Highly Sensitive Skinâ€Mountable Strain Gauges Based

Advanced Functional Materials 22, 4044-4050 DOI: 10.1002/adfm.201200498

Citation Report

#	Article	IF	CITATIONS
1	Highly flexible, hybrid-structured indium tin oxides for transparent electrodes on polymer substrates. Applied Physics Letters, 2013, 102, .	1.5	8
2	User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 2013, 12, 899-904.	13.3	1,044
3	Dry adhesives with sensing features. Smart Materials and Structures, 2013, 22, 085010.	1.8	5
4	Materials and Optimized Designs for Humanâ€Machine Interfaces Via Epidermal Electronics. Advanced Materials, 2013, 25, 6839-6846.	11.1	649
5	A comprehensive characterization of a linear deformation sensor for applications in triaxial compression tests. , 2013, , .		2
6	Micropatterned Stretchable Circuit and Strain Sensor Fabricated by Lithography on an Electrospun Nanofiber Mat. ACS Applied Materials & Interfaces, 2013, 5, 8766-8771.	4.0	43
7	Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges. Sensors, 2013, 13, 8577-8594.	2.1	97
8	Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mechanics Letters, 2014, 1, 120-126.	2.0	27
9	A New Approach to Determine Ligament Strain Using Polydimethylsiloxane Strain Gauges: Exemplary Measurements of the Anterolateral Ligament. Journal of Biomechanical Engineering, 2014, 136, 124504.	0.6	15
10	Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications, 2014, 5, 5747.	5.8	1,145
11	Reverseâ€Micelleâ€Induced Porous Pressureâ€Sensitive Rubber for Wearable Human–Machine Interfaces. Advanced Materials, 2014, 26, 4825-4830.	11.1	564
12	Fiber-reinforced tough hydrogels. Extreme Mechanics Letters, 2014, 1, 90-96.	2.0	85
13	A hierarchical computational model for stretchable interconnects with fractal-inspired designs. Journal of the Mechanics and Physics of Solids, 2014, 72, 115-130.	2.3	115
14	Strain-Driven and Ultrasensitive Resistive Sensor/Switch Based on Conductive Alginate/Nitrogen-Doped Carbon-Nanotube-Supported Ag Hybrid Aerogels with Pyramid Design. ACS Applied Materials & Interfaces, 2014, 6, 22823-22829.	4.0	58
15	Highly Sensitive Nonâ€Classical Strain Gauge Using Organic Heptazole Thinâ€Film Transistor Circuit on a Flexible Substrate. Advanced Functional Materials, 2014, 24, 4413-4419.	7.8	44
16	Study on an interconnect technology toward flexible printed electronics. , 2014, , .		5
17	Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range. Nanotechnology, 2014, 25, 425504.	1.3	10
18	Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors, 2014, 14, 5296-5332.	2.1	346

	CITATION	Report	
#	Article	IF	CITATIONS
19	Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.	5.2	56
20	Highly reproducible printable graphite strain gauges for flexible devices. Sensors and Actuators A: Physical, 2014, 206, 75-80.	2.0	90
21	Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6, 2345.	2.8	895
22	Stretchable, Wireless Sensors and Functional Substrates for Epidermal Characterization of Sweat. Small, 2014, 10, 3083-3090.	5.2	247
23	Mechanically Gated Electrical Switches by Creasing of Patterned Metal/Elastomer Bilayer Films. Advanced Materials, 2014, 26, 4381-4385.	11.1	55
24	Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Applied Materials & Interfaces, 2014, 6, 1313-1319.	4.0	223
25	Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano, 2014, 8, 5154-5163.	7.3	1,957
26	Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon, 2014, 80, 396-404.	5.4	143
27	In Situ Fabrication of Bendable Microscale Hexagonal Pyramids Array Vertical Light Emitting Diodes with Graphene as Stretchable Electrical Interconnects. ACS Photonics, 2014, 1, 421-429.	3.2	26
28	Stretchable Optoelectronic Circuits Embedded in a Polymer Network. Advanced Materials, 2014, 26, 1706-1710.	11.1	36
29	Highly Stretchable Polymer Transistors Consisting Entirely of Stretchable Device Components. Advanced Materials, 2014, 26, 3706-3711.	11,1	157
30	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
31	Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 2014, 77, 199-207.	5.4	303
32	Buckling of a stiff thin film on a pre-strained bi-layer substrate. International Journal of Solids and Structures, 2014, 51, 3113-3118.	1.3	52
33	A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring. Scientific Reports, 2015, 5, 12705.	1.6	79
34	High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Scientific Reports, 2015, 5, 12997.	1.6	29
35	Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes. Journal of Physics: Conference Series, 2015, 660, 012130.	0.3	2
36	Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. Advanced Functional Materials, 2015, 25, 4228-4236.	7.8	560

#	Article	IF	CITATIONS
37	Oxide Nanomembrane Hybrids with Enhanced Mechano―and Thermo‣ensitivity for Semitransparent Epidermal Electronics. Advanced Healthcare Materials, 2015, 4, 992-997.	3.9	49
38	Highly Stretchy Black Gold Eâ€Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	2.6	405
39	Carbon nanotubes-ecoflex nanocomposite for strain sensing with ultra-high stretchability. , 2015, , .		11
40	Hyperelastically stretchable strain gauges based on liquid metals and platinum-catalyzed silicone elastomers. , 2015, , .		1
41	Impact of Pulse Thermal Processing on the Properties of Inkjet Printed Metal and Flexible Sensors. ECS Journal of Solid State Science and Technology, 2015, 4, P3091-P3096.	0.9	12
42	Self-similar design for stretchable wireless LC strain sensors. Sensors and Actuators A: Physical, 2015, 224, 36-42.	2.0	66
43	Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology, 2016, 36, 1-17.	5.1	159
44	Mechanics of stretchable batteries and supercapacitors. Current Opinion in Solid State and Materials Science, 2015, 19, 190-199.	5.6	173
45	Polythiophene Nanofibril Bundles Surfaceâ€Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer. Advanced Materials, 2015, 27, 1255-1261.	11.1	166
46	Mechanics for stretchable sensors. Current Opinion in Solid State and Materials Science, 2015, 19, 149-159.	5.6	70
47	Material Approaches to Stretchable Strain Sensors. ChemPhysChem, 2015, 16, 1155-1163.	1.0	163
48	A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing. Journal of the Mechanics and Physics of Solids, 2015, 77, 27-42.	2.3	44
49	Soft metal constructs for large strain sensor membrane. Smart Materials and Structures, 2015, 24, 035020.	1.8	19
50	Multi-depth valved microfluidics for biofilm segmentation. Journal of Micromechanics and Microengineering, 2015, 25, 095003.	1.5	7
51	Microfluidic devices using flexible organic electronic materials. , 2015, , 397-412.		0
52	Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Letters, 2015, 15, 5240-5247.	4.5	527
53	Tunable strain gauges based on two-dimensional silver nanowire networks. Nanotechnology, 2015, 26, 195504.	1.3	17
54	Electroâ€mechanical sensors based on conductive hybrid nanocomposites. Polymers for Advanced Technologies, 2015, 26, 889-897.	1.6	5

#	Article	IF	CITATIONS
55	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372
56	Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano, 2015, 9, 6252-6261.	7.3	821
57	Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.	0.7	14
58	Current progress in 3D printing for cardiovascular tissue engineering. Biomedical Materials (Bristol), 2015, 10, 034002.	1.7	139
59	Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 2015, 26, 375501.	1.3	646
60	Portable polarimetric fiber stress sensor system for visco-elastic and biomimetic material analysis. Applied Physics Letters, 2015, 106, 191105.	1.5	7
61	Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Applied Physics Letters, 2015, 106, .	1.5	44
62	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	4.0	273
63	A Self-Assembled, Low-Cost, Microstructured Layer for Extremely Stretchable Gold Films. ACS Applied Materials & Interfaces, 2015, 7, 20745-20752.	4.0	36
64	Effects of nanoscale expanded graphite on the wear and frictional behaviors of polyimide-based composites. Wear, 2015, 338-339, 282-287.	1.5	51
65	Microcrystalline silicon: Strain gauge and sensor arrays on flexible substrate for the measurement of high deformations. Sensors and Actuators A: Physical, 2015, 236, 273-280.	2.0	19
66	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.1	155
67	Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Advanced Functional Materials, 2015, 25, 375-383.	7.8	496
68	Synchronously Tailoring Strain Sensitivity and Electrical Stability of Silicone Elastomer Composites by the Synergistic Effect of a Dual Conductive Network. Polymers, 2016, 8, 100.	2.0	10
69	Stretchable, Skinâ€Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 2016, 26, 1678-1698.	7.8	2,340
70	Stretchable touch-sensing skin over padding for co-robots. Smart Materials and Structures, 2016, 25, 055006.	1.8	18
71	Polypyrrole oated PDMS Fibrous Membrane: Flexible Strain Sensor with Distinctive Resistance Responses at Different Strain Ranges. Macromolecular Materials and Engineering, 2016, 301, 707-713.	1.7	31
72	Lowâ€Cost and Largeâ€Area Strain Sensors Based on Plasmonic Fano Resonances. Advanced Optical Materials, 2016, 4, 715-721.	3.6	30

#	Article	IF	CITATIONS
73	Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement. Advanced Materials Technologies, 2016, 1, 1600053.	3.0	154
74	Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic hand applications. Sensors and Actuators A: Physical, 2016, 247, 514-521.	2.0	44
75	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	11.1	234
76	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471.	11.1	240
77	Resistive characterization of soft conductive PDMS membranes for sensor applications. , 2016, , .		3
78	A Mechanoluminescent ZnS:Cu/Rhodamine/SiO ₂ /PDMS and Piezoresistive CNT/PDMS Hybrid Sensor: Red-Light Emission and a Standardized Strain Quantification. ACS Applied Materials & Interfaces, 2016, 8, 34777-34783.	4.0	45
79	Design and functional evaluation of an epidermal strain sensing system for hand tracking. , 2016, , .		7
80	PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression. Microsystems and Nanoengineering, 2016, 2, 16065.	3.4	64
81	A flexible touch-pressure sensor array with wireless transmission system for robotic skin. Review of Scientific Instruments, 2016, 87, 065007.	0.6	28
82	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	13.7	1,134
82 83	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191.	13.7 0.1	1,134 10
82 83 84	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825.	13.7 0.1 4.0	1,134 10 165
82 83 84 85	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825. Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , .	13.7 0.1 4.0	1,134 10 165 3
82 83 84 85 86	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825. Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , . Mechanics and Designs of Stretchable Bioelectronics. Microsystems and Nanosystems, 2016, , 53-68.	13.7 0.1 4.0 0.1	1,134 10 165 3 3
82 83 84 85 86 87	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825. Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , . Mechanics and Designs of Stretchable Bioelectronics. Microsystems and Nanosystems, 2016, , 53-68. Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263.	13.7 0.1 4.0 0.1 1.7	1,134 10 165 3 3 15
82 83 84 85 86 87 88	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825. Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , . Mechanics and Designs of Stretchable Bioelectronics. Microsystems and Nanosystems, 2016, , 53-68. Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263. Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 2016, 4, 5642-5647.	13.7 0.1 4.0 0.1 1.7 2.7	1,134 10 165 3 3 15 89
82 83 84 85 86 87 88 88 89	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825. Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor. , 2016, , . Mechanics and Designs of Stretchable Bioelectronics. Microsystems and Nanosystems, 2016, , 53-68. Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263. Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 2016, 4, 5642-5647. Green solvent approach for printable large deformation thermoplastic elastomer based piezoresistive sensors and their suitability for biomedical applications. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2092-2103.	13.7 0.1 4.0 0.1 1.7 2.7 2.4	1,134 10 165 3 3 3 15 89 50

#	Article	IF	CITATIONS
91	Performance quantification of strain sensors for flexible manipulators. , 2016, , .		3
92	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	4.0	387
93	Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle. Langmuir, 2016, 32, 10522-10528.	1.6	29
94	Wearable Graphene Sensors With Microfluidic Liquid Metal Wiring for Structural Health Monitoring and Human Body Motion Sensing. IEEE Sensors Journal, 2016, 16, 7870-7875.	2.4	59
95	A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network. RSC Advances, 2016, 6, 74418-74425.	1.7	13
97	Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 2016, 8, 22374-22381.	4.0	176
98	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	1.5	65
99	Elastomeric ethylene copolymers with carbon nanostructures having tailored strain sensor behavior and their interpretation based on the excluded volume theory. Polymer International, 2016, 65, 1441-1448.	1.6	9
100	Graphene–Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application. ACS Applied Materials & Interfaces, 2016, 8, 24143-24151.	4.0	120
101	Comparison of biodegradable substrates for printed organic electronic devices. Cellulose, 2016, 23, 3809-3817.	2.4	25
102	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2016, 8, 24837-24843.	4.0	251
103	Ultrastretchable Iono-Elastomers with Mechanoelectrical Response. ACS Macro Letters, 2016, 5, 1332-1338.	2.3	20
104	Printed Stretchable Interconnects for Smart Garments: Design, Fabrication, and Characterization. IEEE Sensors Journal, 2016, 16, 7967-7976.	2.4	72
105	Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016, 30, 450-459.	8.2	157
106	Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Scientific Reports, 2016, 6, 34632.	1.6	25
107	A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsystems and Nanoengineering, 2016, 2, 16039.	3.4	162
108	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	11.1	894
109	Bioinspired Electronic Whisker Arrays by Pencilâ€Drawn Paper for Adaptive Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600093.	2.6	59

#	Article	IF	CITATIONS
110	A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. Journal of Materials Chemistry C, 2016, 4, 6345-6352.	2.7	216
111	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	1.2	23
112	Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. , 2016, , .		17
113	Printing of stretchable silk membranes for strain measurements. Lab on A Chip, 2016, 16, 2459-2466.	3.1	99
114	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	11.1	1,594
115	Stretchable and Multimodal All Graphene Electronic Skin. Advanced Materials, 2016, 28, 2601-2608.	11.1	493
116	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. Advanced Materials, 2016, 28, 6640-6648.	11.1	749
117	Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material. Nanoscale Research Letters, 2016, 11, 4.	3.1	35
118	Highly Sensitive and Transparent Strain Sensor Based on Thin Elastomer Film. IEEE Electron Device Letters, 2016, 37, 667-670.	2.2	29
119	Delamination phenomena in aluminum/polyimide deformable interconnects: In-situ micro-tensile testing. Materials and Design, 2016, 89, 121-128.	3.3	18
120	Modeling and Development of a Flexible Carbon Black-Based Capacitive Strain Sensor. IEEE Sensors Journal, 2016, 16, 3059-3067.	2.4	35
121	Simple method for high-performance stretchable composite conductors with entrapped air bubbles. Nanoscale Research Letters, 2016, 11, 14.	3.1	8
122	Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 2016, 3, 128-143.	4.6	112
123	Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of Materials Chemistry B, 2016, 4, 2999-3018.	2.9	116
124	Multidimensional characterization of piezoresistive carbon black silicone rubber composites. Journal of Applied Polymer Science, 2017, 134, .	1.3	8
125	3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Advanced Materials, 2017, 29, 1604827.	11.1	364
126	Highly Sensitive Bendable and Foldable Paper Sensors Based on Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2017, 9, 4658-4666.	4.0	73
127	All-graphene strain sensor on soft substrate. Carbon, 2017, 116, 753-759.	5.4	164

#	Article	IF	CITATIONS
128	nanotubes-poly (glycerol sebacate) nanocomposites for piezoresistive sensors applications. Composites Science and Technology, 2017, 142, 163-170.	3.8	44
129	Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. Nanotechnology, 2017, 28, 115501.	1.3	34
130	Elasticity Solutions to Nonbuckling Serpentine Ribbons. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	37
131	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Interfaces, 2017, 9, 12147-12164.	4.0	359
132	Nanocomposite rubber elastomer with piezoresistive detection for flexible tactile sense application. , 2017, , .		3
133	Bioinspired microporous elastomer with enhanced and tunable stretchability for strain sensing device. , 2017, , .		1
134	Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bulletin, 2017, 42, 138-142.	1.7	76
135	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	14.8	557
136	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971-2993.	2.7	415
137	Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes. Journal of Materials Chemistry C, 2017, 5, 2442-2450.	2.7	33
138	Development of a Bracelet With Strain-Gauge Matrix for Movement Intention Identification in Traumatic Amputees. IEEE Sensors Journal, 2017, 17, 2464-2471.	2.4	11
139	Magnetic/conductive composite fibre: A multifunctional strain sensor with magnetically driven property. Composites Part A: Applied Science and Manufacturing, 2017, 100, 97-105.	3.8	36
140	Flexible strain sensor with high performance based on PANI/PDMS films. Organic Electronics, 2017, 47, 51-56.	1.4	82
141	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	7.8	257
142	Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Applied Materials & Amp; Interfaces, 2017, 9, 17369-17378.	4.0	114
143	Self-powering/self-cleaning electronic-skin basing on PVDF/TiO 2 nanofibers for actively detecting body motion and degrading organic pollutants. Applied Surface Science, 2017, 416, 424-431.	3.1	58
144	Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Composites Communications, 2017, 3, 1-6.	3.3	76
145	Ultra-thin, transparent and flexible tactile sensors based on graphene films with excellent anti-interference. RSC Advances, 2017, 7, 30506-30512.	1.7	11

#	Article	IF	CITATIONS
146	A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640.	2.8	160
147	Recent advances of conductive nanocomposites in printed and flexible electronics. Smart Materials and Structures, 2017, 26, 083001.	1.8	62
148	Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon, 2017, 121, 353-367.	5.4	93
149	Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile strain/pressure sensor. Nanoscale, 2017, 9, 9581-9588.	2.8	29
150	Soft Robotics: Review of Fluidâ€Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Humanâ€Robot Interaction. Advanced Engineering Materials, 2017, 19, 1700016.	1.6	707
151	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	3.8	155
152	Development of a Wearable Controller for Gesture-Recognition-Based Applications Using Polyvinylidene Fluoride. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 900-909.	2.7	16
153	Extraordinarily Stretchable Allâ€Carbon Collaborative Nanoarchitectures for Epidermal Sensors. Advanced Materials, 2017, 29, 1606411.	11.1	194
154	Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 2017, 4, 1700029.	5.6	405
155	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	6.4	194
156	Fabrication of cost effective and high sensitivity resistive strain gauge using DIW technique. Sensors and Actuators A: Physical, 2017, 258, 123-130.	2.0	25
157	Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 13, 1602790.	5.2	690
158	A Robust Capacitive Digital Read-Out Circuit for a Scalable Tactile Skin. IEEE Sensors Journal, 2017, 17, 2682-2695.	2.4	17
159	Omnidirectional Bending and Pressure Sensor Based on Stretchable CNT-PU Sponge. Advanced Functional Materials, 2017, 27, 1604434.	7.8	148
160	MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement. Journal of Microelectromechanical Systems, 2017, 26, 264-272.	1.7	23
161	Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 1770-1780.	4.0	331
162	Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sensors and Actuators A: Physical, 2017, 254, 61-68.	2.0	106
163	The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Composites Science and Technology, 2017, 139, 64-73.	3.8	300

#	Article	IF	CITATIONS
164	Characterization of Carbon Black Filled PDMS-Composite Membranes for Sensor Applications. Key Engineering Materials, 0, 753, 18-27.	0.4	9
165	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	23.0	578
166	Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers. Soft Matter, 2017, 13, 7625-7632.	1.2	12
167	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	7.8	209
168	Highly Stretchable Variableâ€Transmittance Skin for Ultrasensitive and Wearable Strain Sensing. Advanced Materials Technologies, 2017, 2, 1700161.	3.0	21
169	Controllable assembly of silver nanoparticles based on the coffee-ring effect for high-sensitivity flexible strain gauges. Sensors and Actuators A: Physical, 2017, 264, 188-194.	2.0	7
170	A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. Journal of Materials Chemistry C, 2017, 5, 10167-10175.	2.7	61
171	Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications. , 2017, , 1-14.		0
172	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
173	Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. Journal of Materials Chemistry C, 2017, 5, 10288-10294.	2.7	74
174	Triboelectrification-enabled touch sensing for self-powered position mapping and dynamic tracking by a flexible and area-scalable sensor array. Nano Energy, 2017, 41, 387-393.	8.2	69
175	A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 2017, 29, 1702517.	11.1	348
176	Large area and ultra-thin compliant strain sensors for prosthetic devices. Sensors and Actuators A: Physical, 2017, 266, 56-64.	2.0	36
177	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
178	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	1.7	12
179	A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements. Advanced Functional Materials, 2017, 27, 1702134.	7.8	100
180	A Highly Stretchable Capacitiveâ€Based Strain Sensor Based on Metal Deposition and Laser Rastering. Advanced Materials Technologies, 2017, 2, 1700081.	3.0	90
181	Batch Fabrication of Customizable Siliconeâ€Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Advanced Materials Technologies, 2017, 2, 1700136.	3.0	301

#	Article	IF	Citations
182	Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network. ACS Applied Materials & Interfaces, 2017, 9, 26279-26285.	4.0	134
183	Real-Time, Wearable, Biomechanical Movement Capture of Both Humans and Robots with Metal-Free Electrodes. ACS Omega, 2017, 2, 4132-4142.	1.6	15
184	Fabrication and characterization of carbon-based flexible strain sensor. , 2017, , .		2
185	Omni-Purpose Stretchable Strain Sensor Based on a Highly Dense Nanocracking Structure for Whole-Body Motion Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 41712-41721.	4.0	83
186	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.	8.2	126
187	Precise Engineering of Conductive Pathway by Frictional Direct-Writing for Ultrasensitive Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2017, 9, 41078-41086.	4.0	26
188	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 2017, 5, 7604-7611.	2.7	147
189	Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams. Materials and Design, 2017, 132, 449-458.	3.3	45
190	A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37-48.	8.2	172
191	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Crossâ€Links Hydrogels for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	5.6	728
192	Flexible and highly sensitive multi-dimensional strain sensor with intersecting metal nanowire arrays. , 2017, , .		1
193	Design approach of a large strain sensor based on nanoparticle technology: A highly-integrable sensor for Morphing applications including SHM & shape reconstruction. , 2017, , .		1
194	Monolithic FFF-Printed, Biocompatible, Biodegradable, Dielectric-Conductive Microsystems. Journal of Microelectromechanical Systems, 2017, 26, 1356-1370.	1.7	33
195	Design and characterization of a strain sensor array based on nanocomposite for a soft bodied gripper. , 2017, , .		0
196	Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 2017, 4, 1285.	4.8	143
197	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	2.0	185
198	Quantification of a Low-Cost Stretchable Conductive Sensor Using an Expansion/Contraction Simulator Machine: A Step towards Validation of a Noninvasive Cardiac and Respiration Monitoring Prototype. Machines, 2017, 5, 22.	1.2	6
199	The Effect of Particles on Electrolytically Polymerized Thin Natural MCF Rubber for Soft Sensors Installed in Artificial Skin. Sensors, 2017, 17, 896.	2.1	11

ARTICLE IF CITATIONS The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166. 200 2.1 235 Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials. Journal of Sensors, 2017, 2017, 1-8. 202 Reinforced standing multi-walled carbon nanotube film for stretchable strain sensor., 2017,,. 0 Highly Sensitive and Stretchable Resistive Strain Sensors Based on Microstructured Metal Nanowire/Elastomer Composite Films. Small, 2018, 14, e1704232. Surface Layer Modification of Metal Nanoparticle Supported Polymer by Irradiation of Laser-Driven 204 0.1 0 Extreme Ultraviolet Light. Springer Proceedings in Physics, 2018, , 377-381. Dispenser printing of piezo-resistive nanocomposite on woven elastic fabric and hysteresis compensation for skin-mountable stretch sensing. Smart Materials and Structures, 2018, 27, 025017. 1.8 Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic 206 2.8 243 multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 2018, 10, 7116-7126. Scalable fabric tactile sensor arrays for soft bodies. Journal of Micromechanics and 1.5 Microengineering, 2018, 28, 064004. Flexible Polydimethylsiloxane Foams Decorated with Multiwalled Carbon Nanotubes Enable 209 Unprecedented Detection of Ultralow Strain and Pressure Coupled with a Large Working Range. ACS 4.0 119 Applied Materials & amp; Interfaces, 2018, 10, 13877-13885. Network cracks-based wearable strain sensors for subtle and large strain detection of human 2.7 164 motions. Journal of Materials Chemistry C, 2018, 6, 5140-5147 Controllable synthesis of nickel nanowires and its application in high sensitivity, stretchable strain 211 2.7 61 sensor for body motion sensing. Journal of Materials Chemistry C, 2018, 6, 4737-4745. Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational 5.8 247 Medicine, 2018, 10, . Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube 213 Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity. ACS Applied Materials & amp; 4.0 189 Interfaces, 2018, 10, 7371-7380. Metal microparticle – Polymer composites as printable, bio/ecoresorbable conductive inks. Materials 214 8.3 64 Today, 2018, 21, 207-215. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for 215 579 7.3 High Sensitivity and Large Linearity. ACS Nano, 2018, 12, 2346-2354. Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale, 2018, 10, 5105-5113. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano 217 5.8 115 Research, 2018, 11, 3771-3779. Self-powered implantable electronic-skin for<i>in situ</i>analysis of urea/uric-acid in body fluids and 2.8 the potential applications in real-time kidney-disease diagnosis. Nanoscale, 2018, 10, 2099-2107.

# 219	ARTICLE 3Dâ€integrated and Multifunctional Allâ€Soft Physical Microsystems Based on Liquid Metal for Electronic Skin Applications. Advanced Electronic Materials, 2018, 4, 1700434.	IF 2.6	CITATIONS
220	Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Advanced Functional Materials, 2018, 28, 1705291.	7.8	148
221	2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale, 2018, 10, 2191-2198.	2.8	83
222	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	7.8	81
223	Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor. ACS Applied Materials & Interfaces, 2018, 10, 5000-5006.	4.0	103
224	Tri-modal thin-film flexible electronic skin to augment robotic grasping. , 2018, , .		Ο
225	Stretchable Conductive Composites from Cu–Ag Nanowire Felt. ACS Nano, 2018, 12, 3689-3698.	7.3	57
226	Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites. Nanotechnology, 2018, 29, 235501.	1.3	64
227	Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties. Smart Materials and Structures, 2018, 27, 055002.	1.8	23
228	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	3.1	778
229	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	4.1	84
230	Highly sensitive metal-grid strain sensors <i>via</i> water-based solution processing. RSC Advances, 2018, 8, 42153-42159.	1.7	8
231	Hybrid Architectures of Heterogeneous Carbon Nanotube Composite Microstructures Enable Multiaxial Strain Perception with High Sensitivity and Ultrabroad Sensing Range. Small, 2018, 14, e1803411.	5.2	51
232	Highly Sensitive Wearable Strain Sensors Using Copper Nanowires and Elastomers. Transactions of the Japan Institute of Electronics Packaging, 2018, 11, E18-012-1-E18-012-6.	0.3	3
233	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. Advanced Materials, 2019, 31, e1805630.	11.1	115
234	Graphene: Diversified Flexible 2D Material for Wearable Vital Signs Monitoring. Advanced Materials Technologies, 2019, 4, 1800574.	3.0	67
235	Direct 3D Printing of Graphene Nanoplatelet/Silver Nanoparticleâ€Based Nanocomposites for Multiaxial Piezoresistive Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800500.	3.0	39
236	Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 37760-37766.	4.0	83

#	Article	IF	CITATIONS
237	Ultrasensitive, Mechanically Responsive Optical Metasurfaces <i>via</i> Strain Amplification. ACS Nano, 2018, 12, 10683-10692.	7.3	34
238	Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chemistry of Materials, 2018, 30, 8062-8069.	3.2	318
239	Effect of contact material and ambient humidity on the performance of MWCNT/PDMS multimodal deformation sensors. Sensors and Actuators A: Physical, 2018, 283, 1-8.	2.0	8
240	Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11144-11149.	3.3	193
241	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	11.1	325
242	Stretchable metal films. Flexible and Printed Electronics, 2018, 3, 043001.	1.5	16
243	Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Composites Science and Technology, 2018, 168, 388-396.	3.8	89
244	Hierarchical Aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applications. Scientific Reports, 2018, 8, 13880.	1.6	7
245	Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding. Sensors, 2018, 18, 1171.	2.1	33
246	Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. Journal of Materials Chemistry C, 2018, 6, 10524-10531.	2.7	80
247	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	5.8	57
248	Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics (Switzerland), 2018, 7, 117.	1.8	22
249	Recent Progress on Highâ€Capacitance Polymer Gate Dielectrics for Flexible Lowâ€Voltage Transistors. Advanced Functional Materials, 2018, 28, 1802201.	7.8	139
250	EGalnâ€Assisted Roomâ€Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjetâ€Printed, Thinâ€Film Electronics. Advanced Materials, 2018, 30, e1801852.	11.1	225
251	Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics. ACS Applied Materials & Interfaces, 2018, 10, 20845-20853.	4.0	128
252	3Dâ€Structured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	11.1	86
253	Towards Subâ€Microscale Liquid Metal Patterns: Cascade Phase Change Mediated Pickâ€nâ€Place Transfer of Liquid Metals Printed and Stretched over a Flexible Substrate. Advanced Functional Materials, 2018, 28, 1800380.	7.8	47
254	Wearable strain sensors based on electrically conductive natural fiber yarns. Materials and Design, 2018, 154, 217-227.	3.3	76

#	Article	IF	CITATIONS
255	Protein-Based Electronic Skin Akin to Biological Tissues. ACS Nano, 2018, 12, 5637-5645.	7.3	112
256	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	2.0	96
257	Pâ€137: A Highly Sensitive Resistive Pressure Sensor with MWCNT Nanoparticlesâ€Liquid Crystalâ€PDMS Composite. Digest of Technical Papers SID International Symposium, 2018, 49, 1913-1916.	0.1	0
258	Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small, 2018, 14, e1703509.	5.2	257
259	Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Composites Science and Technology, 2018, 165, 190-197.	3.8	72
260	Highly sensitive wearable strain sensor based on ultra-violet/ozone cracked carbon nanotube/elastomer. Applied Physics Letters, 2018, 112, .	1.5	34
261	Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect. Nano Energy, 2018, 51, 185-191.	8.2	29
262	The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Composites Science and Technology, 2018, 165, 131-139.	3.8	31
263	Potential of Graphene for Miniature Sensors and Conducting Devices for Biomedical Applications. , 2018, , .		0
264	B-Splines and NURBS Based Finite Element Methods for Strained Electronic Structure Calculations. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	6
265	Toward Perceptive Soft Robots: Progress and Challenges. Advanced Science, 2018, 5, 1800541.	5.6	468
266	Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Applied Sciences (Switzerland), 2018, 8, 345.	1.3	170
267	Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. ACS Applied Materials & Interfaces, 2018, 10, 24807-24815.	4.0	44
268	Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors. ACS Applied Materials & Interfaces, 2018, 10, 25502-25510.	4.0	9
269	A Highly Sensitive Resistive Pressure Sensor Based on a Carbon Nanotube-Liquid Crystal-PDMS Composite. Nanomaterials, 2018, 8, 413.	1.9	52
270	Sensitive and Flexible Polymeric Strain Sensor for Accurate Human Motion Monitoring. Sensors, 2018, 18, 418.	2.1	65
271	Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration. Sensors, 2018, 18, 464.	2.1	19
272	Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges. Sensors, 2018, 18, 618.	2.1	23

#	Article	IF	CITATIONS
273	Electrochemistry on Stretchable Nanocomposite Electrodes: Dependence on Strain. ACS Nano, 2018, 12, 9223-9232.	7.3	9
274	Highly sensitive wearable strain sensors using copper nanowires and elastomers. , 2018, , .		0
275	Graphene Nanoplatelets-Based Advanced Materials and Recent Progress in Sustainable Applications. Applied Sciences (Switzerland), 2018, 8, 1438.	1.3	201
276	Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad. ACS Applied Materials & Interfaces, 2018, 10, 20862-20868.	4.0	21
277	Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. Npj Flexible Electronics, 2018, 2, .	5.1	64
278	Soft human–machine interfaces: design, sensing and stimulation. International Journal of Intelligent Robotics and Applications, 2018, 2, 313-338.	1.6	55
279	PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	11.8	478
280	Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon, 2018, 139, 52-58.	5.4	113
281	Polymeric nanocomposites reinforced with nanowires: Opening doors to future applications. Journal of Plastic Film and Sheeting, 2019, 35, 65-98.	1.3	14
282	De Novo Synthesis and Assembly of Flexible and Biocompatible Physical Sensing Platforms. Advanced Materials Technologies, 2019, 4, 1800141.	3.0	6
283	PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 33221-33230.	4.0	78
284	Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Science Advances, 2019, 5, eaav9653.	4.7	213
285	3Dâ€Printed Coaxial Fibers for Integrated Wearable Sensor Skin. Advanced Materials Technologies, 2019, 4, 1900504.	3.0	58
286	Wearable sensors based on colloidal nanocrystals. Nano Convergence, 2019, 6, 10.	6.3	43
287	Polyaniline Nanofiber Wrapped Fabric for High Performance Flexible Pressure Sensors. Polymers, 2019, 11, 1120.	2.0	39
288	In situ monitoring of the morphology evolution of interfacially-formed conductive nanocomposite films and their use as strain sensors. Journal of Colloid and Interface Science, 2019, 554, 305-314.	5.0	2
289	Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1227-1241.	1.9	11
290	A Self onformable Smart Skin with Sensing and Variable Stiffness Functions. Advanced Intelligent Systems, 2019, 1, 1900054.	3.3	14

#	Article	IF	CITATIONS
291	Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions. RSC Advances, 2019, 9, 22740-22748.	1.7	16
292	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	11.1	82
293	Flexible coplanar waveguide strain sensor based on printed silver nanocomposites. SN Applied Sciences, 2019, 1, 1.	1.5	9
294	Soft Bioelectronic Stickers: Selection and Evaluation of Skinâ€Interfacing Electrodes. Advanced Healthcare Materials, 2019, 8, e1900234.	3.9	77
295	Strainâ€Isolation Bridge Structure to Improve Stretchability of Highly Sensitive Strain Sensors. Advanced Materials Technologies, 2019, 4, 1900309.	3.0	18
296	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	2.0	38
297	Optimization of strain measurement procedure based on fuzzy quality evaluation and Taguchi experimental design. SN Applied Sciences, 2019, 1, 1.	1.5	4
298	Devices for promising applications. , 2019, , 247-314.		0
299	A Biomimetic Interface with High Adhesion, Tailorable Modulus for On-Skin Sensors, and Low-Power Actuators. Chemistry of Materials, 2019, 31, 8708-8716.	3.2	33
300	Practical and Durable Flexible Strain Sensors Based on Conductive Carbon Black and Silicone Blends for Large Scale Motion Monitoring Applications. Sensors, 2019, 19, 4553.	2.1	15
301	An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 2019, 11, 1570-1578.	2.8	137
302	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	3.0	37
303	Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nano-Micro Letters, 2019, 11, 92.	14.4	56
304	Monolithic Solder-On Nanoporous Si-Cu Contacts for Stretchable Silicone Composite Sensors. ACS Applied Materials & Interfaces, 2019, 11, 47577-47586.	4.0	8
305	Mechanically transformative electronics, sensors, and implantable devices. Science Advances, 2019, 5, eaay0418.	4.7	129
306	Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 43543-43552.	4.0	27
307	Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbreâ€Recognition Ability Based on Vertical Graphene. Advanced Functional Materials, 2019, 29, 1907151.	7.8	59
308	Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Composites Part B: Engineering, 2019, 177, 107285.	5.9	97

		CITATION REPORT		
#	Article		IF	CITATIONS
309	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019,	1, 1900090.	3.3	80
310	An overview of stretchable strain sensors from conductive polymer nanocomposites. Jo Materials Chemistry C, 2019, 7, 11710-11730.	urnal of	2.7	315
311	Ultra-robust wide-range pressure sensor with fast response based on polyurethane foa coated with conformal silicone rubber and CNT/TPU nanocomposites islands. Composi Engineering, 2019, 177, 107364.	n doubly tes Part B:	5.9	82
312	Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films w Sensitivity as Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019,	ith Enhanced 11, 39560-39573.	4.0	75
313	Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Elect Materials, 2019, 12, 3036.	ronics.	1.3	29
314	Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile p sensing. Nanoscale, 2019, 11, 2779-2786.	ressure	2.8	72
315	Pulsed-grown graphene for flexible transparent conductors. Nanoscale Advances, 2019	, 1, 1215-1223.	2.2	12
316	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019,	119, 5461-5533.	23.0	822
317	Mechanics of buckled serpentine structures formed via mechanics-guided, deterministi three-dimensional assembly. Journal of the Mechanics and Physics of Solids, 2019, 125	c , 736-748.	2.3	29
318	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Rob haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	otern und	1.6	5
319	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	and Haptic	7.2	120
320	Flexible and wearable strain sensors based on tough and self-adhesive ion conducting b Journal of Materials Chemistry B, 2019, 7, 24-29.	ydrogels.	2.9	165
321	A highly flexible tactile sensor with an interlocked truncated sawtooth structure based stretchable graphene/silver/silicone rubber composites. Journal of Materials Chemistry 8669-8679.	on C, 2019, 7,	2.7	42
322	Extremely Stretchable and Self-Healable Electrical Skin with Mechanical Adaptability, ar Linear Response Range, and Excellent Temperature Tolerance. ACS Applied Materials & 2019, 11, 24639-24647.	ı Ultrawide amp; Interfaces,	4.0	67
323	Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crac Arrangement. Sensors, 2019, 19, 2834.	2	2.1	26
324	A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human physiological signal monitoring. Journal of Materials Chemistry B, 2019, 7, 4638-4648.	motion and	2.9	223
325	Wearable System Based on Flexible FBG for Respiratory and Cardiac Monitoring. IEEE S 2019, 19, 7391-7398.	ensors Journal,	2.4	147
326	Piezoresistive performance of polymer-based materials as a function of the matrix and content to walking detection application. Composites Science and Technology, 2019,	nanofiller 181, 107678.	3.8	43

#	Article	IF	CITATIONS
327	Fabrication of a conductive composite structure with enhanced stretchability using direct-write 3D printing. Materials Research Express, 2019, 6, 085319.	0.8	1
328	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by One‧tep Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	7.8	154
329	Development of strain sensor using conductive poly(vinylidene fluoride) (PVDF) nanocomposite membrane reinforced with ionic liquid (IL) & carbon nanofiber (CNF). Composites Part B: Engineering, 2019, 173, 106990.	5.9	44
330	Graphene-Based Sensors for Human Health Monitoring. Frontiers in Chemistry, 2019, 7, 399.	1.8	218
331	A 3D-printed stretchable strain sensor for wind sensing. Smart Materials and Structures, 2019, 28, 084001.	1.8	37
332	Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy, 2019, 62, 319-328.	8.2	93
333	Progress in Triboelectric Materials: Toward High Performance and Widespread Applications. Advanced Functional Materials, 2019, 29, 1900098.	7.8	162
334	Development of Compact Load Cell Using Multiwall Carbon Nanotube/Cotton Composites and Its Application to Human Health and Activity Monitoring. Journal of Nanomaterials, 2019, 2019, 1-15.	1.5	5
335	Wearable and Skinâ€Mountable Fiberâ€Optic Strain Sensors Interrogated by a Freeâ€Running, Dualâ€Comb Fiber Laser. Advanced Optical Materials, 2019, 7, 1900086.	3.6	76
336	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
337	Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience (Switzerland), 2019, 9, 2071-2083.	1.6	51
338	Carbon nanomaterials based films for strain sensing application—A review. Nano Structures Nano Objects, 2019, 18, 100312.	1.9	59
339	Three-dimensional printed embedded channel–based resistive strain sensor: Fabrication and experimental characterization. Journal of Intelligent Material Systems and Structures, 2019, 30, 1518-1526.	1.4	4
340	Ag nanowire-based transparent stretchable tactile sensor recognizing strain directions and pressure. Nanotechnology, 2019, 30, 315502.	1.3	20
341	Highly conductive 3D metal-rubber composites for stretchable electronic applications. APL Materials, 2019, 7, .	2.2	22
342	Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire. Materials Chemistry and Physics, 2019, 229, 167-173.	2.0	39
343	Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon, 2019, 147, 227-235.	5.4	77
344	Highly Sensitive, Ultrastretchable Strain Sensors Prepared by Pumping Hybrid Fillers of Carbon Nanotubes/Cellulose Nanocrystal into Electrospun Polyurethane Membranes. ACS Applied Materials & Interfaces, 2019, 11, 12968-12977.	4.0	122

ARTICLE IF CITATIONS # Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential 345 2.1 64 Artificial Intelligence Applications. Sensors, 2019, 19, 1250. An Extremely Inexpensive, Simple, and Flexible Carbon Fiber Electrode for Tunable Elastomeric Piezo-Resistive Sensors and Devices Realized by LSTM RNN. ACS Applied Materials & amp; Interfaces, 2019, 346 4.0 11, 11910-11919. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic 347 band syndrome: A case study in sensing pressure distribution on an anatomical human-machine 1.1 26 interface (AHMI) using 3D-printed conformal electrode arrays. PLoS ONE, 2019, 14, e0214120. Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure 348 Sensor. ACS Applied Materials & amp; Interfaces, 2019, 11, 16006-16017. Stretchable Piezoelectric Sensing Systems for Selfâ€Powered and Wireless Health Monitoring. 349 3.0 96 Advanced Materials Technologies, 2019, 4, 1900100. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310. 8.2 A highly stretchable large strain sensor based on PEDOTâ€"thermoplastic polyurethane hybrid prepared 351 via in situ vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 2019, 74, 2.9 28 108-117. A Path Beyond Metal and Silicon:Polymer/Nanomaterial Composites for Stretchable Strain Sensors. 7.8 147 Advanced Functional Materials, 2019, 29, 1806306. Fabrication of Largeâ€Area Bimodal Sensors by Allâ€Inkjetâ€Printing. Advanced Materials Technologies, 2019, 353 3.0 40 4, 1800703. Low Operating Voltage and Highly Pressure-Sensitive Printed Sensor for Healthcare Monitoring with 354 38 Analogic Amplifier Circuit. ACS Applied Electronic Materials, 2019, 1, 246-252. Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Composites 355 3.8 21 Science and Technology, 2019, 174, 42-49. Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231. 356 36 Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small, 2019, 15, 357 5.2 144 e1805120. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti₃C₂T<i>_x</i> (MXene) Nanoparticle–Nanosheet Hybrid Network. Advanced Functional Materials, 2019, 29, 1807882. A Fully-Stretchable and Highly-Sensitive Strain Sensor Based Liquid-State Conductive Composite., 2019, 359 0 ,. Highly Flexible and Stretchable Structure Based on Au/Graphene Film and Polyurethane Yarn., 2019, , . Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and 361 2.0 26 their soft electronic applications. Journal of Semiconductors, 2019, 40, 111605. Analysis of Important Fabrication Factors That Determine the Sensitivity of MWCNT/Epoxy Composite 1.3 Strain Sensors. Materials, 2019, 12, 3875.

#	Article	IF	CITATIONS
363	Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Accounts of Chemical Research, 2019, 52, 82-90.	7.6	52
364	A Shadow-Based Nano Scale Precision Force Sensor. IEEE Sensors Journal, 2019, 19, 2072-2078.	2.4	4
365	A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature, 2019, 565, 361-365.	13.7	358
366	Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity. Sensors and Actuators A: Physical, 2019, 285, 142-148.	2.0	35
367	Adhesionâ€Free Thinâ€Filmâ€Like Curvature Sensors Integrated on Flexible and Wearable Electronics for Monitoring Bending of Joints and Various Body Gestures. Advanced Materials Technologies, 2019, 4, 1800327.	3.0	41
368	Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Composites Science and Technology, 2019, 172, 7-16.	3.8	86
369	Bioinspired Electronics for Artificial Sensory Systems. Advanced Materials, 2019, 31, e1803637.	11.1	195
370	Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy, 2019, 55, 348-353.	8.2	86
371	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
372	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	11.1	779
373	Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. Journal of Materials Science, 2019, 54, 2170-2180.	1.7	60
374	Multimodal Human Hand Motion Sensing and Analysis—A Review. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 162-175.	2.6	39
375	Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials. Advanced Materials, 2020, 32, e1902417.	11.1	95
376	Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors. Chemical Engineering Journal, 2020, 382, 122985.	6.6	153
377	Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2020, 82, 122-129.	2.9	24
378	Sensing and actuation technologies for smart socket prostheses. Biomedical Engineering Letters, 2020, 10, 103-118.	2.1	22
379	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
380	Highly Sensitive Graphene/Polydimethylsiloxane Composite Films near the Threshold Concentration with Biaxial Stretching, Polymers, 2020, 12, 71.	2.0	10

		CITATION R	EPORT	
#	ARTICLE		IF	CITATIONS
381	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 15	8-179.	8.3	262
382	Effects of bonding position on bending behavior of flexible anisotropic conductive film p considering neutral surface. Microsystem Technologies, 2020, 26, 1835-1845.	ackages	1.2	0
383	Reviews of wearable healthcare systems: Materials, devices and system integration. Mat and Engineering Reports, 2020, 140, 100523.	erials Science	14.8	215
384	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to Progress in Materials Science, 2020, 114, 100617.	application.	16.0	267
385	Foldable and washable fully textile-based pressure sensor. Smart Materials and Structure 055010.	28, 2020, 29,	1.8	26
386	Evaluation and visualization of facial massage effects by using ultraviolet stereoâ€image Skin Research and Technology, 2020, 26, 349-355.	correlation.	0.8	3
387	Closing the Wearable Gap-Part VII: A Retrospective of Stretch Sensor Tool Kit Developm Benchmark Testing. Electronics (Switzerland), 2020, 9, 1457.	ent for	1.8	8
388	Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable Polymer, 2020, 211, 123095.	sensor.	1.8	38
389	Flexible and breathable strain sensor with high performance based on MXene/nylon fabr Sensors and Actuators A: Physical, 2020, 315, 112192.	ic network.	2.0	43
390	Investigation on the Coupling Effect Induced by Bilayer Structure of Thin Au Film and Gr Nanoplates for Strain Gauge. , 2020, , .	aphene		0
391	A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and electrical activity. Materials Science and Engineering C, 2020, 117, 111345.	d cardiac	3.8	30
392	μ-Si strain gauge array on flexible substrate for dynamic pressure measurement. Senso A: Physical, 2020, 315, 112274.	rs and Actuators	2.0	1
393	A review on fabrication, characterization and implementation of wearable strain sensors and Actuators A: Physical, 2020, 315, 112355.	. Sensors	2.0	79
394	PEDOT:PSS Microchannelâ€Based Highly Sensitive Stretchable Strain Sensor. Advanced Materials, 2020, 6, 2000445.	Electronic	2.6	97
395	Liquid metal microchannels as digital sensors in mechanical metamaterials. Extreme Mec Letters, 2020, 40, 100871.	chanics	2.0	12
396	Highly sensitive capacitive flexible 3D-force tactile sensors for robotic grasping and man Journal Physics D: Applied Physics, 2020, 53, 445109.	ipulation.	1.3	35
397	Research progress of MXenes-based wearable pressure sensors. APL Materials, 2020, 8,		2.2	31
398	Emerging flexible sensors based on nanomaterials: recent status and applications. Journ Materials Chemistry A, 2020, 8, 25499-25527.	al of	5.2	106

#	Article	IF	CITATIONS
399	ICP-CVD μ-Si Layers Optimization for Strain Gauges on Flexible Substrates. Sensors and Actuators A: Physical, 2020, 315, 112261.	2.0	3
400	Highly sensitive flexible pressure sensors based on graphene/graphene scrolls multilayer hybrid films. Chinese Journal of Chemical Physics, 2020, 33, 365-370.	0.6	2
401	Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature, 2020, 587, 219-224.	13.7	279
402	A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Materials, 2020, 35, 522-530.	2.9	14
403	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
404	Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control. Scientific Reports, 2020, 10, 12666.	1.6	31
405	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Science Advances, 2020, 6, eabb7043.	4.7	155
406	Wireless Ti ₃ C ₂ T _{<i>x</i>} MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano, 2020, 14, 11860-11875.	7.3	99
407	Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback–Loop Control of a Soft Earthworm Robot. ACS Applied Materials & Interfaces, 2020, 12, 43388-43397.	4.0	35
408	Graphene Fiber-Based Strain-Insensitive Wearable Temperature Sensor. , 2020, 4, 1-4.		11
409	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1-10.	1.5	10
410	Advances and opportunities in development of deformable organic electrochemical transistors. Journal of Materials Chemistry C, 2020, 8, 15067-15078.	2.7	25
411	An Auto-Calibrated Resistive Measurement System With Low Noise Instrumentation ASIC. IEEE Journal of Solid-State Circuits, 2020, 55, 3036-3050.	3.5	19
412	Flexible Piezoelectric Transducers for Energy Harvesting and Sensing from Human Kinematics. ACS Applied Electronic Materials, 2020, 2, 3346-3357.	2.0	43
413	Organic Thin Film Transistors in Mechanical Sensors. Advanced Functional Materials, 2020, 30, 2004700.	7.8	21
414	Highly stretchable supramolecular conductive self-healable gels for injectable adhesive and flexible sensor applications. Journal of Materials Chemistry A, 2020, 8, 19954-19964.	5.2	52
415	Biocompatible, Flexible Strain Sensor Fabricated with Polydopamine-Coated Nanocomposites of Nitrile Rubber and Carbon Black. ACS Applied Materials & Interfaces, 2020, 12, 42140-42152.	4.0	78
416	Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 2020, 10, 2166.	1.9	22

#	Article	IF	CITATIONS
417	Skin Mountable Capillaric Strain Sensor with Ultrahigh Sensitivity and Direction Specificity. Advanced Materials Technologies, 2020, 5, 2000631.	3.0	7
418	Nanoparticle circuits inside elastomers for flexible electronics: High conductivity under cyclic deformation. Manufacturing Letters, 2020, 26, 37-41.	1.1	3
419	Flexible and Highly Sensitive Pressure Sensors with Surface Discrete Microdomes Made from Selfâ€Assembled Polymer Microspheres Array. Macromolecular Chemistry and Physics, 2020, 221, 2000073.	1,1	30
420	Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors, 2020, 10, 56.	2.3	52
421	Design, fabrication and characterization of soft sensors through EGaIn for soft pneumatic actuators. Measurement: Journal of the International Measurement Confederation, 2020, 164, 107996.	2.5	10
422	Sensitive piezoresistive sensors using ink-modified plant fiber sponges. Chemical Engineering Journal, 2020, 401, 126029.	6.6	22
423	Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 2020, 41, 1233-1236.	2.2	10
424	Drift-Free Latent Space Representation for Soft Strain Sensors. , 2020, , .		6
425	3-D graphene aerogel sphere-based flexible sensors for healthcare applications. Sensors and Actuators A: Physical, 2020, 312, 112144.	2.0	35
426	Stretchable Human Machine Interface Based on Smart Glove Embedded With PDMS-CB Strain Sensors. IEEE Sensors Journal, 2020, 20, 8073-8081.	2.4	41
427	Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: the effect of environmental factors on strain sensing performance. Journal of Materials Chemistry C, 2020, 8, 6185-6195.	2.7	60
428	Skin-Patchable Electrodes for Biosensor Applications: A Review. ACS Biomaterials Science and Engineering, 2020, 6, 1823-1835.	2.6	98
429	Boosting Electrical Conductivity of Sugarcane Cellulose and Lignin Biocarbons through Annealing under Isopropanol Vapor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7002-7010.	3.2	20
430	Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications. ACS Applied Electronic Materials, 2020, 2, 1826-1842.	2.0	69
431	Stretchable and calibratable graphene sensors for accurate strain measurement. Materials Advances, 2020, 1, 235-243.	2.6	22
432	Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454.	2.0	11
433	Visualizing and Analyzing 3D Metal Nanowire Networks for Stretchable Electronics. Advanced Theory and Simulations, 2020, 3, 2000038.	1.3	9
434	Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Research, 2020, 13, 2525-2533.	5.8	92

#	Article	IF	CITATIONS
435	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	2.5	67
436	Strain and pressure sensing tubes based on conductive fluids and their applications on a flexible finger. Journal of Micromechanics and Microengineering, 2020, 30, 105010.	1.5	0
437	Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle–Stretchable Conductive Network. ACS Applied Materials & Interfaces, 2020, 12, 35282-35290.	4.0	43
438	Development of ultrastretchable and skin attachable nanocomposites for human motion monitoring via embedded 3D printing. Composites Part B: Engineering, 2020, 200, 108224.	5.9	34
439	Liquidâ€State Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	2.6	14
440	3D Assembly of Graphene Nanomaterials for Advanced Electronics. Advanced Intelligent Systems, 2020, 2, 1900151.	3.3	10
441	The low resistance and high sensitivity in stretchable electrode assembled by liquid-phase exfoliated graphene. Polymer, 2020, 192, 122301.	1.8	7
442	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. Science Robotics, 2020, 5, .	9.9	50
443	Skin-like Ultrasensitive Strain Sensor for Full-Range Detection of Human Health Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 13287-13295.	4.0	85
444	Flexible inorganic bioelectronics. Npj Flexible Electronics, 2020, 4, .	5.1	134
445	Experimental Investigation into the Dynamics of a Radially Contracting Actuator with Embedded Sensing Capability. Soft Robotics, 2020, 7, 478-490.	4.6	13
446	Stretchable strain sensor based on conductive polymer for structural health monitoring of high-speed train head. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 496-503.	0.7	5
447	Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Science Advances, 2020, 6, eaay6094.	4.7	68
448	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
449	Environmentally Friendly and Biodegradable Ultrasensitive Piezoresistive Sensors for Wearable Electronics Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 8761-8772.	4.0	55
450	Highly Sensitive and Stretchable Carbon Nanotube/Fluoroelastomer Nanocomposite with a Doubleâ€Percolated Network for Wearable Electronics. Advanced Electronic Materials, 2020, 6, 1901067.	2.6	41
451	Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film. Sensors, 2020, 20, 458.	2.1	9
452	Two-dimensional perovskites as sensitive strain sensors. Journal of Materials Chemistry C, 2020, 8, 3814-3820.	2.7	19

#	Article	IF	CITATIONS
453	Nanoparticle orientation distribution analysis and design for polymeric piezoresistive sensors. Sensors and Actuators A: Physical, 2020, 303, 111851.	2.0	7
454	Stretchable graphene electrodes. , 2020, , 175-204.		2
455	Effect of the Elastomer Matrix on Thermoplastic Elastomer-Based Strain Sensor Fiber Composites. Sensors, 2020, 20, 2399.	2.1	21
456	Stretchable strain sensors based on conductive coating cracks with improved interfacial adhesion by wet phase separation treatment. Journal of Coatings Technology Research, 2020, 17, 1157-1169.	1.2	11
457	Orientation Distribution Dependence of Piezoresistivity of Metal Nanowire-Polymer Composite. Multiscale Science and Engineering, 2020, 2, 54-62.	0.9	5
458	Metallic Sandwiched-Aerogel Hybrids Enabling Flexible and Stretchable Intelligent Sensor. Nano Letters, 2020, 20, 3449-3458.	4.5	87
459	Polydiacetylene hydrogel self-healing capacitive strain sensor. Journal of Materials Chemistry C, 2020, 8, 6034-6041.	2.7	53
460	Engineered Microneedles for Interstitial Fluid Cellâ€Free DNA Capture and Sensing Using Iontophoretic Dualâ€Extraction Wearable Patch. Advanced Functional Materials, 2020, 30, 2000591.	7.8	65
461	Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2001518.	7.8	34
462	A Soft Material Flow Sensor for Micro Air Vehicles. Soft Robotics, 2021, 8, 119-127.	4.6	7
463	Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polymer Reviews, 2021, 61, 157-193.	5.3	103
464	Flexible Capacitive Curvature Sensor with One-Time Calibration for Amphibious Gait Monitoring. Soft Robotics, 2021, 8, 164-174.	4.6	21
465	Wearable and Biodegradable Sensors for Human Health Monitoring. ACS Applied Bio Materials, 2021, 4, 122-139.	2.3	52
466	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	5.0	86
467	3D-Printed Strain Sensors: Electro-Mechanical Simulation and Design Analysis Using Nonlinear Material Model and Experimental Investigation. IEEE Sensors Journal, 2021, 21, 1675-1685.	2.4	3
468	Flexible, Highly Sensitive, and Ultrafast Responsive Pressure Sensor with Stochastic Microstructures for Human Health Monitoring. Advanced Engineering Materials, 2021, 23, 2000902.	1.6	20
469	Electronic Skins for Healthcare Monitoring and Smart Prostheses. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 629-650.	7.5	12
470	How is flexible electronics advancing neuroscience research?. Biomaterials, 2021, 268, 120559.	5.7	32

#	Article	IF	CITATIONS
471	Paintâ€On Epidermal Electronics for Onâ€Demand Sensors and Circuits. Advanced Electronic Materials, 2021, 7, .	2.6	9
472	Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. Journal of Colloid and Interface Science, 2021, 586, 601-612.	5.0	40
473	Recent Developments in Prosthesis Sensors, Texture Recognition, and Sensory Stimulation for Upper Limb Prostheses. Annals of Biomedical Engineering, 2021, 49, 57-74.	1.3	24
474	A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. Journal of Materials Chemistry A, 2021, 9, 1795-1802.	5.2	92
475	From wearables to implantables—clinical drive and technical challenges. , 2021, , 29-84.		8
476	Electrically conductive NBR/CB flexible composite film for ultrastretchable strain sensors: fabrication and modeling. Applied Nanoscience (Switzerland), 2021, 11, 429-439.	1.6	15
477	Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials. National Science Review, 2022, 9, nwab184.	4.6	4
478	Influence of surface topography on PCL electrospun scaffolds for liver tissue engineering. Journal of Materials Chemistry B, 2021, 9, 8081-8093.	2.9	13
479	Skinâ€Inspired Piezoelectric Tactile Sensor Array with Crosstalkâ€Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli. Advanced Science, 2021, 8, 2002817.	5.6	161
480	Well-rounded devices: the fabrication of electronics on curved surfaces – a review. Materials Horizons, 2021, 8, 1926-1958.	6.4	39
481	Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. Sensors, 2021, 21, 354.	2.1	23
482	Sensing Materials: Nanocomposites. , 2023, , 305-315.		1
483	Polymer-based electro-active smart composites as stretchable strain sensors. , 2021, , 291-320.		0
484	Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Advanced Optical Materials, 2021, 9, 2001815.	3.6	31
485	Ultra‧ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	7.8	60
486	Shape Fidelity of 3D-Bioprinted Biodegradable Patches. Micromachines, 2021, 12, 195.	1.4	14
488	Flexible Sensors Based on Organic–Inorganic Hybrid Materials. Advanced Materials Technologies, 2021, 6, 2000889.	3.0	43
489	Tactile and Thermal Sensors Built from Carbon–Polymer Nanocomposites—A Critical Review. Sensors, 2021, 21, 1234.	2.1	26

#	Article	IF	CITATIONS
490	Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements. Materials Today Communications, 2021, 26, 102023.	0.9	12
491	A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: Challenges and recommendations for future improvement. Journal of Thermoplastic Composite Materials, 2023, 36, 836-865.	2.6	22
492	Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Composites Part B: Engineering, 2021, 211, 108641.	5.9	57
493	Conformal, Ultraâ€thin Skinâ€Contactâ€Actuated Hybrid Piezo/Triboelectric Wearable Sensor Based on AlN and Paryleneâ€Encapsulated Elastomeric Blend. Advanced Functional Materials, 2021, 31, 2101047.	7.8	65
494	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
495	Printable Gâ€Putty for Frequency―and Rateâ€Independent, Highâ€Performance Strain Sensors. Small, 2021, 17, e2006542.	5.2	16
496	Measuring cellular contraction: Current progress and a future in bioelectronics. APL Materials, 2021, 9, .	2.2	9
497	High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23038-23048.	4.0	25
499	Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy, 2021, 83, 105823.	8.2	54
500	Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23905-23914.	4.0	29
501	Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials, 2021, 11, 1220.	1.9	35
502	Recent Progress on Bioresorbable Passive Electronic Devices and Systems. Micromachines, 2021, 12, 600.	1.4	8
503	Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. Journal of Materials Science, 2021, 56, 13156-13164.	1.7	7
504	Eye-Movement-Controlled Wheelchair Based on Flexible Hydrogel Biosensor and WT-SVM. Biosensors, 2021, 11, 198.	2.3	15
505	Stretchable Strain Sensor with Controllable Negative Resistance Sensitivity Coefficient Based on Patterned Carbon Nanotubes/Silicone Rubber Composites. Micromachines, 2021, 12, 716.	1.4	4
506	Nanoporous Carbon Aerogels for Laser-Printed Wearable Sensors. ACS Applied Nano Materials, 2021, 4, 6796-6804.	2.4	13
507	Electrical and Mechanical Characterization of Carbon-Based Elastomeric Composites for Printed Sensors and Electronics. , 2021, , .		3
508	Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress. Journal of the Mechanics and Physics of Solids, 2021, 151, 104400.	2.3	10

	Citation R	EPORT	
ARTICLE Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotu band for human motion detection. Progress in Natural Science: Materials International 379-386.	ıbes on hair , 2021, 31,	IF 1.8	CITATIONS
Soft Robotic Hands and Tactile Sensors for Underwater Robotics. Applied Mechanics, 2	2021, 2, 356-383.	0.7	25
Recent Advances in Graphene Electronic Skin and its Future Prospects. ChemNanoMat	., 2021, 7, 982-997.	1.5	13
Wafer-Level Flexible 3D Corrugated Interconnect Formation for Scalable In-Mold Electr Embedded Chiplets. , 2021, , .	onics with		2
Stamp-Perforation-Inspired Micronotch for Selectively Tearing Fiber-Bridged Carbon Na Films and Its Applications for Strain Classification. ACS Applied Materials & amp; Interfa 32307-32315.	inotube Thin aces, 2021, 13,	4.0	2
Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Design for Low Pressure Measurement. Sensors, 2021, 21, 4732.	Structure	2.1	2
Design and Comparative Performance of a Robust Lung Auscultation System for Noisy Settings. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2583-2594.	Clinical	3.9	25
Novel insights into the design of stretchable electrical systems. Science Advances, 202	21, 7, .	4.7	3
Highly stretchable and rehealable wearable strain sensor based on dynamic covalent th liquid metal. Smart Materials and Structures, 2021, 30, 105001.	iermoset and	1.8	9
In Situ Formation of Ag Nanoparticles for Fiber Strain Sensors: Toward Textile-Based W Applications. ACS Applied Materials & Interfaces, 2021, 13, 39868-39879.	/earable	4.0	26
Recent Advances in Flexible Tactile Sensors for Intelligent Systems. Sensors, 2021, 21,	5392.	2.1	47
Sensitivity-Controllable Liquid-Metal-Based Pressure Sensor for Wearable Applications. Electronic Materials, 2021, 3, 4027-4036.	ACS Applied	2.0	23
An Overview of Wearable Piezoresistive and Inertial Sensors for Respiration Rate Moni Electronics (Switzerland), 2021, 10, 2178.	toring.	1.8	33
Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physica Property Sensors. Applied Sciences (Switzerland), 2021, 11, 8563.	al and Chemical	1.3	17
Tensible and flexible high-sensitive spandex fiber strain sensor enhanced by carbon nar nanoparticles. Nanotechnology, 2021, 32, 505509.	10tubes/Ag	1.3	6

526	Flexible stimuli-responsive materials for smart personal protective equipment. Materials Science and Engineering Reports, 2021, 146, 100629.	14.8	16
527	Torsional deformation dominated buckling of serpentine structures to form three-dimensional architectures with ultra-low rigidity. Journal of the Mechanics and Physics of Solids, 2021, 155, 104568.	2.3	16

A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart Materials and Structures, 2021, 30, 105020.

#

509

511

513

514

515

517

520

522

524

#	Article	IF	CITATIONS
528	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65
529	Nanotechnology-enabled polymer-based flexible electronics and their potential applications. , 2021, , 321-340.		1
530	Three-dimensional functionalized film printing for health monitoring. , 2021, , 243-258.		0
531	Continuum Robot Proprioception: The Ionic Liquid Approach. IEEE Transactions on Robotics, 2022, 38, 526-535.	7.3	9
532	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	6.4	21
533	Wireless Monitoring of Small Strains in Intelligent Robots via a Joule Heating Effect in Stretchable Graphene–Polymer Nanocomposites. Advanced Functional Materials, 2020, 30, 1910809.	7.8	68
534	A unified model for determining fracture strain of metal films on flexible substrates. Journal of Materials Science and Technology, 2020, 54, 87-94.	5.6	3
535	Stretching-enhanced triboelectric nanogenerator for efficient wind energy scavenging and ultrasensitive strain sensing. Nano Energy, 2020, 75, 104920.	8.2	62
536	A stretchable petal patterned strain sensor comprising Ir nanoparticles-modified multi-walled carbon nanotubes for human-motion detection. Journal Physics D: Applied Physics, 2020, 53, 505402.	1.3	6
537	Surface Textures for Stretchable Capacitive Strain Sensors. Smart Materials and Structures, 2020, 29, 105037.	1.8	8
538	Screen Printed Silver/Carbon Composite Strain Gauge on a TPU Platform for Wearable Applications. , 2020, , .		11
539	Fatigue Life Prediction of Serpentine Interconnects on Soft Elastomers for Stretchable Electronics. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	33
540	A skin-inspired tactile sensor for smart prosthetics. Science Robotics, 2018, 3, .	9.9	195
541	Wearable piezoresistive strain sensor based on graphene-coated three-dimensional micro-porous PDMS sponge. Micro and Nano Systems Letters, 2019, 7, .	1.7	28
542	3D integrated photonics platform with deterministic geometry control. Photonics Research, 2020, 8, 194.	3.4	10
543	Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications. IEEE Reviews in Biomedical Engineering, 2023, 16, 152-170.	13.1	9
544	Self-Healing, Self-Adhesive Strain Sensors Made with Carbon Nanotubes/Polysiloxanes Based on Unsaturated Carboxyl–Amine Ionic Interactions. ACS Applied Materials & Interfaces, 2021, 13, 49266-49278.	4.0	20
545	Fabrication and Performance of Graphene Flexible Pressure Sensor with Micro/Nano Structure. Sensors, 2021, 21, 7022.	2.1	4

#	Article	IF	Citations
547	Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Research, 2022, 15, 3614-3620.	5.8	17
548	Highly stretchable and sensitive self-powered sensors based on the N-Type thermoelectric effect of polyurethane/Nax(Ni-ett)n/graphene oxide composites. Composites Communications, 2021, 28, 100952.	3.3	14
549	Lithographically patterned stretchable metallic microwiring on electrospun nanofiber mats. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	2
550	Silicone-based ultra-stretchable strain sensors. , 2018, , .		0
551	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
552	A Comprehensive Review of Wearable Applications and Material Construction. Open Journal of Applied Sciences, 2020, 10, 364-408.	0.2	2
553	Tip Tracking of Surgical Navigation Stylets Using Integrated Strain Sensors. , 2020, , .		1
554	Flexible Pressure Sensor with Micro-Structure Arrays Based on PDMS and PEDOT:PSS/PUD&CNTs Composite Film with 3D Printing. Materials, 2021, 14, 6499.	1.3	14
555	Nano Foldaway Skin-like E-interface for Detecting Human Bioelectrical Signals. ACS Applied Materials & Interfaces, 2021, 13, 148-154.	4.0	7
556	Stress analysis of soft polymer material with beam structure. AIP Conference Proceedings, 2020, , .	0.3	0
557	Strain Sensing Graphene Functionalized PET Films based on a Facile Dip Coating Approach. , 2021, , .		0
558	Progress of shrink polymer micro- and nanomanufacturing. Microsystems and Nanoengineering, 2021, 7, 88.	3.4	12
559	Phosphorescence-based temperature and tactile multi-functional flexible sensing skin. Sensors and Actuators A: Physical, 2021, 332, 113205.	2.0	2
560	A bioinspired three-dimensional integrated e-skin for multiple mechanical stimuli recognition. Nano Energy, 2022, 92, 106777.	8.2	25
561	Printed Strain Sensors for On‣kin Electronics. Small Structures, 2022, 3, 2100131.	6.9	29
562	Highly stretchable, superhydrophobic and wearable strain sensors based on the laser-irradiated PDMS/CNT composite. Composites Science and Technology, 2022, 218, 109148.	3.8	46
563	Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling. ACS Nano, 2021, 15, 20590-20599.	7.3	13
564	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	2.3	11

#	Article	IF	CITATIONS
565	Wireless Passive Flexible Strain Sensor Based on Aluminium Nitride Film. IEEE Sensors Journal, 2022, 22, 3074-3079.	2.4	8
566	Postbuckling Analysis of Ultra-Low Rigidity Serpentine Structures. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	4
567	Highly sensitive flexible strain and temperature sensors using solution processed graphene palladium nanocomposite. Sensors and Actuators A: Physical, 2022, 334, 113314.	2.0	17
568	Facile fabrication of silicone rubber composite foam with dual conductive networks and tunable porosity for intelligent sensing. European Polymer Journal, 2022, 164, 110980.	2.6	15
569	Ultrasensitive wearable sensor with novel hybrid structures of silver nanowires and carbon nanotubes in fluoroelastomer: Multi-directional sensing for human health monitoring and stretchable electronics. Applied Materials Today, 2022, 26, 101295.	2.3	22
570	A Capacitive and Piezoresistive Hybrid Sensor for Longâ€Distance Proximity and Wideâ€Range Force Detection in Human–Robot Collaboration. Advanced Intelligent Systems, 2022, 4, .	3.3	12
571	Structural effects of 3D printing resolution on the gauge factor of microcrack-based strain gauges for health care monitoring. Microsystems and Nanoengineering, 2022, 8, 12.	3.4	21
572	Lignin derived hydrogel with highly adhesive for flexible strain sensors. Polymer Testing, 2022, 107, 107486.	2.3	15
573	Multifunctional liquid metal polymer composites. Journal of Polymer Science, 2022, 60, 1300-1327.	2.0	39
574	Capacitive Sensor Combining Proximity and Pressure Sensing for Accurate Grasping of a Prosthetic Hand. ACS Applied Electronic Materials, 2022, 4, 869-877.	2.0	18
575	CNT/Graphite/SBS Conductive Fibers for Strain Sensing in Wearable Telerehabilitation Devices. Sensors, 2022, 22, 800.	2.1	7
576	A Skinâ€Mountable Hyperthermia Patch Based on Metal Nanofiber Network with High Transparency and Low Resistivity toward Subcutaneous Tumor Treatment. Advanced Functional Materials, 2022, 32, .	7.8	27
577	Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose, 2022, 29, 2699-2709.	2.4	11
578	Highly sensitive flexible strain sensor based on GSB-enhanced three-dimensional graphene composite. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115187.	1.3	6
579	Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Advances, 2022, 2, 64-109.	3.6	22
580	Demonstration of durable electronic textiles via mechanically assisted highly adhesive printing of carbon nanotube-polymer composites on commercial fabrics. Journal of Industrial and Engineering Chemistry, 2022, 108, 508-513.	2.9	4
581	3D Printing of Conductive Hydrogel–Elastomer Hybrids for Stretchable Electronics. ACS Applied Materials & Interfaces, 2021, 13, 59243-59251.	4.0	37
582	Stretchable thermoelectric materials/devices for low-grade thermal energy harvesting. , 2022, , 11-40.		1

CITATION REPORT ARTICLE IF CITATIONS Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. 0.7 8 Journal of Mechanical Science and Technology, 2022, 36, 1059-1077. Wearable Sensor for Forearm Motion Detection Using a Carbon-Based Conductive Layer-Polymer 2.1 Composite Film. Sensors, 2022, 22, 2236. Intrinsically Flexible and Breathable Supercapacitive Pressure Sensor Based on MXene and Ionic Gel Decorating Textiles for Comfortable and Ultrasensitive Wearable Healthcare Monitoring. ACS Applied 2.0 25 Electronic Materials, 2022, 4, 1958-1967. Epidermisâ€Like High Performance Wearable Strain Sensor for Fullâ€Range Monitoring of the Human Activities. Macromolecular Materials and Engineering, 2022, 307, . Ultrasensitive and highly stretchable sensors for human motion monitoring made of graphene reinforced polydimethylsiloxane: Electromechanical and complex impedance sensing performance. 5.4 18 Carbon, 2022, 192, 234-248. Fabrication of a Flexible Electric Skin Using a Bionic Cell and Study of Its Sensing Ability. Journal of 2.7 Bionic Engineering, 2022, 19, 62-72. Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 1.3 27 2022, 33, 322002. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom 4.6 Motion and Perception. Soft Robotics, 2023, 10, 119-128. Embedded Soft Sensing in a Soft Ring Actuator for Aiding with the Self-Organisation of the In-Hand 1 Rotational Manipulation., 2022,,. Laser direct writing of a multifunctional superhydrophobic composite strain sensor with excellent 3.3 corrosion resistance and Anti-Icing/Deicing performance. Materials and Design, 2022, 218, 110689. MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable 3.8 42 electronics. Composites Science and Technology, 2022, 226, 109518. Unidirectional, highly linear strain sensors with thickness-engineered conductive films for precision 5.2 control of soft machines. Journal of Materials Chemistry A, 2022, 10, 13673-13684. Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics 5.5 27 Reviews, 2022, 9, . Recent advances in skin-like wearable sensors: sensor design, health monitoring, and intelligent 1.9 auxiliary. Sensors & Diagnostics, 2022, 1, 686-708. A Carbon-Based Biosensing Platform for Simultaneously Measuring the Contraction and 7.3 15 Electrophysiology of iPSC-Cardiomyocyte Monolayers. ACS Nano, 2022, 16, 11278-11290. Printable and Stretchable Conductive Elastomers for Monitoring Dynamic Strain with High Fidelity. Advanced Functional Materials, 2022, 32, .

600Design of Fuzzy Logic Motion Detection Algorithm for the Bracelet Type Sensor Consisting of
Conductive Layer-Polymer Composite Film. Polymers, 2022, 14, 2309.2.00

601Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating2.02Hybrid Structures. Polymers, 2022, 14, 2551.

#

583

584

585

586

587

590

592

594

596

598

ARTICLE IF CITATIONS High Conductivity, Low Impedance, and High Biological Adaptability Ionic Conductive Hydrogels for 602 0.4 0 Ear-Eeg Acquisition. SSRN Electronic Journal, 0, , . Neuro-inspired electronic skin for robots. Science Robotics, 2022, 7, . Ordered Nanopillar Arrays of Low Dynamic Noise Dry Bioelectrodes for Electrocardiogram Surface 604 4.0 7 Monitoring. ACS Applied Materials & amp; Interfaces, 2022, 14, 33861-33870. Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of 5.8 universal cell-free DNA. Nature Communications, 2022, 13, . An electrically conductive polyvinyl alcohol/poly (acrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 592 Td (acid-co-acrylamide)/polydopamin 606 1.7 7 mechanical properties for human movement monitoring. Journal of Materials Science, 2022, 57, 12947-12959. EGaIn-Silicone-based highly stretchable and flexible strain sensor for real-time two joint robotic motion monitoring. Sensors and Actuators A: Physical, 2022, 342, 113659. A Single-material-printed, Low-cost design for a Carbon-based fabric strain sensor. Materials and 608 3.3 12 Design, 2022, 221, 110926. Printing Liquid Metal Elastomer Composites for Highâ€Performance Stretchable Thermoelectric 10.2 36 Generators. Advanced Energy Materials, 2022, 12, . Fabrication, characterization and modelling of the fabric electrode-based highly stretchable 610 0.9 1 capacitive strain sensor. Materials Today Communications, 2022, 32, 104095. Improved Stretchable and Sensitive Fe Nanowire-Based Strain Sensor by Optimizing Areal Density of 1.7 Nanowire Network. Molecules, 2022, 27, 4717. Network crack-based high performance stretchable strain sensors for human activity and healthcare 612 7 1.4 monitoring. New Journal of Chemistry, 2022, 46, 17596-17609. Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. 1.4 Micromachines, 2022, 13, 1220. A Wearable Capacitive Friction Force Sensor for E-Skin. ACS Applied Electronic Materials, 2022, 4, 614 2.0 4 3841-3848. Functional and Metrological Issues in Arterial Simulators for Biomedical Testing Applications: A Review. Metrology, 2022, 2, 360-386. Magnetic Self-Assembled Pearl Necklace-like Microstructure for Improving the Performance of a 616 2.0 4 Flexible Strain Sensor. ACS Applied Electronic Materials, 2022, 4, 4160-4172. Epidermal piezoresistive structure with deep learning-assisted data translation. Npj Flexible 5.1 Electronics, 2022, 6, . Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide 618 4.0 26 Working Range. ACS Applied Materials & amp; Interfaces, 2022, 14, 36611-36621. Topological Gradients for Metal Film-Based Strain Sensors. Nano Letters, 2022, 22, 6637-6646. 4.5

#	Article	IF	CITATIONS
620	Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One―Microsystems. ACS Applied Materials & Interfaces, 2022, 14, 39681-39700.	4.0	8
621	Fabric-based superhydrophobic MXene@ polypyrrole heater with superior dual-driving energy conversion. Journal of Colloid and Interface Science, 2023, 629, 508-521.	5.0	27
622	A high-performance porous flexible composite film sensor for tension monitoring. RSC Advances, 2022, 12, 26285-26296.	1.7	4
623	A fabric-based superhydrophobic ACNTs/Cu/PDMS heater with an excellent electrothermal effect and deicing performance. New Journal of Chemistry, 2022, 46, 18926-18937.	1.4	1
624	Critical Salt Loading in Flexible Poly(vinyl alcohol) Sensors Fabricated by an Inkjet Printing and Plasma Reduction Method. Micromachines, 2022, 13, 1437.	1.4	0
625	Electromechanical Performance of Strain Sensors Based on Viscoelastic Conductive Composite Polymer Fibers. ACS Applied Materials & Interfaces, 2022, 14, 44832-44840.	4.0	23
626	Carbon Nanotubeâ€Based Strain Sensors: Structures, Fabrication, and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	29
627	Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature Communications, 2022, 13, .	5.8	49
629	Programming Multistable Metamaterials to Discover Latent Functionalities. Advanced Science, 2022, 9,	5.6	13
630	Soft Underwater Swimming Robots Based on Artificial Muscle. Advanced Materials Technologies, 2023, 8, .	3.0	12
631	Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nature Communications, 2022, 13, .	5.8	29
632	Innovative approach using ultrasonic-assisted laser beam machining for the fabrication of ultrasensitive carbon nanotubes-based strain gauges. Optics and Lasers in Engineering, 2023, 161, 107325.	2.0	7
633	Capacitive–piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range. Materials Horizons, 2023, 10, 499-511.	6.4	20
634	Tactile sensing technology in bionic skin: A review. Biosensors and Bioelectronics, 2023, 220, 114882.	5.3	25
635	Characterization and optimization of 3D-printed, flexible vibration strain sensors with triply periodic minimal surfaces. Additive Manufacturing, 2023, 61, 103274.	1.7	1
636	Recent advances in wearable electromechanical sensors—Moving towards machine learning-assisted wearable sensing systems. Nano Energy, 2023, 105, 108041.	8.2	27
637	Integration of capillaric strain sensors toward recognition of human movements. Sensors & Diagnostics, 0, , .	1.9	0
638	Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Research, 2023, 16, 4093-4099.	5.8	9

#	Article	IF	CITATIONS
639	Highâ€Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing. Advanced Science, 2023, 10, .	5.6	43
640	Behavior of 3D Printed Stretchable Structured Sensors. Electronics (Switzerland), 2023, 12, 18.	1.8	2
641	Conductive Properties of Polyester/Spandex Fabrics Using Liquid Carbon Black and Disperse Black Dye. ACS Omega, 0, , .	1.6	1
642	Applications of Smart Material Sensors and Soft Electronics in Healthcare Wearables for Better User Compliance. Micromachines, 2023, 14, 121.	1.4	6
643	Optics-Free, In Situ Swelling Monitoring of Articular Cartilage with Graphene Strain Sensors. ACS Biomaterials Science and Engineering, 2023, 9, 1011-1019.	2.6	0
644	Wearable strain sensors: state-of-the-art and future applications. Materials Advances, 2023, 4, 1444-1459.	2.6	7
645	Graphene-Based Wearable Biosensors. , 2023, , 107-128.		0
646	Films of Biological Nanomaterials as a Prototype of a Tactile Sensor. Springer Proceedings in Materials, 2023, , 490-499.	0.1	0
647	Polymer composites for strain sensors. , 2023, , 381-404.		0
648	Stretchable Strain Sensor with Small but Sufficient Adhesion to Skin. Sensors, 2023, 23, 1774.	2.1	2
649	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
650	Effective electrical stimulation by a Poly(l-lactic acid)/Vitamin B2-Based piezoelectric generator promotes wound healing. European Polymer Journal, 2023, 189, 111962.	2.6	6
651	Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications. Sensors, 2023, 23, 4039.	2.1	5
652	Local electrical conductivity of carbon black/PDMS nanocomposites subjected to large deformations. Journal of Composite Materials, 2023, 57, 507-519.	1.2	0
653	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	7.8	31
654	Pressure Sensor Based on a Lumpily Pyramidal Vertical Graphene Film with a Broad Sensing Range and High Sensitivity. ACS Applied Materials & Interfaces, 2023, 15, 13813-13821.	4.0	6
655	Micro/Nano Soft Film Sensors for Intelligent Plant Systems: Materials, Fabrications, and Applications. Chemosensors, 2023, 11, 197.	1.8	0
656	Highly Stretchable PPy/PDMS Strain Sensors Fabricated with Multi-Step Oxygen Plasma Treatment. Polymers, 2023, 15, 1714.	2.0	4

#	Article	IF	CITATIONS
657	Nature-Driven Biocompatible Epidermal Electronic Skin for Real-Time Wireless Monitoring of Human Physiological Signals. ACS Applied Materials & Interfaces, 2023, 15, 20372-20384.	4.0	8
674	A Novel Study on Smart Sensors Used in Smart Automation System. , 2023, , .		0
700	Nanomaterials in environmental sensors. , 2024, , 607-634.		0