applied Sciences (Switzerland), 2016, 6, 236.	2.5	2
595	E'' Raman Mode in Thermal Strain-Fractured CVD-MoS2. Crystals, 2016, 6, 151.	2.2	17
596	Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS_2 by focusing radially-polarized beams. Optics Express, 2016, 24, 27554.	3.4	10
597	Twoâ€Dimensional Transition Metal Dichalcogenides for Electrocatalytic Energy Conversion Applications. , 0, , .		2
598	Electronics of Compound Materials Nanosheets. Hyomen Kagaku, 2016, 37, 527-534.	0.0	Ο
599	Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. Journal of Semiconductors, 2016, 37, 051001.	3.7	75
600	Graphene and monolayer transition-metal dichalcogenides: properties and devices. Journal of Materials Research, 2016, 31, 845-877.	2.6	15
601	Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotechnology, 2016, 11, 954-959.	31.5	251
602	Effects of plasma treatment on surface properties of ultrathin layered MoS ₂ . 2D Materials, 2016, 3, 035002.	4.4	59

#	Article	IF	CITATIONS
603	Largeâ€6ize Growth of Ultrathin SnS ₂ Nanosheets and High Performance for Phototransistors. Advanced Functional Materials, 2016, 26, 4405-4413.	14.9	279
604	Configurationâ€Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe ₂ /MoS ₂ . Advanced Functional Materials, 2016, 26, 5499-5506.	14.9	95
605	Synthesis of Twoâ€Ðimensional Materials for Capacitive Energy Storage. Advanced Materials, 2016, 28, 6104-6135.	21.0	548
606	Synthesis of Millimeterâ€Scale Transition Metal Dichalcogenides Single Crystals. Advanced Functional Materials, 2016, 26, 2009-2015.	14.9	152
607	Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS ₂ through a Self-Limited Growth Strategy by Interface Engineering. Small, 2016, 12, 438-445.	10.0	25
608	A feasible multilayer structure design for solid lubricant coatings in a lunar environment. RSC Advances, 2016, 6, 65504-65517.	3.6	12
609	Electronic and Magnetic Properties of Encapsulated MoS ₂ Quantum Dots: The Case of Noble Metal Nanoparticle Dopants. ChemPhysChem, 2016, 17, 1180-1194.	2.1	3
610	Group <scp>IVB</scp> transition metal trichalcogenides: a new class of <scp>2D</scp> layered materials beyond graphene. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 211-222.	14.6	100
611	Highâ€Mobility Transistors Based on Largeâ€Area and Highly Crystalline CVDâ€Grown MoSe ₂ Films on Insulating Substrates. Advanced Materials, 2016, 28, 2316-2321.	21.0	107
612	Surfactantâ€∎ided exfoliation of molybdenum disulfide for ultrafast pulse generation through edgeâ€state saturable absorption. Physica Status Solidi (B): Basic Research, 2016, 253, 911-917.	1.5	29
613	Structural, electronic, and magnetic properties of 3d transition metal doped GaN nanosheet: A first-principles study. International Journal of Quantum Chemistry, 2016, 116, 1000-1005.	2.0	37
614	MoS ₂ /TiO ₂ Edgeâ€On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.	19.5	264
615	Large-Scale Synthesis of a Uniform Film of Bilayer MoS ₂ on Graphene for 2D Heterostructure Phototransistors. ACS Applied Materials & Interfaces, 2016, 8, 19004-19011.	8.0	68
616	Lithography-free plasma-induced patterned growth of MoS ₂ and its heterojunction with graphene. Nanoscale, 2016, 8, 15181-15188.	5.6	68
617	Substrate effect on the growth of monolayer dendritic MoS ₂ on LaAlO ₃ (100) and its electrocatalytic applications. 2D Materials, 2016, 3, 035001.	4.4	22
618	Atomically Thin MoS ₂ : A Versatile Nongraphene 2D Material. Advanced Functional Materials, 2016, 26, 2046-2069.	14.9	220
619	Highly Flexible and Highâ€Performance Complementary Inverters of Largeâ€Area Transition Metal Dichalcogenide Monolayers. Advanced Materials, 2016, 28, 4111-4119.	21.0	112
620	Electric and Photovoltaic Behavior of a Few‣ayer αâ€MoTe ₂ /MoS ₂ Dichalcogenide Heterojunction. Advanced Materials, 2016, 28, 3216-3222.	21.0	236

#	Article	IF	CITATIONS
621	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	19.5	43
622	Towards molecular doping effect on the electronic properties of two-dimensional layered materials. Journal of Physics: Conference Series, 2016, 739, 012014.	0.4	2
623	Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Scientific Reports, 2016, 5, 18596.	3.3	163
624	Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS ₂ . Nano Letters, 2016, 16, 7421-7426.	9.1	49
625	Two-dimensional wide-band-gap II–V semiconductors with a dilated graphene-like structure. Semiconductor Science and Technology, 2016, 31, 125002.	2.0	4
626	All The Catalytic Active Sites of MoS ₂ for Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 16632-16638.	13.7	664
627	Grain boundary and its hydrogenated effect in stanene. AIP Advances, 2016, 6, .	1.3	2
628	MoS2 based dual input logic AND gate. AIP Advances, 2016, 6, 125041.	1.3	4
629	Grain size and plasma doping effects on CVD-based 2D transition metal dichalcogenide. , 2016, , .		2
630	Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Applied Physics Letters, 2016, 108, .	3.3	115
631	Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface. AIP Advances, 2016, 6, .	1.3	33
632	Effect of plasma voltage on sulfurization of α-MoO3 nanostructured thin films. AIP Conference Proceedings, 2016, , .	0.4	Ο
633	Ripples near edge terminals in MoS2 few layers and pyramid nanostructures. Applied Physics Letters, 2016, 108, .	3.3	14
634	Impact of reduced graphene oxide on MoS2 grown by sulfurization of sputtered MoO3 and Mo precursor films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	11
635	Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots. Applied Physics Letters, 2016, 108, 163901.	3.3	26
636	Effects of nitrogen plasma treatment on the electrical property and band structure of few-layer MoS2. Applied Physics Letters, 2016, 108, .	3.3	19
637	Optoelectronic response and excitonic properties of monolayer MoS2. Journal of Applied Physics, 2016, 120, .	2.5	34
638	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	3.3	93
#	ARTICLE	IF	CITATIONS
-----	--	-----	-----------
639	Strain-induced magnetism in ReS ₂ monolayer with defects. Chinese Physics B, 2016, 25, 117103.	1.4	6
640	Beyond Perturbation: Role of Vacancy-Induced Localized Phonon States in Thermal Transport of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2016, 120, 29324-29331.	3.1	36
641	MoS ₂ synthesis and high-performance broadband photodetector. , 2016, , .		0
642	Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Applied Physics Letters, 2016, 109, .	3.3	31
643	Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties. Applied Physics Letters, 2016, 108, .	3.3	52
644	Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 2016, 6, 18754.	3.3	74
645	Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .	3.3	64
646	Characterization of atomic-layer MoS 2 synthesized using a hot filament chemical vapor deposition method. Chinese Physics B, 2016, 25, 058104.	1.4	2
647	Monolayer MoS2 self-switching diodes. Journal of Applied Physics, 2016, 119, .	2.5	16
648	Spatial/temporal photocurrent and electronic transport in monolayer molybdenum disulfide grown by chemical vapor deposition. Applied Physics Letters, 2016, 108, .	3.3	12
649	Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition. Journal of Applied Physics, 2016, 119, 214301.	2.5	18
650	Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains. Journal of Chemical Physics, 2016, 145, 084704.	3.0	13
651	Perspective: Highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process. APL Materials, 2016, 4, .	5.1	28
652	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	3.3	59
653	A Self-Limiting Electro-Ablation Technique for the Top-Down Synthesis of Large-Area Monolayer Flakes of 2D Materials. Scientific Reports, 2016, 6, 28195.	3.3	24
654	Correlation of nanostructure changes with the electrical properties of molybdenum disulfide (MoS2) as affected by sulfurization temperature. Applied Physics Letters, 2016, 109, 242104.	3.3	1
655	Structure–function relationship of electrodeposited MoSx film in N, N-dimethyl-formamide/H2O mixture solvent as electrocatalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 1635-1644.	7.1	10
656	Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides. ACS Photonics, 2016, 3, 700-707.	6.6	27

ARTICLE IF CITATIONS Chemical route derived bismuth ferrite thin films and nanomaterials. Journal of Materials Chemistry 657 5.5 148 C, 2016, 4, 4092-4124. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, 47.7 1,942 Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519. Comparison of hydrogen sulfide gas and sulfur powder for synthesis of molybdenum disulfide 659 2.4 15 nanosheets. Current Applied Physics, 2016, 16, 691-695. Black phosphorus nonvolatile transistor memory. Nanoscale, 2016, 8, 9107-9112. 39 Scalable Production of Molybdenum Disulfide Based Biosensors. ACS Nano, 2016, 10, 6173-6179. 661 14.6 68 A systematic study of the synthesis of monolayer tungsten diselenide films on gold foil. Current Applied Physics, 2016, 16, 1216-1222. 2.4 16 Insights into MoS2-coated LiVPO4F for lithium ion batteries: A first-principles investigation. Journal 663 5.5 8 of Alloys and Compounds, 2016, 681, 253-259. Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. ACS Applied 664 8.0 Materials & amp; Interfaces, 2016, 8, 12915-12924. Enhanced quantum efficiency from a mosaic of two dimensional MoS₂formed onto 665 5.6 18 aminosilane functionalised substrates. Nanoscale, 2016, 8, 12258-12266. Piezoelectric Nanomaterials for Energy Harvesting. Nanoscience and Technology, 2016, , 193-213. 1.5 Transport studies in 2D transition metal dichalcogenides and black phosphorus. Journal of Physics 667 1.8 12 Condensed Matter, 2016, 28, 263002. Thinning of n-layer MoS₂ by annealing a palladium film under vacuum. RSC Advances, 2016, 668 6, 50595-50598. Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation. Nano Letters, 669 9.1 46 2016, 16, 3696-3702. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Science China Materials, 2016, 59, 182-190. 670 6.3 Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal 671 14.6 190 Dichalcogenide Monolayers. ACS Nano, 2016, 10, 4330-4344. Towards a uniform and large-scale deposition of MoS₂nanosheets via sulfurization of 59 ultra-thin Mo-based solid films. Nanotechnology, 2016, 27, 175703. Photo-Promoted Platinum Nanoparticles Decorated MoS₂@Graphene Woven Fabric 673 Catalyst for Efficient Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2016, 8, 8.0 72 10866-10873. 674 Trap-induced photoresponse of solution-synthesized MoS₂. Nanoscale, 2016, 8, 9193-9200.

#	Article	IF	CITATIONS
675	Molybdenum disulfide nanosheets as barrier enhancing nanofillers in thermal decomposition of polypropylene composites. Chemical Engineering Journal, 2016, 295, 278-287.	12.7	47
676	Atomic-Scale Spectroscopy of Gated Monolayer MoS ₂ . Nano Letters, 2016, 16, 3148-3154.	9.1	30
677	Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. Nanoscale, 2016, 8, 9488-9492.	5.6	30
678	Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering. Nano Research, 2016, 9, 1682-1688.	10.4	16
679	Chemical vapor deposition of MoS ₂ layers from Mo–S–C–O–H system: thermodynamic modeling and validation. Physical Chemistry Chemical Physics, 2016, 18, 14918-14926.	2.8	19
680	Heating-up Synthesis of MoS2 Nanosheets and Their Electrical Bistability Performance. Nanoscale Research Letters, 2016, 11, 171.	5.7	20
681	Adsorption of gas molecules on Cu impurities embedded monolayer MoS 2 : A first- principles study. Applied Surface Science, 2016, 382, 280-287.	6.1	116
682	STM study of the MoS2 flakes grown on graphite: A model system for atomically clean 2D heterostructure interfaces. Carbon, 2016, 105, 408-415.	10.3	29
683	Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. ACS Nano, 2016, 10, 5440-5445.	14.6	163
684	Fiber optic humidity sensing with few layers molybdenum disulfide. Proceedings of SPIE, 2016, , .	0.8	2
685	Size-Dependent Properties of Two-Dimensional MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2016, 120, 10078-10085.	3.1	144
686	Wafer-scale growth of MoS ₂ thin films by atomic layer deposition. Nanoscale, 2016, 8, 10792-10798.	5.6	139
687	Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Research, 2016, 9, 1543-1560.	10.4	186
688	Universal Transfer and Stacking of Chemical Vapor Deposition Grown Two-Dimensional Atomic Layers with Water-Soluble Polymer Mediator. ACS Nano, 2016, 10, 5237-5242.	14.6	70
689	Defect passivation induced strong photoluminescence enhancement of rhombic monolayer MoS ₂ . Physical Chemistry Chemical Physics, 2016, 18, 14001-14006.	2.8	54
690	Large-Area Buckled MoS ₂ Films on the Graphene Substrate. ACS Applied Materials & Interfaces, 2016, 8, 13512-13519.	8.0	38
691	Large-area high quality MoS ₂ monolayers grown by sulfur vapor counter flow diffusion. RSC Advances, 2016, 6, 50306-50314.	3.6	26
692	Two-dimensional metallic NbS ₂ : growth, optical identification and transport properties. 2D Materials, 2016, 3, 025027.	4.4	86

#	Article	IF	CITATIONS
693	Atomically-thin layered films for device applications based upon 2D TMDC materials. Thin Solid Films, 2016, 616, 482-501.	1.8	104
694	Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy, 2016, 30, 846-852.	16.0	136
696	Vapor transport growth of MoS2 nucleated on SiO2 patterns and graphene flakes. Nano Research, 2016, 9, 3504-3514.	10.4	14
698	Tuning the structure of MoO ₃ nanoplates via MoS ₂ oxidation. Philosophical Magazine Letters, 2016, 96, 347-354.	1.2	13
699	Temperatureâ€Mediated Selective Growth of MoS ₂ /WS ₂ and WS ₂ /MoS ₂ Vertical Stacks on Au Foils for Direct Photocatalytic Applications. Advanced Materials, 2016, 28, 10664-10672.	21.0	188
700	Interface modification of MoS2/SiO2 leading to conversion of conduction type of MoS2. Applied Surface Science, 2016, 387, 661-665.	6.1	14
701	Conduction quantization in monolayer MoS 2. Chemical Physics Letters, 2016, 663, 40-44.	2.6	1
702	Targeted Synthesis of 2H―and 1Tâ€Phase MoS ₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 10033-10041.	21.0	534
703	Two-dimensional van der Waals nanosheet devices for future electronics and photonics. Nano Today, 2016, 11, 626-643.	11.9	71
704	Morphology-Controlled Synthesis of Hexagonal Boron Nitride Crystals by Chemical Vapor Deposition. Crystal Growth and Design, 2016, 16, 6440-6445.	3.0	15
705	Twoâ€Dimensional Cobaltâ€∤Nickelâ€Based Oxide Nanosheets for Highâ€Performance Sodium and Lithium Storage. Chemistry - A European Journal, 2016, 22, 18060-18065.	3.3	28
706	Controllable growth and characterizations of hybrid spiral-like atomically thin molybdenum disulfide. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 378-383.	2.7	6
707	Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2016, 120, 24080-24087.	3.1	20
708	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chemical Society Reviews, 2016, 45, 6742-6765.	38.1	363
709	Facile and Green Production of Impurityâ€Free Aqueous Solutions of WS ₂ Nanosheets by Direct Exfoliation in Water. Small, 2016, 12, 6703-6713.	10.0	44
710	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="bold">SnS<mml:mn>2</mml:mn></mml:mi </mml:msub> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">SnS<mml:math>2</mml:math></mml:mi </mml:msub>and<mml:math< td=""><td>3.2</td><td>267</td></mml:math<></mml:math 	3.2	267
711	materials. Physical Review B, 2016, 94, . Bottom-up synthesis of vertically oriented two-dimensional materials. 2D Materials, 2016, 3, 041003.	4.4	47
712	Vertically oriented few-layered HfS ₂ nanosheets: growth mechanism and optical properties. 2D Materials, 2016, 3, 035024.	4.4	88

#	Article	IF	CITATIONS
713	Large scale MoS ₂ nanosheet logic circuits integrated by photolithography on glass. 2D Materials, 2016, 3, 044001.	4.4	26
714	Exfoliated thin Bi2MoO6 nanosheets supported on WO3 electrode for enhanced photoelectrochemical water splitting. Applied Surface Science, 2016, 390, 399-405.	6.1	35
715	High-Performance Hybrid Electronic Devices from Layered PtSe ₂ Films Grown at Low Temperature. ACS Nano, 2016, 10, 9550-9558.	14.6	310
716	Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Optical Materials, 2016, 60, 601-617.	3.6	70
717	From 3D to 2D: Fabrication Methods. Springer Series in Materials Science, 2016, , 79-107.	0.6	2
718	Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 9-28.	4.0	66
719	Diatom Frustules as a Biomineralized Scaffold for the Growth of Molybdenum Disulfide Nanosheets. Chemistry of Materials, 2016, 28, 5582-5586.	6.7	13
720	Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications. Solid-State Electronics, 2016, 125, 39-51.	1.4	36
721	2D nanosheets-based novel architectures: Synthesis, assembly and applications. Nano Today, 2016, 11, 483-520.	11.9	95
722	Recent Advances in Doping of Molybdenum Disulfide: Industrial Applications and Future Prospects. Advanced Materials, 2016, 28, 9024-9059.	21.0	189
723	Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150318.	3.4	62
724	Fabrication of Multilayer Borophene on Insulator Structure. Small, 2016, 12, 5251-5255.	10.0	42
725	Spiral Growth of SnSe ₂ Crystals by Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600383.	3.7	55
726	Chemical Vapor Deposition of Highâ€Quality Largeâ€Sized MoS ₂ Crystals on Silicon Dioxide Substrates. Advanced Science, 2016, 3, 1500033.	11.2	128
727	A first-principles study of magnetic variation via doping vacancy in monolayer VS2. Journal of Magnetism and Magnetic Materials, 2016, 420, 218-224.	2.3	64
728	Growth mechanism of largescale MoS ₂ monolayer by sulfurization of MoO ₃ film. Materials Research Express, 2016, 3, 075009.	1.6	42
729	Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers. Physical Review B, 2016, 94, .	3.2	71
730	Reductive exfoliation of substoichiometric MoS ₂ bilayers using hydrazine salts. Nanoscale, 2016, 8, 15252-15261.	5.6	24

ARTICLE IF CITATIONS Tuning of electronic states and magnetic polarization in monolayered MoS2 by codoping with 731 3.7 24 transition metals and nonmetals. Journal of Materials Science, 2016, 51, 9514-9525. Scalable Patterning of MoS₂ Nanoribbons by Micromolding in Capillaries. ACS Applied 8.0 23 Materials & amp; Interfaces, 2016, 8, 20993-21001. Review of photo response in semiconductor transition metal dichalcogenides based photosensitive 733 3.0 44 devices. Optical Materials Express, 2016, 6, 2313. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped 734 3.1 WS2: A first-principles study. Superlattices and Microstructures, 2016, 98, 148-157. Hybrid van der Waals p–n Heterojunctions based on SnO and 2D MoS₂. Advanced 735 21.0 62 Materials, 2016, 28, 9133-9141. Co-nucleus 1D/2D Heterostructures with Bi₂S₃ Nanowire and MoS₂ Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS Nano, 14.6 2016, 10, 8938-8946. Lowâ€Dimensional Transition Metal Dichalcogenide Nanostructures Based Sensors. Advanced 737 14.9 208 Functional Materials, 2016, 26, 7034-7056. Large Scale Uniformity of Sputtering Deposited Single- and Few-Layer MoS2Investigated by XPS Multipoint Measurements and Histogram Analysis of Optical Contrast. ECS Journal of Solid State Science and Technology, 2016, 5, Q3012-Q3015. 1.8 Demonstration of Direction Dependent Conduction through MoS₂Films Prepared by 739 Tunable Mass Transport Fabrication. ECS Journal of Solid State Science and Technology, 2016, 5, 5 1.8 Q3046-Q3049. Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted 740 reshaping technique. Journal of the Korean Physical Society, 2016, 69, 335-343. 2D materials for renewable energy storage devices: Outlook and challenges. Chemical 741 4.1 96 Communications, 2016, 52, 13528-13542. Photo-responsive transistors of CVD grown single-layer MoS2 and its nanoscale optical 742 2.4 characteristics. Current Applied Physics, 2016, 16, 1320-1325. In situ growth of MoS₂ nanosheets on reduced graphene oxide (RGO) surfaces: 743 interfacial enhancement of absorbing performance against electromagnetic pollution. Physical 2.8 81 Chemistry Chemical Physics, 2016, 18, 24931-24936. Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family. Advanced Science, 2016, 3, 1600177. 744 11.2 Mechanical properties of two-dimensional materials and heterostructures. Journal of Materials 745 2.6 84 Research, 2016, 31, 832-844. Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures 746 44 on stretchable polymer surfaces. Journal of Materials Research, 2016, 31, 967-974. Chemical Vapor Deposition of Monolayer Mo1â⁻xWxS2 Crystals with Tunable Band Gaps. Scientific 747 3.3 101 Reports, 2016, 6, 21536. Synthesis, Properties, and Stacking of Two-Dimensional Transition Metal Dichalcogenides. 748 Semiconductors and Semimetals, 2016, 95, 189-219.

#	Article	IF	CITATIONS
749	High mobility SnO <inf>2</inf> TFT for display and future IC. , 2016, , .		0
750	Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS ₂ Circuits with E-Mode FETs for Large-Area Electronics. Nano Letters, 2016, 16, 6349-6356.	9.1	142
751	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
753	Modulation of the band structures and optical properties of holey C ₂ N nanosheets by alloying with group IV and V elements. Journal of Materials Chemistry C, 2016, 4, 9294-9302.	5.5	24
754	Effects of Synthesis Parameters on CVD Molybdenum Disulfide Growth. MRS Advances, 2016, 1, 2291-2296.	0.9	9
755	Phosphorene and Phosphoreneâ€Based Materials – Prospects for Future Applications. Advanced Materials, 2016, 28, 8586-8617.	21.0	378
756	Low-coverage surface diffusion in complex periodic energy landscapes: Analytical solution for systems with symmetric hops and application to intercalation in topological insulators. Physical Review B, 2016, 93, .	3.2	11
757	Tuning the electronic structures and magnetism of two-dimensional porous C ₂ N via transition metal embedding. Physical Chemistry Chemical Physics, 2016, 18, 22678-22686.	2.8	54
758	Colloidal preparation and electrocatalytic hydrogen production of MoS2and WS2nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016, 8, 15262-15272.	5.6	64
759	Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit. Science, 2016, 353, 364-367.	12.6	125
760	Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe ₂ Flakes for Anisotropic Raman Property and Optoelectronic Application. Advanced Materials, 2016, 28, 8296-8301.	21.0	206
761	Photoinduced Schottky Barrier Lowering in 2D Monolayer WS ₂ Photodetectors. Advanced Optical Materials, 2016, 4, 1573-1581.	7.3	62
762	Patterned Growth of Pâ€Type MoS ₂ Atomic Layers Using Sol–Gel as Precursor. Advanced Functional Materials, 2016, 26, 6371-6379.	14.9	34
763	Van der Waals heterostructures and devices. Nature Reviews Materials, 2016, 1, .	48.7	1,897
764	Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1–4) cluster toppings and fillings: A first-principles investigation. Scientific Reports, 2016, 6, 19504.	3.3	20
765	Effect of Uniaxial Strain on Low Frequency Raman Modes in Few Layers Molybdenum Disulfide. ECS Journal of Solid State Science and Technology, 2016, 5, Q3033-Q3037.	1.8	2
766	Facile Preparation of Single MoS ₂ Atomic Crystals with Highly Tunable Photoluminescence by Morphology and Atomic Structure. Crystal Growth and Design, 2016, 16, 7094-7101.	3.0	8
767	A New 2H-2H′/1T Cophase in Polycrystalline MoS ₂ and MoSe ₂ Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 31442-31448.	8.0	33

#	Article	IF	CITATIONS
768	Control of Radiative Exciton Recombination by Charge Transfer Induced Surface Dipoles in MoS2 and WS2 Monolayers. Scientific Reports, 2016, 6, 24105.	3.3	32
769	Preparation and adsorption capacity of porous MoS ₂ nanosheets. RSC Advances, 2016, 6, 105222-105230.	3.6	66
770	Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001.	2.6	259
771	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	12.8	379
772	Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor. Scientific Reports, 2016, 6, 26660.	3.3	18
773	Optoelectronic Properties of Few-Layer MoS ₂ FET Gated by Ferroelectric Relaxor Polymer. ACS Applied Materials & Interfaces, 2016, 8, 32083-32088.	8.0	76
774	Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. ACS Nano, 2016, 10, 10516-10523.	14.6	52
775	Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS ₂ –Polymer Heterojunctions. ACS Nano, 2016, 10, 10573-10579.	14.6	99
776	Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS ₂ crystals. Journal of Materials Chemistry C, 2016, 4, 11081-11087.	5.5	42
777	Photoluminescence of monolayer transition metal dichalcogenides integrated with VO ₂ . Journal of Physics Condensed Matter, 2016, 28, 504001.	1.8	10
778	Atomic Structure and Spectroscopy of Single Metal (Cr, V) Substitutional Dopants in Monolayer MoS ₂ . ACS Nano, 2016, 10, 10227-10236.	14.6	96
779	THz timeâ€domain spectroscopy and IR spectroscopy on MoS ₂ . Physica Status Solidi (B): Basic Research, 2016, 253, 2499-2504.	1.5	12
780	Fabrication of scalable and ultra low power photodetectors with high light/dark current ratios using polycrystalline monolayer MoS2 sheets. Nano Energy, 2016, 30, 494-502.	16.0	19
781	Electronic and magnetic properties of Co doped MoS2 monolayer. Scientific Reports, 2016, 6, 24153.	3.3	94
782	Bandgap modulation of MoS ₂ monolayer by thermal annealing and quick cooling. Nanoscale, 2016, 8, 18995-19003.	5.6	33
783	Controlled Synthesis of Atomically Thin 1T-TaS ₂ for Tunable Charge Density Wave Phase Transitions. Chemistry of Materials, 2016, 28, 7613-7618.	6.7	75
784	Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D ⁺ IC. , 2016, , .		11
785	Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nature Communications, 2016, 7, 12206.	12.8	179

#	Article	IF	CITATIONS
786	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476.	3.3	111
787	Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports, 2016, 6, 30791.	3.3	104
788	Au@MoS ₂ Core–Shell Heterostructures with Strong Light–Matter Interactions. Nano Letters, 2016, 16, 7696-7702.	9.1	139
789	Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals. Scientific Reports, 2016, 6, 19023.	3.3	44
790	A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Scientific Reports, 2016, 6, 25610.	3.3	21
791	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. Scientific Reports, 2016, 6, 30481.	3.3	82
792	Water stability of self-assembled peptide nanostructures for sequential formation of two-dimensional interstitial patterns on layered materials. RSC Advances, 2016, 6, 96889-96897.	3.6	12
793	Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. RSC Advances, 2016, 6, 110604-110609.	3.6	43
794	Investigation on the Stability of WSe ₂ -PVA Saturable Absorber in an all PM Q-Switched Fiber Laser. IEEE Photonics Journal, 2016, 8, 1-12.	2.0	6
795	Local optical absorption spectra of h-BN–MoS2van der Waals heterostructure revealed by scanning near-field optical microscopy. Japanese Journal of Applied Physics, 2016, 55, 06CB01.	1.5	3
796	Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate. Small, 2016, 12, 198-203.	10.0	22
797	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	10.0	101
798	Waferâ€6cale, Homogeneous MoS ₂ Layers on Plastic Substrates for Flexible Visibleâ€Light Photodetectors. Advanced Materials, 2016, 28, 5025-5030.	21.0	189
799	Generalized Lowâ€Temperature Fabrication of Scalable Multiâ€Type Twoâ€Dimensional Nanosheets with a Green Soft Template. Chemistry - A European Journal, 2016, 22, 5575-5582.	3.3	19
800	Ohmic Contacts to 2D Semiconductors through van der Waals Bonding. Advanced Electronic Materials, 2016, 2, 1500405.	5.1	91
801	Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2016, 8, 15574-15581.	8.0	77
802	Quenching induced fracture behaviors of CVD-grown polycrystalline molybdenum disulfide films. RSC Advances, 2016, 6, 59816-59822.	3.6	10
803	Chemical Vapor Deposition of NbS ₂ from a Chloride Source with H ₂ Flow: Orientation Control of Ultrathin Crystals Directly Grown on SiO ₂ /Si Substrate and Charge Density Wave Transition. Crystal Growth and Design, 2016, 16, 4467-4472.	3.0	27

#	Article	IF	Citations
804	Production of Ni(OH) ₂ nanosheets by liquid phase exfoliation: from optical properties to electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11046-11059.	10.3	71
805	Toward Large-Area Solar Energy Conversion with Semiconducting 2D Transition Metal Dichalcogenides. ACS Energy Letters, 2016, 1, 315-322.	17.4	74
806	High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. Journal of Alloys and Compounds, 2016, 682, 29-34.	5.5	36
807	Morphological control in the adaptive ionic layer epitaxy of ZnO nanosheets. Extreme Mechanics Letters, 2016, 7, 64-70.	4.1	14
808	Field Effect Modulation of Outer-Sphere Electrochemistry at Back-Gated, Ultrathin ZnO Electrodes. Journal of the American Chemical Society, 2016, 138, 7220-7223.	13.7	26
809	Influence of residual promoter to photoluminescence of CVD grown MoS 2. Current Applied Physics, 2016, 16, 1223-1228.	2.4	4
810	Monolayer transition metal disulfide: Synthesis, characterization and applications. Progress in Natural Science: Materials International, 2016, 26, 221-231.	4.4	16
811	Effect of MoO ₃ constituents on the growth of MoS ₂ nanosheets by chemical vapor deposition. Materials Research Express, 2016, 3, 065014.	1.6	22
812	Large-area few-layer MoS ₂ deposited by sputtering. Materials Research Express, 2016, 3, 065007.	1.6	34
813	Hybrid Flexible Resistive Random Access Memoryâ€Gated Transistor for Novel Nonvolatile Data Storage. Small, 2016, 12, 390-396.	10.0	42
814	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	21.0	1,214
815	Monolithic 3D CMOS Using Layered Semiconductors. Advanced Materials, 2016, 28, 2547-2554.	21.0	107
816	Fabrication of MoS ₂ Nanowire Arrays and Layered Structures via the Selfâ€Assembly of Block Copolymers. Advanced Materials Interfaces, 2016, 3, 1500596.	3.7	23
817	2D transition-metal diselenides: phase segregation, electronic structure, and magnetism. Journal of Physics Condensed Matter, 2016, 28, 064002.	1.8	17
818	Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries. ACS Nano, 2016, 10, 2167-2175.	14.6	184
819	Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials. Microelectronic Engineering, 2016, 154, 62-68.	2.4	11
820	Enhanced Photoresponse of SnSe-Nanocrystals-Decorated WS ₂ Monolayer Phototransistor. ACS Applied Materials & Interfaces, 2016, 8, 4781-4788.	8.0	91
821	Atomic MoS ₂ monolayers synthesized from a metal–organic complex by chemical vapor deposition. Nanoscale, 2016, 8, 4486-4490.	5.6	23

#	Article	IF	CITATIONS
822	Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS ₂ . Journal of Physics Condensed Matter, 2016, 28, 015301.	1.8	13
823	Substrate control for large area continuous films of monolayer MoS ₂ by atmospheric pressure chemical vapor deposition. Nanotechnology, 2016, 27, 085604.	2.6	69
824	A general two-step chemical vapor deposition procedure to synthesize highly crystalline transition metal dichalcogenides: A case study of MoS2. Materials Research Bulletin, 2016, 76, 473-478.	5.2	8
825	Novel effects of strains in graphene and other two dimensional materials. Physics Reports, 2016, 617, 1-54.	25.6	315
826	Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale, 2016, 8, 3870-3887.	5.6	117
827	From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Applied Materials Today, 2016, 3, 11-22.	4.3	70
828	Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts. ACS Nano, 2016, 10, 2819-2826.	14.6	64
829	Direct Growth of MoS ₂ /h-BN Heterostructures <i>via</i> a Sulfide-Resistant Alloy. ACS Nano, 2016, 10, 2063-2070.	14.6	139
830	Pt ₇₄ Ag ₂₆ nanoparticle-decorated ultrathin MoS ₂ nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H ₂ O ₂ and glucose. Nanoscale, 2016, 8, 3685-3693.	5.6	165
831	Nanometre-thick single-crystalline nanosheets grown at the water–air interface. Nature Communications, 2016, 7, 10444.	12.8	133
832	Effect of laser illumination on the morphology and optical property of few-layer MoS ₂ nanosheet in NMP and PMMA. Journal of Materials Chemistry C, 2016, 4, 678-683.	5.5	17
833	First-principles study of the origin of magnetism induced by intrinsic defects in monolayer MoS2. Applied Surface Science, 2016, 361, 199-205.	6.1	61
834	A progressive route for tailoring electrical transport in MoS2. Nano Research, 2016, 9, 380-391.	10.4	14
835	Heterostructures based on two-dimensional layered materials and their potential applications. Materials Today, 2016, 19, 322-335.	14.2	469
836	Raman Shifts in Electron-Irradiated Monolayer MoS ₂ . ACS Nano, 2016, 10, 4134-4142.	14.6	311
837	Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy and Environmental Science, 2016, 9, 2240-2248.	30.8	174
838	First-principles studies on substitutional doping by group IV and VI atoms in the two-dimensional arsenene. Applied Surface Science, 2016, 378, 350-356.	6.1	36
839	Monolayer MoS 2 /GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy, 2016, 23, 89-96.	16.0	138

#	Article	IF	CITATIONS
840	Temperature dependence of the critical points of monolayer MoS ₂ by ellipsometry. Applied Spectroscopy Reviews, 2016, 51, 621-635.	6.7	27
841	Selectable Synthesis of 2-D MoS ₂ and Its Electronic Devices: From Isolated Triangular Islands to Large-Area Continuous Thin Film. IEEE Nanotechnology Magazine, 2016, 15, 310-317.	2.0	13
842	Phase-driven magneto-electrical characteristics of single-layer MoS ₂ . Nanoscale, 2016, 8, 5627-5633.	5.6	26
843	Hydrothermal growth of few layer 2H-MoS ₂ for heterojunction photodetector and visible light induced photocatalytic applications. Journal of Materials Chemistry A, 2016, 4, 4534-4543.	10.3	125
844	Phase Transition of MoS ₂ Bilayer Structures. Journal of Physical Chemistry C, 2016, 120, 3776-3780.	3.1	33
845	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	30.8	532
846	Electronic and magnetic properties of n-type and p-doped MoS ₂ monolayers. RSC Advances, 2016, 6, 16772-16778.	3.6	54
847	Enhanced photovoltaic properties of dye-sensitized solar cell based on ultrathin 2D TiO 2 nanostructures. Applied Surface Science, 2016, 368, 403-408.	6.1	25
848	Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale, 2016, 8, 5407-5411.	5.6	52
849	Phosphorene: A new competitor for graphene. International Journal of Hydrogen Energy, 2016, 41, 4085-4095.	7.1	101
850	CO ₂ -Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS ₂ Nanosheets. ACS Nano, 2016, 10, 2903-2909.	14.6	243
851	Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45, 2494-2515.	38.1	61
852	Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Letters, 2016, 16, 2463-2470.	9.1	12
853	Strongly enhanced photoluminescence in nanostructured monolayer MoS ₂ by chemical vapor deposition. Nanotechnology, 2016, 27, 135706.	2.6	32
854	Tunable electrorheological characteristics and mechanism of a series of graphene-like molybdenum disulfide coated core–shell structured polystyrene microspheres. RSC Advances, 2016, 6, 26096-26103.	3.6	13
855	Laser-induced electrochemical thinning of MoS ₂ . Journal of Materials Chemistry C, 2016, 4, 3268-3273.	5.5	20
856	Triangular lattice exciton model. Physical Chemistry Chemical Physics, 2016, 18, 8579-8586.	2.8	9
857	Structural and Electrical Properties of MoTe ₂ and MoSe ₂ Grown by Molecular Beam Epitaxy. ACS Applied Materials & Interfaces, 2016, 8, 7396-7402.	8.0	189

#	Article	IF	CITATIONS
858	Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe ₂ by Hydrohalic Acid Treatment. ACS Nano, 2016, 10, 1454-1461.	14.6	179
859	Facile, substrate-scale growth of mono- and few-layer homogeneous MoS ₂ films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology, 2016, 27, 045404.	2.6	38
860	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	6.7	98
861	Fast and large-area growth of uniform MoS ₂ monolayers on molybdenum foils. Nanoscale, 2016, 8, 2234-2241.	5.6	104
862	Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Applied Surface Science, 2016, 365, 160-165.	6.1	119
863	Synthesis of large-scale 2-D MoS2 atomic layers by hydrogen-free and promoter-free chemical vapor deposition. Materials Letters, 2016, 168, 1-4.	2.6	13
864	Uniform and Repeatable Cold-Wall Chemical Vapor Deposition Synthesis of Single-Layer MoS2. Crystal Growth and Design, 2016, 16, 988-995.	3.0	10
865	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. Chemistry of Materials, 2016, 28, 1147-1154.	6.7	22
866	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. Journal of Materials Chemistry A, 2016, 4, 1440-1445.	10.3	55
867	Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Applied Surface Science, 2016, 364, 181-189.	6.1	161
868	Atom-Thin SnS2–xSex with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals. ACS Nano, 2016, 10, 755-762.	14.6	39
869	Synthesis and characterization of large-area and continuous MoS ₂ atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8, 4340-4347.	5.6	74
870	2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.	2.6	171
871	CTAB-assisted synthesis of novel ultrathin MoSe ₂ nanosheets perpendicular to graphene for the adsorption and photodegradation of organic dyes under visible light. Nanoscale, 2016, 8, 440-450.	5.6	163
872	Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chemical Society Reviews, 2016, 45, 118-151.	38.1	423
873	Electronic properties of monolayer MoS2 in a modulated magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 444-451.	2.1	6
874	Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nano-Micro Letters, 2016, 8, 70-79.	27.0	37
875	Graphene and Two-Dimensional Transition Metal Dichalcogenide Materials for Energy-Related Applications. KAIST Research Series, 2016, , 253-291.	1.5	0

		EPORT	
#	Article	IF	CITATIONS
876	Preparing molybdenum disulphide by vapour deposition. Surface Engineering, 2016, 32, 245-251.	2.2	7
877	DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors and Bioelectronics, 2017, 89, 280-292.	10.1	35
878	2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosensors and Bioelectronics, 2017, 89, 136-151.	10.1	191
879	Optical and Electronic Properties of Two-Dimensional Layered Materials. Nanophotonics, 2017, 6, 479-493.	6.0	145
880	Luminescence Enhancement and Enlarged Dirac Point Shift of MoS2/Graphene Hetero-Structure Photodetectors With Postgrowth Annealing Treatment. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 101-105.	2.9	5
881	Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nature Communications, 2017, 8, 14116.	12.8	69
882	Flexible and Wavelength-Selective MoS2 Phototransistors with Monolithically Integrated Transmission Color Filters. Scientific Reports, 2017, 7, 40945.	3.3	30
883	Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries. Nano Letters, 2017, 17, 1302-1311.	9.1	118
884	Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric. Scientific Reports, 2017, 7, 40669.	3.3	83
885	Thermal Properties of Two Dimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1604134.	14.9	130
886	Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Applied Physics Letters, 2017, 110, .	3.3	38
887	A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2017, 401, 190-197.	6.1	25
888	Coral-Shaped MoS ₂ Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 3653-3660.	8.0	98
889	Effect of the powder particle structure and substrate hardness during vacuum cold spraying of Al 2 O 3. Ceramics International, 2017, 43, 4390-4398.	4.8	34
890	Controlled Electrochemical Deposition of Largeâ€Area MoS ₂ on Graphene for Highâ€Responsivity Photodetectors. Advanced Functional Materials, 2017, 27, 1603998.	14.9	45
891	Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017, 20, 116-130.	14.2	1,852
892	Atomically thin semiconducting layers and nanomembranes: a review. Semiconductor Science and Technology, 2017, 32, 033001.	2.0	9
893	Perylene-based non-covalent functionalization of 2D materials. FlatChem, 2017, 1, 89-103.	5.6	53

#	Article	IF	CITATIONS
894	Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Applied Physics Letters, 2017, 110, .	3.3	51
895	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Applied Physics Letters, 2017, 110, .	3.3	72
896	Temperatureâ€Related Morphological Evolution of MoS ₂ Domains on Graphene and Electron Transfer within Heterostructures. Small, 2017, 13, 1603549.	10.0	20
897	Enhanced photoresponsivity of multilayer MoS2 transistors using high work function MoOx overlayer. Applied Physics Letters, 2017, 110, .	3.3	14
898	Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nature Communications, 2017, 8, 13906.	12.8	132
899	Viable route towards large-area 2D MoS ₂ using magnetron sputtering. 2D Materials, 2017, 4, 021002.	4.4	40
900	Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2. Scientific Reports, 2017, 7, 40559.	3.3	32
901	Layer Dependence and Light Tuning Surface Potential of 2D MoS ₂ on Various Substrates. Small, 2017, 13, 1603103.	10.0	58
902	Preparation and characterization of molybdenum disulfide films obtained by one-step atomic layer deposition method. Thin Solid Films, 2017, 624, 101-105.	1.8	28
903	A Review of Thermal Transport in Low-Dimensional Materials Under External Perturbation: Effect of Strain, Substrate, and Clustering. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 201-236.	2.6	38
904	Controlled synthesis of 2D transition metal dichalcogenides: from vertical to planar MoS ₂ . 2D Materials, 2017, 4, 025029.	4.4	63
905	Controlled Molybdenum Disulfide Assembly inside Carbon Nanofiber by Boudouard Reaction Inspired Selective Carbon Oxidation. Advanced Materials, 2017, 29, 1605327.	21.0	14
906	First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS ₂ . Journal of Physics Condensed Matter, 2017, 29, 095702.	1.8	14
907	Inâ€Plane 2Hâ€1T′ MoTe ₂ Homojunctions Synthesized by Fluxâ€Controlled Phase Engineering. Advanced Materials, 2017, 29, 1605461.	21.0	97
908	Twoâ€Dimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie - International Edition, 2017, 56, 3611-3615.	13.8	92
909	Tailored performance of layered transition metal dichalcogenides via integration with low dimensional nanostructures. RSC Advances, 2017, 7, 11987-11997.	3.6	10
910	Ion beam-induced hydroxylation controls molybdenum disulfide growth. 2D Materials, 2017, 4, 021017.	4.4	8
911	Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study. Chinese Physics B, 2017, 26, 027502.	1.4	4

#	Article	IF	CITATIONS
912	Monolayer W <i>_x</i> Mo _{1â^'} <i>_x</i> S ₂ Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606469.	14.9	48
913	Structural, electronic, and magnetic properties of vanadium atom-adsorbed MoSe ₂ monolayer. Chinese Physics B, 2017, 26, 027103.	1.4	6
914	Solution synthesis of few-layer 2H MX ₂ (M = Mo, W; X = S, Se). Journal of Materials Chemistry C, 2017, 5, 2859-2864.	5.5	32
915	Concurrent Synthesis of Highâ€Performance Monolayer Transition Metal Disulfides. Advanced Functional Materials, 2017, 27, 1605896.	14.9	35
916	Substrate-dependent morphology and photoluminescence of MoS2 nanobelt arrays. Materials Letters, 2017, 191, 26-29.	2.6	7
917	Large scale growth of vertically standing MoS ₂ flakes on 2D nanosheet using organic promoter. 2D Materials, 2017, 4, 025042.	4.4	24
918	Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Physical Review Letters, 2017, 118, 106101.	7.8	262
919	Synthesis of MoS 2 ribbons and their branched structures by chemical vapor deposition in sulfur-enriched environment. Applied Surface Science, 2017, 409, 396-402.	6.1	26
920	Large, valley-exclusive Bloch-Siegert shift in monolayer WS ₂ . Science, 2017, 355, 1066-1069.	12.6	102
921	Atomic Defects in Twoâ€Dimensional Materials: From Singleâ€Atom Spectroscopy to Functionalities in Optoâ€/Electronics, Nanomagnetism, and Catalysis. Advanced Materials, 2017, 29, 1606434.	21.0	211
922	Synthetic Two-Dimensional Polymers. Annual Review of Materials Research, 2017, 47, 361-389.	9.3	58
923	An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets. Journal of Materials Science, 2017, 52, 7256-7268.	3.7	53
924	Interfacial Defect Engineering on Electronic States of Two-Dimensional AlN/MoS ₂ Heterostructure. Journal of Physical Chemistry C, 2017, 121, 6605-6613.	3.1	31
925	High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors. Scientific Reports, 2017, 7, 44243.	3.3	121
926	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	3.2	369
927	Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS ₂ Monolayers. Chemistry of Materials, 2017, 29, 2024-2032.	6.7	47
928	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	14.6	90
929	DFT investigation of capacious, ultrafast and highly conductive hexagonal Cr ₂ C and V ₂ C monolayers as anode materials for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 7807-7819.	2.8	59

#	Article	IF	CITATIONS
930	Epitaxial Growth of Largeâ€Grain NiSe Films by Solidâ€6tate Reaction for Highâ€Responsivity Photodetector Arrays. Advanced Materials, 2017, 29, 1606180.	21.0	23
931	Rhenium dichalcogenides (ReX ₂ , X = S or Se): an emerging class of TMDs family. Materials Chemistry Frontiers, 2017, 1, 1917-1932.	5.9	51
932	Vertical Al2Se3/MoSe2 heterojunction on sapphire synthesized using ion beam. RSC Advances, 2017, 7, 10154-10157.	3.6	9
933	Centimeter-Scale Nearly Single-Crystal Monolayer MoS ₂ via Self-Limiting Vapor Deposition Epitaxy. Journal of Physical Chemistry C, 2017, 121, 4703-4707.	3.1	12
934	The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Scientific Reports, 2017, 7, 42146.	3.3	46
935	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	10.3	55
936	Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature. Applied Physics Letters, 2017, 110, .	3.3	79
937	Piezoelectricity of 2D nanomaterials: characterization, properties, and applications. Semiconductor Science and Technology, 2017, 32, 043006.	2.0	49
938	In ₄ SnS ₈ ultrathin nanosheets: a ternary sulfide with fast adsorption–visible-light photocatalysis dual function. RSC Advances, 2017, 7, 4555-4562.	3.6	9
939	Lowâ€Temperature Atomic Layer Deposition of MoS ₂ Films. Angewandte Chemie, 2017, 129, 5073-5077.	2.0	15
940	Amorphous Molybdenum Sulfide/Carbon Nanotubes Hybrid Nanospheres Prepared by Ultrasonic Spray Pyrolysis for Electrocatalytic Hydrogen Evolution. Small, 2017, 13, 1700111.	10.0	70
941	Hierarchical nanosheet-based MoS 2 /graphene nanobelts with high electrochemical energy storage performance. Journal of Power Sources, 2017, 354, 1-9.	7.8	50
942	Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS ₂ Films. ACS Applied Materials & Interfaces, 2017, 9, 15044-15051.	8.0	41
943	Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nature Communications, 2017, 8, 14947.	12.8	63
944	Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials, 2017, 4, 022003.	4.4	146
945	Electrical transport properties of two-dimensional MoS 2 nanosheets synthesized by novel method. Materials Science in Semiconductor Processing, 2017, 66, 81-86.	4.0	18
946	Largeâ€Area 2D Layered MoTe ₂ by Physical Vapor Deposition and Solidâ€Phase Crystallization in a Telluriumâ€Free Atmosphere. Advanced Materials Interfaces, 2017, 4, 1700157.	3.7	61
947	Single-layer MoS ₂ formation by sulfidation of molybdenum oxides in different oxidation states on Au(111). Physical Chemistry Chemical Physics, 2017, 19, 14020-14029.	2.8	36

#	Article	IF	CITATIONS
948	Location-specific growth and transfer of arrayed MoS ₂ monolayers with controllable size. 2D Materials, 2017, 4, 025093.	4.4	40
949	Substrate induced tuning of compressive strain and phonon modes in large area MoS 2 and WS 2 van der Waals epitaxial thin films. Journal of Crystal Growth, 2017, 470, 51-57.	1.5	18
950	Orientation-specific transgranular fracture behavior of CVD-grown monolayer MoS2 single crystal. Applied Physics Letters, 2017, 110, .	3.3	21
951	A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers. Advanced Materials, 2017, 29, 1606918.	21.0	37
952	Growthâ€Induced Strain in Chemical Vapor Deposited Monolayer MoS ₂ : Experimental and Theoretical Investigation. Advanced Materials Interfaces, 2017, 4, 1700031.	3.7	50
953	Template Approach to Crystalline GaN Nanosheets. Nano Letters, 2017, 17, 3195-3201.	9.1	83
954	Mechanism for bipolar resistive switching memory behaviors of a self-assembled three-dimensional MoS2 microsphere composed active layer. Journal of Applied Physics, 2017, 121, .	2.5	34
955	Quantitative relationship between sputter-deposited-MoS ₂ properties and underlying-SiO ₂ surface roughness. Applied Physics Express, 2017, 10, 041202.	2.4	26
956	Ferrimagnetic half-metallic properties of Cr/Fe δdoped MoS ₂ monolayer. RSC Advances, 2017, 7, 20116-20122.	3.6	12
957	Superionic and electronic conductivity in monolayer W ₂ C: ab initio predictions. Journal of Materials Chemistry A, 2017, 5, 11094-11099.	10.3	51
958	Superlubricity between MoS ₂ Monolayers. Advanced Materials, 2017, 29, 1701474.	21.0	220
959	Growth of monolayer MoS 2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition. Chemical Physics Letters, 2017, 679, 181-184.	2.6	12
960	Enhanced Photoluminescence of Monolayer WS ₂ on Ag Films and Nanowire–WS ₂ –Film Composites. ACS Photonics, 2017, 4, 1421-1430.	6.6	46
961	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	31.5	1,459
962	Dielectrophoretic assembly of liquid-phase-exfoliated TiS ₃ nanoribbons for photodetecting applications. Chemical Communications, 2017, 53, 6164-6167.	4.1	22
963	Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 030803.	1.2	94
964	MoS 2 gas sensor functionalized by Pd for the detection of hydrogen. Sensors and Actuators B: Chemical, 2017, 250, 686-691.	7.8	161
965	Chalcogenide Nanosheets: Optical Signatures of Many-Body Effects and Electronic Band Structure. Nanostructure Science and Technology, 2017, , 133-162.	0.1	2

#	Article	IF	CITATIONS
966	Flexible Device Applications of 2D Semiconductors. Small, 2017, 13, 1603994.	10.0	167
967	Facile colorimetric assay for trinitrotoluene based on the intrinsic peroxidase-like activity of MoS ₂ nanosheets. Analytical Methods, 2017, 9, 2939-2946.	2.7	14
968	Pulsed cathodoluminescence and Raman spectra of MoS 2 nanocrystals at different excitation electron energy densities and laser wavelengths. Journal of Luminescence, 2017, 188, 529-532.	3.1	28
969	3D-hierarchical MoSe ₂ nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Materials, 2017, 4, 025092.	4.4	78
970	Material Constraints and Scaling of 2-D Vertical Heterostructure Interlayer Tunnel Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 2714-2720.	3.0	7
971	Largeâ€Area 2D/3D MoS ₂ –MoO ₂ Heterostructures with Thermally Stable Exciton and Intriguing Electrical Transport Behaviors. Advanced Electronic Materials, 2017, 3, 1600335.	5.1	25
972	Tunable Wetting Property in Growth Mode-Controlled WS2 Thin Films. Nanoscale Research Letters, 2017, 12, 262.	5.7	10
973	Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Science Advances, 2017, 3, e1602813.	10.3	213
974	MoS ₂ /Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2017, 57, 440-466.	10.9	132
975	Ambient pressure photoelectron spectroscopy: Practical considerations and experimental frontiers. Journal of Physics Condensed Matter, 2017, 29, 053002.	1.8	63
976	Hierarchical CoNiâ€Sulfide Nanosheet Arrays Derived from Layered Double Hydroxides toward Efficient Hydrazine Electrooxidation. Advanced Materials, 2017, 29, 1604080.	21.0	196
977	Two-Dimensional Materials. Nanoscience and Technology, 2017, , 115-159.	1.5	1
978	Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Research, 2017, 10, 643-651.	10.4	44
979	Observation of Exciton Redshift–Blueshift Crossover in Monolayer WS ₂ . Nano Letters, 2017, 17, 4210-4216.	9.1	107
980	Behavior of carrier transports and their sensitivity to solar irradiation for devices that use MoS2 that is directly deposited on Si using the chemical vapor method. Journal of Materials Science: Materials in Electronics, 2017, 28, 14430-14435.	2.2	6
981	Testbeds for Transition Metal Dichalcogenide Photonics: Efficacy of Light Emission Enhancement in Monomer vs Dimer Nanoscale Antennae. ACS Photonics, 2017, 4, 1713-1721.	6.6	31
982	A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Science Advances, 2017, 3, e1602246.	10.3	65
983	Prediction of T―and Hâ€Phase Twoâ€Dimensional Transitionâ€Metal Carbides/Nitrides and Their Semiconducting–Metallic Phase Transition. ChemPhysChem, 2017, 18, 1897-1902.	2.1	30

#	Article	IF	CITATIONS
984	Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides. Rare Metals, 2017, 36, 698-703.	7.1	12
985	Temperature dependent electrical characterization of RF sputtered MoS2/n-Si heterojunction. Optik, 2017, 142, 644-650.	2.9	16
986	Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2017, 139, 9392-9400.	13.7	167
987	Heterostructures containing dichalcogenides-new materials with predictable nanoarchitectures and novel emergent properties. Semiconductor Science and Technology, 2017, 32, 093004.	2.0	26
988	Van der Waals Epitaxial Growth of Atomic Layered HfS ₂ Crystals for Ultrasensitive Nearâ€Infrared Phototransistors. Advanced Materials, 2017, 29, 1700439.	21.0	96
989	Ambient effects on electrical characteristics of CVD-grown monolayer MoS2 field-effect transistors. Scientific Reports, 2017, 7, 4075.	3.3	57
990	Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4, 800-816.	12.2	155
991	Size, Shape, and Phase Control in Ultrathin CdSe Nanosheets. Nano Letters, 2017, 17, 4165-4171.	9.1	41
992	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	11.3	476
993	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	32.8	176
994	Intra-domain periodic defects in monolayer MoS2. Applied Physics Letters, 2017, 110, .	3.3	16
995	Ultrafast growth of large-area monolayer MoS ₂ film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnology, 2017, 28, 275203.	2.6	47
996	Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances. Chemical Engineering Journal, 2017, 326, 292-297.	12.7	63
997	Graphene and Related Materials for Resistive Random Access Memories. Advanced Electronic Materials, 2017, 3, 1600195.	5.1	175
998	Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 2017, 5, 14950-14968.	10.3	38
999	Enriched Fluorescence Emission from WS ₂ Monoflake Empowered by Au Nanoexplorers. Advanced Optical Materials, 2017, 5, 1700156.	7.3	7
1000	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	4.3	212
1001	Back gated FETs fabricated by large-area, transfer-free growth of a few layer MoS2 with high electron mobility. Applied Physics Letters, 2017, 110, .	3.3	20

#	Article	IF	CITATIONS
1002	A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissueâ€Engineered 3D Scaffold. Advanced Biology, 2017, 1, e1600042.	3.0	45
1003	The role of contact resistance in graphene field-effect devices. Progress in Surface Science, 2017, 92, 143-175.	8.3	192
1004	Electrodeposition of Amorphous Molybdenum Chalcogenides from Ionic Liquids and Their Activity for the Hydrogen Evolution Reaction. Langmuir, 2017, 33, 9354-9360.	3.5	41
1005	2D transition metal dichalcogenides. Nature Reviews Materials, 2017, 2, .	48.7	3,689
1006	Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Research, 2017, 10, 2386-2394.	10.4	124
1007	Graphene-enhanced three-dimensional structures of MoS 2 nanosheets as a counter electrode for Pt-free efficient dye-sensitized solar cells. Journal of Power Sources, 2017, 351, 58-66.	7.8	58
1008	Lowâ€Temperature Atomic Layer Deposition of MoS ₂ Films. Angewandte Chemie - International Edition, 2017, 56, 4991-4995.	13.8	127
1009	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	10.3	69
1010	Improved Lithiumâ€lon and Sodiumâ€lon Storage Properties from Fewâ€Layered WS ₂ Nanosheets Embedded in a Mesoporous CMKâ€3 Matrix. Chemistry - A European Journal, 2017, 23, 7074-7080.	3.3	75
1011	Selfâ€Exfoliated Metalâ€Organic Nanosheets through Hydrolytic Unfolding of Metalâ€Organic Polyhedra. Chemistry - A European Journal, 2017, 23, 7361-7366.	3.3	45
1012	Stability of defects in monolayer MoS 2 and their interaction with O 2 molecule: A first-principles study. Applied Surface Science, 2017, 412, 385-393.	6.1	72
1013	Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy, 2017, 35, 101-114.	16.0	99
1014	Light–matter interaction in transition metal dichalcogenides and their heterostructures. Journal Physics D: Applied Physics, 2017, 50, 173001.	2.8	91
1015	Twoâ€Dimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie, 2017, 129, 3665-3669.	2.0	9
1016	Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion. Current Opinion in Electrochemistry, 2017, 2, 97-103.	4.8	33
1017	Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8187-8208.	10.3	229
1018	Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nature Communications, 2017, 8, 14734.	12.8	184
1019	Microcavity Laser Based on a Single Molecule Thick High Gain Layer. ACS Nano, 2017, 11, 4514-4520.	14.6	11

# 1020	ARTICLE Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques. Scientific Reports, 2017, 7, 46004.	IF 3.3	Citations 5
1021	High-performance photodetectors based on CVD-grown high-quality SnS2 nanosheets. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	29
1022	Oxidation suppression during hydrothermal phase reversion allows synthesis of monolayer semiconducting MoS ₂ in stable aqueous suspension. Nanoscale, 2017, 9, 5398-5403.	5.6	36
1023	Layer-controlled precise fabrication of ultrathin MoS ₂ films by atomic layer deposition. Nanotechnology, 2017, 28, 195605.	2.6	39
1024	Dendritic growth of monolayer ternary WS _{2(1â^'x)} Se _{2x} flakes for enhanced hydrogen evolution reaction. Nanoscale, 2017, 9, 5641-5647.	5.6	31
1025	Atomic Layer Deposition of Crystalline MoS ₂ Thin Films: New Molybdenum Precursor for Lowâ€Temperature Film Growth. Advanced Materials Interfaces, 2017, 4, 1700123.	3.7	98
1026	Effect of post-exfoliation treatments on mechanically exfoliated MoS2. Materials Research Express, 2017, 4, 025022.	1.6	10
1027	Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chinese Physics B, 2017, 26, 038504.	1.4	56
1028	Recent Advances in Sensing Applications of Twoâ€Dimensional Transition Metal Dichalcogenide Nanosheets and Their Composites. Advanced Functional Materials, 2017, 27, 1605817.	14.9	206
1029	Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS ₂ Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Applied Materials & Interfaces, 2017, 9, 12073-12081.	8.0	120
1030	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
1031	Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI ₂ /MoS ₂ (WS ₂ , WSe ₂) van der Waals Heterostructures, and Patterned Arrays. ACS Nano, 2017, 11, 3413-3419.	14.6	59
1032	Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Scientific Reports, 2017, 7, 44568.	3.3	21
1033	The important role of water in growth of monolayer transition metal dichalcogenides. 2D Materials, 2017, 4, 021024.	4.4	43
1034	Preparation of Cu–Fe–Al–O nanosheets and their catalytic application in methanol steam reforming for hydrogen production. Materials Research Express, 2017, 4, 035005.	1.6	5
1035	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	10.4	51
1036	MoS2/h-BN heterostructures: controlling MoS2 crystal morphology by chemical vapor deposition. Journal of Materials Science, 2017, 52, 7028-7038.	3.7	12
1037	n- and p-type dopants in the InSe monolayer via substitutional doping. Journal of Materials Science, 2017, 52, 7207-7214.	3.7	48

#	Article	IF	CITATIONS
1038	2H-WS ₂ Quantum Dots Produced by Modulating the Dimension and Phase of 1T-Nanosheets for Antibody-Free Optical Sensing of Neurotransmitters. ACS Applied Materials & Interfaces, 2017, 9, 12316-12323.	8.0	65
1039	Manganese and chromium doping in atomically thin MoS ₂ . Journal of Semiconductors, 2017, 38, 033004.	3.7	29
1040	Role of Molecular Sieves in the CVD Synthesis of Largeâ€Area 2D MoTe ₂ . Advanced Functional Materials, 2017, 27, 1603491.	14.9	58
1041	The Origin of MoS ₂ Significantly Influences Its Performance for the Hydrogen Evolution Reaction due to Differences in Phase Purity. Chemistry - A European Journal, 2017, 23, 3169-3177.	3.3	20
1042	Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS 2 synthesis. Thin Solid Films, 2017, 641, 79-86.	1.8	53
1043	Edge-Enriched 2D MoS ₂ Thin Films Grown by Chemical Vapor Deposition for Enhanced Catalytic Performance. ACS Catalysis, 2017, 7, 877-886.	11.2	123
1044	Intrinsic electrical transport and performance projections of synthetic monolayer MoS ₂ devices. 2D Materials, 2017, 4, 011009.	4.4	117
1045	Rapid and highly efficient chemical exfoliation of layered MoS 2 and WS 2. Journal of Alloys and Compounds, 2017, 699, 222-229.	5.5	79
1046	Hollow Hierarchical Carbon Spheres Decorated with Ultrathin Molybdenum Disulfide Nanosheets as High apacity Electrode Materials for Asymmetric Supercapacitors. ChemElectroChem, 2017, 4, 620-627.	3.4	52
1047	Shape-Dependent Defect Structures of Monolayer MoS ₂ Crystals Grown by Chemical Vapor Deposition. ACS Applied Materials & amp; Interfaces, 2017, 9, 763-770.	8.0	45
1048	Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons, 2017, 2, 72-80.	8.0	85
1049	Analyzing the Carrier Mobility in Transitionâ€Metal Dichalcogenide MoS ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1604093.	14.9	265
1050	Atomically Thin-Layered Molybdenum Disulfide (MoS ₂) for Bulk-Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 3223-3245.	8.0	207
1051	Atomic layer deposition of Al ₂ O ₃ on MoS ₂ , WS ₂ , WSe ₂ , and h-BN: surface coverage and adsorption energy. RSC Advances, 2017, 7, 884-889.	3.6	48
1052	Two-dimensional lateral GaN/SiC heterostructures: First-principles studies of electronic and magnetic properties. Physical Review B, 2017, 95, .	3.2	22
1053	Chemical Vapor Deposition of Large-Size Monolayer MoSe ₂ Crystals on Molten Glass. Journal of the American Chemical Society, 2017, 139, 1073-1076.	13.7	258
1054	Synthesis of Highly Anisotropic Semiconducting GaTe Nanomaterials and Emerging Properties Enabled by Epitaxy. Advanced Materials, 2017, 29, 1605551.	21.0	57
1055	Na ₂ Ti ₃ O ₇ Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. ACS Applied Materials & Interfaces, 2017, 9, 1416-1425.	8.0	72

#	Article	IF	CITATIONS
1056	Ultraclean and Direct Transfer of a Wafer‣cale MoS ₂ Thin Film onto a Plastic Substrate. Advanced Materials, 2017, 29, 1603928.	21.0	42
1057	Controllable growth of monolayer MoS ₂ by chemical vapor deposition via close MoO ₂ precursor for electrical and optical applications. Nanotechnology, 2017, 28, 084001.	2.6	51
1058	Recent Advances in Synthesis and Biomedical Applications of Twoâ€Dimensional Transition Metal Dichalcogenide Nanosheets. Small, 2017, 13, 1602660.	10.0	221
1059	Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics, 2017, 4, 2962-2970.	6.6	241
1060	A Hybrid Gate Dielectrics of Ion Gel with Ultra-Thin Passivation Layer for High-Performance Transistors Based on Two-Dimensional Semiconductor Channels. Scientific Reports, 2017, 7, 14194.	3.3	9
1061	A novel MoS2/C nanocomposite as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 729, 583-589.	5.5	19
1062	Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26, 1094-1106.	12.9	93
1063	Internal current amplification induced by dielectric hole trapping in monolayer MoS2 transistor. Nanotechnology, 2017, 28, 475204.	2.6	0
1064	Wafer-Scale Integration of Highly Uniform and Scalable MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 37146-37153.	8.0	32
1065	UV-Activated MoS ₂ Based Fast and Reversible NO ₂ Sensor at Room Temperature. ACS Sensors, 2017, 2, 1744-1752.	7.8	346
1066	Waferâ€Scale Synthesis of Reliable Highâ€Mobility Molybdenum Disulfide Thin Films via Inhibitorâ€Utilizing Atomic Layer Deposition. Advanced Materials, 2017, 29, 1703031.	21.0	56
1067	A convenient method of manufacturing liquid-gated MoS ₂ field effect transistors. Materials Research Express, 2017, 4, 105028.	1.6	5
1068	Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Applied Physics Letters, 2017, 111, .	3.3	168
1069	Temperature-dependent Raman spectra and thermal conductivity of multi-walled MoS2 nanotubes. Applied Physics Letters, 2017, 111, 123102.	3.3	15
1070	A Highâ€On/Offâ€Ratio Floatingâ€Gate Memristor Array on a Flexible Substrate via CVDâ€Grown Largeâ€Area 2D Layer Stacking. Advanced Materials, 2017, 29, 1703363.	21.0	116
1071	Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostructures. Carbon, 2017, 125, 551-556.	10.3	27
1072	Liquid phase methods for design and engineering of two-dimensional nanocrystals. Coordination Chemistry Reviews, 2017, 352, 220-248.	18.8	9
1073	Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology, 2017, 28, 465103.	2.6	42

#	Article	IF	CITATIONS
1074	Anomalous Corrosion of Bulk Transition Metal Diselenides Leading to Stable Monolayers. ACS Applied Materials & Interfaces, 2017, 9, 39059-39068.	8.0	11
1075	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	12.8	191
1076	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	2.8	31
1077	Temperature dependence of current–voltage characteristics of MoS 2 /Si devices prepared by the chemical vapor deposition method. Microelectronics Reliability, 2017, 78, 374-378.	1.7	3
1078	Grains in Selectively Grown MoS ₂ Thin Films. Small, 2017, 13, 1702256.	10.0	32
1079	Preparation, characterization and tribological properties of ultrathin MoS ₂ nanosheets. Materials Research Express, 2017, 4, 115011.	1.6	7
1080	Effects of Defects on the Temperatureâ€Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2017, 27, 1704357.	14.9	44
1081	Competitive Growth Mechanism of WS ₂ /MoS ₂ Vertical Heterostructures at High Temperature. Physica Status Solidi (B): Basic Research, 2017, 254, 1700219.	1.5	4
1082	Orientation dependent interlayer stacking structure in bilayer MoS ₂ domains. Nanoscale, 2017, 9, 13060-13068.	5.6	19
1083	Properties of in-plane graphene/MoS ₂ heterojunctions. 2D Materials, 2017, 4, 045001.	4.4	34
1084	Wafer-scale synthesis of monolayer and few-layer MoS ₂ via thermal vapor sulfurization. 2D Materials, 2017, 4, 045007.	4.4	34
1085	Transparent Large-Area MoS ₂ Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano, 2017, 11, 10273-10280.	14.6	72
1086	Mo(S x O y) thin films deposited by electrochemistry for application in organic photovoltaic cells. Materials Chemistry and Physics, 2017, 201, 331-338.	4.0	8
1087	Fabrication of multilayered-sandwich MoS 2 /c architectures with advanced lithium storage properties. Electrochimica Acta, 2017, 250, 238-243.	5.2	22
1088	Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution. Chemistry of Materials, 2017, 29, 7431-7439.	6.7	27
1089	Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy. Nanoscale Research Letters, 2017, 12, 492.	5.7	38
1090	Enhancing the colloidal stability and surface functionality of molybdenum disulfide (MoS2) nanosheets with hyperbranched polyglycerol for photothermal therapy. Journal of Colloid and Interface Science, 2017, 508, 214-221.	9.4	42
1091	A Novel and Facile Route to Synthesize Atomic‣ayered MoS ₂ Film for Largeâ€Area Electronics. Small, 2017, 13, 1701306.	10.0	53

#	Article	IF	CITATIONS
1092	Layer-by-Layer Epitaxial Growth of Scalable WSe ₂ on Sapphire by Molecular Beam Epitaxy. Nano Letters, 2017, 17, 5595-5599.	9.1	105
1093	Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy. APL Materials, 2017, 5, .	5.1	17
1094	Enhancing Multifunctionalities of Transition-Metal Dichalcogenide Monolayers <i>via</i> Cation Intercalation. ACS Nano, 2017, 11, 9390-9396.	14.6	35
1095	Responsivity to solar irradiation and the behavior of carrier transports for MoS2/Si and MoS2/Si nand MoS2/Si nanowires/Si devices. Journal of Materials Science: Materials in Electronics, 2017, 28, 18331-18336.	2.2	2
1096	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters, 2017, 111, .	3.3	30
1097	Ferromagnetic properties of Mn-doped HfS 2 monolayer under strain. Solid State Communications, 2017, 268, 15-19.	1.9	6
1098	Chemical and Electronic Repair Mechanism of Defects in MoS ₂ Monolayers. ACS Nano, 2017, 11, 9989-9996.	14.6	80
1099	Negative terahertz photoconductivity in 2D layered materials. Nanotechnology, 2017, 28, 464001.	2.6	21
1100	Electronic structure of boron based single and multi-layer two dimensional materials. Journal of Applied Physics, 2017, 122, 104302.	2.5	1
1101	Tuning Excitonic Properties of Monolayer MoS ₂ with Microsphere Cavity by Higha€Throughput Chemical Vapor Deposition Method. Small, 2017, 13, 1701694.	10.0	35
1102	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. Chemistry of Materials, 2017, 29, 8100-8110.	6.7	68
1103	Encapsulation of transition metal dichalcogenides crystals with room temperature plasma deposited carbonaceous films. RSC Advances, 2017, 7, 41136-41143.	3.6	2
1104	Magnetic decoupling of Fe coverage across atomic step of MoS ₂ flakes on SiO ₂ surface. Journal Physics D: Applied Physics, 2017, 50, 415001.	2.8	13
1105	Largeâ€Area Chemical Vapor Deposited MoS ₂ with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics. Advanced Functional Materials, 2017, 27, 1703119.	14.9	40
1106	Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Industrial & Engineering Chemistry Research, 2017, 56, 10552-10581.	3.7	29
1107	Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. Journal of Alloys and Compounds, 2017, 728, 1030-1036.	5.5	28
1108	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	47.7	258
1109	Controlled Layer Thinning and pâ€Type Doping of WSe ₂ by Vapor XeF ₂ . Advanced Functional Materials, 2017, 27, 1702455.	14.9	103

#	Article	IF	CITATIONS
1110	Scalable Synthesis of Highly Crystalline MoSe ₂ and Its Ambipolar Behavior. ACS Applied Materials & Interfaces, 2017, 9, 36009-36016.	8.0	52
1111	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	38.1	316
1112	Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS ₂ . Advanced Materials, 2017, 29, 1701955.	21.0	249
1113	Superior Plasmonic Photodetectors Based on Au@MoS ₂ Core–Shell Heterostructures. ACS Nano, 2017, 11, 10321-10329.	14.6	150
1114	In Situ XPS Investigation of Transformations at Crystallographically Oriented MoS ₂ Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 32394-32404.	8.0	141
1115	Real-time monitoring of 2D semiconductor film growth with optical spectroscopy. Nanotechnology, 2017, 28, 465601.	2.6	6
1116	Construction of MoS ₂ /Si nanowire array heterojunction for ultrahigh-sensitivity gas sensor. Nanotechnology, 2017, 28, 435503.	2.6	40
1117	Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nature Communications, 2017, 8, 486.	12.8	75
1118	Half-metallic properties of 3d transition metal atom-intercalated graphene@MS ₂ (M = W,) Tj ETQqC	0.0 rgBT	Overlock 10
1118 1119	Half-metallic properties of 3d transition metal atom-intercalated graphene@MS ₂ (M = W,) Tj ETQqC Progress of Largeâ€Scale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098.	0.0 rgBT	Oyerlock 10
1118 1119 1120	Half-metallic properties of 3d transition metal atom-intercalated graphene@MS ₂ (M = W,) Tj ETQqQ Progress of Largeâ€Scale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28.	10.0 5.2	/Oyerlock 10 54 9
1118 1119 1120 1121	 Half-metallic properties of 3d transition metal atom-intercalated graphene@MS₂ (M = W,) Tj ETQqQ Progress of Largeâ€Scale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28. One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & amp; Interfaces, 2017, 9, 26357-26362. 	0 05.6 rgBT 10.0 5.2 8.0	/Oyerlock 10 54 9 11
 1118 1119 1120 1121 1122 	 Half-metallic properties of 3d transition metal atom-intercalated graphene@MS₂ (M = W,) Tj ETQqQ Progress of Large cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28. One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & amp; Interfaces, 2017, 9, 26357-26362. Non-invasively improving the Schottky barriers of metal–MoS₂ interfaces: effects of atomic vacancies in a BN buffer layer. Physical Chemistry Chemical Physics, 2017, 19, 20582-20592. 	0 05.6rgBT 10.0 5.2 8.0 2.8	/Oyerlock 10 54 9 11 6
 1118 1119 1120 1121 1122 1123 	 Half-metallic properties of 3d transition metal atom-intercalated graphene@MS₂ (M = W,) Tj ETQqQ Progress of Largeâ€6cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28. One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & amp; Interfaces, 2017, 9, 26357-26362. Non-invasively improving the Schottky barriers of metal–MoS₂ interfaces: effects of atomic vacancies in a BN buffer layer. Physical Chemistry Chemical Physics, 2017, 19, 20582-20592. Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates. Journal of Applied Physics, 2017, 122, . 	2 0 05.6 rgBT 10.0 5.2 8.0 2.8 2.5	/Oyerlock 10 54 9 11 6 36
 1118 1119 1120 1121 1122 1123 1124 	Half-metallic properties of 3d transition metal atom-intercalated graphene@MS ₂ (M = W,) Tj ETQqQ Progress of Largeâ€6cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28. One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS ₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & amp; Interfaces, 2017, 9, 26357-26362. Non-invasively improving the Schottky barriers of metal–MoS ₂ interfaces: effects of atomic vacancies in a BN buffer layer. Physical Chemistry Chemical Physics, 2017, 19, 20582-20592. Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates. Journal of Applied Physics, 2017, 122,. Synthesis of MoS ₂ Quantum Dots Uniformly Dispersed on Low Dimensional MoS ₂ Nanosheets and Unravelling its Multiple Emissive States. ChemistrySelect, 2017, 2, 5942-5949.	0 05.6rgBT 10.0 5.2 8.0 2.8 2.5 1.5	/Oyerlock 10 54 9 11 6 36 11
 1118 1119 1120 1121 1122 1123 1124 1125 	 Half-metallic properties of 3d transition metal atom-intercalated graphene@MS₂ (M = W,) Tj ETQqQ Progress of Largeâ€6cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098. Ultra-thin MoSx film for electrochemical hydrogen production: Correlation between the catalytic activities and electrochemical features. Electrochimica Acta, 2017, 248, 20-28. One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & amp; Interfaces, 2017, 9, 26357-26362. Non-invasively improving the Schottky barriers of metal–MoS₂ interfaces: effects of atomic vacancies in a BN buffer layer. Physical Chemistry Chemical Physics, 2017, 19, 20582-20592. Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates. Journal of Applied Physics, 2017, 122, . Synthesis of MoS₂ Nanosheets and Unravelling its Multiple Emissive States. ChemistrySelect, 2017, 2, 5942-5949. Recent advanced in energy harvesting and storage applications with two-dimensional layered materials. FlatChem, 2017, 6, 37-47. 	0 05.6rgBT 10.0 5.2 8.0 2.8 2.5 1.5 5.6	/Orgrlock 10 54 9 11 6 36 11 20

1127	Thermodynamically Stable Synthesis of Largeâ€Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices. Advanced Materials, 2017, 29. 1702206.	21.0	116	
------	--	------	-----	--

#	Article	IF	CITATIONS
1128	3D MoS ₂ Aerogel for Ultrasensitive NO ₂ Detection and Its Tunable Sensing Behavior. Advanced Materials Interfaces, 2017, 4, 1700217.	3.7	60
1129	Capture the growth kinetics of CVD growth of two-dimensional MoS2. Npj 2D Materials and Applications, 2017, 1, .	7.9	115
1130	Effect of post-annealing on sputtered MoS 2 films. Solid-State Electronics, 2017, 138, 62-65.	1.4	10
1131	Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light–Matter Interaction toward Excellent Photodetectors. ACS Nano, 2017, 11, 8768-8776.	14.6	66
1132	Electric field effects on electronic characteristics of arsenene nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 64-69.	2.7	17
1133	Chelant Enhanced Solution Processing for Wafer Scale Synthesis of Transition Metal Dichalcogenide Thin Films. Scientific Reports, 2017, 7, 6419.	3.3	20
1134	Scalable and Transfer-Free Fabrication of MoS2/SiO2 Hybrid Nanophotonic Cavity Arrays with Quality Factors Exceeding 4000. Scientific Reports, 2017, 7, 7251.	3.3	10
1135	Moiré-related in-gap states in a twisted MoS2/graphite heterojunction. Npj 2D Materials and Applications, 2017, 1, .	7.9	13
1136	Ultrathin Bi Nanosheets with Superior Photoluminescence. Small, 2017, 13, 1701349.	10.0	100
1137	Growth of two-dimensional rhenium disulfide (ReS ₂) nanosheets with a few layers at low temperature. CrystEngComm, 2017, 19, 5341-5345.	2.6	15
1138	Electronic and magnetic properties of zigzag C2N-h2D nanoribbons: Edge and width effects. Chemical Physics Letters, 2017, 685, 363-370.	2.6	11
1139	Facile exfoliation of molybdenum disulfide nanosheets as highly efficient electrocatalyst for detection of m-nitrophenol. Journal of Electroanalytical Chemistry, 2017, 801, 300-305.	3.8	11
1140	Spaceâ€Confined Chemical Vapor Deposition Synthesis of Ultrathin HfS ₂ Flakes for Optoelectronic Application. Advanced Functional Materials, 2017, 27, 1702918.	14.9	122
1141	Nanocomposite of MoS ₂ -RGO as Facile, Heterogeneous, Recyclable, and Highly Efficient Green Catalyst for One-Pot Synthesis of Indole Alkaloids. ACS Sustainable Chemistry and Engineering, 2017, 5, 8551-8567.	6.7	82
1142	Strain Effects on the Interaction Between NO2 and the Mo-Edge of the MoS2 Zigzag Nanoribbon. IEEE Nanotechnology Magazine, 2017, 16, 982-990.	2.0	7
1143	Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Letters, 2017, 9, 50.	27.0	141
1144	Transport properties of the top and bottom surfaces in monolayer MoS ₂ grown by chemical vapor deposition. Nanoscale, 2017, 9, 13264-13271.	5.6	18
1145	Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017, 357, 788-792.	12.6	518

#	Article	IF	Citations
1146	Dual-mode high-sensitivity humidity sensor based on MoS2/Si nanowires array heterojunction. Journal of Alloys and Compounds, 2017, 726, 632-637.	5.5	25
1147	Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers. Journal of Applied Physics, 2017, 122, .	2.5	49
1148	Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.		0
1149	Pulsed laser deposition for the synthesis of monolayer WSe2. Applied Physics Letters, 2017, 111, .	3.3	23
1150	Effect of Mo concentration on shape and size of monolayer MoS ₂ crystals by chemical vapor deposition. Journal Physics D: Applied Physics, 2017, 50, 395501.	2.8	12
1151	Electrodeposition of Cu-Doped MoS ₂ for Charge Storage in Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2017, 164, D674-D679.	2.9	24
1152	Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS ₂ . Nano Letters, 2017, 17, 5452-5457.	9.1	39
1153	Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. ACS Nano, 2017, 11, 9215-9222.	14.6	102
1154	Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics Condensed Matter, 2017, 29, 473001.	1.8	55
1155	Effect of Dielectric Interface on the Performance of MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 44602-44608.	8.0	43
1156	Reactivity of Sulfur Molecules on MoO ₃ (010) Surface. Journal of Physical Chemistry Letters, 2017, 8, 6206-6210.	4.6	9
1157	Strain effect on electronic structure of two-dimensional γ-InSe nanosheets. Applied Physics Express, 2017, 10, 125202.	2.4	8
1158	Preparation of Large-area Vertical 2D Crystal Hetero-structures Through the Sulfurization of Transition Metal Films for Device Fabrication. Journal of Visualized Experiments, 2017, , .	0.3	0
1159	Strain-Gradient Effect in Gas Sensors Based on Three-Dimensional Hollow Molybdenum Disulfide Nanoflakes. ACS Applied Materials & Interfaces, 2017, 9, 43799-43806.	8.0	22
1160	Improving the Stability of High-Performance Multilayer MoS ₂ Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 42943-42950.	8.0	59
1161	General Strategy for Two-Dimensional Transition Metal Dichalcogenides by Ion Exchange. Chemistry of Materials, 2017, 29, 10019-10026.	6.7	18
1162	Hybrid van der Waals SnO/MoS ₂ Heterojunctions for Thermal and Optical Sensing Applications. Advanced Electronic Materials, 2017, 3, 1700396.	5.1	9
1163	Elastic Properties of Few Nanometers Thick Polycrystalline MoS ₂ Membranes: A Nondestructive Study. Nano Letters, 2017, 17, 7647-7651.	9.1	22

#	Article	IF	CITATIONS
1164	Shape-Uniform, High-Quality Monolayered MoS ₂ Crystals for Gate-Tunable Photoluminescence. ACS Applied Materials & Interfaces, 2017, 9, 42121-42130.	8.0	51
1165	Nanocarbon materials fabricated using plasmas. Reviews of Modern Plasma Physics, 2017, 1, 1.	4.1	28
1166	Highly Uniform Atomic Layer-Deposited MoS ₂ @3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 40252-40264.	8.0	117
1167	Exfoliated WS2-Nafion Composite based Electromechanical Actuators. Scientific Reports, 2017, 7, 14599.	3.3	18
1168	Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. Journal of Materials Science, 2017, 52, 10649-10660.	3.7	51
1169	Universal Substrate-Trapping Strategy To Grow Strictly Monolayer Transition Metal Dichalcogenides Crystals. Chemistry of Materials, 2017, 29, 6095-6103.	6.7	40
1170	Effects of Reaction Conditions on MoS2 Thin Film Formation Synthesized by Chemical Vapor Deposition using Organic Precursor. MRS Advances, 2017, 2, 1533-1538.	0.9	4
1171	Atomic Structure and Dynamics of Defects in 2D MoS ₂ Bilayers. ACS Omega, 2017, 2, 3315-3324.	3.5	32
1172	Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor. Scientific Reports, 2017, 7, 1983.	3.3	27
1173	Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS ₂ Monolayers by Alkali Metal Halides. Nano Letters, 2017, 17, 5056-5063.	9.1	185
1174	Transparent 1T-MoS ₂ nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology, 2017, 28, 395401.	2.6	24
1175	Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28, 36LT01.	2.6	56
1176	Epitaxial growth of HfS ₂ on sapphire by chemical vapor deposition and application for photodetectors. 2D Materials, 2017, 4, 031012.	4.4	43
1177	xmlns:mml= http://www.w3.org/1998/Math/Math/ML > <mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mr mathvariant="normal">S<mml:mn>2</mml:mn></mml:mr </mml:msub></mml:mrow> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Si</mml:mi><mml:msub><mml:mi< td=""><td>3.2</td><td>35</td></mml:mi<></mml:msub></mml:mrow></mml:math 	3.2	35
1178	A review on the research progress of tailoring photoluminescence of monolayer transition metal dichalcogenides. FlatChem, 2017, 4, 48-53.	5.6	18
1179	Controlled growth of six-point stars MoS ₂ by chemical vapor deposition and its shape evolution mechanism. Nanotechnology, 2017, 28, 395601.	2.6	21
1180	The synthesis of MoS2 particles with different morphologies for tribological applications. Tribology International, 2017, 116, 285-294.	5.9	60
1181	Computational Synthesis of MoS ₂ Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO ₃ Surfaces. Nano Letters, 2017, 17, 4866-4872.	9.1	60

ARTICLE IF CITATIONS Environmental Applications of 2D Molybdenum Disulfide (MoS₂) Nanosheets. 1182 10.0 647 Environmental Science & amp; Technology, 2017, 51, 8229-8244. Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nature 12.8 Communications, 2017, 8, 15714. Uniform large-area growth of nanotemplated high-quality monolayer MoS2. Applied Physics Letters, 1184 3.3 8 2017, 110, 263103. Modulating the resistivity of MoS2 through low energy phosphorus plasma implantation. Applied Physics Letters, 2017, 110, . Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness 1186 5.6 51 and stacking. FlatChem, 2017, 4, 1-19. <i>In situ</i>visualization and detection of surface potential variation of mono and multilayer MoS₂under different humidities using Kelvin probe force microscopy. Nanotechnology, 2.6 2017, 28, 295705 Tuning deep dopants to shallow ones in 2D semiconductors by substrate screening: The case of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">X</mml:mi><mml:mi 1188 3.2 18 mathvariant="normal">S</mml:mi></mml:msub></mml:math> (X = Cl, Br, I) in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub></mr Physical Review B, 2017, 95, . Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and 1189 2.2 Graphene (on Cu). Journal of Electronic Matérials, 2017, 46, 1010-1021. First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over MoS 2 1190 12.7 31 (100) surface. Chémical Engineering Journal, 2017, 308, 1225-1232. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor 1191 10.4 deposition. Nano Research, 2017, 10, 255-262. Electron Spin Dynamics of Twoâ€Dimensional Layered Materials. Advanced Functional Materials, 2017, 27, 1192 14.9 13 1604040. Substrate induced anomalous electrostatic and photoluminescence propeties of monolayer MoS 2 edges. Solid State Communications, 2017, 249, 1-6. Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. 1194 5.9 173 Materials Chemistry Frontiers, 2017, 1, 24-36. Concurrent Growth and Formation of Electrically Contacted Monolayer Transition Metal 3.7 Dichalcogenides on Bulk Metallic Patterns. Advanced Materials Interfaces, 2017, 4, 1600599. Elucidation of Zeroâ€Dimensional to Twoâ€Dimensional Growth Transition in MoS₂ Chemical 1196 3.7 27 Vapor Deposition Synthesis. Advanced Materials Interfaces, 2017, 4, 1600687. Photodetectors Based on Twoâ€Dimensional Layered Materials Beyond Graphene. Advanced Functional 14.9 534 Materials, 2017, 27, 1603886. Probing the intrinsic optical quality of CVD grown MoS2. Nano Research, 2017, 10, 1608-1617. 1198 10.4 67 Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. 1199 38 Carbohydrate Polymers, 2017, 155, 40-48.

			0
#	ARTICLE	IF	CITATIONS
1200	Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1280.	14.6	47
1201	A novel 2-step ALD route to ultra-thin MoS ₂ films on SiO ₂ through a surface organometallic intermediate. Nanoscale, 2017, 9, 538-546.	5.6	55
1202	Influence of GaN/AlGaN/GaN (0001) and Si (100) substrates on structural properties of extremely thin MoS2 films grown by pulsed laser deposition. Applied Surface Science, 2017, 395, 232-236.	6.1	16
1203	Interaction of O2 with monolayer MoS2: Effect of doping and hydrogenation. Materials and Design, 2017, 113, 1-8.	7.0	28
1204	Structural and optical characterization of MoS 2 quantum dots defined by thermal annealing. Journal of Luminescence, 2017, 183, 62-67.	3.1	29
1205	Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires. Journal of Crystal Growth, 2017, 459, 100-104.	1.5	20
1206	Magnetic control of single transition metal doped MoS2 through H/F chemical decoration. Journal of Magnetism and Magnetic Materials, 2017, 422, 243-248.	2.3	7
1207	Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition. Applied Surface Science, 2017, 392, 231-243.	6.1	32
1208	Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials, 2017, 27, 1603756.	14.9	74
1209	Telluriding monolayer MoS2 and WS2 via alkali metal scooter. Nature Communications, 2017, 8, 2163.	12.8	87
1210	Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2. Scientific Reports, 2017, 7, 16938.	3.3	23
1211	Molybdenum Disulfide (MoS2) Coating on AISI 316 Stainless Steel by Thermo-Diffusion Method. Archives of Metallurgy and Materials, 2017, 62, 1741-1748.	0.6	6
1212	Flexible and transparent NO <inf>2</inf> sensor using functionalized MoS <inf>2</inf> with light-enhanced response. , 2017, , .		3
1213	Swift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route. Nano Convergence, 2017, 4, 25.	12.1	10
1214	Piezoreflectance study of Nb-doped MoS2single crystals. IOP Conference Series: Materials Science and Engineering, 2017, 237, 012041.	0.6	0
1215	Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. Optical Materials Express, 2017, 7, 3697.	3.0	14
1216	Ag nanoparticles modified large area monolayer MoS_2 phototransistors with high responsivity. Optics Express, 2017, 25, 14565.	3.4	42
1217	946 nm Nd: YAG double Q-switched laser based on monolayer WSe_2 saturable absorber. Optics Express, 2017, 25, 21037.	3.4	28

#	Article	IF	CITATIONS
1218	Ultrathin platelet antennas mediated light-matter interaction in monolayer MoS_2. Optics Express, 2017, 25, 10261.	3.4	2
1219	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	2.8	44
1220	Temperature-Dependent Photoluminescence Emission from Unstrained and Strained GaSe Nanosheets. Materials, 2017, 10, 1282.	2.9	12
1221	Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts, 2017, 7, 285.	3.5	72
1222	Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials. Crystals, 2017, 7, 216.	2.2	30
1223	High Throughput Characterization of Epitaxially Grown Single-Layer MoS2. Electronics (Switzerland), 2017, 6, 28.	3.1	16
1224	Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides. Electronics (Switzerland), 2017, 6, 43.	3.1	68
1225	Photoluminescence Enhancement Effect of the Layered MoS ₂ Film Grown by CVD. Journal of Engineering (United States), 2017, 2017, 1-8.	1.0	3
1226	High-performance MoS_2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Optics Letters, 2017, 42, 3335.	3.3	64
1227	Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers. Beilstein Journal of Nanotechnology, 2017, 8, 2711-2718.	2.8	20
1228	High-mobility and low-carrier-density sputtered MoS ₂ film formed by introducing residual sulfur during low-temperature in 3%-H ₂ annealing for three-dimensional ICs. Japanese Journal of Applied Physics, 2017, 56, 04CP06.	1.5	14
1229	Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles. Nanoscale Research Letters, 2017, 12, 567.	5.7	32
1230	Valley-polarized exciton–polaritons in a monolayer semiconductor. Nature Photonics, 2017, 11, 431-435.	31.4	181
1232	Mn-Promoted Growth and Photoluminescence of Molybdenum Disulphide Monolayer. Coatings, 2017, 7, 78.	2.6	3
1233	Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes. Nano Letters, 2018, 18, 1794-1800.	9.1	140
1234	The synthesis of two-dimensional MoS ₂ nanosheets with enhanced tribological properties as oil additives. RSC Advances, 2018, 8, 9564-9573.	3.6	106
1235	Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects. Nanotechnology, 2018, 29, 222001.	2.6	57
1236	Vertical 1Tâ€TaS ₂ Synthesis on Nanoporous Gold for Highâ€Performance Electrocatalytic Applications. Advanced Materials, 2018, 30, e1705916.	21.0	75

#	Article	IF	CITATIONS
1237	Low Frequency Raman Scattering of Two-Dimensional Materials Beyond Graphene. Springer Series in Surface Sciences, 2018, , 195-206.	0.3	0
1238	Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications, 2018, 9, 979.	12.8	338
1239	High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1800548.	14.9	116
1240	Growth of MoS ₂ –MoO ₃ Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature. Advanced Materials Interfaces, 2018, 5, 1800071.	3.7	93
1241	Significant photoluminescence enhancement in WS ₂ monolayers through Na ₂ S treatment. Nanoscale, 2018, 10, 6105-6112.	5.6	35
1242	Effect of structural defects on electronic and magnetic properties of ZrS 2 monolayer. Superlattices and Microstructures, 2018, 116, 164-170.	3.1	14
1243	A Green Route to a Low Cost Anisotropic MoS ₂ /Poly(Vinylidene Fluoride) Nanocomposite with Ultrahigh Electroactive Phase and Improved Electrical and Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 5043-5052.	6.7	35
1244	Facilitative effect of graphene quantum dots in MoS ₂ growth process by chemical vapor deposition. Chinese Physics B, 2018, 27, 018101.	1.4	1
1245	MOCVD of Monolayer MoS2 using Novel Molybdenum Precursor i-Pr2DADMo(CO)3. MRS Advances, 2018, 3, 379-384.	0.9	10
1246	Atomically thin gallium layers from solid-melt exfoliation. Science Advances, 2018, 4, e1701373.	10.3	157
1247	Chemical Vapor Deposition Synthesis of MoS ₂ Layers from the Direct Sulfidation of MoO ₃ Surfaces Using Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2018, 122, 7494-7503.	3.1	41
1248	Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant. Japanese Journal of Applied Physics, 2018, 57, 02CB15.	1.5	9
1249	Electrical devices from top-down structured platinum diselenide films. Npj 2D Materials and Applications, 2018, 2, .	7.9	74
1250	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	10.0	84
1251	Controllable synthesis of MoS2 nanostructures from monolayer flakes, few-layer pyramids to multilayer blocks by catalyst-assisted thermal evaporation. Journal of Materials Science, 2018, 53, 8098-8107.	3.7	7
1252	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	5.1	44
1253	Robust nanofabrication of monolayer MoS ₂ islands with strong photoluminescence enhancement via local anodic oxidation. 2D Materials, 2018, 5, 025018.	4.4	20
1254	Structural and electronic properties of the V-V compounds isoelectronic to GaN and isostructural to gray arsenic. Materials Research Express, 2018, 5, 035904.	1.6	2

#	Article	IF	CITATIONS
1255	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	38.1	303
1256	Enhanced sensing response with complete recovery of MoS2 sensor under photoexcitation. AIP Conference Proceedings, 2018, , .	0.4	4
1257	Synthesis and characterization of monolayer Er-doped MoS2 films by chemical vapor deposition. Scripta Materialia, 2018, 152, 64-68.	5.2	15
1258	Low-Carrier-Density Sputtered MoS2 Film by Vapor-Phase Sulfurization. Journal of Electronic Materials, 2018, 47, 3497-3501.	2.2	36
1259	Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors. Nano Energy, 2018, 49, 200-208.	16.0	96
1260	Morphology Evolution of Monolayer MoS2 Flakes with Seed Promotor Grown by CVD. , 2018, , 399-405.		0
1261	Metastable MoS ₂ : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry - A European Journal, 2018, 24, 15942-15954.	3.3	133
1262	Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl KCl (NH4)6Mo7O24KSCN melt. Electrochimica Acta, 2018, 271, 252-260.	5.2	10
1263	Recent advances in phosphorene as a sensing material. Nano Today, 2018, 20, 13-32.	11.9	134
1264	Near-field exciton imaging of chemically treated MoS ₂ monolayers. Nanoscale, 2018, 10, 8851-8858.	5.6	17
1265	A comprehensive study on carrier mobility and artificial photosynthetic properties in group VI B transition metal dichalcogenide monolayers. Journal of Materials Chemistry A, 2018, 6, 8693-8704.	10.3	204
1266	Force and light tuning vertical tunneling current in the atomic layered MoS ₂ . Nanotechnology, 2018, 29, 275202.	2.6	10
1267	Lead iodide nanosheets for piezoelectric energy conversion and strain sensing. Nano Energy, 2018, 49, 7-13.	16.0	59
1268	Construction of amorphous interface in an interwoven NiS/NiS ₂ structure for enhanced overall water splitting. Journal of Materials Chemistry A, 2018, 6, 8233-8237.	10.3	159
1269	A library of atomically thin metal chalcogenides. Nature, 2018, 556, 355-359.	27.8	1,225
1270	Reliable Synthesis of Largeâ€Area Monolayer WS ₂ Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation. Advanced Optical Materials, 2018, 6, 1701347.	7.3	28
1271	Growth of Highly Crystalline and Large Scale Monolayer MoS ₂ by CVD: The Role of substrate Position. Crystal Research and Technology, 2018, 53, 1800002.	1.3	29
1272	Phaseâ€Engineered PtSe ₂ â€Layered Films by a Plasmaâ€Assisted Selenization Process toward All PtSe ₂ â€Based Field Effect Transistor to Highly Sensitive, Flexible, and Wideâ€Spectrum Photoresponse Photodetectors. Small, 2018, 14, e1800032.	10.0	83

#	Article	IF	CITATIONS
1273	Moiré structure of MoS2 on Au(111): Local structural and electronic properties. Surface Science, 2018, 678, 136-142.	1.9	45
1274	Van der Waals Coupled Organic Molecules with Monolayer MoS ₂ for Fast Response Photodetectors with Gate-Tunable Responsivity. ACS Nano, 2018, 12, 4062-4073.	14.6	183
1275	In Situ Repair of 2D Chalcogenides under Electron Beam Irradiation. Advanced Materials, 2018, 30, e1705954.	21.0	36
1276	Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. Journal of Materials Science, 2018, 53, 7258-7265.	3.7	15
1277	New Approach to Unveiling Individual Atomic Layers of 2D Materials and Their Heterostructures. Chemistry of Materials, 2018, 30, 1718-1728.	6.7	19
1278	Study of the layer-dependent properties of MoS ₂ nanosheets with different crystal structures by DFT calculations. Catalysis Science and Technology, 2018, 8, 1867-1879.	4.1	94
1279	Mechanical responses of two-dimensional MoTe2; pristine 2H, 1T and 1T′ and 1T′/2H heterostructure. Extreme Mechanics Letters, 2018, 20, 65-72.	4.1	34
1280	Phenomenological Modeling of Confined Phonon States in TMD Quantum Dots. MRS Advances, 2018, 3, 339-344.	0.9	3
1281	Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM versus sMIM. Journal of Physics Communications, 2018, 2, 025013.	1.2	10
1282	Synthesis of Mo1â [°] 'xNbxS2 thin films by separate-flow chemical vapor deposition with chloride sources. Thin Solid Films, 2018, 649, 171-176.	1.8	4
1283	Tailoring ultra-thin MoS2 films via post-treatment of solid state precursor phases. Thin Solid Films, 2018, 649, 177-186.	1.8	6
1284	Atomic-Level Co ₃ O ₄ Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 7052-7060.	8.0	45
1285	Tuning the electronic and magnetic properties of InSe nanosheets by transition metal doping. Physical Chemistry Chemical Physics, 2018, 20, 7532-7537.	2.8	15
1286	Charging effect at grain boundaries of MoS ₂ . Nanotechnology, 2018, 29, 195704.	2.6	12
1287	Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy, 2018, 51, 786-792.	16.0	98
1288	Synthesis and properties of MoCl ₄ complexes with thio- and seleno-ethers and their use for chemical vapour deposition of MoSe ₂ and MoS ₂ films. Dalton Transactions, 2018, 47, 2406-2414.	3.3	18
1289	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	11.2	773
1290	Large-area synthesis and photoelectric properties of few-layer MoSe ₂ on molybdenum foils. Nanotechnology, 2018, 29, 125605.	2.6	20
#	Article	IF	CITATIONS
------	--	------	-----------
1291	Versatile technique for assessing thickness of 2D layered materials by XPS. Nanotechnology, 2018, 29, 115705.	2.6	20
1292	Epitaxial growth of ReS ₂ (001) thin film via deposited-Re sulfurization. Japanese Journal of Applied Physics, 2018, 57, 02CB07.	1.5	5
1293	Modification of Vapor Phase Concentrations in MoS ₂ Growth Using a NiO Foam Barrier. ACS Nano, 2018, 12, 1339-1349.	14.6	70
1294	Largeâ€Scale Fabrication of MoS ₂ Ribbons and Their Lightâ€Induced Electronic/Thermal Properties: Dichotomies in the Structural and Defect Engineering. Advanced Functional Materials, 2018, 28, 1704863.	14.9	25
1295	Effects of H2O2 treatment on the temperature-dependent behavior of carrier transport and the optoelectronic properties for sol–gel grown MoS2/Si nanowire/Si devices. Journal of Materials Science: Materials in Electronics, 2018, 29, 6032-6039.	2.2	0
1296	NaCl-Assisted CVD Synthesis, Transfer and Persistent Photoconductivity Properties of Two-Dimensional Transition Metal Dichalcogenides. MRS Advances, 2018, 3, 365-371.	0.9	12
1297	Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study. Superlattices and Microstructures, 2018, 115, 108-115.	3.1	32
1298	Transient SHG Imaging on Ultrafast Carrier Dynamics of MoS ₂ Nanosheets. Advanced Materials, 2018, 30, e1705190.	21.0	23
1299	Probing Electron Mobility of Monolayer MoS ₂ Fieldâ€Effect Transistors in Aqueous Environments. Advanced Electronic Materials, 2018, 4, 1700418.	5.1	6
1300	A Facile Space-Confined Solid-Phase Sulfurization Strategy for Growth of High-Quality Ultrathin Molybdenum Disulfide Single Crystals. Nano Letters, 2018, 18, 2021-2032.	9.1	42
1301	Surfaceâ€Functionalizationâ€Mediated Direct Transfer of Molybdenum Disulfide for Largeâ€Area Flexible Devices. Advanced Functional Materials, 2018, 28, 1706231.	14.9	66
1302	Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation. Frontiers of Chemical Science and Engineering, 2018, 12, 32-42.	4.4	13
1303	Large Dendritic Monolayer MoS ₂ Grown by Atmospheric Pressure Chemical Vapor Deposition for Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 4630-4639.	8.0	88
1304	A Reactive Molecular Dynamics Study of Atomistic Mechanisms During Synthesis of MoS2 Layers by Chemical Vapor Deposition. MRS Advances, 2018, 3, 307-311.	0.9	3
1305	Synthesis of Inâ€Plane Artificial Lattices of Monolayer Multijunctions. Advanced Materials, 2018, 30, 1704796.	21.0	35
1306	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	5.0	238
1307	Facile and cost-effective methodology to fabricate MoS 2 counter electrode for efficient dye-sensitized solar cells. Dyes and Pigments, 2018, 151, 7-14.	3.7	47
1308	High efficiency graphene/MoS 2 /Si Schottky barrier solar cells using layer-controlled MoS 2 films. Solar Energy, 2018, 160, 76-84.	6.1	64

#	Article	IF	CITATIONS
1309	2D MoS ₂ Nanostructures for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701158.	7.6	135
1310	Three-dimensional molybdenum disulfide/graphene hydrogel with tunable heterointerfaces for high selective Hg(II) scavenging. Journal of Colloid and Interface Science, 2018, 514, 715-722.	9.4	53
1311	Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Research, 2018, 11, 3371-3384.	10.4	190
1312	Twin Defect Derived Growth of Atomically Thin MoS ₂ Dendrites. ACS Nano, 2018, 12, 635-643.	14.6	92
1313	Effect of growth temperature on large surface area, ultrathin MoS2 nanofilms fabrication and photovoltaic efficiency. Solar Energy, 2018, 159, 88-96.	6.1	13
1314	Liquid exfoliation of mechanochemically nanostructured tungsten disulfide to a graphene-like state. Nanotechnology, 2018, 29, 085704.	2.6	10
1315	Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide. ACS Applied Materials & Interfaces, 2018, 10, 4921-4928.	8.0	29
1316	A General Method for the Chemical Synthesis of Large cale, Seamless Transition Metal Dichalcogenide Electronics. Advanced Materials, 2018, 30, e1706215.	21.0	36
1317	Pâ€GaSe/Nâ€MoS ₂ Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation. Small, 2018, 14, 1702731.	10.0	87
1318	A reliable and highly efficient exfoliation method for water-dispersible MoS2 nanosheet. Journal of Colloid and Interface Science, 2018, 514, 642-647.	9.4	25
1319	Epitaxial Growth of Highly Oriented Metallic MoO ₂ @MoS ₂ Nanorods on C-sapphire. Journal of Physical Chemistry C, 2018, 122, 1860-1866.	3.1	33
1320	Production of mono- to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method. Journal of Colloid and Interface Science, 2018, 515, 27-31.	9.4	57
1321	Preparation of Large Size Monolayer MoS2 by a Two-Step Heating Process by CVD. Lecture Notes in Mechanical Engineering, 2018, , 777-784.	0.4	0
1322	Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications. AIP Conference Proceedings, 2018, , .	0.4	22
1323	Optical visualization of MoS2 grain boundaries by gold deposition. Science China Materials, 2018, 61, 1154-1158.	6.3	8
1324	Atomic-scale defects and electronic properties of a transferred synthesized MoS ₂ monolayer. Nanotechnology, 2018, 29, 305703.	2.6	22
1325	Significant Enhancement of Hydrogen Production in MoS ₂ /Cu ₂ ZnSnS ₄ Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1700472.	2.3	4
1326	CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nature Communications, 2018, 9, 1690.	12.8	155

#	Article	IF	CITATIONS
1327	Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films. Scientific Reports, 2018, 8, 6724.	3.3	40
1328	Alloying as a Route to Monolayer Transition Metal Dichalcogenides with Improved Optoelectronic Performance: Mo(S _{1–<i>x</i>} Se _{<i>x</i>}) ₂ and Mo _{1–<i>y</i>} W _{<i>y</i>} S ₂ . ACS Applied Energy Materials, 2018, 1, 2208-2214.	5.1	17
1329	Low-temperature, plasma assisted, cyclic synthesis of MoS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	6
1330	Lowâ€Temperature Deposition of Layered SnSe ₂ for Heterojunction Diodes. Advanced Materials Interfaces, 2018, 5, 1800128.	3.7	15
1331	Anomalous Raman and photoluminescence blue shift in mono- and a few layered pulsed laser deposited MoS2 thin films. Materials Research Bulletin, 2018, 102, 406-411.	5.2	24
1332	Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Applied Materials & Interfaces, 2018, 10, 13011-13018.	8.0	45
1333	Fieldâ€Ðependent Electrical and Thermal Transport in Polycrystalline WSe ₂ . Advanced Materials Interfaces, 2018, 5, 1701161.	3.7	17
1334	Low-temperature photoluminescence emission of monolayer MoS2 on diverse substrates grown by CVD. Journal of Luminescence, 2018, 199, 210-215.	3.1	35
1335	Template-Assisted Scalable Nanowire Networks. Nano Letters, 2018, 18, 2666-2671.	9.1	92
1336	Photoresponse properties of large area MoS ₂ metal–semiconductor–metal photodetectors. Japanese Journal of Applied Physics, 2018, 57, 04FP12.	1.5	2
1337	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	38.1	339
1338	Nucleation and growth mechanism of 2D SnS ₂ by chemical vapor deposition: initial 3D growth followed by 2D lateral growth. 2D Materials, 2018, 5, 035006.	4.4	23
1339	Adjustable Intermolecular Interactions Allowing 2D Transition Metal Dichalcogenides with Prolonged Scavenging Activity for Reactive Oxygen Species. Small, 2018, 14, e1800026.	10.0	30
1340	A facile one-step hydrothermal synthesis of carbon–MoS2 yolk–shell hierarchical microspheres with excellent electrochemical cycling stability. Journal of Applied Electrochemistry, 2018, 48, 509-518.	2.9	20
1341	The conversion mechanism of amorphous silicon to stoichiometric WS ₂ . Journal of Materials Chemistry C, 2018, 6, 4122-4130.	5.5	9
1342	Investigation on nonlinear optical properties of MoS ₂ nanoflakes grown on silicon and quartz substrates. Journal Physics D: Applied Physics, 2018, 51, 195302.	2.8	18
1343	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	11.7	132
1344	Time-evolution of the electrical characteristics of MoS ₂ field-effect transistors after electron beam irradiation. Physical Chemistry Chemical Physics, 2018, 20, 9038-9044.	2.8	17

#	Article	IF	CITATIONS
1345	Origin of band bending at domain boundaries of MoS2: First-principles study. Japanese Journal of Applied Physics, 2018, 57, 04FP09.	1.5	1
1346	Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors. Semiconductor Science and Technology, 2018, 33, 045005.	2.0	7
1347	Digenite (Cu ₉ S ₅): Layered p-Type Semiconductor Grown by Reactive Annealing of Copper. Chemistry of Materials, 2018, 30, 2379-2388.	6.7	33
1348	Highly sensitive MoS ₂ photodetectors with graphene contacts. Nanotechnology, 2018, 29, 20LT01.	2.6	38
1349	Ethanol catalytic optical driven deposition for 1D and 2D materials with ultra-low power threshold of 0ÂdBm. Optics Communications, 2018, 406, 18-23.	2.1	5
1350	Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chemical Reviews, 2018, 118, 6134-6150.	47.7	285
1351	Twoâ€Ðimensional Layered Materials as Catalyst Supports. ChemNanoMat, 2018, 4, 28-40.	2.8	61
1352	First-principles studies of Te line-ordered alloys in a MoS 2 monolayer. Physica B: Condensed Matter, 2018, 535, 162-166.	2.7	3
1353	Preparation of tin ferrite–tin oxide by hydrothermal, precipitation and auto-combustion: photo-catalyst and magnetic nanocomposites for degradation of toxic azo-dyes. Journal of Materials Science: Materials in Electronics, 2018, 29, 1766-1776.	2.2	22
1354	Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chemistry - A European Journal, 2018, 24, 4757-4773.	3.3	52
1355	Controlled growth of MoS2 nanopetals on the silicon nanowire array using the chemical vapor deposition method. Journal of Crystal Growth, 2018, 481, 18-22.	1.5	4
1356	<i>In situ</i> crystallization kinetics of two-dimensional MoS ₂ . 2D Materials, 2018, 5, 011009.	4.4	31
1357	Electrical and optoelectronic properties for devices that use MoS2 deposited on Si substrates with and without (NH4)2S x treatment by chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 351-356.	2.2	2
1358	Tuning the Electronic Properties, Effective Mass and Carrier Mobility of MoS2 Monolayer by Strain Engineering: First-Principle Calculations. Journal of Electronic Materials, 2018, 47, 730-736.	2.2	66
1359	MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Research, 2018, 11, 2083-2092.	10.4	47
1360	Liquid Exfoliation of Few-layer 1T-TaS2â^'x Se x Superconductors. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1005-1011.	1.8	3
1361	Plasma-assisted synthesis of MoS ₂ . 2D Materials, 2018, 5, 015005.	4.4	19
1362	Pressure-dependent large area synthesis and electronic structure of MoS 2. Materials Research Bulletin, 2018, 97, 265-271.	5.2	5

#	Article	IF	CITATIONS
1363	Ramanâ€based technique for measuring thermal conductivity of graphene and related materials. Journal of Raman Spectroscopy, 2018, 49, 106-120.	2.5	119
1364	2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horizons, 2018, 3, 74-89.	8.0	126
1365	Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition. Journal of Materials Science, 2018, 53, 4262-4273.	3.7	4
1366	Direct Exfoliation of Highâ€Quality, Atomically Thin MoSe ₂ Layers in Water. Advanced Sustainable Systems, 2018, 2, 1700107.	5.3	11
1367	Adsorption of H ₂ , O ₂ , H ₂ O, OH and H on monolayer MoS ₂ . Journal of Physics Condensed Matter, 2018, 30, 035003.	1.8	27
1368	Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction, 2018, 6, 395-406.	6.4	48
1369	Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching. Chemistry of Materials, 2018, 30, 403-411.	6.7	60
1370	Mechanical properties of pristine and Fe, V and Ti doped arsenene: density functional theory calculation. Materials Research Express, 2018, 5, 015025.	1.6	12
1371	Sputtered MoS ₂ layer as a promoter in the growth of MoS ₂ nanoflakes by TCVD. Materials Research Express, 2018, 5, 015032.	1.6	11
1372	Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides. Nanoscale, 2018, 10, 336-341.	5.6	38
1373	Ultrahigh, Ultrafast, and Selfâ€Powered Visibleâ€Nearâ€Infrared Optical Positionâ€5ensitive Detector Based on a CVDâ€Prepared Vertically Standing Fewâ€Layer MoS ₂ /Si Heterojunction. Advanced Science, 2018, 5, 1700502.	11.2	87
1374	Interface Engineering with MoS ₂ –Pd Nanoparticles Hybrid Structure for a Low Voltage Resistive Switching Memory. Small, 2018, 14, 1702525.	10.0	52
1375	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	8.0	309
1376	High performance few-layer MoS ₂ transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Materials, 2018, 5, 015028.	4.4	30
1377	Homoepitaxial Growth of Largeâ€Scale Highly Organized Transition Metal Dichalcogenide Patterns. Advanced Materials, 2018, 30, 1704674.	21.0	63
1378	Controlled Lowâ€Frequency Electrical Noise of Monolayer MoS ₂ with Ohmic Contact and Tunable Carrier Concentration. Advanced Electronic Materials, 2018, 4, 1700340.	5.1	14
1379	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	12.9	179
1380	Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water. Journal of Colloid and Interface Science, 2018, 517, 204-212.	9.4	103

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1381	Valley-Selective Optical Stark Effect in Monolayer WS2. Springer Theses, 2018, , 37-57.		0.1	6
1382	Theoretical prediction of borophene monolayer as anode materials for high-performance batteries. Ionics, 2018, 24, 1603-1615.	lithium-ion	2.4	28
1383	Giant lateral photovoltaic effect in MoS2/SiO2/Si p-i-n junction. Journal of Alloys and Con 2018, 735, 88-97.	ιpounds,	5.5	33
1384	Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chemical Comm 2018, 54, 595-598.	unications,	4.1	66
1385	Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides assembly. Carbon, 2018, 127, 602-610.	flat-pack	10.3	15
1386	Probing the shear and layer breathing modes in multilayer graphene by Raman spectrosc Raman Spectroscopy, 2018, 49, 19-30.	opy. Journal of	2.5	31
1387	Size-tunable band alignment and optoelectronic properties of transition metal dichalcog Waals heterostructures. Journal Physics D: Applied Physics, 2018, 51, 015111.	enide van der	2.8	9
1388	Intervalley Biexcitons in Monolayer MoS2. Springer Theses, 2018, , 27-36.		0.1	0
1389	NO-sensing performance of vacancy defective monolayer MoS2 predicted by density fun Applied Surface Science, 2018, 434, 294-306.	ction theory.	6.1	54
1390	Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-la flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156.	ayer MoS2	5.2	60
1391	Thiol-modified <mml:math altimg="si3.gif" id="mn
display=" inline"="" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi </mml:mrow><mml:mrow><mml:mn>2nanosheets as a functional layer for electrical bistable devices. Optics Communications, 2 112-117</mml:mn></mml:mrow></mml:msub></mml:math>	113" > 2018, 406,	su2b1×/mn	nl:ønath>
1392	Strain in Single-Layer MoS2 Flakes Grown by Chemical Vapor Deposition. , 2018, , 338-34	43.		7
1393	Catalytic activity for the hydrogen evolution reaction of edges in Janus monolayer MoXY	(X/Y = S, Se,) Tj ETQq0 C) 0 rgBT /C 2 .8	overlock 10 T 26
1394	Controlled p-type substitutional doping in large-area monolayer WSe ₂ cryst chemical vapor deposition. Nanoscale, 2018, 10, 21374-21385.	als grown by	5.6	58
1395	Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their appli electrochemical supercapacitors. RSC Advances, 2018, 8, 38945-38954.	cation in	3.6	65
1396	Improved visible-light absorbance of monolayer MoS ₂ on AlN substrate and angle-dependent electronic structures. Physical Chemistry Chemical Physics, 2018, 20, 2	its 9131-29141.	2.8	12
1397	2H â†' 1Tâ€ ² phase transformation in Janus monolayer MoSSe and MoSTe: an efficient h for 2H-MoS ₂ . Journal of Materials Chemistry C, 2018, 6, 13000-13005.	ole injection contact	5.5	38
1398	Influence of Oxalic Acid Concentrations on The Growth of Molybdenum Disulfide via Spir Technique. Journal of Physics: Conference Series, 2018, 1083, 012060.	Coating	0.4	1

#	Article	IF	CITATIONS
1399	Effect of Process Temperature on Molybdenum Disulphide Layers Grown by Chemical Vapor Deposition Technique. , 2018, , .		2
1400	Reprint of "lon-mediated growth of ultra thin molybdenum disulfide layers on highly oriented pyrolytic graphite†Surface and Coatings Technology, 2018, 355, 307-310.	4.8	0
1401	Electronic structures and optical properties of Ga doped single-layer indium nitride. Chinese Journal of Chemical Physics, 2018, 31, 313-317.	1.3	4
1402	Investigation of the Energy Band at the Molybdenum Disulfide and ZrO2 Heterojunctions. Nanoscale Research Letters, 2018, 13, 405.	5.7	4
1403	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	10.3	109
1404	A SCANNING TUNNELING MICROSCOPY STUDY OF MONOLAYER AND BILAYER TRANSITION-METAL DICHALCOGENIDES GROWN BY MOLECULAR-BEAM EPITAXY. Surface Review and Letters, 2018, 25, 1841002.	1.1	1
1405	Effects of Strategically Placed Water Droplets on Monolayer Growth of Molybdenum Disulfide. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	2
1406	Direct Exfoliation of Natural SiO2-Containing Molybdenite in Isopropanol: A Cost Efficient Solution for Large-Scale Production of MoS2 Nanosheetes. Nanomaterials, 2018, 8, 843.	4.1	8
1407	Selective Transfer of Rotationally Commensurate MoS ₂ from an Epitaxially Grown van der Waals Heterostructure. Chemistry of Materials, 2018, 30, 8495-8500.	6.7	6
1408	Growth Mechanisms and Electronic Properties of Vertically Aligned MoS2. Scientific Reports, 2018, 8, 16480.	3.3	28
1409	Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nature Communications, 2018, 9, 4778.	12.8	98
1410	High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Applied Physics Letters, 2018, 113, .	3.3	36
1411	Epitaxial Growth of Monolayer MoS ₂ on SrTiO ₃ Single Crystal Substrates for Applications in Nanoelectronics. ACS Applied Nano Materials, 2018, 1, 6976-6988.	5.0	34
1412	First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides. Physical Review B, 2018, 98, .	3.2	98
1413	Sputter-Deposited-MoS2 \${n}\$ MISFETs With Top-Gate and Al2O3 Passivation Under Low Thermal Budget for Large Area Integration. IEEE Journal of the Electron Devices Society, 2018, 6, 1246-1252.	2.1	10
1414	Towards activation of amorphous MoS via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23109-23117.	7.1	29
1415	Polyphenol-Assisted Exfoliation of Transition Metal Dichalcogenides into Nanosheets as Photothermal Nanocarriers for Enhanced Antibiofilm Activity. ACS Nano, 2018, 12, 12347-12356.	14.6	147
1416	Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS \$\$_{2}\$\$ 2 Nanoribbons: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 7114-7128.	2.2	0

#	Article	IF	CITATIONS
1417	Role of H Transfer in the Gas-Phase Sulfidation Process of MoO ₃ : A Quantum Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2018, 9, 6517-6523.	4.6	10
1418	Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Convergence, 2018, 5, 26.	12.1	119
1419	Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2 - polyaniline nanocomposites. Biochemical Engineering Journal, 2018, 140, 130-139.	3.6	25
1420	Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semiconductor Science and Technology, 2018, 33, 114012.	2.0	8
1421	The morphological control of MoS2 films using a simple model under chemical vapor deposition. Thin Solid Films, 2018, 666, 150-155.	1.8	7
1422	Surface-Mediated Aligned Growth of Monolayer MoS ₂ and In-Plane Heterostructures with Graphene on Sapphire. ACS Nano, 2018, 12, 10032-10044.	14.6	64
1423	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ PbI ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	14.6	201
1424	Recent Advances in Synthesis and Assembly of van der Waals Materials. Journal of the Korean Physical Society, 2018, 73, 805-816.	0.7	11
1425	Recent Advances in Synthesis and Applications of 2D Junctions. Small, 2018, 14, e1801606.	10.0	19
1426	Enhanced Exfoliation of Biocompatible MoS ₂ Nanosheets by Wool Keratin. ACS Applied Nano Materials, 2018, 1, 5460-5469.	5.0	22
1427	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	4.3	139
1428	Atomic layer deposition of Al ₂ O ₃ and TiO ₂ on MoS ₂ surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 06A101.	2.1	7
1429	Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide. ACS Applied Materials & Interfaces, 2018, 10, 40831-40837.	8.0	58
1430	Nonvolatile and Programmable Photodoping in MoTe ₂ for Photoresistâ€Free Complementary Electronic Devices. Advanced Materials, 2018, 30, e1804470.	21.0	70
1431	Challenges of fabrication of a large-area-uniform molybdenum disulfide layered thin film at low growth temperature by atmospheric-pressure solution-based mist CVD. Japanese Journal of Applied Physics, 2018, 57, 110306.	1.5	6
1432	Charge Transfer within the F ₄ TCNQâ€MoS ₂ van der Waals Interface: Toward Electrical Properties Tuning and Gas Sensing Application. Advanced Functional Materials, 2018, 28, 1806244.	14.9	62
1433	Two-Dimensional Nonlayered CuInSe ₂ Nanosheets for High-Performance Photodetectors. ACS Applied Nano Materials, 2018, 1, 5414-5418.	5.0	23
1434	Molecular Functionalization of Twoâ€Dimensional MoS ₂ Nanosheets. Chemistry - A European Journal, 2018, 24, 18246-18257.	3.3	73

# 1435	ARTICLE Chemical vapor deposition and characterization of two-dimensional molybdenum dioxide (MoO ₂) nanoplatelets. Nanotechnology, 2018, 29, 505707.	IF 2.6	Citations
1436	Research progress and challenges of two dimensional MoS ₂ field effect transistors. Journal of Semiconductors, 2018, 39, 104002.	3.7	13
1437	Physical Properties and Photovoltaic Application of Semiconducting Pd2Se3 Monolayer. Nanomaterials, 2018, 8, 832.	4.1	16
1438	Monolayer Transition-Metal Dichalcogenide Mo _{1–<i>x</i>} W <i>_x</i> S ₂ Alloys as Efficient Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 25837-25848.	3.1	28
1439	Three-leaf dart-shaped single-crystal BN formation promoted by surface oxygen. Applied Physics Letters, 2018, 113, 163101.	3.3	0
1440	Synthesis and Properties of 2D Semiconductors. Springer Theses, 2018, , 21-43.	0.1	1
1441	High Response, Self-Powered Photodetector Based on the Monolayer MoS ₂ /P–Si Heterojunction with Asymmetric Electrodes. Langmuir, 2018, 34, 14151-14157.	3.5	45
1442	Atomically Thin Resonant Tunnel Diodes. Springer Theses, 2018, , 113-125.	0.1	0
1443	Multiscale framework for simulation-guided growth of 2D materials. Npj 2D Materials and Applications, 2018, 2, .	7.9	41
1444	Characterization of Molybdenum Oxide Thin Films Grown by Atomic Layer Deposition. Journal of Electronic Materials, 2018, 47, 6709-6715.	2.2	25
1445	Two-Dimensional Crystal Grain Size Tuning in WS ₂ Atomic Layer Deposition: An Insight in the Nucleation Mechanism. Chemistry of Materials, 2018, 30, 7648-7663.	6.7	57
1446	In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide. ACS Applied Materials & Interfaces, 2018, 10, 34401-34408.	8.0	23
1447	Stepwise Sulfurization from MoO ₃ to MoS ₂ via Chemical Vapor Deposition. ACS Applied Nano Materials, 2018, 1, 5655-5661.	5.0	86
1448	Elimination of S Vacancy as the Cause for the n-Type Behavior of MoS ₂ from the First-Principles Perspective. Journal of Physical Chemistry Letters, 2018, 9, 6032-6037.	4.6	12
1449	Electronic Structure of Graphene Grown on a Hydrogen-terminated Ge (110) Wafer. Journal of the Korean Physical Society, 2018, 73, 656-660.	0.7	5
1450	Perspectives on Thermoelectricity in Layered and 2D Materials. Advanced Electronic Materials, 2018, 4, 1800248.	5.1	77
1451	Chemical Vapor Deposition Grown Wafer‣cale 2D Tantalum Diselenide with Robust Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.	21.0	63
1452	Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small, 2018, 14, e1802091.	10.0	247

#	Article	IF	CITATIONS
1453	High-Vacuum Particulate-Free Deposition of Wafer-Scale Mono-, Bi-, and Trilayer Molybdenum Disulfide with Superior Transport Properties. ACS Applied Materials & Interfaces, 2018, 10, 33457-33463.	8.0	7
1454	Substrate-affected lattice structural evolution in compressed monolayer ReS ₂ . Physical Chemistry Chemical Physics, 2018, 20, 24927-24932.	2.8	4
1455	Controlling the morphology of ultrathin MoS2/MoO2 nanosheets grown by chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G509.	2.1	3
1456	Mass Production of Largeâ€6ized, Nonlayered 2D Nanosheets: Their Directed Synthesis by a Rapid "Gelâ€Blowing―Strategy, and Applications in Li/Na Storage and Catalysis. Advanced Materials, 2018, 30, e1803569.	21.0	74
1457	Atomically sharp interlayer stacking shifts at anti-phase grain boundaries in overlapping MoS ₂ secondary layers. Nanoscale, 2018, 10, 16692-16702.	5.6	22
1458	The Role of Nonidealities in the Scaling of MoS ₂ FETs. IEEE Transactions on Electron Devices, 2018, 65, 4635-4640.	3.0	14
1459	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advanced Materials, 2018, 30, e1802397.	21.0	75
1460	Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2. Electrocatalysis, 2018, 9, 744-751.	3.0	22
1461	Highly selective and reversible NO ₂ gas sensor using vertically aligned MoS ₂ flake networks. Nanotechnology, 2018, 29, 464001.	2.6	79
1462	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	3.0	47
1463	Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT. RSC Advances, 2018, 8, 17773-17785.	3.6	44
1464	Controllable synthesis of flower-like MoSe ₂ 3D microspheres for highly efficient visible-light photocatalytic degradation of nitro-aromatic explosives. Journal of Materials Chemistry A, 2018, 6, 11424-11434.	10.3	66
1465	Conversion of Single Crystal (NH4)2Mo3S13·H2O to Isomorphic Pseudocrystals of MoS2Nanoparticles. Chemistry of Materials, 2018, 30, 3847-3853.	6.7	14
1466	Temperature dependence of phonon properties in CVD MoS2 nanostructures – a statistical approach. Physical Chemistry Chemical Physics, 2018, 20, 15486-15495.	2.8	6
1467	Gap plasmon-enhanced photoluminescence of monolayer MoS ₂ in hybrid nanostructure. Chinese Physics B, 2018, 27, 047302.	1.4	11
1468	Emerging trends in 2D nanotechnology that are redefining our understanding of "Nanocomposites― Nano Today, 2018, 21, 18-40.	11.9	59
1469	Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates. Superlattices and Microstructures, 2018, 120, 235-240.	3.1	22
1470	Composition-Tunable Synthesis of Large-Scale Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ Alloys with Enhanced Photoluminescence. ACS Nano, 2018, 12, 6301-6309.	14.6	51

#	Article	IF	CITATIONS
1471	Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS ₂ layers. Physical Chemistry Chemical Physics, 2018, 20, 16193-16201.	2.8	15
1472	Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 105-113.	4.7	88
1473	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	4.4	23
1474	First-principles studies of SnS2, MoS2 and WS2 stacked van der Waals hetero-multilayers. Computational Condensed Matter, 2018, 16, e00303.	2.1	5
1475	Controlled synthesis of 2D MX2 (M = Mo, W; X = S, Se) heterostructures and alloys. Journal of Applied Physics, 2018, 123, 204304.	2.5	15
1476	Theoretical and Experimental Insight into the Mechanism for Spontaneous Vertical Growth of ReS 2 Nanosheets. Advanced Functional Materials, 2018, 28, 1801286.	14.9	35
1477	Precise Singleâ€Step Electrophoretic Multiâ€Sized Fractionation of Liquidâ€Exfoliated Nanosheets. Advanced Functional Materials, 2018, 28, 1801622.	14.9	18
1478	The influence of aggregation on the third-order nonlinear optical property of π-conjugated chromophores: the case of cyanine dyes. Physical Chemistry Chemical Physics, 2018, 20, 16777-16785.	2.8	8
1479	Amorphous molybdenum sulphide @ nanoporous gold as catalyst for hydrogen evolution reaction in acidic environment. Journal of Materials Science, 2018, 53, 12388-12398.	3.7	17
1480	Developing seedless growth of atomically thin semiconductor layers: Application to transition metal dichalcogenides. Ceramics International, 2018, 44, 15795-15803.	4.8	6
1481	Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity. Computational Materials Science, 2018, 152, 151-157.	3.0	75
1482	Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology, 2018, 29, 314001.	2.6	18
1483	Preferential Pt Nanocluster Seeding at Grain Boundary Dislocations in Polycrystalline Monolayer MoS ₂ . ACS Nano, 2018, 12, 5626-5636.	14.6	27
1484	Ion-mediated growth of ultra thin molybdenum disulfide layers on highly oriented pyrolytic graphite. Surface and Coatings Technology, 2018, 349, 783-786.	4.8	3
1485	Large-size Mo1-xWxS2 and W1-xMoxS2 (x = 0–0.5) monolayers by confined-space chemical vapor deposition. Applied Surface Science, 2018, 457, 591-597.	6.1	17
1486	Electronic Properties of Armchair \$\$hbox {MoS}_{2}\$\$ MoS 2 Nanoribbons with Stacking Faults: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 5498-5508.	2.2	8
1487	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 2018, 140, 9001-9019.	13.7	34
1488	Probing the nanoscale light emission properties of a CVD-grown MoS ₂ monolayer by tip-enhanced photoluminescence. Nanoscale, 2018, 10, 14055-14059.	5.6	36

	Сіт	ation Report	
#	Article	IF	CITATIONS
1489	A Simple Approach to Recognize Axial Direction of ReS ₂ Single Crystals Grown by Chemical Vapor Deposition. Physica Status Solidi (B): Basic Research, 2018, 255, 1800142.	1.5	3
1490	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	38.1	513
1491	Ohmic contact between titanium and sputtered MoS ₂ films achieved by forming-gas annealing. Japanese Journal of Applied Physics, 2018, 57, 07MA04.	1.5	11
1492	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	5.6	121
1493	Defect in 2D materials beyond graphene. , 2018, , 161-187.		4
1494	A general printing approach for scalable growth of perovskite single-crystal films. Science Advances, 2018, 4, eaat2390.	10.3	150
1495	Nature of electrical conduction in MoS2 films deposited by laser physical vapor deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 14180-14191.	2.2	3
1496	Investigation of the Growth Process of Continuous Monolayer MoS2 Films Prepared by Chemical Vapor Deposition. Journal of Electronic Materials, 2018, 47, 5509-5517.	2.2	9
1497	2D transition metal dichalcogenides with glucan multivalency for antibody-free pathogen recognition. Nature Communications, 2018, 9, 2549.	12.8	44
1498	Interfacial Charge Behavior Modulation in Perovskite Quantum Dotâ€Monolayer MoS ₂ 0Dâ€2D Mixedâ€Dimensional van der Waals Heterostructures. Advanced Functional Materials, 2018, 2 1802015.	28, 14.9	107
1499	Submillimeter 2D Bi ₂ Se ₃ Flakes toward Highâ€Performance Infrared Photodetection at Optical Communication Wavelength. Advanced Functional Materials, 2018, 28, 1802707.	14.9	149
1500	Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. Nano Research, 2018, 11, 5978-5988.	10.4	21
1501	Montmorillonite-assisted synthesis of cobalt-nitrogen-doped carbon nanosheets for high-performance selective oxidation of alkyl aromatics. Applied Surface Science, 2018, 456, 951-958.	6.1	13
1502	The effect of the experimental parameters on the growth of MoS ₂ flakes. CrystEngComm 2018, 20, 4823-4830.	^{1,} 2.6	33
1503	High carrier mobility in monolayer CVD-grown MoS ₂ through phonon suppression. Nanoscale, 2018, 10, 15071-15077.	5.6	74
1504	Metal-agglomeration-suppressed growth of MoS ₂ and MoSe ₂ films with small sulfur and selenium molecules for high mobility field effect transistor applications. Nanoscale, 2018, 10, 15213-15221.	5.6	8
1505	Recent Progress and Future Prospects of 2Dâ€Based Photodetectors. Advanced Materials, 2018, 30, e1801164.	21.0	408
1506	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	11.2	397

#	Article	IF	CITATIONS
1507	Graphene–MoS <mml:math <br="" id="mml43" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll" altimg="si1.gif"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> –metal hybrid structures for plasmonic biosensors. Optics Communications, 2018, 428, 233-239.	2.1	37
1508	Self-powered, high response and fast response speed metal–insulator–semiconductor structured photodetector based on 2D MoS ₂ . RSC Advances, 2018, 8, 28041-28047.	3.6	19
1509	Graphene-MoS2spacer on metal-insulator-metal structure for enhanced surface plasmon coupled emission. AIP Advances, 2018, 8, 055128.	1.3	2
1510	Fast, Noncontact, Wafer-Scale, Atomic Layer Resolved Imaging of Two-Dimensional Materials by Ellipsometric Contrast Micrography. ACS Nano, 2018, 12, 8555-8563.	14.6	31
1511	Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride. Nano Research, 2018, 11, 6227-6236.	10.4	8
1512	Controlled sulfurization of DC sputtered Mo and W thin films for CVD growth of MoS ₂ /WS ₂ heterostructures. Materials Research Express, 2018, 5, 086405.	1.6	2
1513	Electronic structure and nearly room-temperature ferromagnetism in V-doped monolayer and bilayer MoS2. International Journal of Modern Physics B, 2018, 32, 1850231.	2.0	13
1514	Largeâ€Scale Transparent Molybdenum Disulfide Plasmonic Photodetector Using Split Bull Eye Structure. Advanced Optical Materials, 2018, 6, 1800461.	7.3	14
1515	CVD-Grown MoSe ₂ Nanoflowers with Dual Active Sites for Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 27771-27779.	8.0	60
1516	A facile and clean process for exfoliating MoS ₂ nanosheets assisted by a surface active agent in aqueous solution. Nanotechnology, 2018, 29, 425702.	2.6	15
1517	Growth, characterization and photoconduction properties of Sb0.1Mo0.9Se2 single crystals grown by DVT technique. Materials Science in Semiconductor Processing, 2018, 88, 1-9.	4.0	17
1518	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6845-6888.	38.1	202
1519	Work function variation of monolayer MoS2 by nitrogen-doping. Applied Physics Letters, 2018, 113, .	3.3	45
1520	IR position-sensitive detectors based on double-junction asymmetric TiO ₂ /MoS ₂ /reduced graphene-oxide sandwiches. Journal of Materials Chemistry C, 2018, 6, 8444-8452.	5.5	21
1521	Fabrication of highly efficient carbon coated exfoliated tungsten disulfide nanosheets core-shell nanostructure as a promising solar-light driven photocatalyst. Materials Research Bulletin, 2018, 107, 446-455.	5.2	16
1522	Synthesis and Surface-Enhanced Raman Scattering of Ultrathin SnSe2 Nanoflakes by Chemical Vapor Deposition. Nanomaterials, 2018, 8, 515.	4.1	60
1523	Preparation of a novel Fe2O3-MoS2-CdS ternary composite film and its photoelectrocatalytic performance. Electrochimica Acta, 2018, 285, 230-240.	5.2	30
1524	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	14.6	51

#	Article	IF	CITATIONS
1525	Tunable photoluminescence in a van der Waals heterojunction built from a MoS ₂ monolayer and a PTCDA organic semiconductor. Nanoscale, 2018, 10, 16107-16115.	5.6	39
1526	Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent. Coatings, 2018, 8, 78.	2.6	7
1527	Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications. Crystals, 2018, 8, 252.	2.2	7
1528	Electronic properties of GaSe/MoS2 and GaS/MoSe2 heterojunctions from first principles calculations. AIP Advances, 2018, 8, 075207.	1.3	14
1529	Electrochemical performance of interspace-expanded molybdenum disulfide few-layer. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	23
1530	Control of the Nucleation Density of Molybdenum Disulfide in Large-Scale Synthesis Using Chemical Vapor Deposition. Materials, 2018, 11, 870.	2.9	18
1531	Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. Micromachines, 2018, 9, 263.	2.9	38
1532	Properties, Preparation and Applications of Low Dimensional Transition Metal Dichalcogenides. Nanomaterials, 2018, 8, 463.	4.1	38
1533	High Detectivity from a Lateral Graphene–MoS ₂ Schottky Photodetector Grown by Chemical Vapor Deposition. Advanced Electronic Materials, 2018, 4, 1800069.	5.1	42
1534	Development of Ultra-Thin 2D Semiconductors by Atomic Layer Deposition. , 2018, , 251-294.		0
1535	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	38.1	293
1536	Photovoltaic Effect in Graphene/MoS2/Si Van der Waals Heterostructures. Coatings, 2018, 8, 2.	2.6	18
1537	Folding Large Grapheneâ€onâ€Polymer Films Yields Laminated Composites with Enhanced Mechanical Performance. Advanced Materials, 2018, 30, e1707449.	21.0	32
1538	<i>In situ</i> study of nucleation and growth dynamics of Au nanoparticles on MoS ₂ nanoflakes. Nanoscale, 2018, 10, 15809-15818.	5.6	38
1539	Black Phosphorus and its Biomedical Applications. Theranostics, 2018, 8, 1005-1026.	10.0	253
1540	Morphology engineering of MoS2 nanostructures by controlling MoO3â^'x concentration using a quasi-closed crucible. Chemical Physics, 2018, 513, 78-82.	1.9	6
1541	Insight into MoS2 Synthesis with Biophotoelectrochemical Engineering and Applications in Levofloxacin Elimination. ACS Applied Energy Materials, 2018, 1, 3752-3762.	5.1	16
1542	A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	5

#	Article	IF	CITATIONS
1543	Low-temperature synthesis of 2D MoS ₂ on a plastic substrate for a flexible gas sensor. Nanoscale, 2018, 10, 9338-9345.	5.6	142
1544	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	38.1	344
1545	Electronic transport properties of heterojunction devices constructed by single-wall Fe ₂ Si and carbon nanotubes. Journal of Materials Chemistry C, 2018, 6, 5794-5802.	5.5	11
1546	Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2. Journal of Applied Physics, 2018, 123, .	2.5	23
1547	Atomic-level insights through spectroscopic and transport measurements into the large-area synthesis of MoS2 thin films. MRS Communications, 2018, 8, 1328-1334.	1.8	5
1548	In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites Part A: Applied Science and Manufacturing, 2018, 114, 407-417.	7.6	39
1549	Phototransistors with Negative or Ambipolar Photoresponse Based on Asâ€Grown Heterostructures of Singleâ€Walled Carbon Nanotube and MoS ₂ . Advanced Functional Materials, 2018, 28, 1802572.	14.9	35
1550	Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics. NPG Asia Materials, 2018, 10, 810-820.	7.9	36
1551	Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. Nanomaterials, 2018, 8, 590.	4.1	25
1552	Sub-Monolayer Accuracy in Determining the Number of Atoms per Unit Area in Ultrathin Films Using X-ray Fluorescence. Chemistry of Materials, 2018, 30, 6209-6216.	6.7	35
1553	Synthesis of Largeâ€Area InSe Monolayers by Chemical Vapor Deposition. Small, 2018, 14, e1802351.	10.0	81
1554	Visible-infrared dual-mode MoS ₂ -graphene-MoS ₂ phototransistor with high ratio of the <i>I</i> _{ph} / <i>I</i> _{dark} . 2D Materials, 2018, 5, 045027.	4.4	28
1555	Role of precursors' ratio for growth of two-dimensional MoS2 structure and investigation on its nonlinear optical properties. Thin Solid Films, 2018, 663, 37-43.	1.8	3
1556	Research Update: Recent progress on 2D materials beyond graphene: From ripples, defects, intercalation, and valley dynamics to straintronics and power dissipation. APL Materials, 2018, 6, .	5.1	30
1557	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	10.3	85
1558	Transition Metal Dichalcogenide Photodetectors. , 0, , .		8
1559	Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction. Frontiers of Materials Science, 2018, 12, 239-246.	2.2	9
1560	Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22, 14-35.	11.9	252

#	Article	IF	CITATIONS
1561	Collective diffusion of dense adsorbate at surfaces of arbitrary geometry. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 053208.	2.3	3
1562	The Role of Molybdenum Oxysulfide Rings in the Formation of Two-Dimensional Molybdenum Disulfide by Powder Vaporization. Journal of Physical Chemistry A, 2018, 122, 7320-7327.	2.5	8
1563	Ar ²⁺ Beam Irradiation-Induced Multivancancies in MoSe ₂ Nanosheet for Enhanced Electrochemical Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2167-2172.	17.4	73
1564	Microstructure and Elastic Constants of Transition Metal Dichalcogenide Monolayers from Friction and Shear Force Microscopy. Advanced Materials, 2018, 30, e1803748.	21.0	16
1565	Site-Specific Positioning and Patterning of MoS ₂ Monolayers: The Role of Au Seeding. ACS Nano, 2018, 12, 8970-8976.	14.6	50
1566	Measuring third-order susceptibility tensor elements of monolayer MoS2 using the optical Kerr effect method. Applied Physics Letters, 2018, 113, 051901.	3.3	4
1567	Metastable defects in monolayer and few-layer films of MoS2. AIP Conference Proceedings, 2018, , .	0.4	1
1568	High-Temperature Continuous-Wave Pumped Lasing from Large-Area Monolayer Semiconductors Grown by Chemical Vapor Deposition. ACS Nano, 2018, 12, 9390-9396.	14.6	44
1569	SiC/MoS2 layered heterostructures: Promising photocatalysts revealed by a first-principles study. Materials Chemistry and Physics, 2018, 216, 64-71.	4.0	63
1570	Superatom Molecular Orbital as an Interfacial Charge Separation State. Journal of Physical Chemistry Letters, 2018, 9, 3485-3490.	4.6	29
1571	Enhanced Carrier Density in a MoS ₂ /Si Heterojunction-Based Photodetector by Inverse Auger Process. IEEE Transactions on Electron Devices, 2018, 65, 4149-4154.	3.0	15
1572	Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells. Nano Energy, 2018, 50, 649-658.	16.0	26
1573	Ab-initio study of electronic and optical properties of biaxially deformed single-layer GeS. Superlattices and Microstructures, 2018, 120, 501-507.	3.1	25
1574	Controlling the dendritic structure and the photo-electrocatalytic properties of highly crystalline MoS ₂ on sapphire substrate. 2D Materials, 2018, 5, 031015.	4.4	13
1575	Electronic structures and optical properties of P and Cl atoms adsorbed/substitutionally doped monolayer MoS 2. Solid State Communications, 2018, 280, 6-12.	1.9	22
1576	Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Frontiers of Physics, 2018, 13, 1.	5.0	17
1577	THz-induced thermoelectric and thermal transport in atomic monolayers. , 2018, , 473-509.		0
1578	Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS ₂ . Nanotechnology, 2018, 29, 345205.	2.6	9

#	Article	IF	CITATIONS
1579	Adsorption and diffusion of lithium on heteroatom-doped monolayer molybdenum disulfide. Applied Surface Science, 2018, 455, 911-918.	6.1	34
1580	Hydrogenation and defect formation control the strength and ductility of MoS2 nanosheets: Reactive molecular dynamics simulation. Extreme Mechanics Letters, 2018, 22, 157-164.	4.1	20
1581	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	14.6	78
1582	Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures. Nanoscale, 2018, 10, 13652-13660.	5.6	26
1583	Determination of band alignment at two-dimensional MoS2/Si van der Waals heterojunction. Journal of Applied Physics, 2018, 123, .	2.5	19
1584	High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nature Electronics, 2018, 1, 356-361.	26.0	197
1585	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	47.7	505
1586	Flexible modulation of electronic and magnetic properties of zigzag H-MoS ₂ nanoribbons by crack defects. Journal of Physics Condensed Matter, 2018, 30, 285302.	1.8	3
1587	2D Material Production Methods. , 2019, , 53-101.		2
1588	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531.	2.6	28
1588 1589	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.	2.6 4.6	28 45
1588 1589 1590	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768. A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868.	2.6 4.6 2.1	28 45 46
1588 1589 1590 1591	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531.Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868.The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.	2.6 4.6 2.1 38.1	28 45 46 139
1588 1589 1590 1591	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531.Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868.The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	2.6 4.6 2.1 38.1 10.3	28 45 46 139 89
1588 1589 1590 1591 1592	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768. A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536. Unidirectional Spin–Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices. Nano Letters, 2019, 19, 6005-6012.	2.6 4.6 2.1 38.1 10.3 9.1	28 45 46 139 89 21
1588 1589 1590 1591 1592 1593	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531. Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768. A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536. Unidirectional Spin〓Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices. Nano Letters, 2019, 19, 6005-6012. Large area growth of few-layer In2Te3 films by chemical vapor deposition and its magnetoresistance properties. Scientific Reports, 2019, 9, 10951.	2.6 4.6 2.1 38.1 10.3 9.1 3.3	28 45 46 139 89 21
 1588 1589 1590 1591 1592 1593 1594 1595 	2D gold supercrystal-MoS2 hybrids: Photoluminescence quenching. Materials Letters, 2019, 255, 126531.Wafer-Scale Sulfur Vacancy-Rich Monolayer MoS ₂ for Massive Hydrogen Production. Journal of Physical Chemistry Letters, 2019, 10, 4763-4768.A first-principles insight into Pd-doped MoSe2 monolayer: A toxic gas scavenger. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125868.The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.Unidirectional Spinã€"Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices. Nano Letters, 2019, 19, 6005-6012.Large area growth of few-layer In2Te3 films by chemical vapor deposition and its magnetoresistance properties. Scientific Reports, 2019, 9, 10951.Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials, 2019, 31, e1901694.	2.6 4.6 2.1 38.1 10.3 9.1 3.3 21.0	28 45 46 139 89 21 21

#	Article	IF	CITATIONS
1597	Photothermal property in MoS ₂ nanoflakes: theoretical and experimental comparison. Materials Research Express, 0, , .	1.6	6
1598	MoS2 dual-gate transistors with electrostatically doped contacts. Nano Research, 2019, 12, 2515-2519.	10.4	21
1599	2D materials as an emerging platform for nanopore-based power generation. Nature Reviews Materials, 2019, 4, 588-605.	48.7	253
1600	Investigating modification on electronic properties of bilayer MoS2 field-effect transistor by low-temperature oxygen plasma treatment. Applied Surface Science, 2019, 495, 143486.	6.1	10
1601	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	3.6	49
1602	Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications. Current Medicinal Chemistry, 2019, 26, 1788-1805.	2.4	38
1603	Two-Dimensional and Screw Growth of MoS2 Films in the Process of Chemical Deposition from the Gas Phase. Russian Journal of Applied Chemistry, 2019, 92, 596-601.	0.5	2
1604	The modulation of terahertz photoconductivity in CVD grown <i>n</i> doped monolayer MoS ₂ with gas adsorption. Journal of Physics Condensed Matter, 2019, 31, 245001.	1.8	12
1605	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	14.9	113
1606	Bionanoelectronic platform with a lipid bilayer/CVD-grown MoS2 hybrid. Biosensors and Bioelectronics, 2019, 142, 111512.	10.1	11
1607	Adsorption of heavy metals on molybdenum disulfide in water: A critical review. Journal of Molecular Liquids, 2019, 292, 111390.	4.9	72
1608	A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Research, 2019, 12, 2655-2694.	10.4	283
1609	Wetting behavior of MoS2 thin films. Materials Research Express, 2019, 6, 096424.	1.6	10
1610	Synthesis Methods For 2D Nanostructured Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs). Advanced Structured Materials, 2019, , 393-456.	0.5	2
1611	Tailored Langmuir–Schaefer Deposition of Few-Layer MoS ₂ Nanosheet Films for Electronic Applications. Langmuir, 2019, 35, 9802-9808.	3.5	22
1612	Immunity to Contact Scaling in MoS ₂ Transistors Using in Situ Edge Contacts. Nano Letters, 2019, 19, 5077-5085.	9.1	76
1613	Solid Lubrication with MoS2: A Review. Lubricants, 2019, 7, 57.	2.9	320
1614	Clean Transfer of 2D Transition Metal Dichalcogenides Using Cellulose Acetate for Atomic Resolution Characterizations. ACS Applied Nano Materials, 2019, 2, 5320-5328.	5.0	33

# 1615	ARTICLE Recent Advances in Interface Engineering of Transition-Metal Dichalcogenides with Organic Molecules and Polymers. ACS Nano, 2019, 13, 9713-9734.	IF 14.6	CITATIONS
1616	Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. Nature Communications, 2019, 10, 3265.	12.8	69
1617	Effective indirect exchange interaction in p -doped MoS2 nanoribbons in the presence of intrinsic spin-orbit interaction. Physical Review B, 2019, 100, .	3.2	2
1618	Novel topological approach in mechanical properties of basalt/flax hybrid composites. AIP Conference Proceedings, 2019, , .	0.4	Ο
1619	Photo Sensor Based on 2D Materials. , 2019, , 465-479.		0
1620	Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical Scissoring. Nanomaterials, 2019, 9, 906.	4.1	15
1621	Origin of Nanoscale Friction Contrast between Supported Graphene, MoS ₂ , and a Graphene/MoS ₂ Heterostructure. Nano Letters, 2019, 19, 5496-5505.	9.1	115
1622	Edge-modulated dual spin-filter effect in zigzag-shaped buckling Ag ₂ S nanoribbons. Physical Chemistry Chemical Physics, 2019, 21, 15623-15629.	2.8	6
1623	A universal approach for the synthesis of two-dimensional binary compounds. Nature Communications, 2019, 10, 2957.	12.8	93
1624	On the Morphology and Optical Properties of Molybdenum Disulfide Nanostructures from a Monomolecular Layer to a Fractal-Like Substructure. Semiconductors, 2019, 53, 923-929.	0.5	2
1625	Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Industrial & Engineering Chemistry Research, 2019, 58, 20553-20561.	3.7	10
1626	Mo Concentration Controls the Morphological Transitions from Dendritic to Semicompact, and to Compact Growth of Monolayer Crystalline MoS2 on Various Substrates. ACS Applied Materials & Interfaces, 2019, 11, 42751-42759.	8.0	30
1627	Defect-moderated oxidative etching of MoS2. Journal of Applied Physics, 2019, 126, .	2.5	12
1628	Chemical vapor deposition growth of crystal monolayer SnS 2 with NaCl-assistant. Chinese Physics B, 2019, 28, 118101.	1.4	4
1629	Lithographically defined synthesis of transition metal dichalcogenides. 2D Materials, 2019, 6, 045055.	4.4	4
1630	Growth of vertical MoS ₂ nanosheets on carbon materials by chemical vapor deposition: influence of substrates. Materials Research Express, 2019, 6, 1150c1.	1.6	5
1631	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS ₂ Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 16289-16296.	13.8	201
1632	Electronic transmission in the lateral heterostructure of semiconducting and metallic transition-metal dichalcogenide monolayers. Journal of Applied Physics, 2019, 126,	2.5	8

#	Article	IF	CITATIONS
1633	Synthesis and biocompatibility of two-dimensional biomaterials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 124004.	4.7	61
1634	Direct Synthesis of Large-Scale Multilayer TaSe2 on SiO2/Si Using Ion Beam Technology. ACS Omega, 2019, 4, 17536-17541.	3.5	6
1635	Spin-resolved transport properties in molybdenum disulfide superlattice. European Physical Journal B, 2019, 92, 1.	1.5	3
1636	Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition. Nano Research, 2019, 12, 2802-2807.	10.4	15
1637	Recent advances in synthesis and biosensors of two-dimensional MoS ₂ . Nanotechnology, 2019, 30, 502004.	2.6	11
1638	Sensitive and Ultrabroadband Phototransistor Based on Twoâ€Dimensional Bi ₂ O ₂ Se Nanosheets. Advanced Functional Materials, 2019, 29, 1905806.	14.9	106
1639	Fabrication of a MoS ₂ /Graphene Nanoribbon Heterojunction Network for Improved Thermoelectric Properties. Advanced Materials Interfaces, 2019, 6, 1901333.	3.7	26
1640	Highly Crystalline MoS ₂ Thin Films Fabricated by Sulfurization. Physica Status Solidi (B): Basic Research, 2019, 256, 1900342.	1.5	4
1641	Interfacial synthesis of ultrathin two-dimensional 2PbCO ₃ ·Pb(OH) ₂ nanosheets with high enzyme mimic catalytic activity. Inorganic Chemistry Frontiers, 2019, 6, 498-503.	6.0	1
1642	Growth and characterization of two-dimensional crystals for communication and energy applications. Progress in Crystal Growth and Characterization of Materials, 2019, 65, 100465.	4.0	5
1643	Effect of varying the gate voltage scan rate in a MoS ₂ /ferroelectric polymer field effect transistor. Ferroelectrics, 2019, 550, 1-11.	0.6	5
1644	WO ₃ -MoS ₂ Mixture-Based Gas Sensor for NO ₂ Detection at Room Temperature. , 2019, , .		2
1645	Device and Circuit Level Gate Configuration Optimization for 2D Material Field-Effect Transistors. , 2019, , .		2
1646	Pseudospin triplet superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>2</mml:mn> <mml:mi>H</mml:mi> </mml:math -type transition-metal dichalcogenide monolayers. Physical Review B, 2019, 100, .	>3.2	8
1647	Contrasting Oxygen Reduction Reactions on Zero- and One-Dimensional Defects of MoS ₂ for Versatile Applications. ACS Applied Materials & Interfaces, 2019, 11, 46327-46336.	8.0	22
1648	How to â€ [~] train' your CVD to grow large-area 2D materials. Materials Research Express, 2019, 6, 125002.	1.6	11
1649	The Effect of Precursors Concentration on the Structural Properties of MoS ₂ Nanosheet-Microsphere Synthesized Via Hydrothermal Route. IOP Conference Series: Materials Science and Engineering, 2019, 546, 042048.	0.6	3
1650	Induced Synthesis of Vertically Oriented Multilayer MoS2 via CVD Method. IOP Conference Series: Materials Science and Engineering, 2019, 563, 022002.	0.6	0

#	Article	IF	CITATIONS
1651	Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS 2 Arrays for Highâ€Efficiency Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 16435-16442.	2.0	16
1652	Vaporâ€phase growth of highâ€quality waferâ€scale twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1 460-478.	'17.3	46
1653	Mechanism of Alkali Metal Compound-Promoted Growth of Monolayer MoS ₂ : Eutectic Intermediates. Chemistry of Materials, 2019, 31, 873-880.	6.7	59
1654	Imaging Nanoscale Inhomogeneities and Edge Delamination in Asâ€Grown MoS ₂ Using Tipâ€Enhanced Photoluminescence. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900381.	2.4	12
1655	Van der Waals Integration of Bismuth Quantum Dots–Decorated Tellurium Nanotubes (Te@Bi) Heterojunctions and Plasmaâ€Enhanced Optoelectronic Applications. Small, 2019, 15, e1903233.	10.0	45
1656	Surface Assembly Strategy for the Fabrication of MoS2 Thin-Film Patterns. International Journal of Precision Engineering and Manufacturing, 2019, 20, 2215-2220.	2.2	1
1657	Recent Advances of Ternary Layered Cu ₂ MX ₄ (M = Mo, W; X = S, Se) Nanomaterials for Photocatalysis. Solar Rrl, 2019, 3, 1800320.	5.8	23
1658	Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors. 2D Materials, 2019, 6, 045052.	4.4	11
1659	Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Research, 2019, 12, 2646-2652.	10.4	104
1660	Electronic properties of two-dimensional IV–V group materials from density functional theory. Applied Surface Science, 2019, 496, 143730.	6.1	14
1661	Vertically Stacked CVD-Grown 2D Heterostructure for Wafer-Scale Electronics. ACS Applied Materials & Interfaces, 2019, 11, 35444-35450.	8.0	27
1662	Ultrafast Growth of Thin Hexagonal and Pyramidal Molybdenum Nitride Crystals and Films. , 2019, 1, 383-388.		17
1663	Monolayer MoS2 growth at the Au–SiO2 interface. Nanoscale, 2019, 11, 19700-19704.	5.6	7
1664	Sonication-Assisted Synthesis of Molybdenum Disulfide Aerogel for the Electrode Materials of Supercapacitors. Nano, 2019, 14, 1950055.	1.0	1
1665	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	5.6	52
1666	Atomically Sharp Dual Grain Boundaries in 2D WS ₂ Bilayers. Small, 2019, 15, e1902590.	10.0	13
1667	MoS2 triboelectric nanogenerators based on depletion layers. Nano Energy, 2019, 65, 104079.	16.0	35
1668	Impact of Heat Treatment on a Hetero-Stacked MoS ₂ /\${h}\$ -BN Field-Effect Transistor. IEEE Electron Device Letters, 2019, 40, 1626-1629.	3.9	1

#	Article	IF	Citations
1669	Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption. ACS Applied Materials & Interfaces, 2019, 11, 35835-35844.	8.0	7
1670	Growth of highly oriented MoS ₂ <i>via</i> an intercalation process in the graphene/SiC(0001) system. Physical Chemistry Chemical Physics, 2019, 21, 20641-20646.	2.8	8
1671	Ultrasensitive detection of miRNA-155 based on controlled fabrication of AuNPs@MoS2 nanostructures by atomic layer deposition. Biosensors and Bioelectronics, 2019, 144, 111660.	10.1	47
1672	Two-Dimensional Tungsten Diselenides Integrated on Paper Substrate for Highly Flexible and Sensitive Gas Sensor. , 2019, , .		9
1673	In-situ Grown Hierarchical MoS2 Nanoflakes on Three- Dimensional Carbon Fiber Papers as Free-Standing Anodes for Lithium-Ion Battery. International Journal of Electrochemical Science, 2019, , 8662-8675.	1.3	5
1674	Effects of solvents and polymer on photoluminescence of transferred WS2 monolayers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	1.2	11
1675	Electronic Properties of a New Family of Layered Materials from Groups 14 and 15: First-Principles Simulations. Journal of Physical Chemistry C, 2019, 123, 25470-25476.	3.1	13
1676	A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Functionalized MoS2 Nanosheets for Polymer Nanocomposites. Nanomaterials, 2019, 9, 1400.	4.1	18
1677	Solution-Processed PEDOT:PSS/MoS2 Nanocomposites as Efficient Hole-Transporting Layers for Organic Solar Cells. Nanomaterials, 2019, 9, 1328.	4.1	23
1678	Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Research, 2019, 12, 2781-2787.	10.4	9
1679	Substrate Temperature Dependence of the Properties of Single-layer MoS2 Film deposited by Using Pulsed Laser Deposition. Journal of the Korean Physical Society, 2019, 75, 385-388.	0.7	0
1680	Coulomb Blockade in Etched Single- and Few-Layer MoS ₂ Nanoribbons. ACS Applied Electronic Materials, 2019, 1, 2202-2207.	4.3	10
1681	Elemental Substitution of Two-Dimensional Transition Metal Dichalcogenides (MoSe ₂ and) Tj ETQq() 0 0 rgBT 7.8	/Overlock 10 101
1682	Photoluminescence enhancement of monolayer MoS ₂ using plasmonic gallium nanoparticles. Nanoscale Advances, 2019, 1, 884-893.	4.6	33
1683	A vapor-phase-assisted growth route for large-scale uniform deposition of MoS ₂ monolayer films. RSC Advances, 2019, 9, 107-113.	3.6	4
1684	Growth behavior of wafer-scale two-dimensional MoS2 layer growth using metal-organic chemical vapor deposition. Journal of Crystal Growth, 2019, 510, 50-55.	1.5	16
1685	Facile synthesis of solution-processed MoS ₂ nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 926-936.	5.5	38
1686	Influence of interlayer interactions on the relaxation dynamics of excitons in ultrathin MoS ₂ . Nanoscale Advances, 2019, 1, 1186-1192.	4.6	3

#	Article	IF	CITATIONS
1687	2D boron dichalcogenides from the substitution of Mo with ionic B ₂ pair in MoX ₂ (X = S, Se and Te): high stability, large excitonic effect and high charge carrier mobility. Journal of Materials Chemistry C, 2019, 7, 1651-1658.	5.5	17
1688	Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566, 368-372.	27.8	266
1689	Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160, 360-367.	3.0	60
1690	Structural Transformation Identification of Sputtered Amorphous MoS _{<i>x</i>} as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation. ACS Catalysis, 2019, 9, 2368-2380.	11.2	78
1691	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	11.2	224
1692	Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science, 2019, 6, 1802093.	11.2	23
1693	Defects coupling impacts on mono-layer WSe ₂ tunneling field-effect transistors. Applied Physics Express, 2019, 12, 034001.	2.4	5
1694	Growth of continuous MoS2 film with large grain size by chemical vapor deposition. Materials Science in Semiconductor Processing, 2019, 93, 317-323.	4.0	17
1695	Probing fretting performance of DLC and MoS2 films under fluid lubrication. Applied Surface Science, 2019, 478, 661-679.	6.1	15
1696	MoS ₂ -based nanostructures: synthesis and applications in medicine. Journal Physics D: Applied Physics, 2019, 52, 183001.	2.8	53
1697	Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nature Communications, 2019, 10, 598.	12.8	124
1698	Structure and Properties of Single-Layer MoS2 for Nano-Photoelectric Devices. Materials, 2019, 12, 198.	2.9	22
1699	2D-MoS ₂ nanosheets as effective hole transport materials for colloidal PbS quantum dot solar cells. Nanoscale Advances, 2019, 1, 1387-1394.	4.6	35
1700	A new paradigm of ultrathin 2D nanomaterial adsorbents in aqueous media: graphene and GO, MoS ₂ , MXenes, and 2D MOFs. Journal of Materials Chemistry A, 2019, 7, 16598-16621.	10.3	95
1701	Rectifying effect in a MoS2 monolayer crossed with an electro-spun PEDOT-PSS nano-ribbon. SN Applied Sciences, 2019, 1, 1.	2.9	1
1702	Precise Layer Control of MoTe2 by Ozone Treatment. Nanomaterials, 2019, 9, 756.	4.1	15
1703	Effect of growth temperature on the photovoltaic characteristics of thermal chemical vapor deposited MoS2 layers grown on p-type Si. Journal of Materials Science: Materials in Electronics, 2019, 30, 11542-11551.	2.2	0
1704	Effect of Processing Parameters on Monolayer MoS2 Prepared by APCVD in a Quasiclosed Crucible. Journal of Electronic Materials, 2019, 48, 4947-4958.	2.2	2

#	Article	IF	CITATIONS
1705	Electrical and structural characterization of shallow As acceptors in natural p-type 2H-MoS2. Applied Physics Letters, 2019, 114, .	3.3	2
1706	Height reversal in Au coverage on MoS2 flakes/SiO2: Thermal control of interfacial nucleation. Applied Physics Letters, 2019, 114, .	3.3	3
1707	Growth of MoS ₂ nanoflakes near/far from tubular furnace axis and their impact on the efficiency enhancement of the Si solar cells. Materials Research Express, 2019, 6, 085911.	1.6	1
1708	Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. Journal of the Korean Physical Society, 2019, 74, 1032-1038.	0.7	8
1709	Wafer-scale and patternable synthesis of NbS ₂ for electrodes of organic transistors and logic gates. Journal of Materials Chemistry C, 2019, 7, 8599-8606.	5.5	6
1710	Photoluminescence Quenching and SERS in Tri-layer MoS2 Flakes. Journal of Electronic Materials, 2019, 48, 5883-5890.	2.2	8
1711	Nonvolatile Memory Device Based on Copper Polyphthalocyanine Thin Films. ACS Omega, 2019, 4, 10419-10423.	3.5	13
1712	Mass Production of Highâ€Quality Transition Metal Dichalcogenides Nanosheets via a Molten Salt Method. Advanced Functional Materials, 2019, 29, 1900649.	14.9	59
1713	Advances in the Synthesis and Development of Two-Dimensional Transition-Metal Dichalcogenide-Based Nanosensor Platforms. , 2019, , 27-42.		2
1714	Defect induced magnetism in monolayer HfSe2: An ab initio study. Applied Surface Science, 2019, 491, 517-525.	6.1	7
1715	In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel reaction in hydrogen evolution. Nano Energy, 2019, 63, 103846.	16.0	41
1716	Strain effects on magnetic states of monolayer MoS2 doped with group IIIA to VA atoms. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113609.	2.7	8
1717	Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900220.	3.7	42
1718	Revealing the failure mechanism and designing protection approach for MoS2 in humid environment by first-principles investigation. Applied Surface Science, 2019, 487, 1121-1130.	6.1	26
1719	Coupled Biphase (1Tâ€2H)â€MoSe ₂ on Mold Spore Carbon for Advanced Hydrogen Evolution Reaction. Small, 2019, 15, e1901796.	10.0	87
1720	Quantum Electron Transport in Ohmic Edge Contacts between Two-Dimensional Materials. ACS Applied Electronic Materials, 2019, 1, 799-803.	4.3	8
1721	Prediction of directional magnetic-exchange coupling in Mn doped Î ³ -InSe monolayer. Results in Physics, 2019, 14, 102416.	4.1	3
1722	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.	17.4	375

#	Article	IF	CITATIONS
1723	Effective charge separation of inverted polymer solar cells using versatile MoS ₂ nanosheets as an electron transport layer. Journal of Materials Chemistry A, 2019, 7, 15356-15363.	10.3	19
1724	New Insights into the Triton Xâ€100 Induced Chemical Exfoliation of MoS 2 to Derive Highly Luminescent Nanosheets. ChemistrySelect, 2019, 4, 6219-6226.	1.5	4
1725	Growth of Complex 2D Material-Based Structures with Naturally Formed Contacts. ACS Omega, 2019, 4, 9557-9562.	3.5	5
1726	Largeâ€area high quality PtSe ₂ thin film with versatile polarity. InformaÄnÃ-Materiály, 2019, 1, 260-267.	17.3	54
1727	Large-area patterning of substrate-conformal MoS2 nano-trenches. Nano Research, 2019, 12, 1851-1854.	10.4	16
1728	Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Progress in Materials Science, 2019, 106, 100573.	32.8	160
1729	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	10.0	69
1730	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. Nano Letters, 2019, 19, 4371-4379.	9.1	161
1731	Adhesion properties of 2D materials. Journal Physics D: Applied Physics, 2019, 52, 364002.	2.8	39
1732	The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS ₂ . Nano Letters, 2019, 19, 4641-4650.	9.1	39
1733	Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Applied Materials & Interfaces, 2019, 11, 23353-23360.	8.0	38
1734	Engineering of transition metal dichalcogenide-based 2D nanomaterials through doping for environmental applications. Molecular Systems Design and Engineering, 2019, 4, 804-827.	3.4	71
1735	Review: application of transition metal dichalcogenide in pulsed fiber laser system. Materials Research Express, 2019, 6, 082004.	1.6	35
1736	The Effect of Nickel on MoS ₂ Growth Revealed with <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2019, 13, 7117-7126.	14.6	48
1737	Modulation of New Excitons in Transition Metal Dichalcogenideâ€Perovskite Oxide System. Advanced Science, 2019, 6, 1900446.	11.2	6
1738	Metalloâ€Hydrogelâ€Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1807612.	14.9	12
1739	Tris‣tabilized MoS ₂ Nanosheets with Robust Dispersibility and Facile Surface Functionalization. Advanced Materials Interfaces, 2019, 6, 1900585.	3.7	8
1740	Recent Progress in 2D Layered III–VI Semiconductors and their Heterostructures for Optoelectronic Device Applications. Advanced Materials Technologies, 2019, 4, 1900108.	5.8	104

#	Article	IF	CITATIONS
1741	Light-assisted recovery of reacted MoS ₂ for reversible NO ₂ sensing at room temperature. Nanotechnology, 2019, 30, 355504.	2.6	48
1742	Recent progress in MoS2 for solar energy conversion applications. Frontiers in Energy, 2019, 13, 251-268.	2.3	11
1743	The Atomic and Electronic Structure of 0° and 60° Grain Boundaries in MoS2. Frontiers in Physics, 2019, 7, .	2.1	10
1744	Chemical Stability and Transformation of Molybdenum Disulfide Nanosheets in Environmental Media. Environmental Science & Technology, 2019, 53, 6282-6291.	10.0	35
1745	Few-Layer MoS ₂ /a-Si:H Heterojunction Pin-Photodiodes for Extended Infrared Detection. ACS Photonics, 2019, 6, 1372-1378.	6.6	15
1746	Hybrid metal nanoantenna 2D-material photovoltaic device. Solar Energy Materials and Solar Cells, 2019, 200, 109918.	6.2	9
1747	Low resistance metal contacts on MoS2 films deposited by laser physical vapor deposition. Journal of Materials Science: Materials in Electronics, 2019, 30, 10024-10029.	2.2	4
1748	Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit. Sensors and Actuators B: Chemical, 2019, 293, 122-128.	7.8	41
1749	Selectively Metallized 2D Materials for Simple Logic Devices. ACS Applied Materials & Interfaces, 2019, 11, 18571-18579.	8.0	17
1750	Enhanced photoresponse of monolayer MoS ₂ through hybridization with carbon quantum dots as efficient photosensitizer. 2D Materials, 2019, 6, 035025.	4.4	24
1751	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53
1752	Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review. Frontiers of Chemical Science and Engineering, 2019, 13, 427-443.	4.4	7
1753	Two-Dimensional Nanomaterials: Crystal Structure and Synthesis. , 2019, , 1-25.		11
1754	Improving ionic/electronic conductivity of MoS2 Li-ion anode via manganese doping and structural optimization. Chemical Engineering Journal, 2019, 372, 665-672.	12.7	46
1755	Solar Energy Harvesting in Type II van der Waals Heterostructures of Semiconducting Group III Monochalcogenide Monolayers. Journal of Physical Chemistry C, 2019, 123, 12666-12675.	3.1	86
1756	Raman fingerprint of stacking order in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>HfS</mml:mi><mml: heterobilayer. Physical Review B, 2019, 99, .</mml: </mml:msub></mml:mrow></mml:math 	m ra>2 <td>ml216n></td>	ml 216 n>
1757	Adsorption of toxic gas molecules on pristine and transition metal doped hexagonal GaN monolayer: A first-principles study. Vacuum, 2019, 165, 35-45.	3.5	74
1758	Defect Healing in Layered Materials: A Machine Learning-Assisted Characterization of MoS ₂ Crystal Phases. Journal of Physical Chemistry Letters, 2019, 10, 2739-2744.	4.6	19

#	Article		CITATIONS
1759	Single-Layered MoS ₂ Directly Grown on Rutile TiO ₂ (110) for Enhanced Interfacial Charge Transfer. ACS Nano, 2019, 13, 6083-6089.	14.6	60
1760	Reverse micelle assisted hydrothermal reaction route for the synthesis of homogenous MoS2 nanospheres. SN Applied Sciences, 2019, 1, 1.	2.9	7
1761	Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten, 2019, 1, 59-79.	4.8	45
1762	Improved carrier doping strategy of monolayer MoS2 through two-dimensional solid electrolyte of YBr3. Applied Physics Letters, 2019, 114, .	3.3	9
1763	Origin of Intrinsic Direct Band Gap of Janus Groupâ€III Chalcogenide Monolayers. Physica Status Solidi (B): Basic Research, 2019, 256, 1900070.	1.5	12
1764	Local Modulation of Electrical Transport in 2D Layered Materials Induced by Electron Beam Irradiation. ACS Applied Electronic Materials, 2019, 1, 684-691.	4.3	20
1765	Bandgap tuning of Monolayer MoS2(1-x)Se2x alloys by optimizing parameters. Materials Science in Semiconductor Processing, 2019, 99, 134-139.	4.0	7
1766	Highly ordered arrays and characterization of WS2 flakes grown by low pressure chemical vapour deposition. Chemical Physics, 2019, 523, 106-109.	1.9	9
1767	Real time optical observation and control of atomically thin transition metal dichalcogenide synthesis. Nanoscale, 2019, 11, 7317-7323.	5.6	33
1768	Epitaxial growth of non-layered PbSe nanoplates on MoS2 monolayer for infrared photoresponse. Applied Physics Express, 2019, 12, 055005.	2.4	16
1769	Chemical vapor deposition of monolayer-thin WS2 crystals from the WF6 and H2S precursors at low deposition temperature. Journal of Chemical Physics, 2019, 150, 104703.	3.0	11
1770	Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter. Advanced Materials, 2019, 31, e1900861.	21.0	36
1771	Synthesis of Bi ₂ Te ₃ Single Crystals with Lateral Size up to Tens of Micrometers by Vapor Transport and Its Potential for Thermoelectric Applications. Crystal Growth and Design, 2019, 19, 2024-2029.	3.0	10
1772	CVD Grown MoS 2 Nanoribbons on MoS 2 Covered Sapphire(0001) Without Catalysts. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900063.	2.4	26
1773	Adsorption and dissociation of H2O molecule on the doped monolayer MoS2 with B/Si. Applied Surface Science, 2019, 481, 994-1000.	6.1	16
1774	Cross-plane thermoelectric figure of merit in graphene - C60 heterostructures at room temperature. FlatChem, 2019, 14, 100089.	5.6	10
1775	Flexible Molybdenum Disulfide (MoS ₂) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 11061-11105.	8.0	277
1776	Organic Intercalant-Free Liquid Exfoliation Route to Layered Metal-Oxide Nanosheets via the Control of Electrostatic Interlayer Interaction. ACS Applied Materials & Interfaces, 2019, 11, 12121-12132.	8.0	25

#	Article		CITATIONS
1777	Ballistic response of hexagonal boron nitride monolayer under impact of a nano-projectile. Mechanics of Materials, 2019, 133, 1-12.	3.2	11
1778	Fabrication of Molybdenum Disulfide (MoS ₂) Layered Thin Films by Atmospheric-Pressure Solution Based Mist CVD. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 155-161.	0.2	2
1779	Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosensors and Bioelectronics, 2019, 132, 248-264.	10.1	83
1780	MoS ₂ –OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS ₂ on Arbitrary Substrates. Journal of the American Chemical Society, 2019, 141, 5392-5401.	13.7	87
1781	Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Research, 2019, 12, 823-827.	10.4	39
1782	Grain Boundaries as Electrical Conduction Channels in Polycrystalline Monolayer WS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 10189-10197.	8.0	17
1783	Direct observation of the CVD growth of monolayer MoS ₂ using in situ optical spectroscopy. Beilstein Journal of Nanotechnology, 2019, 10, 557-564.	2.8	21
1784	Monolayer MoS2 field-effect transistors patterned by photolithography for active matrix pixels in organic light-emitting diodes. Npj 2D Materials and Applications, 2019, 3, .	7.9	43
1785	Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS ₂ Photodetector. Advanced Functional Materials, 2019, 29, 1900541.	14.9	58
1786	Morphology and magnetism of CoPd coverage on MoS2 flakes/SiO2. Journal of Alloys and Compounds, 2019, 785, 436-444.	5.5	4
1787	WS ₂ Nanotubes, 2D Nanomeshes, and 2D In-Plane Films through One Single Chemical Vapor Deposition Route. ACS Nano, 2019, 13, 3896-3909.	14.6	33
1788	Structural, electronic and transport properties of an edge terminated armchair MoS2 nanoribbon with N, O and F atoms. AIP Advances, 2019, 9, .	1.3	6
1789	Chemical Vapor Deposition Growth of Large-Area Monolayer MoS ₂ and Fabrication of Relevant Back-Gated Transistor [*] Chinese Physics Letters, 2019, 36, 037301.	3.3	13
1790	Employing a Bifunctional Molybdate Precursor To Grow the Highly Crystalline MoS ₂ for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 14239-14248.	8.0	10
1791	Ultrafast and low-temperature synthesis of patternable MoS ₂ using laser irradiation. Journal Physics D: Applied Physics, 2019, 52, 18LT01.	2.8	8
1792	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Research, 2019, 12, 1139-1145.	10.4	63
1793	Temperature controlled 1T/2H phase ratio modulation in mono- and a few layered MoS2 films. Applied Surface Science, 2019, 479, 1236-1245.	6.1	29
1794	Growth of environmentally stable transition metal selenide films. Nature Materials, 2019, 18, 602-607.	27.5	116

#	Article	IF	CITATIONS
1795	Recent progress in atomic layer deposition of molybdenum disulfide: a mini review. Science China Materials, 2019, 62, 913-924.	6.3	24
1796	Two-dimensional black phosphorus: physical properties and applications. Materials Today Physics, 2019, 8, 92-111.	6.0	68
1797	A Single-Step Route to Single-Crystal Molybdenum Disulphide (MoS2) Monolayer domains. Scientific Reports, 2019, 9, 4142.	3.3	5
1798	Raman detection of hidden phonons assisted by atomic point defects in a two-dimensional semimetal. Npj 2D Materials and Applications, 2019, 3, .	7.9	10
1799	Self-limiting laser crystallization and direct writing of 2D materials. International Journal of Extreme Manufacturing, 2019, 1, 015001.	12.7	26
1800	Horizontal-to-Vertical Transition of 2D Layer Orientation in Low-Temperature Chemical Vapor Deposition-Grown PtSe ₂ and Its Influences on Electrical Properties and Device Applications. ACS Applied Materials & Interfaces, 2019, 11, 13598-13607.	8.0	77
1801	Electronic and optical properties of layered van der Waals heterostructure based on MS ₂ (M = Mo, W) monolayers. Materials Research Express, 2019, 6, 065060.	1.6	13
1802	Strategies for Airâ€Stable and Tunable Monolayer MoS ₂ â€Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals. Advanced Optical Materials, 2019, 7, 1801744.	7.3	43
1803	Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Advances, 2019, 9, .	1.3	42
1804	Surface-diffusion-limited growth of atomically thin WS ₂ crystals from core–shell nuclei. Nanoscale, 2019, 11, 8706-8714.	5.6	18
1805	Effect of morphology and hydrophobization of MoS2 microparticles on the stability of poly-α-olefins lubricants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 174-181.	4.7	13
1806	A novel rapid microwave synthesis of MoS ₂ nanosheets for supercapacitor electrode. IOP Conference Series: Materials Science and Engineering, 0, 490, 022061.	0.6	1
1807	Fast-neutron irradiation effects on monolayer MoS ₂ . Applied Physics Express, 2019, 12, 056001.	2.4	7
1808	Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Materials, 2019, 6, 034005.	4.4	24
1809	Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials, 2019, 12, 1177.	2.9	285
1810	Destructive role of oxygen in growth of molybdenum disulfide determined by secondary ion mass spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 8837-8842.	2.8	6
1811	Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations. Journal of Electronic Materials, 2019, 48, 3763-3776.	2.2	7
1812	Ultrafast Carrier Dynamics in Few-Layer Colloidal Molybdenum Disulfide Probed by Broadband Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 10571-10577.	3.1	35

#	Article	IF	CITATIONS
1813	High-Mobility MoS ₂ Directly Grown on Polymer Substrate with Kinetics-Controlled Metal–Organic Chemical Vapor Deposition. ACS Applied Electronic Materials, 2019, 1, 608-616.	4.3	47
1814	Detection of interfacial charge transfer in MoS2/PbI2 heterostructures via Kelvin probe force microscope. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	10
1815	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	8.0	207
1816	Ultrathin transition-metal dichalcogenide nanosheet-based colorimetric sensor for sensitive and label-free detection of DNA. Sensors and Actuators B: Chemical, 2019, 290, 565-572.	7.8	43
1817	Nanotribological Properties of ALD-Made Ultrathin MoS ₂ Influenced by Film Thickness and Scanning Velocity. Langmuir, 2019, 35, 3651-3657.	3.5	16
1818	Siliconâ€Compatible Photodetectors: Trends to Monolithically Integrate Photosensors with Chip Technology. Advanced Functional Materials, 2019, 29, 1808182.	14.9	198
1819	Recent Developments in Controlled Vaporâ€Phase Growth of 2D Group 6 Transition Metal Dichalcogenides. Advanced Materials, 2019, 31, e1804939.	21.0	100
1820	Interface Engineering via MoS ₂ Insertion Layer for Improving Resistive Switching of Conductiveâ€Bridging Random Access Memory. Advanced Electronic Materials, 2019, 5, 1800747.	5.1	29
1821	In situ generation and efficient activation of H2O2 for pollutant degradation over CoMoS2 nanosphere-embedded rGO nanosheets and its interfacial reaction mechanism. Journal of Colloid and Interface Science, 2019, 543, 214-224.	9.4	47
1822	Complementary inverters based on low-dimensional semiconductors prepared by facile and fully scalable methods. 2D Materials, 2019, 6, 025017.	4.4	6
1823	Electronic and Optoelectronic Applications Based on ReS ₂ . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800658.	2.4	36
1824	Two-dimensional semiconducting and single-crystalline antimony trioxide directly-grown on monolayer graphene. Chemical Communications, 2019, 55, 2473-2476.	4.1	8
1825	Structural characterization and transistor properties of thickness-controllable MoS2 thin films. Journal of Materials Science, 2019, 54, 7758-7767.	3.7	15
1826	Synthesis of large-area uniform MoS ₂ films by substrate-moving atmospheric pressure chemical vapor deposition: from monolayer to multilayer. 2D Materials, 2019, 6, 025030.	4.4	33
1827	Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Applied Materials Today, 2019, 15, 203-211.	4.3	45
1828	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
1829	A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 2019, 128, 274-297.	3.1	225
1830	Printed Strain Sensors Using Graphene Nanosheets Prepared by Waterâ€Assisted Liquid Phase Exfoliation. Advanced Materials Interfaces, 2019, 6, 1900034.	3.7	21

#	ARTICLE	IF	CITATIONS
1831	Deriving MoS ₂ nanoribbons from their flakes by chemical vapor deposition.	2.6	22
	Tuning the morphology and chemical composition of MoS2 nanostructures. Journal of Materials		
1832	Science, 2019, 54, 7768-7779.	3.7	17
1833	Piezoresistive strain sensor based on monolayer molybdenum disulfide continuous film deposited by chemical vapor deposition. Journal of Micromechanics and Microengineering, 2019, 29, 055002.	2.6	20
1834	Low-Temperature MoS ₂ Film Formation Using Sputtering and H ₂ S Annealing. IEEE Journal of the Electron Devices Society, 2019, 7, 2-6.	2.1	6
1835	Introductory Chapter: 2D Materials. , 0, , .		0
1836	Nanomaterialsâ€based gas sensors of SF ₆ decomposed species for evaluating the operation status of highâ€voltage insulation devices. High Voltage, 2019, 4, 242-258.	4.7	124
1837	Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals. Science Bulletin, 2019, 64, 1700-1706.	9.0	15
1838	Synthesis of Large Area Two-Dimensional MoS ₂ Films by Sulfurization of Atomic Layer Deposited MoO ₃ Thin Film for Nanoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 7521-7531.	5.0	34
1839	Adsorption and Diffusion of Lithium in Doped Molybdenum Disulfide Single-Layer with Metal Substituted Sulfur Atom. Key Engineering Materials, 2019, 815, 21-27.	0.4	0
1840	Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. Nanoscale, 2019, 11, 22118-22124.	5.6	9
1841	Species selective charge transfer dynamics in a P3HT/MoS ₂ van der Waals heterojunction: fluorescence lifetime microscopy and core hole clock spectroscopy approaches. Physical Chemistry Chemical Physics, 2019, 21, 23521-23532.	2.8	19
1842	Synthesis of low-symmetry 2D Ge _(1â^'x) Sn _x Se ₂ alloy flakes with anisotropic optical response and birefringence. Nanoscale, 2019, 11, 23116-23125.	5.6	9
1843	Influences of Contact Metals on the Performances of MoS ₂ Devices under Strains. Journal of Physical Chemistry C, 2019, 123, 30696-30703.	3.1	5
1844	Gas-Source CVD Growth of Atomic Layered WS2 from WF6 and H2S Precursors with High Grain Size Uniformity. Scientific Reports, 2019, 9, 17678.	3.3	36
1845	Enhancement of Photoluminescence in MoS2 on Ag Nanowires due to the Surface Plasmon Effect. Journal of the Korean Physical Society, 2019, 75, 801-805.	0.7	4
1846	Recent progress in devices and circuits based on wafer-scale transition metal dichalcogenides. Science China Information Sciences, 2019, 62, 1.	4.3	17
1847	Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions. Progress in Surface Science, 2019, 94, 100561.	8.3	39
1848	Direct Observation of Monolayer MoS2 Prepared by CVD Using In-Situ Differential Reflectance Spectroscopy. Nanomaterials, 2019, 9, 1640.	4.1	17

#	Article	IF	Citations
1849	Methane-Mediated Vapor Transport Growth of Monolayer WSe2 Crystals. Nanomaterials, 2019, 9, 1642.	4.1	1
1850	Doping of Two-Dimensional Semiconductors: A Rapid Review and Outlook. MRS Advances, 2019, 4, 2743-2757.	0.9	29
1851	Growth Mechanism of Continuous Monolayer MoS2 Prepared by Chemical Vapor Deposition. IOP Conference Series: Materials Science and Engineering, 2019, 562, 012074.	0.6	0
1852	Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study. Nanoscale, 2019, 11, 21799-21810.	5.6	43
1853	Tuning the orientation of few-layer MoS ₂ films using one-zone sulfurization. RSC Advances, 2019, 9, 29645-29651.	3.6	24
1854	Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials, 2019, 29, 1803807.	14.9	884
1855	Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sensors and Actuators A: Physical, 2019, 286, 51-58.	4.1	28
1856	Self-Limiting Growth of High-Quality 2D Monolayer MoS ₂ by Direct Sulfurization Using Precursor-Soluble Substrates for Advanced Field-Effect Transistors and Photodetectors. ACS Applied Nano Materials, 2019, 2, 369-378.	5.0	27
1857	Controlled growth of atomically thin MoSe ₂ films and nanoribbons by chemical vapor deposition. 2D Materials, 2019, 6, 025002.	4.4	51
1858	Electronic properties of WS2 and WSe2 monolayers with biaxial strain: A first-principles study. Chemical Physics, 2019, 519, 69-73.	1.9	62
1859	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	16.0	95
1860	Extrinsic spin-orbit coupling induced enhanced spin pumping in few-layer MoS2/Py. Journal of Magnetism and Magnetic Materials, 2019, 476, 337-341.	2.3	19
1861	Emerging opportunities for black phosphorus in energy applications. Materials Today Energy, 2019, 12, 1-25.	4.7	88
1862	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	47.7	521
1863	Symmetry-Controlled Reversible Photovoltaic Current Flow in Ultrathin All 2D Vertically Stacked Graphene/MoS ₂ /WS ₂ /Graphene Devices. ACS Applied Materials & Interfaces, 2019, 11, 2234-2242.	8.0	32
1864	Optical thickness identification of few-layer MoS ₂ deposited by chemical vapor deposition. Materials Research Express, 2019, 6, 045025.	1.6	3
1865	Synthetic WSe ₂ monolayers with high photoluminescence quantum yield. Science Advances, 2019, 5, eaau4728.	10.3	78
1866	Charge transfer across monolayer/bilayer MoS ₂ lateral interface and its influence on exciton and trion characteristics. 2D Materials, 2019, 6, 025004.	4.4	18

#	Article	IF	CITATIONS
1867	Effect of different precursors on CVD growth of molybdenum disulfide. Journal of Alloys and Compounds, 2019, 782, 772-779.	5.5	26
1868	Towards efficient photon management in nanostructured solar cells: Role of 2D layered transition metal dichalcogenide semiconductors. Solar Energy Materials and Solar Cells, 2019, 192, 16-23.	6.2	34
1869	Catalytic growth of large area monolayer molybdenum disulfide film by chemical vapor deposition. Thin Solid Films, 2019, 669, 371-376.	1.8	5
1870	Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electronic Structure, 2019, 1, 015005.	2.8	5
1871	Revealing the Role of Gold in the Growth of Twoâ€Dimensional Molybdenum Disulfide by Surface Alloy Formation. Chemistry - A European Journal, 2019, 25, 2337-2344.	3.3	6
1872	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science, 2019, 470, 129-134.	6.1	44
1873	Colorimetric determination of Hg2+ in environmental water based on the Hg2+-stimulated peroxidase mimetic activity of MoS2-Au composites. Journal of Colloid and Interface Science, 2019, 537, 554-561.	9.4	73
1874	Modulated electrochemical oxygen evolution catalyzed by MoS ₂ nanoflakes from atomic layer deposition. Nanotechnology, 2019, 30, 095402.	2.6	22
1875	Electron transport and thermoelectric performance of defected monolayer MoS2. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 117-123.	2.7	23
1876	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	4.7	133
1877	2D MoS ₂ â€Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small, 2019, 15, e1803706.	10.0	265
1878	Perforating Freestanding Molybdenum Disulfide Monolayers with Highly Charged Ions. Journal of Physical Chemistry Letters, 2019, 10, 904-910.	4.6	42
1879	Highly Ambient-Stable 1T-MoS ₂ and 1T-WS ₂ by Hydrothermal Synthesis under High Magnetic Fields. ACS Nano, 2019, 13, 1694-1702.	14.6	131
1880	Electronic structure and exciton shifts in Sb-doped MoS2 monolayer. Npj 2D Materials and Applications, 2019, 3, .	7.9	82
1881	Growth Order-Dependent Strain Variations of Lateral Transition Metal Dichalcogenide Heterostructures. ACS Applied Electronic Materials, 2019, 1, 113-121.	4.3	16
1882	Wafer-scale transferred multilayer MoS ₂ for high performance field effect transistors. Nanotechnology, 2019, 30, 174002.	2.6	37
1883	2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques. Advanced Materials Interfaces, 2019, 6, 1800688.	3.7	21
1884	γ-Radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: A review of mechanisms and applications. Chemical Engineering Journal, 2019, 360, 1390-1406.	12.7	33

#	Article	IF	CITATIONS
1885	Na-assisted fast growth of large single-crystal MoS ₂ on sapphire. Nanotechnology, 2019, 30, 034002.	2.6	34
1886	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	8.2	210
1887	Epitaxial growth of TiSe ₂ /TiO ₂ heterostructure. 2D Materials, 2019, 6, 011008.	4.4	10
1888	The band offset, Half-metallic and optical behavior in the CrSb/KCl [0 0 1] interface: By DFT calculation. Chemical Physics Letters, 2019, 714, 53-60.	2.6	0
1889	MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability. Chinese Chemical Letters, 2019, 30, 197-202.	9.0	36
1890	Photoluminescence Study of Bâ€∢rions in MoS ₂ Monolayers with High Density of Defects. Physica Status Solidi (B): Basic Research, 2019, 256, 1800384.	1.5	15
1891	Pressure control of charge and spin currents in graphene/MoS2 heterostructures. Journal of Magnetism and Magnetic Materials, 2019, 473, 291-295.	2.3	8
1892	The electronic and transport properties of edge contact borophane-MoSe2 heterojunction: A first principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106, 5-9.	2.7	5
1893	Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	5.6	184
1894	Single-step synthesis of wrinkled MoSe2 thin films. Current Applied Physics, 2019, 19, 273-278.	2.4	7
1895	Mechanically tuned molybdenum dichalcogenides (MoS2 and MoSe2) dispersed supramolecular hydrogel scaffolds. Journal of Molecular Liquids, 2019, 276, 184-193.	4.9	18
1896	Electrochemical Polishing of Two-Dimensional Materials. ACS Nano, 2019, 13, 78-86.	14.6	33
1897	Layerâ€Dependent Dielectric Function of Waferâ€Scale 2D MoS ₂ . Advanced Optical Materials, 2019, 7, 1801250.	7.3	58
1898	Strong photoluminescence enhancement of MoS2 monolayer via low-power Ar/O2 plasma treatment. Materials Letters, 2019, 235, 129-132.	2.6	9
1899	Moiré superlattices and 2D electronic properties of graphite/MoS2 heterostructures. Journal of Physics and Chemistry of Solids, 2019, 128, 325-330.	4.0	14
1900	2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 150-190.	11.6	89
1901	Direct growth of vertical structure MoS2 nanosheets array film via CVD method for photodetection. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113592.	2.7	18
1902	Inward growth of monolayer MoS2 single crystals from molten Na2MoO4 droplets. Materials Chemistry and Physics, 2020, 240, 122203.	4.0	10

#	Article	IF	CITATIONS
1903	Substrate effects on the CVD growth of MoS2 and WS2. Journal of Materials Science, 2020, 55, 990-996.	3.7	50
1904	Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. Proceedings of the IEEE, 2020, 108, 676-703.	21.3	19
1905	Few-layer MoS2 dendrites as a highly active humidity sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113782.	2.7	20
1906	Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Materials, 2020, 7, 015013.	4.4	11
1907	Si compatible MoO3/MoS2 core-shell quantum dots for wavelength tunable photodetection in wide visible range. Applied Surface Science, 2020, 502, 144196.	6.1	24
1908	Two-dimensional nanostructure colloids in novel nano drug delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124077.	4.7	15
1909	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	18.0	14
1910	Band Alignment in Asâ€Transferred and Annealed Graphene/MoS ₂ Heterostructures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900406.	2.4	14
1911	Timeâ€Resolved Terahertz Spectroscopy Studies on 2D Van der Waals Materials. Advanced Optical Materials, 2020, 8, 1900533.	7.3	37
1912	Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects. Advanced Functional Materials, 2020, 30, 1901971.	14.9	58
1913	The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. Chinese Chemical Letters, 2020, 31, 1124-1128.	9.0	37
1914	2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials, 2020, 32, e1902333.	21.0	375
1915	Photoresponse of wafer-scale palladium diselenide films prepared by selenization method. Journal Physics D: Applied Physics, 2020, 53, 065102.	2.8	10
1916	Flexible electronics based on oneâ€dimensional and twoâ€dimensional hybrid nanomaterials. InformaÄnÃ- Materiály, 2020, 2, 33-56.	17.3	81
1917	The spin-transport properties of single edge oxidized zigzag MoS2 nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113783.	2.7	7
1918	Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers. Chemical Engineering Journal, 2020, 384, 123288.	12.7	98
1919	Selfâ€Powered Photodetectors Based on 2D Materials. Advanced Optical Materials, 2020, 8, 1900765.	7.3	245
1920	Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection. Journal of Colloid and Interface Science, 2020, 560, 177-185.	9.4	45

		CITATION RE	PORT	
#	Article		IF	Citations
1921	Controlled growth of MoS2 via surface-energy alterations. Nanotechnology, 2020, 31,	035601.	2.6	5
1922	High optical quality of MoS ₂ monolayers grown by chemical vapor depos Materials, 2020, 7, 015011.	ition. 2D	4.4	76
1923	Charge Transport Surmounting Hierarchical Ligand Confinement toward Multifarious F Catalysis. Inorganic Chemistry, 2020, 59, 1364-1375.	'hotoredox	4.0	11
1924	In Situ Variable-Temperature Scanning Tunneling Microscopy Studies of Graphene Grov Benzene on Pd(111). ACS Nano, 2020, 14, 1141-1147.	wth Using	14.6	9
1925	Recent advances of novel ultrathin two-dimensional silicon carbides from a theoretical Nanoscale, 2020, 12, 4269-4282.	perspective.	5.6	31
1926	Light and complex 3D MoS ₂ /graphene heterostructures as efficient cataly hydrogen evolution reaction. Nanoscale, 2020, 12, 2715-2725.	ysts for the	5.6	35
1927	Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretrea substrates. Nanoscale, 2020, 12, 1958-1966.	tment of SiO2/Si	5.6	9
1928	Two-dimensional materials and metal-organic frameworks for the CO2 reduction react Today Advances, 2020, 5, 100038.	on. Materials	5.2	48
1929	Ultrafast growth of large single crystals of monolayer WS2 and WSe2. National Scienc 7, 737-744.	e Review, 2020,	9.5	64
1930	Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 1247-1268.	2020, 12,	5.6	132
1931	2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challe multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020, 8, 8	nges in 45-883.	10.3	83
1932	Electronic Properties of Defective MoS ₂ Monolayers Subject to Mechanic Deformations: A Firstâ€Principles Approach. Physica Status Solidi (B): Basic Research, 2	al 2020, 257, 1900541.	1.5	8
1933	Importance of Many-Body Dispersion in the Stability of Vacancies and Antisites in Free Monolayer of MoS ₂ from First-Principles Approaches. Journal of Physical O 2020, 124, 1390-1397.	Standing Chemistry C,	3.1	8
1934	Atomic-Level Nanorings (A-NRs) Therapeutic Agent for Photoacoustic Imaging and Photothermal/Photodynamic Therapy of Cancer. Journal of the American Chemical Soc 1735-1739.	iety, 2020, 142,	13.7	121
1935	Size-dependent optical properties of MoS ₂ nanoparticles and their photo applications. Nanotechnology, 2020, 31, 145701.	-catalytic	2.6	30
1936	Effects of noble metal doping on hydrogen sensing performances of monolayer MoS <s Materials Research Express, 2020, 7, 015501.</s 	sub>2.	1.6	11
1937	Ultrasensitive broadband photodetector using electrostatically conjugated MoS2-upcon nanoparticle nanocomposite. Nano Energy, 2020, 67, 104258.	onversion	16.0	32
1938	Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale, 202	20, 12, 4219-4237.	5.6	49
#	Article	IF	CITATIONS	
------	--	------	-----------	
1939	Engineering functional inorganic nanobiomaterials: controlling interactions between 2D-nanosheets and enzymes. Dalton Transactions, 2020, 49, 3917-3933.	3.3	7	
1940	Ordered-vacancy-enabled indium sulphide printed in wafer-scale with enhanced electron mobility. Materials Horizons, 2020, 7, 827-834.	12.2	27	
1941	Formation of large-area MoS2 thin films by oxygen-catalyzed sulfurization of Mo thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	9	
1942	Black phosphorus @ molybdenum disulfide 2D nanocomposite with broad light absorption and high stability for methylene blue decomposition photocatalyst. Nanotechnology, 2020, 31, 155704.	2.6	15	
1943	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	4.3	27	
1944	Study on ultrasound-assisted liquid-phase exfoliation for preparing graphene-like molybdenum disulfide nanosheets. Ultrasonics Sonochemistry, 2020, 63, 104923.	8.2	36	
1945	Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Advanced Science, 2020, 7, 1902359.	11.2	76	
1946	Effect of Growth Temperature on Physical Properties of MoS2 Thin Films Synthesized by CVD. Journal of Electronic Materials, 2020, 49, 1002-1008.	2.2	18	
1947	Electronic and optical properties of 2D monolayer (ML) MoS2 with vacancy defect at S sites. Nano Structures Nano Objects, 2020, 21, 100404.	3.5	23	
1948	Chemical doping of transition metal dichalcogenides (TMDCs) based field effect transistors: A review. Superlattices and Microstructures, 2020, 137, 106350.	3.1	37	
1949	Supersonic Cold Spraying for Energy and Environmental Applications: One‣tep Scalable Coating Technology for Advanced Micro―and Nanotextured Materials. Advanced Materials, 2020, 32, e1905028.	21.0	67	
1950	MoS ₂ -enabled dual-mode optoelectronic biosensor using a water soluble variant of µ-opioid receptor for opioid peptide detection. 2D Materials, 2020, 7, 014004.	4.4	15	
1951	STM/STS and ARPES characterization—structure and electronic properties. , 2020, , 199-220.		1	
1952	2D Materials for Largeâ€Area Flexible Thermoelectric Devices. Advanced Energy Materials, 2020, 10, 1902842.	19.5	143	
1953	Bifunctional NbS ₂ -Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184.	14.6	51	
1955	Two-dimensional semiconductor transition metal dichalcogenides: basic properties. , 2020, , 1-23.		2	
1956	Spectral ellipsometry of monolayer transition metal dichalcogenides: Analysis of excitonic peaks in dispersion. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	51	
1957	High-Quality CVD-MoS ₂ Synthesized on Surface-Modified Al ₂ O ₃ for High-Performance MoS ₂ Field-Effect Transistors. IEEE Transactions on Electron Devices, 2020, 67, 5196-5200.	3.0	3	

#	Article	IF	CITATIONS
1958	Optoelectronic Thinning of Transition Metal Dichalcogenides for Device Fabrication. , 2020, , .		1
1959	Surface Modification of Monolayer MoS2 by Baking for Biomedical Applications. Frontiers in Chemistry, 2020, 8, 741.	3.6	4
1960	2D-Nanolayered Tungsten and Molybdenum Disulfides: Structure, Properties, Synthesis, and Processing for Strategic Applications. , 2020, , 75-120.		2
1961	Surface Defect Engineering of MoS2 for Atomic Layer Deposition of TiO2 Films. ACS Applied Materials & Interfaces, 2020, 12, 48150-48160.	8.0	7
1962	Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application. Crystals, 2020, 10, 902.	2.2	38
1963	A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorganic Chemistry Communication, 2020, 121, 108200.	3.9	155
1964	Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review. Materials Today Communications, 2020, 25, 101664.	1.9	50
1965	Substrate Surface Modification for Enlarging Two-Dimensional SnS Grains at Low Temperatures. Chemistry of Materials, 2020, 32, 9026-9033.	6.7	9
1966	Ultrathin Quasibinary Heterojunctioned ReS ₂ /MoS ₂ Film with Controlled Adhesion from a Bimetallic Co-Feeding Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 43311-43319.	8.0	10
1967	Healing Sulfur Vacancies in Monolayer MoS ₂ by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors. ACS Applied Nano Materials, 2020, 3, 10462-10469.	5.0	24
1968	Breast cancer biomarker detection through the photoluminescence of epitaxial monolayer MoS2 flakes. Scientific Reports, 2020, 10, 16039.	3.3	33
1969	Laser-induced anharmonicity vs thermally induced biaxial compressive strain in mono- and bilayer MoS2 grown via CVD. AIP Advances, 2020, 10, 085003.	1.3	9
1970	Modulation of microstructural and electrical properties of rapid thermally synthesized MoS2 thin films by the flow of H2 gas. Superlattices and Microstructures, 2020, 145, 106598.	3.1	10
1971	Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study. Applied Surface Science, 2020, 512, 145588.	6.1	22
1972	Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2. Applied Surface Science, 2020, 529, 147158.	6.1	29
1973	Design and synthesis of two-dimensional materials and their heterostructures. , 2020, , 13-54.		1
1974	Exploring the interactions between flawed materials and YAP65 to reveal the role of vacancy defects in MoS2 sheet nanotoxicity. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	2
1975	Emerging bio-applications of two-dimensional nanoheterostructure materials. , 2020, , 243-255.		5

IF

CITATIONS

Synthesis of transition metal dichalcogenides., 2020, , 247-264. 6 1976 Characterization of two-dimensional materials., 2020, , 289-322. 1977 Direct Evidence of Electronic Interaction at the Atomic-Layer-Deposited MoS₂ 1978 8.0 11 Monolayer/SiO₂ Interface. ACS Applied Materials & amp; Interfaces, 2020, 12, 53852-53859. Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide 1979 interfaces. Applied Physics Letters, 2020, 117, 213104. Self-assembled hybrid organic–MoS₃-nanoparticle catalyst for light energy conversion. 1980 5.6 6 Nanoscale, 2020, 12, 22952-22957. Formation of Coherent 1H–1T Heterostructures in Single-Layer MoS₂ on Au(111). ACS Nano, 1981 14.6 2020, 14, 16939-16950. Effect of the geometry of precursor crucibles on the growth of MoS₂ flakes by chemical 1982 2.8 1 vapor deposition. New Journal of Chemistry, 2020, 44, 21076-21084. Transition Metal Chalcogenides for the Electrocatalysis of Water., 2020, , . 1983 High-Performance Supercapacitor Electrode Obtained by Directly Bonding 2D Materials: Hierarchal 1984 2.4 35 MoS2 on Reduced Graphene Oxide. Frontiers in Materials, 2020, 7, . Electronic and structural characterisation of polycrystalline platinum disulfide thin films. RSC 3.6 Advances, 2020, 10, 42001-42007. Effects of plasma conditions on sulfurization of MoO3 thin films and surface evolution for 1986 7 6.1 formation of MoS2 at low temperatures. Applied Surface Science, 2020, 532, 147462. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 1987 79 14.2 2020, 40, 132-139. Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral 1988 2.6 6 Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid 1989 12.8 76 method. Nature Communications, 2020, 11, 3682. Ultrathin exfoliated WS₂ nanosheets in low-boiling-point solvents for high-efficiency 1990 0.6 11 hydrogen evolution reaction. IOP Conference Series: Materials Science and Engineering, 0, 770, 012079. Double Negative Differential Resistance Device Based on Hafnium Disulfide/Pentacene Hybrid 1992 11.2 Structure. Advanced Science, 2020, 7, 2000991. Controlled Laser-Thinning of MoS₂ Nanolayers and Transformation to Amorphous 1993 5.014 MoO_{<i>x</i>} for 2D Monolayer Fabrication. ACS Applied Nano Materials, 2020, 3, 7490-7498. Large-Scale Atomically Thin Monolayer 2H-MoS₂ Field-Effect Transistors. ACS Applied 1994

Nano Materials, 2020, 3, 7371-7376.

ARTICLE

ARTICLE IF CITATIONS Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor 1995 10.3 20 deposition with nucleation control. Carbon, 2020, 168, 580-587. State of the Art and Future Perspectives in Advanced CMOS Technology. Nanomaterials, 2020, 10, 1555. 1996 4.1 Promising functional two-dimensional lamellar metal thiophosphates: synthesis strategies, properties 1997 12.2 26 and applications. Materials Horizons, 2020, 7, 3131-3160. Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor 1998 deposition method. Materials Today Advances, 2020, 8, 100098. Cost-effective scalable synthesis of few layers MoS2 based thin film for sunlight enforced 1999 3.6 11 photocatalytic activity. Optical Materials, 2020, 110, 110506. Near Degeneracy of Magnetic Phases in Two-Dimensional Chromium Telluride with Enhanced Perpendicular Magnetic Anisotropy. ACS Nano, 2020, 14, 15256-15266. 14.6 Robust B-exciton emission at room temperature in few-layers of MoS2:Ag nanoheterojunctions 2001 3.3 9 embedded into a glass matrix. Scientific Reports, 2020, 10, 15697. Efficient and Versatile Modeling of Mono- and Multi-Layer MoS2 Field Effect Transistor. Electronics 3.1 (Switzerland), 2020, 9, 1385. Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy 2004 27.0 82 Storage Science. Nano-Micro Letters, 2020, 12, 179. Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 2020, 120, 12563-12591. Dependence of Photoresponsivity and On/Off Ratio on Quantum Dot Density in Quantum Dot 2006 4.1 13 Sensitized MoS2 Photodetector. Nanomaterials, 2020, 10, 1828. Changing the Electronic Polarizability of Monolayer MoS₂ by Peryleneâ€Based Seeding Promoters. Advanced Materials Interfaces, 2020, 7, 2000791. 2008 Supported and Suspended 2D Material-Based FET Biosensors. Electrochem, 2020, 1, 260-277. 3.3 15 2D Materials for Universal Thermal Imaging of Micro- and Nanodevices: An Application to Gallium Oxide Electronics. ACS Applied Electronic Materials, 2020, 2, 2945-2953. 2009 4.3 Nonthermal Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Molybdenum Disulfide. 2010 3.511 ACS Omega, 2020, 5, 21853-21861. Unravelling the effect of sulfur vacancies on the electronic structure of the MoS₂ 34 crystal. Physical Chemistry Chemical Physics, 2020, 22, 21776-21783. Tandem Synthesis of High Yield MoS2 Nanosheets and Enzyme Peroxidase Mimicking Properties. 2012 3.513 Catalysts, 2020, 10, 1009. Selective organic transformation over a self-assembled all-solid-state Z-scheme core–shell photoredox system. Journal of Materials Chemistry A, 2020, 8, 20151-20161.

		CITATION F	Report	
#	Article		IF	CITATIONS
2014	Recent Advances in 2D Metal Monochalcogenides. Advanced Science, 2020, 7, 200165	5.	11.2	58
2015	Bioelectronicsâ€Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Advanced Functional Materials, 2020, 30, 2003732.	Applications.	14.9	39
2016	Growth Phase Diagram of Graphene Grown Through Chemical Vapor Deposition on Cop 2020, 15, 2050137.	per. Nano,	1.0	4
2017	Tunable Electronic Properties and Potential Applications of BSe/XS ₂ (X=Mo Waals Heterostructures. Advanced Theory and Simulations, 2020, 3, 2000144.	o, W) van der	2.8	7
2018	Surface Passivation by Excess Sulfur for Controlled Synthesis of Large, Thin SnS Flakes. (Materials, 2020, 32, 8034-8042.	Chemistry of	6.7	28
2019	Design of Core–Shell Quantum Dots–3D WS ₂ Nanowall Hybrid Nanos High-Performance Bifunctional Sensing Applications. ACS Nano, 2020, 14, 12668-12678	tructures with 3.	14.6	49
2020	Phase Variations and Layer Epitaxy of 2D PdSe ₂ Grown on 2D Monolayers Selenization of Molecular Pd Precursors. ACS Nano, 2020, 14, 11677-11690.	by Direct	14.6	10
2021	The Magnetic Proximity Effect Induced Large Valley Splitting in 2D InSe/FeI2 Heterostruc Nanomaterials, 2020, 10, 1642.	ttures.	4.1	7
2022	Synthesis of MoS2 Thin Film by Ionized Jet Deposition: Role of Substrate and Working P Surfaces, 2020, 3, 683-693.	arameters.	2.3	4
2023	Atomicâ€Scale Edge Morphology, Stability, and Oxidation of Singleâ€Layer 2Hâ€TaS <s∟ ChemPlusChem, 2020, 85, 2557-2564.</s∟ 	b>2.	2.8	5
2024	Limiting Domain Size of MoS ₂ : Effects of Stoichiometry and Oxygen. Journ Chemistry C, 2020, 124, 27571-27579.	al of Physical	3.1	8
2025	Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS _{2SrTiO₃. ACS Nano, 2020, 14, 16761-16769.}	ıb> Grown on	14.6	16
2026	Growth and Interlayer Engineering of 2D Layered Semiconductors for Future Electronics 2020, 14, 16266-16300.	. ACS Nano,	14.6	30
2027	Scalable fabrication of long-wave infrared PtSe2-G heterostructure array photodetectors Physics Letters, 2020, 117, 231104.	. Applied	3.3	11
2028	Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials, 2020, 10, 2223.		4.1	13
2029	Roomâ€Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Advanc 2020, 32, e2006320.	ed Materials,	21.0	138
2030	Microfluidics for Two-Dimensional Nanosheets: A Mini Review. Processes, 2020, 8, 1067		2.8	9
2031	Real-time effect of electron beam on MoS ₂ field-effect transistors. Nanoted 2020, 31, 455202.	hnology,	2.6	8

#	Article	IF	CITATIONS
2032	Successive layer-by-layer deposition of metal (Mo, Ag)/BN/MoS2 nanolaminate films and the electric properties of BN/MoS2 heterostructure on different metal substrates. Journal of Materials Science: Materials in Electronics, 2020, 31, 9559-9567.	2.2	3
2033	Electronic and optical properties of PdSe2 from monolayer to trilayer. Superlattices and Microstructures, 2020, 142, 106514.	3.1	17
2034	Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. Nanoscale Advances, 2020, 2, 3131-3149.	4.6	62
2035	Vertically-oriented MoS ₂ nanosheets for nonlinear optical devices. Nanoscale, 2020, 12, 10491-10497.	5.6	28
2036	Ultrafast Exciton Dynamics in Scalable Monolayer MoS ₂ Synthesized by Metal Sulfurization. ACS Omega, 2020, 5, 10725-10730.	3.5	23
2037	Honeycomb RhI ₃ Flakes with High Environmental Stability for Optoelectronics. Advanced Materials, 2020, 32, e2001979.	21.0	27
2038	Fluid-Guided CVD Growth for Large-Scale Monolayer Two-Dimensional Materials. ACS Applied Materials & Interfaces, 2020, 12, 26342-26349.	8.0	14
2039	Reactive molecular dynamics simulations and machine learning. Journal of Physics: Conference Series, 2020, 1461, 012182.	0.4	4
2040	Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Research, 2020, 13, 1485-1508.	10.4	36
2041	Direct CVD Growth of a Graphene/MoS ₂ Heterostructure with Interfacial Bonding for Two-Dimensional Electronics. Chemistry of Materials, 2020, 32, 4544-4552.	6.7	42
2042	Enhanced Optoelectronic Performance of CVD-Grown Metal–Semiconductor NiTe ₂ /MoS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 24093-24101.	8.0	60
2043	Ultrafast nucleation and growth of high-quality monolayer MoSe ₂ crystals via vapor-liquid-solid mechanism. Nanotechnology, 2020, 31, 335601.	2.6	20
2044	Tiled Monolayer Films of 2D Molybdenum Disulfide Nanoflakes Assembled at Liquid/Liquid Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 25125-25134.	8.0	18
2045	Birefringent and Complex Dielectric Functions of Monolayer WSe ₂ Derived by Spectroscopic Ellipsometer. Journal of Physical Chemistry C, 2020, 124, 12665-12671.	3.1	6
2046	Decoupling Molybdenum Disulfide from Its Substrate by Cesium Intercalation. Journal of Physical Chemistry C, 2020, 124, 12397-12408.	3.1	9
2048	Nanomembranes for water treatment. , 2020, , 207-240.		17
2049	Direct Transformation of Crystalline MoO3 into Few-Layers MoS2. Materials, 2020, 13, 2293.	2.9	2
2050	Potential-controlled pulse electrochemical deposition of poly nanostructural two-dimensional molybdenum disulfide thin films as a counter electrode for dye-sensitized solar cells. Surface and Coatings Technology, 2020, 394, 125855.	4.8	9

#	Article	IF	CITATIONS
2051	Morphological evolution of atomically thin MoS ₂ flakes synthesized by a chemical vapor deposition strategy. CrystEngComm, 2020, 22, 4174-4179.	2.6	14
2052	Defect Engineering of 2D Materials for Electrochemical Energy Storage. Advanced Materials Interfaces, 2020, 7, 2000494.	3.7	19
2053	Charge transport in nnn and npn phosphorene junctions: The use of phosphorene pn junctions as rectifiers. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114239.	2.7	11
2054	Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets. Lubricants, 2020, 8, 62.	2.9	6
2055	Construction of High Field-Effect Mobility Multilayer MoS2 Field-Effect Transistors with Excellent Stability through Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2132-2140.	4.3	32
2056	Chemical Vapor Deposition of MoS ₂ for Energy Harvesting: Evolution of the Interfacial Oxide Layer. ACS Applied Nano Materials, 2020, 3, 6563-6573.	5.0	10
2057	Modulating flow near substrate surface to grow clean and large-area monolayer MoS ₂ . Nanotechnology, 2020, 31, 415706.	2.6	5
2058	Controllable Growth of Bilayer MoS2 Crystals by Reverse-Flow Chemical Vapor Deposition. IOP Conference Series: Earth and Environmental Science, 2020, 453, 012085.	0.3	1
2059	Supercritical hydrothermal synthesis of MoS ₂ nanosheets with controllable layer number and phase structure. Dalton Transactions, 2020, 49, 9377-9384.	3.3	17
2060	Osteogenic differentiation of BMSCs on MoS2 composite nanofibers with different cell seeding densities. Applied Nanoscience (Switzerland), 2020, 10, 3703-3716.	3.1	18
2061	A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 89-121.	10.7	364
2062	A critical review on the applications and potential risks of emerging MoS2 nanomaterials. Journal of Hazardous Materials, 2020, 399, 123057.	12.4	76
2063	Oxide Inhibitor-Assisted Growth of Single-Layer Molybdenum Dichalcogenides (MoX ₂ , X =) Tj ETQqC	0 0 rgBT 14.6	/Overlock 10
2064	Facile synthesis and characterization of Poly (3, 4-ethylenedioxythiophene)/Molybdenum disulfide (PEDOT/MoS2) composite coatings for potential neural electrode applications. Journal of Applied Electrochemistry, 2020, 50, 943-958.	2.9	4
2065	New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties. Advanced Functional Materials, 2020, 30, 2001920.	14.9	33
2066	Novel Exfoliation of High-Quality 2H-MoS2 Nanoflakes for Solution-Processed Photodetector. Nanomaterials, 2020, 10, 1045.	4.1	26
2067	Quantification of defects engineered in single layer MoS ₂ . RSC Advances, 2020, 10, 22996-23001.	3.6	25
2068	Low-temperature synthesis of 2D anisotropic MoTe2 using a high-pressure soft sputtering technique. Nanoscale Advances, 2020, 2, 1443-1448.	4.6	5

CITATION REPORT ARTICLE IF CITATIONS TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal 2069 21.0 58 Dichalcogenides. Advanced Materials, 2020, 32, e1907166. Investigation of the growth of few-layer SnS₂ thin films via atomic layer deposition on an 2070 2.6 O₂ plasma-treated substrate. Nanotechnology, 2020, 31, 265604. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides 2071 30.8 166 for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616. Facile and Reliable Thickness Identification of Atomically Thin Dichalcogenide Semiconductors Using Hyperspectral Microscopy. Nanomaterials, 2020, 10, 526. Applications of Tin Sulfideâ€Based Materials in Lithiumâ€Ion Batteries and Sodiumâ€Ion Batteries. Advanced 2073 14.9 154 Functional Materials, 2020, 30, 2001298. Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional 2074 Applications. Small, 2020, 16, e1904271. Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for 2075 20.2 91 photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 270, 118900. Transition metal dichalcogenides for biomedical applications., 2020, , 211-247. 2076 2077 Beyond graphene., 2020, , 485-560. 0 Two-Dimensional to Three-Dimensional Growth of Transition Metal Diselenides by Chemical Vapor Deposition: Interplay between Fractal, Dendritic, and Compact Morphologies. ACS Applied Materials 8.0 & Interfaces, 2020, 12, 15885-15892. Monolayer diboron dinitride: Direct band-gap semiconductor with high absorption in the visible 2079 3.2 20 range. Physical Review B, 2020, 101, . Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry - A European 2080 3.3 88 Journal, 2020, 26, 6360-6401. Epitaxial Growth of Rectangle Shape MoS₂ with Highly Aligned Orientation on Twofold 2081 10.0 53 Symmetry aâ€Plane Sapphire. Small, 2020, 16, e2000596. Ideal two-dimensional solid electrolytes for fast ion transport: metal trihalides MX3 with intrinsic atomic pores. Nanoscale, 2020, 12, 7188-7195. 2082 5.6 MoS2 nanostructured materials for electrode modification in the development of a laccase based 2083 amperometric biosensor for non-invasive dopamine detection. Microchemical Journal, 2020, 155, 32 4.5104792. Theoretical investigation of nitric oxide adsorption on the surface of pure and metal (Ti, Cr, Fe, Ni and) Tj ETQq1 1 0.784314 rgBT (O 2084 120, 114075. Nanoscale heterojunctions of rGO-MoS₂ composites for nitrogen dioxide sensing at 2085 2.4 19 room temperature. Nano Express, 2020, 1, 010003. 2086 Van der waals heterojunctions for catalysis. Materials Today Advances, 2020, 6, 100059. 5.2

#	Article	IF	CITATIONS
2087	Magnetic Enhancement for Hydrogen Evolution Reaction on Ferromagnetic MoS ₂ Catalyst. Nano Letters, 2020, 20, 2923-2930.	9.1	130
2088	In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides. Physical Review Applied, 2020, 13, .	3.8	38
2089	Metal–organic chemical vapor deposition of 2D van der Waals materials—The challenges and the extensive future opportunities. APL Materials, 2020, 8, .	5.1	45
2090	Ferromagnetic behaviors in monolayer MoS2 introduced by nitrogen-doping. Applied Physics Letters, 2020, 116, .	3.3	23
2091	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	19.5	169
2092	Defect Engineering of Twoâ€Đimensional Molybdenum Disulfide. Chemistry - A European Journal, 2020, 26, 6535-6544.	3.3	29
2093	Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Letters, 2020, 12, 66.	27.0	172
2094	Intelligent Identification of MoS2 Nanostructures with Hyperspectral Imaging by 3D-CNN. Nanomaterials, 2020, 10, 1161.	4.1	13
2095	Application-Oriented Growth of a Molybdenum Disulfide (MoS2) Single Layer by Means of Parametrically Optimized Chemical Vapor Deposition. Materials, 2020, 13, 2786.	2.9	20
2096	Wet chemical epitaxial growth of a cactus-like CuFeO ₂ /ZnO heterojunction for improved photocatalysis. Dalton Transactions, 2020, 49, 9574-9578.	3.3	7
2097	Catalyzed Kinetic Growth in Two-Dimensional MoS ₂ . Journal of the American Chemical Society, 2020, 142, 13130-13135.	13.7	41
2098	First-principles coupled cluster theory of the electronic spectrum of transition metal dichalcogenides. Physical Review B, 2020, 101, .	3.2	13
2099	Mo Doping Assisting the CVD Synthesis of Size-Controlled, Uniformly Distributed Single-Layer MoS2 on Rutile TiO2(110). ACS Applied Materials & amp; Interfaces, 2020, 12, 34378-34387.	8.0	12
2100	Broadband optical properties of monolayer and bulk MoS2. Npj 2D Materials and Applications, 2020, 4, .	7.9	112
2101	Epitaxial growth of In2Se3 on monolayer transition metal dichalcogenide single crystals for high performance photodetectors. Applied Materials Today, 2020, 20, 100734.	4.3	18
2102	Oxygen atom adsorbed on the sulphur vacancy of monolayer MoS2: A promising method for the passivation of the vacancy defect. Computational and Theoretical Chemistry, 2020, 1187, 112906.	2.5	11
2103	Rapid and Large-Area Visualization of Grain Boundaries in MoS ₂ on SiO ₂ Using Vapor Hydrofluoric Acid. ACS Applied Materials & Interfaces, 2020, 12, 34049-34057.	8.0	13
2104	Ferromagnetism in two-dimensional materials via doping and defect engineering. , 2020, , 95-124.		1

#	Article	IF	CITATIONS
2105	The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale <i>In Situ</i> Imaging during Chemical Vapor Deposition Growth. ACS Nano, 2020, 14, 1902-1918.	14.6	35
2106	Relationship between the structure and catalytic performance of MoS ₂ with different surfactant-assisted syntheses in the hydrodesulfurization reaction of 4,6-DMDBT. RSC Advances, 2020, 10, 7600-7608.	3.6	11
2107	MoS ₂ â€Based Nanomaterials for Roomâ€Temperature Gas Sensors. Advanced Materials Technologies, 2020, 5, 1901062.	5.8	138
2108	Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Advanced Optical Materials, 2020, 8, 1901631.	7.3	122
2109	Optimized Catalytic WS ₂ –WO ₃ Heterostructure Design for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000091.	19.5	221
2110	In-line characterization of ultrathin transition metal dichalcogenides using X-ray fluorescence and X-ray photoelectron spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105788.	2.9	13
2111	Synthesis and Evaluation of Molybdenum Imido-Thiolato Complexes for the Aerosol-Assisted Chemical Vapor Deposition of Nitrogen-Doped Molybdenum Disulfide. Organometallics, 2020, 39, 956-966.	2.3	16
2112	Vacancy-Assisted Selective Detection of Low-ppb Formaldehyde in Two-Dimensional Layered SnS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 12207-12214.	8.0	26
2113	Controlled edge dependent stacking of WS2-WS2 Homo- and WS2-WSe2 Hetero-structures: A Computational Study. Scientific Reports, 2020, 10, 1648.	3.3	19
2114	Nanowire templated CVD synthesis and morphological control of MoS ₂ nanotubes. Journal of Materials Chemistry C, 2020, 8, 4133-4138.	5.5	12
2115	Cation-Regulated Transformation for Continuous Two-Dimensional Tin Monosulfide. Chemistry of Materials, 2020, 32, 2313-2320.	6.7	21
2116	Overview of Rational Design of Binary Alloy for the Synthesis of Two-Dimensional Materials. Surfaces, 2020, 3, 26-39.	2.3	0
2117	Graphene-Supported 2D transition metal dichalcogenide van der waals heterostructures. Applied Materials Today, 2020, 19, 100600.	4.3	64
2118	Assembly of 1T′-MoS ₂ based fibers for flexible energy storage. Nanoscale, 2020, 12, 6562-6570.	5.6	10
2119	Delayed Charge Recombination by Openâ€5hell Organics: Its Application in Achieving Superb Photodetectors with Broadband (400–1160 nm) Ultrahigh Sensitivity and Stability. Advanced Optical Materials, 2020, 8, 1902179.	7.3	7
2120	Growth of Large-Area Homogeneous Monolayer Transition-Metal Disulfides via a Molten Liquid Intermediate Process. ACS Applied Materials & Interfaces, 2020, 12, 13174-13181.	8.0	46
2121	Adsorption of small gas molecules on strained monolayer WSe2 doped with Pd, Ag, Au, and Pt: A computational investigation. Applied Surface Science, 2020, 514, 145911.	6.1	70
2122	A high-efficiency electrocatalyst for hydrogen evolution based on tree-like amorphous MoS2 nanostructures prepared by glancing angle deposition. Journal of Solid State Chemistry, 2020, 286, 121255.	2.9	9

ARTICLE IF CITATIONS The effect of ionic liquid compounds on the exfoliation of the two-dimensional layer of molybdenum 2123 4.4 1 disulfide. Microporous and Mesoporous Materials, 2020, 299, 110127. Effect of Compressive Prestrain on the Anti-Pressure and Anti-Wear Performance of Monolayer MoS2: 2124 4.1 A Molecular Dynamics Study. Nanomaterials, 2020, 10, 275. Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and 2125 14.9 264 Applications. Advanced Functional Materials, 2020, 30, 1909909. First-principles study of structural and electronic properties of substitutionally doped arsenene. 2126 Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114018. Large area, patterned growth of 2D MoS₂ and lateral MoS₂â€"WS₂ 2127 2.6 46 heterostructures for nano- and opto-electronic applications. Nanotechnology, 2020, 31, 255603. Investigating the transient response of Schottky barrier back-gated MoS₂ transistors. 2D Materials, 2020, 7, 025040. 4.4 Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Advanced Functional 2129 14.9 42 Materials, 2020, 30, 1908427. Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. 18.8 74 Coordination Chemistry Reviews, 2020, 410, 213218. 2131 Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12, 2875-2901. 5.6 44 Facile and rigorous route to distinguish the boundary structure of monolayer MoS2 domains by 6.1 oxygen etching. Applied Surface Science, 2020, 510, 145412. Chemical sensor systems based on 2D and thin film materials. 2D Materials, 2020, 7, 022002. 2133 4.4 34 Synthesis of two-dimensional nanomaterials., 2020, , 35-71. 2134 Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today, 2020, 2135 11.9 91 30, 100829. Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor 4.1 Deposition. Nanomaterials, 2020, 10, 75. Molybdenum Disulfide Nanoflakes Grown by Chemical Vapor Deposition on Graphite: Nucleation, 2137 3.19 Orientation, and Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 2689-2697. Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure. Nano Research, 2020, 13, 576-582. Large Area Vertically Oriented Few-Layer MoS₂ for Efficient Thermal Conduction and 2139 4.6 25 Optoelectronic Applications. Journal of Physical Chemistry Letters, 2020, 11, 1268-1275. Enhancement of the Photoresponse of Monolayer MoS₂ Photodetectors Induced by a 2140 Nanoparticle Grating. ACS Applied Materials & amp; Interfaces, 2020, 12, 8429-8436.

#	Article	IF	CITATIONS
2141	Defect Passivation and Photoluminescence Enhancement of Monolayer MoS ₂ Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth. ACS Applied Materials & Interfaces, 2020, 12, 9563-9571.	8.0	52
2142	Lithium-ion storage in molybdenum phosphides with different crystal structures. Dalton Transactions, 2020, 49, 2225-2233.	3.3	12
2143	Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 6926-6956.	10.3	158
2144	Controllable Epitaxial Growth of MoSe ₂ Bilayers with Different Stacking Orders by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 23347-23355.	8.0	21
2145	Promising optoelectronic response of 2D monolayer MoS2: A first principles study. Chemical Physics, 2020, 538, 110824.	1.9	13
2146	Spontaneously induced magnetic anisotropy in an ultrathin Co/MoS ₂ heterojunction. Nanoscale Horizons, 2020, 5, 1058-1064.	8.0	4
2147	Chemical vapor deposition of molybdenum disulphide on platinum foil. Materials Chemistry and Physics, 2020, 249, 123017.	4.0	5
2148	Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 236.	4.1	76
2149	Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures. Nanomaterials, 2020, 10, 803.	4.1	34
2150	Preparation of Few-Layered Wide Bandgap MoS2 with Nanometer Lateral Dimensions by Applying Laser Irradiation. Crystals, 2020, 10, 164.	2.2	29
2151	High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique. Journal of Alloys and Compounds, 2020, 835, 155222.	5.5	34
2152	Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. Journal of Materials Chemistry A, 2020, 8, 8813-8830.	10.3	185
2153	Internal Fields in Multilayer WS 2 /MoS 2 Heterostructures Epitaxially Grown on Sapphire Substrates. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000033.	1.8	1
2154	Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Research, 2020, 13, 959-966.	10.4	49
2156	Controlled growth of MoS2 by atomic layer deposition on patterned gold pads. Journal of Crystal Growth, 2020, 541, 125683.	1.5	10
2157	Vertical Chemical Vapor Deposition Growth of Highly Uniform 2D Transition Metal Dichalcogenides. ACS Nano, 2020, 14, 4646-4653.	14.6	101
2158	Influence of organic promoter gradient on the MoS ₂ growth dynamics. Nanoscale Advances, 2020, 2, 2352-2362.	4.6	20
2159	Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Advances in Physics: X, 2020, 5, 1734083.	4.1	26

#	Article	IF	CITATIONS
2160	Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. National Science Review, 2021, 8, nwaa115.	9.5	42
2161	Spectroscopic investigation of defects mediated oxidization of single-layer MoS2. Science China Technological Sciences, 2021, 64, 611-619.	4.0	6
2162	Electrocatalytic and photocatalytic performance of noble metal doped monolayer MoS2 in the hydrogen evolution reaction: A first principles study. Nano Materials Science, 2021, 3, 89-94.	8.8	58
2163	Passivation layer effect on the positive bias temperature instability of molybdenum disulfide thin film transistors. Journal of Information Display, 2021, 22, 13-19.	4.0	3
2164	2D WS ₂ : From Vapor Phase Synthesis to Device Applications. Advanced Electronic Materials, 2021, 7, 2000688.	5.1	63
2165	Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 1033-1059.	5.9	64
2166	Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Research, 2021, 14, 982-991.	10.4	25
2167	Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InformaÄnÃ- Materiály, 2021, 3, 662-693.	17.3	49
2168	Influence of precursor thin-film quality on the structural properties of large-area MoS2 films grown by sulfurization of MoO3 on c-sapphire. Applied Surface Science, 2021, 540, 148240.	6.1	5
2169	Biomedical applications of transition metal dichalcogenides (TMDCs). Synthetic Metals, 2021, 271, 116610.	3.9	39
2170	Selfâ€Ðeposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	14.9	41
2171	Raman spectroscopic investigations of the selenization of MoO3 in the chemical vapor deposition process to form two-dimensional MoSe2. Applied Surface Science, 2021, 538, 147946.	6.1	16
2172	Reaction mechanism transformation of LPCVD-grown MoS2 from isolated triangular grains to continuous films. Journal of Alloys and Compounds, 2021, 853, 157374.	5.5	9
2173	Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. Journal of Energy Chemistry, 2021, 57, 547-566.	12.9	116
2174	Gate Stack Engineering in MoS ₂ Fieldâ€Effect Transistor for Reduced Channel Doping and Hysteresis Effect. Advanced Electronic Materials, 2021, 7, 2000395.	5.1	19
2175	Ultrasonically prepared photocatalyst of W/WO3 nanoplates with WS2 nanosheets as 2D material for improving photoelectrochemical water splitting. Ultrasonics Sonochemistry, 2021, 70, 105339.	8.2	37
2176	Magnetoâ€optical properties of monolayer MoS ₂ â€SiO ₂ /Si structure measured via terahertz timeâ€domain spectroscopy. Nano Select, 2021, 2, 90-98.	3.7	10
2177	Performance of functionalized 1T-MoS2 as composite counter electrode material for QDSSCs and its analogy with 2H-MoS2. Materials Research Bulletin, 2021, 134, 111096.	5.2	11

#	Article	IF	CITATIONS
2178	Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 127013.	12.7	91
2179	Electrically-tunable spin polarization in boron-doped armchair black phosphorene nanoribbon. Journal of Magnetism and Magnetic Materials, 2021, 521, 167525.	2.3	4
2180	Significantly enhanced lithium storage by in situ grown CoS2@MoS2 core–shell nanorods anchored on carbon cloth. Chemical Engineering Journal, 2021, 420, 127714.	12.7	33
2181	Synthesis of twoâ€dimensional transition metal dichalcogenides for electronics and optoelectronics. InformaÄnÃ-Materiály, 2021, 3, 362-396.	17.3	87
2182	Chemical vapor deposition of clean and pure MoS ₂ crystals by the inhibition of MoO _{3â^'x} intermediates. CrystEngComm, 2021, 23, 146-152.	2.6	16
2183	Probing the structure and functionalized surface of colloidal AuSe. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114878.	3.5	6
2184	The Future of Memristors: Materials Engineering and Neural Networks. Advanced Functional Materials, 2021, 31, 2006773.	14.9	187
2185	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	12.0	71
2186	Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. Journal of Colloid and Interface Science, 2021, 586, 601-612.	9.4	40
2187	Application of two-dimensional materials as anodes for rechargeable metal-ion batteries: A comprehensive perspective from density functional theory simulations. Energy Storage Materials, 2021, 35, 203-282.	18.0	84
2188	Effect of magnetic field on the tribological behaviors of Fe3O4@MoS2 as polyalphaolefin additive in the steel/steel friction interface. Wear, 2021, 466-467, 203586.	3.1	12
2189	Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride Nanowires. Nano Letters, 2021, 21, 243-249.	9.1	18
2190	In situ electron-doping of MoS2 thin films by embedded MoOxSy particles during chemical vapor deposition. Journal of Materials Science, 2021, 56, 2879-2886.	3.7	3
2191	Photogalvanic effect in chromium-doped monolayer MoS2 from first principles. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114577.	2.7	10
2192	Large-area synthesis of transition metal dichalcogenides <i>via</i> CVD and solution-based approaches and their device applications. Nanoscale, 2021, 13, 615-633.	5.6	44
2193	First-principles studies of MoF6 absorption on hydroxylated and non-hydroxylated metal oxide surfaces and implications for atomic layer deposition of MoS2. Applied Surface Science, 2021, 541, 148461.	6.1	5
2194	Quantum spin Hall insulators and topological Rashba-splitting edge states in two-dimensional CX ₃ (X = Sb, Bi). Physical Chemistry Chemical Physics, 2021, 23, 2134-2140.	2.8	7
2195	Two-dimensional transition metal dichalcogenides and their composites for lab-based sensing applications: Recent progress and future outlook. Sensors and Actuators A: Physical, 2021, 318, 112517.	4.1	21

# 2196	ARTICLE A molecular dynamics study on the tribological behavior of molybdenum disulfide with grain boundary defects during scratching processes. Friction, 2021, 9, 1198-1212.	IF 6.4	CITATIONS
2197	Guide to optical spectroscopy of layered semiconductors. Nature Reviews Physics, 2021, 3, 39-54.	26.6	41
2198	A new 2D Si3X(X=S, 0) direct band gap semiconductor with anisotropic carrier mobility. Surface Science, 2021, 704, 121736.	1.9	4
2199	Monolayer MoS2 epitaxy. Nano Research, 2021, 14, 1598-1608.	10.4	11
2200	Tribodiffusion-driven triboelectric nanogenerators based on MoS ₂ . Journal of Materials Chemistry A, 2021, 9, 10316-10325.	10.3	9
2201	Metal Oxides and Sulfide-Based Biosensors for Monitoring and Health Control. Environmental Chemistry for A Sustainable World, 2021, , 169-208.	0.5	3
2202	Synthesis of MoS2 materials for photocatalysis applications and pollution abatement. , 2021, , 283-300.		0
2203	Nanostructured 2D Materials for Biomedical, Nano Bioengineering, and Nanomechanical Devices. Materials Horizons, 2021, , 211-229.	0.6	3
2204	A novel mechanism for understanding the strong enhancement of photoluminescence quantum yield in large-area monolayer MoS ₂ grown by CVD. Journal of Materials Chemistry C, 2021, 9, 3578-3588.	5.5	5
2205	Anisotropic heat transfer properties of two-dimensional materials. Nanotechnology, 2021, 32, 162001.	2.6	13
2206	MoS ₂ , rGO, and CuO Nanocomposite-Based High Performance UV-Visible Dual-Band Photodetectors. IEEE Photonics Technology Letters, 2021, 33, 93-96.	2.5	5
2207	A review of strain sensors based on two-dimensional molybdenum disulfide. Journal of Materials Chemistry C, 2021, 9, 9083-9101.	5.5	23
2208	How good are 2D transistors? An application-specific benchmarking study. Applied Physics Letters, 2021, 118, 030501.	3.3	11
2209	Preparation of Monolayer MoS ₂ Film from Liquid Precursor. Advances in Condensed Matter Physics, 2021, 10, 66-71.	0.1	0
2210	Free-standing electrochemically coated MoS _x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale, 2021, 13, 5744-5756.	5.6	52
2211	Growth of Very Large MoS ₂ Single Crystals Using Out-Diffusion Transport and Their Use in Field Effect Transistors. IEEE Nanotechnology Magazine, 2021, 20, 495-502.	2.0	3
2212	Photodetectors based on homojunctions of transition metal dichalcogenides. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 177301-177301.	0.5	1
2213	In Situ Characterization of Transformations in Nanoscale Layered Metal Chalcogenide Materials: A Review. ChemNanoMat, 2021, 7, 208-222.	2.8	6

# 2214	ARTICLE Epitaxial growth of large-grain-size ferromagnetic monolayer CrI ₃ for valley Zeeman splitting enhancement. Nanoscale, 2021, 13, 2955-2962.	IF 5.6	CITATIONS
2215	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	38.1	129
2216	<i>Ab Initio</i> Study of Adsorption of Fission Gas Atoms Xe and Kr on MoS ₂ Monolayer Functionalized with 3d Transition Metals. Journal of Physical Chemistry C, 2021, 125, 1493-1508.	3.1	14
2217	CuS nanoparticles decorated MoS ₂ sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. New Journal of Chemistry, 2021, 45, 8714-8727.	2.8	25
2218	Lattice dynamics, optical and thermal properties of quasi-two-dimensional anisotropic layered semimetal ZrTe ₂ . Inorganic Chemistry Frontiers, 2021, 8, 3885-3892.	6.0	2
2219	Graphene Manufacture. , 2021, , 29-43.		0
2220	Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1, .	21.2	244
2221	Imaging and identification of point defects in PtTe2. Npj 2D Materials and Applications, 2021, 5, .	7.9	29
2222	Hybrid structure of PbS QDs and vertically-few-layer MoS ₂ nanosheets array for broadband photodetector. Nanotechnology, 2021, 32, 145602.	2.6	8
2223	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	5.9	66
2224	Progress of Metal Chalcogenides in Supercapacitors. , 2021, , 424-424.		6
2225	Many-particle induced band renormalization processes in few- and mono-layer MoS ₂ . Nanotechnology, 2021, 32, 135208.	2.6	10
2226	Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides. Nanoscale Advances, 2021, 3, 3430-3440.	4.6	16
2227	Hydrothermal green synthesis of MoS ₂ nanosheets for pollution abatement and antifungal applications. RSC Advances, 2021, 11, 24536-24542.	3.6	18
2228	Thermal Annealing Effects on Naturally Contacted Monolayer MoS 2. Physica Status Solidi (B): Basic Research, 2021, 258, 2000426.	1.5	1
2229	Janus 2D titanium nitride halide TiNX _{0.5} Y _{0.5} (X, Y = F, Cl, or Br, and X ≠Y) monolayers with giant out-of-plane piezoelectricity and high carrier mobility. Physical Chemistry Chemical Physics, 2021, 23, 3637-3645.	2.8	15
2230	Importance of crystallinity improvement in MoS ₂ film by compound sputtering even followed by post sulfurization. Japanese Journal of Applied Physics, 2021, 60, SBBH10.	1.5	7
2231	Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS Applied Materials & Interfaces, 2021, 13, 8844-8850.	8.0	31

#	Article	IF	CITATIONS
2232	Sulfurization of MoO ₃ in the Chemical Vapor Deposition Synthesis of MoS ₂ Enhanced by an H ₂ S/H ₂ Mixture. Journal of Physical Chemistry Letters, 2021, 12, 1997-2003.	4.6	13
2233	Role of Process Parameters on Microstructural and Electronic Properties of Rapid Thermally Grown MoS2 Thin Films on Silicon Substrates. Silicon, 2022, 14, 1947-1957.	3.3	4
2234	Sensing behaviors of transition metal decorated InN monolayer upon \$\$hbox {SO}_{2}\$ and NO molecules: a first-principles study. European Physical Journal B, 2021, 94, 1.	1.5	0
2235	APTES Modification of Molybdenum Disulfide to Improve the Corrosion Resistance of Waterborne Epoxy Coating. Coatings, 2021, 11, 178.	2.6	21
2236	Nanoscale redox mapping at the MoS2-liquid interface. Nature Communications, 2021, 12, 1321.	12.8	19
2237	Structural and Electronic Properties of MO2/MS2 Heterojunctions and Potential Application in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 4391-4396.	3.1	9
2238	Determining Equilibrium Shapes of MoS ₂ : Modified Algorithm, Edge Reconstructions with S and O, and Temperature Effects. Journal of Physical Chemistry C, 2021, 125, 4828-4835.	3.1	3
2239	Local Lattice Deformation of Tellurene Grain Boundaries by Four-Dimensional Electron Microscopy. Journal of Physical Chemistry C, 2021, 125, 3396-3405.	3.1	4
2240	Two-Dimensional MoS2: Structural Properties, Synthesis Methods, and Regulation Strategies toward Oxygen Reduction. Micromachines, 2021, 12, 240.	2.9	39
2241	Study of the Synthesis Process of MoO3 to MoS2 Thin Films Deposited by Spray Pyrolysis: The Effect of [S/Mo] Mole Concentration and Sulfurization Process. Journal of Electronic Materials, 2021, 50, 3341-3347.	2.2	5
2242	In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjetâ€Printed Aqueous Precursors. Advanced Materials, 2021, 33, e2100260.	21.0	36
2243	Tailoring the Phase in Nanoscale MoTe ₂ Grown by Barrier-Assisted Chemical Vapor Deposition. Crystal Growth and Design, 2021, 21, 2970-2976.	3.0	5
2244	A new strategy to improve the performance of MoS2-based 2D photodetector by synergism of colloidal CuInS2 quantum dots and surface plasma resonance of noble metal nanoparticles. Journal of Alloys and Compounds, 2021, 856, 158179.	5.5	23
2245	Sodium-Mediated Low-Temperature Synthesis of Monolayers of Molybdenum Disulfide for Nanoscale Optoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 4172-4180.	5.0	14
2247	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, .	3.3	12
2248	Ferromagnetic ordering in a THAB exfoliated WS ₂ nanosheet. Journal Physics D: Applied Physics, 2021, 54, 205001.	2.8	8
2249	Strong valley splitting in d 0 two-dimensional SnO induced by magnetic proximity effect. Nanotechnology, 2021, 32, 225201.	2.6	1
2250	Compostos à base de molibdênio para remediação ambiental: uma revisão. Research, Society and Development, 2021, 10, e12410313187.	0.1	0

# 2251	ARTICLE Polymer nanocomposites with aligned two-dimensional materials. Progress in Polymer Science, 2021, 114, 101360.	IF 24.7	Citations 39
2252	Synthesis of hydrophobic MoS2 micro–nanoparticles and their photocatalytic performance research. Journal of Materials Science: Materials in Electronics, 2021, 32, 9475-9489.	2.2	4
2253	Moiré Patterns in 2D Materials: A Review. ACS Nano, 2021, 15, 5944-5958.	14.6	107
2254	Spin caloritronics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi> Crl </mml:mi> <mml:n van der Waals heterostructures. Physical Review B, 2021, 103, .</mml:n </mml:msub></mml:mrow></mml:math 	າກ 3.3 <td>າໄ:ເສນາ > < /mm</td>	າໄ:ເສນາ > < /mm
2255	Atomic layer deposition – state-of-the-art approach to nanoscale hetero-interfacial engineering of chemical sensors electrodes: A review. Sensors and Actuators B: Chemical, 2021, 331, 129403.	7.8	24
2256	The Adatom Concentration Profile: A Paradigm for Understanding Two-Dimensional MoS ₂ Morphological Evolution in Chemical Vapor Deposition Growth. ACS Nano, 2021, 15, 6839-6848.	14.6	20
2257	Grapheneâ€Based Nanomaterials for Flexible and Stretchable Batteries. Small, 2021, 17, e2006262.	10.0	28
2258	Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Letters, 2021, 21, 2709-2718.	9.1	24
2259	Advances in transition metal dichalcogenide-based two-dimensional nanomaterials. Materials Today Chemistry, 2021, 19, 100399.	3.5	50
2260	Molybdenum sulfideâ€based supercapacitors: From synthetic, bibliometric, and qualitative perspectives. International Journal of Energy Research, 2021, 45, 12665-12692.	4.5	19
2261	Positive and Negative Photoconductivity in Monolayer MoS ₂ as a Function of Physisorbed Oxygen. Journal of Physical Chemistry C, 2021, 125, 8712-8718.	3.1	19
2262	One-Pot Synthesis of Novel Molybdenum Disulfide–Graphene Oxide Nanoarchitecture: An Impeccable Bifunctional Electrode for the Electrochemical Performance of Iron Redox Flow Batteries and Oxygen Evolution Reaction. Energy & Fuels, 2021, 35, 8345-8357.	5.1	5
2263	Salt-assisted growth of monolayer MoS2 for high-performance hysteresis-free field-effect transistor. Journal of Applied Physics, 2021, 129, .	2.5	19
2264	Two-Step Growth of Uniform Monolayer MoS ₂ Nanosheets by Metal–Organic Chemical Vapor Deposition. ACS Omega, 2021, 6, 10343-10351.	3.5	14
2265	Few-Layer MoS ₂ Photodetector Arrays for Ultrasensitive On-Chip Enzymatic Colorimetric Analysis. ACS Nano, 2021, 15, 7722-7734.	14.6	27
2266	Development of hybrid hydrophobic molybdenum disulfide (MoS2) nanoparticles for super water repellent self-cleaning. Progress in Organic Coatings, 2021, 153, 106161.	3.9	13
2268	Orientation of Few-Layer MoS ₂ Films: In-Situ X-ray Scattering Study During Sulfurization. Journal of Physical Chemistry C, 2021, 125, 9461-9468.	3.1	7
2269	Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS2 film and SiO2 growth template. Nano Convergence, 2021, 8, 11.	12.1	20

ARTICLE IF CITATIONS Modulation of the Reaction Mechanism via S/Mo: A Rational Strategy for Large-Area MoS₂ 2270 6.7 12 Growth. Chemistry of Materials, 2021, 33, 3249-3257. Highly selective adsorption on monolayer MoS2 doped with Pt, Ag, Au and Pd and effect of strain engineering: A DFT study. Sensors and Actuators A: Physical, 2021, 322, 112637. 2271 4.1 Gradient rhenium doping enabled tunable anisotropic valleytronic material based on monolayer 2272 4.4 4 molybdenum disulfide. 2D Materials, 2021, 8, 035031. Bi-layer molybdenum disulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock. Advanced Powder Technology, 2021, 32, 1594-1601. Femtosecond photoluminescence from monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</mml:ma.2</p> 2274 : Time-domain study on exciton diffusion. Physical Review B, 2021, 103, . Temperatureâ€Dependent Electronic Groundâ€State Charge Transfer in van der Waals Heterostructures. 21.0 Advanced Materials, 2021, 33, e2008677. Recent Advances in Two-Dimensional MoS₂ Nanosheets for Environmental Application. 2276 3.7 21 Industrial & amp; Engineering Chemistry Research, 2021, 60, 8007-8026. MoO₃–MoS₂vertical heterostructures synthesized via one-step CVD process 4.4 24 for optoelectronics. 2D Materials, 2021, 8, 035036. 2278 MoS2 for beyond lithium-ion batteries. APL Materials, 2021, 9, . 22 5.1 Substrate Lattice-Guided MoS₂ Crystal Growth: Implications for van der Waals Epitaxy. 2279 ACS Applied Nano Materials, 2021, 4, 4930-4938. The fabrication of atomically thin-MoS2 based photoanodes for photoelectrochemical energy 2280 8.7 8 conversion and environment remediation: A review. Green Energy and Environment, 2022, 7, 372-393. Damage-free transfer mechanics of 2-dimensional materials: competition between adhesion instability and tensile strain. NPG Asia Materials, 2021, 13, . Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials 2282 47.7 96 Synthesis. Chemical Reviews, 2021, 121, 6321-6372. Interlayer excitonic states in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi>S</mml:mi><mml:mi></mml:mn></mml:msub></mml:mrow></mml:math> van der Waals heterostructures. Physical Review B, 2021, 103, . Two-Dimensional Lateral Heterostructures Made by Selective Reaction on a Patterned Monolayer 2284 8.0 5 MoS2 Matrix. ACS Applied Materials & amp; Interfaces, 2021, 13, 26143-26151. Interface Defect Engineering of a Largeâ€Scale CVDâ€Grown MoS₂ Monolayer via Residual 14 Sodium at the SiO₂/Si Substrate. Advanced Materials Interfaces, 2021, 8, 2100428. First-principles calculations of optical properties of XFBr (X = Ba or Ca) monolayers. Optik, 2021, 236, 2286 2.9 1 166643. Controlled growth of high spatial uniformity of monolayer single crystal MoS2. Journal of Materials 2.2 Science: Materials in Electronics, 2021, 32, 17009-17020.

#	Article	IF	CITATIONS
2288	DFT calculation of square MoS2 nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114693.	2.7	3
2289	N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of Electronic Materials, 2021, 50, 5072.	2.2	15
2290	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	1.8	65
2291	Strain, Doping, and Electronic Transport of Large Area Monolayer MoS ₂ Exfoliated on Gold and Transferred to an Insulating Substrate. ACS Applied Materials & Interfaces, 2021, 13, 31248-31259.	8.0	49
2292	DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Applied Surface Science, 2021, 551, 149364.	6.1	59
2293	Record-high saturation current in end-bond contacted monolayer MoS2 transistors. Nano Research, 2022, 15, 475-481.	10.4	24
2294	Optical properties of Janus and non-Janus diamanes monolayers using ab-initio calculations. Optik, 2021, 235, 166642.	2.9	11
2295	Gas-Phase "Prehistory―and Molecular Precursors in Monolayer Metal Dichalcogenides Synthesis: The Case of MoS ₂ . ACS Nano, 2021, 15, 10525-10531.	14.6	9
2296	On the Contact Optimization of ALD-Based MoS ₂ FETs: Correlation of Processing Conditions and Interface Chemistry with Device Electrical Performance. ACS Applied Electronic Materials, 2021, 3, 3185-3199.	4.3	8
2297	Shear Stress-Mediated Growth of Cupric Phosphate Nanostructures. Crystal Growth and Design, 2021, 21, 4579-4586.	3.0	4
2298	2D transition metal dichalcogenide nanomaterial-based miRNA biosensors. Applied Materials Today, 2021, 23, 101043.	4.3	5
2299	MXene and MoS _{3â^'} <i>_x</i> Coated 3Dâ€Printed Hybrid Electrode for Solidâ€6tate Asymmetric Supercapacitor. Small Methods, 2021, 5, e2100451.	8.6	56
2300	Review of recent progress in the supersonic cold-spraying technique with solid particles and liquid suspensions. Experiments in Fluids, 2021, 62, 1.	2.4	8
2301	Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials, 2021, 11, 1585.	4.1	11
2302	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	6.8	3
2303	Structure Dependent Water Transport in Membranes Based on Two-Dimensional Materials. Industrial & Engineering Chemistry Research, 2021, 60, 10917-10959.	3.7	12
2304	Atomically Thin Layers of MoS2 Grown by the Method of Pulsed Laser Deposition. Journal of Contemporary Physics, 2021, 56, 234-239.	0.6	0
2305	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. Npj 2D Materials and Applications, 2021, 5, .	7.9	31

#	Article	IF	CITATIONS
2306	Inorganic cancer phototheranostics in second biowindow. APL Materials, 2021, 9, .	5.1	10
2307	Advanced Materials and Technologies for Touch Sensing in Prosthetic Limbs. IEEE Transactions on Nanobioscience, 2021, 20, 256-270.	3.3	11
2308	Epitaxial Molybdenum Disulfide/Gallium Nitride Junctions: Low-Knee-Voltage Schottky-Diode Behavior at Optimized Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 35105-35112.	8.0	3
2309	Robust and High Photoluminescence in WS ₂ Monolayer through In Situ Defect Engineering. Advanced Functional Materials, 2021, 31, 2105339.	14.9	47
2310	Thermal Sensitive Quantum and Phonon Confinement in Semiconducting Triangular-Shaped MoS2. Journal of Physical Chemistry C, 2021, 125, 14865-14873.	3.1	5
2311	Ultrathin molybdenum disulfide (MoS2) film obtained in atomic layer deposition: A mini-review. Science China Technological Sciences, 2021, 64, 2347-2359.	4.0	8
2312	MXenes for Optoelectronic Devices. Advanced Electronic Materials, 2021, 7, 2100295.	5.1	59
2313	Micro-patterned deposition of MoS2 ultrathin-films by a controlled droplet dragging approach. Scientific Reports, 2021, 11, 13993.	3.3	5
2314	Hybrid ZnO/MoS2 Core/Sheath Heterostructures for Photoelectrochemical Water Splitting. Applied Nano, 2021, 2, 148-161.	2.0	5
2315	Precursor Concentration Ratio: The Key to Controllable Lateral-to-Standing MoO ₂ Flake Transition. Chemistry of Materials, 2021, 33, 6052-6058.	6.7	6
2316	Grainâ€Boundary Engineering of Monolayer MoS ₂ for Energyâ€Efficient Lateral Synaptic Devices. Advanced Materials, 2021, 33, e2102435.	21.0	53
2317	MoS ₂ based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. Catalysis Reviews - Science and Engineering, 2023, 65, 620-693.	12.9	28
2318	Hydrogenation effect on magnetic single domains of high-temperature-deposited uniform Co Pdâ^'/MoS2 flakes. Journal of Magnetism and Magnetic Materials, 2021, 531, 167911.	2.3	0
2319	Microcrystal-Induced Crystallization Effect for High-Quality Germanium/Silicon Heteroepitaxial Nanofilms. ACS Applied Electronic Materials, 2021, 3, 3391-3399.	4.3	4
2320	NaCl-Assisted CVD Growth of Large-Area High-Quality Trilayer MoS ₂ and the Role of the Concentration Boundary Layer. Crystal Growth and Design, 2021, 21, 4940-4946.	3.0	22
2321	Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 41866-41874.	8.0	21
2322	Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Scientific Reports, 2021, 11, 16886.	3.3	32
2323	Impact of H 2 gas on the properties of MoS 2 thin films deposited by sulfurization of Mo thin films. Micro and Nano Letters, 2021, 16, 525-532.	1.3	0

#	Article	IF	CITATIONS
2324	MoS2: Advanced nanofiller for reinforcing polymer matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114716.	2.7	33
2325	Size-dependent strain-engineered nanostructures in MoS ₂ monolayer investigated by atomic force microscopy. Nanotechnology, 2021, 32, 465703.	2.6	8
2326	Doping and Decorating 2D Materials for Biosensing: Benefits and Drawbacks. Advanced Functional Materials, 2021, 31, 2102555.	14.9	23
2327	Synthesis and Application in Photocatalytic Hydrogen Production of Layered MoS2. IOP Conference Series: Earth and Environmental Science, 2021, 837, 012007.	0.3	0
2328	Surface functionalization toward top-gated monolayer MoS2 field-effect transistors with ZrO2/Al2O3 as composite dielectrics. Journal of Alloys and Compounds, 2021, 871, 159116.	5.5	10
2329	Tuning bandstructure of folded MoS2 through fluid dynamics. Nano Research, 2022, 15, 2734-2740.	10.4	7
2330	Toward a Comprehensive Understanding of Oxygen on MoS ₂ : From Reaction to Optical Properties. Journal of Physical Chemistry C, 2021, 125, 19544-19550.	3.1	12
2331	Structure and magnetic properties of Mn-doped SnS2 nanopowders prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2021, 32, 23363-23370.	2.2	3
2332	Gateâ€Defined Quantum Confinement in CVD 2D WS ₂ . Advanced Materials, 2022, 34, e2103907.	21.0	18
2333	MoS2 Nanosheet-Coated Carbon Fibers as Strain Sensors in Epoxy Composites. ACS Applied Nano Materials, 2021, 4, 9181-9189.	5.0	3
2334	Anomalous heavy doping in chemical-vapor-deposited titanium trisulfide nanostructures. Physical Review Materials, 2021, 5, .	2.4	3
2335	A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2. Nanomaterials, 2021, 11, 2423. Unveiling the multilevel structure of midgap states in Sb-doped complements	4.1	4
2336	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi>Mo < mml:msub> < mml:m < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mo> (< mml:mi>X < /mml:mi> < mml:mo> = -	ni>X <td>l:mi><mml:m > ⁽mml:mi) T</mml:m </td>	l:mi> <mml:m > ⁽mml:mi) T</mml:m
2337	Physical Review B, 2021, 104, . Microstructure and tribological behavior of Ti3C2Tx MXene reinforced chemically bonded silicate ceramic coatings. Ceramics International, 2022, 48, 1926-1935.	4.8	11
2338	2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021, 13, 100073.	4.1	54
2339	Largeâ€Area MoS 2 via Colloidal Nanosheet Ink for Integrated Memtransistor. Small Methods, 2021, 5, 2100558.	8.6	8
2340	A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applications in Pulsed Lasers. Nanomaterials, 2021, 11, 2367.	4.1	18
2341	Wearable Thermoelectric Materials and Devices for Selfâ€Powered Electronic Systems. Advanced Materials, 2021, 33, e2102990.	21.0	221

#	Article	IF	CITATIONS
2342	Novel two-dimensional transition metal chalcogenides created by epitaxial growth. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	3
2343	Atomic layer deposition of electrocatalytic layer of MoS2 onto metal-based 3D-printed electrode toward tailoring hydrogen evolution efficiency. Applied Materials Today, 2021, 24, 101131.	4.3	8
2344	Mixed-Salt Enhanced Chemical Vapor Deposition of Two-Dimensional Transition Metal Dichalcogenides. Chemistry of Materials, 2021, 33, 7301-7308.	6.7	22
2345	Effect of the strain on spin-valley transport properties in MoS2 superlattice. Scientific Reports, 2021, 11, 17617.	3.3	11
2346	Capping technique for chemical vapor deposition of large and uniform MoS2 flakes. Thin Solid Films, 2021, 733, 138808.	1.8	7
2347	Mechanical behavior of single layer MoS2 sheets with aligned defects under uniaxial tension. Journal of Applied Physics, 2021, 130, .	2.5	6
2348	Flexible Piezoelectric MoS2/P(VDF-TrFE) Nanocomposite Film for Vibration Energy Harvesting. Journal of Electronic Materials, 2021, 50, 6870-6880.	2.2	5
2349	Recent progress in the synthesis of novel two-dimensional van der Waals materials. National Science Review, 2022, 9, nwab164.	9.5	50
2350	Spectroscopic Ellipsometry Investigation of Auâ€Assisted Exfoliated Largeâ€Area Singleâ€Crystalline Monolayer MoS ₂ . Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100385.	2.4	5
2351	Etching-Free Transfer and Nanoimaging of CVD-Grown MoS2 Monolayers. Journal of Physical Chemistry C, 2021, 125, 21011-21017.	3.1	2
2352	Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchemical Journal, 2021, 169, 106583.	4.5	45
2353	Ab-initio and experimental investigations on Pt:MoS2 for electronic and optical applications. Chemical Physics Letters, 2021, 780, 138938.	2.6	8
2354	Nanoscale friction of CVD single-layer MoS2 with controlled defect formation. Surfaces and Interfaces, 2021, 26, 101437.	3.0	5
2355	Density functional theory based HSE06 calculations to probe the effects of defect on electronic properties of monolayer TMDCs. Computational and Theoretical Chemistry, 2021, 1205, 113445.	2.5	18
2356	Robust ferromagnetism in Mn and Co doped 2D-MoS2 nanosheets: Dopant and phase segregation effects. Journal of Magnetism and Magnetic Materials, 2021, 537, 168226.	2.3	5
2357	Performances enhancement of graphene/n-Si Schottky junction solar cells with dual-functional MoS2 interfacial layers. Journal of Alloys and Compounds, 2021, 883, 160898.	5.5	5
2358	interracial magnetic coupling in Colantiferromagnetic van der Waals compound FePS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e209" altimg="si30.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub>. Applied Surface Science,</mml:math 	6.1	5
2359	2021, 567, 150864. Water-mediated NaNO3 ultrathin flakes on highly oriented pyrolytic graphite at ambient conditions. Applied Surface Science, 2021, 565, 150576.	6.1	3

#	Article	IF	CITATIONS
2360	A comparative study of Ag doping effects on the electronic, optical, carrier conversion, photocatalytic and electrical properties of MoS2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115442.	3.5	7
2361	Vacancy defects- and strain-tunable electronic structures and magnetism in two-dimensional MoTe2: Insight from first-principles calculations. Surfaces and Interfaces, 2021, 27, 101442.	3.0	10
2362	Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Applied Surface Science, 2021, 568, 150910.	6.1	94
2363	display= inline_id= d1e435_altimg= si19.svg > <mml:mi>i2</mml:mi> -in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e440" altimg="si18.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub>Se<mml:math< td=""><td>3.0</td><td>6</td></mml:math<></mml:math 	3.0	6
2364	The promotion of sulfuric vacancy in two-dimensional molybdenum disulfide on the sensing performance of SF6 decomposition components. Applied Surface Science, 2022, 571, 151377.	6.1	10
2365	Interface Kinetics Assisted Barrier Removal in Large Area 2D-WS2 Growth to Facilitate Mass Scale Device Production. Nanomaterials, 2021, 11, 220.	4.1	3
2366	Manipulating the Raman scattering rotation via magnetic field in an MoS2 monolayer. RSC Advances, 2021, 11, 4035-4041.	3.6	2
2367	First-principles study of pristine and metal decorated blue phosphorene for sensing toxic H2S, SO2 and NO2 molecules. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	5
2368	Growth mechanism and atomic structure of group-IIA compound-promoted CVD-synthesized monolayer transition metal dichalcogenides. Nanoscale, 2021, 13, 13030-13041.	5.6	7
2369	ï€-phase modulated monolayer supercritical lens. Nature Communications, 2021, 12, 32.	12.8	30
2370	Gold nanoparticle assisted synthesis of MoS ₂ monolayers by chemical vapor deposition. Nanoscale Advances, 2021, 3, 4826-4833.	4.6	15
2371	Epitaxial growth of ZrSe ₂ nanosheets on sapphire <i>via</i> chemical vapor deposition for optoelectronic application. Journal of Materials Chemistry C, 2021, 9, 13954-13962.	5.5	7
2372	HERs in an acidic medium over MoS ₂ nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy and Fuels, 2021, 5, 1952-1987.	4.9	30
2373	Two-Dimensional (2D) Materials for Next-Generation Nanoelectronics and Optoelectronics: Advances and Trends. Advances in Material Research and Technology, 2021, , 65-96.	0.6	1
2374	Hydrothermally grown MoS2 quantum dots for electrocatalytic applications. AIP Conference Proceedings, 2021, , .	0.4	1
2375	Magnetic and electronic properties of Fe3O4/PtSe2/Fe3O4 junctions. Materials Today: Proceedings, 2022, 49, 2469-2473.	1.8	3
2376	Black phosphorus: device and application. , 2021, , 139-163.		1
2377	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	3.7	39

#	Article	IF	CITATIONS
2378	Layer thickness influenced irradiation effects of proton beam on MoS ₂ field effect transistors. Nanotechnology, 2021, 32, 135204.	2.6	2
2379	Growth of Monolayer and Multilayer MoS2 Films by Selection of Growth Mode: Two Pathways via Chemisorption and Physisorption of an Inorganic Molecular Precursor. ACS Applied Materials & Interfaces, 2021, 13, 6805-6812.	8.0	16
2380	Periodic nanostructures: preparation, properties and applications. Chemical Society Reviews, 2021, 50, 6423-6482.	38.1	34
2381	Synthesis of Colloidal WSe ₂ Nanocrystals: Polymorphism Control by Precursor-Ligand Chemistry. Crystal Growth and Design, 2021, 21, 1451-1460.	3.0	15
2382	Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Physical Review B, 2021, 103, .	3.2	63
2383	MoS2 Thin Films Grown by Sulfurization of DC Sputtered Mo Thin Films on Si/SiO2 and C-Plane Sapphire Substrates. Journal of Electronic Materials, 2021, 50, 1452-1466.	2.2	6
2384	Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Advanced Science, 2017, 4, 1700231.	11.2	219
2385	Synthesis of Novel Catalytic Materials: Titania Nanotubes and Transition Metal Carbides, Nitrides, and Sulfides. , 2019, , 13-40.		2
2386	Optical Characterization, Low-Temperature Photoluminescence, and Photocarrier Dynamics in MoS2. Lecture Notes in Nanoscale Science and Technology, 2014, , 217-236.	0.8	7
2387	Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials. Springer Series in Materials Science, 2014, , 143-173.	0.6	4
2388	Measurement of the Optical Dielectric Function of Monolayer Transition Metal Dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Springer Theses, 2016, , 33-43.	0.1	16
2389	Measurement of the Second-Order Nonlinear Susceptibility and Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Springer Theses, 2016, , 45-54.	0.1	1
2390	MoS2- and MoO3-Based Ultrathin Layered Materials for Optoelectronic Applications. Materials Horizons, 2020, , 211-244.	0.6	2
2391	Synthesis and structural characterization of MoS2 micropyramids. Journal of Materials Science, 2020, 55, 12203-12213.	3.7	16
2392	Large-Scale characterization of Two-Dimensional Monolayer MoS2 Island Domains Using Spectroscopic Ellipsometry and Reflectometry. Applied Surface Science, 2020, 524, 146418.	6.1	18
2393	Morphology-controllable fabrication of Ag@MoS2 composites with improved antioxidant activities at low Ag loading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596, 124722.	4.7	7
2394	Wrapping Plasmonic Silver Nanoparticles inside One-Dimensional Nanoscrolls of Transition-Metal Dichalcogenides for Enhanced Photoresponse. Inorganic Chemistry, 2021, 60, 4226-4235.	4.0	17
2395	Growth-Etch Metal–Organic Chemical Vapor Deposition Approach of WS ₂ Atomic Layers. ACS Nano, 2021, 15, 526-538.	14.6	56

#	Article	IF	CITATIONS
2396	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .		1
2397	Synthetic Techniques and Functionalization Approaches of 2D Transition Metal Dichalcogenides. RSC Smart Materials, 2019, , 245-282.	0.1	2
2398	Photoluminescence nonuniformity from self-seeding nuclei in CVD-grown monolayer MoSe ₂ . Nanoscale, 2018, 10, 752-757.	5.6	20
2399	1% defect enriches MoS ₂ quantum dot: catalysis and blue luminescence. Nanoscale, 2020, 12, 4352-4358.	5.6	16
2400	Vertically conductive MoS ₂ pyramids with a high density of active edge sites for efficient hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 3017-3022.	5.5	16
2401	Electronic properties and low lattice thermal conductivity (<i>κ</i> _l) of mono-layer (ML) MoS ₂ : FP-LAPW incorporated with spin–orbit coupling (SOC). RSC Advances, 2020, 10, 18830-18840.	3.6	26
2402	Data-driven assessment of chemical vapor deposition grown MoS2 monolayer thin films. Journal of Applied Physics, 2020, 128, .	2.5	12
2403	Temperature-dependent phonon dynamics and anharmonicity of suspended and supported few-layer gallium sulfide. Nanotechnology, 2020, 31, 495702.	2.6	10
2404	Apparent differences between single layer molybdenum disulphide fabricated via chemical vapour deposition and exfoliation. Nanotechnology, 2020, 31, 505604.	2.6	23
2405	Large-area growth of MoS ₂ at temperatures compatible with integrating back-end-of-line functionality. 2D Materials, 2021, 8, 025008.	4.4	14
2406	Emerging members of two-dimensional materials: bismuth-based ternary compounds. 2D Materials, 2021, 8, 012004.	4.4	26
2407	Monolayer MoS ₂ on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Materials, 2021, 8, 025003.	4.4	26
2408	Scalable low-temperature synthesis of two-dimensional materials beyond graphene. JPhys Materials, 2020, 4, 012001.	4.2	29
2409	Interactions between copper and transition metal dichalcogenides: A density functional theory study. Physical Review Materials, 2017, 1, .	2.4	7
2410	Effect of a pick-and-drop process on optical properties of a CVD-grown monolayer tungsten disulfide. Physical Review Materials, 2018, 2, .	2.4	4
2411	Laser annealing for radiatively broadened <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoSe</mml:mi> <mml:mn>2grown by chemical vapor deposition. Physical Review Materials, 2018, 2, .</mml:mn></mml:msub></mml:math 	l:n a n∌ <td>mluasub></td>	ml u asub>
2412	Growth and structure of singly oriented single-layer tungsten disulfide on Au(111). Physical Review Materials, 2019, 3, .	2.4	18
2413	Grain boundaries in chemical-vapor-deposited atomically thin hexagonal boron nitride. Physical Review Materials, 2019, 3, .	2.4	21

IF

CITATIONS

Stability of charged sulfur vacancies in 2D and bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mg></mml:mgsub></mr 2414 from plane-wave density functional theory with electrostatic corrections. Physical Review Materials, 2020, 4, Coherent feedback control of two-dimensional excitons. Physical Review Research, 2020, 2, . 2415 3.6 Electrodeposition of MoS₂ from Dichloromethane. Journal of the Electrochemical 2416 2.9 16 Society, 2020, 167, 106511. Selective Growth of WSe2 with Graphene Contacts. Nanoscale Research Letters, 2020, 15, 61. STRATEGIES OF FABRICATING GRAPHENE AND GRAPHENE-ANALOGOUS 2D NANOSHEETS. Ceramics - Silikaty, 2418 0.3 2 2018, , 211-220. Substrate-induced electronic localization in monolayer MoS₂ measured via terahertz 2419 3.3 24 spectroscopy. Optics Letters, 2019, 44, 4139. Enhanced absorption of CVD grown molybdenum disulfide monolayers via surface plasmon resonance 2420 1.8 1 with silver nano-triangles. OSA Continuum, 2019, 2, 1401. Nearly lattice-matched molybdenum disulfide/gallium nitride heterostructure enabling 2421 7.0 high-performance phototransistors. Photonics Research, 2019, 7, 311. Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal 2422 7.0 9 dichalcogenides. Photonics Research, 2019, 7, 711. Facile integration of MoS₂/SiC photodetector by direct chemical vapor deposition. 2423 6.0 Nanophotonics, 2020, 9, 3035-3044. Novel layered 2D materials for ultrafast photonics. Nanophotonics, 2020, 9, 1743-1786. 2424 6.0 27 Polarization-sensitive photodetectors based on three-dimensional molybdenum disulfide 6.0 (MoS₂) field-effect transistors. Nanophotonics, 2020, 9, 4719-4728. Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides. Journal of 2427 2.3 24 the Korean Ceramic Society, 2019, 56, 24-36. Single-Layer MoS₂Field Effect Transistor with Epitaxially Grown SrTiO₃Gate Dielectric on Nb-doped SrTiO₃Substrate. Bulletin of the Korean Chemical Society, 2013, 34, 2428 1.9 2563-2564. Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin 2429 0.9 3 Film Transistors. Applied Science and Convergence Technology, 2017, 26, 55-61. Recent progress of two-dimensional layered molybdenum disulfide. Wuli Xuebao/Acta Physica Sinica, 2430 2016, 65, 018102. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Wuli Xuebao/Acta 2431 0.5 6 Physica Sinica, 2016, 65, 128101. Vapor Deposition Techniques for Synthesis of Two-Dimensional Transition Metal Dichalcogenides. 2432 1.4 Applied Microscopy, 2015, 45, 119-125.

ARTICLE

#

#	Article	IF	CITATIONS
2433	Correlation of grain orientations and the thickness of gradient MoS2 films. RSC Advances, 2021, 11, 34269-34274.	3.6	2
2434	Tuning the Electronic Structure of Monolayer Mgl2 by Biaxial Strain and External Electric Field. Modern Physics, 2021, 11, 99-108.	0.1	1
2435	Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Science, 2022, 2, 2100047.	9.9	35
2436	Effects of Platinum Group Metals on MoS ₂ Nanosheets for a High-Performance Hydrogen Evolution Reaction Catalyst. ACS Applied Energy Materials, 2021, 4, 10748-10755.	5.1	11
2437	CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor. Nanomaterials, 2021, 11, 2642.	4.1	10
2438	High Mobility Two-Dimensional Bismuth Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 49153-49162.	8.0	14
2439	Dynamically Induced Largeâ€6cale, Selective, and Vertical Structure Growth of MoS ₂ Nanosheets. Advanced Engineering Materials, 2022, 24, 2101105.	3.5	1
2440	Origins of bandgap bowing character in the common-anion transition-metal-dichalcogenide ternary alloyed monolayer: ab initio investigation. New Journal of Physics, 2021, 23, 103027.	2.9	7
2441	Constructing a new 2D Janus black phosphorus/SMoSe heterostructure for spontaneous wide-spectral-responsive photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 39183-39194.	7.1	17
2442	Fabrication and application of arrays related to two-dimensional materials. Rare Metals, 2022, 41, 262-286.	7.1	17
2443	Interfacial Engineering of 3D Hollow Mo-Based Carbide/Nitride Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 50524-50530.	8.0	16
2444	Wafer-Scale Uniform Growth of an Atomically Thin MoS ₂ Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 50497-50504.	8.0	11
2445	Interlayer Energy Transfer and Photoluminescence Quenching in MoSe ₂ /Graphene van der Waals Heterostructures for Optoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 12034-12042.	5.0	5
2446	NEMS Sensors Based on Novel Nanomaterials. , 2022, , 133-185.		1
2447	Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. IScience, 2021, 24, 103229.	4.1	24
2448	Recent progress in preparation of material and device of two-dimensional MoS2. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 056801.	0.5	4
2449	Research Progress of MoS ₂ Nanosheets. Advances in Material Chemistry, 2014, 02, 49-62.	0.0	0
2450	Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS2. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 067301.	0.5	8

ARTICLE IF CITATIONS Beyond graphene. Tanso, 2015, 2015, 11-20. 0.1 0 2451 Introduction to research of atomically thin MoS2and its electrical properties. Vacuum Magazine, 2454 2016, 3, 9-15. Logical integration device for two-dimensional semiconductor transition metal sulfide. Wuli 2455 0.56 Xuebao/Acta Physica Sinica, 2017, 66, 218503. Controllable Growth of Single Layer MoS₂ and Resistance Switching Effect in 2456 0.9 Polymer/MoS₂ Structure. Applied Science and Convergence Technology, 2017, 26, 129-132. Lennard-Jones-Like Potential of 2D Excitons in Monolayer WS2. Springer Theses, 2018, , 93-114. 2459 0.1 0 Large, Valley-Exclusive Bloch-Siegert Shift in Monolayer WS2. Springer Theses, 2018, , 77-92. 0.1 2460 Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2. Springer Theses, 2018, , 59-76. 2461 0.1 0 Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning 2462 0.2 Electron Microscopy. Korean Journal of Materials Research, 2017, 27, 705-709. Two-photon absorption in layered transition metal dichalcogenides., 2018,,. 0 2463 Recent progress on the scalable fabrication of hybrid polymer/SiO2 nanophotonic cavity arrays with 2464 an encapsulated MoS2 film., 2018, , . Controlling properties of few-layer MoS2 with a multi-laser processing framework., 2018,,. 2465 0 2 cases dysgerminoma with micrometastasis in lymph nodes. Obstetrics & Gynecology International 0.1 2466 Journal, 2019, 10, . WS2 film on a SiC substrate and its optical properties. Optical Engineering, 2019, 58, 1. 2467 1.0 0 2D-Nanolayered Tungsten and Molybdenum Disulfides: Structure, Properties, Synthesis, and 2468 Processing for Strategic Applications., 2020, , 1-47. Preparation of MoS2 films for sensor applications., 2019,,. 0 2469 Correlative imaging of exciton distribution in monolayer of transition metal dichalcogenides., 2020,, 2470 Oxygen-Driven Growth Regulation and Defect Passivation in Chemical Vapor Deposited 2471 3.09 MoS₂ Monolayers. Crystal Growth and Design, 2021, 21, 6793-6801. Revealing the BrÃ, nsted-Evans-Polanyi relation in halide-activated fast MoS < sub>2 < /sub> growth 2472 toward millimeter-sized 2D crystals. Science Advances, 2021, 7, eabj3274.

#	Article	IF	CITATIONS
2473	2D Materials: Molybdenum Disulfide for Electronic and Optoelectronic Devices. Women in Engineering and Science, 2020, , 49-57.	0.4	0
2474	Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. Engineering Materials, 2021, , 179-199.	0.6	0
2475	Few-Layered MoS2 Nanoparticles Covering Anatase TiO2 Nanosheets: Comparison between Ex Situ and In Situ Synthesis Approaches. Applied Sciences (Switzerland), 2021, 11, 143.	2.5	5
2476	Carrier transport mechanism and carrier dynamics of layered molybdenum disulfide. Optical Engineering, 2020, 60, .	1.0	1
2477	Synthesis of large-area MoS2 films by plasma-enhanced chemical film conversion of solution-processed ammonium tetrathiomolybdate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	4
2478	Tunable magnetic coupling and high Curie temperature of two–dimensional PtBr3 via van der waals heterostructures. Applied Surface Science, 2022, 572, 151478.	6.1	5
2479	A DFT study of GaSe/AlN(ZnO) two-dimensional vdW heterostructure practiced as an encouraging photocatalyst for water splitting. Computational Materials Science, 2022, 201, 110912.	3.0	12
2480	Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy and Environmental Science, 2021, 14, 6242-6286.	30.8	69
2481	CVD Growth and Characterization of MoS ₂ Nanotubes Grown with FeO Nanoparticle Catalysts. Vacuum and Surface Science, 2019, 62, 617-622.	0.1	0
2483	Controllable Synthesis of Two-dimensional Layered Transition Metal Chalcogenides and Their Heterostructures. RSC Smart Materials, 2020, , 241-255.	0.1	0
2484	Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 188102.	0.5	5
2485	Controlled vanadium doping of mos2 thin films through co-sputtering and thermal sulfurization. Cumhuriyet Science Journal, 2020, 41, 305-310.	0.3	5
2486	Gradual Edge Contact between Mo and MoS ₂ Formed by Graphene-Masked Sulfurization for High-Performance Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 54536-54542.	8.0	4
2488	In-situ hydrothermal growth of MoS2 absorber layer for planar heterojunction solar cells. Solar Energy, 2021, 230, 754-763.	6.1	7
2489	Two-dimensional metal halides. Journal Physics D: Applied Physics, 2021, 54, 013002.	2.8	3
2490	First-principles investigation of charged dopants and dopant-vacancy defect complexes in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:n mathvariant="normal">S<mml:mn>2</mml:mn></mml:n </mml:msub></mml:mrow>.</mml:math 	ni 2.4	9
2491	Materials at Atomic Scale. , 2021, , 1-40.		0
2493	Atmospheric pressure chemical vapor deposition growth of vertically aligned SnS ₂ and SnSe ₂ nanosheets. RSC Advances, 2021, 11, 36483-36493.	3.6	13

#	Article	IF	CITATIONS
2494	MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Separation and Purification Technology, 2022, 282, 120118.	7.9	40
2495	Fabrication of amorphous molybdenum sulfide/nitrogen-doped reduced graphene oxide nanocomposites with a tailored composition and hydrogen evolution activity via plasma treatment. Carbon, 2022, 187, 386-395.	10.3	13
2496	First-principles calculations of optical properties of 2D CaFBr and BaFBr monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 137, 115074.	2.7	13
2497	Large-Area Monolayer MoS ₂ Nanosheets on GaN Substrates for Light-Emitting Diodes and Valley-Spin Electronic Devices. ACS Applied Nano Materials, 2021, 4, 12127-12136.	5.0	17
2498	Emergence of Novel 2D Materials for High-Performance Supercapacitor Electrode Applications: A Brief Review. Energy & Fuels, 2021, 35, 19881-19900.	5.1	72
2499	Fast and controllable synthesis of AB-stacked bilayer MoS ₂ for photoelectric detection. 2D Materials, 2022, 9, 015016.	4.4	11
2500	Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Materials Science in Semiconductor Processing, 2022, 139, 106313.	4.0	24
2501	Experimental and Simulation Research on the Preparation of Carbon Nano-Materials by Chemical Vapor Deposition. Materials, 2021, 14, 7356.	2.9	5
2502	Controllable growth of two-dimensional materials on noble metal substrates. IScience, 2021, 24, 103432.	4.1	5
2503	Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nature Nanotechnology, 2022, 17, 33-38.	31.5	171
2504	Spontaneous n-Doping in Growing Monolayer MoS ₂ by Alkali Metal Compound-Promoted CVD. ACS Applied Materials & Interfaces, 2021, 13, 58144-58151.	8.0	7
2505	Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides. ACS Applied Materials & amp; Interfaces, 2021, 13, 58966-58973.	8.0	5
2506	Electric field and strain induced gap modifications in multilayered GaN. Applied Surface Science, 2022, 578, 151970.	6.1	4
2507	Mechanism of 2D Materials' Seamless Coalescence on a Liquid Substrate. ACS Nano, 2021, 15, 19387-19393.	14.6	6
2508	Effect of interfacial defects on the electronic properties of MoS ₂ based lateral T–H heterophase junctions. RSC Advances, 2021, 11, 37995-38002.	3.6	1
2509	Highly Sensitive NO ₂ Detection by TVS-Grown Multilayer MoS ₂ Films. ACS Omega, 2022, 7, 1851-1860.	3.5	3
2510	Role of catalyst defect sites towards product selectivity in the upgrading of vacuum residue. Fuel, 2022, 314, 123062.	6.4	11
2511	Enhanced Visible to Near-Infrared Photodetectors Made from MoS ₂ -Based Mixed-Dimensional Structures. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
2512	Variation in The Electronic and Microstructural Properties of Benzyl Viologen Treated MoS2/Si Heterojunction. , 2021, , .		0
2513	Synthesis, properties, and applications of MoS2 semiconductor. , 2022, , 155-189.		2
2514	Unveiling the layer-dependent electronic properties in transition-metal dichalcogenide heterostructures assisted by machine learning. Nanoscale, 2022, 14, 2511-2520.	5.6	6
2515	Enhancing excitons by oleic acid treatment in WS ₂ , MoS ₂ , and WS ₂ /MoS ₂ heterostructure. Applied Physics Express, 2022, 15, 022005.	2.4	2
2516	Vertical 1D/2D Heterojunction Architectures for Self-Powered Photodetection Application: GaN Nanorods Grown on Transition Metal Dichalcogenides. ACS Nano, 2022, 16, 2798-2810.	14.6	29
2517	Chemical vapor deposited WS ₂ /MoS ₂ heterostructure photodetector with enhanced photoresponsivity. Journal Physics D: Applied Physics, 2022, 55, 175101.	2.8	3
2518	Additiveâ€Assisted Growth of Scaled and Quality 2D Materials. Small, 2022, 18, e2107241.	10.0	11
2519	Electronically Tunable Transparent Conductive Thin Films for Scalable Integration of 2D Materials with Passive 2D–3D Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	3
2520	Effect of growth temperature on the morphology control and optical behavior of monolayer MoS2 on SiO2 substrate. Journal of Materials Science: Materials in Electronics, 2022, 33, 9549-9557.	2.2	5
2521	High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 358-377.	12.0	100
2522	Hot carrier dynamics in MoS ₂ /WS ₂ heterostructure. Nanotechnology, 2022, 33, 195701.	2.6	1
2523	From Pain to Fear Recognition via Pavlovian Learning in an Organic–Inorganic Hybrid Neuromorphic Transistor. Advanced Electronic Materials, 2022, 8, .	5.1	8
2524	Penta- <mml:math <br="" display="inline" id="d1e496" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si15.svg"><mml:mrow><mml:mi>C</mml:mi><mml:msub><mml:mrow><mml:mi>Nrevisited: Superior stability, synthesis condition exploration, negative Poisson's ratio and quasi-flat bands. Applied Surface Science, 2022, 585, 152536.</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>	row> <mm 6.1</mm 	l:mrow> <mn< td=""></mn<>
2525	Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization. Nanomaterials, 2022, 12, 182.	4.1	15
2526	Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors. Nano Research, 2022, 15, 4646-4652.	10.4	6
2527	Theoretical design of SnS2–graphene heterojunctions with vacancy and impurity defects for multi-purpose photoelectric devices. Physical Chemistry Chemical Physics, 2022, 24, 966-974.	2.8	1
2528	Optimisation of processing conditions during CVD growth of 2D WS2 films from a chloride precursor. Journal of Materials Science, 2022, 57, 1215-1229.	3.7	5
2529	In Situ Atomic‣cale Observation of Monolayer MoS ₂ Devices under Highâ€Voltage Biasing via Transmission Electron Microscopy. Small, 2022, 18, e2106411.	10.0	5

#	Article	IF	CITATIONS
2530	Enhanced visible to near-infrared photodetectors made from MoS2-based mixed-dimensional structures. Applied Surface Science, 2022, 585, 152594.	6.1	9
2531	Grapheneâ€Based Optoâ€Thermoelectric Tweezers. Advanced Materials, 2022, 34, e2107691.	21.0	20
2532	Uniform growth of MoS2 films using ultra-low MoO3 precursor in one-step heating chemical vapor deposition. Thin Solid Films, 2022, 744, 139092.	1.8	6
2533	Halide chemical vapor deposition of 2D semiconducting atomically-thin crystals: From self-seeded to epitaxial growth. Applied Materials Today, 2022, 26, 101379.	4.3	5
2534	Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progress in Polymer Science, 2022, 126, 101505.	24.7	105
2535	Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon, 2022, 190, 142-169.	10.3	24
2536	Progress towards chemical gas sensors: Nanowires and 2D semiconductors. Sensors and Actuators B: Chemical, 2022, 357, 131466.	7.8	47
2537	The role of sodium dodecyl sulfate mediated hydrothermal synthesis of MoS2 nanosheets for photocatalytic dye degradation and dye-sensitized solar cell application. Chemosphere, 2022, 294, 133725.	8.2	25
2538	Single-particle spectroscopic investigation on the scattering spectrum of Au@MoS2 coreâ^'shell nanosphere heterostructure. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
2539	Morphological Evolution of Monolayer MoS ₂ Single-Crystalline Flakes. Journal of Physical Chemistry C, 2022, 126, 3549-3559.	3.1	8
2540	Elucidation of PVD MoS ₂ film formation process and its structure focusing on sub-monolayer region. Japanese Journal of Applied Physics, 2022, 61, SC1023.	1.5	5
2541	An Effective Route for the Growth of Multilayer MoS2 by Combining Chemical Vapor Deposition and Wet Chemistry. Advances in Condensed Matter Physics, 2022, 2022, 1-7.	1.1	3
2542	Efficient and Air-Stable Doping of Folded MoS ₂ Nanosheets for Use in Field-Effect Transistors. ACS Applied Nano Materials, 2022, 5, 2068-2074.	5.0	2
2543	Few-Layer WS ₂ –WSe ₂ Lateral Heterostructures: Influence of the Gas Precursor Selenium/Tungsten Ratio on the Number of Layers. ACS Nano, 2022, 16, 1198-1207.	14.6	16
2544	Plasmonic hot-electron assisted phase transformation in 2D-MoS ₂ for the hydrogen evolution reaction: current status and future prospects. Journal of Materials Chemistry A, 2022, 10, 8626-8655.	10.3	24
2545	Molybdenum disulfide (MoS ₂)-based nanostructures for tissue engineering applications: prospects and challenges. Journal of Materials Chemistry B, 2022, 10, 2761-2780.	5.8	20
2546	Realization of electronic-grade two-dimensional transition metal dichalcogenides by thin-film deposition techniques. , 2022, , 159-193.		1
2547	Dimensional optimization enables high-performance capacitive deionization. Journal of Materials Chemistry A, 2022, 10, 6414-6441.	10.3	43

~			<u> </u>	
(1-	ΓΔΤΙ	ON	REDC	דקו
\sim			ICLI C	

#	Article	IF	CITATIONS
2548	Toward layered MoS ₂ anode for harvesting superior lithium storage. RSC Advances, 2022, 12, 9917-9922.	3.6	0
2549	Promoting Photoelectrochemical Performance Through the Modulation of MoS ₂ Morphology. Korean Journal of Materials Research, 2022, 32, 30-35.	0.2	0
2550	Wafer-sized WS ₂ monolayer deposition by sputtering. Nanoscale, 2022, 14, 6331-6338.	5.6	6
2551	Chemical vapor deposition merges MoS ₂ grains into high-quality and centimeter-scale films on Si/SiO ₂ . RSC Advances, 2022, 12, 5990-5996.	3.6	4
2552	Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ2 (Q = S, Se) monolayer. Scientific Reports, 2022, 12, 2964.	3.3	19
2553	Enhanced Electrical Properties of Metalâ€Organic Chemical Vapor Depositionâ€Grown MoS ₂ Thin Films through Oxygenâ€Assisted Defect Control. Advanced Electronic Materials, 2022, 8, .	5.1	4
2554	Mechanism of Photoinduced Phase Segregation in Mixed-Halide Perovskite Microplatelets and Its Application in Micropatterning. ACS Applied Materials & Interfaces, 2022, 14, 12412-12422.	8.0	13
2555	Hard-templated engineering of versatile 2D amorphous metal oxide nanosheets. Nanotechnology, 2022, 33, 245602.	2.6	3
2556	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	5.8	16
2557	One step sputtered MoS2 field-effect transistor. , 2022, 165, 207203.		2
2558	A Novel Methodology of Using Nonsolvent in Achieving Ultraclean Transferred Monolayer MoS ₂ . Advanced Materials Interfaces, 2022, 9, .	3.7	4
2560	Host–Guest Intercalation Chemistry for the Synthesis and Modification of Twoâ€Đimensional Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2200425.	21.0	14
2561	MoS2-Based Substrates for Surface-Enhanced Raman Scattering: Fundamentals, Progress and Perspective. Coatings, 2022, 12, 360.	2.6	10
2562	Fabrication of p-MoS2/n-Si heterojunction by AuCl3 treatment for IR detection. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	3
2563	Ionic Liquid Crystals Confining Ultrathin MoS ₂ Nanosheets: A High-Concentration and Stable Aqueous Dispersion. ACS Sustainable Chemistry and Engineering, 2022, 10, 4186-4197.	6.7	27
2564	High Performance Semiconducting Nanosheets <i>via</i> a Scalable Powder-Based Electrochemical Exfoliation Technique. ACS Nano, 2022, 16, 5719-5730.	14.6	20
2565	Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: from synthesis to modifications in doping, surface and heterojunction engineering. Materials Today Nano, 2022, 18, 100191.	4.6	15
2566	Intrinsic spin-valley locking for conducting electrons in metal-semiconductor-metal lateral heterostructures of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>1 </mml:mn> <mml:mi>H <td>i>∛<mark>/</mark>mml:n</td><td>າrðw></td></mml:mi></mml:mrow></mml:math>	i>∛ <mark>/</mark> mml:n	າrðw>

#	Article	IF	Citations
2567	Dynamic growth/etching model for the synthesis of two-dimensional transition metal dichalcogenides via chemical vapour deposition. 2D Materials, 2022, 9, 035001.	4.4	7
2568	Review—Next Generation 2D Material Molybdenum Disulfide (MoS ₂): Properties, Applications and Challenges. ECS Journal of Solid State Science and Technology, 2022, 11, 033012.	1.8	19
2569	Atomic-Level Dynamics of Point Vacancies and the Induced Stretched Defects in 2D Monolayer PtSe ₂ . Nano Letters, 2022, 22, 3289-3297.	9.1	9
2570	Lowâ€Temperature Carrier Transport Mechanism of Waferâ€Scale Grown Polycrystalline Molybdenum Disulfide Thinâ€Film Transistor Based on Radio Frequency Sputtering and Sulfurization. Advanced Materials Interfaces, 2022, 9, .	3.7	6
2571	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	6.1	32
2572	Local Structure of Sulfur Vacancies on the Basal Plane of Monolayer MoS ₂ . ACS Nano, 2022, 16, 6725-6733.	14.6	17
2573	Fast response and broadband self-powered photodetectors based on CZTS/SiNW core-shell heterojunctions for health monitoring. Ceramics International, 2022, 48, 10779-10788.	4.8	3
2574	Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 2022, 70, 103268.	3.0	11
2575	A systematic review on 2D materials for volatile organic compound sensing. Coordination Chemistry Reviews, 2022, 461, 214502.	18.8	20
2576	2D molten salt strategy for preparing large-sized MoS2/C sheets with self-adaptive structural deformation for K-ion storage. Chemical Engineering Journal, 2022, 440, 135871.	12.7	2
2577	Microstructural and Electronic Properties of Rapid Thermally Grown MoS2 Silicon Hetero-Junctions with Various Process Parameters. Semiconductors, 2021, 55, 948-959.	0.5	0
2578	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	47.7	72
2579	Ultrathin Alâ€Assisted Al ₂ O ₃ Passivation Layer for Highâ€Stability Tungsten Diselenide Transistors and Their Ambipolar Inverter. Advanced Electronic Materials, 2022, 8, .	5.1	3
2580	Preparation of Double-Layer Crossed Silver Nanowire Film and Its Application to OLED. Coatings, 2022, 12, 26.	2.6	3
2581	A Strategy for Waferâ€Scale Crystalline MoS ₂ Thin Films with Controlled Morphology Using Pulsed Metal–Organic Chemical Vapor Deposition at Low Temperature. Advanced Materials Interfaces, 2022, 9, .	3.7	8
2582	Resolving surface potential variation in Ge/MoS ₂ heterostructures with Kelvin probe force microscopy. AIP Advances, 2021, 11, 125105.	1.3	1
2584	Thickness and Morphology Dependent Electrical Properties of ALDâ€&ynthesized MoS ₂ FETs. Advanced Electronic Materials, 2022, 8, .	5.1	9
2585	Density functional theory study of graphene adhesion on WX ₂ (X = S and Se) monolayer: Role of atom vacancy and atomic reorganization defects. International Journal of Quantum Chemistry, 2022, 122, .	2.0	6

ARTICLE

Interfacial defect engineering and Photocatalysis Properties of hBN/MX sub 2(sub) (M = Mo, W, and) Tj ETQq0 0.0 rgBT /Overlock 10

2587	A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials, 2021, 14, 7590.	2.9	23
2588	Oxide Scale Sublimation Chemical Vapor Deposition for Controllable Growth of Monolayer MoS ₂ Crystals. Small Methods, 2022, 6, e2101107.	8.6	7
2589	Sustainable micro-activation of dissolved oxygen driving pollutant conversion on Mo-enhanced zinc sulfide surface in natural conditions. Fundamental Research, 2023, 3, 422-429.	3.3	7
2590	Large-Size Superlattices Synthesized by Sequential Sulfur Substitution-Induced Transformation of Metastable MoTe ₂ . Chemistry of Materials, 2021, 33, 9760-9768.	6.7	5
2591	Recent advances in the controlled chemical vapor deposition growth of bilayer 2D single crystals. Journal of Materials Chemistry C, 2022, 10, 13324-13350.	5.5	10
2592	Theoretical prediction of novel two-dimensional auxetic material SiGeS and study of its electronic and optical properties. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
2593	Dual-wavelength photodetector based on monolayer MoS2/GaN heterostructure. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	2
2594	Shift of Switching Threshold in Low-Dimensional Semiconductor-Based Complementary Inverters via Inkjet Printing. Nanotechnology, 2022, , .	2.6	1
2595	Effect of the Substrate on MoS ₂ Monolayer Morphology: An Integrated Computational and Experimental Study. ACS Applied Materials & Interfaces, 2022, 14, 18835-18844.	8.0	11
2596	Chemical Vapor Deposition of Atomically-thin Layered and Wired Transition Metal Chalcogenides. Vacuum and Surface Science, 2022, 65, 196-201.	0.1	0
2597	Review of recent progress, challenges, and prospects of 2D materials-based short wavelength infrared photodetectors. Journal Physics D: Applied Physics, 2022, 55, 313001.	2.8	12
2598	Fundamentals of Chemical Vapor Deposition of Atomic Layer Materials. Vacuum and Surface Science, 2022, 65, 169-176.	0.1	0
2599	Monolayer MoS ₂ of High Mobility Grown on SiO ₂ Substrate by two-step Chemical Vapor Deposition. Chinese Physics B, 0, , .	1.4	2
2600	Direct Visualization of Structural Defects in 2D Semiconductors. Chinese Physics B, 0, , .	1.4	0
2601	Salt-Assisted MoS ₂ Growth: Molecular Mechanisms from the First Principles. Journal of the American Chemical Society, 2022, 144, 7497-7503.	13.7	30
2602	Sensing properties of nonmetal doped blue phosphorene toward <scp>NO</scp> and <scp>NO₂</scp> molecules: A firstâ€principles study. International Journal of Quantum Chemistry, 2022, 122, .	2.0	4
2605	The first progress of plasma-based transition metal dichalcogenide synthesis: a stable 1T phase and promising applications. Nanoscale Advances, 2022, 4, 2962-2972.	4.6	10
#	Article	IF	CITATIONS
------	---	------	-----------
2606	Synthesis and Extraction of Carbon-Encapsulated Iron Carbide Nanoparticles for Perovskite Solar Cell Application. SSRN Electronic Journal, 0, , .	0.4	0
2607	Edgeâ€Assisted Epitaxy of 2D TaSe ₂ â€MoSe ₂ Metal–Semiconductor Heterostructures and Application to Schottky Diodes. Advanced Functional Materials, 2022, 32, .	14.9	10
2608	Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. International Journal of Molecular Sciences, 2022, 23, 4745.	4.1	33
2609	Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell. Chinese Physics B, 2022, 31, 097301.	1.4	2
2610	A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle and Particle Systems Characterization, 2022, 39, .	2.3	81
2611	The Trend of 2D Transistors toward Integrated Circuits: Scaling Down and New Mechanisms. Advanced Materials, 2022, 34, e2201916.	21.0	37
2612	Self-Expanding Molten Salt-Driven Growth of Patterned Transition-Metal Dichalcogenide Crystals. Journal of the American Chemical Society, 2022, 144, 8746-8755.	13.7	15
2613	A DFT study of the electronic and optical properties of four 2D thin films. Materials Chemistry and Physics, 2022, 286, 126158.	4.0	5
2614	Highly sensitive few-layer MoS2 nanosheets as a stable soil moisture and humidity sensor. Sensors and Actuators B: Chemical, 2022, 365, 131930.	7.8	21
2615	Chemical Vapor Deposition Synthesis of Two-dimensional Bi ₂ O ₂ Se on Silicon Substrate and its Photodetecting Application. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
2616	Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes). Physica B: Condensed Matter, 2022, 639, 413922.	2.7	9
2617	Circuit‣evel Memory Technologies and Applications based on 2D Materials. Advanced Materials, 2022, 34, .	21.0	17
2618	Process design and economic assessment of large-scale production of molybdenum disulfide nanomaterials. Chemical Product and Process Modeling, 2022, .	0.9	0
2619	Controllable fabrication of magnesium silicate hydroxide reinforced MoS2 hybrid nanomaterials as effective lubricant additives in PAO. Applied Surface Science, 2022, 597, 153777.	6.1	16
2620	Nanostructured molybdenum dichalcogenides: a review. Materials Advances, 2022, 3, 5672-5697.	5.4	16
2621	No Adsorption on Hexagonal Boron Nitride Monolayer with Vacancy Defects: A First-Principles Study. SSRN Electronic Journal, 0, , .	0.4	0
2622	Anomalous enhancement oxidation of few-layer MoS2 and MoS2/h-BN heterostructure. Nano Research, 2022, 15, 7081-7090.	10.4	9
2623	Synthesis, Characterization, and Typical Application of Nitrogenâ€Doped MoS ₂ Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	1

	Citation	CITATION REPORT	
#	Article	IF	Citations
2624	A Review on MX2 (MÂ=ÂMo, W and XÂ=ÂS, Se) layered material for opto-electronic devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 023001.	1.5	5
2625	A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te). Materials Science in Semiconductor Processing, 2022, 148, 106829.	4.0	20
2626	The role of Al2O3 interlayer in the synthesis of ZnS/Al2O3/MoS2 core-shell nanowires. Journal of Alloys and Compounds, 2022, 918, 165648.	5.5	4
2628	In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting. Dalton Transactions, 2022, 51, 9681-9688.	3.3	8
2629	Rashba-type spin splitting and transport properties of novel Janus XWGeN ₂ (X = O, S, Se,) Tj ETQ	q0 0 0 rgBT 2.8gBT	/Overlock 10
2630	Site-selective growth of two-dimensional materials: strategies and applications. Nanoscale, 2022, 14, 9946-9962.	5.6	2
2631	Polyaromatic cores for the exfoliation of popular 2D materials. Nanoscale, 2022, 14, 8986-8994.	5.6	2
2632	Sequential Growth of Vertical Transition-Metal Dichalcogenide Heterostructures on Rollable Aluminum Foil. ACS Nano, 2022, 16, 8851-8859.	14.6	8
2633	Electric-field-induced metal-insulator transition and quantum transport in large-area polycrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2monolayers. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	nl:mñ>4 <td>nl:@sub></td>	nl:@sub>
2634	Toward an Ultrahigh-Performance Near-Infrared Photoresponsive Field-Effect Transistor Using a Lead Phthalocyanine/MoS ₂ Organic–Inorganic Planar Heterojunction. ACS Applied Electronic Materials, 2022, 4, 2777-2786.	4.3	5
9695	Recent Developments in Chemical Vapor Deposition of 2D Magnetic Transition Metal Chalcogenides.	4.9	_

2635	ACS Applied Electronic Materials, 2022, 4, 3303-3324.	4.3	4
2636	Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nature Materials, 2023, 22, 450-458.	27.5	62
2637	Strong Spin-Phonon Coupling in Two-Dimensional Magnetic Semiconductor CrSBr. Journal of Physical Chemistry C, 2022, 126, 10574-10583.	3.1	12
2638	Tabletop Fabrication of High-Performance MoS ₂ Field-Effect Transistors. ACS Omega, 2022, 7, 21220-21224.	3.5	3
2639	Theoretical insights into the mechanism of photocatalytic reduction of CO2 over semiconductor catalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100538.	11.6	27
2640	Heterogeneous transition metal dichalcogenides/graphene composites applied to the metal-ion batteries. Chemical Engineering Journal, 2022, 447, 137469.	12.7	17
2641	Low Consumption Fenton-Like Water Purification Through Pollutants as Electron Donors Substituting H2o2 Consumption Via Twofold Cation-Î Over Mos2 Cross-Linking G-C3n4 Hybrid. SSRN Electronic Journal, 0, , .	0.4	0
2642	Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. Nanoscale Horizons, 2022, 7, 849-872.	8.0	19

#	Article	IF	CITATIONS
2643	Density Functional Theory Study on the Sensing Mechanism of the 2d Vse2 for Carcinogenic Dioxane Detection. SSRN Electronic Journal, 0, , .	0.4	0
2644	Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Frontiers of Physics, 2022, 17, .	5.0	3
2645	Large and Uniform Single Crystals of MoS ₂ Monolayers for ppb-Level NO ₂ Sensing. ACS Applied Nano Materials, 2022, 5, 9415-9426.	5.0	44
2646	Enhancing the Photoluminescence of Monolayer MoS ₂ through Gap-Assisted Synthesis at a Wafer-Scale. Journal of Physical Chemistry C, 2022, 126, 11201-11208.	3.1	1
2647	Thermal boundary conductance of CVD-grown MoS2 monolayer-on-silica substrate determined by scanning thermal microscopy. Applied Physics Letters, 2022, 120, .	3.3	4
2648	CVD growth and optical characterization of homo and heterobilayer TMDs. Journal of Applied Physics, 2022, 132, .	2.5	7
2649	Large-Scale Multilayer MoS ₂ Nanosheets Grown by Atomic Layer Deposition for Sensitive Photodetectors. ACS Applied Nano Materials, 2022, 5, 10431-10440.	5.0	5
2650	One and two-dimensional control growth of MoSe2â^'x nanostructures. Materials Today Communications, 2022, 32, 103934.	1.9	0
2651	Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications. Journal of Alloys and Compounds, 2022, 922, 166194.	5.5	32
2652	Beyond CMOS., 2021, , .		2
2653	Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 29255-29283.	7.1	68
2654	Growth and application of MoSe ₂ in solar cells. International Journal of Modern Physics B, 2022, 36, .	2.0	2
2655	Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation. Nature Communications, 2022, 13, .	12.8	12
2656	Large-Scale 1T′-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition. ACS Nano, 2022, 16, 13069-13081.	14.6	11
2657	Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides. Journal of Optics (United Kingdom), 2022, 24, 093001.	2.2	5
2658	Solution-Processed MoS ₂ -Based Back-to-Back Diodes Circuit Applications for Signal Demodulators and Envelope Detectors. , 2022, 4, 1556-1564.		1
2659	Direct Band Gap in Multilayer Transition Metal Dichalcogenide Nanoscrolls with Enhanced Photoluminescence. , 2022, 4, 1547-1555.		4
2660	From ionâ€sensitive fieldâ€effect transistor to 2D materials fieldâ€effectâ€transistor biosensors. Electrochemical Science Advances, 2023, 3, .	2.8	5

#	Article	IF	CITATIONS
2661	Direct growth of h-BN multilayers with controlled thickness on non-crystalline dielectric substrates without metal catalysts. Chemical Communications, 0, , .	4.1	1
2662	A giant thermoelectric figure of merit and ultra-low lattice thermal conductivity using Janus \$\$Ge_{2}SeTe\$\$ monolayer: a first principle investigation. European Physical Journal Plus, 2022, 137, .	2.6	1
2663	Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS ₂ . Small, 2022, 18, .	10.0	17
2664	Electric field and strain-induced band-gap engineering and manipulation of the Rashba spin splitting in Janus van der Waals heterostructures. Physical Review B, 2022, 106, .	3.2	16
2665	Wafer-Scale Anion Exchange Conversion of Nonlayered PtS Films to van der Waals Two-Dimensional PtTe ₂ Layers with Negative Photoresponsiveness. Chemistry of Materials, 2022, 34, 6996-7005.	6.7	3
2666	Research progress on improving the performance of MoS ₂ photodetector. Journal of Optics (United Kingdom), 2022, 24, 104003.	2.2	4
2667	Noise analysis of MoTe ₂ -based dual-cavity MOSFET as pH sensor. Semiconductor Science and Technology, 0, , .	2.0	2
2668	Direct growth of monolayer MoS ₂ on nanostructured silicon waveguides. Nanophotonics, 2022, 11, 4397-4408.	6.0	6
2669	2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorphic Computing and Engineering, 2022, 2, 032004.	5.9	14
2670	Hierarchical MoS ₂ Nanotubes Supported by Tubular CoS ₂ on Carbon Cloth as Flexible Electrodes for Durable Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 10056-10066.	5.1	4
2671	Simulation of Molybdenum Disulfide based MOSFET Device using COMSOL Multiphysics software. Journal of Physics: Conference Series, 2022, 2312, 012057.	0.4	2
2672	<scp> MoS ₂ </scp> nanosheets as bifunctional electrode for oxygen evolution reaction and electrochemical supercapacitor. International Journal of Energy Research, 2022, 46, 18312-18327.	4.5	6
2673	Low consumption Fenton-like water purification through pollutants as electron donors substituting H2O2 consumption via twofold cation-ï€ over MoS2 cross-linking g-C3N4 hybrid. Applied Catalysis B: Environmental, 2023, 320, 121871.	20.2	23
2674	Two-dimensional antiferromagnetic semiconductor T'-MoTel from first principles. Journal of Physics Condensed Matter, 2022, 34, 415801.	1.8	1
2675	Formation and Characterization of Three-Dimensional Tetrahedral MoS ₂ Thin Films by Chemical Vapor Deposition. Crystal Growth and Design, 0, , .	3.0	3
2676	Robust n-type doping of WSe2 enabled by controllable proton irradiation. Nano Research, 2023, 16, 1220-1227.	10.4	5
2677	Transfer-free, scalable vertical heterostructure FET on MoS ₂ /WS ₂ continuous films. Nanotechnology, 2022, 33, 475201.	2.6	2
2678	Patterned Growth of Transition Metal Dichalcogenide Monolayers and Multilayers for Electronic and Optoelectronic Device Applications. Small Methods, 2022, 6, .	8.6	12

#	Article	IF	CITATIONS
2679	Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. Chemistry of Materials, 2022, 34, 7280-7292.	6.7	15
2680	First-Principles Calculations to Investigate the Oxidation Mechanism of Pristine MoS2 and Ti-Doped MoS2. Coatings, 2022, 12, 1114.	2.6	0
2681	NaCl-Assisted Temperature-Dependent Controllable Growth of Large-Area MoS ₂ Crystals Using Confined-Space CVD. ACS Omega, 2022, 7, 30074-30086.	3.5	11
2682	In Situ Synthesis of a Bismuth Vanadate/Molybdenum Disulfide Composite: An Electrochemical Tool for 3-Nitro- <scp>l</scp> -Tyrosine Analysis. Inorganic Chemistry, 2022, 61, 14046-14057.	4.0	10
2683	2D hybrid photocatalysts for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00469.	3.3	7
2684	Two-dimensional bilayer MoS2 flakes with variable size of the upper layer grown by chemical vapor deposition. , 2022, 169, 207358.		2
2685	Low temperature CVD growth of WSe ₂ enabled by moisture-assisted defects in the precursor powder. 2D Materials, 2022, 9, 045026.	4.4	2
2686	Homogeneously niobium-doped MoS2 for rapid and high-sensitive detection of typical chemical warfare agents. Frontiers in Chemistry, 0, 10, .	3.6	4
2687	Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and Bioelectronics, 2022, 216, 114674.	10.1	47
2688	Stepwise sulfurization of MoO3 to MoS2 thin films studied by real-time X-ray scattering. Applied Surface Science, 2022, 606, 154772.	6.1	6
2689	Synergy of hyperbranched polysiloxane and MoS2/rGO heterostructured particles for enhancing polyimide bonded solid lubricating coatings. Progress in Organic Coatings, 2022, 173, 107183.	3.9	2
2690	Synthesis of Wse2 Concentric Nanotriangles for Fully Recoverable Photoelectric Gas Sensors. SSRN Electronic Journal, 0, , .	0.4	0
2691	Molten-droplet-driven growth of MoS ₂ flakes with controllable morphology transition for hydrogen evolution reactions. Dalton Transactions, 2022, 51, 13351-13360.	3.3	2
2692	A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT–MoS ₂ heterostructures. Nanoscale Advances, 2022, 4, 5290-5296.	4.6	3
2693	Tailoring the optoelectronic properties and dielectric profiles of few-layer S-doped MoO ₃ and O-doped MoS ₂ nanosheets: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 25440-25451.	2.8	6
2694	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17
2695	Molybdenum(<scp>iv</scp>) dithiocarboxylates as single-source precursors for AACVD of MoS ₂ thin films. Dalton Transactions, 2022, 51, 12540-12548.	3.3	4
2696	Highly Sensitive Chemiresistive Detection of Nh3 by Formation of Ws2 Nanosheets and Sno2 Quantum Dot Heterostructures. SSRN Electronic Journal, 0, , .	0.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
2697	Generating Self-Shaped 2D Aluminum Oxide Nanopowders. Nanomaterials, 2022, 12, 2	2955.	4.1	1
2698	A brief review of reconstructions and electronic structures of MoS ₂ zigza Journal of Applied Physics, 2022, 132, 080702.	ig edges.	2.5	1
2699	Life cycle assessment of large-scale production of MoS2 nanomaterials through the so method. Journal of Nanoparticle Research, 2022, 24, .	lvothermal	1.9	4
2700	The effect of tungsten (W) concentration and sulfuration on morphology and optical tuning of the band gap of 2D-MoS2 thin films. Optical and Quantum Electronics, 2022	properties and 2, 54, .	3.3	0
2701	Chemical vapor deposition: a potential tool for wafer scale growth of two-dimensional materials. Journal Physics D: Applied Physics, 2022, 55, 473001.	layered	2.8	15
2702	Facilitating Uniform Large-Scale MoS ₂ , WS ₂ Monolayers, ar Heterostructures through van der Waals Epitaxy. ACS Applied Materials & amp; Interfac 42365-42373.	nd Their ces, 2022, 14,	8.0	5
2703	2D electrene LaH ₂ monolayer: an ideal ferrovalley direct semiconductor v room-temperature ferromagnetic stability. Journal of Physics Condensed Matter, 2022	vith , 34, 475303.	1.8	2
2704	Tuning Schottky Barrier of Single-Layer MoS2 Field-Effect Transistors with Graphene El Nanomaterials, 2022, 12, 3038.	ectrodes.	4.1	3
2705	Epitaxy of III-nitrides on two-dimensional materials and its applications. Chinese Physic 117702.	s B, 2022, 31,	1.4	3
2706	Morphologically Controlled Synthesis of Reduced-Dimensional ZnO/Zn(OH) _{2ACS Omega, 2022, 7, 35834-35839.}	ub> Nanosheets.	3.5	4
2707	Decorating MoS ₂ Nanoscrolls with Solution-Processed PbI ₂ for Improved Photosensitivity. ACS Applied Nano Materials, 2022, 5, 15892-15901.	Nanocrystals	5.0	2
2708	van der Waals integration of mixed-dimensional CeO ₂ @Bi heterostructu high-performance self-powered photodetector with fast response speed. Nanoscale, 2 16120-16129.	re for 022, 14,	5.6	7
2709	Synthesis of Transition Metal Dichalcogenides (TMDs). Topics in Applied Physics, 2022	2, , 155-179.	0.8	1
2710	Origin of contact polarity at metal-2D transition metal dichalcogenide interfaces. Npj 2 and Applications, 2022, 6, .	2D Materials	7.9	2
2711	The origin of edge-enhanced second harmonic generation in monolayer MoS _{2<!--<br-->Advances, 2022, 12, 105009.}	sub> flakes. AIP	1.3	0
2712	Two-dimensional Janus monolayers with tunable electronic and magnetic properties. Jo Materials Research, 0, , .	purnal of	2.6	6
2713	Hierarchical van der Waals Heterostructure Strategy to Form Stable Transition Metal Dispersions. ACS Applied Materials & amp; Interfaces, 2022, 14, 50308-50317.)ichalcogenide	8.0	1
2714	Perspectives for the Growth of Epitaxial 2D van der Waals Layers with an Emphasis on Metals for Spintronics. Advanced Materials Interfaces, 2022, 9, .	Ferromagnetic	3.7	1

#	Article	IF	CITATIONS
2715	Visualizing correlation between carrier mobility and defect density in MoS2 FET. Applied Physics Letters, 2022, 121, .	3.3	6
2716	Plasmonic-Thermoelectric Nanotweezers for Immersive SERS Mapping. ACS Nano, 2022, 16, 18621-18629.	14.6	7
2717	Tuning the Layered Thickness of MoTe ₂ Thin Film for Dyeâ€Sensitized Solar Cells, UV and Visible Spectrum Photodetectors, and Hydrogen Evolution Reaction. Solar Rrl, 2022, 6, .	5.8	4
2718	2D Transition Metal Dichalcogenidesâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	14.9	54
2719	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	1.5	3
2720	xmlns:mml="http://www.w3.org/1998/Math/Math/ML" altimg="si62.svg" display="inline" id="d1e591"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow </mml:msub> GaPbX <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si63.svg" display="inline"</mml:math 	1.9	7
2721	Highly sensitive chemiresistive detection of NH3 by formation of WS2 nanosheets and SnO2 quantum dot heterostructures. Sensors and Actuators B: Chemical, 2023, 375, 132899.	7.8	7
2722	A density functional theory study of the CO oxidation on Pt1 supported on PtX2 (XÂ=ÂS, Se, Te). Applied Surface Science, 2023, 609, 155341.	6.1	0
2723	The growth mechanism and intriguing optical and electronic properties of few-layered HfS ₂ . Nanoscale Advances, 2022, 5, 171-178.	4.6	2
2724	Adsorption of NO gas molecule on the vacancy defected and transition metal doped antimonene: A first-principles study. Vacuum, 2023, 207, 111654.	3.5	7
2725	In Situ Assembly of Well-Defined MoS2 Slabs on Shape-Tailored Anatase TiO2 Nanostructures: Heterojunctions Role in Phenol Photodegradation. Catalysts, 2022, 12, 1414.	3.5	0
2726	Crumpling Carbonâ€Pillared Atomicâ€Thin Dichalcogenides and CNTs into Elastic Balls as Superior Anodes for Sodium/Potassiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	14.9	24
2727	Recent advances in 2D organicâ^'inorganic heterostructures for electronics and optoelectronics. SmartMat, 2023, 4, .	10.7	15
2728	2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. Biosensors, 2022, 12, 1009.	4.7	5
2729	Extreme Bendability of Atomically Thin MoS2 Grown by Chemical Vapor Deposition Assisted by Perylene-Based Promoter. Nanomaterials, 2022, 12, 4050.	4.1	6
2730	Size and shape control of CVD-grown monolayer MoS2. Current Applied Physics, 2023, 45, 99-104.	2.4	7
2731	Single-layer MoS2 with adjacent Mo sites for efficient electrocatalytic nitrogen fixation via spin-delocalized electrons effect. Applied Catalysis B: Environmental, 2023, 323, 122186.	20.2	5
2732	Investigation of AuCl3 Doped MoS2 Based IR Detector with the Variation of Annealing Temperature. Mechanisms and Machine Science, 2023, , 332-341.	0.5	0

#	Article	IF	CITATIONS
2733	Strategic review on chemical vapor deposition technology-derived 2D material nanostructures for room-temperature gas sensors. Journal of Materials Chemistry C, 2023, 11, 774-801.	5.5	9
2734	How to dope the basal plane of 2H-MoS2 to boost the hydrogen evolution reaction?. Electrochimica Acta, 2023, 439, 141653.	5.2	3
2735	A review of the synthesis, fabrication, and recent advances in mixed dimensional heterostructures for optoelectronic devices applications. Applied Materials Today, 2023, 30, 101717.	4.3	6
2736	Effects of CVD growth parameters on global and local optical properties of MoS2 monolayers. Materials Chemistry and Physics, 2023, 296, 127185.	4.0	4
2737	Phase dependent performance of MoS2 for supercapacitor applications. Journal of Energy Storage, 2023, 58, 106321.	8.1	26
2738	Self-relaxation vapor-liquid-solid growth of two-dimensional transition metal dichalcogenides with loose interface. Applied Surface Science, 2023, 613, 156019.	6.1	2
2739	An investigation of halogen induced improvement of \hat{I}^212 borophene for Na/Li storage by density functional theory. Journal of Molecular Graphics and Modelling, 2023, 119, 108373.	2.4	7
2740	Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Progress in Materials Science, 2023, 133, 101047.	32.8	14
2741	Detailed insights into the formation pathway of CdS and ZnS in solution: a multi-modal <i>in situ</i> characterisation approach. Physical Chemistry Chemical Physics, 2023, 25, 4489-4500.	2.8	2
2742	2D Molybdenum Compounds for Electrocatalytic Energy Conversion. Advanced Functional Materials, 2023, 33, .	14.9	12
2743	Label-Free Sensing of Biomolecular Adsorption and Desorption Dynamics by Interfacial Second Harmonic Generation. Biosensors, 2022, 12, 1048.	4.7	2
2744	Excitation-dependent photoluminescence intensity of monolayer MoS2: Role of heat-dissipating area and phonon-assisted exciton scattering. Journal of Applied Physics, 2022, 132, .	2.5	2
2745	Ultraâ€High Nonlinear Saturable Absorption Responses and Ultraâ€Fast Carrier Dynamics of Organic DAST. Advanced Optical Materials, 2023, 11, .	7.3	1
2746	Two-dimensional layered materials and heterostructures for flexible electronics. Matter, 2022, 5, 4116-4132.	10.0	10
2747	Growth Mechanism of Single-Domain Monolayer MoS ₂ Nanosheets on Au(111) Revealed by <i>In Situ</i> Microscopy: Implications for Optoelectronics Applications. ACS Applied Nano Materials, 2022, 5, 17702-17710.	5.0	2
2748	2D Materials in the Display Industry: Status and Prospects. Advanced Materials, 2023, 35, .	21.0	3
2749	MXeneâ€Based Nanomaterials for Biomedical Applications: Healthier Substitute Materials for the Future. Advanced NanoBiomed Research, 2023, 3, .	3.6	11
2750	Advances in MoS ₂ based Hollow Structural Materials for Highâ€Performance Metalâ€ion Batteries. Batteries and Supercaps, 2023, 6, .	4.7	3

#	Article	IF	CITATIONS
2751	Controllable synthesis and optoelectronic applications of wafer-scale MoS ₂ films. Materials Research Express, 2022, 9, 125004.	1.6	0
2752	Wafer-scale integration of transition metal dichalcogenide field-effect transistors using adhesion lithography. Nature Electronics, 2023, 6, 146-153.	26.0	9
2753	High Detectivity and Fast MoS ₂ Monolayer MSM Photodetector. ACS Applied Electronic Materials, 2022, 4, 5739-5746.	4.3	9
2754	Role of Hydrogen in Suppressing Secondary Nucleation in Chemical Vapor-Deposited MoS ₂ . ACS Applied Electronic Materials, 2022, 4, 6133-6141.	4.3	1
2755	Two-dimensional nanomaterials: synthesis and applications in photothermal catalysis. Nanoscale, 2023, 15, 2455-2469.	5.6	11
2756	A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Materials Chemistry and Physics, 2023, 297, 127332.	4.0	29
2757	2D Zinc Oxide $\hat{a} \in \mathcal{C}$ Synthesis, Methodologies, Reaction Mechanism, and Applications. Small, 2023, 19, .	10.0	22
2758	Controlled Adhesion of Iceâ \in "Toward Ultraclean 2D Materials. Advanced Materials, 2023, 35, .	21.0	8
2759	Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS ₂ Using Inorganic Molecular Precursors. ACS Nano, 2023, 17, 1196-1205.	14.6	10
2760	Recent progress of 2-dimensional layered thermoelectric materials. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 057301.	0.5	2
2761	Real time estimation of stem cell zeta potential and dimension during proliferation using MoS2 nanosheets field effect transistor. Sensors and Actuators B: Chemical, 2023, 380, 133351.	7.8	4
2762	Emerging MoS2 Wafer-Scale Technique for Integrated Circuits. Nano-Micro Letters, 2023, 15, .	27.0	37
2763	First-Principles Calculation Guided High-Purity Layer Control of 4 in. MoS ₂ by Plasma RIE. Chemistry of Materials, 2023, 35, 1016-1028.	6.7	3
2764	Novel Impregnation–Deposition Method to Synthesize a Presulfided MoS ₂ /Al ₂ O ₃ Catalyst and Its Application in Hydrodesulfurization. ACS Omega, 2023, 8, 2596-2606.	3.5	3
2765	Influence of MoS2 film thickness for nitric oxide gas sensing applications. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
2766	Modifying the Power and Performance of 2-Dimensional MoS ₂ Field Effect Transistors. Research, 2023, 6, .	5.7	9
2767	CVD growth of the centimeter-scale continuous 2D MoS2 film by modulating the release of Mo vapor with adjusting the particle size of Al2O3 microsphere. Chemical Physics Letters, 2023, 813, 140292.	2.6	1
2768	Flexible temperature sensors based on two-dimensional materials for wearable devices. Journal Physics D: Applied Physics, 2023, 56, 063001.	2.8	6

#	Article	IF	CITATIONS
2769	Recent Progress in the Transition Metal Sulfide/Phosphide for Cancer Theranostic Applications. , 0, , .		0
2770	Optical properties of 2D pristine and doped Janus WSSe using first-principles study. Nanomaterials and Energy, 2022, 11, 85-91.	0.2	0
2772	2D materials for flexible electronics. , 2023, , 169-206.		1
2773	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	47.7	23
2774	The plasticity of synaptic memristor based on 2D-MoS2 thin film prepared in large-scale by a PLD-assisted CVD method. Materials Today Communications, 2023, 35, 105511.	1.9	0
2775	Efficient and enhanced optical switches based on saturation absorption via composite of 2D materials. Optics and Laser Technology, 2023, 161, 109208.	4.6	0
2776	Singular optics empowered by engineered optical materials. Nanophotonics, 2023, 12, 2687-2716.	6.0	4
2777	Functionalized MoS2 catalysts for CO2 capture and conversion: a review. Materials Today Chemistry, 2023, 29, 101449.	3.5	2
2778	Micrometer-size crystalline monolayer MoS2 domains obtained by sulfurization of molybdenum oxide ultrathin films. Microelectronic Engineering, 2023, 274, 111967.	2.4	1
2779	Crystal violet as CMOS-compatible alkali-free promoter for CVD growth of MoSe2 monolayers: Comparative surface analysis with alkali-based promoter. Current Applied Physics, 2023, 48, 106-113.	2.4	2
2780	Improved performance in MoS2 homogeneous junction field effect transistors by optimizing electrodes contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116348.	3.5	1
2781	Green solvent exfoliation of few layers 2D-MoS2 nanosheets for efficient energy harvesting and storage application. Journal of Energy Storage, 2023, 65, 107336.	8.1	5
2782	Controlled synthesis of continuous MoS2 films via space-confined vapor deposition. Chemical Physics, 2023, 571, 111923.	1.9	2
2783	Synthesis of WSe2 concentric nanotriangles for fully recoverable photoelectric gas sensors. Sensors and Actuators B: Chemical, 2023, 386, 133682.	7.8	6
2784	Structural, spectroscopic and electrical properties of liquid phase exfoliated few layered two-dimensional tungsten disulfide (WS2) using anionic surfactant. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	5
2785	A critical review of fabrication challenges and reliability issues in top/bottom gated MoS ₂ field-effect transistors. Nanotechnology, 2023, 34, 232001.	2.6	4
2786	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Si<mml:mn>9</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">C<mml:mn>15</mml:mn></mml:mi </mml:msub></mml:math> monolayer: A silicon carbide allotrope with remarkable physical properties. Physical Review B. 2023. 107	3.2	7
2787	CVD growth of large-area monolayer WS2 film on sapphire through tuning substrate environment and its application for high-sensitive strain sensor. , 2023, 18, .		3

#	Article	IF	CITATIONS
2788	Pseudo-transistors for emerging neuromorphic electronics. Science and Technology of Advanced Materials, 2023, 24, .	6.1	2
2789	Passivated Interfacial Traps of Monolayer MoS ₂ with Bipolar Electrical Pulse. ACS Applied Materials & Interfaces, 2023, 15, 10812-10819.	8.0	4
2790	Bright and Efficient Lightâ€Emitting Devices Based on 2D Transition Metal Dichalcogenides. Advanced Materials, 2023, 35, .	21.0	10
2791	A simple KPFM-based approach for electrostatic- free topographic measurements: the case of MoS ₂ on SiO ₂ . Nanotechnology, 2023, 34, 215705.	2.6	0
2792	Controllable p-type doping of 2D MoS ₂ <i>via</i> Sodium intercalation for optoelectronics. Journal of Materials Chemistry C, 2023, 11, 3386-3394.	5.5	0
2793	2D Material Infrared Photonics and Plasmonics. ACS Nano, 2023, 17, 4134-4179.	14.6	30
2794	An ultrasensitive FET biosensor based on vertically aligned MoS2 nanolayers with abundant surface active sites. Analytica Chimica Acta, 2023, 1252, 341036.	5.4	3
2795	Dual Catalytic and Selfâ€Assembled Growth of Twoâ€Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. Small, 2023, 19, .	10.0	3
2796	Synthesis of Large-Area Single- to Few-Layered MoS ₂ on an Ionic Liquid Surface. ACS Applied Materials & Interfaces, 2023, 15, 13724-13729.	8.0	3
2797	Three-Dimensional MoS2 Nanosheet Structures: CVD Synthesis, Characterization, and Electrical Properties. Crystals, 2023, 13, 448.	2.2	1
2798	Anomalous Photoluminescence Enhancement and Resonant Charge Transfer in Type-II 2D Lateral Heterostructures. Chinese Physics B, O, , .	1.4	0
2799	Tungsten Oxide Mediated Quasi-van der Waals Epitaxy of WS ₂ on Sapphire. ACS Nano, 2023, 17, 5399-5411.	14.6	8
2800	Progress of transition metal sulfides used as lithium-ion battery anodes. Materials Chemistry Frontiers, 2023, 7, 2779-2808.	5.9	13
2801	A facile one step hydrothermal synthesis of flower-like nanosheets of MoS2 for nanoelectronics technology. , 2023, , .		1
2802	Comparative Study between Sulfurized MoS ₂ from Molybdenum and Molybdenum Trioxide Precursors for Thin-Film Device Applications. ACS Applied Materials & Interfaces, 2023, 15, 16308-16316.	8.0	1
2803	Velocity distributions of particles sputtered from supported two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoS<mml:mn>2</mml:mn></mml:mi </mml:msub> during highly charged ion irradiation. Physical Review B. 2023. 107</mml:math 	3.2	2
2804	Upcycled synthesis and extraction of carbonâ€encapsulated iron carbide nanoparticles for gap Plasmon applications in perovskite solar cells. EcoMat, 0, , .	11.9	1
2805	First-Principles Study of Two-Dimensional Layered MoSi2N4 and WSi2N4 for Photocatalytic Water Splitting. Russian Journal of Physical Chemistry A, 2022, 96, 3283-3289.	0.6	0

#	Article	IF	CITATIONS
2806	Electron–Phonon Superconductivity in Boronâ€Based Chalcogenide (X= S, Se) Monolayers. Annalen Der Physik, 2023, 535, .	2.4	2
2807	Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Research, 2023, 16, 6477-6506.	10.4	25
2808	A first principles study of structural and optoelectronic properties and photocatalytic performance of GeC–MX ₂ (M = Mo and W; X = S and Se) van der Waals heterostructures. Physical Chemistry Chemical Physics, 2023, 25, 11169-11175.	2.8	3
2809	HfXO (X = S and Se) Janus monolayers as promising two-dimensional platforms for optoelectronic and spintronic applications. Journal of Materials Research, 0, , .	2.6	1
2810	Fabrication and Applications of Heterostructure Materials for Broadband Ultrafast Photonics. Advanced Optical Materials, 2023, 11, .	7.3	7
2811	Growth and applications of two-dimensional single crystals. 2D Materials, 2023, 10, 032001.	4.4	4
2812	Some Aspects of Novel Materials from Optical to THz Engineering. Progress in Optical Science and Photonics, 2023, , 59-80.	0.5	1
2813	First principles study in two-dimensional antiferromagnetic Mn ₂ Cl ₈ with strain-controllable and hydrogenation. Materials Research Express, 2023, 10, 046102.	1.6	0
2814	Electrical performance of monolayer MoS ₂ transistor with MoS ₂ nanobelt metallic edges as electrodes. Nanotechnology, 2023, 34, 285203.	2.6	2
2815	Water Purification by 2â€Dimensional Dodecagonal Nitride and Graphenylene via First Principles Calculations. ChemPhysChem, 2023, 24, .	2.1	1
2816	Fast-Response Micro-Phototransistor Based on MoS2/Organic Molecule Heterojunction. Nanomaterials, 2023, 13, 1491.	4.1	7
2817	Interlayerâ€Confined NiFe Dual Atoms within MoS ₂ Electrocatalyst for Ultraâ€Efficient Acidic Overall Water Splitting. Advanced Materials, 2023, 35, .	21.0	24
2818	Growth of nanostructured molybdenum disulfide (MoS2) thin films on a nanohole-patterned substrate using plasma-enhanced atomic layer deposition (ALD). AIP Advances, 2023, 13, .	1.3	0
2819	Laser-assisted synthesis of two-dimensional transition metal dichalcogenides: a mini review. Frontiers in Chemistry, 0, 11, .	3.6	0
2820	One-Step Synthesis of Transition Metal Dichalcogenide Quantum Dots Using Only Alcohol Solvents for Indoor-Light Photocatalytic Antibacterial Activity. ACS Applied Bio Materials, 2023, 6, 1970-1980.	4.6	1
2821	Nanopore/Nanosphereâ€Induced Optical Enhancement of Monolayer MoS ₂ . Advanced Optical Materials, 0, , .	7.3	0
2822	Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor. Light: Science and Applications, 2023, 12, .	16.6	6
2823	Modulation Effect of Substrate Interactions on Nucleation and Growth of MoS ₂ on Silica. Journal of Physical Chemistry C, 2023, 127, 9039-9048.	3.1	0

#	Article	IF	CITATIONS
2824	A facile strategy of using MoS ₂ quantum dots for fluorescence-based targeted detection of nitrobenzene. RSC Advances, 2023, 13, 14614-14624.	3.6	3
2825	Exciton Linewidth and Excitonâ€Phonon Coupling in 2H and 3R Bilayer WS ₂ Studied by Magnetic Circular Dichroism Spectrum. Advanced Optical Materials, 0, , .	7.3	0
2826	MOCVD Growth of Hierarchical Nanostructured MoS ₂ : Implications for Reactive States as the Large-Area Film. ACS Applied Nano Materials, 2023, 6, 8981-8989.	5.0	0
2827	Tunability of the Optical Properties of Transition-Metal-Based Structural Phase Change Materials. Optics, 2023, 4, 351-363.	1.2	1
2828	From lab to fab: path forward for 2D material electronics. Science China Information Sciences, 2023, 66, .	4.3	3
2829	Synthesis of laser-patterned MoS2 nanoneedles for advanced electrochemical sensing. MRS Communications, 2023, 13, 554-560.	1.8	1
2830	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>2 </mml:mn> <mml:mi>R van der Waals heterostructures of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>NbS </mml:mi> <mml:mn>2 and <mml:math< td=""><td>> nn³>²<td>row>:msub></td></td></mml:math<></mml:mn></mml:msub></mml:math </mml:mi></mml:mrow>	> nn ³ >² <td>row>:msub></td>	row>:msub>
2831	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:msub> <mml:mi Highâ€Throughput Mechanical Exfoliation for Lowâ€Cost Production of van der Waals Nanosheets. Small Methods, 2023, 7, .</mml:mi </mml:msub></mml:mrow>	>Se8.6	:mi> <mml:m 0</mml:m
2832	Capacitive behavior dominated persistent lithium storage in the 3D carbon nanofibers with 1D molybdenum sulfide. Journal of Alloys and Compounds, 2023, 960, 170936.	5.5	2
2833	Recent development of two-dimensional tantalum dichalcogenides and their applications. , 2023, 181, 207627.		3
2834	Hybrid Alkali Salt Catalystsâ€Promoted CVD Growth of 2D MoSe ₂ –WSe ₂ and WSe ₂ –MoSe ₂ Lateral Heterostructures. Advanced Materials Technologies, 2023, 8, .	5.8	0
2835	Different healing characteristics of thiol-bearing molecules on CVD-grown MoS ₂ . JPhys Materials, 0, , .	4.2	0
2836	Multiband Monochromatic Upconversion Emissions of Lanthanide Codoped Monolayer MoS ₂ Nanosheets for Lighting Applications. ACS Applied Nano Materials, 0, , .	5.0	0
2837	Mobility Enhancement in CVD-Grown Monolayer MoS ₂ Via Patterned Substrate-Induced Nonuniform Straining. Nano Letters, 0, , .	9.1	1
2838	Thomson effect in thermionic refrigeration: Enhanced performance of graphene/2D-semiconductor/graphene heterostructure cooler. Journal of Applied Physics, 2023, 133, .	2.5	0
2839	Progress on the <i>in situ</i> imaging of growth dynamics of two-dimensional materials. Nanoscale, 0, , .	5.6	1
2840	Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: a review. Nano Convergence, 2023, 10, .	12.1	7
2841	Controllable growth of two-dimensional quantum materials. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	2

#	Article	IF	CITATIONS
2842	MoS2 and CdS photocatalysts for water decontamination: A review. Inorganic Chemistry Communication, 2023, 153, 110775.	3.9	9
2843	Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. Nanomaterials, 2023, 13, 1520.	4.1	4
2844	Engineering the Local Atomic Configuration in 2H TMDs for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 2023, 17, 10817-10826.	14.6	10
2845	A review of boron nitride-based photocatalysts for carbon dioxide reduction. Journal of Materials Chemistry A, 2023, 11, 11925-11963.	10.3	10
2846	In Situ Exfoliation Method of Largeâ€Area 2D Materials. Advanced Science, 2023, 10, .	11.2	6
2847	Low-Temperature Growth of 2D-MoS ₂ Thin Films by Plasma-Enhanced Atomic Layer Deposition Using a New Molybdenum Precursor and Applicability to Gas Sensors. ACS Applied Nano Materials, 2023, 6, 12132-12139.	5.0	2
2848	2D Molybdenum Disulfide (MoS2) Nanosheets: An Emerging Antibacterial Agent. , 2023, , 172-189.		0
2849	CVD Synthesis of MoS2 Using a Direct MoO2 Precursor: A Study on the Effects of Growth Temperature on Precursor Diffusion and Morphology Evolutions. Materials, 2023, 16, 4817.	2.9	1
2850	Two-dimensional materials (2DMs): classification, preparations, functionalization and fabrication of 2DMs-oriented electrochemical sensors. , 2023, , 45-132.		0
2851	High-yield exfoliation of NbSe2 through optimized lithium-ion intercalation and its application in electromagnetic-interference shielding. Applied Surface Science, 2023, 637, 157954.	6.1	1
2852	Theoretical prediction and shape-controlled synthesis of two-dimensional semiconductive Ni3TeO6. Npj 2D Materials and Applications, 2023, 7, .	7.9	4
2853	Electronic band structures and optical properties of 2D XOF (X = Ga or In) oxyfluoride monolayers using density functional theory and GW approximation. Results in Physics, 2023, 51, 106744.	4.1	1
2854	Regulating Terahertz Photoconductivity in Two-Dimensional Materials. Photonics, 2023, 10, 810.	2.0	0
2855	Toolbox of Advanced Atomic Layer Deposition Processes for Tailoring Large-Area MoS ₂ Thin Films at 150 ŰC. ACS Applied Materials & Interfaces, 2023, 15, 35565-35579.	8.0	1
2856	MoS2 and MoSe2 2D nanosheets-based bio-active supramolecular nano-structural scaffold-capped potent Ag-NPs: Exploring morphological, anti-bacterial and anticancer property. New Journal of Chemistry, 0, , .	2.8	0
2857	Solubility of MoS ₂ and Graphite in Molten Salt: Flowers, Faceted Crystals, or Exfoliation?. Small Structures, 2023, 4, .	12.0	1
2858	Recent advances in molybdenum diselenide-based electrocatalysts: preparation and application in the hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2023, 10, 5517-5554.	6.0	4
2859	The electronic, magnetic and optical properties of GaN monolayer doped with rare-earth elements. Solid State Communications, 2023, 371, 115292.	1.9	4

#	Article	IF	CITATIONS
2860	Effect of five typical vacancy defects on the tribological behaviors of MoS2 sheet: A molecular dynamics study. Applied Surface Science, 2023, 639, 158175.	6.1	1
2861	Centimeter-level MoS2 films with controllable number of layers by face-to-face chemical vapor deposition strategy. Vacuum, 2023, 216, 112489.	3.5	2
2862	Machine Learning-Assisted Large-Area Preparation of MoS2 Materials. Nanomaterials, 2023, 13, 2283.	4.1	0
2863	ALD-grown two-dimensional TiS _{<i>x</i>} metal contacts for MoS ₂ field-effect transistors. Nanoscale Advances, 2023, 5, 4718-4727.	4.6	2
2864	Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications. Talanta, 2024, 266, 125086.	5.5	1
2865	High-Sensitivity Force Sensors Based on Novel Materials. Advanced Devices & Instrumentation, 2023, 4,	6.5	2
2866	Role of density gradients in the growth dynamics of 2-dimensional MoS2 using liquid phase molybdenum precursor in chemical vapor deposition. Applied Surface Science, 2023, 639, 158230.	6.1	2
2867	Two-dimensional superhard silicon nitrides with widely tunable bandgap, high carrier mobility and hole-doping-induced robust magnetism. Nanoscale, 0, , .	5.6	0
2868	Fabrication Technologies of Flexible Transparent Electrodes for Supercapacitors: Recent Advances and Perspectives. Advanced Materials Technologies, 2023, 8, .	5.8	3
2869	Exfoliated NbSe ₂ nanosheet@polypyrrole hybrid nanocomposites as a high performance anode of lithium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 19083-19090.	10.3	1
2870	Built-in tensile strain dependence on the lateral size of monolayer MoS ₂ synthesized by liquid precursor chemical vapor deposition. Nanoscale, 2023, 15, 14669-14678.	5.6	0
2871	Microscopic investigation of intrinsic defects in CVD grown MoS ₂ monolayers. Nanotechnology, 2023, 34, 475705.	2.6	1
2872	Towards Low-Temperature CVD Synthesis and Characterization of Mono- or Few-Layer Molybdenum Disulfide. Micromachines, 2023, 14, 1758.	2.9	0
2873	Unveiling the origin of n-type doping of natural MoS2: carbon. Npj 2D Materials and Applications, 2023, 7, .	7.9	2
2874	Molybdenum disulfide as hydrogen evolution catalyst: From atomistic to materials structure and electrocatalytic performance. Journal of Energy Chemistry, 2023, 87, 256-285.	12.9	5
2875	Synthesis, thermoelectric and energy storage performance of transition metal oxides composites. Coordination Chemistry Reviews, 2024, 498, 215470.	18.8	3
2876	Electronic properties of twisted <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Sb</mml:mi> <mml:mo>/mathvariant="normal">W <mml:msub> <mml:mi>Te</mml:mi> <mml:mn>2</mml:mn> </mml:msub> van der Waals heterostructure with controllable band gap, band alignment, and spin splitting.</mml:mo></mml:mrow></mmi:math)> <mml:mi nmalamrow</mml:mi 	> q /mml:mat
2877	Physical Review B, 2023, 108, . Role of defects in the photoluminescence and photoresponse of WS2–graphene heterodevices. Applied Surface Science, 2024, 642, 158541.	6.1	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2878	Emerging Opportunities for 2D Materials in Neuromorphic Computing. Nanomaterials,	, 2023, 13, 2720.	4.1	1
2879	Optimization of the in-plane activity of MoS2 monolayer by Pd-S bonds for hydrogen e reaction. Applied Surface Science, 2024, 642, 158563.	volution	6.1	0
2880	Large area synthesis of mono/few-layer MoS2 thin films on thermal oxide silicon substr laser deposition technique. Thin Solid Films, 2023, 782, 140030.	rate by pulsed	1.8	0
2881	Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries: Ac perspectives. Journal of Energy Chemistry, 2024, 89, 487-518.	Ivances and	12.9	3
2882	Interface-engineered Au@MoS2 core-shell heterostructures with superior hot-carrier tr dynamics for plasmonics and optoelectronics. Science China Materials, 2023, 66, 3933	ansfer 1-3940.	6.3	0
2883	Unleashing the Power of 2D MoS ₂ : In Situ TEM Study of Its Potential as D in Ru Interconnects. ACS Applied Materials & amp; Interfaces, 2023, 15, 48543-48550.	Diffusion Barriers	8.0	0
2884	Ordering phenomena in ternary transitionâ€metal dichalcogenides: Critical role of latti and vdW interaction. , 2023, 1, .	ice symmetry		0
2885	Improving the optoelectronic properties of monolayer MoS ₂ field effect t through dielectric engineering. Nanotechnology, 2023, 34, 505713.	ransistor	2.6	0
2886	The first-principles calculations of photocatalytic water splitting and photoelectric pro two-dimensional MoxW1-xS2 and MoS2xSe2(1-x) alloys. Solar Energy Materials and So 262, 112552.	perties of olar Cells, 2023,	6.2	2
2887	Revisiting traditional and modern trends in versatile 2D nanomaterials: Synthetic strate structural stability, and gas-sensing fundamentals. Journal of Advanced Ceramics, 2023	egies, 3, 12, 2149-2246.	17.4	10
2888	Van der Waals integration of two-dimensional materials and bulk semiconductors for i photodetection technology. MRS Bulletin, 0, , .	nfrared	3.5	2
2889	MoS ₂ as an Effective Cu Diffusion Barrier with a Back-End Compatible Pro Applied Materials & amp; Interfaces, 2023, 15, 47845-47854.	ocess. ACS	8.0	2
2890	Optimizing the Performance of Tinâ€Based Perovskite Solar Cells Employing 2D Tungs HTL by Numerical Simulation. Physica Status Solidi (A) Applications and Materials Scier	ten Disulfide as an nce, 2023, 220, .	1.8	0
2891	Batch fabrication of MoS2 devices directly on growth substrates by step engineering. I 2023, 16, 12794-12799.	Nano Research,	10.4	1
2892	Modulation of magnetism in transition-metal-doped monolayer MoS2 by strain engine Chemistry and Physics, 2024, 311, 128523.	ering. Materials	4.0	1
2893	Theoretical evaluation of gas sensing and capturing characteristics on the point defect dinitride monolayer. Journal of Physics and Chemistry of Solids, 2024, 184, 111695.	ive diboron	4.0	1
2895	Effect of temperature on the growth of two-dimensional MoS2 on low-cost soda-lime g Applied Physics, 2023, , .	glass. Current	2.4	0
2896	Synthesis of Centimeter-Sized Continuous Monolayer Tungsten Disulfide Films Using t Growth Space Atmospheric Pressure Chemical Vapor Deposition Method. Journal of Ph Chemistry C, 0, , .	he Expansion hysical	3.1	0

#	Article	IF	CITATIONS
2897	Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing. Chemosensors, 2023, 11, 550.	3.6	0
2898	Large-Area MoS2 Films Grown on Sapphire and GaN Substrates by Pulsed Laser Deposition. Nanomaterials, 2023, 13, 2837.	4.1	2
2899	Vapour-phase deposition of two-dimensional layered chalcogenides. Nature Reviews Materials, 2023, 8, 799-821.	48.7	1
2900	Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Advances, 2023, 13, 33336-33375.	3.6	1
2901	Integrated Logic Circuits Based on Wafer-Scale 2D-MoS2 FETs Using Buried-Gate Structures. Nanomaterials, 2023, 13, 2870.	4.1	0
2903	Covalent bonds formed in MoS2–C60/Ferrocene heterostructure under high pressure. Carbon, 2024, 217, 118644.	10.3	1
2904	CVD of MoS ₂ single layer flakes using Na ₂ MoO ₄ – impact of oxygen and temperature–time-profile. Nanoscale, 2023, 15, 18871-18882.	5.6	0
2905	Recent progress in MoS2 nanostructures for biomedical applications: Experimental and computational approach. Analytical Biochemistry, 2024, 685, 115404.	2.4	1
2906	Synergistic dual-regulating the electronic structure of NiMo selenides composite for highly efficient hydrogen evolution reaction. Fuel, 2024, 358, 130203.	6.4	6
2907	Enhanced photogalvanic effect in MoSSe monolayer with grain boundaries. Applied Physics Letters, 2023, 123, .	3.3	0
2908	Study of formation and properties of F4TCNQ/MoS2 heterostructures with point defects driven by DFT and neural network potential. FlatChem, 2023, 42, 100585.	5.6	0
2910	Atomically Thin Decoration Layers for Robust Orientation Control of 2D Transition Metal Dichalcogenides. Advanced Functional Materials, 2024, 34, .	14.9	0
2911	Growth of few-layer flower-like MoS2 on heteroatom-doped activated carbon as a hydrogen evolution reaction electrode. International Journal of Hydrogen Energy, 2024, 55, 1360-1370.	7.1	1
2912	2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chemical Reviews, 2024, 124, 318-419.	47.7	3
2913	Lowâ€Temperature Vaporâ€Phase Growth of 2D Metal Chalcogenides. Small, 0, , .	10.0	0
2914	In Situ onstructed Li _{<i>x</i>} MoS ₂ with Highly Exposed Interface Boosting Highâ€Loading and Longâ€Life Cathode for Allâ€Solidâ€State Li–S Batteries. Energy and Environmental Materials, 0, , .	12.8	0
2916	Integrating configuration, doping and heterojunction into the g-C3N4-based photocatalyst for water splitting. Carbon, 2024, 218, 118723.	10.3	1
2917	Optical characterization of SnS nanowires by chemical vapor deposition method: A combined experimental and DFT study. Chemical Physics Letters, 2024, 837, 141054.	2.6	0

#	Article	IF	CITATIONS
2918	Defect Engineering of 2D Semiconductors for Dual Control of Emission and Carrier Polarity. Advanced Materials, 2024, 36, .	21.0	1
2919	A review on applications of molybdenum disulfide material: Recent developments. , 2024, 186, 207742.		0
2920	Molybdenum disulfide: A nanomaterial that is paving the way toward a sustainable future. Materials Today Sustainability, 2024, 25, 100659.	4.1	0
2921	Quantifying photoluminescence variability in monolayer molybdenum disulfide films grown by chemical vapour deposition. Materials Research Express, 0, , .	1.6	Ο
2922	Liquid-phase Catalyst Pre-seeding for Controlled Growth of Layered MoS2 Films over a Large Area via Chemical Vapor Deposition. Nanoscale, 0, , .	5.6	0
2923	First-principles study of NO adsorption on defective hexagonal boron nitride monolayer. Surface Science, 2024, 742, 122448.	1.9	Ο
2924	Two-Channel Indirect-Gap Photoluminescence and Competition between the Conduction Band Valleys in Few-Layer MoS2. Nanomaterials, 2024, 14, 96.	4.1	0
2925	Nanoâ \in bio interactions between 2D nanomaterials and mononuclear phagocyte system cells. , 0, , .		1
2926	Selective Isolation of Mono- to Quadlayered 2D Materials via Sonication-Assisted Micromechanical Exfoliation. ACS Nano, 2024, 18, 2455-2463.	14.6	0
2927	Selective oxidation of metallic contacts for localized chemical vapor deposition growth of 2D-transition metal dichalcogenides. Materials Research Express, 2024, 11, 015901.	1.6	0
2928	Toxicity of 2D Materials and Their Future Prospect. , 0, , .		0
2929	General Scalable Synthesis of Mesoporous Metal Oxide Nanosheets with High Crystallinity for Ultralongâ€Life Li–S Batteries. Advanced Functional Materials, 0, , .	14.9	1
2930	DFT Calculations of Trilayer Heterostructures from MoSe2, PtS2 Monolayers in Different Orders with Promising Optoelectronic Properties. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 405-414.	1.1	0
2931	Strain-tunable ferromagnetism and skyrmions in two-dimensional Janus Cr2XYTe6 (X, Y = Si, Ge, Sn, and) Tj ETQq1	10.7843 2.5	14 rgBT /○∖ O
2932	Mixed-dimensional van der Waals heterostructure enabled gas sensors: fundamentals and applications. Journal of Materials Chemistry A, 2024, 12, 5642-5667.	10.3	0
2933	Nanomaterials in nonvolatile resistive memory devices. , 2024, , 57-79.		0
2934	Progress and prospects in two-dimensional magnetism of van der Waals materials. Progress in Quantum Electronics, 2024, 93, 100498.	7.0	0
2935	Enhanced Thickness Uniformity of MoS2 Thin Films on SiO2/Si Substrates via Substrate Pre-Treatment with Oxygen Plasma. Electronic Materials Letters, 0, , .	2.2	0

#	Article	IF	CITATIONS
2936	Enhanced Photogating Gain in Scalable MoS ₂ Plasmonic Photodetectors via Resonant Plasmonic Metasurfaces. ACS Nano, 0, , .	14.6	0
2937	Aerosol-assisted chemical vapor deposition of 2H-WS ₂ from single-source tungsten dithiolene precursors. Journal of Materials Chemistry C, 2024, 12, 3526-3534.	5.5	0
2938	3D Monolithically Integrated Device of Si CMOS Logic, IGZO DRAM-like, and 2D MoS ₂ Phototransistor for Smart Image Sensing. , 2023, , .		0
2939	Growth of p-doped 2D-MoS2 on Al2O3 from spatial atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42, .	2.1	0
2940	Solution-processable assembly of 2D semiconductor thin films and superlattices with photoluminescent monolayer inks. CheM, 2024, , .	11.7	0
2941	MoS2-based nanocomposites toward electromagnetic wave absorption. Materials Research Bulletin, 2024, 174, 112732.	5.2	0
2942	Sulfur Vacancy Related Optical Transitions in Graded Alloys of Mo _x W _{1â€x} S ₂ Monolayers. Advanced Optical Materials, 2024, 12, .	7.3	0
2943	Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
2944	Growth of 2D MoS ₂ on sapphire and mica. Journal of Physics: Conference Series, 2024, 2710, 012016.	0.4	0
2945	Petal-shaped MoS2/FeS2@C nanocomposites with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glutathione. Applied Physics A: Materials Science and Processing, 2024, 130, .	2.3	0
2946	A review of two-dimensional inorganic materials: Types, properties, and their optoelectronic applications. Progress in Solid State Chemistry, 2024, , 100443.	7.2	0
2947	Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale. Npj 2D Materials and Applications, 2024, 8, .	7.9	0
2948	Interlayer registry effects on the electronic and piezoelectric properties of transition metal dichalcogenide bilayers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42, .	2.1	0
2949	Physicochemical properties of MoS2 nanosheets under different conditions in SCCO2 exfoliation processing. Journal of Supercritical Fluids, 2024, 209, 106232.	3.2	0
2950	From Molecular Precursors to MoS ₂ Monolayers: Nanoscale Mechanism of Organometallic Chemical Vapor Deposition. Chemistry of Materials, 2024, 36, 2698-2710.	6.7	0
2951	An investigation on electronic and magnetic properties of Cr substituted MoS2 monolayer and multilayers—hybrid functional calculations. Sadhana - Academy Proceedings in Engineering Sciences, 2024, 49, .	1.3	0
2952	Investigating structural, optical, and electron-transport properties of lithium intercalated few-layer MoS2 films: Unraveling the influence of disorder. Applied Physics Letters, 2024, 124, .	3.3	0
2953	Scaling up Simultaneous Exfoliation and 2H to 1T Phase Transformation of MoS ₂ . Advanced Functional Materials, 0, , .	14.9	0

#ARTICLEIFCITATIONS2954Guiding Principles for the Design of a Chemical Vapor Deposition Process for Highly Crystalline
Transition Metal Dichalcogenides. Physica Status Solidi (A) Applications and Materials Science, O, , .1.802955East response fabricated MoS2-photodiode based thin film. Journal of Materials Science: Materials in
Electronics, 2024, 35, .2.202956Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic14.00

CITATION REPORT