From Bulk to Monolayer MoS₂: Evolution of

Advanced Functional Materials 22, 1385-1390 DOI: 10.1002/adfm.201102111

Citation Report

#	Article	IF	CITATIONS
1	High quality 2D crystals made by anodic bonding: a general technique for layered materials. Nanotechnology, 2012, 23, 505709.	1.3	41
2	Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS ₂ Sheet. ACS Nano, 2013, 7, 7126-7131.	7.3	550
3	Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition. RSC Advances, 2013, 3, 17287.	1.7	41
4	Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS ₂ via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Letters, 2013, 13, 4434-4441.	4.5	281
5	Improved dispersant-free liquid exfoliation down to the graphene-like state of solvent-free mechanochemically delaminated bulk MoS2. Journal of Materials Chemistry C, 2013, 1, 6411.	2.7	50
6	Bandgap Engineering of Strained Monolayer and Bilayer MoS ₂ . Nano Letters, 2013, 13, 3626-3630.	4.5	1,950
7	MoS ₂ Nanocrystals Confined in a DNA Matrix Exhibiting Energy Transfer. Langmuir, 2013, 29, 11471-11478.	1.6	31
8	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	7.3	282
9	Anomalous frequency trends in MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> thin films attributed to surface effects. Physical Review B, 2013, 88, .	1.1	104
10	Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie - International Edition, 2013, 52, 13162-13185.	7.2	441
11	Effect of sulphur vacancy on geometric and electronic structure of MoS2 induced by molecular hydrogen treatment at room temperature. RSC Advances, 2013, 3, 18424.	1.7	47
12	Metal Contacts on Physical Vapor Deposited Monolayer MoS ₂ . ACS Nano, 2013, 7, 11350-11357.	7.3	275
13	Room temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates. Scientific Reports, 2013, 3, 2697.	1.6	26
14	Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013, 5, 9677.	2.8	724
15	Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013, 5, 9562.	2.8	123
16	Highâ€Performance Sensors Based on Molybdenum Disulfide Thin Films. Advanced Materials, 2013, 25, 6699-6702.	11.1	435
17	Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"></mml:math></mml:math></mml:math>2</mml:math><td>1.1</td><td>495</td></mml:math>	1.1	495
18	CTAB-assisted synthesis of single-layer MoS ₂ –graphene composites as anode materials of Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2202-2210.	5.2	410

#	Article	IF	CITATIONS
19	Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale, 2013, 5, 3387.	2.8	231
20	Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2. Optics Express, 2013, 21, 4908.	1.7	1,241
21	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	6.6	655
22	Raman spectroscopy of shear and layer breathing modes in multilayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	1.1	404
23	Highâ€Concentration Aqueous Dispersions of MoS ₂ . Advanced Functional Materials, 2013, 23, 3577-3583.	7.8	271
24	Facile synthesis of MoS2 nanosheet-silver nanoparticles composite for surface enhanced Raman scattering and electrochemical activity. Journal of Alloys and Compounds, 2013, 559, 87-91.	2.8	107
25	Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe ₂ Field Effect Transistors. Nano Letters, 2013, 13, 1983-1990.	4.5	833
26	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
27	Layer-by-Layer Thinning of MoS ₂ by Plasma. ACS Nano, 2013, 7, 4202-4209.	7.3	387
28	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
29	Two-dimensional semiconductors: recent progress and future perspectives. Journal of Materials Chemistry C, 2013, 1, 2952.	2.7	317
30	Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2013, 117, 9042-9047.	1.5	602
31	Identifying the mechanisms of p-to-n conversion in unipolar graphene field-effect transistors. Nanotechnology, 2013, 24, 195202.	1.3	8
32	<i>In Situ</i> Deposition and Characterization of MoS ₂ Nanolayers on Carbon Nanofibers and Nanotubes. Journal of Physical Chemistry C, 2013, 117, 10135-10142.	1.5	35
33	Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS ₂ under Uniaxial Strain. Small, 2013, 9, 2857-2861.	5.2	363
34	Grapheneâ€Like MoS ₂ /Graphene Composites: Cationic Surfactantâ€Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, 2013, 9, 3693-3703.	5.2	322
35	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	1.6	380
36	Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal diselenides. Scientific Reports, 2013, 3, 1549.	1.6	437

#	Article	IF	CITATIONS
37	Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013, 3, 1866.	1.6	753
38	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	1.6	1,185
39	Electricâ€Field Screening in Atomically Thin Layers of MoS ₂ : the Role of Interlayer Coupling. Advanced Materials, 2013, 25, 899-903.	11.1	143
40	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	7.3	534
41	Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 88, .</mml:math 	1.1	204
42	NEM relays using 2-dimensional nanomaterials for low energy contacts. , 2013, , .		2
43	Exciton dynamics in atomically thin MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>: Interexcitonic interaction and broadening kinetics. Physical Review B, 2013, 88, .</mml:math 	1.1	173
44	Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2. Scientific Reports, 2013, 3, 2593.	1.6	120
46	Charge Dynamics and Electronic Structures of Monolayer MoS ₂ Films Grown by Chemical Vapor Deposition. Applied Physics Express, 2013, 6, 125801.	1.1	73
47	Gate-controlled Schottky barrier modulation for superior photoresponse of MoS <inf>2</inf> field effect transistor. , 2013, , .		2
48	Effect of contaminations and surface preparation on the work function of single layer MoS ₂ . Beilstein Journal of Nanotechnology, 2014, 5, 291-297.	1.5	79
49	Passively Q-switched Nd:YAlO_3 nanosecond laser using MoS_2 as saturable absorber. Optics Express, 2014, 22, 28934.	1.7	123
50	Chemical Solution Based MoS2 Thin Film Deposition Based on Dimensional Reduction. Materials Research Society Symposia Proceedings, 2014, 1675, 215-218.	0.1	1
51	Resonant Raman scattering in MoS 2 —From bulk to monolayer. Solid State Communications, 2014, 197, 53-56.	0.9	108
52	Microfiber-based few-layer MoS_2 saturable absorber for 25 GHz passively harmonic mode-locked fiber laser. Optics Express, 2014, 22, 22841.	1.7	163
53	Excitons in a mirror: Formation of "optical bilayers―using MoS2 monolayers on gold substrates. Applied Physics Letters, 2014, 104, .	1.5	31
54	Composition dependent lattice dynamics in MoS <i>x</i> Se(2– <i>x</i>) alloys. Journal of Applied Physics, 2014, 116, .	1.1	35
55	Ultravioletâ€Lightâ€Induced Reversible and Stable Carrier Modulation in MoS ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 7125-7132.	7.8	30

#	Article	IF	CITATIONS
56	Femtosecond pulse erbium-doped fiber laser by a few-layer MoS_2 saturable absorber. Optics Letters, 2014, 39, 4591.	1.7	356
57	Second-order resonant Raman scattering in single-layer tungsten disulfide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">WS<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B. 2014. 89</mml:math 	1.1	65
58	Angle of incidence averaging in reflectance measurements with optical microscopes for studying layered two-dimensional materials. Review of Scientific Instruments, 2014, 85, 073105.	0.6	13
59	Synthesis of MoS2 nano-petal forest supported on carbon nanotubes for enhanced field emission performance. Journal of Applied Physics, 2014, 116, 114305.	1.1	14
60	Photoresponse properties of large-area MoS2 atomic layer synthesized by vapor phase deposition. Journal of Applied Physics, 2014, 116, .	1.1	42
61	Highly Uniform Trilayer Molybdenum Disulfide for Waferâ€Scale Device Fabrication. Advanced Functional Materials, 2014, 24, 6389-6400.	7.8	99
62	Molybdenum disulfide (MoS_2) as a broadband saturable absorber for ultra-fast photonics. Optics Express, 2014, 22, 7249.	1.7	1,008
63	Domain engineering of physical vapor deposited two-dimensional materials. Applied Physics Letters, 2014, 105, .	1.5	13
64	Investigation of the optical properties of MoS ₂ thin films using spectroscopic ellipsometry. Applied Physics Letters, 2014, 104, 103114.	1.5	255
65	Mechanical Properties and Electric Field Screening of Atomically Thin MoS2 Crystals. Lecture Notes in Nanoscale Science and Technology, 2014, , 129-153.	0.4	0
66	Edge-exposed MoS ₂ nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 2014, 6, 2131-2136.	2.8	260
67	Resonance Raman scattering in bulk 2H-MX ₂ (M = Mo, W; X = S, Se) and monolay MoS ₂ . Journal of Applied Physics, 2014, 115, 053527.	ver 1.1	92
68	An electrochemical route to MoS2 nanosheets for device applications. Materials Letters, 2014, 121, 31-35.	1.3	49
69	First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale, 2014, 6, 5394.	2.8	348
70	Vapor Phase Growth and Imaging Stacking Order of Bilayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2014, 118, 9203-9208.	1.5	47
71	Few-Layer MoS ₂ : A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099.	7.3	1,181
72	Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Advances, 2014, 4, 14115-14127.	1.7	101
73	Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Applied Surface Science, 2014, 297, 139-146.	3.1	144

#	Article	IF	CITATIONS
74	Petaled Molybdenum Disulfide Surfaces: Facile Synthesis of a Superior Cathode for QDSSCs. Advanced Energy Materials, 2014, 4, 1400495.	10.2	32
75	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	7.3	694
76	Pre-lithiation of onion-like carbon/MoS ₂ nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.	2.8	93
77	Synthesis of MoS2-carbon composites with different morphologies and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 9638-9650.	3.8	53
78	Functionalized MoS ₂ Nanosheetâ€Based Fieldâ€Effect Biosensor for Labelâ€Free Sensitive Detection of Cancer Marker Proteins in Solution. Small, 2014, 10, 1101-1105.	5.2	254
79	Two-Dimensional Nanosheets and Layered Hybrids of MoS ₂ and WS ₂ through Exfoliation of Ammoniated MS ₂ (M = Mo,W). Journal of Physical Chemistry C, 2014, 118, 1386-1396.	1.5	218
80	In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell. Journal of Materials Chemistry A, 2014, 2, 2742.	5.2	184
81	Electrical and optical characterization of atomically thin WS2. Dalton Transactions, 2014, 43, 10388.	1.6	52
82	A binder-free CNT network–MoS ₂ composite as a high performance anode material in lithium ion batteries. Chemical Communications, 2014, 50, 3338-3340.	2.2	111
83	Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 1102-1120.	7.3	2,307
84	Lattice vibrational modes and phonon thermal conductivity of monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2014, 89, .</mml:math 	1.1	387
85	Dependence of coupling of quasi 2-D MoS ₂ with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale, 2014, 6, 4920-4927.	2.8	104
86	Mode-locking of Er-doped fiber laser using a multilayer MoS_2 thin film as a saturable absorber in both anomalous and normal dispersion regimes. Optics Express, 2014, 22, 23732.	1.7	142
87	Growth of Large-Scale and Thickness-Modulated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2014, 6, 21215-21222.	4.0	140
88	Photocurrent Response of MoS ₂ Field-Effect Transistor by Deep Ultraviolet Light in Atmospheric and N ₂ Gas Environments. ACS Applied Materials & Interfaces, 2014, 6, 21645-21651.	4.0	44
89	Multiphonon resonant Raman scattering in MoS ₂ . Applied Physics Letters, 2014, 104, 092106.	1.5	118
90	Metal Seed Layer Thickness-Induced Transition From Vertical to Horizontal Growth of MoS ₂ and WS ₂ . Nano Letters, 2014, 14, 6842-6849.	4.5	251
91	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physical Review B, 2014, 90, .	1.1	106

#	Article	IF	CITATIONS
92	1-, 1.5-, and 2-μm Fiber Lasers Q-Switched by a Broadband Few-Layer MoS ₂ Saturable Absorber. Journal of Lightwave Technology, 2014, 32, 4679-4686.	2.7	318
93	Novel micro-rings of molybdenum disulfide (MoS2). Nanoscale, 2014, 6, 14652-14656.	2.8	21
94	Confocal absorption spectral imaging of MoS ₂ : optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS ₂ . Nanoscale, 2014, 6, 13028-13035.	2.8	319
95	A graphene-like MoS ₂ /graphene nanocomposite as a highperformance anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 13109-13115.	5.2	238
96	Raman Modes of MoS ₂ Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano, 2014, 8, 9914-9924.	7.3	201
97	Photoluminescence Quenching in Single-Layer MoS ₂ via Oxygen Plasma Treatment. Journal of Physical Chemistry C, 2014, 118, 21258-21263.	1.5	228
98	Plasma Modified MoS ₂ Nanoflakes for Surface Enhanced Raman Scattering. Small, 2014, 10, 1090-1095.	5.2	129
99	MoS ₂ nanoparticles and h-BN nanosheets from direct exfoliation of bulk powder: one-step synthesis method. Materials Research Express, 2014, 1, 035038.	0.8	17
100	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	2.8	64
101	Spray pyrolysis of CZTS nanoplatelets. Chemical Communications, 2014, 50, 11366-11369.	2.2	8
102	Composition-dependent Raman modes of Mo _{1â^'x} W _x S ₂ monolayer alloys. Nanoscale, 2014, 6, 2833-2839.	2.8	142
103	Spectroscopic Signatures for Interlayer Coupling in MoS ₂ –WSe ₂ van der Waals Stacking. ACS Nano, 2014, 8, 9649-9656.	7.3	288
104	Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale, 2014, 6, 2821.	2.8	166
105	High-performance hydrogen evolution electrocatalysis by layer-controlled MoS ₂ nanosheets. RSC Advances, 2014, 4, 34733-34738.	1.7	58
106	Plasma assisted synthesis of WS2 for gas sensing applications. Chemical Physics Letters, 2014, 615, 6-10.	1.2	150
107	Extraordinary attributes of 2-dimensional MoS2 nanosheets. Chemical Physics Letters, 2014, 609, 172-183.	1.2	141
108	Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS 2 /graphene hybrid with enhanced lithium storage performance. Nano Energy, 2014, 10, 144-152.	8.2	113
109	Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS ₂ on Metal Substrates. ACS Applied Materials & Interfaces, 2014, 6, 15966-15971.	4.0	74

#	Article	IF	CITATIONS
110	Electrical Characteristics of Multilayer MoS ₂ FET's with MoS ₂ /Graphene Heterojunction Contacts. Nano Letters, 2014, 14, 4511-4516.	4.5	169
111	Development of a novel method to grow mono-/few-layered MoS ₂ films and MoS ₂ –graphene hybrid films for supercapacitor applications. CrystEngComm, 2014, 16, 10845-10855.	1.3	118
112	Synthesis, characterization, and electronic structure of few-layer MoSe ₂ granular films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2671-2676.	0.8	13
113	Study on the Resistance Distribution at the Contact between Molybdenum Disulfide and Metals. ACS Nano, 2014, 8, 7771-7779.	7.3	80
114	Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nature Nanotechnology, 2014, 9, 611-617.	15.6	374
115	Monolayer MoS ₂ Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317-8322.	7.3	1,081
116	Atomic Layer Deposition of a High- <i>k</i> Dielectric on MoS ₂ Using Trimethylaluminum and Ozone. ACS Applied Materials & Interfaces, 2014, 6, 11834-11838.	4.0	105
117	Controlled Incorporation of Ni(OH) ₂ Nanoplates Into Flowerlike MoS ₂ Nanosheets for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2014, 24, 6700-6707.	7.8	145
118	Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS ₂ , WS ₂ , and Their Bilayer Heterostructures. Nano Letters, 2014, 14, 5097-5103.	4.5	512
119	Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 2014, 5, 4576.	5.8	432
120	Pulsed laser fabricated few-layer MoS 2 on silver. Chemical Physics Letters, 2014, 610-611, 284-287.	1.2	24
121	Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Research, 2014, 7, 973-980.	5.8	41
122	Highly porous Ag-Ag 2 S/MoS 2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochimica Acta, 2014, 142, 173-181.	2.6	52
123	Atomic layer deposition of a MoS ₂ film. Nanoscale, 2014, 6, 10584-10588.	2.8	335
124	Mechanisms of Photoconductivity in Atomically Thin MoS ₂ . Nano Letters, 2014, 14, 6165-6170.	4.5	563
125	Strong Enhancement of Raman Scattering from a Bulk-Inactive Vibrational Mode in Few-Layer MoTe ₂ . ACS Nano, 2014, 8, 3895-3903.	7.3	275
126	Multiflake Thin Film Electronic Devices of Solution Processed 2D MoS ₂ Enabled by Sonopolymer Assisted Exfoliation and Surface Modification. Chemistry of Materials, 2014, 26, 5892-5899.	3.2	92
127	Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Technique. Nano Letters, 2014, 14, 4682-4686.	4.5	67

#	Article	IF	CITATIONS
128	Exciton Kinetics, Quantum Efficiency, and Efficiency Droop of Monolayer MoS ₂ Light-Emitting Devices. Nano Letters, 2014, 14, 4125-4130.	4.5	146
129	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	1.3	56
130	Antibacterial activity of two-dimensional MoS ₂ sheets. Nanoscale, 2014, 6, 10126-10133.	2.8	310
131	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
132	Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 2014, 6, 8359-8367.	2.8	248
133	Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale, 2014, 6, 8185.	2.8	48
134	Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104, .	1.5	178
135	Production of few-layer MoS ₂ nanosheets through exfoliation of liquid N ₂ –quenched bulk MoS ₂ . RSC Advances, 2014, 4, 15586-15589.	1.7	29
136	Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport. ACS Nano, 2014, 8, 7130-7137.	7.3	208
137	Graphene/MoS2 hybrid structure and its photoresponse property. Ceramics International, 2014, 40, 11971-11974.	2.3	16
138	Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochimica Acta, 2014, 132, 397-403.	2.6	241
139	Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage. Journal of Power Sources, 2014, 264, 262-271.	4.0	85
140	Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014, 264, 229-234.	4.0	271
141	MoS ₂ Quantum Dot-Interspersed Exfoliated MoS ₂ Nanosheets. ACS Nano, 2014, 8, 5297-5303.	7.3	630
142	Large-Area Atomically Thin MoS ₂ Nanosheets Prepared Using Electrochemical Exfoliation. ACS Nano, 2014, 8, 6902-6910.	7.3	400
143	Resonant Tunneling through Discrete Quantum States in Stacked Atomic-Layered MoS2. Nano Letters, 2014, 14, 2381-2386.	4.5	40
144	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	7.3	112
145	Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Materials Today, 2014, 17, 184-193.	8.3	143

#	Article	IF	CITATIONS
146	Preparation of ultrathin two-dimensional CaV4O9 nanosheets: A new inorganic graphene-like material. Materials Letters, 2014, 131, 222-224.	1.3	5
147	Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Materials Research Bulletin, 2014, 55, 221-228.	2.7	85
148	Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. Journal of Hazardous Materials, 2014, 276, 207-215.	6.5	170
149	Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Ultramicroscopy, 2014, 147, 8-20.	0.8	46
150	Determining the Thickness of Atomically Thin MoS2 and WS2 in the TEM. Microscopy and Microanalysis, 2014, 20, 1796-1797.	0.2	1
151	Evaluation of Sputtering Deposited 2-Dimensional MoS ₂ Film by Raman Spectroscopy. Materials Research Society Symposia Proceedings, 2015, 1781, 11-16.	0.1	12
152	Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method. Scientific Reports, 2015, 5, 13759.	1.6	6
153	Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Scientific Reports, 2015, 5, 15103.	1.6	110
154	Splitting of monolayer out-of-plane <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>A</mml:mi><mml:mrow><mm mode in few-layer<mml:math< td=""><td>l:mn>11.1</td><td>nml:mn></td></mml:math<></mm </mml:mrow></mml:msubsup></mml:math 	l:mn>11.1	nml:mn>
	xmins:mm= nctp://www.ws.org/1996/Matn/Matn/MatnML > <mm:msub>W5W5Z</mm:msub>	nn> <td>:msub></td>	:msub>
155	Physical Review B, 2015, 91, . Tuning Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801.	nn> <td>:msub>8</td>	:msub>8
155 156	 Aministrimite Articity www.wstorg/1998/Math/Math/Math/Math/Math/Math/Math/Math	nn>1.3 1.6	:msub>8 236
155 156 157	 Xministrimite Articli //WWW.W3.org/1998/Math/Math/Math/MithMite S Physical Review B, 2015, 91, . Tuning Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869. 	nn>1.3 1.6 1.6	:msub>8 236 140
155 156 157 158	 Xministrimi = http://www.wstorg/1998/Math/Math/Math/Math/Math/Math/Math/Math	nn>1.3 1.6 1.6 1.6	:msub>8 236 140 55
155 156 157 158	 Animistining in the physical Review B, 2015, 91, . Tuning Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors. Scientific Reports, 2015, 5, 18730. 	nn>1.3 1.6 1.6 1.6	:msub>8 236 140 55 105
155 156 157 158 159	 Animismine inttp://www.ws.org/1998/Math/MathWet >< Physical Review B, 2015, 91, . Tuning Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors. Scientific Reports, 2015, 5, 13743. Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730. Temperature coefficients of phonon frequencies and thermal conductivity in thin black phosphorus layers. Applied Physics Letters, 2015, 107, . 	nn>1.3 1.6 1.6 1.6 1.5	:msub>8 236 140 55 105 49
155 156 157 158 159 160	Xmmlermiter Tuning Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors. Scientific Reports, 2015, 5, 13743. Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730. Temperature coefficients of phonon frequencies and thermal conductivity in thin black phosphorus layers. Applied Physics Letters, 2015, 107, . Low wavenumber Raman spectroscopy of highly crystalline MoSe Vapor deposition. Physica Status Solidi (B): Basic Research, 2015, 25, 2385-2389.	nn>1.3 1.6 1.6 1.6 1.5 0.7	:msub>8 236 140 55 105 49 29
155 156 157 158 159 160 161	Xining Photoluminescence Performance of Monolayer MoS 2 via H 2 O 2 Aqueous Solution. Chinese Physics Letters, 2015, 32, 117801. Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015, 5, 14646. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants. Scientific Reports, 2015, 5, 12869. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors. Scientific Reports, 2015, 5, 12869. Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Scientific Reports, 2015, 5, 18730. Temperature coefficients of phonon frequencies and thermal conductivity in thin black phosphorus layers. Applied Physica Letters, 2015, 107, . Low wavenumber Raman spectroscopy of highly crystalline MoSe csub>2grown by chemical vapor deposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2385-2389. Multifunctional Architectures Constructing of PANI Nanoneedle Arrays on MoS ₂ Thin Nanosheets for HighãéEnergy Supercapacitors. Small, 2015, 11, 4123-4129.	nn>1.3 1.6 1.6 1.6 1.5 0.7 5.2	<pre>:msub></pre>

#	Article	IF	CITATIONS
164	Lateral Builtâ€In Potential of Monolayer MoS ₂ –WS ₂ Inâ€Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015, 27, 6431-6437.	11.1	191
165	Twoâ€Dimensional Transition Metal Dichalcogenides in Biosystems. Advanced Functional Materials, 2015, 25, 5086-5099.	7.8	306
166	Sulfur Atoms Bridging Fewâ€Layered MoS ₂ with Sâ€Doped Graphene Enable Highly Robust Anode for Lithiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501106.	10.2	165
167	Singleâ€Step Exfoliation and Covalent Functionalization of MoS ₂ Nanosheets by an Organosulfur Reaction. Chemistry - A European Journal, 2015, 21, 15583-15588.	1.7	31
168	Sizeâ€Dependent Optical Absorption of Layered MoS ₂ and DNA Oligonucleotides Induced Dispersion Behavior for Labelâ€Free Detection of Singleâ€Nucleotide Polymorphism. Advanced Functional Materials, 2015, 25, 3541-3550.	7.8	123
169	Charge Photogeneration in Few‣ayer MoS ₂ . Advanced Functional Materials, 2015, 25, 3351-3358.	7.8	76
170	2D MoS ₂ PDMS Nanocomposites for NO ₂ Separation. Small, 2015, 11, 5035-5040.	5.2	59
171	Giant twoâ€photon absorption in monolayer MoS ₂ . Laser and Photonics Reviews, 2015, 9, 427-434.	4.4	161
172	Enhancing the interlayer adhesive force in twisted multilayer MoS ₂ by thermal annealing treatment. Nanotechnology, 2015, 26, 405708.	1.3	21
173	Electronic Tuning of 2D MoS ₂ through Surface Functionalization. Advanced Materials, 2015, 27, 6225-6229.	11.1	194
174	Gateâ€Tunable Ultrahigh Photoresponsivity of 2D Heterostructures Based on Few Layer MoS ₂ and Solutionâ€Processed rGO. Advanced Electronic Materials, 2015, 1, 1500267.	2.6	28
175	Synthesis of Al ontaining Spherical Mesocellular Silica Foams with Different Pore Sizes and Their Applications as Catalyst Supports for Hydrodesulfurization of Dibenzothiophene. ChemCatChem, 2015, 7, 1948-1960.	1.8	14
176	Highâ€Performance Platinumâ€Free Dyeâ€5ensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes. ChemPhysChem, 2015, 16, 3959-3965.	1.0	27
177	Fabrication of TiO ₂ /MoS ₂ Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light. Canadian Journal of Chemical Engineering, 2015, 93, 1594-1602.	0.9	79
178	Metal Nanoparticle-Decorated Two-Dimensional Molybdenum Sulfide for Plasmonic-Enhanced Polymer Photovoltaic Devices. Materials, 2015, 8, 5414-5425.	1.3	24
179	Firework-shaped TiO ₂ microspheres embedded with few-layer MoS ₂ as an anode material for excellent performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6392-6401.	5.2	104
180	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.	1.6	28
181	Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 14113-14122.	4.0	295

#	Article	IF	CITATIONS
182	Three-Dimensional Crumpled Reduced Graphene Oxide/MoS ₂ Nanoflowers: A Stable Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 12625-12630.	4.0	183
183	MoS2 supported on P25 titania: A model system for the activation of a HDS catalyst. Journal of Catalysis, 2015, 328, 225-235.	3.1	33
184	Effect of hydrogen on the growth of MoS2 thin layers by thermal decomposition method. Vacuum, 2015, 119, 204-208.	1.6	30
185	Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Research, 2015, 8, 1522-1534.	5.8	256
186	Influences of carrier gas flow rate on the morphologies of MoS2 flakes. Chemical Physics Letters, 2015, 631-632, 30-33.	1.2	32
187	Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Applied Physics Letters, 2015, 106, .	1.5	201
188	Magneto-optical properties of ABC-stacked trilayer graphene. Physical Chemistry Chemical Physics, 2015, 17, 15921-15927.	1.3	13
189	Raman scattering studies of the lattice dynamics in layered MoS2. Journal of the Korean Physical Society, 2015, 66, 1575-1580.	0.3	13
190	Femtosecond spectroscopy on MoS2flakes from liquid exfoliation: surfactant independent exciton dynamics. Journal of Nanophotonics, 2015, 10, 012508.	0.4	5
191	Infrared light gated MoS_2 field effect transistor. Optics Express, 2015, 23, 31908.	1.7	18
192	Vibrational and optical properties of MoS2: From monolayer to bulk. Surface Science Reports, 2015, 70, 554-586.	3.8	178
193	Electrically Tunable Bandgaps in Bilayer MoS ₂ . Nano Letters, 2015, 15, 8000-8007.	4.5	161
194	Constructing Highly Oriented Configuration by Few-Layer MoS ₂ : Toward High-Performance Lithium-Ion Batteries and Hydrogen Evolution Reactions. ACS Nano, 2015, 9, 12464-12472.	7.3	259
195	Optoelectric properties of gate-tunable MoS2/WSe2 heterojunction. , 2015, , .		0
196	Effects of substrates on the nonlinear optical responses of two-dimensional materials. Optics Express, 2015, 23, 31817.	1.7	16
196 197	Effects of substrates on the nonlinear optical responses of two-dimensional materials. Optics Express, 2015, 23, 31817. Spotting 2D atomic layers on aluminum nitride thin films. Nanotechnology, 2015, 26, 425202.	1.7 1.3	16 7
196 197 198	Effects of substrates on the nonlinear optical responses of two-dimensional materials. Optics Express, 2015, 23, 31817. Spotting 2D atomic layers on aluminum nitride thin films. Nanotechnology, 2015, 26, 425202. Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. Journal of Power Sources, 2015, 300, 358-364.	1.7 1.3 4.0	16 7 36

ARTICLE IF CITATIONS # Plasmon Resonances of Highly Doped Two-Dimensional MoS₂. Nano Letters, 2015, 15, 200 4.5 167 883-890. Anomalous excitonic resonance Raman effects in few-layered MoS₂. Nanoscale, 2015, 7, 2.8 129 3229-3236. Electronic, magnetic, optical, and edge-reactivity properties of semiconducting and metallic WS 2 202 2.0 24 nanoribbons. 2D Materials, 2015, 2, 015002. Highly crystalline MoS2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2015, 106, Structural and optical properties of MoS2 layers grown by successive two-step chemical vapor 204 0.8 16 deposition method. Thin Solid Films, 2015, 587, 47-51. Improved high temperature integration of Al2O3 on MoS2 by using a metal oxide buffer layer. Applied 1.5 Physics Letters, 2015, 106, . Supramolecule-mediated synthesis of MoS₂/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 6884-6893. 206 5.2 95 Thin Films of Molybdenum Disulfide Doped with Chromium by Aerosol-Assisted Chemical Vapor 3.2 78 Deposition (AACVD). Chemistry of Materials, 2015, 27, 1367-1374. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 208 domains supported on mesoporous activated carbon and mixed MgAl oxide. Journal of Catalysis, 2015, 3.1 80 324, 88-97. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. 209 5.8 259 Nature Communications, 2015, 6, 6128. Controlled Doping of Largeâ€Area Trilayer MoS₂ with Molecular Reductants and Oxidants. 210 11.1 183 Advanced Materials, 2015, 27, 1175-1181. Large-area synthesis of monolayer WSe₂ on a SiO₂/Si substrate and its device 211 2.8 128 applications. Nanoscale, 2015, 7, 4193-4198. Cu/MoS₂/ITO based hybrid structure for catalysis of hydrazine oxidation. RSC Advances, 212 1.7 11 2015, 5, 15374-15378. Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by 2.6 Oxygen Chemisorption. Advanced Electronic Materials, 2015, 1, 1400037. Molybdenum disulfide-based amplified fluorescence DNA detection using hybridization chain 214 2.9 87 reactions. Journal of Materials Chemistry B, 2015, 3, 2395-2401. Photothermoelectric and photovoltaic effects both present in MoS2. Scientific Reports, 2015, 5, 7938. Synthesis of Few‣ayer MoS₂â€"Graphene Composites with Superior Electrochemical 216 Lithiumâ€Storage Performance by an Ionicâ€Liquidâ€Mediated Hydrothermal Route. ChemElectroChem, 2015, 1.7 36 2,538-546. Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 288 7495-7514.

ARTICLE IF CITATIONS Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible 218 1.5 104 electronic devices. Applied Physics Letters, 2015, 106, . MoS₂ nanoflowers consisting of nanosheets with a controllable interlayer distance as 1.7 109 high-performance lithium ion battery anodes. RSC Advances, 2015, 5, 7938-7943. Large-Scale Production of Size-Controlled MoS₂ Nanosheets by Shear Exfoliation. 220 3.2 389 Chemistry of Materials, 2015, 27, 1129-1139. Lighten the Olympia of the Flatland: Probing and Manipulating the Photonic Properties of 2D Transitionâ€Metal Dichalcogenides. Small, 2015, 11, 3206-3220. Helicity-Resolved Raman Scattering of MoS₂, MoSe₂, WS₂, and 222 4.5 241 WSe₂ Atomic Layers. Nano Letters, 2015, 15, 2526-2532. Self-Induced Uniaxial Strain in MoS₂ Monolayers with Local van der Waals-Stacked Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710. 7.3 Microfiber-based WS_2-film saturable absorber for ultra-fast photonics. Optical Materials Express, 224 1.6 199 2015, 5, 479. Structural, optical and electrostatic properties of single and few-layers MoS ₂: effect of 2.0 80 substrate. 2D Materials, 2015, 2, 015005. Functionalization of Transition Metal Dichalcogenides with Metallic Nanoparticles: Implications for 226 4.5 329 Doping and Gas-Sensing. Nano Letters, 2015, 15, 2852-2862. Resonant Raman Scattering in MoS2. Materials Research Society Symposia Proceedings, 2015, 1726, 7. 0.1 Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and 228 5.2 103 lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17553-17557. Optoelectrical Molybdenum Disulfide (MoS₂)â€"Ferroelectric Memories. ACS Nano, 2015, 9, 229 193 8089-8098. Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation. Journal 230 0.3 3 of the Korean Physical Society, 2015, 66, 1852-1855. Horizontal growth of MoS₂ nanowires by chemical vapour deposition. RSC Advances. 1.7 2015, 5, 68283-68286. Morphology engineering of monolayer MoS 2 by adjusting chemical environment during growth. 232 10 1.3 Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 292-296. MoS₂ architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 17534-17543. A methodology for Raman characterisation of MoDTC tribofilms and its application in investigating 234 the influence of surface chemistry on friction performance of MoDTC lubricants. Tribology Letters, 1.2 59 2015, 59, 1. On Valence-Band Splitting in Layered MoS₂. ACS Nano, 2015, 9, 8514-8519.

#	Article	IF	CITATIONS
236	Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. ACS Nano, 2015, 9, 8822-8832.	7.3	132
237	Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS ₂ thin film. Nanoscale, 2015, 7, 14476-14482.	2.8	114
238	Direct Observation of Degenerate Two-Photon Absorption and Its Saturation in WS ₂ and MoS ₂ Monolayer and Few-Layer Films. ACS Nano, 2015, 9, 7142-7150.	7.3	322
239	Exfoliated semiconducting pure 2H-MoS ₂ and 2H-WS ₂ assisted by chlorosulfonic acid. Chemical Communications, 2015, 51, 12950-12953.	2.2	127
240	Facile one-step hydrothermal preparation ofÂmolybdenum disulfide/carbon composite forÂuseÂinÂsupercapacitor. International Journal of Hydrogen Energy, 2015, 40, 10150-10157.	3.8	179
241	Highly Sensitive Wide Bandwidth Photodetector Based on Internal Photoemission in CVD Grown p-Type MoS ₂ /Graphene Schottky Junction. ACS Applied Materials & Interfaces, 2015, 7, 15206-15213.	4.0	98
242	Enhanced second harmonic generation of MoS ₂ layers on a thin gold film. Nanoscale, 2015, 7, 13547-13553.	2.8	44
243	One-step hydrothermal synthesis of few-layered and edge-abundant MoS2/C nanocomposites with enhanced electrocatalytic performance for hydrogen evolution reaction. Advanced Powder Technology, 2015, 26, 1273-1280.	2.0	10
244	One-pot solution-phase preparation of a MoS2/graphene oxide hybrid. Carbon, 2015, 94, 568-576.	5.4	40
245	Symmetry-Dependent Exciton-Phonon Coupling in 2D and Bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m by Resonance Raman Scattering, Physical Review Letters, 2015, 114, 136403.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	mi:mn>2<	/mml:mn> </td
246	Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment. Thin Solid Films, 2015, 590, 318-323.	0.8	26
247	Fabrication of MoS ₂ thin film transistors via selective-area solution deposition methods. Journal of Materials Chemistry C, 2015, 3, 3842-3847.	2.7	43
248	Nanopatterning and Electrical Tuning of MoS ₂ Layers with a Subnanometer Helium Ion Beam. Nano Letters, 2015, 15, 5307-5313.	4.5	171
249	Friction and wear reductions under slip-rolling contact through chemically reactive tribofilm generation during pre-conditioning of steel alloys. Wear, 2015, 338-339, 133-143.	1.5	10
250	Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 2015, 4, e312-e312.	7.7	276
251	Characterization of MoS ₂ –Graphene Composites for High-Performance Coin Cell Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 17388-17398.	4.0	388
252	Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nature Communications, 2015, 6, 7817.	5.8	188
253	Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Scientific Reports, 2015, 5, 11830.	1.6	155

#	Article	IF	Citations
254	Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. Nano Letters, 2015, 15, 4329-4336.	4.5	167
255	Highly efficient hydrogen evolution catalysis by MoS2–MoN/carbonitride composites derived from tetrathiomolybdate/polymer hybrids. Chemical Engineering Science, 2015, 134, 572-580.	1.9	33
256	Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nature Communications, 2015, 6, 7381.	5.8	331
257	Anomalous lattice vibrations of monolayer MoS ₂ probed by ultraviolet Raman scattering. Physical Chemistry Chemical Physics, 2015, 17, 14561-14568.	1.3	36
258	A comprehensive multiphonon spectral analysis in MoS ₂ . 2D Materials, 2015, 2, 035003.	2.0	74
259	MoS ₂ Nanosheet–Pd Nanoparticle Composite for Highly Sensitive Room Temperature Detection of Hydrogen. Advanced Science, 2015, 2, 1500004.	5.6	123
260	Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbon-free anode for lithium-ion batteries. Journal of Power Sources, 2015, 288, 76-81.	4.0	59
261	Synthesis of Atomically Thin Transition Metal Disulfides for Charge Transport Layers in Optoelectronic Devices. ACS Nano, 2015, 9, 4146-4155.	7.3	94
262	High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520, 656-660.	13.7	1,562
263	Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Nanoscale, 2015, 7, 9919-9926.	2.8	79
264	High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide. Journal of Colloid and Interface Science, 2015, 451, 216-220.	5.0	24
265	Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochimica Acta, 2015, 167, 39-47.	2.6	55
266	Wafer-scale synthesis of thickness-controllable MoS ₂ films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system. Nanoscale, 2015, 7, 9311-9319.	2.8	82
267	One-step hydrothermal synthesis of monolayer MoS ₂ quantum dots for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 10693-10697.	5.2	320
268	Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS ₂ and ultra high-k gate dielectric PZT. Nanoscale, 2015, 7, 8695-8700.	2.8	121
269	Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics, 2015, 2, 288-307.	0.9	174
270	Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS ₂ . Journal of Materials Chemistry A, 2015, 3, 13050-13056.	5.2	140
271	Mode-Locked All-Fiber Lasers at Both Anomalous and Normal Dispersion Regimes Based on Spin-Coated <named-content content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="TeX">\$hbox{MoS}_{2}\$</tex-math </inline-formula></named-content> Nano-Sheets on a Side-Polished Fiber. IEEE Photonics Journal. 2015. 7, 1-9.	1.0	28

#	Article	IF	CITATIONS
272	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano, 2015, 9, 6018-6030.	7.3	293
273	k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Materials, 2015, 2, 022001.	2.0	676
274	Double resonance Raman modes in monolayer and few-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MoTe<mml:mn>2</mml:mn></mml:mi </mml:msub>. Physical Review B, 2015, 91, .</mml:math 	1.1	99
275	Plasma-engineered MoS ₂ thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2015, 51, 7470-7473.	2.2	263
276	Raman scattering studies of Cu2ZnSnS4 thin films: Local distribution of the secondary phase Cu2â^'x S and the effect of KCN etching on Cu2â^'x S. Journal of the Korean Physical Society, 2015, 66, 117-122.	0.3	16
277	A predictive approach to CVD of crystalline layers of TMDs: the case of MoS ₂ . Nanoscale, 2015, 7, 7802-7810.	2.8	117
278	Few-layer MoS_2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]. Photonics Research, 2015, 3, A30.	3.4	185
279	Friction and wear performance of MoDTCâ€containing and esterâ€containing lubricants over steel surfaces under reciprocating conditions. Lubrication Science, 2015, 27, 217-229.	0.9	15
280	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 4080-4088.	4.5	182
281	Mode-locked thulium fiber laser with MoS ₂ . Laser Physics Letters, 2015, 12, 065104.	0.6	123
282	The Influence of Water on the Optical Properties of Single‣ayer Molybdenum Disulfide. Advanced Materials, 2015, 27, 2734-2740.	11.1	44
283	Synthesis and Transfer of Large-Area Monolayer WS ₂ Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano, 2015, 9, 6178-6187.	7.3	200
284	MoS ₂ Nanoparticles Decorating Titanate-Nanotube Surfaces: Combined Microscopy, Spectroscopy, and Catalytic Studies. Langmuir, 2015, 31, 5469-5478.	1.6	55
285	Anisotropic Electron–Phonon Coupling in Colloidal Layered TiS ₂ Nanodiscs Observed via Coherent Acoustic Phonons. Journal of Physical Chemistry C, 2015, 119, 7436-7442.	1.5	11
286	Ultrathin MoS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Alloy Nanoflakes For Electrocatalytic Hydrogen Evolution Reaction. ACS Catalysis, 2015, 5, 2213-2219.	5.5	473
287	2H → 1T phase transition and hydrogen evolution activity of MoS ₂ , MoSe ₂ , WS ₂ and WSe ₂ strongly depends on the MX ₂ composition. Chemical Communications, 2015, 51, 8450-8453.	2.2	565
288	Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015, 73, 44-126.	16.0	1,152
289	Transition Metal Dichalcogenide Growth via Close Proximity Precursor Supply. Scientific Reports, 2014, 4, 7374.	1.6	72

ARTICLE IF CITATIONS # Tuning the Electrical Transport Properties of Multilayered Molybdenum Disulfide Nanosheets by 290 1.5 40 Intercalating Phosphorus. Journal of Physical Chemistry C, 2015, 119, 9560-9567. Investigation of 2D transition metal dichalcogenide films for electronic devices., 2015,,. Growth of large-area atomically thin MoS_2 film via ambient pressure chemical vapor deposition. 292 3.4 17 Photonics Research, 2015, 3, 110. Nanosecond-pulsed, dual-wavelength, passively Q-switched ytterbium-doped bulk laser based on few-layer MoS_2 saturable absorber. Photonics Research, 2015, 3, A25. Nitrogen-doped carbon-coated molybdenum disulfide nanosheets for high-performance 294 2.1 19 supercapacitor. Synthetic Metals, 2015, 209, 528-533. Atomic layer deposition on 2D transition metal chalcogenides: layer dependent reactivity and seeding with organic ad-layers. Chemical Communications, 2015, 51, 16553-16556. 2.2 39 Formation of p-type CuInS₂ absorber layers via sulfurization of co-electrodeposited 296 1.7 5 Cu–In precursors. RSC Advances, 2015, 5, 81642-81649. Monolayer-by-monolayer stacked pyramid-like MoS₂nanodots on monolayered 207 2.8 MoS₂flakes with enhanced photoluminescence. Nanoscale, 2015, 7, 17468-17472. Catalytic Activity in Lithium-Treated Coreâ€"Shell MoO<sub><i>x</i>>/MoS₂ 298 30 1.5 Nanowires. Journal of Physical Chemistry C, 2015, 119, 22908-22914. Unified Description of the Optical Phonon Modes in <i>N</i>-Layer MoTe₂. Nano Letters, 299 4.5 122 2015, 15, 6481-6489. Few-layer MoS_2 grown by chemical vapor deposition as a passive Q-switcher for tunable 300 3.4 48 erbium-doped fiber lasers. Photonics Research, 2015, 3, A92. Fast One-Pot Synthesis of MoS₂/Crumpled Graphene p–n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production. ACS Applied Materials & amp; Interfaces, 2015, 7, 4.0 25685-25692. Two dimensional atomically thin MoS₂nanosheets and their sensing applications. 302 2.8 217 Nanoscale, 2015, 7, 19358-19376. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Research, 2015, 8, 5.8 159 3651-3661. Emerging energy applications of two-dimensionalÂlayered transition metal dichalcogenides. Nano Energy, 2015, 18, 293-305. 304 8.2 236 Kitchenâ€Inspired Nanochemistry: Dispersion, Exfoliation, and Hybridization of Functional MoS₂ Nanosheets Úsing Culinary Hydrocolloids. ChemNanoMat, 2015, 1, 167-177. Effect of precursor on growth and morphology of MoS2 monolayer and multilayer. Journal of 306 1.9 47 Physics and Chemistry of Solids, 2015, 87, 32-37. Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS₂ and WS₂. Journal of the American Chemical Society, 2015, 137, 6.6 14281-14287.

#	Article	IF	CITATIONS
308	Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine, 2015, 10, 1693-1706.	1.7	22
309	Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS ₂ : vibrational properties of atomically thin MoS ₂ layers. 2D Materials, 2015, 2, 035006.	2.0	97
310	Electrical and Optical Characterization of MoS ₂ with Sulfur Vacancy Passivation by Treatment with Alkanethiol Molecules. ACS Nano, 2015, 9, 8044-8053.	7.3	185
311	Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. Journal of Power Sources, 2015, 296, 392-399.	4.0	90
312	Nanoscale Mapping of Layer-Dependent Surface Potential and Junction Properties of CVD-Grown MoS ₂ Domains. Journal of Physical Chemistry C, 2015, 119, 20136-20142.	1.5	54
313	Engineering Vertical Aligned MoS 2 on Graphene Sheet Towards Thin Film Lithium Ion Battery. Electrochimica Acta, 2015, 178, 476-483.	2.6	50
314	Raman scattering of single crystal Cu2MoS4 nanosheet. AIP Advances, 2015, 5, 037141.	0.6	25
315	Functional Nanomaterial Devices. , 2015, , 155-193.		0
316	Morphology evolution of MoS2 nanorods grown by chemical vapor deposition. Journal of Crystal Growth, 2015, 430, 1-6.	0.7	17
317	Q-switched fiber laser based on transition metal dichalcogenides MoS_2, MoSe_2, WS_2, and WSe_2. Optics Express, 2015, 23, 26723.	1.7	446
318	Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. Journal of Alloys and Compounds, 2015, 653, 369-378.	2.8	20
319	Tunable GaTe-MoS ₂ van der Waals p–n Junctions with Novel Optoelectronic Performance. Nano Letters, 2015, 15, 7558-7566.	4.5	369
320	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	2.8	104
321	Vertical heterostructures of MoS ₂ and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors. Physical Chemistry Chemical Physics, 2015, 17, 25210-25215.	1.3	25
322	Layered structure of MoS2 investigated using electron energy loss spectroscopy. Materials Letters, 2015, 161, 96-99.	1.3	8
323	Nanoimprint-Assisted Shear Exfoliation (NASE) for Producing Multilayer MoS ₂ Structures as Field-Effect Transistor Channel Arrays. ACS Nano, 2015, 9, 8773-8785.	7.3	48
324	Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Applied Physics Letters, 2015, 106, .	1.5	167
325	High performance of MoS ₂ microflowers with a water-based binder as an anode for Na-ion batteries. RSC Advances, 2015, 5, 79845-79851.	1.7	39

#	Article	IF	CITATIONS
326	Nanostructured 2D MoS ₂ honeycomb and hierarchical 3D CdMoS ₄ marigold nanoflowers for hydrogen production under solar light. Journal of Materials Chemistry A, 2015, 3, 21233-21243.	5.2	41
327	Controlled Synthesis of High-Quality Monolayered α-In ₂ Se ₃ via Physical Vapor Deposition. Nano Letters, 2015, 15, 6400-6405.	4.5	239
328	Electronic Properties of MoS ₂ –WS ₂ Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015, 9, 9868-9876.	7.3	283
329	Two-step synthesis of luminescent MoS ₂ –ZnS hybrid quantum dots. Nanoscale, 2015, 7, 16763-16772.	2.8	54
330	Two-dimensional transition metal dichalcogenides: Clusters, ribbons, sheets and more. Nano Today, 2015, 10, 559-592.	6.2	107
331	Manganese Doping of Monolayer MoS ₂ : The Substrate Is Critical. Nano Letters, 2015, 15, 6586-6591.	4.5	357
332	Tailoring the electrical properties of multilayer MoS ₂ transistors using ultraviolet light irradiation. RSC Advances, 2015, 5, 77014-77018.	1.7	10
333	Mechanical Properties of Molybdenum Disulfide and the Effect of Doping: An in Situ TEM Study. ACS Applied Materials & Interfaces, 2015, 7, 20829-20834.	4.0	50
334	Co-Doped MoS ₂ Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 27242-27253.	4.0	422
335	Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS ₂ . Nano Letters, 2015, 15, 8289-8294.	4.5	67
336	Field emission properties of vertically aligned MoS <inf>2</inf> nanosheets. , 2015, , .		0
337	Sputtering and sulfurization-combined synthesis of a transparent WS ₂ counter electrode and its application to dye-sensitized solar cells. RSC Advances, 2015, 5, 103567-103572.	1.7	32
338	Theoretical and experimental investigation of vacancy-based doping of monolayer MoS ₂ on oxide. 2D Materials, 2015, 2, 045009.	2.0	47
339	Spectroscopic Signatures of AA′ and AB Stacking of Chemical Vapor Deposited Bilayer MoS ₂ . ACS Nano, 2015, 9, 12246-12254.	7.3	117
340	Direct Observation of Molybdenum Disulfide, MoS ₂ , Domains by Using a Liquid Crystalline Texture Method. Nano Letters, 2015, 15, 229-234.	4.5	30
341	HfSe ₂ Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy. ACS Nano, 2015, 9, 474-480.	7.3	195
342	Performance improvement of multilayer InSe transistors with optimized metal contacts. Physical Chemistry Chemical Physics, 2015, 17, 3653-3658.	1.3	110
343	Tunable Charge-Trap Memory Based on Few-Layer MoS ₂ . ACS Nano, 2015, 9, 612-619.	7.3	217

#	Article	IF	CITATIONS
344	Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide. Nano Letters, 2015, 15, 346-353.	4.5	284
345	Unravelling Orientation Distribution and Merging Behavior of Monolayer MoS ₂ Domains on Sapphire. Nano Letters, 2015, 15, 198-205.	4.5	136
346	Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition. RSC Advances, 2015, 5, 4364-4367.	1.7	31
347	Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS ₂ . Chemistry of Materials, 2015, 27, 53-59.	3.2	194
348	Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Research, 2015, 8, 1210-1221.	5.8	280
349	Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Scientific Reports, 2014, 4, 6346.	1.6	407
350	Passively <inline-formula> <tex-math notation="LaTeX">\$Q\$ </tex-math></inline-formula> -Switched Erbium-Doped Fiber Laser Based on Few-Layer MoS ₂ Saturable Absorber. IEEE Photonics Technology Letters, 2015, 27, 69-72.	1.3	106
351	Ultrathin sandwich-like MoS ₂ @N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale, 2015, 7, 324-329.	2.8	99
352	Deep-ultraviolet-light-driven reversible doping of WS ₂ field-effect transistors. Nanoscale, 2015, 7, 747-757.	2.8	62
353	Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS ₂ . Small, 2015, 11, 605-612.	5.2	250
354	Saturable optical absorption in MoS2 nano-sheet optically deposited on the optical fiber facet. Optics Communications, 2015, 335, 224-230.	1.0	38
355	Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber. Chinese Physics Letters, 2016, 33, 074208.	1.3	10
356	Properties of single-layer MoS ₂ film fabricated by combination of sputtering deposition and post deposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55, 06GF01.	0.8	16
357	Growing and Etching MoS2 on Carbon Nanotube Film for Enhanced Electrochemical Performance. Molecules, 2016, 21, 1318.	1.7	8
358	Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Applied Sciences (Switzerland), 2016, 6, 264.	1.3	74
359	Improving crystalline quality of sputtering-deposited MoS ₂ thin film by postdeposition sulfurization annealing using (t-C ₄ H ₉) ₂ S ₂ . Japanese Journal of Applied Physics, 2016, 55, 04EJ07.	0.8	26
360	The Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2. Crystals, 2016, 6, 115.	1.0	18
361	E'' Raman Mode in Thermal Strain-Fractured CVD-MoS2. Crystals, 2016, 6, 151.	1.0	17

#	Article	IF	CITATIONS
362	Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level. PLoS ONE, 2016, 11, e0167245.	1.1	42
363	Dependence of Raman and absorption spectra of stacked bilayer MoS_2 on the stacking orientation. Optics Express, 2016, 24, 21551.	1.7	18
364	Controlled-layer and large-area MoS_2 films encapsulated Au nanoparticle hybrids for SERS. Optics Express, 2016, 24, 26097.	1.7	36
365	Mechanochemical Exfoliation of 2D Crystals in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2016, 4, 4465-4472.	3.2	52
366	2D molybdenum disulphide (2D-MoS ₂) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 2016, 8, 14767-14777.	2.8	83
367	Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots. Nanoscale, 2016, 8, 15152-15157.	2.8	38
368	Fractureâ€induced nanoscrolls from CVDâ€grown monolayer molybdenum disulfide. Physica Status Solidi - Rapid Research Letters, 2016, 10, 549-553.	1.2	14
369	Configurationâ€Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe ₂ /MoS ₂ . Advanced Functional Materials, 2016, 26, 5499-5506.	7.8	95
370	Enabling Quality Interfaces with Maskâ€Free Approach to Selective Growth of MoS ₂ /Graphene Stacked Structures. Advanced Materials Interfaces, 2016, 3, 1600098.	1.9	9
371	Spectral Characteristics of Noble Metal Nanoparticle–Molybdenum Disulfide Heterostructures. Advanced Optical Materials, 2016, 4, 1288-1294.	3.6	14
372	Controlled Sulfurization Process for the Synthesis of Large Area MoS ₂ Films and MoS ₂ /WS ₂ Heterostructures. Advanced Materials Interfaces, 2016, 3, 1500635.	1.9	61
373	MoS ₂ Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1502161.	10.2	444
374	A feasible multilayer structure design for solid lubricant coatings in a lunar environment. RSC Advances, 2016, 6, 65504-65517.	1.7	12
375	Chemistry and electronics of single layer MoS ₂ domains from photoelectron spectromicroscopy using laboratory excitation sources. Surface and Interface Analysis, 2016, 48, 465-469.	0.8	10
376	Direct Growth of MoS ₂ Microspheres on Ni Foam as a Hybrid Nanocomposite Efficient for Oxygen Evolution Reaction. Small, 2016, 12, 2975-2981.	5.2	114
377	Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ . Advanced Functional Materials, 2016, 26, 1169-1177.	7.8	376
378	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	1.2	95
379	Modulating Photoluminescence of Monolayer Molybdenum Disulfide by Metal–Insulator Phase Transition in Active Substrates. Small, 2016, 12, 3976-3984.	5.2	30

#	Article	IF	CITATIONS
380	Mechanically-induced reverse phase transformation of MoS ₂ from stable 2H to metastable 1T and its memristive behavior. RSC Advances, 2016, 6, 65691-65697.	1.7	63
381	Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology, 2016, 27, 335702.	1.3	226
382	Atomically Thin MoS ₂ : A Versatile Nongraphene 2D Material. Advanced Functional Materials, 2016, 26, 2046-2069.	7.8	220
383	Electric and Photovoltaic Behavior of a Few‣ayer αâ€MoTe ₂ /MoS ₂ Dichalcogenide Heterojunction. Advanced Materials, 2016, 28, 3216-3222.	11.1	236
384	Metal Induced Growth of Transition Metal Dichalcogenides at Controlled Locations. Scientific Reports, 2016, 6, 38394.	1.6	28
385	Space-Confined Growth of Defect-Rich Molybdenum Disulfide Nanosheets Within Graphene: Application in The Removal of Smoke Particles and Toxic Volatiles. ACS Applied Materials & Interfaces, 2016, 8, 34735-34743.	4.0	45
386	Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging. Scientific Reports, 2016, 6, 25788.	1.6	45
387	High temperature Raman investigation of few-layer MoTe2. Applied Physics Letters, 2016, 108, .	1.5	33
388	Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS2 films. Journal of Applied Physics, 2016, 119, .	1.1	13
389	Growth of silicon on tungsten diselenide. Applied Physics Letters, 2016, 109, 243105.	1.5	7
390	Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Scientific Reports, 2016, 6, 21405.	1.6	48
391	Field effects of current crowding in metal-MoS2 contacts. Applied Physics Letters, 2016, 108, .	1.5	23
392	Optically tuned terahertz modulator based on annealed multilayer MoS2. Scientific Reports, 2016, 6, 22899.	1.6	74
393	Long wavelength optical response of graphene-MoS2 heterojunction. Applied Physics Letters, 2016, 108,	1.5	11
394	Few-layer SnSe2 transistors with high on/off ratios. Applied Physics Letters, 2016, 108, .	1.5	75
395	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	1.6	93
396	Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. APL Materials, 2016, 4, .	2.2	54
397	Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters. Applied Physics Letters, 2016, 109, 133102.	1.5	9

IF

ARTICLE

CITATIONS

Enhanced hydrogen evolution performance of ultra thin nanoslice/nanopetal structured XS2 (X $\hat{a}\in \infty=\hat{a}\in W$,) Tj ETQq0 0 0 rgBT /Overlage

399	Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Scientific Reports, 2016, 6, 19624.	1.6	106
400	Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Applied Physics Letters, 2016, 109, .	1.5	41
401	Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 2016, 6, 18754.	1.6	74
402	Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites. AIP Conference Proceedings, 2016, , .	0.3	1
403	Formation of nanosized monolayer MoS2 by oxygen-assisted thinning of multilayer MoS2. Journal of Applied Physics, 2016, 120, .	1.1	24
404	High performance photodetector based on Pd-single layer MoS2 Schottky junction. Applied Physics Letters, 2016, 109, .	1.5	15
405	Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	71
406	Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation. Chinese Physics Letters, 2016, 33, 114201.	1.3	13
407	An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor. Applied Physics Letters, 2016, 108, .	1.5	19
408	Composition dependent Fermi level shifting of Au decorated MoS2 nanosheets. Applied Physics Letters, 2016, 108, .	1.5	35
409	Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains. Journal of Chemical Physics, 2016, 145, 084704.	1.2	13
410	Spiral growth of few-layer MoS2 by chemical vapor deposition. Applied Physics Letters, 2016, 109, 051604.	1.5	22
411	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	1.6	59
412	Anharmonicity of optic modes in monolayer MoS2. Applied Physics Letters, 2016, 108, .	1.5	17
413	Controllable growth and electrostatic properties of Bernal stacked bilayer MoS2. Journal of Applied Physics, 2016, 120, .	1.1	13
414	High performance and reliability Ge channel CMOS with a MoS <inf>2</inf> capping layer. , 2016, , .		5
415	Photoconductivities in MoS2 Nanoflake Photoconductors. Nanoscale Research Letters, 2016, 11, 124.	3.1	32

#	Article	IF	CITATIONS
416	Preparation and characterization of a covalent edge-functionalized lipoic acid–MoS ₂ conjugate. RSC Advances, 2016, 6, 36248-36255.	1.7	26
417	Digital-wavelength ytterbium fiber laser mode-locked with MoS ₂ . Laser Physics Letters, 2016, 13, 055102.	0.6	13
418	Fast Photoresponse from 1T Tin Diselenide Atomic Layers. Advanced Functional Materials, 2016, 26, 137-145.	7.8	150
419	Scalable Production of Molybdenum Disulfide Based Biosensors. ACS Nano, 2016, 10, 6173-6179.	7.3	68
420	Single step, bulk synthesis of engineered MoS ₂ quantum dots for multifunctional electrocatalysis. Nanotechnology, 2016, 27, 275402.	1.3	17
421	Flexible, transparent and ultra-broadband photodetector based on large-area WSe ₂ film for wearable devices. Nanotechnology, 2016, 27, 225501.	1.3	254
422	Facile synthesis of hierarchical MoS ₂ –carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	5.2	73
423	Friction and wear reductions in slip-rolling steel contacts through pre-conditioned chemical tribofilms from bismuth compounds. Wear, 2016, 360-361, 29-37.	1.5	10
424	Enhanced quantum efficiency from a mosaic of two dimensional MoS ₂ formed onto aminosilane functionalised substrates. Nanoscale, 2016, 8, 12258-12266.	2.8	18
425	Mode-locking pulse generation with MoS_2–PVA saturable absorber in both anomalous and ultra-long normal dispersion regimes. Applied Optics, 2016, 55, 4247.	2.1	14
426	Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability. ACS Applied Materials & Interfaces, 2016, 8, 13437-13448.	4.0	108
427	980-nm Q-switched photonic crystal fiber laser by MoS2 saturable absorber. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	12
428	Thinning of n-layer MoS ₂ by annealing a palladium film under vacuum. RSC Advances, 2016, 6, 50595-50598.	1.7	2
429	Thickness-induced structural phase transformation of layered gallium telluride. Physical Chemistry Chemical Physics, 2016, 18, 18719-18726.	1.3	71
430	Reaction mechanism of core–shell MoO ₂ /MoS ₂ nanoflakes via plasma-assisted sulfurization of MoO ₃ . Materials Research Express, 2016, 3, 055021.	0.8	37
431	Optoelectric Properties of Gate-Tunable MoS ₂ /WSe ₂ Heterojunction. IEEE Nanotechnology Magazine, 2016, 15, 499-505.	1.1	16
432	Trap-induced photoresponse of solution-synthesized MoS ₂ . Nanoscale, 2016, 8, 9193-9200.	2.8	52
433	High Performance HfO2 Back Gated Multilayer MoS2 transistors. IEEE Electron Device Letters, 2016, , 1-1.	2.2	31

#	Article	IF	CITATIONS
434	3D Cd–MoS2 Porous Monolith Fabricated Through a Self-Assembly Between Cd2+ Cations and MoS2 Nanoflakes. Nano, 2016, 11, 1650053.	0.5	1
435	High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder. Nano Research, 2016, 9, 1709-1722.	5.8	31
436	Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. Journal of Power Sources, 2016, 319, 1-8.	4.0	98
437	Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering. Nano Research, 2016, 9, 1682-1688.	5.8	16
438	Preparation of Ultrathin 2D MoS2/Graphene Heterostructure Assembled Foam-like Structure with Enhanced Electrochemical Performance for Lithium-ion Batteries. Electrochimica Acta, 2016, 206, 184-191.	2.6	85
439	Au-Modified Monolayer MoS ₂ Sensor for DNA Detection. Journal of Physical Chemistry C, 2016, 120, 11204-11209.	1.5	67
440	Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. Journal of Power Sources, 2016, 321, 112-119.	4.0	182
441	Synthesis and Characterization of ReS ₂ and ReSe ₂ Layered Chalcogenide Single Crystals. Chemistry of Materials, 2016, 28, 3352-3359.	3.2	162
442	Coherent Lattice Vibrations in Mono- and Few-Layer WSe ₂ . ACS Nano, 2016, 10, 5560-5566.	7.3	62
443	Size-Dependent Properties of Two-Dimensional MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2016, 120, 10078-10085.	1.5	144
444	Wafer-scale growth of MoS ₂ thin films by atomic layer deposition. Nanoscale, 2016, 8, 10792-10798.	2.8	139
445	Broadband Absorption Engineering to Enhance Light Absorption in Monolayer MoS ₂ . ACS Photonics, 2016, 3, 853-862.	3.2	119
446	Combining Nitrogenâ€Doped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie, 2016, 128, 12975-12980.	1.6	44
447	Electro-response of MoS ₂ Nanosheets-Based Smart Fluid with Tailorable Electrical Conductivity. ACS Applied Materials & amp; Interfaces, 2016, 8, 24221-24229.	4.0	46
448	Abnormal high-temperature luminescence enhancement observed in monolayer MoS ₂ flakes: thermo-driven transition from negatively charged trions to neutral excitons. Journal of Materials Chemistry C, 2016, 4, 9187-9196.	2.7	15
449	Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide - boron nitride heterostructures. Journal of Materials Research, 2016, 31, 893-899.	1.2	11
450	A hybrid MoS ₂ nanosheet–CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale, 2016, 8, 17223-17230.	2.8	47
451	Combining Nitrogenâ€Đoped Graphene Sheets and MoS ₂ : A Unique Film–Foam–Film Structure for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 12783-12788.	7.2	172

#	Article	IF	CITATIONS
452	CVD grown 2D MoS ₂ layers: A photoluminescence and fluorescence lifetime imaging study. Physica Status Solidi - Rapid Research Letters, 2016, 10, 792-796.	1.2	26
453	Thermal conductivity of MoS ₂ polycrystalline nanomembranes. 2D Materials, 2016, 3, 035016.	2.0	37
454	Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy, 2016, 30, 846-852.	8.2	136
456	Sn-doped few-layer MoS 2 /graphene hybrids with rich active sites and their enhanced catalytic performance for hydrogen generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 140-148.	2.3	9
457	Chemoselective transfer hydrogenation to nitroarenes mediated by oxygen-implanted MoS2. Chinese Journal of Catalysis, 2016, 37, 1569-1577.	6.9	19
458	Temperature-dependent photoluminescence emission and Raman scattering from Mo _{1â~`<i>x</i>} W _{<i>x</i>} S ₂ monolayers. Nanotechnology, 2016, 27, 445705.	1.3	48
459	MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance. Carbon, 2016, 110, 367-377.	5.4	57
460	Effect of Al ₂ O ₃ Deposition on Performance of Top-Gated Monolayer MoS ₂ -Based Field Effect Transistor. ACS Applied Materials & Interfaces, 2016, 8, 28130-28135.	4.0	40
461	Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant. Optical and Quantum Electronics, 2016, 48, 1.	1.5	31
462	NiMoS HDS catalysts – The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs. Applied Catalysis A: General, 2016, 528, 74-85.	2.2	20
463	Magnetic MoS ₂ Interface Monolayer on a CdS Nanowire by Cation Exchange. Journal of Physical Chemistry C, 2016, 120, 23055-23060.	1.5	24
464	Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale, 2016, 8, 18250-18269.	2.8	79
465	Preparation of three-dimensional nanosheet-based molybdenum disulfide nanotubes as anode materials for lithium storage. Journal of Materials Chemistry A, 2016, 4, 17000-17008.	5.2	40
466	Controllable growth and characterizations of hybrid spiral-like atomically thin molybdenum disulfide. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 378-383.	1.3	6
467	Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2016, 120, 24080-24087.	1.5	20
468	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="bold">SnS<mml:mn>2</mml:mn></mml:mi </mml:msub> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">SnSe<mml:mn>2</mml:mn></mml:mi </mml:msub>two-dimensional</mml:math 	1.1	267
469	materials. Physical Review B. 2016, 94, . Epitaxy of Ultrathin SnSe Single Crystals on Polydimethylsiloxane: Inâ€Plane Electrical Anisotropy and Gateâ€Tunable Thermopower. Advanced Electronic Materials, 2016, 2, 1600292.	2.6	31
470	Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS ₂ /MoS ₂ Vertical Bilayer Heterostructures with High Lattice Mismatch. Advanced Electronic Materials, 2016, 2, 1600298.	2.6	155

CITATION REPORT ARTICLE IF CITATIONS Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO 4.0 47 Thin Films. ACS Applied Materials & amp; Interfaces, 2016, 8, 28809-28815. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology. Optical 1.7 Materials, 2016, 60, 601-617. SiO₂-assisted synthesis of layered MoS₂/reduced graphene oxide intercalation composites as high performance anode materials for Li-ion batteries. RSC Advances, 2016, 1.7 23 6,74436-74444. Cobalt-doped edge-rich MoS2/nitrogenated graphene composite as an electrocatalyst for hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 212, 30-38. Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic 0.8 36 applications. Solid-State Electronics, 2016, 125, 39-51. Thickness-Dependent Binding Energy Shift in Few-Layer MoS₂ Grown by Chemical Vapor Deposition. ACS Applied Materials & amp; Interfaces, 2016, 8, 22637-22646. 4.0 Carbon dot-assisted hydrothermal synthesis of flower-like MoS₂ nanospheres constructed by few-layered multiphase MoS₂ nanosheets for supercapacitors. RSC 1.7 37 Advances, 2016, 6, 77999-78007. Thermoelectric properties of monolayer<i>M</i>Se₂(M = Zr, Hf): low lattice thermal 1.3 197 conductivity and a promising figure of merit. Nanotechnology, 2016, 27, 375703. Sensor based on chemical vapour deposition-grown molybdenum disulphide for gas sensing 12 1.7 application. RSC Advances, 2016, 6, 75839-75843. Soliton modeâ€locked erbiumâ€doped fibre laser with mechanically exfoliated molybdenum disulphide 1.8 saturable absorber. IET Optoelectronics, 2016, 10, 169-173. Hydrothermal synthesis of selenium-doped graphene-like molybdenum disulfide/graphene hybrid as an 2.0 6 efficient electrocatalyst for hydrogen evolution. Advanced Powder Technology, 2016, 27, 2153-2160. Facile Synthesis of MoS₂/Reduced Graphene Oxide@Polyaniline for High-Performance 4.0 183 Supercápacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 21373-21380. Raman Scattering of 2D TMDCs. Springer Series in Materials Science, 2016, , 227-294. 0.4 4 Colloidal Synthesis of Uniformâ€Sized Molybdenum Disulfide Nanosheets for Waferâ€Scale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332. 11.1 Co-nucleus 1D/2D Heterostructures with Bi₂S₃ Nanowire and MoS₂ Monolayer: One-Step Growth and Defect-Induced Formation Mechanism. ACS Nano, 7.3 82 2016, 10, 8938-8946.

486	MoS ₂ cocatalyst/In ₂ S ₃ light harvester layered photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13980-13988.	5.2	55
487	Large Scale Uniformity of Sputtering Deposited Single- and Few-Layer MoS2Investigated by XPS Multipoint Measurements and Histogram Analysis of Optical Contrast. ECS Journal of Solid State Science and Technology, 2016, 5, Q3012-Q3015.	0.9	12
488	Constructing a "Pizza‣ike―MoS ₂ /Polypyrrole/Polyaniline Ternary Architecture with High Energy Density and Superior Cycling Stability for Supercapacitors. Advanced Materials Interfaces,	1.9	40

Dual-defective strategy directing in situ assembly for effective interfacial contacts in

2016, 3, 1600665.

#

471

473

474

475

477

479

481

483

484

#	Article	IF	CITATIONS
489	Few-Layered MoS ₂ Nanostructures for Highly Efficient Visible Light Photocatalysis. Nano, 2016, 11, 1650114.	0.5	8
490	Photothermally Controllable Cytosolic Drug Delivery Based On Core–Shell MoS ₂ -Porous Silica Nanoplates. Chemistry of Materials, 2016, 28, 6417-6424.	3.2	74
491	Multibit MoS ₂ Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 2016, 28, 9196-9202.	11.1	145
492	Prevention of Transition Metal Dichalcogenide Photodegradation by Encapsulation with h-BN Layers. ACS Nano, 2016, 10, 8973-8979.	7.3	70
493	Pulsed laser deposition assisted grown continuous monolayer MoSe ₂ . CrystEngComm, 2016, 18, 6992-6996.	1.3	27
494	High efficiency shear exfoliation for producing high-quality, few-layered MoS ₂ nanosheets in a green ethanol/water system. RSC Advances, 2016, 6, 82763-82773.	1.7	35
495	Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2D Materials, 2016, 3, 034004.	2.0	35
496	High Responsivity, Large-Area Graphene/MoS ₂ Flexible Photodetectors. ACS Nano, 2016, 10, 8252-8262.	7.3	275
497	Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2016, 344, 680-691.	3.1	111
498	Large area chemical vapor deposition growth of monolayer MoSe ₂ and its controlled sulfurization to MoS ₂ . Journal of Materials Research, 2016, 31, 917-922.	1.2	14
499	Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals. Scientific Reports, 2016, 6, 20904.	1.6	222
500	Raman scattering and anomalous Stokes–anti-Stokes ratio in MoTe2 atomic layers. Scientific Reports, 2016, 6, 28024.	1.6	41
501	Patterning of periodic ripples in monolayer MoS2 by using laser irradiation. Journal of the Korean Physical Society, 2016, 69, 1505-1508.	0.3	6
502	Processable 2D materials beyond graphene: MoS ₂ liquid crystals and fibres. Nanoscale, 2016, 8, 16862-16867.	2.8	40
503	The influence of interfacial tensile strain on the charge transport characteristics of MoS ₂ -based vertical heterojunction devices. Nanoscale, 2016, 8, 17598-17607.	2.8	15
504	In situ formation of MoS ₂ /C nanocomposite as an anode for high-performance lithium-ion batteries. RSC Advances, 2016, 6, 92259-92266.	1.7	11
505	Bandgap inhomogeneity of MoS2 monolayer on epitaxial graphene bilayer in van der Waals p-n junction. Carbon, 2016, 110, 396-403.	5.4	27
506	Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Research, 2016, 9, 3559-3597.	5.8	93

#	Article	IF	CITATIONS
507	Q-switched erbium-doped fiber laser operating at 1502nm with molybdenum disulfide saturable absorber. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650025.	1.1	12
508	Highly active and reflective MoS2 counter electrode for enhancement of photovoltaic efficiency of dye sensitized solar cells. Electrochimica Acta, 2016, 212, 614-620.	2.6	50
509	Investigation of nonlinear optical properties of exfoliated MoS2 using Photoacoustic Zscan. MRS Advances, 2016, 1, 3215-3221.	0.5	10
510	Probing the uniaxial strains in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>MoS</mml:mtext><mml:mn>2< polarized Raman spectroscopy: A first-principles study. Physical Review B, 2016, 93, .</mml:mn></mml:msub></mml:math 	/maml:mn	> ദ⁄തന്നി:നട
511	Excitons in atomically thin black phosphorus. Physical Review B, 2016, 93, .	1.1	83
512	Zone-center phonons of bulk, few-layer, and monolayer1Tâ^'TaS2: Detection of commensurate charge density wave phase through Raman scattering. Physical Review B, 2016, 93, .	1.1	74
513	Structural characteristic correlated to the electronic band gap in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>. Physical Review B, 2016, 94, .</mml:math 	i 1.1	14
514	The fracture behaviors of monolayer phosphorene with grain boundaries under tension: a molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 20562-20570.	1.3	13
515	Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe ₂ Flakes for Anisotropic Raman Property and Optoelectronic Application. Advanced Materials, 2016, 28, 8296-8301.	11.1	206
516	Raman spectroscopy of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2016, 28, 353002.	0.7	168
517	Vertically Conductive MoS ₂ Spiral Pyramid. Advanced Materials, 2016, 28, 7723-7728.	11.1	63
518	Rapid synthesis of transition metal dichalcogenide few-layer thin crystals by the microwave-induced-plasma assisted method. Journal of Crystal Growth, 2016, 450, 140-147.	0.7	29
519	Two-dimensional lateral heterojunction through bandgap engineering of MoS ₂ via oxygen plasma. Journal of Physics Condensed Matter, 2016, 28, 364002.	0.7	47
520	Patterned Growth of Pâ€Type MoS ₂ Atomic Layers Using Sol–Gel as Precursor. Advanced Functional Materials, 2016, 26, 6371-6379.	7.8	34
521	MoS ₂ -based dual-responsive flexible anisotropic actuators. Nanoscale, 2016, 8, 18800-18807.	2.8	48
522	Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 2016, 7, 13352.	5.8	798
523	Effect of Uniaxial Strain on Low Frequency Raman Modes in Few Layers Molybdenum Disulfide. ECS Journal of Solid State Science and Technology, 2016, 5, Q3033-Q3037.	0.9	2
524	Nonuniform current distribution between individual layers of multilayer MoS2, experimentally approached by using a laser thinning technique. Journal of the Korean Physical Society, 2016, 69, 1497-1501.	0.3	5

#	Article	IF	CITATIONS
525	Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets. Japanese Journal of Applied Physics, 2016, 55, 125201.	0.8	4
526	Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-Ion Batteries. Chemistry of Materials, 2016, 28, 8357-8365.	3.2	69
527	Wasp-waisted magnetism in hydrothermally grown MoS ₂ nanoflakes. Materials Research Express, 2016, 3, 116102.	0.8	21
528	Raman study of HPMC biopolymer transfer layer formation under tribology test. Optical and Quantum Electronics, 2016, 48, 1.	1.5	10
529	Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 2016, 11, 763-777.	6.2	113
530	Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures. Scientific Reports, 2016, 6, 26656.	1.6	73
531	Facile Preparation of Single MoS ₂ Atomic Crystals with Highly Tunable Photoluminescence by Morphology and Atomic Structure. Crystal Growth and Design, 2016, 16, 7094-7101.	1.4	8
532	Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001.	1.3	259
533	Passively Q-switched Nd:YVO <inf>4</inf> laser by MoS <inf>2</inf> with 164ns pulse width. , 2016, , .		3
534	Novel near-infrared emission from crystal defects in MoS2 multilayer flakes. Nature Communications, 2016, 7, 13044.	5.8	60
535	Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer. Scientific Reports, 2016, 6, 20890.	1.6	64
536	Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure. Scientific Reports, 2016, 6, 25456.	1.6	116
537	Engineering the Edges of MoS ₂ (WS ₂) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents. Journal of the American Chemical Society, 2016, 138, 14962-14969.	6.6	189
538	Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS ₂ crystals. Journal of Materials Chemistry C, 2016, 4, 11081-11087.	2.7	42
539	Effect of Sulfur Evaporation Rate on Screw Dislocation Driven Growth of MoS ₂ with High Atomic Step Density. Crystal Growth and Design, 2016, 16, 7145-7154.	1.4	38
540	Fabrication of 3D porous MoS2–GO nanocomposite monolith as a promising adsorbent. International Journal of Materials Research, 2016, 107, 1051-1057.	0.1	0
541	THz timeâ€domain spectroscopy and IR spectroscopy on MoS ₂ . Physica Status Solidi (B): Basic Research, 2016, 253, 2499-2504.	0.7	12
542	Fabrication of scalable and ultra low power photodetectors with high light/dark current ratios using polycrystalline monolayer MoS2 sheets. Nano Energy, 2016, 30, 494-502.	8.2	19

	CIT	ATION REPORT	
#	Article	IF	CITATIONS
543	Synthesis of Vertically Standing MoS2 Triangles on SiC. Scientific Reports, 2016, 6, 31980.	1.6	21
544	Bandgap modulation of MoS ₂ monolayer by thermal annealing and quick cooling. Nanoscale, 2016, 8, 18995-19003.	2.8	33
545	Experimental and First-Principles Investigation of MoWS ₂ with High Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2016, 8, 29442-29451.	4.0	49
546	Threshold Dependence of Deep- and Near-subwavelength Ripples Formation on Natural MoS2 Induced by Femtosecond Laser. Scientific Reports, 2016, 6, 19571.	1.6	17
547	Scalable synthesis of WS ₂ on graphene and h-BN: an all-2D platform for light-matter transduction. 2D Materials, 2016, 3, 031013.	2.0	36
548	Mapping of Low-Frequency Raman Modes in CVD-Grown Transition Metal Dichalcogenides: Layer Number, Stacking Orientation and Resonant Effects. Scientific Reports, 2016, 6, 19476.	1.6	111
549	Synthesis and characterization of vertically standing MoS2 nanosheets. Scientific Reports, 2016, 6, 21171.	1.6	168
550	Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Scientific Reports, 2016, 6, 30791.	1.6	104
551	Interlayer Coupling Affected Structural Stability in Ultrathin MoS ₂ : An Investigation by High Pressure Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 24992-24998.	1.5	29
552	Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study. Scientific Reports, 2016, 6, 33091.	1.6	23
553	Oxidation-Sulfidation Approach for Vertically Growing MoS ₂ Nanofilms Catalysts on Molybdenum Foils as Efficient HER Catalysts. Journal of Physical Chemistry C, 2016, 120, 25843-25850	0. 1.5	56
554	Au@MoS ₂ Core–Shell Heterostructures with Strong Light–Matter Interactions. Nanc Letters, 2016, 16, 7696-7702.) 4.5	139
555	Modulating Electronic Properties of Monolayer MoS ₂ <i>via</i> Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano, 2016, 10, 10446-10453.	7.3	41
556	Raman study of 2D anatase TiO ₂ nanosheets. Physical Chemistry Chemical Physics, 2016 32178-32184.	, 18, 1.3	59
557	Self-Templated Growth of Vertically Aligned 2H-1T MoS ₂ for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 31702-31708.	4.0	133
558	Research on Hydrothermal Decoration of TiO ₂ Nanotube Films with Nanoplatelet MoS ₂ Species. Nanomaterials and Nanotechnology, 2016, 6, 37.	1.2	4
559	Layered MoS ₂ Hollow Spheres for Highlyâ€Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small, 2016, 12, 2046-2055.	5.2	101
560	Extraordinarily Strong Interlayer Interaction in 2D Layered PtS ₂ . Advanced Materials, 2016, 28, 2399-2407.	11.1	415

#	Article	IF	CITATIONS
561	Lowâ€Voltage Complementary Electronics from Ionâ€Gelâ€Gated Vertical Van der Waals Heterostructures. Advanced Materials, 2016, 28, 3742-3748.	11.1	91
562	Nanoscale plasmonic phenomena in CVD-grown MoS_2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy. Optics Express, 2016, 24, 1154.	1.7	30
563	Band Alignment and Minigaps in Monolayer MoS ₂ -Graphene van der Waals Heterostructures. Nano Letters, 2016, 16, 4054-4061.	4.5	288
564	Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2016, 8, 15574-15581.	4.0	77
565	Quenching induced fracture behaviors of CVD-grown polycrystalline molybdenum disulfide films. RSC Advances, 2016, 6, 59816-59822.	1.7	10
566	Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2. Nuclear Instruments & Methods in Physics Research B, 2016, 381, 1-5.	0.6	6
567	Ionic-liquid mediated synthesis of molybdenum disulfide/graphene composites: An enhanced electrochemical hydrogen evolution catalyst. International Journal of Hydrogen Energy, 2016, 41, 12049-12061.	3.8	35
568	Controlled synthesis and comparison of NiCo ₂ S ₄ /graphene/2D TMD ternary nanocomposites for high-performance supercapacitors. Chemical Communications, 2016, 52, 9251-9254.	2.2	70
569	Chemical Vapor Deposition of NbS ₂ from a Chloride Source with H ₂ Flow: Orientation Control of Ultrathin Crystals Directly Grown on SiO ₂ /Si Substrate and Charge Density Wave Transition. Crystal Growth and Design, 2016, 16, 4467-4472.	1.4	27
570	Preparation and properties of DLC/MoS ₂ multilayer coatings for high humidity tribology. Materials Research Express, 2016, 3, 066401.	0.8	24
571	Orange-light passively Q-switched Pr^3+-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers. Optical Materials Express, 2016, 6, 2031.	1.6	42
572	Influence of residual promoter to photoluminescence of CVD grown MoS 2. Current Applied Physics, 2016, 16, 1223-1228.	1.1	4
573	Facile preparation of graphene-like and expanded molybdenum disulfide/graphene via a polyquaternium-assisted method and their electrochemical Na-storage performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 182-189.	2.3	8
574	Improving the tribological performance of biopolymer coating with MoS2 additive. Surface and Coatings Technology, 2016, 303, 250-255.	2.2	41
575	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	5.5	80
576	Selective hydrodesulfurization of gasoline on Co/MoS 2±x catalyst: Effect of sulfur defects in MoS 2±x. Applied Catalysis A: General, 2016, 524, 66-76.	2.2	29
577	MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Materials, 2016, 8, e268-e268.	3.8	113
578	Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon, 2016, 107, 711-722.	5.4	56

#	Article	IF	CITATIONS
579	MgO-template-assisted synthesis of worm-like carbon@MoS2 composite for lithium ion battery anodes. Electrochimica Acta, 2016, 211, 962-971.	2.6	14
580	Rich magneto-absorption spectra of AAB-stacked trilayer graphene. Physical Chemistry Chemical Physics, 2016, 18, 17597-17605.	1.3	14
581	MXene Electrode for the Integration of WSe ₂ and MoS ₂ Field Effect Transistors. Advanced Functional Materials, 2016, 26, 5328-5334.	7.8	198
582	Fabrication of MoS ₂ Nanowire Arrays and Layered Structures via the Selfâ€Assembly of Block Copolymers. Advanced Materials Interfaces, 2016, 3, 1500596.	1.9	23
583	Facile synthesis of novel albumin-functionalized flower-like MoS ₂ nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Advances, 2016, 6, 13040-13049.	1.7	56
584	Fabrication of MgFe ₂ 0 ₄ /MoS ₂ Heterostructure Nanowires for Photoelectrochemical Catalysis. Langmuir, 2016, 32, 1629-1636.	1.6	59
585	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	4.5	177
586	Laser-Induced Particle Adsorption on Atomically Thin MoS ₂ . ACS Applied Materials & Interfaces, 2016, 8, 2974-2984.	4.0	27
587	Optical lithography technique for the fabrication of devices from mechanically exfoliated two-dimensional materials. Microelectronic Engineering, 2016, 154, 62-68.	1.1	11
588	Intercalated 2D MoS ₂ Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016, 120, 2447-2455.	1.5	61
589	Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy, 2016, 21, 228-237.	8.2	124
590	Tribological response of fresh and used engine oils: The effect of surface texturing, roughness and fuel type. Tribology International, 2016, 100, 60-69.	3.0	30
591	Biosensors Based on Two-Dimensional MoS ₂ . ACS Sensors, 2016, 1, 5-16.	4.0	310
592	Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chemistry of Materials, 2016, 28, 180-187.	3.2	112
593	Optical identification of layered MoS2via the characteristic matrix method. Nanoscale, 2016, 8, 1210-1215.	2.8	22
594	Single- and few-layer WTe ₂ and their suspended nanostructures: Raman signatures and nanomechanical resonances. Nanoscale, 2016, 8, 7854-7860.	2.8	44
595	Femtosecond mode-locked erbium-doped fiber laser based on MoS2–PVA saturable absorber. Optics and Laser Technology, 2016, 82, 145-149.	2.2	36
596	Graphene-Molybdenum Disulfide-Graphene Tunneling Junctions with Large-Area Synthesized Materials. ACS Applied Materials & Interfaces, 2016, 8, 8702-8709.	4.0	16

#	Article	IF	CITATIONS
597	Kinetic Study of Hydrogen Evolution Reaction over Strained MoS ₂ with Sulfur Vacancies Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2016, 138, 5123-5129.	6.6	244
598	Raman Shifts in Electron-Irradiated Monolayer MoS ₂ . ACS Nano, 2016, 10, 4134-4142.	7.3	311
599	Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy and Environmental Science, 2016, 9, 2240-2248.	15.6	174
600	Monolayer MoS 2 /GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy, 2016, 23, 89-96.	8.2	138
601	Symmetric pseudocapacitors based on molybdenum disulfide (MoS ₂)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage. Journal of Materials Chemistry A, 2016, 4, 6411-6425.	5.2	116
602	Fabrication and Enhanced Photoelectrochemical Performance of MoS ₂ /S-Doped g-C ₃ N ₄ Heterojunction Film. ACS Applied Materials & Interfaces, 2016, 8, 5280-5289.	4.0	275
603	Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS ₂ Grown by Vapor Transport. ACS Nano, 2016, 10, 3186-3197.	7.3	83
604	Selectable Synthesis of 2-D MoS ₂ and Its Electronic Devices: From Isolated Triangular Islands to Large-Area Continuous Thin Film. IEEE Nanotechnology Magazine, 2016, 15, 310-317.	1.1	13
605	Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016, 8, 6435-6450.	2.8	300
606	Molybdenum disulfide nanoflakes through Li-AHA assisted exfoliation in an aqueous medium. RSC Advances, 2016, 6, 22026-22033.	1.7	17
607	Molybdenum Disulfide Nanosheets Interconnected Nitrogen-Doped Reduced Graphene Oxide Hydrogel: A High-Performance Heterostructure for Lithium-Ion Batteries. Electrochimica Acta, 2016, 193, 128-136.	2.6	38
608	Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling. Nanoscale, 2016, 8, 5826-5834.	2.8	32
609	Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. ACS Nano, 2016, 10, 3580-3588.	7.3	207
610	Phase Transition of MoS ₂ Bilayer Structures. Journal of Physical Chemistry C, 2016, 120, 3776-3780.	1.5	33
611	Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS ₂ –CdS thin film heterojunction. RSC Advances, 2016, 6, 16711-16719.	1.7	14
612	Excitation intensity dependence of photoluminescence from monolayers of MoS ₂ and WS ₂ /MoS ₂ heterostructures. 2D Materials, 2016, 3, 015005.	2.0	65
613	Watt-level passively Q-switched Er:Lu_2O_3 laser at 284  μm using MoS_2. Optics Letters, 2016, 41, 5	5407	126
614	Stark Effect Spectroscopy of Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 1554-1559.	4.5	80

#	Article	IF	CITATIONS
615	Photoelectrochemistry of Pristine Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 2023-2032.	4.5	107
616	CO ₂ -Induced Phase Engineering: Protocol for Enhanced Photoelectrocatalytic Performance of 2D MoS ₂ Nanosheets. ACS Nano, 2016, 10, 2903-2909.	7.3	243
617	Determination of the thickness of two-dimensional transition-metal dichalcogenide by the Raman intensity of the substrate. Materials Research Express, 2016, 3, 025007.	0.8	10
618	Pulsed erbium-doped fiber laser by a few-layer molybdenum disulfide saturable absorber: from Q-switching to mode-locking. Optical Engineering, 2016, 55, 081308.	0.5	25
619	S-band Q-switched fiber laser using molybdenum disulfide (MoS ₂) saturable absorber. Laser Physics Letters, 2016, 13, 035103.	0.6	33
620	A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. Journal of Power Sources, 2016, 309, 202-211.	4.0	89
621	Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45, 2494-2515.	18.7	61
622	Nanosheets of MoS2 and reduced graphene oxide as hybrid fillers improved the mechanical and tribological properties of bismaleimide composites. Composites Science and Technology, 2016, 125, 47-54.	3.8	89
623	Transfer-Free Growth of Atomically Thin Transition Metal Disulfides Using a Solution Precursor by a Laser Irradiation Process and Their Application in Low-Power Photodetectors. Nano Letters, 2016, 16, 2463-2470.	4.5	12
624	Thickness-dependent charge transport in few-layer MoS ₂ field-effect transistors. Nanotechnology, 2016, 27, 165203.	1.3	124
625	A sensitive electrochemiluminescent immunosensor based on 3D-flower-like MoS ₂ microspheres and using AuPt nanoparticles for signal amplification. RSC Advances, 2016, 6, 23411-23419.	1.7	11
626	Multimodal Nonlinear Optical Imaging of MoS ₂ and MoS ₂ -Based van der Waals Heterostructures. ACS Nano, 2016, 10, 3766-3775.	7.3	127
627	Giant magneto-optical Raman effect in a layered transition metal compound. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2349-2353.	3.3	24
628	Use of organic solvent-assisted exfoliated MoS ₂ for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A, 2016, 4, 5265-5273.	5.2	166
629	Fabrication of a polyaniline/MoS ₂ nanocomposite using self-stabilized dispersion polymerization for supercapacitors with high energy density. RSC Advances, 2016, 6, 27460-27465.	1.7	75
630	Support interactive synthesis of nanostructured MoS 2 electrocatalyst for oxygen reduction reaction. Materials Letters, 2016, 164, 417-420.	1.3	32
631	Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon, 2016, 99, 599-606.	5.4	108
632	Memristive Behavior and Ideal Memristor of 1T Phase MoS ₂ Nanosheets. Nano Letters, 2016, 16, 572-576.	4.5	317
#	Article	IF	CITATIONS
-----	---	-----	-----------
633	Facile, substrate-scale growth of mono- and few-layer homogeneous MoS ₂ films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology, 2016, 27, 045404.	1.3	38
634	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	3.2	98
635	Layer-by-layer thinning of two-dimensional MoS ₂ films by using a focused ion beam. Nanoscale, 2016, 8, 4107-4112.	2.8	33
636	Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses. Nanoscale, 2016, 8, 1572-1579.	2.8	4
637	Fast and large-area growth of uniform MoS ₂ monolayers on molybdenum foils. Nanoscale, 2016, 8, 2234-2241.	2.8	104
638	Dual-Gate MoS2FET With a Coplanar-Gate Engineering. IEEE Transactions on Electron Devices, 2016, 63, 573-577.	1.6	10
639	Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3204-3213.	1.3	49
640	MoS 2 /sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 916-923.	3.8	40
641	Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies. Nanoscale, 2016, 8, 3008-3018.	2.8	186
642	Morphology evolution of MoS2: From monodisperse nanoparticles to self-assembled nanobelts. Chemical Physics Letters, 2016, 646, 1-5.	1.2	3
643	Uniform and Repeatable Cold-Wall Chemical Vapor Deposition Synthesis of Single-Layer MoS2. Crystal Growth and Design, 2016, 16, 988-995.	1.4	10
644	Designing two dimensional nanoarchitectured MoS2 sheets grown on Mo foil as a binder free electrode for supercapacitors. Electrochimica Acta, 2016, 190, 305-312.	2.6	159
645	Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe ₂ . Nanoscale, 2016, 8, 2309-2316.	2.8	92
646	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. Journal of Materials Chemistry A, 2016, 4, 1440-1445.	5.2	55
647	Strain-Gated Field Effect Transistor of a MoS ₂ –ZnO 2D–1D Hybrid Structure. ACS Nano, 2016, 10, 1546-1551.	7.3	80
648	Synthesis and characterization of large-area and continuous MoS ₂ atomic layers by RF magnetron sputtering. Nanoscale, 2016, 8, 4340-4347.	2.8	74
649	A facile and one-step ethanol-thermal synthesis of MoS ₂ quantum dots for two-photon fluorescence imaging. Journal of Materials Chemistry B, 2016, 4, 27-31.	2.9	108
650	Chirality and vacancy effect on phonon dispersion of MoS 2 with strain. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 745-752.	0.9	13

#	Article	IF	CITATIONS
651	Rapid, one-pot synthesis of luminescent MoS ₂ nanoscrolls using supercritical fluid processing. Journal of Materials Chemistry C, 2016, 4, 1165-1169.	2.7	46
652	Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS ₂ and WS ₂ . Nanoscale, 2016, 8, 1960-1967.	2.8	56
653	Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells. Solar Energy Materials and Solar Cells, 2016, 144, 117-127.	3.0	61
654	Fabrication of blue luminescent MoS 2 quantum dots by wet grinding assisted co-solvent sonication. Journal of Luminescence, 2016, 169, 342-347.	1.5	59
655	Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nano-Micro Letters, 2016, 8, 70-79.	14.4	37
656	DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments. Biosensors and Bioelectronics, 2017, 89, 280-292.	5.3	35
657	Two-dimensional MoS2: A promising building block for biosensors. Biosensors and Bioelectronics, 2017, 89, 56-71.	5.3	215
658	High-Peak Power Passively Q-Switched 2-μm Laser With MoS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 66-70.	1.9	46
659	In situ TEM Raman spectroscopy and laser-based materials modification. Ultramicroscopy, 2017, 178, 33-37.	0.8	19
660	Tip-Enhanced Raman Scattering of MoS ₂ . IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 138-143.	1.9	31
661	A flexible p-CuO/n-MoS ₂ heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Materials Horizons, 2017, 4, 274-280.	6.4	128
662	Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Applied Physics Reviews, 2017, 4, 011301.	5.5	97
663	Enhanced magnetoresistance in graphene spin valve. Journal of Magnetism and Magnetic Materials, 2017, 429, 330-333.	1.0	21
664	Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric. Scientific Reports, 2017, 7, 40669.	1.6	83
665	One‧tep Simultaneous Exfoliation and Covalent Functionalization of MoS ₂ by Amino Acid Induced Solution Processes. ChemNanoMat, 2017, 3, 172-177.	1.5	33
666	Threeâ€Dimensional MoS ₂ @CNT/RGO Network Composites for Highâ€Performance Flexible Supercapacitors. Chemistry - A European Journal, 2017, 23, 3438-3446.	1.7	166
667	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
668	Tunable Doping in Hydrogenated Single Layered Molybdenum Disulfide. ACS Nano, 2017, 11, 1755-1761.	7.3	86

#	Article	IF	CITATIONS
669	Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Applied Physics Letters, 2017, 110, .	1.5	72
670	Highâ€Mobility Multilayered MoS ₂ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1604540.	11.1	214
671	Cracked monolayer 1T MoS ₂ with abundant active sites for enhanced electrocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 718-724.	2.1	83
672	Strain engineering of Schottky barriers in single- and few-layer MoS ₂ vertical devices. 2D Materials, 2017, 4, 021006.	2.0	54
673	Passively Q-switched Ytterbium doped fiber laser with mechanically exfoliated MoS2 saturable absorber. Indian Journal of Physics, 2017, 91, 575-580.	0.9	4
674	Hybrid graphene@MoS ₂ @TiO ₂ microspheres for use as a high performance negative electrode material for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 3667-3674.	5.2	66
675	CO ₂ â€Assisted Fabrication of Twoâ€Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances. Angewandte Chemie, 2017, 129, 1622-1626.	1.6	18
676	Comparative investigation of the vibrational properties of bulk 2 <i>H</i> –MoS ₂ and its exfoliated nanosheets under high pressure. Journal of Raman Spectroscopy, 2017, 48, 596-600.	1.2	10
677	Layer Dependence and Light Tuning Surface Potential of 2D MoS ₂ on Various Substrates. Small, 2017, 13, 1603103.	5.2	58
678	Epitaxial growth of vertically stacked p-MoS2/n-MoS2 heterostructures by chemical vapor deposition for light emitting devices. Nano Energy, 2017, 32, 454-462.	8.2	50
679	Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties. Applied Surface Science, 2017, 401, 232-240.	3.1	24
680	Dual-wavelength passively Q-switched bulk laser using MoS 2 /graphene heterojunction. Materials Research Bulletin, 2017, 89, 63-67.	2.7	11
681	Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9, 3059-3067.	2.8	141
682	Narrowband spectrally selective near-infrared photodetector based on up-conversion nanoparticles used in a 2D hybrid device. Journal of Materials Chemistry C, 2017, 5, 1591-1595.	2.7	51
683	Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS ₂ Films for Solar Hydrogen Production. ACS Applied Materials & Interfaces, 2017, 9, 6123-6129.	4.0	96
684	Supercritical CO ₂ â€Assisted Reverseâ€Micelleâ€Induced Solutionâ€Phase Fabrication of Twoâ€Dimensional Metallic 1Tâ€MoS ₂ and 1Tâ€WS ₂ . ChemNanoMat, 2017, 3, 466-47	$71^{1.5}_{}$	43
685	Controlled formation of nanostructures on MoS2 layers by focused laser irradiation. Applied Physics Letters, 2017, 110, 083101.	1.5	19
686	Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2. Materials and Design, 2017, 121, 77-84.	3.3	97

#	Article	IF	CITATIONS
687	Ultrabroadband MoS ₂ Photodetector with Spectral Response from 445 to 2717 nm. Advanced Materials, 2017, 29, 1605972.	11.1	256
688	Au nanoparticles@MoS 2 core-shell structures with moderate MoS 2 coverage for efficient photocatalytic water splitting. Journal of Alloys and Compounds, 2017, 706, 82-88.	2.8	40
689	Vertically Aligned Interlayer Expanded MoS ₂ Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis. Chemistry of Materials, 2017, 29, 3092-3099.	3.2	140
690	A theoretical modeling of photocurrent generation and decay in layered MoS ₂ thin-film transistor photosensors. Journal Physics D: Applied Physics, 2017, 50, 065105.	1.3	11
691	Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application. Journal of Alloys and Compounds, 2017, 705, 624-630.	2.8	69
692	Solution synthesis of few-layer 2H MX ₂ (M = Mo, W; X = S, Se). Journal of Materials Chemistry C, 2017, 5, 2859-2864.	2.7	32
693	Large scale growth of vertically standing MoS ₂ flakes on 2D nanosheet using organic promoter. 2D Materials, 2017, 4, 025042.	2.0	24
694	Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Research, 2017, 10, 1377-1392.	5.8	104
695	A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355.	2.6	84
696	Enhancement of Exciton Emission from Multilayer MoS ₂ at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157.	5.2	19
697	Amorphous Molybdenum Sulfide Deposited Graphene Liquid Crystalline Fiber for Hydrogen Evolution Reaction Catalysis. Particle and Particle Systems Characterization, 2017, 34, 1600375.	1.2	31
698	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
699	A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS 2 - rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red. Journal of Environmental Chemical Engineering, 2017, 5, 1150-1158.	3.3	43
700	Centimeter-Scale Nearly Single-Crystal Monolayer MoS ₂ via Self-Limiting Vapor Deposition Epitaxy. Journal of Physical Chemistry C, 2017, 121, 4703-4707.	1.5	12
701	The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Scientific Reports, 2017, 7, 42146.	1.6	46
702	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	5.2	55
703	Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. Applied Physics Letters, 2017, 110, .	1.5	16
704	2D Organic–Inorganic Hybrid Thin Films for Flexible UV–Visible Photodetectors. Advanced Functional Materials, 2017, 27, 1605554.	7.8	125

#	Article	IF	CITATIONS
705	p-Type transition-metal doping of large-area MoS ₂ thin films grown by chemical vapor deposition. Nanoscale, 2017, 9, 3576-3584.	2.8	75
706	Antibacterial Activities of Graphene Oxide–Molybdenum Disulfide Nanocomposite Films. ACS Applied Materials & Interfaces, 2017, 9, 7908-7917.	4.0	150
707	Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nature Communications, 2017, 8, 14410.	5.8	93
708	Mapping the electrocatalytic activity of MoS ₂ across its amorphous to crystalline transition. Journal of Materials Chemistry A, 2017, 5, 5129-5141.	5.2	41
709	An innovative carbon template-induced approach to a graphene-like MnO ₂ nanomesh with enhanced pseudocapacitance performance. Journal of Materials Chemistry A, 2017, 5, 9709-9716.	5.2	13
710	Transition Metal Dichalcogenides (WS ₂ and MoS ₂) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers. Chinese Physics Letters, 2017, 34, 014202.	1.3	24
712	Growth of large sized two-dimensional MoS ₂ flakes in aqueous solution. Nanoscale, 2017, 9, 6575-6580.	2.8	17
713	Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route. Nano Research, 2017, 10, 2761-2771.	5.8	13
714	MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon, 2017, 119, 91-100.	5.4	120
715	Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 2017, 8, 15113.	5.8	555
716	The effects of local bond relaxations on the electronic and photocatalysis performances of nonmetal doped 3R–MoS2based photocatalyst: density functional theory. Materials Research Express, 2017, 4, 035908.	0.8	1
717	Ionic strength induced electrodeposition of two-dimensional layered MoS 2 nanosheets. Applied Materials Today, 2017, 8, 44-53.	2.3	29
718	Hierarchical structure graphitic-like/MoS2 film as superlubricity material. Applied Surface Science, 2017, 413, 381-386.	3.1	57
719	Superlubricity between MoS ₂ Monolayers. Advanced Materials, 2017, 29, 1701474.	11.1	220
720	Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2Hâ€ / 1T′â€MoS ₂ on Graphene for Enhanced Photoresponse. Advanced Electronic Materials, 2017, 3, 1700024.	2.6	31
721	Marriage of Albumin–Gadolinium Complexes and MoS ₂ Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 17786-17798.	4.0	81
722	CVD growth of monolayer MoS ₂ : Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 2017, 56, 06GG05.	0.8	51
723	Growth of monolayer MoS 2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition. Chemical Physics Letters, 2017, 679, 181-184.	1.2	12

#	Article	IF	CITATIONS
724	Optimal light harvesting in 2D semiconductor heterostructures. 2D Materials, 2017, 4, 025115.	2.0	13
725	Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 2017, 419, 35-44.	3.1	209
726	Phase evolution of lithium intercalation dynamics in 2H-MoS ₂ . Nanoscale, 2017, 9, 7533-7540.	2.8	83
727	Probing microstructures of molybdenum disulfide quantum dots by resonant Raman scattering. Applied Physics Letters, 2017, 110, 161910.	1.5	11
728	Superlow friction of high mileage used oil with CuDTC in presence of MoDTC. Industrial Lubrication and Tribology, 2017, 69, 190-198.	0.6	9
729	Dual-wavelength Q-switched thulium-fluoride fiber laser for S+/S band using molybdenum disulfide (MoS2) as a saturable absorber. Laser Physics, 2017, 27, 065103.	0.6	2
730	Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling. 2D Materials, 2017, 4, 025077.	2.0	21
731	Pulsed cathodoluminescence and Raman spectra of MoS 2 nanocrystals at different excitation electron energy densities and laser wavelengths. Journal of Luminescence, 2017, 188, 529-532.	1.5	28
732	Electrical transport and persistent photoconductivity in monolayer MoS ₂ phototransistors. Nanotechnology, 2017, 28, 214002.	1.3	189
733	Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408.	1.7	31
734	Magnetic MoS 2 on multiwalled carbon nanotubes for sulfide sensing. Analytica Chimica Acta, 2017, 975, 61-69.	2.6	20
735	Facile one-step exfoliation of large-size 2D materials via simply shearing in triethanolamine. Materials Letters, 2017, 199, 124-127.	1.3	22
736	Molecular doping of graphene across ultraâ€ŧhin molybdenum disulphide spacers. Physica Status Solidi (B): Basic Research, 2017, 254, 1600521.	0.7	1
737	Tailoring MoS ₂ Exciton–Plasmon Interaction by Optical Spin–Orbit Coupling. ACS Nano, 2017, 11, 1165-1171.	7.3	114
738	Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Research, 2017, 10, 643-651.	5.8	44
739	Self-lubricating aluminium matrix composites reinforced with 2D crystals. Composites Part B: Engineering, 2017, 111, 1-9.	5.9	51
740	Production of biofunctionalized MoS ₂ flakes with rationally modified lysozyme: a biocompatible 2D hybrid material. 2D Materials, 2017, 4, 035007.	2.0	19
741	Precursor determined lateral size control of monolayer MoS ₂ nanosheets from a series of alkylammonium thiomolybdates: a reversal of trend between growth media. Chemical Communications, 2017, 53, 6428-6431.	2.2	4

#	Article	IF	CITATIONS
742	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Advances, 2017, 7, 26665-26672.	1.7	32
743	Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2017, 139, 9392-9400.	6.6	167
744	Designing MoS ₂ nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction. Catalysis Science and Technology, 2017, 7, 2998-3007.	2.1	39
745	Patterned films from exfoliated two-dimensional transition metal dichalcogenides assembled at a liquid–liquid interface. Journal of Materials Chemistry C, 2017, 5, 6937-6944.	2.7	12
746	MoS ₂ /WS ₂ Heterojunction for Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 4990-4998.	5.5	189
747	Remarkable enhancement in solar hydrogen generation from MoS 2 -RGO/ZnO composite photocatalyst by constructing a robust electron transport pathway. Chemical Engineering Journal, 2017, 327, 397-405.	6.6	71
748	Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials. Small, 2017, 13, 1604298.	5.2	65
749	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	5.2	139
750	Weak Donor–Acceptor Interaction and Interface Polarization Define Photoexcitation Dynamics in the MoS ₂ /TiO ₂ Composite: Time-Domain Ab Initio Simulation. Nano Letters, 2017, 17, 4038-4046.	4.5	45
751	MoS ₂ -Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Applied Materials & amp; Interfaces, 2017, 9, 21362-21370.	4.0	54
752	Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers To Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano, 2017, 11, 5774-5784.	7.3	109
753	Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. Journal of Materials Chemistry A, 2017, 5, 15534-15542.	5.2	69
754	Identifying Excitation and Emission Rate Contributions to Plasmon-Enhanced Photoluminescence from Monolayer MoS ₂ Using a Tapered Gold Nanoantenna. ACS Photonics, 2017, 4, 1602-1606.	3.2	17
755	A Hybrid Mg ²⁺ /Li ⁺ Battery Based on Interlayerâ€Expanded MoS ₂ /Graphene Cathode. Advanced Energy Materials, 2017, 7, 1700317.	10.2	151
756	Large-area snow-like MoSe ₂ monolayers: synthesis, growth mechanism, and efficient electrocatalyst application. Nanotechnology, 2017, 28, 275704.	1.3	26
757	Enhanced Superhydrophobic Performance of BN-MoS ₂ Heterostructure Prepared via a Rapid, One-Pot Supercritical Fluid Processing. Langmuir, 2017, 33, 6159-6166.	1.6	21
758	2D MoS ₂ Neuromorphic Devices for Brain‣ike Computational Systems. Small, 2017, 13, 1700933.	5.2	268
759	Transistors and tunnel diodes enabled by large-scale MoS ₂ nanosheets grown on GaN. Semiconductor Science and Technology, 2017, 32, 075011.	1.0	5

#	Article	IF	CITATIONS
760	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	2.3	212
761	Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser. Indian Journal of Physics, 2017, 91, 1259-1264.	0.9	22
762	Mass-Producible 2D-MoS ₂ -Impregnated Screen-Printed Electrodes That Demonstrate Efficient Electrocatalysis toward the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 22539-22548.	4.0	47
763	Optical properties and Raman-active phonon modes of two-dimensional honeycomb Zintl phases. Journal of Materials Chemistry C, 2017, 5, 11259-11266.	2.7	23
764	Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Advances, 2017, 7, 28234-28290.	1.7	171
765	Single and Few-Layer MoS2: CVD Synthesis, Transference, and Photodetection Application. MRS Advances, 2017, 2, 3709-3714.	0.5	0
766	A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissueâ€Engineered 3D Scaffold. Advanced Biology, 2017, 1, e1600042.	3.0	45
767	Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Communications, 2017, 7, 272-279.	0.8	29
768	Switching of the products by changing the size and shape of catalytic nanoparticles during CVD growth of MoS2 nanotubes. CrystEngComm, 2017, 19, 3915-3920.	1.3	11
769	Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization. Journal of Materials Science, 2017, 52, 10127-10139.	1.7	16
770	High Mobility 2D Palladium Diselenide Fieldâ€Effect Transistors with Tunable Ambipolar Characteristics. Advanced Materials, 2017, 29, 1602969.	11.1	251
771	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	5.2	69
772	Energy coupling across low-dimensional contact interfaces at the atomic scale. International Journal of Heat and Mass Transfer, 2017, 110, 827-844.	2.5	28
773	Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy, 2017, 35, 101-114.	8.2	99
774	Light–matter interaction in transition metal dichalcogenides and their heterostructures. Journal Physics D: Applied Physics, 2017, 50, 173001.	1.3	91
775	Various Structured Molybdenum-based Nanomaterials as Advanced Anode Materials for Lithium ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 12366-12372.	4.0	29
776	Aligned MoO ₂ /MoS ₂ and MoO ₂ /MoTe ₂ Freestanding Core/Shell Nanoplates Driven by Surface Interactions. Journal of Physical Chemistry Letters, 2017, 8, 1631-1636.	2.1	15
777	<i>In situ</i> thermal oxidation kinetics in few layer MoS ₂ . 2D Materials, 2017, 4, 025058.	2.0	49

#	Article	IF	CITATIONS
778	Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS ₂ / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.	7.3	87
779	Facile Synthesis of a MoS ₂ and Functionalized Graphene Heterostructure for Enhanced Lithium-Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 12907-12913.	4.0	56
780	pH Dependent Optical Switching and Fluorescence Modulation of Molybdenum Sulfide Quantum Dots. Advanced Optical Materials, 2017, 5, 1601021.	3.6	32
781	Atomic Layer Deposition of Crystalline MoS ₂ Thin Films: New Molybdenum Precursor for Lowâ€Temperature Film Growth. Advanced Materials Interfaces, 2017, 4, 1700123.	1.9	98
782	Hierarchical MoS 2 -coated three-dimensional graphene network for enhanced supercapacitor performances. Journal of Power Sources, 2017, 352, 99-110.	4.0	97
783	Photoresponsive field-effect transistors based on multilayer SnS ₂ nanosheets. Journal of Semiconductors, 2017, 38, 034001.	2.0	23
784	Oxidation of core–shell MoO ₂ –MoS ₂ nanoflakes in different O ₂ ambience. Materials Research Express, 2017, 4, 036405.	0.8	19
785	Effect of post-exfoliation treatments on mechanically exfoliated MoS2. Materials Research Express, 2017, 4, 025022.	0.8	10
786	Novel Transfer Behaviors in 2D MoS ₂ /WSe ₂ Heterotransistor and Its Applications in Visibleâ€Near Infrared Photodetection. Advanced Electronic Materials, 2017, 3, 1600502.	2.6	51
787	Sulfurâ€Doped Porphyrinic Carbon Nanostructures Synthesized with Amorphous MoS ₂ for the Oxygen Reduction Reaction in an Acidic Medium. ChemSusChem, 2017, 10, 2202-2209.	3.6	10
788	Enhanced Photoluminescence of Solution-Exfoliated Transition Metal Dichalcogenides by Laser Etching. ACS Omega, 2017, 2, 738-745.	1.6	13
789	<i>In Situ</i> Monitoring of the Thermal-Annealing Effect in a Monolayer of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mn>2Physical Review Applied 2017 7</mml:mn></mml:mrow></mml:mrow></mml:math 	nl:mn> <td>nml:msub><!--</td--></td>	nml:msub> </td
790	Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS ₂ Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Applied Materials & Interfaces, 2017, 9, 12073-12081.	4.0	120
791	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
792	Enhanced photoresponse of ZnO quantum dot-decorated MoS ₂ thin films. RSC Advances, 2017, 7, 16890-16900.	1.7	59
793	A novel synthesis method for large-area MoS ₂ film with improved electrical contact. 2D Materials, 2017, 4, 025051.	2.0	14
794	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	5.8	51
795	Identification of Whispering Gallery Mode (WGM) coupled photoluminescence and Raman modes in complex spectra of MoS 2 in Polymethyl methacrylate (PMMA) microspheres. Journal of Luminescence, 2017, 187, 255-259.	1.5	8

#	Article	IF	CITATIONS
796	MoS2/h-BN heterostructures: controlling MoS2 crystal morphology by chemical vapor deposition. Journal of Materials Science, 2017, 52, 7028-7038.	1.7	12
797	Effect of synthesis temperature on structure-activity-relationship over NiMo/γ-Al2O3 catalysts for the hydrodesulfurization of DBT and 4,6-DMDBT. Fuel Processing Technology, 2017, 161, 52-61.	3.7	42
798	Solution assembly MoS ₂ nanopetals/GaAs n–n homotype heterojunction with ultrafast and low noise photoresponse using graphene as carrier collector. Journal of Materials Chemistry C, 2017, 5, 140-148.	2.7	36
799	Ag ₂ S nanoparticle-decorated MoS ₂ for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting. Dalton Transactions, 2017, 46, 483-490.	1.6	69
800	Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS 2 synthesis. Thin Solid Films, 2017, 641, 79-86.	0.8	53
801	Tunable electrical properties of multilayer HfSe ₂ field effect transistors by oxygen plasma treatment. Nanoscale, 2017, 9, 1645-1652.	2.8	38
802	A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries. Applied Surface Science, 2017, 399, 237-244.	3.1	14
803	Edge-Enriched 2D MoS ₂ Thin Films Grown by Chemical Vapor Deposition for Enhanced Catalytic Performance. ACS Catalysis, 2017, 7, 877-886.	5.5	123
804	Intrinsic electrical transport and performance projections of synthetic monolayer MoS ₂ devices. 2D Materials, 2017, 4, 011009.	2.0	117
805	The effect of defect-rich molybdenum disulfide nanosheets with phosphorus, nitrogen and silicon elements on mechanical, thermal, and fire behaviors of unsaturated polyester composites. Chemical Engineering Journal, 2017, 313, 238-249.	6.6	82
806	Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition. Nanoscale, 2017, 9, 1591-1598.	2.8	31
807	Rapid and highly efficient chemical exfoliation of layered MoS 2 and WS 2. Journal of Alloys and Compounds, 2017, 699, 222-229.	2.8	79
808	Synergistically Enhanced Electrochemical Performance of Hierarchical MoS ₂ /TiNb ₂ O ₇ Hetero-nanostructures as Anode Materials for Li-Ion Batteries. ACS Nano, 2017, 11, 1026-1033.	7.3	89
809	Phase engineering of a multiphasic 1T/2H MoS ₂ catalyst for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2681-2688.	5.2	391
810	CO ₂ â€Assisted Fabrication of Twoâ€Dimensional Amorphous Molybdenum Oxide Nanosheets for Enhanced Plasmon Resonances. Angewandte Chemie - International Edition, 2017, 56, 1600-1604.	7.2	154
811	Fabrication of 3D Spongia-shaped polyaniline/MoS2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synthetic Metals, 2017, 224, 36-45.	2.1	48
812	Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2. Journal of Chemical Physics, 2017, 146, 052810.	1.2	41
813	A study on the interaction between molybdenum disulfide and rhodamine B by spectroscopic methods. Journal of Materials Science, 2017, 52, 3831-3840.	1.7	12

#	Article	IF	CITATIONS
814	Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity. Nano Research, 2017, 10, 570-583.	5.8	100
815	Chemically exfoliated MoS2 for capacitive deionization of saline water. Nano Energy, 2017, 31, 590-595.	8.2	168
816	Pressurizing Field-Effect Transistors of Few-Layer MoS ₂ in a Diamond Anvil Cell. Nano Letters, 2017, 17, 194-199.	4.5	31
817	MoS ₂ /Carbon Nanotube Core–Shell Nanocomposites for Enhanced Nonlinear Optical Performance. Chemistry - A European Journal, 2017, 23, 3321-3327.	1.7	57
818	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	8.2	58
819	Layerâ€Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Advanced Functional Materials, 2017, 27, 1604468.	7.8	189
820	Observation of abnormal mobility enhancement in multilayer MoS2 transistor by synergy of ultraviolet illumination and ozone plasma treatment. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 150-154.	1.3	21
821	Molecular beam epitaxy of large-area SnSe ₂ with monolayer thickness fluctuation. 2D Materials, 2017, 4, 014006.	2.0	27
822	Nb3O7F/MoS2 nanocrystal for expanded visible-light absorption and enhanced photocatalytic activity. Ceramics International, 2017, 43, 2743-2749.	2.3	7
823	The direct hydrothermal deposition of cobalt-doped MoS ₂ onto fluorine-doped SnO ₂ substrates for catalysis of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1472-1480.	5.2	42
824	Controllable growth of monolayer MoS ₂ by chemical vapor deposition via close MoO ₂ precursor for electrical and optical applications. Nanotechnology, 2017, 28, 084001.	1.3	51
825	Facile Nanostructured Composite Synthesis of Selenium and Molybdenum Chalcogenides/Carbon Nanotubes for Liâ€lon Batteries. Bulletin of the Korean Chemical Society, 2017, 38, 1347-1352.	1.0	4
826	A 2D self-assembled MoS ₂ /ZnIn ₂ S ₄ heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 18290-18298.	2.8	121
827	Single crystal monolayer MoS2 triangles with wafer-scale spatial uniformity by MoO3 pre-deposited chemical vapor deposition. Journal of Crystal Growth, 2017, 480, 6-12.	0.7	10
828	Intermediate bands of MoS ₂ enabled by Co doping for enhanced hydrogen evolution. Inorganic Chemistry Frontiers, 2017, 4, 1895-1899.	3.0	35
829	Doping of two-dimensional MoS ₂ by high energy ion implantation. Semiconductor Science and Technology, 2017, 32, 124002.	1.0	26
830	Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property. Optical Materials, 2017, 73, 763-771.	1.7	20
831	Atomic layer MoS ₂ -graphene van der Waals heterostructure nanomechanical resonators. Nanoscale, 2017, 9, 18208-18215.	2.8	48

#	Article	IF	CITATIONS
832	Wafer-Scale Integration of Highly Uniform and Scalable MoS ₂ Transistors. ACS Applied Materials & Interfaces, 2017, 9, 37146-37153.	4.0	32
833	Observation of superconductivity in 1T′-MoS ₂ nanosheets. Journal of Materials Chemistry C, 2017, 5, 10855-10860.	2.7	77
834	Electrochemical and SECM Investigation of MoS ₂ /GO and MoS ₂ /rGO Nanocomposite Materials for HER Electrocatalysis. ACS Omega, 2017, 2, 7532-7545.	1.6	43
835	Passively mode-locked ytterbium-doped fiber laser operation with few layer MoS2 PVA saturable absorber. Optik, 2017, 145, 543-548.	1.4	8
836	Squid Inkâ€Assisted Fabricating MoS ₂ Nanosheets/Ultrafine Biocarbon Spheres Composites with an Enhanced Lithium Ion Storage Performance. ChemistrySelect, 2017, 2, 8643-8649.	0.7	7
837	MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters, 2017, 111, .	1.5	47
838	Temperature-dependent Raman spectra and thermal conductivity of multi-walled MoS2 nanotubes. Applied Physics Letters, 2017, 111, 123102.	1.5	15
839	Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New Journal of Chemistry, 2017, 41, 13287-13292.	1.4	19
840	Sulfur vacancy induced high performance for photocatalytic H ₂ production over 1T@2H phase MoS ₂ nanolayers. Catalysis Science and Technology, 2017, 7, 5635-5643.	2.1	47
841	Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology, 2017, 28, 465103.	1.3	42
842	Ultrafast charge transfer dynamics pathways in two-dimensional MoS ₂ –graphene heterostructures: a core-hole clock approach. Physical Chemistry Chemical Physics, 2017, 19, 29954-29962.	1.3	31
843	Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS ₂ nanosheets. Nanoscale, 2017, 9, 16602-16606.	2.8	39
844	Synthesis of MoS _{2(1â^'x)} Se _{2x} and WS _{2(1â^'x)} Se _{2x} alloys for enhanced hydrogen evolution reaction performance. Inorganic Chemistry Frontiers, 2017, 4, 2068-2074.	3.0	27
845	Tailored MoS ₂ nanorods: a simple microwave assisted synthesis. Materials Research Express, 2017, 4, 115012.	0.8	25
846	Enhanced intervalley scattering of aluminum oxide-deposited graphene. Carbon, 2017, 124, 188-192.	5.4	8
847	Tuning the metal–support interaction in supported K-promoted NiMo catalysts for enhanced selectivity and productivity towards higher alcohols in CO hydrogenation. Catalysis Science and Technology, 2017, 7, 4206-4215.	2.1	17
848	Orientation dependent interlayer stacking structure in bilayer MoS ₂ domains. Nanoscale, 2017, 9, 13060-13068.	2.8	19
849	Wafer-scale synthesis of monolayer and few-layer MoS ₂ via thermal vapor sulfurization. 2D Materials, 2017, 4, 045007.	2.0	34

#	Article	IF	CITATIONS
850	Carbonâ€Nanotubeâ€Confined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials, 2017, 29, 1702942.	11.1	21
851	Sub-10 nm Tunable Hybrid Dielectric Engineering on MoS ₂ for Two-Dimensional Material-Based Devices. ACS Nano, 2017, 11, 10243-10252.	7.3	28
852	Mechanical exfoliation and layer number identification of MoS ₂ revisited. 2D Materials, 2017, 4, 045013.	2.0	93
853	A novel and facile method for detecting the lattice orientation of MoS 2 tribological surface using the SPSA process. Materials and Design, 2017, 135, 291-299.	3.3	5
854	Low-Temperature Synthesis of Near-Monodisperse Globular MoS2 Nanoparticles with Sulphur Powders. Nano, 2017, 12, 1750091.	0.5	4
855	Elucidating the Intercalation Pseudocapacitance Mechanism of MoS ₂ –Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 32745-32755.	4.0	156
856	Semiconducting and Optical Properties of Compact Graphene-Like Nanoparticles of Molybdenum Disulfide. Springer Proceedings in Physics, 2017, , 845-854.	0.1	0
857	Advanced sodium storage property in an exfoliated MoO3 anode: the stability and performance improvement by in situ impedance mapping. Journal of Materials Chemistry A, 2017, 5, 20491-20496.	5.2	14
858	Controlled Layer Thinning and pâ€Type Doping of WSe ₂ by Vapor XeF ₂ . Advanced Functional Materials, 2017, 27, 1702455.	7.8	103
859	A van der Waals p–n Heterojunction Based on Polymer-2D Layered MoS ₂ for Solution Processable Electronics. Journal of Physical Chemistry C, 2017, 121, 21945-21954.	1.5	22
860	Scalable Synthesis of Highly Crystalline MoSe ₂ and Its Ambipolar Behavior. ACS Applied Materials & Interfaces, 2017, 9, 36009-36016.	4.0	52
861	Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS ₂ . Advanced Materials, 2017, 29, 1701955.	11.1	249
862	Work Function Modulation of Molybdenum Disulfide Nanosheets by Introducing Systematic Lattice Strain. Scientific Reports, 2017, 7, 9576.	1.6	47
863	PdSe ₂ : Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017, 139, 14090-14097.	6.6	509
864	Polarized Lightâ€Emitting Diodes Based on Patterned MoS ₂ Nanosheet Hole Transport Layer. Advanced Materials, 2017, 29, 1702598.	11.1	68
865	Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 423-433.	1.5	14
866	High performance photoresponsive field-effect transistors based on MoS2/pentacene heterojunction. Organic Electronics, 2017, 51, 142-148.	1.4	19
867	One-Transistor–One-Transistor (1T1T) Optoelectronic Nonvolatile MoS ₂ Memory Cell with Nondestructive Read-Out. ACS Applied Materials & Interfaces, 2017, 9, 26357-26362.	4.0	11

#	Article	IF	CITATIONS
868	Annealing disintegrates Cu2MoS4 nanosheets into MoS2 and Cu2S nanoheterostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 15936-15941.	1.1	5
869	Associated Lattice and Electronic Structural Evolutions in Compressed Multilayer ReS2. Journal of Physical Chemistry Letters, 2017, 8, 3648-3655.	2.1	16
870	Synthesis of MoS ₂ Quantum Dots Uniformly Dispersed on Low Dimensional MoS ₂ Nanosheets and Unravelling its Multiple Emissive States. ChemistrySelect, 2017, 2, 5942-5949.	0.7	11
871	Graphene ontacted Ultrashort Channel Monolayer MoS ₂ Transistors. Advanced Materials, 2017, 29, 1702522.	11.1	218
872	Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. Npj 2D Materials and Applications, 2017, 1, .	3.9	77
873	Rational design of freestanding MoS2 monolayers for hydrogen evolution reaction. Nano Energy, 2017, 39, 409-417.	8.2	107
874	Liquid exfoliation of 2D MoS ₂ nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis. Nanoscale, 2017, 9, 10886-10896.	2.8	36
875	Size Effect on the Cytotoxicity of Layered Black Phosphorus and Underlying Mechanisms. Small, 2017, 13, 1701210.	5.2	124
876	Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator. Optical Materials, 2017, 72, 464-469.	1.7	6
877	Effect of post-annealing on sputtered MoS 2 films. Solid-State Electronics, 2017, 138, 62-65.	0.8	10
878	Few-layer MoS ₂ as nitrogen protective barrier. Nanotechnology, 2017, 28, 415706.	1.3	6
879	Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS ₂): basal vs. edge plane activity. Chemical Science, 2017, 8, 6583-6593.	3.7	159
880	Photodoping-Driven Crossover in the Low-Frequency Noise of MoS2 Transistors. Physical Review Applied, 2017, 7, .	1.5	6
881	Multiple Exciton Harvesting at Zero-Dimensional/Two-Dimensional Heterostructures. ACS Energy Letters, 2017, 2, 1879-1885.	8.8	29
882	Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.	2.8	35
883	Large array fabrication of high performance monolayer MoS2 photodetectors. Applied Physics Letters, 2017, 111, .	1.5	38
884	Few-layered MoS ₂ /C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale, 2017, 9, 12189-12195.	2.8	100
885	Selective and confined growth of transition metal dichalcogenides on transferred graphene. RSC Advances, 2017, 7, 37310-37314.	1.7	6

#	Article	IF	CITATIONS
886	Influences of water molecules on the electronic properties of atomically thin molybdenum disulfide. Applied Physics Letters, 2017, 111, .	1.5	7
887	Anomalous vibrational modes in few layer WTe ₂ revealed by polarized Raman scattering and first-principles calculations. 2D Materials, 2017, 4, 035024.	2.0	27
888	Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. ACS Nano, 2017, 11, 8619-8627.	7.3	42
889	Spin-Valve Junction With Transfer-Free MoS ₂ Spacer Prepared by Sputtering. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	10
890	Synthesis of 2D Layered Bil ₃ Nanoplates, Bil ₃ /WSe ₂ van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. Small, 2017, 13, 1701034.	5.2	59
891	Raman Spectroscopy of Suspended MoS ₂ . Physica Status Solidi (B): Basic Research, 2017, 254, 1700218.	0.7	26
892	Characterization of intrinsic subgap density-of-states in exfoliated MoS2 FETs using a multi-frequency capacitance-conductance technique. AIP Advances, 2017, 7, .	0.6	7
893	<i>In Vivo</i> Hard and Soft Tissue Response of Two-Dimensional Nanoparticle Incorporated Biodegradable Polymeric Scaffolds. ACS Biomaterials Science and Engineering, 2017, 3, 2533-2541.	2.6	8
894	Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Materials, 2017, 9, e418-e418.	3.8	57
895	Controlled Gas Molecules Doping of Monolayer MoS ₂ via Atomic-Layer-Deposited Al ₂ O ₃ Films. ACS Applied Materials & Interfaces, 2017, 9, 27402-27408.	4.0	23
896	Construction of MoO ₂ Quantum Dot–Graphene and MoS ₂ Nanoparticle–Graphene Nanoarchitectures toward Ultrahigh Lithium Storage Capability. ACS Applied Materials & Interfaces, 2017, 9, 28441-28450.	4.0	38
897	Effect of Mo concentration on shape and size of monolayer MoS ₂ crystals by chemical vapor deposition. Journal Physics D: Applied Physics, 2017, 50, 395501.	1.3	12
898	Semiconductor SERS enhancement enabled by oxygen incorporation. Nature Communications, 2017, 8, 1993.	5.8	306
899	Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 876-882.	2.6	30
900	Hierarchical CoS/MoS ₂ and Co ₃ S ₄ /MoS ₂ /Ni ₂ P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 25410-25419.	5.2	66
901	Fabrication of high-performance flexible photodetectors based on Zn-doped MoS ₂ /graphene hybrid fibers. Journal of Materials Chemistry C, 2017, 5, 12354-12359.	2.7	24
902	Electron transport properties of thermoelectrics based on layered substituted transition metal dichalcogenides. Journal of Structural Chemistry, 2017, 58, 893-900.	0.3	9
903	Long-term stability of mechanically exfoliated MoS2 flakes. MRS Communications, 2017, 7, 813-818.	0.8	50

#	Article	IF	CITATIONS
904	Dispersible MoS ₂ Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomaterials Science and Engineering, 2017, 3, 3261-3272.	2.6	19
905	Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS ₂ . Nanoscale, 2017, 9, 19360-19366.	2.8	17
906	Electrostatically driven scalable synthesis of MoS ₂ –graphene hybrid films assisted by hydrophobins. RSC Advances, 2017, 7, 50166-50175.	1.7	23
907	Hybrid Porous Molybdenum Disulfide Monolith for Liquid Removal of Dibenzothiophene. Industrial & Engineering Chemistry Research, 2017, 56, 15049-15057.	1.8	5
908	Improving the Stability of High-Performance Multilayer MoS ₂ Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 42943-42950.	4.0	59
909	General Strategy for Two-Dimensional Transition Metal Dichalcogenides by Ion Exchange. Chemistry of Materials, 2017, 29, 10019-10026.	3.2	18
910	Fabry–Perot Cavity-Enhanced Optical Absorption in Ultrasensitive Tunable Photodiodes Based on Hybrid 2D Materials. Nano Letters, 2017, 17, 7593-7598.	4.5	48
911	Recoil Effect and Photoemission Splitting of Trions in Monolayer MoS ₂ . ACS Nano, 2017, 11, 10808-10815.	7.3	11
912	Effect of Substrate symmetry on the dendrite morphology of MoS2 Film synthesized by CVD. Scientific Reports, 2017, 7, 15166.	1.6	24
913	Laser Thinning and Patterning of MoS2 with Layer-by-Layer Precision. Scientific Reports, 2017, 7, 15538.	1.6	66
914	Effect of Atmosphere and Temperature on the Tribological Behavior of the Ti Containing MoS2 Coatings Against Aluminum. Tribology Letters, 2017, 65, 1.	1.2	18
915	Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano, 2017, 11, 11777-11802.	7.3	179
916	Exfoliated WS2-Nafion Composite based Electromechanical Actuators. Scientific Reports, 2017, 7, 14599.	1.6	18
917	A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochimica Acta, 2017, 247, 657-665.	2.6	33
918	Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. Journal of Materials Science, 2017, 52, 10649-10660.	1.7	51
919	Lifting the mist of flatland: The recent progress in the characterizations of two-dimensional materials. Progress in Crystal Growth and Characterization of Materials, 2017, 63, 72-93.	1.8	12
920	Effects of Reaction Conditions on MoS2 Thin Film Formation Synthesized by Chemical Vapor Deposition using Organic Precursor. MRS Advances, 2017, 2, 1533-1538.	0.5	4
921	A Targetâ€Directed Chemoâ€Photothermal System Based on Transferrin and Copolymerâ€Modified MoS ₂ Nanoplates with pHâ€Activated Drug Release. Chemistry - A European Journal, 2017, 23, 11346-11356.	1.7	40

# 922	ARTICLE Model for the Operation of a Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><m Thin-Film Transistor with Charges Trapped near the Channel Interface. Physical Review Applied, 2017, 7,</m </mml:mrow></mml:msub></mml:mrow></mml:math 	IF nmlរះចេn>2<	Citations :/mml:mn>
923	Lateral multilayer/monolayer MoS2 heterojunction for high performance photodetector applications. Scientific Reports, 2017, 7, 4505.	1.6	35
924	Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor. Scientific Reports, 2017, 7, 1983.	1.6	27
925	Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. Journal of Materials Chemistry A, 2017, 5, 15640-15649.	5.2	167
926	Hierarchical MoS ₂ microspheres prepared through a zinc ion-assisted hydrothermal route as an electrochemical supercapacitor electrode. RSC Advances, 2017, 7, 33937-33943.	1.7	27
927	Rapid Wafer-Scale Growth of Polycrystalline 2H-MoS ₂ by Pulsed Metal–Organic Chemical Vapor Deposition. Chemistry of Materials, 2017, 29, 6279-6288.	3.2	68
928	Covalent immobilization of β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: A gateway to boost enzyme application. Chemical Engineering Journal, 2017, 328, 215-227.	6.6	74
929	Observation of Room-Temperature Magnetoresistance in Monolayer MoS ₂ by Ferromagnetic Gating. ACS Nano, 2017, 11, 6950-6958.	7.3	59
930	Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Physical Review B, 2017, 96, .	1.1	99
931	Highly Scalable Synthesis of MoS ₂ Thin Films with Precise Thickness Control via Polymer-Assisted Deposition. Chemistry of Materials, 2017, 29, 5772-5776.	3.2	96
932	Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe ₂ /n-MoS ₂ van der Waals heterojunctions. Nanoscale, 2017, 9, 10733-10740.	2.8	75
933	KPFM and CAFM based studies of MoS2 (2D)/WS2 heterojunction patterns fabricated using stencil mask lithography technique. Journal of Alloys and Compounds, 2017, 723, 50-57.	2.8	12
934	On the mechanism of molybdenite exfoliation during mechanical milling. Ceramics International, 2017, 43, 12957-12967.	2.3	21
935	2D vibrational properties of epitaxial silicene on Ag(111). 2D Materials, 2017, 4, 015008.	2.0	39
936	Electron Energy Loss Spectroscopy of Hot Electron Transport between Gold Nanoantennas and Molybdenum Disulfide by Plasmon Excitation. Advanced Optical Materials, 2017, 5, 1600572.	3.6	18
937	Quantum Confinement and Gas Sensing of Mechanically Exfoliated GaSe. Advanced Materials Technologies, 2017, 2, 1600197.	3.0	33
938	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
939	Substrate induced anomalous electrostatic and photoluminescence propeties of monolayer MoS 2 edges. Solid State Communications, 2017, 249, 1-6.	0.9	9

#	Article	IF	CITATIONS
940	Passively Q-Switched Laser at 1.3 μm With Few-Layered MoS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 71-75.	1.9	30
941	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodiumâ€ŀon Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	10.2	164
942	Large-area MoS 2 deposition via MOVPE. Journal of Crystal Growth, 2017, 464, 100-104.	0.7	30
943	Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Materials Letters, 2017, 189, 42-45.	1.3	41
944	Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials, 2017, 29, 243-255.	3.2	401
945	Concurrent Growth and Formation of Electrically Contacted Monolayer Transition Metal Dichalcogenides on Bulk Metallic Patterns. Advanced Materials Interfaces, 2017, 4, 1600599.	1.9	7
946	Chemical vapor deposition growth and characterization of drop-like MoS ₂ /MoO ₂ granular films. Physica Status Solidi (B): Basic Research, 2017, 254, 1600245.	0.7	16
947	Temperature assisted shear exfoliation of layered crystals for the large-scale synthesis of catalytically active luminescent quantum dots. Materials Chemistry Frontiers, 2017, 1, 319-325.	3.2	18
948	Type-I van der Waals heterostructure formed by MoS ₂ and ReS ₂ monolayers. Nanoscale Horizons, 2017, 2, 31-36.	4.1	179
949	Role of temperature on tribological behaviour of Ti containing MoS 2 coating against aluminum alloys. Surface and Coatings Technology, 2017, 314, 2-12.	2.2	25
950	Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry. Applied Surface Science, 2017, 421, 884-890.	3.1	48
951	High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Research, 2017, 10, 276-283.	5.8	13
952	Structural and optical characterization of MoS 2 quantum dots defined by thermal annealing. Journal of Luminescence, 2017, 183, 62-67.	1.5	29
953	Graphene intercalated in graphene-like MoS 2 : A promising cathode for rechargeable Mg batteries. Journal of Power Sources, 2017, 340, 104-110.	4.0	73
954	Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions. Advanced Functional Materials, 2017, 27, 1603756.	7.8	74
955	Quasiparticle band gaps and optical spectra of strained monolayer transition-metal dichalcogenides. Physical Review B, 2017, 96, .	1.1	28
956	Facile Synthesis of MoS _x and MoS _x â€rGO Composite: Excellent Electrocatalyst for Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 11590-11598.	0.7	11
957	Use of self-assembled monolayers for selective metal removal and ultrathin gate dielectrics in MoS2 field-effect transistors. Japanese Journal of Applied Physics, 2017, 56, 04CP10.	0.8	3

#	Article	IF	CITATIONS
958	Role of MoS ₂ and WS ₂ monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO ₄ : a first-principles study. New Journal of Chemistry, 2017, 41, 11701-11713.	1.4	48
959	Tunneling transistors based on MoS ₂ /MoTe ₂ Van der Waals heterostructures. , 2017, , .		2
960	Comparison between Scotch tape and gelâ€assisted mechanical exfoliation techniques for preparation of 2D transition metal dichalcogenide flakes. Micro and Nano Letters, 2017, 12, 970-973.	0.6	25
961	200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS_2 saturable absorber onto D-shaped optical fiber. Optics Express, 2017, 25, 10546.	1.7	65
962	Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Optics Letters, 2017, 42, 4279.	1.7	79
963	Graphene/phosphorene nano-heterojunction: facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Research, 2017, 5, 662.	3.4	85
964	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	1.5	44
965	High-mobility and low-carrier-density sputtered MoS ₂ film formed by introducing residual sulfur during low-temperature in 3%-H ₂ annealing for three-dimensional ICs. Japanese Journal of Applied Physics, 2017, 56, 04CP06.	0.8	14
966	Inorganic analogues of graphene. , 2017, , 75-101.		3
967	Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles. Nanoscale Research Letters, 2017, 12, 567.	3.1	32
968	Broadband atomic-layer MoS_2 optical modulators for ultrafast pulse generations in the visible range. Optics Letters, 2017, 42, 547.	1.7	47
969	Controllable formation of MoS2 via preferred crystallographic orientation modulation of DC-sputtered Mo thin film. Materials Letters, 2018, 219, 174-177.	1.3	14
970	Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy. Journal of Physical Chemistry C, 2018, 122, 13564-13571.	1.5	30
971	Self-assembled MoS ₂ -GO Framework as an Efficient Cocatalyst of CuInZnS for Visible-Light Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 4671-4679.	3.2	44
972	Interfacial Strength and Surface Damage Characteristics of Atomically Thin h-BN, MoS ₂ , and Graphene. ACS Applied Materials & Interfaces, 2018, 10, 9164-9177.	4.0	45
973	Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles. Applied Surface Science, 2018, 440, 282-287.	3.1	15
974	The synthesis of two-dimensional MoS ₂ nanosheets with enhanced tribological properties as oil additives. RSC Advances, 2018, 8, 9564-9573.	1.7	106
975	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition, 2018, 57, 5444-5448.	7.2	299

#	Article	IF	CITATIONS
976	Local Enhancement of Exciton Emission of Monolayer MoS ₂ by Copper Phthalocyanine Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 6794-6800.	1.5	19
977	Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline. Applied Catalysis A: General, 2018, 556, 20-28.	2.2	37
978	Device physics of van der Waals heterojunction solar cells. Npj 2D Materials and Applications, 2018, 2, .	3.9	100
979	High Repetition Rate QML YVO ₄ /Nd:YVO ₄ /YVO ₄ Laser With a Reflective MoS ₂ -SA. IEEE Photonics Technology Letters, 2018, 30, 553-556.	1.3	7
980	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	5.2	84
981	Controllable Edge Exposure of MoS ₂ for Efficient Hydrogen Evolution with High Current Density. ACS Applied Energy Materials, 2018, 1, 1268-1275.	2.5	44
982	Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS ₂ van der Waals composites. Journal of Materials Chemistry A, 2018, 6, 5016-5024.	5.2	132
983	Robust nanofabrication of monolayer MoS ₂ islands with strong photoluminescence enhancement via local anodic oxidation. 2D Materials, 2018, 5, 025018.	2.0	20
984	Atomic layer deposition of sub-10â€⁻nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization. Applied Surface Science, 2018, 443, 421-428.	3.1	18
985	Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS ₂ . Small, 2018, 14, e1800079.	5.2	224
986	Modification of the optoelectronic properties of two-dimensional MoS2 crystals by ultraviolet-ozone treatment. Applied Surface Science, 2018, 443, 91-96.	3.1	21
987	Pyrolytic carbon supported alloying metal dichalcogenides as free-standing electrodes for efficient hydrogen evolution. Carbon, 2018, 132, 512-519.	5.4	18
988	Oxide-mediated recovery of field-effect mobility in plasma-treated MoS ₂ . Science Advances, 2018, 4, eaao5031.	4.7	82
989	Electronic band structure of Two-Dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">WS<mml:mn>2</mml:mn></mml:mi </mml:msub> /Graphene van der Waale Heterostructures Physical Paview B 2018 97</mml:math 	1.1	63
990	Enhanced thermal conductivity and mechanical properties of hybrid MoS ₂ /hâ€BN polyurethane nanocomposites. Journal of Applied Polymer Science, 2018, 135, 46560.	1.3	29
991	Low-Carrier-Density Sputtered MoS2 Film by Vapor-Phase Sulfurization. Journal of Electronic Materials, 2018, 47, 3497-3501.	1.0	36
992	Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation. Journal of Nonlinear Optical Physics and Materials, 2018, 27, 1850010.	1.1	15
993	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 1: The Influence of Inorganic Salt on the Properties of NiMo Catalysts. Energy & amp; Fuels, 2018, 32, 6204-6212.	2.5	16

#	Asymetrizependent second-order Raman intensity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m< th=""><th>lF i</th><th>CITATIONS</th></mml:m<></mml:msub></mml:mrow></mml:math 	lF i	CITATIONS
994	mathvariant= normal >S <mmi:mn>2 and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mmi:mrow><mmi:mi>WS</mmi:mi><mmi:msub><mmi:m mathvariant="normal">S<mmi:msub></mmi:msub></mmi:m </mmi:msub></mmi:mrow></mmi:math </mmi:mn>	1.1 ii	24
995	Self-adaptive MoS 2 -Pb-Ti film for vacuum and humid air. Surface and Coatings Technology, 2018, 345, 152-166.	2.2	22
996	Force and light tuning vertical tunneling current in the atomic layered MoS ₂ . Nanotechnology, 2018, 29, 275202.	1.3	10
997	Interferenceâ€Enhanced Broadband Absorption of Monolayer MoS ₂ on Subâ€100 nm Thick SiO ₂ /Si Substrates: Reflection and Transmission Phase Changes at Interfaces. Advanced Materials Interfaces, 2018, 5, 1701637.	1.9	17
998	Prediction of delamination state of 2D filler materials in cyclic olefin copolymer for enhanced barrier applications. Composite Structures, 2018, 202, 853-859.	3.1	3
999	Raman studies of MoS 2 under strain at different uniaxial directions. Vacuum, 2018, 153, 274-276.	1.6	14
1000	Materials-by-design: computation, synthesis, and characterization from atoms to structures. Physica Scripta, 2018, 93, 053003.	1.2	32
1001	Synaptic Computation Enabled by Joule Heating of Single-Layered Semiconductors for Sound Localization. Nano Letters, 2018, 18, 3229-3234.	4.5	134
1002	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	2.8	90
1003	Nanopatterned High-Frequency Supporting Structures Stably Eliminate Substrate Effects Imposed on Two-Dimensional Semiconductors. Nano Letters, 2018, 18, 2893-2902.	4.5	3
1004	Mapping Catalytically Relevant Edge Electronic States of MoS ₂ . ACS Central Science, 2018, 4, 493-503.	5.3	39
1005	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	3.6	77
1006	Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nature Communications, 2018, 9, 1301.	5.8	117
1007	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
1008	Improved luminescence properties of MoS ₂ monolayers grown via MOCVD: role of pre-treatment and growth parameters. Nanotechnology, 2018, 29, 295704.	1.3	23
1009	Interlayer Coupling Induced Infrared Response in WS ₂ /MoS ₂ Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1800339.	7.8	114
1010	Two-dimensional electronic transport and surface electron accumulation in MoS2. Nature Communications, 2018, 9, 1442.	5.8	132
1011	Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology, 2018, 29, 265203.	1.3	108

#	Article	IF	CITATIONS
1012	Deterministic and Etchingâ€Free Transfer of Largeâ€Scale 2D Layered Materials for Constructing Interlayer Coupled van der Waals Heterostructures. Advanced Materials Technologies, 2018, 3, 1700282.	3.0	26
1013	Scalable production of few-layer molybdenum disulfide nanosheets by supercritical carbon dioxide. Journal of Materials Science, 2018, 53, 7258-7265.	1.7	15
1014	Vapor phase sulfurization synthesis of interlayer-expanded MoS2@C hollow nanospheres as a robust anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 745, 8-15.	2.8	27
1015	New Approach to Unveiling Individual Atomic Layers of 2D Materials and Their Heterostructures. Chemistry of Materials, 2018, 30, 1718-1728.	3.2	19
1016	Cation-Controlled Electrocatalytical Activity of Transition-Metal Disulfides. ACS Catalysis, 2018, 8, 2774-2781.	5.5	58
1017	Optically Active 1D MoS ₂ Nanobelts. ACS Applied Materials & Interfaces, 2018, 10, 6799-6804.	4.0	23
1018	Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM versus sMIM. Journal of Physics Communications, 2018, 2, 025013.	0.5	10
1019	Synthesis of Mo1â^'xNbxS2 thin films by separate-flow chemical vapor deposition with chloride sources. Thin Solid Films, 2018, 649, 171-176.	0.8	4
1020	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	4.0	55
1021	Hydrogen-assisted post-growth substitution of tellurium into molybdenum disulfide monolayers with tunable compositions. Nanotechnology, 2018, 29, 145603.	1.3	17
1022	Excitons and Trions in Oneâ€Photon―and Twoâ€Photonâ€Excited MoS ₂ : A Study in Dispersions. Advanced Materials, 2018, 30, e1706702.	11.1	45
1023	High-rate, flexible all-solid-state super-capacitor based on porous aerogel hybrids of MoS 2 /reduced graphene oxide. Journal of Electroanalytical Chemistry, 2018, 811, 96-104.	1.9	18
1024	Influence of DC-biasing on the performance of graphene spin valve. Solid State Communications, 2018, 272, 33-36.	0.9	3
1025	Tm-doped fiber laser mode-locking with MoS 2 -polyvinyl alcohol saturable absorber. Optical Fiber Technology, 2018, 41, 187-192.	1.4	38
1026	Charging effect at grain boundaries of MoS ₂ . Nanotechnology, 2018, 29, 195704.	1.3	12
1027	Tuning the Electronic and Photonic Properties of Monolayer MoS ₂ via In Situ Rhenium Substitutional Doping. Advanced Functional Materials, 2018, 28, 1706950.	7.8	137
1028	Electrochemical Investigation of Natural Ore Molybdenite (MoS ₂) as a First-Hand Anode for Lithium Storages. ACS Applied Materials & Interfaces, 2018, 10, 6378-6389.	4.0	52
1029	High Detectivity and Transparent Fewâ€Layer MoS ₂ /Glassyâ€Graphene Heterostructure Photodetectors. Advanced Materials, 2018, 30, e1706561.	11.1	111

#	Article	IF	CITATIONS
1030	Metallic 1T-Li _x MoS ₂ co-catalyst enhanced photocatalytic hydrogen evolution over Znln ₂ S ₄ floriated microspheres under visible light irradiation. Catalysis Science and Technology, 2018, 8, 1375-1382.	2.1	31
1031	Two-dimensional Fe ₃ O ₄ /MoS ₂ nanocomposites for a magnetorheological fluid with enhanced sedimentation stability. Soft Matter, 2018, 14, 1917-1924.	1.2	27
1032	Controllable Synthesis of Spherical Al-SBA-16 Mesoporous Materials with Different Crystal Sizes and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Industrial & Engineering Chemistry Research, 2018, 57, 2498-2507.	1.8	19
1033	Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS ₂ Nanostructures. ACS Nano, 2018, 12, 954-964.	7.3	93
1034	Dependence of Photocurrent Enhancements in Quantum Dot (QD) ensitized MoS ₂ Devices on MoS ₂ Film Properties. Advanced Functional Materials, 2018, 28, 1706149.	7.8	20
1035	Largeâ€Scale Fabrication of MoS ₂ Ribbons and Their Lightâ€Induced Electronic/Thermal Properties: Dichotomies in the Structural and Defect Engineering. Advanced Functional Materials, 2018, 28, 1704863.	7.8	25
1036	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
1037	Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 7425-7434.	1.1	2
1038	Self-Assembly of Hierarchically Porous ZSM-5/SBA-16 with Different Morphologies and Its High Isomerization Performance for Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. ACS Catalysis, 2018, 8, 1891-1902.	5.5	61
1039	Surfaceâ€Functionalizationâ€Mediated Direct Transfer of Molybdenum Disulfide for Largeâ€Area Flexible Devices. Advanced Functional Materials, 2018, 28, 1706231.	7.8	66
1040	The Coupled Straintronic-Photothermic Effect. Scientific Reports, 2018, 8, 64.	1.6	8
1041	Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction. Advanced Sustainable Systems, 2018, 2, 1700142.	2.7	36
1042	Effects of Excitonic Resonance on Second and Third Order Nonlinear Scattering from Few-Layer MoS ₂ . ACS Photonics, 2018, 5, 1235-1240.	3.2	25
1043	Facile scalable synthesis of ordered macroporous few-layer MoS2 and carbon hybrid nanoarchitectures with sodium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 3492-3501.	1.1	4
1044	Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2018, 29, 4658-4667.	1.1	9
1045	Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate. Applied Surface Science, 2018, 437, 70-74.	3.1	20
1046	Nanostructured MoS ₂ -Based Advanced Biosensors: A Review. ACS Applied Nano Materials, 2018, 1, 2-25.	2.4	238
1047	Fabrication of 3D Porous Hierarchical NiMoS Flowerlike Architectures for Hydrodesulfurization Applications. ACS Applied Nano Materials, 2018, 1, 442-454.	2.4	29

#	Article	IF	CITATIONS
1048	Facile and cost-effective methodology to fabricate MoS 2 counter electrode for efficient dye-sensitized solar cells. Dyes and Pigments, 2018, 151, 7-14.	2.0	47
1049	Topotactic synthesis of size-tuned MoS2 inorganic fullerenes that allows revealing particular catalytic properties of curved basal planes. Applied Catalysis B: Environmental, 2018, 227, 44-53.	10.8	25
1050	Superior Electro-Oxidation and Corrosion Resistance of Monolayer Transition Metal Disulfides. ACS Applied Materials & Interfaces, 2018, 10, 4285-4294.	4.0	23
1051	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 1864-1868.	1.6	67
1052	MoS ₂ â€onâ€MXene Heterostructures as Highly Reversible Anode Materials for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 1846-1850.	7.2	520
1053	Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film. Nano Letters, 2018, 18, 482-490.	4.5	105
1054	Prussian Blue@MoS ₂ Layer Composites as Highly Efficient Cathodes for Sodium―and Potassiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1706125.	7.8	88
1055	Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale, 2018, 10, 1766-1773.	2.8	57
1056	Effect of growth temperature on large surface area, ultrathin MoS2 nanofilms fabrication and photovoltaic efficiency. Solar Energy, 2018, 159, 88-96.	2.9	13
1057	Atomic layer deposition of molybdenum disulfide films using MoF6 and H2S. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	29
1058	Rapid reaction of MoS ₂ nanosheets with Pb ²⁺ and Pb ⁴⁺ ions in solution. Nanoscale, 2018, 10, 1807-1814.	2.8	14
1059	Magneticâ€Inducedâ€Piezopotential Gated MoS ₂ Fieldâ€Effect Transistor at Room Temperature. Advanced Materials, 2018, 30, 1704524.	11.1	47
1061	Pâ€GaSe/Nâ€MoS ₂ Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation. Small, 2018, 14, 1702731.	5.2	87
1062	All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml3" display="inline" overflow="scroll" altimg="si3.gif"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="bold">2</mml:mi </mml:mrow></mml:msub>saturable absorber. Optics</mml:math 	1.0	26
1063	Atomic layer deposition of crystalline epitaxial MoS ₂ nanowall networks exhibiting superior performance in thin-film rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 2302-2310.	5.2	40
1064	Ultrathin MoS ₂ -coated Ag@Si nanosphere arrays as an efficient and stable photocathode for solar-driven hydrogen production. Nanotechnology, 2018, 29, 105402.	1.3	10
1065	Combustion Synthesis of p-Type Transparent Conducting CuCrO _{2+<i>x</i>} and Cu:CrO _{<i>x</i>} Thin Films at 180 °C. ACS Applied Materials & Interfaces, 2018, 10, 3732-3738.	4.0	29
1066	Production of mono- to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method. Journal of Colloid and Interface Science, 2018, 515, 27-31.	5.0	57

#	Article	IF	CITATIONS
1067	Sulfur-doped reduced graphene oxide/MoS2 composite with exposed active sites as efficient Pt-free counter electrode for dye-sensitized solar cell. Applied Surface Science, 2018, 452, 232-238.	3.1	32
1068	Structural defects in a nanomesh of bulk MoS2 using an anodic aluminum oxide template for photoluminescence efficiency enhancement. Scientific Reports, 2018, 8, 6648.	1.6	19
1069	Optical visualization of MoS2 grain boundaries by gold deposition. Science China Materials, 2018, 61, 1154-1158.	3.5	8
1070	Facile and Costâ€Efficient Synthesis of Quasiâ€0D/2D ZnO/MoS ₂ Nanocomposites for Highly Enhanced Visibleâ€Lightâ€Driven Photocatalytic Degradation of Organic Pollutants and Antibiotics. Chemistry - A European Journal, 2018, 24, 9305-9315.	1.7	61
1071	Novel C fibers@MoS2 nanoplates core-shell composite for efficient solar-driven photocatalytic degradation of Cr(VI) and RhB. Journal of Alloys and Compounds, 2018, 753, 378-387.	2.8	12
1072	One-Step Synthesis of Metal/Semiconductor Heterostructure NbS ₂ /MoS ₂ . Chemistry of Materials, 2018, 30, 4001-4007.	3.2	85
1073	Low-temperature, plasma assisted, cyclic synthesis of MoS2. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	6
1074	One-Pot Green Synthesis of Fe ₃ O ₄ /MoS ₂ OD/2D Nanocomposites and Their Application in Noninvasive Point-of-Care Glucose Diagnostics. ACS Applied Nano Materials, 2018, 1, 1949-1958.	2.4	33
1075	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	6.6	757
1076	Sizeâ€Controllable Synthesis of NiMoS Nanoflowers for Hydrodesulfurization – Spaceâ€Confinement Effect of Silica Nanospheres. European Journal of Inorganic Chemistry, 2018, 2018, 1988-1992.	1.0	2
1077	Epitaxially grown monolayer VSe 2 : an air-stable magnetic two-dimensional material with low work function at edges. Science Bulletin, 2018, 63, 419-425.	4.3	92
1078	Soft-type trap-induced degradation of MoS ₂ field effect transistors. Nanotechnology, 2018, 29, 22LT01.	1.3	4
1079	Robust spin-valley polarization in commensurate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> /graphene heterostructures. Physical Review B, 2018, 97, .</mml:math 	^{ìi} 1.1	27
1080	Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy, 2018, 48, 526-535.	8.2	99
1081	Tunneling Transistors Based on MoS ₂ /MoTe ₂ Van der Waals Heterostructures. IEEE Journal of the Electron Devices Society, 2018, 6, 1048-1055.	1.2	33
1082	Highly enhanced response of MoS ₂ /porous silicon nanowire heterojunctions to NO ₂ at room temperature. RSC Advances, 2018, 8, 11070-11077.	1.7	53
1083	Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Composites Science and Technology, 2018, 159, 103-110.	3.8	55
1084	Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7326-7337.	3.8	23

#	Article	IF	CITATIONS
1085	Tailoring of defect luminescence in CVD grown monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>MoS</mml:mtext></mml:mrow><mml:mr Applied Surface Science, 2018, 445, 542-547.</mml:mr </mml:msub></mml:mrow></mml:math 	∙ow> <mm< td=""><td>l:mn>2</td></mm<>	l:mn>2
1086	Investigation on nonlinear optical properties of MoS ₂ nanoflakes grown on silicon and quartz substrates. Journal Physics D: Applied Physics, 2018, 51, 195302.	1.3	18
1087	A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers. Journal of Materials Science: Materials in Electronics, 2018, 29, 8785-8792.	1.1	17
1088	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie, 2018, 130, 5542-5546.	1.6	127
1089	Graphene-like monolayer InSe– <i>X</i> : several promising half-metallic nanosheets in spintronics. Journal of Physics Condensed Matter, 2018, 30, 155306.	0.7	6
1090	Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B. 2018. 97</mml:mn></mml:msub></mml:math 	n n ? <td>l:msub></td>	l:msub>
1091	Enhanced Gas Sensing Properties of Liquid-Processed Semiconducting Tungsten Chalcogenide (WX _i , X = O and S) Based Hybrid Nanomaterials. IEEE Sensors Journal, 2018, 18, 3494-3501.	2.4	25
1092	All fiber-optic ultra-sensitive temperature sensor using few-layer MoS2 coated D-shaped fiber. Optics Communications, 2018, 406, 139-144.	1.0	35
1093	A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage. Energy Storage Materials, 2018, 10, 282-290.	9.5	52
1094	Amorphous MoS2 nanosheets grown on copper@nickel-phosphorous dendritic structures for hydrogen evolution reaction. Applied Surface Science, 2018, 432, 183-189.	3.1	26
1095	Oxidation layering mechanism of graphene-like MoS2 prepared by the intercalation-detonation method. Nano Research, 2018, 11, 997-1003.	5.8	8
1096	Hydrogen Annealing Effect on the Magnetic Properties of ZnCoO/MoS2 Hybrid. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1241-1245.	0.8	2
1097	Hysteresis in the transfer characteristics of MoS ₂ transistors. 2D Materials, 2018, 5, 015014.	2.0	209
1098	An enhanced dissolution rate of molybdenite and variable activation energy. Hydrometallurgy, 2018, 175, 52-63.	1.8	13
1099	Template-assisted sol–gel synthesis of porous MoS2/C nanocomposites as anode materials for lithium-ion batteries. Journal of Sol-Gel Science and Technology, 2018, 85, 140-148.	1.1	15
1100	Dopamine Selfâ€Polymerization Enables an Nâ€Doped Carbon Coating of Exfoliated MoS ₂ Nanoflakes for Anodes of Lithiumâ€ion Batteries. ChemElectroChem, 2018, 5, 383-390.	1.7	21
1101	Salt-assisted clean transfer of continuous monolayer MoS 2 film for hydrogen evolution reaction. Physica B: Condensed Matter, 2018, 532, 84-89.	1.3	12
1102	Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 2018, 30, 1703771.	11.1	245

#	Article	IF	Citations
1103	Rolling up two-dimensional sheets into nanoscrolls. FlatChem, 2018, 7, 26-33.	2.8	11
1104	Graphene/surfactant-assisted synthesis of edge-terminated molybdenum disulfide with enlarged interlayer spacing. Materials Letters, 2018, 210, 248-251.	1.3	16
1105	Enhanced thermal transport across monolayer MoS2. Nano Research, 2018, 11, 2173-2180.	5.8	15
1106	Pressure-dependent large area synthesis and electronic structure of MoS 2. Materials Research Bulletin, 2018, 97, 265-271.	2.7	5
1107	<i>In situ</i> carbon encapsulation of vertical MoS ₂ arrays with SnO ₂ for durable high rate lithium storage: dominant pseudocapacitive behavior. Nanoscale, 2018, 10, 741-751.	2.8	41
1108	Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor. Journal of Alloys and Compounds, 2018, 735, 1505-1513.	2.8	81
1109	Quantitative analysis of charge trapping and classification of sub-gap states in MoS ₂ TFT by pulse <i>I</i> – <i>V</i> method. Nanotechnology, 2018, 29, 175704.	1.3	14
1110	Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 2018, 258, 775-782.	4.0	121
1111	3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis. Advanced Materials, 2018, 30, 1705110.	11.1	171
1112	Optical trapping and optical force positioning of two-dimensional materials. Nanoscale, 2018, 10, 1245-1255.	2.8	44
1113	Spin Valve Effect of 2Dâ€Materials Based Magnetic Junctions. Advanced Engineering Materials, 2018, 20, 1700692.	1.6	12
1114	Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS2. Friction, 2018, 6, 395-406.	3.4	48
1115	Giant gap-plasmon tip-enhanced Raman scattering of MoS ₂ monolayers on Au nanocluster arrays. Nanoscale, 2018, 10, 2755-2763.	2.8	70
1116	Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sensors and Actuators B: Chemical, 2018, 259, 1090-1098.	4.0	57
1117	Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides. Nanoscale, 2018, 10, 336-341.	2.8	38
1118	Enhanced Performance of MoS ₂ Photodetectors by Inserting an ALDâ€Processed TiO ₂ Interlayer. Small, 2018, 14, 1703176.	5.2	51
1119	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
1120	Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS ₂ . Angewandte Chemie, 2018, 130, 1246-1249.	1.6	46

ARTICLE IF CITATIONS Structure Reâ€determination and Superconductivity Observation of Bulk 1T MoS₂. 1121 7.2 126 Angewandte Chemie - International Edition, 2018, 57, 1232-1235. Differential Modulating Effect of MoS₂ on Amyloid Peptide Assemblies. Chemistry - A European Journal, 2018, 24, 3397-3402. 1.7 Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion 1123 3.120 battery anodes. Applied Surface Science, 2018, 434, 1021-1029. Incorporation of Co into MoS2/graphene nanocomposites: One effective way to enhance the cycling 1124 4.0 stability of Li/Na storage. Journal of Power Sources, 2018, 373, 103-109. A microwave-assisted thermolysis route to single-step preparation of MoS₂/CdS composite photocatalysts for active hydrogen generation. Sustainable Energy and Fuels, 2018, 2, 1125 2.5 27 430-435. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156. 2.6 <i>In Vitro</i>Bioactivity of One- and Two-Dimensional Nanoparticle-Incorporated Bone Tissue 1127 1.6 14 Engineering Scaffolds. Tissue Engineering - Part A, 2018, 24, 641-652. Structural properties of MoS₂ layers grown by CVD technique. Integrated Ferroelectrics, 0.3 2018, 194, 16-20. Raman scattering from the bulk inactive out–of–plane \$\${{f{B}}}_{{f{2}}{f{g}}}^{{f{1}}\$\$ 1129 1.6 12 mode in few–layer MoTe2. Scientific Reports, 2018, 8, 17745. SERS effect of selectively adsorbed dyes by hydrothermally-produced MoS2 nanosheets. New Journal 1.4 14 of Chemistry, 2018, 42, 18906-18912. Water-soluble MoS₂ quantum dots for facile and sensitive fluorescence sensing of 1131 alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale, 2018, 49 2.8 10, 21298-21306. A novel multi-flaw MoS₂ nanosheet piezocatalyst with superhigh degradation efficiency 2.2 for ciprofloxacin. Environmental Science: Nano, 2018, 5, 2876-2887. Low-defectiveness exfoliation of MoS2 nanoparticles and their embedment in hybrid light-emitting 1133 2.8 16 polymer nanofibers. Nanoscale, 2018, 10, 21748-21754. An \tilde{A} ...ngstr \tilde{A} ¶m-level <i>d</i>-spacing controlling synthetic route for MoS₂ towards stable intercalation of sodium ions. Journal of Materials Chemistry A, 2018, 6, 22513-22518. 1134 5.2 24 An Xps Study of Solid Solutions Mo1 \hat{a} CNbxS2 (0 < x < 0.15). Journal of Structural Chemistry, 2018, 59, 1135 0.31 1833-1840. The Electrical Performances of Monolayer MoS<inf>2</inf>-Based Transistors Under Ultra-Low Temperature., 2018,,. Large surface and pore structure of mesoporous WS2 and RGO nanosheets with small amount of Pt 1137 as a highly efficient electrocatalyst for hydrogen evolution. International Journal of Hydrogen 3.8 12 Energy, 2018, 43, 22905-22916. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018, 11, .

#	ARTICLE Defect-rich MoS /carbon nanofiber arrays on carbon cloth for highly efficient electrocatalytic	IF	CITATIONS
1139	hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 23118-23125. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures. ACS Applied Materials & amp; Interfaces, 2018, 10, 44102-44108.	4.0	29
1141	Rubbing-Induced Site-Selective Growth of MoS ₂ Device Patterns. ACS Applied Materials & Interfaces, 2018, 10, 43774-43784.	4.0	21
1142	Increased yield of MoS2 monolayer exfoliation through the bimetallic corrosion of aluminum. Applied Physics Letters, 2018, 113, 213101.	1.5	1
1143	Direct Exfoliation of Natural SiO2-Containing Molybdenite in Isopropanol: A Cost Efficient Solution for Large-Scale Production of MoS2 Nanosheetes. Nanomaterials, 2018, 8, 843.	1.9	8
1144	Selective Transfer of Rotationally Commensurate MoS ₂ from an Epitaxially Grown van der Waals Heterostructure. Chemistry of Materials, 2018, 30, 8495-8500.	3.2	6
1145	Trion-Inhibited Strong Excitonic Emission and Broadband Giant Photoresponsivity from Chemical Vapor-Deposited Monolayer MoS ₂ Grown in Situ on TiO ₂ Nanostructure. ACS Applied Materials & Interfaces, 2018, 10, 42812-42825.	4.0	36
1146	<i>Colloquium</i> : Phononic thermal properties of two-dimensional materials. Reviews of Modern Physics, 2018, 90, .	16.4	238
1147	Synthesis of Silicene. Nanoscience and Technology, 2018, , 99-113.	1.5	1
1148	Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nature Communications, 2018, 9, 4778.	5.8	98
1149	Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362, 817-821.	6.0	336
1150	Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Physical Chemistry Chemical Physics, 2018, 20, 28777-28785.	1.3	15
1151	Discovering the forbidden Raman modes at the edges of layered materials. Science Advances, 2018, 4, eaau6252.	4.7	33
1152	Unveiling the Structure of MoS <i>_x</i> Nanocrystals Produced upon Laser Fragmentation of MoS ₂ Platelets. ACS Omega, 2018, 3, 16728-16734.	1.6	10
1153	Selfâ€Powered MoS ₂ –PDPP3T Heterotransistorâ€Based Broadband Photodetectors. Advanced Electronic Materials, 2019, 5, 1800580.	2.6	35
1154	Quasi-1D TiS ₃ Nanoribbons: Mechanical Exfoliation and Thickness-Dependent Raman Spectroscopy. ACS Nano, 2018, 12, 12713-12720.	7.3	77
1155	Defect Engineering of MoS ₂ and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. Chemistry - an Asian Journal, 2019, 14, 278-285.	1.7	39
1156	Ultraviolet Irradiation Treatment for Enhanced Sodium Storage Performance Based on Wide-Interlayer-Spacing Hollow C@MoS ₂ @CN Nanospheres. ACS Applied Materials & Interfaces, 2018, 10, 38084-38092.	4.0	29

#	Article	IF	CITATIONS
1157	Morphological Engineering of Winged Au@MoS ₂ Heterostructures for Electrocatalytic Hydrogen Evolution. Nano Letters, 2018, 18, 7104-7110.	4.5	96
1158	Facile Synthesis of Superstructured MoS ₂ and Graphitic Nanocarbon Hybrid for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14441-14449.	3.2	41
1159	A curious observation of Pauli-Blocking in MoS2-quantum dots/graphene hybrid system. Journal of Applied Physics, 2018, 124, .	1.1	8
1160	Temperature dependence of Raman responses of few-layer PtS ₂ . Nanotechnology, 2018, 29, 505709.	1.3	23
1161	Analysis of the relationship between the contact barrier and rectification ratio in a two-dimensional P–N heterojunction. Semiconductor Science and Technology, 2018, 33, 114012.	1.0	8
1162	Position sensitivity of optical nano-antenna arrays on optoelectronic devices. Nano Energy, 2018, 53, 734-744.	8.2	13
1163	The morphological control of MoS2 films using a simple model under chemical vapor deposition. Thin Solid Films, 2018, 666, 150-155.	0.8	7
1164	Allâ€Inorganic Perovskite Quantum Dotâ€Monolayer MoS ₂ Mixedâ€Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector. Advanced Science, 2018, 5, 1801219.	5.6	157
1165	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	7.3	203
1166	2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018, 13, 242-270.	2.3	139
1167	Chitosan-Induced Synthesis of Hierarchical Flower Ridge-like MoS ₂ /N-Doped Carbon Composites with Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 35953-35962.	4.0	42
1168	Tuning the structure of three dimensional nanostructured molybdenum disulfide/nitrogen-doped carbon composite for high lithium storage. Electrochimica Acta, 2018, 291, 197-205.	2.6	8
1169	Large surface charge accumulation in 2D MoS2/Sb2Te3 junction and its effect on junction properties: KPFM based study. Applied Physics Letters, 2018, 113, 141603.	1.5	11
1170	Abrupt Thermal Shock of (NH ₄) ₂ Mo ₃ S ₁₃ Leads to Ultrafast Synthesis of Porous Ensembles of MoS ₂ Nanocrystals for High Gain Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 38193-38200.	4.0	5
1171	Ternary MoS2/MoO3/C Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Electronic Materials, 2018, 47, 6767-6773.	1.0	8
1172	Dielectric Properties and Ion Transport in Layered MoS ₂ Grown by Vapor-Phase Sulfurization for Potential Applications in Nanoelectronics. ACS Applied Nano Materials, 2018, 1, 6197-6204.	2.4	25
1173	2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors, 2018, 18, 3638.	2.1	382
1174	Probing Evolution of Local Strain at MoS ₂ -Metal Boundaries by Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2018, 10, 40246-40254.	4.0	28

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1175	Photoresponsive behavior of electron-beam irradiated MoS2 films. Applied Physics Letters, 201	8, 113, .	1.5	9
1176	High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. A Applied Materials & Interfaces, 2018, 10, 43291-43298.	CS	4.0	56
1177	Challenges of fabrication of a large-area-uniform molybdenum disulfide layered thin film at low growth temperature by atmospheric-pressure solution-based mist CVD. Japanese Journal of App Physics, 2018, 57, 110306.	olied	0.8	6
1178	Impact of Synthesized MoS ₂ Wafer-Scale Quality on Fermi Level Pinning in Vertic. Schottky-Barrier Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 39860-3	al 9871.	4.0	5
1179	Near Infrared Random Lasing in Multilayer MoS ₂ . ACS Omega, 2018, 3, 14097-14	102.	1.6	13
1180	Highâ€Performance Waferâ€Scale MoS ₂ Transistors toward Practical Application 2018, 14, e1803465.	. Small,	5.2	88
1181	High Response, Self-Powered Photodetector Based on the Monolayer MoS ₂ /P– Heterojunction with Asymmetric Electrodes. Langmuir, 2018, 34, 14151-14157.	Si	1.6	45
1182	Enhanced Raman Scattering of CuPc Films on Imperfect WSe ₂ Monolayer Correla Exciton and Chargeâ€Transfer Resonances. Advanced Functional Materials, 2018, 28, 1805710	ted to).	7.8	56
1183	Signatures of self-trapping of trions in monolayer MoS2. Journal Physics D: Applied Physics, 20 435102.	18, 51,	1.3	1
1184	Defect sizing, separation, and substrate effects in ion-irradiated monolayer two-dimensional materials. Physical Review B, 2018, 98, .		1.1	46
1185	3D core–shell MoS ₂ superspheres composed of oriented nanosheets with quas molecular superlattices: mimicked embryo formation and Li-storage properties. Journal of Mate Chemistry A, 2018, 6, 18498-18507.	i rials	5.2	32
1186	Hybrid Characteristics of MoS ₂ Monolayer with Organic Semiconducting Tetracer Application to Anti-Ambipolar Field Effect Transistor. ACS Applied Materials & amp; Interfaces, 2 32556-32566.	ne and 2018, 10,	4.0	43
1187	Large‣cale Synthesis of Flexible, Stable, and Transparent MoS ₂ Quantum Dots Alcohol Sensing Film. Particle and Particle Systems Characterization, 2018, 35, 1800189.	à€₽olyvinyl	1.2	3
1188	Molecular-Beam Epitaxy of Two-Dimensional In ₂ Se ₃ and Its Giant Electroresistance Switching in Ferroresistive Memory Junction. Nano Letters, 2018, 18, 6340-6	346.	4.5	163
1189	Influences of temperature gradient and distance on the morphologies of MoS2 domains. AIP A 2018, 8, .	dvances,	0.6	7
1190	Interfacing Transition Metal Dichalcogenides with Carbon Nanodots for Managing Photoinduce Energy and Charge-Transfer Processes. Journal of the American Chemical Society, 2018, 140, 13488-13496.	ed	6.6	45
1191	Optical properties of the crumpled pattern of selectively layered MoS ₂ . Optics Let 2018, 43, 4590.	cters,	1.7	9
1192	Boosted Electrocatalytic N ₂ Reduction to NH ₃ by Defectâ€Rich MoS ₂ Nanoflower. Advanced Energy Materials, 2018, 8, 1801357.		10.2	482

#	Article	IF	CITATIONS
1193	Free-standing polylactic acid/chitosan/molybdenum disulfide films with controllable visible-light photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 488-494.	2.3	12
1194	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Films with Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Interfaces, 2018, 10, 34392-34400.	4.0	22
1195	MoS ₂ monolayers on Si and SiO ₂ nanocone arrays: influences of 3D dielectric material refractive index on 2D MoS ₂ optical absorption. Nanoscale, 2018, 10, 18920-18925.	2.8	11
1196	Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Physical Review B, 2018, 98, .	1.1	92
1197	Holey MoS ₂ Nanosheets with Photocatalytic Metal Rich Edges by Ambient Electrospray Deposition for Solar Water Disinfection. Global Challenges, 2018, 2, 1800052.	1.8	26
1198	Bidirectionally-trigged 2D MoS2 synapse through coplanar-gate electric-double-layer polymer coupling for neuromorphic complementary spatiotemporal learning. Organic Electronics, 2018, 63, 120-128.	1.4	65
1199	Controlling the morphology of ultrathin MoS2/MoO2 nanosheets grown by chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G509.	0.9	3
1200	Optical and electrical transport properties of ZnO/MoS2 heterojunction p-n structure. Materials Chemistry and Physics, 2018, 220, 433-440.	2.0	16
1201	Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale, 2018, 10, 17105-17111.	2.8	32
1202	Transfer layer formation in MoS2/hydroxypropyl methylcellulose composite. Wear, 2018, 408-409, 208-213.	1.5	21
1203	Monolayer MoS2-based high energy rectangular pulse fiber laser. Optik, 2018, 174, 530-536.	1.4	6
1204	Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. Npj Computational Materials, 2018, 4, .	3.5	61
1205	Exfoliation of Transition Metal Dichalcogenides by a High-Power Femtosecond Laser. Scientific Reports, 2018, 8, 12957.	1.6	48
1206	Controllable one-step growth of bilayer MoS ₂ –WS ₂ /WS ₂ heterostructures by chemical vapor deposition. Nanotechnology, 2018, 29, 455707.	1.3	26
1207	Developing High-Energy Dissipative Soliton 2 μm Tm3+-Doped Fiber Lasers. , 2018, , .		0
1208	Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes. Journal of Solid State Electrochemistry, 2018, 22, 2801-2809.	1.2	5
1209	Homogeneous surface oxidation and triangle patterning of monolayer MoS2 by hydrogen peroxide. Applied Surface Science, 2018, 452, 451-456.	3.1	18
1210	Defect mediated magnetic transitions in Fe and Mn doped MoS ₂ . Physical Chemistry Chemical Physics, 2018, 20, 15817-15823.	1.3	19

#	Article	IF	CITATIONS
1211	Defect-Free Copolymer Gate Dielectrics for Gating MoS ₂ Transistors. Journal of Physical Chemistry C, 2018, 122, 12193-12199.	1.5	15
1212	Tuning Transport and Photoelectric Performance of Monolayer MoS ₂ Device by Eâ€Beam Irradiation. Advanced Materials Interfaces, 2018, 5, 1800348.	1.9	21
1213	Conversion of Single Crystal (NH4)2Mo3S13·H2O to Isomorphic Pseudocrystals of MoS2Nanoparticles. Chemistry of Materials, 2018, 30, 3847-3853.	3.2	14
1214	Incorporating MoS ₂ saturable absorption with nonlinear polarization rotation for stabilized mode-locking fibre lasers. Laser Physics Letters, 2018, 15, 075102.	0.6	16
1215	Asymmetric Schottky Contacts in Bilayer MoS ₂ Field Effect Transistors. Advanced Functional Materials, 2018, 28, 1800657.	7.8	162
1216	Carbon-coated molybdenum carbide nanosheets derived from molybdenum disulfide for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12610-12617.	3.8	27
1217	Controllable solution-fabrication of triphasic 2H@1T-MoS2/graphene heterostructure with assistance of supercritical CO2. Surfaces and Interfaces, 2018, 12, 41-49.	1.5	9
1218	Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe ₂ Single Crystals and Their Thickness-Dependent Electronic Properties. Nano Letters, 2018, 18, 3523-3529.	4.5	147
1219	Dispersible MoS ₂ micro-sheets induced a proinflammatory response and apoptosis in the gills and liver of adult zebrafish. RSC Advances, 2018, 8, 17826-17836.	1.7	16
1220	One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. International Journal of Hydrogen Energy, 2018, 43, 11141-11149.	3.8	66
1221	Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors. Journal of the Korean Physical Society, 2018, 72, 1203-1208.	0.3	7
1222	Fabrication of monolayer MoS2/rGO hybrids with excellent tribological performances through a surfactant-assisted hydrothermal route. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	26
1223	Anomalous electrical bistability in lateral grain rich polycrystalline molybdenum disulfide thin films. Vacuum, 2018, 155, 667-674.	1.6	4
1224	Controlled synthesis of 2D MX2 (M = Mo, W; X = S, Se) heterostructures and alloys. Journal of Applied Physics, 2018, 123, 204304.	1.1	15
1225	Type-II HfS ₂ /MoS ₂ Heterojunction Transistors. IEICE Transactions on Electronics, 2018, E101.C, 338-342.	0.3	6
1226	Increasing Exfoliation Yield in the Synthesis of MoS2 Quantum Dots for Optoelectronic and Other Applications through a Continuous Multicycle Acoustomicrofluidic Approach. ACS Applied Nano Materials, 2018, 1, 2503-2508.	2.4	19
1227	Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene. Nanotechnology, 2018, 29, 305401.	1.3	5
1228	Electronic Interactions in Illuminated Carbon Dot/MoS ₂ Ensembles and Electrocatalytic Activity towards Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 10468-10474.	1.7	33

#	Article	IF	CITATIONS
1229	All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science, 2018, 53, 11659-11670.	1.7	15
1230	Exceptional photoconductivity of poly(3-hexylthiophene) fibers through <i>in situ</i> encapsulation of molybdenum disulfide quantum dots. Nanoscale, 2018, 10, 10395-10402.	2.8	7
1231	Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS ₂ . ACS Nano, 2018, 12, 8547-8554.	7.3	34
1232	Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chemical Society Reviews, 2018, 47, 6764-6794.	18.7	178
1233	A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS ₂ /α-MoO ₃ hybrid heterostructured nanoflowers. Journal of Materials Chemistry A, 2018, 6, 15320-15329.	5.2	86
1234	Rational design of a 3D MoS ₂ /dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. Journal of Materials Chemistry A, 2018, 6, 13797-13805.	5.2	23
1235	Strongly enhanced exciton-phonon coupling in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>WS</mml:mi><mml:msub><mml:n mathvariant="normal">e<mml:mn>2</mml:mn></mml:n </mml:msub></mml:mrow>. Physical Review B, 2018, 97, .</mml:math 	^{າi} 1.1	30
1236	Generation of trapezoidal envelope pulses and soliton rains from passively mode-locked fiber laser with MoS ₂ saturable absorber on microfiber. Applied Physics Express, 2018, 11, 072504.	1.1	14
1237	Fabrication and Characterization of Two-Dimensional Layered MoS ₂ Thin Films by Pulsed Laser Deposition. Advances in Condensed Matter Physics, 2018, 2018, 1-5.	0.4	8
1238	Piezoâ€Phototronic Effect for Enhanced Flexible MoS ₂ /WSe ₂ van der Waals Photodiodes. Advanced Functional Materials, 2018, 28, 1802849.	7.8	130
1239	Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 14087-14095.	3.8	25
1240	Magnetron Sputter-Coated Nanoparticle MoS ₂ Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 7235-7242.	1.6	22
1241	Polyaniline: A novel bridge to reduce the fire hazards of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 112, 432-443.	3.8	71
1242	Carbon coated MoS2 nanosheets vertically grown on carbon cloth as efficient anode for high-performance sodium ion hybrid capacitors. Electrochimica Acta, 2018, 283, 36-44.	2.6	50
1243	Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS ₂ Field-Effect Transistors under High Electric Fields. ACS Nano, 2018, 12, 7109-7116.	7.3	43
1244	Transparent Glass with the Growth of Pyramid-Type MoS ₂ for Highly Efficient Water Disinfection under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2018, 10, 23444-23450.	4.0	48
1245	Blister-based-laser-induced-forward-transfer: a non-contact, dry laser-based transfer method for nanomaterials. Nanotechnology, 2018, 29, 385301.	1.3	14
1246	Mixedâ€Phase 2Dâ€MoS ₂ as an Effective Photocatalyst for Selective Aerobic Oxidative Coupling of Amines under Visibleâ€Light Irradiation. Chemistry - A European Journal, 2018, 24, 13871-13878.	1.7	45

#	Article	IF	Citations
1247	Effect of in-plane size of MoS2 nanoparticles grown over multilayer graphene on the electrochemical performance of anodes in Li-ion batteries. Electrochimica Acta, 2018, 283, 45-53.	2.6	17
1248	Thin-Layered Molybdenum Disulfide Nanoparticles as an Effective Polysulfide Mediator in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23122-23130.	4.0	39
1249	Nitrogen-Doped Silver-Nanoparticle-Decorated Transition-Metal Dichalcogenides as Surface-Enhanced Raman Scattering Substrates for Sensing Polycyclic Aromatic Hydrocarbons. ACS Applied Nano Materials, 2018, 1, 3625-3635.	2.4	20
1250	Nontrivial metallic state of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2018, 97, .</mml:mn></mml:msub></mml:math 	:m a.ı <td>nl:msub></td>	nl:msub>
1251	Synthesis mechanism of MoS2 layered crystals by chemical vapor deposition using MoO3 and sulfur powders. Journal of Alloys and Compounds, 2018, 765, 380-384.	2.8	41
1252	A hidden symmetry-broken phase of MoS ₂ revealed as a superior photovoltaic material. Journal of Materials Chemistry A, 2018, 6, 16087-16093.	5.2	16
1253	High carrier mobility in monolayer CVD-grown MoS ₂ through phonon suppression. Nanoscale, 2018, 10, 15071-15077.	2.8	74
1254	Synthesis of Ultrathin Metallic MTe ₂ (M = V, Nb, Ta) Singleâ€Crystalline Nanoplates. Advanced Materials, 2018, 30, e1801043.	11.1	183
1255	Acid-engineered defective MoS2 as an efficient electrocatalyst for hydrogen evolution reaction. Materials Letters, 2018, 230, 232-235.	1.3	15
1256	Structural Evolution of Molybdenum Disulfide Prepared by Atomic Layer Deposition for Realization of Large Scale Films in Microelectronic Applications. ACS Applied Nano Materials, 2018, 1, 4028-4037.	2.4	28
1257	Layer-Number-Dependent Exciton Recombination Behaviors of MoS ₂ Determined by Fluorescence-Lifetime Imaging Microscopy. Journal of Physical Chemistry C, 2018, 122, 18651-18658.	1.5	21
1258	Weak plasmon–exciton coupling between monolayer molybdenum disulfide and aluminum disks. Optics Letters, 2018, 43, 3204.	1.7	3
1259	Passively Q-switched Nd ³⁺ solid-state lasers with antimonene as saturable absorber. Optics Express, 2018, 26, 4085.	1.7	38
1260	Scalable Exfoliation of Bulk MoS2 to Single- and Few-Layers Using Toroidal Taylor Vortices. Nanomaterials, 2018, 8, 587.	1.9	30
1261	Centimeter-Scale Periodically Corrugated Few-Layer 2D MoS ₂ with Tensile Stretch-Driven Tunable Multifunctionalities. ACS Applied Materials & Interfaces, 2018, 10, 30623-30630.	4.0	21
1262	Facile large-area autofocusing Raman mapping system for 2D material characterization. Optics Express, 2018, 26, 9071.	1.7	10
1263	High performance photodiode based on MoS2/pentacene heterojunction. Applied Surface Science, 2018, 459, 179-184.	3.1	31
1264	Ultrafast saturable absorption of MoS_2 nanosheets under different pulse-width excitation conditions. Optics Letters, 2018, 43, 243.	1.7	54

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1265	2D Group IVB Transition Metal Dichalcogenides. Advanced Functional Materials, 2018,	28, 1803305.	7.8	91
1266	Self-powered, high response and fast response speed metal–insulator–semicondu photodetector based on 2D MoS ₂ . RSC Advances, 2018, 8, 28041-28047	ctor structured 7.	1.7	19
1267	From MoO ₂ @MoS ₂ Core–Shell Nanorods to MoS _{2 Physica Status Solidi (B): Basic Research, 2018, 255, 1800254.}	Nanobelts.	0.7	23
1268	A Local Study of the Transport Mechanisms in MoS ₂ Layers for Magnetic Junctions. ACS Applied Materials & Interfaces, 2018, 10, 30017-30021.	Tunnel	4.0	8
1269	Interlayer coupling in two-dimensional semiconductor materials. Semiconductor Scien Technology, 2018, 33, 093001.	ce and	1.0	29
1270	Lowâ€Temperature Eutectic Synthesis of PtTe ₂ with Weak Antilocalization Layer Thinning. Advanced Functional Materials, 2018, 28, 1803746.	on and Controlled	7.8	70
1271	3D Hybrid Plasmonic Nanostructures with Dense Hot Spots Using Monolayer MoS <sul Subâ€Nanometer Spacer. Advanced Materials Interfaces, 2018, 5, 1800661.</sul 	>>2 as	1.9	14
1272	A facile and clean process for exfoliating MoS ₂ nanosheets assisted by a agent in aqueous solution. Nanotechnology, 2018, 29, 425702.	surface active	1.3	15
1273	Hydrophobic and Electronic Properties of the Eâ€MoS ₂ Nanosheets Induc CO ₂ Electroreduction to Syngas with a Wide Range of CO/H _{2Advanced Functional Materials, 2018, 28, 1802339.}	ced by FAS for the >> Ratios.	7.8	99
1274	Evolution of Complex Pulse-Bunches in a Bound-State Soliton Fiber Laser. IEEE Photoni Letters, 2018, 30, 1475-1478.	cs Technology	1.3	4
1275	IR position-sensitive detectors based on double-junction asymmetric TiO ₂ /MoS ₂ /reduced graphene-oxide sandwiches. Journal of Chemistry C, 2018, 6, 8444-8452.	Materials	2.7	21
1276	Temperature-dependent Raman linewidths in transition-metal dichalcogenides. Physica 98, .	l Review B, 2018,	1.1	7
1277	New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides. Advanc Materials, 2018, 28, 1802151.	ed Functional	7.8	223
1278	Various Structures of 2D Transitionâ€Metal Dichalcogenides and Their Applications. Sr 2018, 2, 1800094.	nall Methods,	4.6	107
1279	2H/1T Phase Transition of Multilayer MoS ₂ by Electrochemical Incorporat Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.	ion of S	2.5	141
1280	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanopartion of defects and plasmons. Optics Letters, 2018, 43, 2244.	cles: synergies	1.7	13
1281	One-step hydrothermal synthesis of marigold flower-like nanostructured MoS2 as a co electrode for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2018, 2	unter 2, 3331-3341.	1.2	24
1282	Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vap Transport Agent. Coatings, 2018, 8, 78.	or as the	1.2	7
#	Article	IF	CITATIONS	
------	--	------	-----------	
1283	Effects of Precursor Concentration on Dimensional Size, Defect State, and Gas Sensing Performance of MoS ₂ Sheets Synthesized by Hydrothermal Method. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800079.	0.8	5	
1284	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	6.4	139	
1285	Electrothermal Local Annealing via Graphite Joule Heating on Two-Dimensional Layered Transistors. ACS Applied Materials & Interfaces, 2018, 10, 25638-25643.	4.0	3	
1286	Nondestructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 25804-25810.	4.0	17	
1287	One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution. Materials, 2018, 11, 168.	1.3	6	
1288	Synthesis of Large-Scale Single-Crystalline Monolayer WS2 Using a Semi-Sealed Method. Nanomaterials, 2018, 8, 100.	1.9	29	
1289	A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. Nanomaterials, 2018, 8, 284.	1.9	47	
1290	Tungsten-Doped Molybdenum Sulfide with Dominant Double-Layer Structure on Mixed MgAl Oxide for Higher Alcohol Synthesis in CO Hydrogenation. Industrial & Engineering Chemistry Research, 2018, 57, 10170-10179.	1.8	17	
1291	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	18.7	293	
1292	Tuning the optical and electrical properties of MoS2 by selective Ag photo-reduction. Applied Physics Letters, 2018, 113, .	1.5	17	
1293	Highly stable and bio-compatible luminescent molybdenum disulfide quantum dots for imaging of alimentary canal in Drosophila. Journal of Luminescence, 2018, 202, 111-117.	1.5	18	
1294	Low-temperature synthesis of 2D MoS ₂ on a plastic substrate for a flexible gas sensor. Nanoscale, 2018, 10, 9338-9345.	2.8	142	
1295	XPS experimental and DFT investigations on solid solutions of Mo _{1â^x} Re _x S ₂ (0 < <i>x</i> < 0.20). Nanoscale, 2018, 10, 10232-10240.	2.8	23	
1296	Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions. Journal of Alloys and Compounds, 2018, 757, 221-227.	2.8	24	
1297	Carbon Spheres Wrapped with Molybdenum Disulfide Nanostructure for Sensitive Electrochemical Sensing of 4-aminophenol. Journal of the Electrochemical Society, 2018, 165, B491-B497.	1.3	25	
1298	A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. Topics in Catalysis, 2018, 61, 1491-1498.	1.3	22	
1299	Electronic and vibrational properties of PbI2 : From bulk to monolayer. Physical Review B, 2018, 98, .	1.1	49	
1300	UV light activated NO2 gas sensing based on Au nanoparticles decorated few-layer MoS2 thin film at	1.5	97	

#	Article	IF	CITATIONS
1301	Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. Nanomaterials, 2018, 8, 590.	1.9	25
1302	Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions. ACS Applied Nano Materials, 2018, 1, 4737-4745.	2.4	42
1303	Role of precursors' ratio for growth of two-dimensional MoS2 structure and investigation on its nonlinear optical properties. Thin Solid Films, 2018, 663, 37-43.	0.8	3
1304	New Pathway for Hot Electron Relaxation in Two-Dimensional Heterostructures. Nano Letters, 2018, 18, 6057-6063.	4.5	49
1305	Tuning of the temperature dependence of the resonance frequency shift in atomically thin mechanical resonators with van der Waals heterojunctions. 2D Materials, 2018, 5, 045022.	2.0	8
1306	Layer dependent magnetoresistance of vertical MoS ₂ magnetic tunnel junctions. Nanoscale, 2018, 10, 16703-16710.	2.8	27
1307	Chemical vapour deposition of chromium-doped tungsten disulphide thin films on glass and steel substrates from molecular precursors. Journal of Materials Chemistry C, 2018, 6, 9537-9544.	2.7	8
1308	Polyaniline intercalated with MoS2 nanosheets: structural, electric and thermoelectric properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 17445-17453.	1.1	11
1309	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	5.2	85
1310	Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale, 2018, 10, 16365-16397.	2.8	147
1311	Edgeâ€Terminated MoS ₂ Nanoassembled Electrocatalyst via In Situ Hybridization with 3D Carbon Network. Small, 2018, 14, e1802191.	5.2	15
1312	A novel ternary nanocomposite for improving the cycle life and capacitance of polypyrrole. Applied Surface Science, 2018, 462, 526-539.	3.1	17
1313	MoS ₂ @polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of <i>Staphylococcus aureus</i> biofilms and wound infection. Nanoscale, 2018, 10, 16711-16720.	2.8	109
1314	Improving photoelectric performance of MoS2 photoelectrodes by annealing. Ceramics International, 2018, 44, 21153-21158.	2.3	15
1315	MoS ₂ saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser. Chinese Physics B, 2018, 27, 084211.	0.7	27
1316	Anchoring of ZnO nanoparticles on exfoliated MoS2 nanosheets for enhanced photocatalytic decolorization of methyl red dye. Materials Science in Semiconductor Processing, 2018, 85, 59-67.	1.9	16
1317	The effect of carrier gas flow rate on the growth of MoS2 nanoflakes prepared by thermal chemical vapor deposition. Optical and Quantum Electronics, 2018, 50, 1.	1.5	5
1318	Direct Chemical Vapor Deposition Growth of Monolayer MoS ₂ on TiO ₂ Nanorods and Evidence for Doping-Induced Strong Photoluminescence Enhancement. Journal of Physical Chemistry C, 2018, 122, 15017-15025.	1.5	38

#	Article	IF	CITATIONS
1319	A monolayer MoS ₂ p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Materials, 2018, 5, 035038.	2.0	50
1320	Highâ€Throughput Continuous Production of Shearâ€Exfoliated 2D Layered Materials using Compressible Flows. Advanced Materials, 2018, 30, e1800200.	11.1	51
1321	Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Applied Physics Letters, 2018, 112, .	1.5	41
1322	Luminescent MoS2 quantum dots with reverse saturable absorption prepared by pulsed laser ablation. Journal of Luminescence, 2018, 203, 313-321.	1.5	23
1323	Sulfur-Resistant CO Methanation to CH4 Over MoS2/ZrO2 Catalysts: Support Size Effect On Morphology and Performance of Mo Species. Catalysis Letters, 2018, 148, 2585-2595.	1.4	15
1324	Metallic 1T-MoS ₂ with defect induced additional active edges for high performance supercapacitor application. New Journal of Chemistry, 2018, 42, 12082-12090.	1.4	69
1325	Nanopore Fabrication of Two-Dimensional Materials on SiO2 Membranes Using He Ion Microscopy. IEEE Nanotechnology Magazine, 2018, 17, 727-730.	1.1	9
1326	Molybdenum disulfide (MoS <inf>2</inf>) nanoelectromechanical resonators with on-chip aluminum nitride (AlN) piezoelectric excitation. , 2018, , .		4
1327	Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots. Small, 2018, 14, e1801523.	5.2	65
1328	Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420.	2.0	11
1329	Optimal Synthesis of Hierarchical Porous Composite ZSM-5/SBA-16 for Ultradeep Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Part 2: The Influence of Aging Temperature on the Properties of NiMo Catalysts. Energy & Fuels, 2018, 32, 7800-7809.	2.5	18
1330	Preparation of MoS ₂ -based polydopamine-modified core–shell nanocomposites with elevated adsorption performances. RSC Advances, 2018, 8, 21644-21650.	1.7	19
1331	Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities. Applied Surface Science, 2018, 456, 808-816.	3.1	61
1332	Experimental and Theoretical Evidence of Enhanced Visible Light Photoelectrochemical and Photocatalytic Properties in MoS ₂ /TiO ₂ Nanohole Arrays. Journal of Physical Chemistry C, 2018, 122, 15055-15062.	1.5	40
1333	Exploring interlayer interaction of SnSe2 by low-frequency Raman spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 105, 7-12.	1.3	8
1334	2D Material Production Methods. , 2019, , 53-101.		2
1335	Promising Graphene-Like Half-Metallic Nanosheets TM-InSe (TM = Mn, Fe, and Co) Induced by TM Adsorption. Journal of Superconductivity and Novel Magnetism, 2019, 32, 229-235.	0.8	1
1336	High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. Journal of Alloys and Compounds, 2019, 771, 803-809.	2.8	74

#	Article	IF	CITATIONS
1337	Enhanced discharge capacity of Mg-air battery with addition of water dispersible nano MoS2 sheet in MgCl2 electrolyte. Ionics, 2019, 25, 583-592.	1.2	8
1338	Passively Q-switched and mode-locked YVO4/Nd:YVO4/Nd:YVO4 laser based on a MoS2 saturable absorber at 1342.5â€īnm. Optics and Laser Technology, 2019, 109, 293-296.	2.2	9
1339	Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: A platform for high-rate performance battery electrodes. Energy Storage Materials, 2019, 18, 462-469.	9.5	14
1340	Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. Journal of Alloys and Compounds, 2019, 770, 686-691.	2.8	24
1341	Trimetallic RuxMoNi Catalysts Supported on SBA-15 for the Hydrodesulfurization of Dibenzothiophene. International Journal of Chemical Reactor Engineering, 2019, 17, .	0.6	1
1342	Determination of concentration of adsorbed molecules by Raman spectroscopy and optical imaging. Journal of Applied Physics, 2019, 125, .	1.1	2
1343	Resonant Raman scattering characterization of thermally annealed HiPIMS deposited MoS coatings. Surface and Coatings Technology, 2019, 377, 124891.	2.2	10
1344	Ultrathin MoS ₂ Nanosheets Vertically Grown on CoS ₂ Acicular Nanorod Arrays: A Synergistic Three-Dimensional Shell/Core Heterostructure for High-Efficiency Hydrogen Evolution at Full pH. ACS Applied Energy Materials, 2019, 2, 6751-6760.	2.5	34
1345	Plasmon-Assisted Selective Enhancement of Direct-Band Transitions in Multi-Layer MoS ₂ . IEEE Photonics Journal, 2019, 11, 1-6.	1.0	2
1346	Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Materials, 2019, 7, .	2.2	31
1347	Enhanced Photoâ€Response of Mos 2 Photodetectors by a Laterally Aligned SiO 2 Nanoribbon Array Substrate. ChemNanoMat, 2019, 5, 1272-1279.	1.5	2
1348	Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Science Advances, 2019, 5, eaax1325.	4.7	149
1349	Chemically Exfoliated VSe ₂ Monolayers with Roomâ€Temperature Ferromagnetism. Advanced Materials, 2019, 31, e1903779.	11.1	251
1350	Photothermal property in MoS ₂ nanoflakes: theoretical and experimental comparison. Materials Research Express, 0, , .	0.8	6
1351	Improved electrical properties of MoS2 transistor with Hf1-xTixO as gate dielectric. , 2019, , .		0
1352	Low Temperature and Fast Growth of Polycrystalline MoS2 Films using Low Temperature Sublimation Sources. , 2019, , .		0
1353	Experimentally Determining the Top and Edge Contact Resistivities of Two-Step Sulfurization Nb-Doped MoS2 Films Using the Transmission Line Measurement. IEEE Electron Device Letters, 2019, 40, 1662-1665.	2.2	7
1354	Phosphorus Doped MoS ₂ Nanosheet Promoted with Nitrogen, Sulfur Dual Doped Reduced Graphene Oxide as an Effective Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 6184-6194.	2.5	78

	CITA	tion Report	
#	Article	IF	CITATIONS
1355	Investigating modification on electronic properties of bilayer MoS2 field-effect transistor by low-temperature oxygen plasma treatment. Applied Surface Science, 2019, 495, 143486.	3.1	10
1356	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	2.8	4
1357	Laser-induced photoresistance effect in Si-based vertical standing MoS ₂ nanoplate heterojunctions for self-powered high performance broadband photodetection. Journal of Materials Chemistry C, 2019, 7, 10642-10651.	2.7	24
1358	Comparison of Experimentally Extracted Top and Edge Contact Resistivity by TLM Structure with Two-step Sulfurization Nb-Doped MoS2. , 2019, , .		0
1359	Unique CdS@MoS2 Core Shell Heterostructure for Efficient Hydrogen Generation Under Natural Sunlight. Scientific Reports, 2019, 9, 12036.	1.6	38
1360	Investigation of Nitridation on the Band Alignment at MoS2/HfO2 Interfaces. Nanoscale Research Letters, 2019, 14, 181.	3.1	6
1361	Bionanoelectronic platform with a lipid bilayer/CVD-grown MoS2 hybrid. Biosensors and Bioelectronics, 2019, 142, 111512.	5.3	11
1362	Room-Temperature Production of Nanocrystalline Molybdenum Disulfide (MoS ₂) at the Liquidâ^'Liquid Interface. Chemistry of Materials, 2019, 31, 5384-5391.	3.2	16
1363	Effect of sulfurization temperature on the efficiency of SnS solar cells fabricated by sulfurization of sputtered tin precursor layers using effusion cell evaporation. Journal of Alloys and Compounds, 2019, 806, 410-417.	2.8	18
1364	Principles of Computational Simulations Devices and Characterization of Nanoelectronic Materials. Advanced Structured Materials, 2019, , 49-89.	0.3	2
1365	Room-temperature carbon coating on MoS2/Graphene hybrids with carbon dioxide for enhanced sodium storage. Carbon, 2019, 153, 217-224.	5.4	38
1366	Comparison of the free-standing flexible electrodes fabricated with metallic 1T or semiconducting 2H MoS2 nanosheets and high conductivity PEDOT:PSS. Journal of Electroanalytical Chemistry, 2019, 848, 113277.	1.9	7
1367	A facile alkali metal hydroxide-assisted controlled and targeted synthesis of 1T MoS ₂ single-crystal nanosheets for lithium ion battery anodes. Nanoscale, 2019, 11, 14857-14862.	2.8	30
1368	In Situ Hybridizing MoS ₂ Microflowers on VS ₂ Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5799-5808.	2.5	53
1369	Ultrasensitive label-free detection of circulating tumor cells using conductivity matching of two-dimensional semiconductor with cancer cell. Biosensors and Bioelectronics, 2019, 142, 111520.	5.3	30
1370	Mask-free patterning and selective CVD-growth of 2D-TMDCs semiconductors. Semiconductor Science and Technology, 2019, 34, 085010.	1.0	5
1371	Programmable Multilevel Memtransistors Based on van der Waals Heterostructures. Advanced Electronic Materials, 2019, 5, 1900333.	2.6	21
1372	MoS ₂ Membranes for Organic Solvent Nanofiltration: Stability and Structural Control. Journal of Physical Chemistry Letters, 2019, 10, 4609-4617.	2.1	57

#	Article	IF	Citations
1373	Molybdenum-based two-dimensional materials: Synthesis, dispersion, exfoliation and thin film deposition. Journal of Colloid and Interface Science, 2019, 554, 80-90.	5.0	12
1374	Cu ²⁺ -Modulated <i>in situ</i> growth of quantum dots for split-type photoelectrochemical immunoassay of prostate-specific antigen. Analyst, The, 2019, 144, 4661-4666.	1.7	10
1375	BiFeO3/MoS2 nanocomposites with the synergistic effect between ≡MoVI/≡MoIV and ≡FeIII/≡FeII red for enhanced Fenton-like activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123607.	lox cycles 2.3	24
1376	High humidity and high vacuum environment performance of MoS2/Sn composite film. Journal of Alloys and Compounds, 2019, 800, 107-115.	2.8	15
1377	Experimental Realization of Few Layer Two-Dimensional MoS ₂ Membranes of Near Atomic Thickness for High Efficiency Water Desalination. Nano Letters, 2019, 19, 5194-5204.	4.5	80
1378	Multifunctional Few-Layer MoS ₂ for Photodetection and Surface-Enhanced Raman Spectroscopy Application with Ultrasensitive and Repeatable Detectability. Journal of Physical Chemistry C, 2019, 123, 18071-18078.	1.5	48
1379	Multibit Optoelectronic Memory in Topâ€Floatingâ€Gated van der Waals Heterostructures. Advanced Functional Materials, 2019, 29, 1902890.	7.8	69
1380	Hierarchical molybdenum dichalcogenide nanosheets assembled nitrogen doped graphene layers for sensitive electrochemical dopamine detection. Materials Chemistry and Physics, 2019, 236, 121814.	2.0	7
1381	Enhanced Raman scattering on lead iodide film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117336.	2.0	4
1382	A universal approach for the synthesis of two-dimensional binary compounds. Nature Communications, 2019, 10, 2957.	5.8	93
1383	High-throughput screening and classification of layered di-metal chalcogenides. Nanoscale, 2019, 11, 13924-13933.	2.8	11
1384	C ₃ N ₄ -digested 3D construction of hierarchical metallic phase MoS ₂ nanostructures. Journal of Materials Chemistry A, 2019, 7, 18388-18396.	5.2	26
1385	Structural Evolutions of Vertically Aligned Two-Dimensional MoS ₂ Layers Revealed by in Situ Heating Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 27843-27853.	1.5	13
1386	Defect-moderated oxidative etching of MoS2. Journal of Applied Physics, 2019, 126, .	1.1	12
1387	Stoichiometric edges during the intrinsic growth of hexagonal boron nitride on Ir(111). New Journal of Physics, 2019, 21, 092001.	1.2	5
1388	Chemical vapor deposition growth of crystal monolayer SnS 2 with NaCl-assistant. Chinese Physics B, 2019, 28, 118101.	0.7	4
1389	Broadband high responsivity large-area plasmonic-enhanced multilayer MoS ₂ on p-type silicon photodetector using Au nanostructures. Materials Research Express, 2019, 6, 105090.	0.8	4
1390	Enhance near infrared performance of n-type vertically aligned MoS ₂ flakes photodetector with active p-type CZTS electrodes. Materials Research Express, 2019, 6, 115011.	0.8	19

#	Article	IF	CITATIONS
1391	Direct Growth of Two Dimensional Molybdenum Disulfide on Flexible Ceramic Substrate. Nanomaterials, 2019, 9, 1456.	1.9	7
1392	Strong Thermopower Enhancement and Tunable Power Factor <i>via</i> Semimetal to Semiconductor Transition in a Transition-Metal Dichalcogenide. ACS Nano, 2019, 13, 13317-13324.	7.3	33
1393	Full Energy Spectra of Interface State Densities for <i>n</i> ―and <i>p</i> â€ŧype MoS ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1904465.	7.8	39
1394	Recent Progress on 2D Nobleâ€Transitionâ€Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1904932.	7.8	186
1395	Probing Effective Outâ€ofâ€Plane Piezoelectricity in van der Waals Layered Materials Induced by Flexoelectricity. Small, 2019, 15, e1903106.	5.2	29
1396	Solventâ€Exchange Strategy toward Aqueous Dispersible MoS ₂ Nanosheets and Their Nitrogenâ€Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. Small, 2019, 15, e1903816.	5.2	31
1397	Hierarchical Flower-Like MoS ₂ Microspheres and Their Efficient Al Storage Properties. Journal of Physical Chemistry C, 2019, 123, 26794-26802.	1.5	20
1398	Qualitative Analysis of Mechanically Exfoliated MoS ₂ Nanosheets Using Spectroscopic Probes. Journal of Physical Chemistry C, 2019, 123, 27264-27271.	1.5	9
1399	The Stability of Metallic MoS2 Nanosheets and Their Property Change by Annealing. Nanomaterials, 2019, 9, 1366.	1.9	23
1400	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	5.8	91
1401	Characterization of Dynamic and Nanoscale Materials and Metamaterials with Continuously Referenced Interferometry. Advanced Optical Materials, 2019, 7, 1901128.	3.6	6
1402	Mosaic Red Phosphorus/MoS ₂ Hybrid as an Anode to Boost Potassiumâ€lon Storage. ChemElectroChem, 2019, 6, 4689-4695.	1.7	15
1403	A study on ionic gated MoS2 phototransistors. Science China Information Sciences, 2019, 62, 1.	2.7	8
1404	Dopant influence on phase and electrochemical performance of molybdenum sulfide nanostructures. AIP Conference Proceedings, 2019, , .	0.3	4
1405	Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 13938-13948.	4.6	26
1406	Optimisation study on few layer formations of MoS2 thin films by a novel sulfurization method. AIP Conference Proceedings, 2019, , .	0.3	1
1407	Accurate Method To Determine the Mobility of Transition-Metal Dichalcogenides with Incomplete Gate Screening. ACS Applied Materials & amp; Interfaces, 2019, 11, 44406-44412.	4.0	4
1408	How to â€ [~] train' your CVD to grow large-area 2D materials. Materials Research Express, 2019, 6, 125002.	0.8	11

#	Article	IF	CITATIONS
1409	Incorporating Niobium in MoS ₂ at BEOLâ€Compatible Temperatures and its Impact on Copper Diffusion Barrier Performance. Advanced Materials Interfaces, 2019, 6, 1901055.	1.9	12
1410	Rhenium Diselenide (ReSe ₂) Nearâ€Infrared Photodetector: Performance Enhancement by Selective pâ€Doping Technique. Advanced Science, 2019, 6, 1901255.	5.6	28
1411	Thermal vapor sulfurization of molybdenum layers. Thin Solid Films, 2019, 691, 137588.	0.8	0
1412	Structural, Spectroscopic, and Excitonic Dynamic Characterization in Atomically Thin Yb ³⁺ â€Doped MoS ₂ , Fabricated by Femtosecond Pulsed Laser Deposition. Advanced Optical Materials, 2019, 7, 1900753.	3.6	17
1413	lmaging Nanoscale Inhomogeneities and Edge Delamination in Asâ€Grown MoS ₂ Using Tipâ€Enhanced Photoluminescence. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900381.	1.2	12
1414	3D MoS2@TiO2@poly(methyl methacrylate) nanocomposite with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 557, 709-721.	5.0	33
1415	Electronic properties of two-dimensional IV–V group materials from density functional theory. Applied Surface Science, 2019, 496, 143730.	3.1	14
1416	Vertically Stacked CVD-Grown 2D Heterostructure for Wafer-Scale Electronics. ACS Applied Materials & Interfaces, 2019, 11, 35444-35450.	4.0	27
1417	Monolayer MoS2 growth at the Au–SiO2 interface. Nanoscale, 2019, 11, 19700-19704.	2.8	7
1418	Surface Functionalization of Layered Molybdenum Disulfide for the Selective Detection of Volatile Organic Compounds at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 34135-34143.	4.0	79
1419	Infrared Detectable MoS ₂ Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse. ACS Nano, 2019, 13, 10294-10300.	7.3	96
1420	Effect of Graphene and MoS ₂ Flakes in Industrial Oils to Enhance Lubrication. ACS Omega, 2019, 4, 14569-14578.	1.6	23
1421	Near-field infrared spectroscopy of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MnPS<mml:mn>3</mml:mn></mml:mi </mml:msub>. Physical Review B, 2019, 100, .</mml:math 	1.1	15
1422	Er-Doped Q-Switched Fiber Laser Based on MoS2-SAM Fabricated by Langmuir-Blodgett (LB) Technique. IEEE Photonics Technology Letters, 2019, 31, 1167-1170.	1.3	1
1423	Polaronic Trions at the MoS 2 /SrTiO 3 Interface. Advanced Materials, 2019, 31, 1903569.	11.1	26
1424	Raman imaging studies on perforated MoS ₂ films prepared by RF sputtering method. Journal of Physics: Conference Series, 2019, 1220, 012036.	0.3	0
1425	MoS2 triboelectric nanogenerators based on depletion layers. Nano Energy, 2019, 65, 104079.	8.2	35

#	Article	IF	Citations
1427	Repair of Oxygen Vacancies and Improvement of HfO ₂ /MoS ₂ Interface by NH ₃ -Plasma Treatment. IEEE Transactions on Electron Devices, 2019, 66, 4337-4342.	1.6	4
1428	A non-volatile AND gate based on Al2O3/HfO2/Al2O3 charge-trap stack for in-situ storage applications. Science Bulletin, 2019, 64, 1518-1524.	4.3	18
1429	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	3.2	10
1430	Characteristics of p-Type Conduction in P-Doped MoS2 by Phosphorous Pentoxide during Chemical Vapor Deposition. Nanomaterials, 2019, 9, 1278.	1.9	24
1431	Influence of sulfurization temperature on the molybdenum disulfide thin films grown by thermal vapour sulfurization. Materials Today: Proceedings, 2019, 17, 921-928.	0.9	0
1432	Facile synthesis of molybdenum disulfide/poly (3,4-ethylenedioxythiophene) composite electrodes for high-performance flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 17706-17714.	1.1	4
1433	Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon, 2019, 155, 243-249.	5.4	11
1434	A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Functionalized MoS2 Nanosheets for Polymer Nanocomposites. Nanomaterials, 2019, 9, 1400.	1.9	18
1435	Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid. Solar Energy, 2019, 193, 95-101.	2.9	30
1436	Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy, 2019, 66, 104083.	8.2	181
1437	Improved optical performance of multi-layer MoS2 phototransistor with see-through metal electrode. Nano Convergence, 2019, 6, 32.	6.3	9
1438	Photoluminescence enhancement of monolayer MoS ₂ using plasmonic gallium nanoparticles. Nanoscale Advances, 2019, 1, 884-893.	2.2	33
1439	A vapor-phase-assisted growth route for large-scale uniform deposition of MoS ₂ monolayer films. RSC Advances, 2019, 9, 107-113.	1.7	4
1440	Enhanced wavelength-selective photoresponsivity with a MoS ₂ bilayer grown conformally on a patterned sapphire substrate. Journal of Materials Chemistry C, 2019, 7, 1622-1629.	2.7	8
1441	Enhanced Photocarrier Generation with Selectable Wavelengths by Mâ€Decoratedâ€CuInS ₂ Nanocrystals (M = Au and Pt) Synthesized in a Single Surfactant Process on MoS ₂ Bilayers. Small, 2019, 15, e1803529.	5.2	35
1442	Application of MoWS2-rGO/PVA thin film as all-fiber pulse and amplitude modulators in the O-band region. Optical Fiber Technology, 2019, 48, 1-6.	1.4	11
1443	Facile synthesis of solution-processed MoS ₂ nanosheets and their application in high-performance ultraviolet organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 926-936.	2.7	38
1444	Influence of interlayer interactions on the relaxation dynamics of excitons in ultrathin MoS ₂ . Nanoscale Advances, 2019, 1, 1186-1192.	2.2	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1445	Powder exfoliated MoS ₂ nanosheets with highly monolayer-rich structure high-performance lithium-/sodium-ion-battery electrodes. Nanoscale, 2019, 11, 1887-1	s as 900.	2.8	93
1446	Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS ₂ defect sites for photoluminescence control and SERS enhancement 2019, 11, 485-494.	. Nanoscale,	2.8	45
1447	High-performance p-type MoS ₂ field-effect transistor by toroidal-magneti controlled oxygen plasma doping. 2D Materials, 2019, 6, 025007.	c-field	2.0	44
1448	Synthesis, application and kinetic modeling of CeO _x –Si–CoMo cataly hydrodesulfurization of dibenzothiophene. Reaction Chemistry and Engineering, 2019,	sts for the 4, 724-737.	1.9	13
1449	MoS2-capped CuxS nanocrystals: a new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. Materials Horizons, 2019, 6, 587-594.		6.4	18
1450	Two-Mode MoS ₂ Filament Transistor with Extremely Low Subthreshold Sv High On/Off Ratio. ACS Nano, 2019, 13, 2205-2212.	ving and Record	7.3	22
1451	Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposit Scientific Reports, 2019, 9, 334.	ed MoS2.	1.6	10
1452	Optimizing the Self-Amplitude Modulation of Different 2-D Saturable Absorbers for Ultr Mode-Locked Fiber Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 201	rafast 9, 25, 1-10.	1.9	6
1453	Symmetric Ultrafast Writing and Erasing Speeds in Quasiâ€Nonvolatile Memory via var Heterostructures. Advanced Materials, 2019, 31, e1808035.	ı der Waals	11.1	50
1454	In Situ Study of K ⁺ Electrochemical Intercalating into MoS ₂ I of Physical Chemistry C, 2019, 123, 5067-5072.	Flakes. Journal	1.5	26
1455	Facile synthesis of molybdenum multisulfide composite nanorod arrays from single-sou for photoelectrochemical hydrogen generation. Applied Nanoscience (Switzerland), 20	rce precursor 19, 9, 1281-1292.	1.6	3
1456	One Pot Assembly of Vertical Embedded MoS2/Graphene Heterostructure and Its High Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1413-1418.	Performance for	2.5	15
1457	Raman scattering spectra of bismuthene: A first-principles prediction. Optik, 2019, 180	ı, 967-972.	1.4	4
1458	Thickness-Dependent Phase Stability and Electronic Properties of GaN Nanosheets and MoS ₂ /GaN van der Waals Heterostructures. Journal of Physical Chemistry 3861-3867.	C, 2019, 123,	1.5	38
1459	Construction of CdS/MoS ₂ heterojunction from core–shell MoS _{2 for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 2715-2}	@Cd-MOF 721.	1.6	60
1460	A substrate-enhanced MoS ₂ photodetector through a dual-photogating e Horizons, 2019, 6, 826-833.	ffect. Materials	6.4	56
1461	Controlled assembly of MnFe2O4 nanoparticles on MoS2 nanosheets by a facile sonoc Journal of Magnetism and Magnetic Materials, 2019, 476, 453-458.	hemical method.	1.0	19
1462	Unraveling the Defect Emission and Exciton–Lattice Interaction in Bilayer WS2. Journ Chemistry C, 2019, 123, 4433-4440.	al of Physical	1.5	14

#	Article	IF	CITATIONS
1463	Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide. Applied Catalysis B: Environmental, 2019, 246, 232-241.	10.8	27
1464	MoS2/Graphene nanocomposites for efficient electrochemical energy storage - A novel strategy based on electrolyte formulation. Surfaces and Interfaces, 2019, 14, 256-261.	1.5	8
1465	Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Letters, 2019, 19, 1118-1123.	4.5	124
1466	Probing fretting performance of DLC and MoS2 films under fluid lubrication. Applied Surface Science, 2019, 478, 661-679.	3.1	15
1467	A novel MoS2 nanosheets-decorated Sb@Sb2S3@C tubular composites as anode material for high performance lithium ion battery. Journal of Alloys and Compounds, 2019, 786, 169-176.	2.8	24
1468	Multifunctional Mixedâ€Dimensional MoS ₂ –CuO Junction Fieldâ€Effect Transistor for Logic Operation and Phototransistor. Advanced Electronic Materials, 2019, 5, 1800976.	2.6	30
1469	Thermal Degradation of Monolayer MoS2 on SrTiO3 Supports. Journal of Physical Chemistry C, 2019, 123, 3876-3885.	1.5	17
1470	A MoS ₂ nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N ₂ reduction to NH ₃ under ambient conditions. Journal of Materials Chemistry A, 2019, 7, 2524-2528.	5.2	145
1471	Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 2636-2645.	5.2	50
1472	Half-metal state of a Ti ₂ C monolayer by asymmetric surface decoration. Physical Chemistry Chemical Physics, 2019, 21, 3318-3326.	1.3	22
1473	Efficient Mechanochemical Preparation of Graphene-Like Molybdenum Disulfide and Graphene-Based Composite Electrocatalysts for Hydrogen Evolution Reaction. Electrocatalysis, 2019, 10, 477-488.	1.5	7
1474	Interlayer Difference of Bilayer-Stacked MoS2 Structure: Probing by Photoluminescence and Raman Spectroscopy. Nanomaterials, 2019, 9, 796.	1.9	9
1475	Preparation of MoS2/WS2 nanosheets by liquid phase exfoliation with assistance of epigallocatechin gallate and study as an additive for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2019, 552, 554-562.	5.0	45
1476	Ultrafast Carrier Dynamics of the Exciton and Trion in MoS ₂ Monolayers Followed by Dissociation Dynamics in Au@MoS ₂ 2D Heterointerfaces. Journal of Physical Chemistry Letters, 2019, 10, 3057-3063.	2.1	41
1477	Effect of growth temperature on the photovoltaic characteristics of thermal chemical vapor deposited MoS2 layers grown on p-type Si. Journal of Materials Science: Materials in Electronics, 2019, 30, 11542-11551.	1.1	0
1478	Effect of Processing Parameters on Monolayer MoS2 Prepared by APCVD in a Quasiclosed Crucible. Journal of Electronic Materials, 2019, 48, 4947-4958.	1.0	2
1479	The effect of a functionalized defect-rich molybdenum disulfide nanosheets on anticorrosion performance of epoxy coating. Materials Research Express, 2019, 6, 086473.	0.8	8
1480	Protection of GaInP ₂ Photocathodes by Direct Photoelectrodeposition of MoS <i>_x</i> Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 25115-25122.	4.0	18

#	Article	IF	CITATIONS
1481	Conformal interface of monolayer molybdenum diselenide/disulfide and dielectric substrate with improved thermal dissipation. Journal Physics D: Applied Physics, 2019, 52, 385306.	1.3	9
1482	Pinch-Off Formation in Monolayer and Multilayers MoS2 Field-Effect Transistors. Nanomaterials, 2019, 9, 882.	1.9	10
1483	Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. Journal of the Korean Physical Society, 2019, 74, 1032-1038.	0.3	8
1484	Chemical Mass Production of MoS ₂ /Graphene van der Waals Heterostructure as a Highâ€Performance Liâ€ion Intercalation Host. ChemElectroChem, 2019, 6, 3393-3400.	1.7	12
1485	Effect of Inorganic Salts on Beta-FDU-12 Micro-/Mesoporous Materials with the Applications in Dibenzothiphene Hydrodesulfurization. Industrial & Engineering Chemistry Research, 2019, 58, 11831-11840.	1.8	7
1486	Exfoliated Molybdenum Disulfide as a Platform for Carbon Nanotube Growth—Properties and Characterization. ACS Omega, 2019, 4, 10225-10230.	1.6	2
1487	Photoluminescence Quenching and SERS in Tri-layer MoS2 Flakes. Journal of Electronic Materials, 2019, 48, 5883-5890.	1.0	8
1488	Ultrahigh Gauge Factor in Graphene/MoS ₂ Heterojunction Field Effect Transistor with Variable Schottky Barrier. ACS Nano, 2019, 13, 8392-8400.	7.3	54
1489	Microalgae-derived hollow carbon-MoS2 composite as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 106-114.	2.9	25
1490	Excellent carrier mobility and opto/electronics performance material prediction: Focusing on single layer X2Te3 (X = Sb, Bi). Applied Surface Science, 2019, 491, 690-697.	3.1	0
1491	Efficient Gate Modulation in a Screening-Engineered MoS ₂ /Single-Walled Carbon Nanotube Network Heterojunction Vertical Field-Effect Transistor. ACS Applied Materials & Interfaces, 2019, 11, 25516-25523.	4.0	20
1492	Low voltage & controlled switching of MoS ₂ -GO resistive layers based ReRAM for non-volatile memory applications. Semiconductor Science and Technology, 2019, 34, 085009.	1.0	30
1493	MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16069-16078.	3.8	21
1494	Passively Q-switched ytterbium-doped fiber laser operating at 1120 nm by molybdenum disulfide saturable absorber. Optik, 2019, 189, 97-102.	1.4	5
1495	On the performance of vertical MoS2 nanoflakes as a gas sensor. Vacuum, 2019, 167, 90-97.	1.6	37
1496	Investigation on friction force and surface modification of MoS ₂ flakes under Ga ⁺ ion irradiation. Materials Research Express, 2019, 6, 085088.	0.8	1
1497	Ultrasensitive Hybrid MoS ₂ –ZnCdSe Quantum Dot Photodetectors with High Gain. ACS Applied Materials & Interfaces, 2019, 11, 23667-23672.	4.0	62
1498	Growth of Complex 2D Material-Based Structures with Naturally Formed Contacts. ACS Omega, 2019, 4, 9557-9562.	1.6	5

#	Article	IF	CITATIONS
1499	MoS 2 Nanosheets Anchored on Melamineâ€Spongesâ€Derived Nitrogenâ€Doped Carbon Microtubes as Anode for Highâ€Rate Sodiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 6148-6154.	0.7	7
1500	Spin-on-diffussants for doping in transition metal dichalcogenide semiconductors. Applied Physics Letters, 2019, 114, 212102.	1.5	1
1501	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. Chemistry of Materials, 2019, 31, 4524-4535.	3.2	41
1502	Metalâ€Contactâ€Induced Transition of Electrical Transport in Monolayer MoS ₂ : From Thermally Activated to Variableâ€Range Hopping. Advanced Electronic Materials, 2019, 5, 1900042.	2.6	14
1503	Large-area patterning of substrate-conformal MoS2 nano-trenches. Nano Research, 2019, 12, 1851-1854.	5.8	16
1504	Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 2019, 170, 107591.	2.0	55
1505	Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy, 2019, 62, 667-673.	8.2	35
1506	Laser-reconfigured MoS2/ZnO van der Waals synapse. Nanoscale, 2019, 11, 11114-11120.	2.8	13
1507	MoS ₂ Field-Effect Transistor-Amyloid-β _{1–42} Hybrid Device for Signal Amplified Detection of MMP-9. Analytical Chemistry, 2019, 91, 8252-8258.	3.2	34
1508	A review on the structure, properties and characterization of 2D Molybdenum Disulfide. , 2019, , .		9
1509	Visible light active Bi ₃ TaO ₇ nanosheets for water splitting. Dalton Transactions, 2019, 48, 9284-9290.	1.6	14
1510	Growth process of molybdenum disulfide thin films grown by thermal vapour sulfurization. Journal of Materials Science: Materials in Electronics, 2019, 30, 10419-10426.	1.1	2
1511	Reduction of Threshold Voltage Hysteresis of MoS ₂ Transistors with 3-Aminopropyltriethoxysilane Passivation and Its Application for Improved Synaptic Behavior. ACS Applied Materials & Interfaces, 2019, 11, 20949-20955.	4.0	19
1512	Insights into two-dimensional MoS2 sheets for enhanced CO2 photoreduction to C1 and C2 hydrocarbon products. Materials Research Bulletin, 2019, 118, 110499.	2.7	37
1513	High-Performance Bimetal NiMo Catalysts Prepared over Novel Cubic Mesoporous Silica with a Cost-Efficient Method for the Removal of Dibenzothiophene. Industrial & Engineering Chemistry Research, 2019, 58, 9300-9313.	1.8	6
1514	Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Applied Physics Letters, 2019, 114, .	1.5	32
1515	Double resonance Raman scattering process in 2D materials. Journal of Materials Research, 2019, 34, 1976-1992.	1.2	25
1516	Surface functionalization of bulk MoS2 sheets for efficient liquid phase exfoliation in polar micromolecular solvents. Applied Surface Science, 2019, 486, 362-370.	3.1	31

#	Article	IF	CITATIONS
1517	Alkaline-Etched NiMgAl Trimetallic Oxide-Supported KMoS-Based Catalysts for Boosting Higher Alcohol Selectivity in CO Hydrogenation. ACS Applied Materials & Interfaces, 2019, 11, 19066-19076.	4.0	18
1518	Annealing Response of Monolayer MoS2ÂGrown by Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2019, 8, P267-P270.	0.9	12
1519	Metalloâ€Hydrogelâ€Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1807612.	7.8	12
1520	Propelling Polysulfide Conversion by Defect-Rich MoS ₂ Nanosheets for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 20788-20795.	4.0	89
1521	Controlled synthesis and frictional properties of 2D MoTe2 via chemical vapor deposition. Chemical Physics Letters, 2019, 728, 156-159.	1.2	7
1522	Enhancing thermal properties of few-layer boron nitride by high-k Al2O3 capping layer. Journal of Alloys and Compounds, 2019, 797, 262-268.	2.8	5
1523	The Improved Performance of Molybdenum Disulphide Thin-Film Transistors Operating at Low Voltages by Solution-Processed Fluorocarbon Encapsulation. Electronic Materials Letters, 2019, 15, 391-395.	1.0	0
1524	Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Applied Surface Science, 2019, 487, 1356-1361.	3.1	36
1525	Few-layer MoS2 wrapped MnCO3 on graphite paper: A hydrothermally grown hybrid negative electrode for electrochemical energy storage. Chemical Engineering Journal, 2019, 373, 1233-1246.	6.6	14
1526	MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 16566-16574.	3.8	57
1527	Study on atmospheric tribology performance of MoS2–W films with self-adaption to temperature. Ceramics International, 2019, 45, 15834-15842.	2.3	35
1528	Fabrication of MoS2 decorated reduced graphene oxide sheets from solid Mo-precursor for electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 2019, 313, 341-351.	2.6	30
1529	Defect-rich 2D reticulated MoS2 monolayers: Facile hydrothermal preparation and marvellous photoelectric properties. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 221-230.	2.7	22
1530	Probing the Magnetic Ordering of Antiferromagnetic MnPS ₃ by Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 3087-3093.	2.1	74
1531	Control of Volumeâ€Responsive Properties of Hydrogels through Molybdenum Disulfide Nanosheet Incorporation. Advanced Materials Technologies, 2019, 4, 1900021.	3.0	3
1532	Nonlayered Two-Dimensional Defective Semiconductor γ-Ga ₂ S ₃ toward Broadband Photodetection. ACS Nano, 2019, 13, 6297-6307.	7.3	72
1533	Fabrication and characterization of a high-surface area MoS ₂ @WS ₂ heterojunction for the ultra-sensitive NO ₂ detection at room temperature. Journal of Materials Chemistry A, 2019, 7, 14602-14612.	5.2	116
1534	Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. Physical Review B, 2019, 99, .	1.1	17

#	Article	IF	CITATIONS
1535	Improved electrical performance of multilayer MoS ₂ transistor by incorporating Al into host HfO ₂ as gate dielectric. Applied Physics Express, 2019, 12, 064005.	1.1	4
1536	MoS2 anchored carbon nitride based mesoporous material as a polysulfide barrier for high capacity lithium-sulfur battery. Journal of Electroanalytical Chemistry, 2019, 843, 37-46.	1.9	22
1537	Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection. Sensors, 2019, 19, 2123.	2.1	70
1538	Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Research, 2019, 12, 1691-1695.	5.8	46
1539	Nitrogenâ€Doped MoS ₂ Foam for Fast Sodium Ion Storage. Advanced Materials Interfaces, 2019, 6, 1900460.	1.9	39
1540	Polytype control of MoS2 using chemical bath deposition. Journal of Chemical Physics, 2019, 150, 174701.	1.2	5
1541	Optical and electronic properties of dichalcogenides WX2 (X=S, Se, and Te) monolayers under biaxial strain. Physica B: Condensed Matter, 2019, 568, 18-24.	1.3	15
1542	Determining the Surface Tension of Two-Dimensional Nanosheets by a Low-Rate Advancing Contact Angle Measurement. Langmuir, 2019, 35, 8308-8315.	1.6	9
1543	Selectively Metallized 2D Materials for Simple Logic Devices. ACS Applied Materials & Interfaces, 2019, 11, 18571-18579.	4.0	17
1544	Highly concentrated and stabilizer-free transition-metal dichalcogenide dispersions in low-boiling point solvent for flexible electronics. Nanoscale, 2019, 11, 10746-10755.	2.8	20
1545	Enhanced photoresponse of monolayer MoS ₂ through hybridization with carbon quantum dots as efficient photosensitizer. 2D Materials, 2019, 6, 035025.	2.0	24
1546	Investigation of structural and luminescence properties of nanocrystalline tungsten-incorporated molybdenum disulphide ternary compounds: an experimental and DFT study. Bulletin of Materials Science, 2019, 42, 1.	0.8	2
1547	Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Research, 2019, 12, 1619-1624.	5.8	30
1548	Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. Nano Letters, 2019, 19, 3187-3193.	4.5	34
1549	Direct observation of valley-coupled topological current in MoS ₂ . Science Advances, 2019, 5, eaau6478.	4.7	34
1550	Ion beam modified molybdenum disulfide-reduced graphene oxide/ polypyrrole nanotubes ternary nanocomposite for hybrid supercapacitor electrode. Electrochimica Acta, 2019, 312, 392-410.	2.6	23
1551	Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2. Nature Communications, 2019, 10, 2044.	5.8	79
1552	Facile synthesis and improved Li-storage performance of Fe-doped MoS2/reduced graphene oxide as anode materials. Applied Surface Science, 2019, 483, 688-695.	3.1	35

#	Article	IF	CITATIONS
1553	Enhanced optical, magnetic and hydrogen evolution reaction properties of Mo _{1â^x} Ni _x S ₂ nanoflakes. RSC Advances, 2019, 9, 13465-13475.	1.7	13
1554	Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Progress in Organic Coatings, 2019, 133, 154-160.	1.9	85
1555	Reverse micelle assisted hydrothermal reaction route for the synthesis of homogenous MoS2 nanospheres. SN Applied Sciences, 2019, 1, 1.	1.5	7
1556	MoS ₂ Nanosheets Modified Surface Plasmon Resonance Sensors for Sensitivity Enhancement. Advanced Optical Materials, 2019, 7, 1900479.	3.6	25
1557	A systematic study on the growth of molybdenum disulfide with the carbon disulfide as the sulfurizing source. Ceramics International, 2019, 45, 13701-13710.	2.3	0
1558	Determination of the waist location for the Gaussian beam based on second harmonic generation of monolayer MoS2. IOP Conference Series: Materials Science and Engineering, 2019, 490, 022059.	0.3	1
1559	MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy, 2019, 61, 104-110.	8.2	83
1560	Aqueous Zinc-Ion Storage in MoS ₂ by Tuning the Intercalation Energy. Nano Letters, 2019, 19, 3199-3206.	4.5	362
1561	Reproducible Performance Improvements to Monolayer MoS ₂ Transistors through Exposed Material Forming Gas Annealing. ACS Applied Materials & Interfaces, 2019, 11, 16683-16692.	4.0	21
1562	Transition Metal Dichalcogenide Anchored in 3D Nickel Framework with Graphene Support for Efficient Electrocatalytic Hydrogen Evolution. Advanced Sustainable Systems, 2019, 3, 1800168.	2.7	12
1563	Study of unique and highly crystalline MoS ₂ /MoO ₂ nanostructures for electro chemical applications. Materials Research Letters, 2019, 7, 275-281.	4.1	20
1564	Rapid-throughput solution-based production of wafer-scale 2D MoS2. Applied Physics Letters, 2019, 114,	1.5	18
1565	Highly tunable Raman scattering and transport in layered magnetic Cr ₂ S ₃ nanoplates grown by sulfurization. 2D Materials, 2019, 6, 035029.	2.0	24
1566	Layer-by-layer thinning of MoS ₂ via laser irradiation. Nanotechnology, 2019, 30, 275302.	1.3	19
1567	Dependence of Photocurrent Enhancements in Hybrid Quantum Dot-MoS ₂ Devices on Quantum Dot Emission Wavelength. ACS Photonics, 2019, 6, 976-984.	3.2	9
1568	Elucidating the structural properties of gold selenide nanostructures. New Journal of Chemistry, 2019, 43, 5773-5782.	1.4	14
1569	Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Applied Physics Letters, 2019, 114, .	1.5	32
1570	New Simultaneous Exfoliation and Doping Process for Generating MX ₂ Nanosheets for Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & (), 11, 14786-14795.	4.0	54

#	Article	IF	CITATIONS
1571	Synergy of Photoinduced Force Microscopy and Tip-Enhanced Raman Spectroscopy—A Correlative Study on MoS ₂ . ACS Photonics, 2019, 6, 1191-1198.	3.2	9
1572	Longâ€Term Stability Control of CVDâ€Grown Monolayer MoS ₂ . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800687.	1.2	31
1573	CVD Grown MoS 2 Nanoribbons on MoS 2 Covered Sapphire(0001) Without Catalysts. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900063.	1.2	26
1574	Why Phonon Behaviors in Transition Metal Dichalcogenides Matter. MRS Advances, 2019, 4, 629-634.	0.5	1
1575	Spectral dependent white light reflection mapping of MoS2 flake for improving accuracy of conventional optical thickness profiling. Optical Materials, 2019, 90, 46-50.	1.7	4
1576	Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Research, 2019, 12, 947-954.	5.8	26
1577	Layer number dependence of the work function and optical properties of single and few layers MoS ₂ : effect of substrate. Nanotechnology, 2019, 30, 245708.	1.3	38
1578	Fabrication of Molybdenum Disulfide (MoS ₂) Layered Thin Films by Atmospheric-Pressure Solution Based Mist CVD. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 155-161.	0.1	2
1579	Graphene confined MoS2 particles for accelerated electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 8070-8078.	3.8	42
1580	Electrochemical intercalation of MoO3-MoS2 composite electrodes: Charge storage mechanism of non-hydrated cations. Electrochimica Acta, 2019, 307, 176-187.	2.6	29
1581	Polar edges and their consequences for the structure and shape of hBN islands. 2D Materials, 2019, 6, 035010.	2.0	7
1582	Photoresponsivity enhancement in monolayer MoS2 by rapid O2:Ar plasma treatment. Applied Physics Letters, 2019, 114, .	1.5	16
1583	Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2588-2607.	2.9	29
1584	A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation. Chemical Engineering Journal, 2019, 369, 563-575.	6.6	78
1585	MoS ₂ quantum dots as a unique fluorescent "turn-off–on―probe for the simple and rapid determination of adenosine triphosphate. Journal of Materials Chemistry B, 2019, 7, 2549-2556.	2.9	45
1586	Nanoscale Friction on Confined Water Layers Intercalated between MoS ₂ Flakes and Silica. Journal of Physical Chemistry C, 2019, 123, 8827-8835.	1.5	36
1587	Structural and optical properties of few-layer MoS2 thin films grown on various substrates using RF sputtering process. Journal of Materials Science: Materials in Electronics, 2019, 30, 7665-7680.	1.1	11
1588	Enhanced Performance of a CVD MoS ₂ Photodetector by Chemical in Situ n-Type Doping. ACS Applied Materials & Interfaces, 2019, 11, 11636-11644.	4.0	82

#	Article	IF	CITATIONS
1589	Raman detection of hidden phonons assisted by atomic point defects in a two-dimensional semimetal. Npj 2D Materials and Applications, 2019, 3, .	3.9	10
1590	Self-limiting laser crystallization and direct writing of 2D materials. International Journal of Extreme Manufacturing, 2019, 1, 015001.	6.3	26
1591	Influence of the substrate types on the molybdenum disulfide grown by thermal vapour sulfurization. Superlattices and Microstructures, 2019, 129, 69-76.	1.4	0
1592	Few-layer MoS ₂ nanosheet-coated KNbO ₃ nanowire heterostructures: piezo-photocatalytic effect enhanced hydrogen production and organic pollutant degradation. Nanoscale, 2019, 11, 7690-7700.	2.8	160
1593	Strategies for Airâ€6table and Tunable Monolayer MoS ₂ â€Based Hybrid Photodetectors with High Performance by Regulating the Fully Inorganic Trihalide Perovskite Nanocrystals. Advanced Optical Materials, 2019, 7, 1801744.	3.6	43
1594	Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Nanomaterials, 2019, 9, 516.	1.9	31
1595	Molybdenum and rhenium disulfide synthesis <i>via</i> high-pressure carbonate melt. CrystEngComm, 2019, 21, 4513-4518.	1.3	5
1596	Enhanced Gas Sensing Performance of Surfaceâ€Activated MoS ₂ Nanosheets Made by Hydrothermal Method with Excess Sulfur Precursor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800999.	0.8	7
1597	Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Applied Surface Science, 2019, 483, 1037-1043.	3.1	80
1598	Multiphoton Excitation and Defect-Enhanced Fast Carrier Relaxation in Few-Layered MoS ₂ Crystals. Journal of Physical Chemistry C, 2019, 123, 11216-11223.	1.5	6
1599	Monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chemical Engineering Journal, 2019, 371, 356-365.	6.6	65
1600	Fast-neutron irradiation effects on monolayer MoS ₂ . Applied Physics Express, 2019, 12, 056001.	1.1	7
1601	Inâ€Plane Anisotropic Properties of 1T′â€MoS ₂ Layers. Advanced Materials, 2019, 31, e1807764.	11.1	55
1602	Fabrication of Stacked MoS2 Bilayer with Weak Interlayer Coupling by Reduced Graphene Oxide Spacer. Scientific Reports, 2019, 9, 5900.	1.6	6
1603	Destructive role of oxygen in growth of molybdenum disulfide determined by secondary ion mass spectrometry. Physical Chemistry Chemical Physics, 2019, 21, 8837-8842.	1.3	6
1604	Van der Waals 2D layered-material bipolar transistor. 2D Materials, 2019, 6, 035005.	2.0	19
1605	A Universal Approach toward Light-Responsive Two-Dimensional Electronics: Chemically Tailored Hybrid van der Waals Heterostructures. ACS Nano, 2019, 13, 4814-4825.	7.3	51
1606	Temperature- and position-dependent Raman study on carrier concentration of large-area monolayer WS2. Applied Surface Science, 2019, 481, 241-245.	3.1	7

#	Article	IF	CITATIONS
1607	Sensitivity-Enhanced Fiber Plasmonic Sensor Utilizing Molybdenum Disulfide Nanosheets. Journal of Physical Chemistry C, 2019, 123, 10536-10543.	1.5	18
1608	Controllable synthesis of MoS ₂ @MoO ₂ nanonetworks for enhanced NO ₂ room temperature sensing in air. Nanoscale, 2019, 11, 8554-8564.	2.8	50
1609	Short channel monolayer MoS ₂ field-effect transistors defined by SiO <i> _x</i> nanofins down to 20 nm. Nanotechnology, 2019, 30, 295301.	1.3	5
1610	Flexible MoS2@electrospun PVDF hybrid membrane as advanced anode for lithium storage. Chemical Engineering Journal, 2019, 370, 547-555.	6.6	19
1611	Ultrafast Carrier Dynamics in Few-Layer Colloidal Molybdenum Disulfide Probed by Broadband Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 10571-10577.	1.5	35
1612	Design of high performance MoS ₂ -based non-volatile memory via ion beam defect engineering. 2D Materials, 2019, 6, 034002.	2.0	12
1613	Enhanced high rate capability of Li intercalation in planar and edge defect-rich MoS ₂ nanosheets. Nanoscale, 2019, 11, 8882-8897.	2.8	24
1614	Nanodomain Engineering for Programmable Ferroelectric Devices. Nano Letters, 2019, 19, 3194-3198.	4.5	50
1615	Principle of proximity: Plasmonic hot electrons motivate donator-adjacent semiconductor defects with enhanced electrocatalytic hydrogen evolution. Nano Energy, 2019, 60, 689-700.	8.2	30
1616	Functionalized MoS2 supported core-shell Ag@Au nanoclusters for managing electronic processes in photocatalysis. Materials Research Bulletin, 2019, 114, 112-120.	2.7	14
1617	Excited‣tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie, 2019, 131, 5768-5773.	1.6	19
1618	Atomic layer deposition of ZnO on MoS2 and WSe2. Applied Surface Science, 2019, 480, 43-51.	3.1	23
1619	Interface Engineering via MoS ₂ Insertion Layer for Improving Resistive Switching of Conductiveâ€Bridging Random Access Memory. Advanced Electronic Materials, 2019, 5, 1800747.	2.6	29
1620	Sulfur-doped graphene/transition metal dichalcogenide heterostructured hybrids with electrocatalytic activity toward the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 1489-1496.	2.2	36
1621	Density of defect states retrieved from the hysteretic gate transfer characteristics of monolayer MoS2 field effect transistors. AIP Advances, 2019, 9, .	0.6	11
1622	Boron Doped Graphene Quantum Structure and MoS2 Nanohybrid as Anode Materials for Highly Reversible Lithium Storage. Frontiers in Chemistry, 2019, 7, 116.	1.8	20
1623	Disordered surface formation of WS ₂ <i>via</i> hydrogen plasma with enhanced anode performances for lithium and sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 865-874.	2.5	19
1624	Excitonic Emission in van der Waals Nanotubes of Transition Metal Dichalcogenides. Annalen Der Physik, 2019, 531, 1800415.	0.9	28

#	Article	IF	CITATIONS
1625	MoS ₂ Liquid Cell Electron Microscopy Through Clean and Fast Polymer-Free MoS ₂ Transfer. Nano Letters, 2019, 19, 1788-1795.	4.5	45
1626	Carbon-encapsulated ultrathin MoS ₂ nanosheets epitaxially grown on porous metallic TiNb ₂ O ₆ microspheres with unsaturated oxygen atoms for superior potassium storage. Journal of Materials Chemistry A, 2019, 7, 5760-5768.	5.2	54
1627	Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging. Applied Physics Letters, 2019, 114, .	1.5	55
1628	Air Gap-Based Cavities Dramatically Enhance the True Intrinsic Spectral Signals of Suspended and Pristine Two-Dimensional Materials. Journal of Physical Chemistry C, 2019, 123, 5667-5679.	1.5	7
1629	Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS ₂ Crystals. Journal of Physical Chemistry Letters, 2019, 10, 1292-1299.	2.1	5
1630	Visualization of Local Conductance in MoS ₂ /WSe ₂ Heterostructure Transistors. Nano Letters, 2019, 19, 1976-1981.	4.5	36
1631	Seaweedâ€like 2Dâ€2D Architecture of MoS ₂ /rGO Composites for Enhanced Selective Aerobic Oxidative Coupling of Amines. ChemCatChem, 2019, 11, 1935-1942.	1.8	22
1632	Excitedâ€ S tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie - International Edition, 2019, 58, 5712-5717.	7.2	52
1633	Layer-by-layer MoS2:GO composite thin films for optoelectronics device applications. Applied Surface Science, 2019, 479, 1118-1123.	3.1	10
1634	Core–Shell MoS ₂ @CoO Electrocatalyst for Water Splitting in Neural and Alkaline Solutions. Journal of Physical Chemistry C, 2019, 123, 5833-5839.	1.5	38
1635	Temperature-dependent piezotronic effect of MoS2 monolayer. Nano Energy, 2019, 58, 811-816.	8.2	26
1636	An Experimental Setup for Combined In-Vacuo Raman Spectroscopy and Cavity-Interferometry Measurements on TMDC Nano-resonators. Experimental Mechanics, 2019, 59, 349-359.	1.1	6
1637	Centimeter-scale Green Integration of Layer-by-Layer 2D TMD vdW Heterostructures on Arbitrary Substrates by Water-Assisted Layer Transfer. Scientific Reports, 2019, 9, 1641.	1.6	44
1638	Mechanical characterization of phase-changed single-layer MoS ₂ sheets. 2D Materials, 2019, 6, 025024.	2.0	14
1639	TWO-PHOTON LUMINESCENCE AND SECOND HARMONIC GENERATION OF SINGLE LAYER MOLYBDENUM DISULPHIDE NANOPROBE FOR NONBLEACHING AND NONBLINKING OPTICAL BIOIMAGING. Progress in Electromagnetics Research, 2019, 166, 107-117.	1.6	9
1640	Field Effect and Raman Characterization of Self-Assembled Mos2 Nanoscrolls. , 2019, , .		0
1641	Plasmon-Enhanced Near-Field Optical Spectroscopy of Multicomponent Semiconductor Nanostructures. Optoelectronics, Instrumentation and Data Processing, 2019, 55, 488-494.	0.2	2
1642	Spectroscopic photoemission and low-energy electron microscopy studies of the surface and electronic structure of two-dimensional materials. Advances in Physics: X, 2019, 4, 1688187.	1.5	5

#	Article	IF	Citations
1643	Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS ₂) nanoparticles on D-shaped fiber as saturable absorber. Journal of Nonlinear Optical Physics and Materials, 2019, 28, 1950026.	1.1	4
1644	Investigation of the properties of two-dimensional molybdenum disulfide films synthesized by the CVD method. IOP Conference Series: Materials Science and Engineering, 2019, 693, 012030.	0.3	2
1645	Symmetry breaking of in-plane Raman scattering by elliptically polarized light in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mn>2 Physical Review B, 2019, 100, .</mml:mn></mml:msub></mml:math 	n.1 <td>nl:n₂sub≻</td>	nl:n₂sub≻
1646	Decoration of Au Nanoparticles on Monolayer MoS2 Transistor. , 2019, , .		1
1647	Triple sum frequency pump-probe spectroscopy of transition metal dichalcogenides. Physical Review B, 2019, 100, .	1.1	7
1648	First-principles and experimental investigation of carbon-coated MoS ₂ hollow nanosphere heterogeneous structures with enhanced hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 17502-17510.	1.4	2
1649	Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Scientific Reports, 2019, 9, 20141.	1.6	46
1650	Strong and efficient doping of monolayer MoS ₂ by a graphene electrode. Physical Chemistry Chemical Physics, 2019, 21, 25700-25706.	1.3	20
1651	A tunable floating-base bipolar transistor based on a 2D material homojunction realized using a solid ionic dielectric material. Nanoscale, 2019, 11, 22531-22538.	2.8	7
1652	Tuning MoS ₂ reactivity toward halogenation. Journal of Materials Chemistry C, 2019, 7, 14672-14677.	2.7	6
1653	Defect repair for enhanced piezo-phototronic MoS ₂ flexible phototransistors. Journal of Materials Chemistry C, 2019, 7, 14731-14738.	2.7	20
1654	Simultaneous measurement of anisotropic thermal conductivity and thermal boundary conductance of 2-dimensional materials. Journal of Applied Physics, 2019, 126, .	1.1	18
1655	Enhancement of Photoluminescence in MoS2 on Ag Nanowires due to the Surface Plasmon Effect. Journal of the Korean Physical Society, 2019, 75, 801-805.	0.3	4
1656	Influence of impurities on structural, electronic and optical properties of graphene-like nano-layers MoSe ₂ . Materials Research Express, 2019, 6, 125093.	0.8	3
1657	Monolayer MoS2 field effect transistor with low Schottky barrier height with ferromagnetic metal contacts. Scientific Reports, 2019, 9, 17032.	1.6	9
1658	DOPO-Functionalized Molybdenum Disulfide and its Impact on the Thermal Properties of Polyethylene and Poly(Lactic Acid) Composites. Nanomaterials, 2019, 9, 1637.	1.9	5
1659	Direct Observation of Monolayer MoS2 Prepared by CVD Using In-Situ Differential Reflectance Spectroscopy. Nanomaterials, 2019, 9, 1640.	1.9	17
1660	Laserâ€Guided Microcanvas Printing of Multicolor Upconversion Nanoparticles on Molybdenum Disulfide Monolayer. Advanced Materials Interfaces, 2019, 6, 1901673.	1.9	4

#	Article	IF	CITATIONS
1661	Effect of Ni Doping on the MoS2 Structure and Its Hydrogen Evolution Activity in Acid and Alkaline Electrolytes. Surfaces, 2019, 2, 531-545.	1.0	34
1662	Self-organized twist-heterostructures via aligned van der Waals epitaxy and solid-state transformations. Nature Communications, 2019, 10, 5528.	5.8	27
1663	Characteristics of ferroelectric field effect transistors composed of a ferroelectric Bi3TaTiO9 gate stack and a single-layer MoS2 channel. Applied Physics Letters, 2019, 115, 242902.	1.5	3
1664	Manipulation of exciton and trion quasiparticles in monolayer WS2 via charge transfer. Applied Physics Letters, 2019, 115, .	1.5	14
1665	Experimental study of protein translocation through MoS2 nanopores. Applied Physics Letters, 2019, 115, .	1.5	18
1666	Coupled Charge Transfer Dynamics and Photoluminescence Quenching in Monolayer MoS2 Decorated with WS2 Quantum Dots. Scientific Reports, 2019, 9, 19414.	1.6	45
1667	γ-Ray dose dependent conductivity of MoS ₂ nanomaterials at different temperatures. CrystEngComm, 2019, 21, 6830-6837.	1.3	7
1668	Evolution of inter-layer coupling in artificially stacked bilayer MoS ₂ . Nanoscale Advances, 2019, 1, 4398-4405.	2.2	8
1669	Polarized Raman spectroscopy to elucidate the texture of synthesized MoS ₂ . Nanoscale, 2019, 11, 22860-22870.	2.8	13
1670	2D MoS ₂ nanosheets on 1D anodic TiO ₂ nanotube layers: an efficient co-catalyst for liquid and gas phase photocatalysis. Nanoscale, 2019, 11, 23126-23131.	2.8	34
1671	Ambient atmosphere laser-induced local ripening of MoS ₂ nanoparticles. Journal of Materials Chemistry C, 2019, 7, 13261-13266.	2.7	2
1672	Raman Spectra Shift of Few-Layer IV-VI 2D Materials. Scientific Reports, 2019, 9, 19826.	1.6	36
1673	Uniform coating of molybdenum disulfide over porous carbon substrates and its electrochemical application. Chemical Engineering Journal, 2019, 356, 292-302.	6.6	10
1674	2D Materialâ€Based Vertical Double Heterojunction Bipolar Transistors with High Current Amplification. Advanced Electronic Materials, 2019, 5, 1800745.	2.6	26
1675	Improved Electrical Contact Properties of MoS ₂ â€Graphene Lateral Heterostructure. Advanced Functional Materials, 2019, 29, 1807550.	7.8	44
1676	Element―and Siteâ€Specific Manyâ€Body Interactions in Fewâ€Layer MoS ₂ During Xâ€Ray Absorp Processes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800539.	ition 0.8	6
1677	Electrochemical and optical studies of facile synthesized molybdenum disulphide (MoS2) nano structures. Journal of Alloys and Compounds, 2019, 782, 119-131.	2.8	26
1678	S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 2019, 9, 651-659.	5.5	167

#	Article	IF	CITATIONS
1679	Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 965-976.	3.8	127
1680	Extrinsic spin-orbit coupling induced enhanced spin pumping in few-layer MoS2/Py. Journal of Magnetism and Magnetic Materials, 2019, 476, 337-341.	1.0	19
1681	Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS ₂ Field-Effect Transistors. Journal of Physical Chemistry C, 2019, 123, 1454-1461.	1.5	51
1682	MoS2 thin films from a (N <i>t</i> Bu)2(NMe2)2Mo and 1-propanethiol atomic layer deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	22
1683	Anomalous interfacial stress generation during sodium intercalation/extraction in MoS ₂ thin-film anodes. Science Advances, 2019, 5, eaav2820.	4.7	60
1684	Micropatterning MoS2/Polyamide Electrospun Nanofibrous Membranes Using Femtosecond Laser Pulses. Photonics, 2019, 6, 3.	0.9	8
1685	Charge transfer across monolayer/bilayer MoS ₂ lateral interface and its influence on exciton and trion characteristics. 2D Materials, 2019, 6, 025004.	2.0	18
1686	Effect of different precursors on CVD growth of molybdenum disulfide. Journal of Alloys and Compounds, 2019, 782, 772-779.	2.8	26
1687	Enhancing interfacial charge transfer on novel 3D/1D multidimensional MoS2/TiO2 heterojunction toward efficient photoelectrocatalytic removal of levofloxacin. Electrochimica Acta, 2019, 295, 810-821.	2.6	38
1688	Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Research, 2019, 12, 381-388.	5.8	39
1689	A MoS ₂ /PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility. Advanced Materials, 2019, 31, e1806227.	11.1	336
1690	Improved photocatalytic reduction of Cr(VI) by molybdenum disulfide modified with conjugated polyvinyl alcohol. Chemical Engineering Journal, 2019, 359, 1205-1214.	6.6	42
1691	Structural Quantification for Graphene and Related Two-Dimensional Materials by Raman Spectroscopy. Analytical Chemistry, 2019, 91, 468-481.	3.2	20
1692	Van der Waals Heterostructure Devices with Dynamically Controlled Conduction Polarity and Multifunctionality. Advanced Functional Materials, 2019, 29, 1804897.	7.8	23
1693	The fabrication, microstructure, photo-catalysis and piezo-catalysis of layered TiO2-MoS2. Materials Research Express, 2019, 6, 025025.	0.8	9
1694	Reversible Intercalation of 1â€Ethylâ€3â€methylimidazolium Cations into MoS2from a Pure Ionic Liquid Electrolyte for Dualâ€Ion Cells. ChemElectroChem, 2019, 6, 676-683.	1.7	14
1695	High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. Journal of Alloys and Compounds, 2019, 779, 140-146.	2.8	68
1696	MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Materials Research Bulletin, 2019, 111, 212-221.	2.7	70

#	Article	IF	CITATIONS
1697	Ultrathin Nonâ€van der Waals Magnetic Rhombohedral Cr ₂ S ₃ : Spaceâ€Confined Chemical Vapor Deposition Synthesis and Raman Scattering Investigation. Advanced Functional Materials, 2019, 29, 1805880.	7.8	103
1698	2D MoS ₂ â€Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. Small, 2019, 15, e1803706.	5.2	265
1699	Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 321-328.	2.3	58
1700	Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid. Journal of Industrial and Engineering Chemistry, 2019, 70, 439-446.	2.9	31
1701	Activating MoS ₂ Basal Plane with Ni ₂ P Nanoparticles for Ptâ€Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2019, 29, 1809151.	7.8	114
1702	Stretchable fiber-shaped lithium metal anode. Energy Storage Materials, 2019, 22, 179-184.	9.5	65
1703	Constituent substitution in hot wall deposition of Bi2S3 films by reaction with substrates. Journal of Solid State Chemistry, 2019, 270, 219-225.	1.4	10
1704	Raman Imaging of Two Dimensional Materials. Springer Series in Materials Science, 2019, , 231-261.	0.4	0
1705	Preliminary characterization of the thickness of bulk MoS2 layer by the colour. Optik, 2019, 181, 898-905.	1.4	0
1706	Probing the Domain Architecture in 2D αâ€Mo ₂ C via Polarized Raman Spectroscopy. Advanced Materials, 2019, 31, e1807160.	11.1	58
1707	Raman Spectroscopy of Isotropic Two-Dimensional Materials Beyond Graphene. Springer Series in Materials Science, 2019, , 29-52.	0.4	1
1708	New Floating Gate Memory with Excellent Retention Characteristics. Advanced Electronic Materials, 2019, 5, 1800726.	2.6	48
1709	Intense pulsed light, a promising technique to develop molybdenum sulfide catalysts for hydrogen evolution. Nanotechnology, 2019, 30, 175401.	1.3	6
1710	SnSe2 Field-Effect Transistor with High On/Off Ratio and Polarity-Switchable Photoconductivity. Nanoscale Research Letters, 2019, 14, 17.	3.1	13
1711	Optical Imaging of Charges with Atomically Thin Molybdenum Disulfide. ACS Nano, 2019, 13, 2298-2306.	7.3	9
1712	Artificial Neuron using Vertical MoS2/Graphene Threshold Switching Memristors. Scientific Reports, 2019, 9, 53.	1.6	69
1713	Trapped charge modulation at the MoS ₂ /SiO ₂ interface by a lateral electric field in MoS ₂ field-effect transistors. Nano Futures, 2019, 3, 011002.	1.0	13
1714	Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2019, 2, 17-25.	13.1	113

#	Article	IF	CITATIONS
1715	Wafer-scale transferred multilayer MoS ₂ for high performance field effect transistors. Nanotechnology, 2019, 30, 174002.	1.3	37
1716	Thickness controlled nanostructure formation in RF sputtered WS2 thin film. Materials Research Express, 2019, 6, 025002.	0.8	1
1717	Heterojunction of TiO2 nanoparticle embedded into ZSM5 to 2D and 3D layered-structures of MoS2 nanosheets fabricated by pulsed laser ablation and microwave technique in deionized water: structurally enhanced photocatalytic performance. Applied Nanoscience (Switzerland), 2019, 9, 19-32.	1.6	24
1718	Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosensors and Bioelectronics, 2019, 126, 501-509.	5.3	145
1719	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Research, 2019, 12, 339-344.	5.8	32
1720	Photoluminescence Study of Bâ€Trions in MoS ₂ Monolayers with High Density of Defects. Physica Status Solidi (B): Basic Research, 2019, 256, 1800384.	0.7	15
1721	One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 243, 76-85.	10.8	137
1722	Ultrafast Nonlinear Optical Excitation Behaviors of Mono- and Few-Layer Two Dimensional MoS2. Photonic Sensors, 2019, 9, 1-10.	2.5	25
1723	Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nature Physics, 2019, 15, 228-232.	6.5	68
1724	Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes. Nano Letters, 2019, 19, 100-107.	4.5	49
1725	Raman scattering studies on very thin layers of gallium sulfide (GaS) as a function of sample thickness and temperature. Journal of Physics Condensed Matter, 2019, 31, 075303.	0.7	16
1726	Hierarchical MoS ₂ @Nâ€Doped Carbon Hollow Spheres with Enhanced Performance in Sodium Dualâ€Ion Batteries. ChemElectroChem, 2019, 6, 661-667.	1.7	24
1727	Two-dimensional Dy doped MoS2 ferromagnetic sheets. Applied Surface Science, 2019, 471, 118-123.	3.1	22
1728	Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution. Electrochimica Acta, 2019, 297, 553-563.	2.6	67
1729	Passively Q-switched laser at 1.34 μm using a molybdenum disulfide saturable absorber. Infrared Physics and Technology, 2019, 96, 311-315.	1.3	6
1730	Significant photoluminescence quenching and charge transfer in the MoS2/Bi2Te3 heterostructure. Journal of Physics and Chemistry of Solids, 2019, 128, 337-342.	1.9	11
1731	RF plasma modified W5O14 and MoS2 hybrid nanostructures and photovoltaic properties. Particulate Science and Technology, 2019, 37, 616-622.	1.1	2
1732	Comparison of unidirectional and reciprocating tribometers in tests with MoDTC-containing oils under boundary lubrication. Tribology International, 2020, 149, 105686.	3.0	17

#	Article	IF	CITATIONS
1733	Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities. Journal of Materials Science, 2020, 55, 713-723.	1.7	18
1734	Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed. Scripta Materialia, 2020, 176, 1-6.	2.6	16
1735	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	10.8	40
1736	A photolithographic method for fabricating electron devices based on MOCVD-grown MoS2. Chemical Engineering Journal, 2020, 382, 122944.	6.6	3
1737	Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst. Applied Materials Today, 2020, 18, 100453.	2.3	17
1738	Synthesis and Optical Properties of MoS2/Graphene Nanocomposite. Journal of Electronic Materials, 2020, 49, 969-979.	1.0	10
1739	Low-damaged p-type doping of MoS ₂ using direct nitrogen plasma modulated by toroidal-magnetic-field. Nanotechnology, 2020, 31, 015702.	1.3	13
1740	Direct–indirect bandgap transition in monolayer MoS ₂ induced by an individual Si nanoparticle. Nanotechnology, 2020, 31, 065204.	1.3	9
1741	MoS ₂ radio: detecting radio waves with a two-dimensional transition metal dichalcogenide semiconductor. Nanotechnology, 2020, 31, 06LT01.	1.3	10
1742	Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Materials, 2020, 7, 015013.	2.0	11
1743	Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chemical Physics Letters, 2020, 738, 136874.	1.2	58
1744	Direct growth of high-content 1T phase MoS2 film by pulsed laser deposition for hydrogen evolution reaction. Applied Surface Science, 2020, 504, 144320.	3.1	20
1745	Single variable defined technology control of the optical properties in MoS ₂ films with controlled number of 2D-layers. Nanotechnology, 2020, 31, 025602.	1.3	6
1746	Controllable synthesis of MoS2/graphene low-dimensional nanocomposites and their electrical properties. Applied Surface Science, 2020, 504, 144193.	3.1	19
1747	Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage. Chemical Engineering Journal, 2020, 381, 122651.	6.6	37
1748	Highly sensitive biosensor for detection of DNA nucleobases: Enhanced electrochemical sensing based on polyaniline/single-layer MoS2 nanosheets nanocomposite modified carbon paste electrode. Microchemical Journal, 2020, 152, 104315.	2.3	27
1749	Unraveling the stacking effect and stability in nanocrystalline antimony through DFT. Journal of Physics and Chemistry of Solids, 2020, 136, 109156.	1.9	5
1750	Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Science China Materials, 2020, 63, 62-74.	3.5	38

#	Article	IF	CITATIONS
1751	Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Materials Science in Semiconductor Processing, 2020, 105, 104679.	1.9	26
1752	Investigation of positive bias temperature instability for monolayer polycrystalline MoS2 field-effect transistors. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	3
1753	Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Materials Chemistry and Physics, 2020, 239, 121987.	2.0	11
1754	Surface coverage effects on water gas shift activity of ZrO2 supported Mo sulfide catalysts. Catalysis Communications, 2020, 138, 105810.	1.6	4
1755	Defect Control in the Synthesis of 2 D MoS ₂ Nanosheets: Polysulfide Trapping in Composite Sulfur Cathodes for Li–S Batteries. ChemSusChem, 2020, 13, 1517-1528.	3.6	26
1756	Parallel magnetic anisotropy in few layers MoS2 films. Journal of Magnetism and Magnetic Materials, 2020, 497, 165985.	1.0	4
1757	Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability. Journal of Materials Science and Technology, 2020, 41, 88-97.	5.6	38
1758	Interlayer coupling and diode characteristics of heterostructures of solution processed MoS2:ReS2 nanocrystals. Applied Surface Science, 2020, 505, 144475.	3.1	6
1759	Accelerated synthesis of atomically-thin 2D quantum materials by a novel laser-assisted synthesis technique. 2D Materials, 2020, 7, 015014.	2.0	21
1760	Characterization of twoâ€dimensional materials from Raman spectral data. Journal of Raman Spectroscopy, 2020, 51, 37-45.	1.2	4
1761	MoS2/Au0/N-CNT derived from Au(III) extraction by polypyrrole/MoS4 as an electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 561, 298-306.	5.0	9
1762	A modified wrinkle-free MoS ₂ film transfer method for large area high mobility field-effect transistor. Nanotechnology, 2020, 31, 055707.	1.3	16
1763	Insights into Multilevel Resistive Switching in Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2020, 12, 6022-6029.	4.0	54
1764	Influence of boric acid concentration on the properties of electrodeposited CZTS absorber layers. Physica Scripta, 2020, 95, 054001.	1.2	14
1765	A coupling technology of capacitive deionization and MoS2/nitrogen-doped carbon spheres with abundant active sites for efficiently and selectively adsorbing low-concentration copper ions. Journal of Colloid and Interface Science, 2020, 564, 428-441.	5.0	42
1766	Ultrasensitive negative capacitance phototransistors. Nature Communications, 2020, 11, 101.	5.8	124
1767	Understanding the unorthodox stabilization of liquid phase exfoliated molybdenum disulfide (MoS ₂) in water medium. Physical Chemistry Chemical Physics, 2020, 22, 1457-1465.	1.3	18
1768	Effect of large work function modulation of MoS ₂ by controllable chlorine doping using a remote plasma. Journal of Materials Chemistry C, 2020, 8, 1846-1851.	2.7	26

#	Article	IF	CITATIONS
1769	Different phases of few-layer MoS ₂ and their silver/gold nanocomposites for efficient hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 154-163.	2.1	36
1770	Tuning the surface charge density of exfoliated thin molybdenum disulfide sheets <i>via</i> non-covalent functionalization for promoting hydrogen evolution reaction. Journal of Materials Chemistry C, 2020, 8, 510-517.	2.7	17
1771	Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition. Applied Surface Science, 2020, 508, 145126.	3.1	29
1772	Controllable desulfurization in single layer MoS2 by cationic current treatment in hydrogen evolution reaction. Applied Surface Science, 2020, 507, 145181.	3.1	10
1773	Flexible amorphous MoS2 nanoflakes/N-doped carbon microtubes/reduced graphite oxide composite paper as binder free anode for full cell lithium ion batteries. Electrochimica Acta, 2020, 333, 135568.	2.6	37
1774	Straightforward identification of monolayer WS2 structures by Raman spectroscopy. Materials Chemistry and Physics, 2020, 243, 122599.	2.0	18
1775	Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor. Materials Science in Semiconductor Processing, 2020, 108, 104880.	1.9	24
1776	Hierarchically Porous β/SBA-16 Composites: Tuning Pore Structure and Acidity for Enhanced Isomerization Performance in Hydrodesulfurization of Dibenzothiophene and 4,6-Dimethyldibenzothiophene. Energy & Fuels, 2020, 34, 769-777.	2.5	12
1777	Selective Preparation of 1T- and 2H-Phase MoS ₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.	2.5	50
1778	Green and Efficient Liquid-Phase Exfoliation of Bil ₃ Nanosheets for Catalytic Carbon–Carbon Cross-Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 1262-1267.	3.2	9
1779	SiOC functionalization of MoS ₂ as a means to improve stability as sodium-ion battery anode. Nanotechnology, 2020, 31, 145403.	1.3	30
1780	Ferromagnetic properties of MoS2 film doped by Fe using chemical vapour deposition. Solid State Communications, 2020, 306, 113776.	0.9	5
1781	Elucidating the mechanism for the chemical vapor deposition growth of vertical MoO2/MoS2 flakes toward photoelectrochemical applications. Applied Surface Science, 2020, 505, 144551.	3.1	24
1782	A feasible and environmentally friendly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 433-442.	3.8	24
1783	UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface. Nano Research, 2020, 13, 358-365.	5.8	20
1784	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	5.8	153
1785	Hybrid Integration of n-MoS ₂ /p-GaN Diodes by Quasi-van der Waals Epitaxy. ACS Applied Electronic Materials, 2020, 2, 419-425.	2.0	16
1786	Two-Dimensional MoS2-Based Photosensitive Al/MoS2/SiO2/Si/Ag MOS Capacitor. IEEE Photonics Technology Letters, 2020, 32, 67-70.	1.3	4

#	Article	IF	CITATIONS
1787	Ultra-sensitive self-powered photodetector based on vertical MoTe ₂ /MoS ₂ heterostructure. Applied Physics Express, 2020, 13, 015007.	1.1	20
1788	Few-layer MoS2 nanosheets anchored by CNT network for superior lithium storage. Electrochimica Acta, 2020, 331, 135392.	2.6	14
1789	Performance enhancement of monolayer MoS ₂ transistors by atomic layer deposition of high- <i>k</i> dielectric assisted by Al ₂ O ₃ seed layer. Journal Physics D: Applied Physics, 2020, 53, 105103.	1.3	6
1790	Fabricating Molybdenum Disulfide Memristors. ACS Applied Electronic Materials, 2020, 2, 346-370.	2.0	27
1791	Solution-processed MoS ₂ quantum dot/GaAs vertical heterostructure based self-powered photodetectors with superior detectivity. Nanotechnology, 2020, 31, 135203.	1.3	22
1792	A two-dimensional MoS2/WSe2 van der Waals heterostructure for enhanced photoelectric performance. Applied Surface Science, 2020, 507, 145082.	3.1	62
1793	Oxidized Core–Shell MoO ₂ –MoS ₂ Nanostructured Thin Films for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 711-723.	2.4	28
1794	On the role of nano-confined water at the 2D/SiO ₂ interface in layer number engineering of exfoliated MoS ₂ via thermal annealing. 2D Materials, 2020, 7, 025001.	2.0	12
1795	Pingpongâ€Energietransfer in kovalent verknüpften Porphyrinâ€MoS 2 â€Architekturen. Angewandte Chemie, 2020, 132, 4004-4009.	1.6	7
1796	Controllable atomic-ratio of CVD-grown MoS2-MoO2 hybrid catalyst by soft annealing for enhancing hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 1399-1408.	3.8	20
1797	Pingâ€Pong Energy Transfer in Covalently Linked Porphyrinâ€MoS ₂ Architectures. Angewandte Chemie - International Edition, 2020, 59, 3976-3981.	7.2	31
1798	Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi ₄ O ₄ SeCl ₂ . Journal of the American Chemical Society, 2020, 142, 847-856.	6.6	29
1799	Importance of the substrate's surface evolution during the MOVPE growth of 2D-transition metal dichalcogenides. Nanotechnology, 2020, 31, 125604.	1.3	15
1800	In-depth study of the chemical/electronic structures of two-dimensional molybdenum disulfide materials with sub-micrometer-resolution scanning photoelectron microscopy. 2D Materials, 2020, 7, 025002.	2.0	9
1801	Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Research, 2020, 170, 115367.	5.3	60
1802	Hydrogen production over Co-promoted Mo-S water gas shift catalysts supported on ZrO2. Applied Catalysis A: General, 2020, 590, 117361.	2.2	7
1803	Photoinduced trion absorption in monolayer WSe2. Current Applied Physics, 2020, 20, 272-276.	1.1	4
1804	The effects of ultrasonication on the microstructure, gelling and tribological properties of 12-HSA soft-nanocomposite with LaF3 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124247.	2.3	2

#	Article	IF	CITATIONS
1805	Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3D flower-like MoS2–ZnO micro/nanosphere arrays. Ceramics International, 2020, 46, 6634-6640.	2.3	40
1806	Optical characterization of two-dimensional semiconductors. , 2020, , 135-166.		1
1807	Lattice vibration properties of MoS2/PtSe2 heterostructures. Journal of Alloys and Compounds, 2020, 820, 153192.	2.8	7
1808	MoS2-enhanced epoxy-based plasmonic fiber-optic sensor for selective and sensitive detection of methanol. Sensors and Actuators B: Chemical, 2020, 305, 127513.	4.0	20
1809	Direct observation of the hysteretic Fermi level modulation in monolayer MoS2 field effect transistors. Current Applied Physics, 2020, 20, 298-303.	1.1	17
1810	Selfâ€Growth of MoS ₂ Sponge for Highly Efficient Photothermal Cleanup of Highâ€Viscosity Crude Oil Spills. Advanced Materials Interfaces, 2020, 7, 1901671.	1.9	54
1811	Heterostructured MoS2@Bi2Se3 nanoflowers: A highly efficient electrocatalyst for hydrogen evolution. Journal of Catalysis, 2020, 381, 590-598.	3.1	39
1812	High-Performance Field-Effect Transistor and Logic Gates Based on GaS–MoS ₂ van der Waals Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 5106-5112.	4.0	17
1813	Optoelectronic Thinning of Transition Metal Dichalcogenides for Device Fabrication. , 2020, , .		1
1814	Surface Modification of Monolayer MoS2 by Baking for Biomedical Applications. Frontiers in Chemistry, 2020, 8, 741.	1.8	4
1815	Hierarchical heterostructured nickle foam–supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction. Materials Today Energy, 2020, 18, 100513.	2.5	34
1816	Large-Area Electrodeposition of Few-Layer MoS ₂ on Graphene for 2D Material Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 49786-49794.	4.0	21
1817	Correlating structural, electronic, and magnetic properties of epitaxial VSe2 thin films. Physical Review B, 2020, 102, .	1.1	25
1818	Interlayer Binding Energy of Hexagonal MoS2 as Determined by an In Situ Peeling-to-Fracture Method. Journal of Physical Chemistry C, 2020, 124, 23419-23425.	1.5	23
1819	Synthesis of Porous Nanostructured MoS2 Materials in Thermal Shock Conditions and Their Performance in Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10802-10813.	2.5	8
1820	Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application. Crystals, 2020, 10, 902.	1.0	38
1821	Humidityâ€Dependent Characteristics of Few‣ayer MoS ₂ Field Effect Transistors. Advanced Electronic Materials, 2020, 6, 2000659.	2.6	23
1822	Synergistic toughening of bio-inspired molybdenum disulfide-chitosan lignocellulosic nacre with photocatalytic properties. Applied Materials Today, 2020, 20, 100785.	2.3	6

#	Article	IF	CITATIONS
1823	A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorganic Chemistry Communication, 2020, 121, 108200.	1.8	155
1824	Band Edge Tailoring in Few-Layer Two-Dimensional Molybdenum Sulfide/Selenide Alloys. Journal of Physical Chemistry C, 2020, 124, 22893-22902.	1.5	9
1825	Photoresponse of Solution-Processed Molybdenum Disulfide Nanosheet-Based Photodetectors. ACS Applied Nano Materials, 2020, 3, 10057-10066.	2.4	7
1826	Healing Sulfur Vacancies in Monolayer MoS ₂ by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors. ACS Applied Nano Materials, 2020, 3, 10462-10469.	2.4	24
1827	Breast cancer biomarker detection through the photoluminescence of epitaxial monolayer MoS2 flakes. Scientific Reports, 2020, 10, 16039.	1.6	33
1828	Laser-induced anharmonicity vs thermally induced biaxial compressive strain in mono- and bilayer MoS2 grown via CVD. AIP Advances, 2020, 10, 085003.	0.6	9
1829	Barrier-assisted vapor phase CVD of large-area MoS ₂ monolayers with high spatial homogeneity. Nanoscale Advances, 2020, 2, 4106-4116.	2.2	13
1830	Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study. Applied Surface Science, 2020, 512, 145588.	3.1	22
1831	Controllable preparation of monolayer MoO3/MoO by using plasma oxidation and atomic layer etching. Materials Letters, 2020, 276, 128227.	1.3	3
1832	Improvement of photoelectric properties of MoS2/WS2 heterostructure photodetector with interlayer of Au nanoparticles. Optical Materials, 2020, 108, 110191.	1.7	20
1833	A D-shaped fiber SPR sensor with a composite nanostructure of MoS2-graphene for glucose detection. Talanta, 2020, 219, 121324.	2.9	85
1834	Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS ₂ . Journal of the American Chemical Society, 2020, 142, 4298-4308.	6.6	585
1835	Rapid Four-Point Sweeping Method to Investigate Hysteresis of MoS ₂ FET. IEEE Electron Device Letters, 2020, 41, 1356-1359.	2.2	3
1836	Nanotribological Effect of Water Layers Intercalated between Exfoliated MoS ₂ and Mica. Journal of Physical Chemistry C, 2020, 124, 16902-16907.	1.5	12
1837	Understanding of multiple resistance states by current sweeping in MoS ₂ -based non-volatile memory devices. Nanotechnology, 2020, 31, 465206.	1.3	19
1838	Synthesis of transition metal dichalcogenides. , 2020, , 247-264.		6
1839	Wafer-Scale Growth of Pristine and Doped Monolayer MoS ₂ Films for Electronic Device Applications. Inorganic Chemistry, 2020, 59, 17356-17363.	1.9	14
1840	Hysteresis Modulation on Van der Waalsâ€Based Ferroelectric Fieldâ€Effect Transistor by Interfacial Passivation Technique and Its Application in Optic Neural Networks. Small, 2020, 16, e2004371.	5.2	35

#	Article	IF	CITATIONS
1841	Controllable deposition of MoS2 nanosheets on titanium by the vapor-phase hydrothermal technique and comparison with the conventional liquid-phase hydrothermal method. Surface and Coatings Technology, 2020, 404, 126497.	2.2	2
1842	Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Science and Applications, 2020, 9, 190.	7.7	239
1843	Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide interfaces. Applied Physics Letters, 2020, 117, 213104.	1.5	2
1844	2D atomic crystal molecular superlattices by soft plasma intercalation. Nature Communications, 2020, 11, 5960.	5.8	36
1845	Pulse-Mediated Electronic Tuning of the MoS ₂ –Perovskite Ferroelectric Field Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 3843-3852.	2.0	2
1846	Effects of dielectric screening on the excitonic and critical points properties of WS ₂ /MoS ₂ heterostructures. Nanoscale, 2020, 12, 23732-23739.	2.8	19
1847	Selective Area Growth and Transfer of High Optical Quality MoS ₂ Layers. Advanced Materials Interfaces, 2020, 7, 2001549.	1.9	19
1848	Formation of Coherent 1H–1T Heterostructures in Single-Layer MoS ₂ on Au(111). ACS Nano, 2020, 14, 16939-16950.	7.3	29
1849	Modified atomic layer deposition of MoS2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	14
1850	A cost-effective liquid phase exfoliation process for large 2D-MoS2 nanosheets and its application in FET. AIP Conference Proceedings, 2020, , .	0.3	0
1851	Surface-Enhanced Raman Scattering: Introduction and Applications. , 0, , .		11
1852	Temperature Dependent Structural Evolution of WSe2: A Synchrotron X-ray Diffraction Study. Condensed Matter, 2020, 5, 76.	0.8	16
1853	Microwave-Assisted vs. Conventional Hydrothermal Synthesis of MoS2 Nanosheets: Application towards Hydrogen Evolution Reaction. Crystals, 2020, 10, 1040.	1.0	26
1854	Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results in Physics, 2020, 19, 103634.	2.0	10
1855	Effect of the geometry of precursor crucibles on the growth of MoS ₂ flakes by chemical vapor deposition. New Journal of Chemistry, 2020, 44, 21076-21084.	1.4	1
1856	Tuning Transport and Chemical Sensitivity via Niobium Doping of Synthetic MoS ₂ . Advanced Materials Interfaces, 2020, 7, 2000856.	1.9	19
1857	Time Dependence of Photocurrent in Chemical Vapor Deposition MoS ₂ Monolayer—Intrinsic Properties and Environmental Effects. Journal of Physical Chemistry C, 2020, 124, 18741-18746.	1.5	16
1858	Porous PEDOT Network Coated on MoS ₂ Nanobelts toward Improving Capacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 12696-12705.	3.2	21

#	Article	IF	CITATIONS
1859	Inkjet-defined site-selective (IDSS) growth for controllable production of in-plane and out-of-plane MoS2 device arrays. Nanoscale, 2020, 12, 16917-16927.	2.8	7
1860	Symmetry crossover in layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M </mml:mi> <mml:msub> <mml:mi complexes <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo> (</mml:mo> <mml:mi> M </mml:mi> <mml:mo> =</mml:mo></mml:math </mml:mi </mml:msub></mml:mrow></mml:math 	>PS1.1 <td>:mi> <mmla 16 >> <mml:mi></mml:mi></mmla </td>	:mi> <mmla 16 >> <mml:mi></mml:mi></mmla
1861	Rapid and Low-Temperature Molecular Precursor Approach toward Ternary Layered Metal Chalcogenides and Oxides: Mo _{1–<i>x</i>} W _{<i>x</i>} S ₂ and Mo _{1–<i>x</i>} W _{<i>x</i>} O ₃ Alloys (0 ≤i>x ≤). Chemistry of Materials, 2020, 32, 7895-7907.	3.2	13
1862	Covalently functionalized layered MoS ₂ supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale, 2020, 12, 18278-18288.	2.8	13
1863	High-performance vertical field-effect transistors based on all-inorganic perovskite microplatelets. Journal of Materials Chemistry C, 2020, 8, 12632-12637.	2.7	16
1864	Anomalous vibrational behavior of two dimensional tellurium: Layer thickness and temperature dependent Raman spectroscopic study. Applied Surface Science, 2020, 531, 147303.	3.1	10
1865	Dual-ion battery with MoS2 cathode. Energy Storage Materials, 2020, 32, 159-166.	9.5	18
1866	Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nature Communications, 2020, 11, 3682.	5.8	76
1867	Investigating the phonon line shapes of TMDs: An analytical approach. Journal of Raman Spectroscopy, 2020, 51, 2036-2045.	1.2	6
1868	Strain-dependent luminescence and piezoelectricity in monolayer transition metal dichalcogenides. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 042205.	0.6	4
1869	Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules. Nano Research, 2020, 13, 2917-2924.	5.8	11
1870	Improved Electrical Properties of Top-Gate MoS ₂ Transistor With NH ₃ -Plasma Treated HfO ₂ as Gate Dielectric. IEEE Electron Device Letters, 2020, 41, 1364-1367.	2.2	6
1871	Growth of Multiorientated Polycrystalline MoS2 Using Plasma-Enhanced Chemical Vapor Deposition for Efficient Hydrogen Evolution Reactions. Nanomaterials, 2020, 10, 1465.	1.9	8
1872	Synthesis of Ultrahighâ€Quality Monolayer Molybdenum Disulfide through In Situ Defect Healing with Thiol Molecules. Small, 2020, 16, e2003357.	5.2	36
1873	Efficient visible-light induced H2 evolution from T-CdxZn1-xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Applied Catalysis B: Environmental, 2020, 267, 118702.	10.8	55
1874	Anomalous photoluminescence quenching in DIP/MoS2 van der Waals heterostructure: Strong charge transfer and a modified interface. Applied Surface Science, 2020, 530, 147213.	3.1	7
1875	Programmable electronic synapse and nonvolatile resistive switches using MoS2 quantum dots. Scientific Reports, 2020, 10, 12450.	1.6	22
1876	Defects Enhance the Electrocatalytic Hydrogen Evolution Properties of MoS ₂ â€based Materials. Chemistry - an Asian Journal, 2020, 15, 3123-3134.	1.7	57

#	Article	IF	Citations
1877	A Mg2+/Li+ hybrid-ion battery based on MoS2 prepared by solvothermal synthesis with ionic liquid assistance. Journal of Materials Science: Materials in Electronics, 2020, 31, 14702-14713.	1.1	9
1878	Hydrothermally synthesized MoS2-multi-walled carbon nanotube composite as a novel room-temperature ammonia sensing platform. Applied Surface Science, 2020, 532, 147373.	3.1	66
1879	Synergetic enhancement in optical nonlinearity of Au nanoparticle decorated MoS2 via interaction between excitonic and surface plasmon resonances. Applied Surface Science, 2020, 532, 147486.	3.1	9
1880	Transition metal dichalcogenides thyristor realized by solid ionic conductor gate induced doping. Applied Physics Letters, 2020, 117, 053102.	1.5	2
1881	Tunable Optical Transition in 2H-MoS ₂ via Direct Electrochemical Engineering of Vacancy Defects and Surface S–C Bonds. ACS Applied Materials & Interfaces, 2020, 12, 40870-40878.	4.0	19
1882	S-Vacancy induced indirect-to-direct band gap transition in multilayer MoS ₂ . Physical Chemistry Chemical Physics, 2020, 22, 26005-26014.	1.3	18
1883	MoS ₂ Phototransistor Sensitized by Colloidal Semiconductor Quantum Wells. Advanced Optical Materials, 2020, 8, 2001198.	3.6	8
1884	Cost-effective scalable synthesis of few layers MoS2 based thin film for sunlight enforced photocatalytic activity. Optical Materials, 2020, 110, 110506.	1.7	11
1885	Robust B-exciton emission at room temperature in few-layers of MoS2:Ag nanoheterojunctions embedded into a glass matrix. Scientific Reports, 2020, 10, 15697.	1.6	9
1886	Electrothermal transport induced material reconfiguration and performance degradation of CVD-grown monolayer MoS2 transistors. Npj 2D Materials and Applications, 2020, 4, .	3.9	9
1887	Preparation of microporous MoS2@carbon nanospheres for the electrochemical detection of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2020, 876, 114739.	1.9	15
1888	Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges. Nano-Micro Letters, 2020, 12, 174.	14.4	50
1889	Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Research, 2020, 13, 3098-3104.	5.8	24
1890	Stochastic resonance in MoS2 photodetector. Nature Communications, 2020, 11, 4406.	5.8	75
1891	Thermally Activated Goldâ€Mediated Transition Metal Dichalcogenide Exfoliation and a Unique Goldâ€Mediated Transfer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000408.	1.2	25
1892	Elucidating the Mechanistic Origins of Photocatalytic Hydrogen Evolution Mediated by MoS ₂ /CdS Quantum-Dot Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 43728-43740.	4.0	42
1893	One-pot synthesis of MoS2(1â^'x)Se2x on N-doped reduced graphene oxide: tailoring chemical and structural properties for photoenhanced hydrogen evolution reaction. Nanoscale Advances, 2020, 2, 4830-4840.	2.2	3
1894	Largeâ€Scale and Robust Multifunctional Vertically Aligned MoS ₂ Photoâ€Memristors. Advanced Functional Materials, 2020, 30, 2005718.	7.8	22

#	Article	IF	CITATIONS
1895	Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 2020, 120, 12563-12591.	23.0	163
1896	The effect of Si content on the structure and tribological performance of MoS2/Si coatings. Surface and Coatings Technology, 2020, 403, 126362.	2.2	17
1897	Frequency doubler based on a single MoTe2/MoS2 anti-ambipolar heterostructure. Applied Physics Letters, 2020, 117, .	1.5	20
1898	Dependence of Photoresponsivity and On/Off Ratio on Quantum Dot Density in Quantum Dot Sensitized MoS2 Photodetector. Nanomaterials, 2020, 10, 1828.	1.9	13
1899	Electric Field Tuning of Interlayer Coupling in Noncentrosymmetric 3R-MoS ₂ with an Electric Double Layer Interface. ACS Applied Materials & Interfaces, 2020, 12, 46900-46907.	4.0	10
1900	Ferroelectric-Modulated MoS ₂ Field-Effect Transistors as Multilevel Nonvolatile Memory. ACS Applied Materials & Interfaces, 2020, 12, 44902-44911.	4.0	13
1901	Changing the Electronic Polarizability of Monolayer MoS ₂ by Peryleneâ€Based Seeding Promoters. Advanced Materials Interfaces, 2020, 7, 2000791.	1.9	13
1902	Facile Resistâ€Free Nanopatterning of Monolayers of MoS ₂ by Focused Ionâ€Beam Milling. Advanced Materials Interfaces, 2020, 7, 2000858.	1.9	14
1903	Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020, 12, 172.	14.4	39
1904	Nonthermal Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Molybdenum Disulfide. ACS Omega, 2020, 5, 21853-21861.	1.6	11
1905	Ultra-fast synthesis of water soluble MoO3â^'x quantum dots with controlled oxygen vacancies and their near infrared fluorescence sensing to detect H2O2. Nanoscale Horizons, 2020, 5, 1538-1543.	4.1	16
1906	Unravelling the effect of sulfur vacancies on the electronic structure of the MoS ₂ crystal. Physical Chemistry Chemical Physics, 2020, 22, 21776-21783.	1.3	34
1907	A new metalorganic chemical vapor deposition process for MoS ₂ with a 1,4-diazabutadienyl stabilized molybdenum precursor and elemental sulfur. Dalton Transactions, 2020, 49, 13462-13474.	1.6	12
1908	Combinatorial Large-Area MoS ₂ /Anatase–TiO ₂ Interface: A Pathway to Emergent Optical and Optoelectronic Functionalities. ACS Applied Materials & Interfaces, 2020, 12, 44345-44359.	4.0	10
1909	Transition Metal Dichalcogenide (TMD) Membranes with Ultrasmall Nanosheets for Ultrafast Molecule Separation. ACS Applied Materials & Interfaces, 2020, 12, 45453-45459.	4.0	33
1910	Quasi-metal Microwave Route to MoN and Mo ₂ C Ultrafine Nanocrystalline Hollow Spheres as Surface-Enhanced Raman Scattering Substrates. ACS Nano, 2020, 14, 13718-13726.	7.3	18
1911	Solid Phase Exfoliation for Producing Dispersible Transition Metal Dichalcogenides Nanosheets. Advanced Functional Materials, 2020, 30, 2004139.	7.8	27
1912	Detection and discrimination of volatile organic compounds by noble metal nanoparticle functionalized MoS ₂ coated biodegradable paper sensors. New Journal of Chemistry, 2020, 44, 16613-16625.	1.4	25

#	Article	IF	CITATIONS
1913	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	3.3	33
1914	One-Step Preparation of MoS ₂ /Graphene Nanosheets <i>via</i> Solid-State Pan-Milling for High Rate Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 16240-16248.	1.8	9
1915	Exciton–phonon coupling and power dependent room temperature photoluminescence of sulphur vacancy doped MoS ₂ <i>via</i> controlled thermal annealing. Nanoscale, 2020, 12, 18899-18907.	2.8	10
1916	2D TMD Channel Transistors with ZnO Nanowire Gate for Extended Nonvolatile Memory Applications. Advanced Functional Materials, 2020, 30, 2004140.	7.8	24
1917	Raman Fingerprint of Pressure-Induced Phase Transitions in TiS ₃ Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions. ACS Applied Nano Materials, 2020, 3, 8794-8802.	2.4	15
1918	A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nature Electronics, 2020, 3, 646-655.	13.1	140
1919	Toward automated classification of monolayer versus few-layer nanomaterials using texture analysis and neural networks. Scientific Reports, 2020, 10, 20663.	1.6	4
1920	Probing stacking configurations in a few layered MoS2 by low frequency Raman spectroscopy. Scientific Reports, 2020, 10, 21227.	1.6	18
1921	Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. Communications Materials, 2020, 1, .	2.9	25
1922	Anisotropic Complex Refractive Indices of Atomically Thin Materials: Determination of the Optical Constants of Few-Layer Black Phosphorus. Materials, 2020, 13, 5736.	1.3	6
1923	Photoelectric Characteristics of a Large-Area n-MoS2/p-Si Heterojunction Structure Formed through Sulfurization Process. Sensors, 2020, 20, 7340.	2.1	7
1924	Schottky Barrier Height and Image Force Lowering in Monolayer MoS2 Field Effect Transistors. Nanomaterials, 2020, 10, 2346.	1.9	17
1925	Synthesis of MoS2 Thin Film by Ionized Jet Deposition: Role of Substrate and Working Parameters. Surfaces, 2020, 3, 683-693.	1.0	4
1926	Robust Ferromagnetism in Li-Intercalated and -Deintercalated MoS ₂ Nanosheets: Implications for 2D Spintronics. ACS Applied Nano Materials, 2020, 3, 11825-11837.	2.4	9
1927	A 2D material-based floating gate device with linear synaptic weight update. Nanoscale, 2020, 12, 24503-24509.	2.8	34
1928	Optical and electronic bandgap manipulation behaviors of MoS2/TaSe2 van der Waals heterostructures: Experiment and theory. Chemical Physics Letters, 2020, 758, 137926.	1.2	2
1929	Annealing Boosts the Supercapacitive Properties of Molybdenum Disulfide Powder. Electroanalysis, 2020, 32, 2642-2649.	1.5	3
1930	Polymer-Decorated 2D MoS ₂ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation*. Chinese Physics Letters, 2020, 37, 088501.	1.3	30
#	Article	IF	CITATIONS
------	--	------	-----------
1931	Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS ₂ Field-Effect Transistor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 50610-50618.	4.0	64
1932	Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Advanced Materials Interfaces, 2020, 7, 2001678.	1.9	14
1933	All-in-One MoS ₂ Nanosheets Tailored by Porous Nitrogen-Doped Graphene for Fast and Highly Reversible Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 51488-51498.	4.0	27
1934	Peroxide-Induced Tuning of the Conductivity of Nanometer-Thick MoS ₂ Films for Solid-State Sensors. ACS Applied Nano Materials, 2020, 3, 10864-10877.	2.4	9
1935	Machine Learning Analysis of Raman Spectra of MoS2. Nanomaterials, 2020, 10, 2223.	1.9	13
1936	Successive layer-by-layer deposition of metal (Mo, Ag)/BN/MoS2 nanolaminate films and the electric properties of BN/MoS2 heterostructure on different metal substrates. Journal of Materials Science: Materials in Electronics, 2020, 31, 9559-9567.	1.1	3
1937	Vertically-oriented MoS ₂ nanosheets for nonlinear optical devices. Nanoscale, 2020, 12, 10491-10497.	2.8	28
1938	A hierarchical 3D camellia-like molybdenum tungsten disulfide architectures for the determination of morphine and tramadol. Mikrochimica Acta, 2020, 187, 312.	2.5	8
1939	Oxidation Notably Accelerates Nonradiative Electron–Hole Recombination in MoS2 by Different Mechanisms: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2020, 11, 4086-4092.	2.1	17
1940	Light–matter interactions in two-dimensional layered WSe ₂ for gauging evolution of phonon dynamics. Beilstein Journal of Nanotechnology, 2020, 11, 782-797.	1.5	20
1941	Honeycomb RhI ₃ Flakes with High Environmental Stability for Optoelectronics. Advanced Materials, 2020, 32, e2001979.	11.1	27
1942	Evaluation of MoS2 Films Fabricated by Metal-Organic Chemical Vapor Deposition Using a Novel Mo Precursor i-Pr2DADMo(CO)3 Under Various Deposition Conditions. MRS Advances, 2020, 5, 1643-1652.	0.5	0
1943	One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance. Journal of Alloys and Compounds, 2020, 834, 155217.	2.8	39
1944	Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020, 8, 15417-15444.	5.2	154
1945	Introduction of an Al Seed Layer for Facile Adsorption of MoCl ₅ during Atomic Layer Deposition of MoS ₂ . Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901042.	0.8	6
1946	NaCl substrates for high temperature processing and transfer of ultrathin materials. Scientific Reports, 2020, 10, 7253.	1.6	7
1947	Photomodulation of Charge Transport in All‣emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	11.1	20
1948	<i>In Situ</i> 2D MoS ₂ Field-Effect Transistors with an Electron Beam Gate. ACS Nano, 2020, 14, 7389-7397.	7.3	10

#	Article	IF	CITATIONS
1949	Conductivity Modulation of a Slit Channel in a Monolayer MoS 2 Homostructure. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000082.	1.2	0
1950	Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nature Communications, 2020, 11, 2253.	5.8	112
1951	Banana Leaflike C-Doped MoS ₂ Aerogels toward Excellent Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12, 26301-26312.	4.0	100
1952	Electrodeposition of MoSx: Tunable Fabrication of Sulfur Equivalent Electrodes for High Capacity or High Power. Journal of the Electrochemical Society, 2020, 167, 050513.	1.3	5
1953	Fluorescence quenching of molybdenum disulfide quantum dots for metal ion sensing. Monatshefte Für Chemie, 2020, 151, 729-741.	0.9	5
1954	Enhancement of the Photoelectrocatalytic H ₂ Evolution on a Rutile-TiO ₂ (001) Surface Decorated with Dendritic MoS ₂ Monolayer Nanoflakes. ACS Applied Energy Materials, 2020, 3, 5756-5764.	2.5	17
1955	Wafer-Scale Two-Dimensional MoS ₂ Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 25200-25210.	4.0	31
1956	Anharmonicity in Raman-active phonon modes in atomically thin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2 Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	m n.ı <td>l:msub></td>	l:msub>
1957	Exceptional interfacial electrochemistry of few-layered 2D MoS ₂ quantum sheets for high performance flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 13121-13131.	5.2	36
1958	Band gap determination of graphene, h-boron nitride, phosphorene, silicene, stanene, and germanene nanoribbons. Journal Physics D: Applied Physics, 2020, 53, 415103.	1.3	16
1959	Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS ₂ . ACS Nano, 2020, 14, 6897-6905.	7.3	17
1960	Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11, 2453.	5.8	394
1961	Tailoring phonon modes of few-layered MoS2 by in-plane electric field. Npj 2D Materials and Applications, 2020, 4, .	3.9	10
1962	Directing the Morphology of Chemical Vapor Depositionâ€Grown MoS ₂ on Sapphire by Crystal Plane Selection. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000073.	0.8	9
1963	Synergy between nanozymes and natural enzymes on the hybrid MoS2 nanosheets/graphite microfiber for enhanced voltammetric determination of hydrogen peroxide. Mikrochimica Acta, 2020, 187, 321.	2.5	22
1964	Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Research, 2020, 13, 2072-2078.	5.8	25
1965	Ultra-thin MoS2 nanosheet for electron transport layer of perovskite solar cells. Optical Materials, 2020, 104, 109933.	1.7	24
1966	Molybdenum disulfide thin films fabrication from multi-phase molybdenum oxide using magnetron sputtering and CVD systems together. Superlattices and Microstructures, 2020, 143, 106555.	1.4	9

#	Article	IF	CITATIONS
1967	Low frequency Raman study of interlayer couplings in WS ₂ –MoS ₂ van der Waals heterostructures. Japanese Journal of Applied Physics, 2020, 59, 062004.	0.8	6
1968	Fast response speed of mechanically exfoliated MoS2 modified by PbS in detecting NO2. Chinese Chemical Letters, 2020, 31, 2103-2108.	4.8	27
1969	Scalable solid-state synthesis of MoS ₂ –NiS ₂ /graphene nanohybrids as bifunctional electrocatalysts for enhanced overall water splitting. Materials Advances, 2020, 1, 794-803.	2.6	21
1970	Enhanced electrochemical performance of MoS ₂ /graphene nanosheet nanocomposites. RSC Advances, 2020, 10, 19077-19082.	1.7	16
1971	Yolk-shell spheres constructed of ultrathin MoSe2 nanosheets as a high-performance anode for sodium dual ion batteries. Solid State Ionics, 2020, 353, 115373.	1.3	27
1972	In Operando Generation and Storage of Hydrogen by Coupling Monolithically Integrated Photoelectrochemical Cell with Clathrate Hydrates Molecular Storage. ACS Applied Energy Materials, 2020, 3, 6834-6844.	2.5	7
1973	Improving the electrical performance of monolayer top-gated MoS ₂ transistors by post bis(trifluoromethane) sulfonamide treatment. Journal Physics D: Applied Physics, 2020, 53, 415106.	1.3	5
1974	Three-Dimensional Ternary Hybrid Architectures Constructed from Graphene, MoS ₂ , and Graphitic Carbon Nitride Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 6880-6888.	2.5	30
1975	A library of ab initio Raman spectra for automated identification of 2D materials. Nature Communications, 2020, 11, 3011.	5.8	43
1976	Versatile construction of van der Waals heterostructures using a dual-function polymeric film. Nature Communications, 2020, 11, 3029.	5.8	41
1977	Direct measurement of interfacial Dzyaloshinskii–Moriya interaction at the MoS2/Ni80Fe20 interface. Applied Physics Letters, 2020, 116, .	1.5	12
1978	Nitrogen Dioxide Gas Sensor Based on Liquid-Phase-Exfoliated Black Phosphorus Nanosheets. ACS Applied Nano Materials, 2020, 3, 6440-6447.	2.4	28
1979	Modulating flow near substrate surface to grow clean and large-area monolayer MoS ₂ . Nanotechnology, 2020, 31, 415706.	1.3	5
1980	Versatile Triboiontronic Transistor <i>via</i> Proton Conductor. ACS Nano, 2020, 14, 8668-8677.	7.3	49
1981	High mobility monolayer MoS2 transistors and its charge transport behaviour under E-beam irradiation. Journal of Materials Science, 2020, 55, 14315-14325.	1.7	15
1982	Structural, morphological, optical, and photocatalytic properties of Ag-doped MoS2 nanoparticles. Journal of Molecular Structure, 2020, 1220, 128735.	1.8	29
1983	Enlargement of grain size for MoS2 film fabricated by RF magnetron sputtering with additional DC bias by optimization of deposition parameters and its evaluation with Raman spectroscopy. Japanese Journal of Applied Physics, 2020, 59, 065502.	0.8	1
1984	MoS ₂ -ReS ₂ Heterojunctions from a Bimetallic Co-chamber Feeding Atomic Layer Deposition for Ultrasensitive MiRNA-21 Detection. ACS Applied Materials & Interfaces, 2020, 12, 29074-29084.	4.0	5

#	Article	IF	CITATIONS
1985	Electrical properties tunability of large area MoS2 thin films by oxygen plasma treatment. Applied Physics Letters, 2020, 116, .	1.5	12
1986	Selective Detection of Ethylene by MoS ₂ –Carbon Nanotube Networks Coated with Cu(I)–Pincer Complexes. ACS Sensors, 2020, 5, 1699-1706.	4.0	18
1987	Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials, 2020, 10, 1160.	1.9	19
1988	Scaling law for strain dependence of Raman spectra in transitionâ€metal dichalcogenides. Journal of Raman Spectroscopy, 2020, 51, 1353-1361.	1.2	13
1989	Morphologyâ€Controlled Molybdenum Disulfide/Candle Soot Carbon Composite for Highâ€Performance Supercapacitor. ChemistrySelect, 2020, 5, 6809-6817.	0.7	13
1990	Coverage-dependent differential reflectance spectra of MoS2 atomic films synthesized by CVD using a large-diameter quartz tube. Solid State Communications, 2020, 318, 113976.	0.9	3
1991	PEO-Chameleon as a potential protective coating on cast aluminum alloys for high-temperature applications. Surface and Coatings Technology, 2020, 397, 126016.	2.2	27
1992	High-efficiency electrodeposition of polyindole nanocomposite using MoS2 nanosheets as electrolytes and their capacitive performance. Arabian Journal of Chemistry, 2020, 13, 6061-6071.	2.3	16
1993	Superior Photocatalytic Hydrogen Evolution Performances of WS ₂ over MoS ₂ Integrated with CdS Nanorods. Journal of Physical Chemistry C, 2020, 124, 14485-14495.	1.5	36
1994	MoS ₂ -on-paper optoelectronics: drawing photodetectors with van der Waals semiconductors beyond graphite. Nanoscale, 2020, 12, 19068-19074.	2.8	34
1995	Anisotropic electron–photon–phonon coupling in layered MoS ₂ . Journal of Physics Condensed Matter, 2020, 32, 415702.	0.7	6
1996	Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain. Chinese Physics B, 2020, 29, 077201.	0.7	4
1997	Fabrication of Ultrathin MoS2 Nanosheets and Application on Adsorption of Organic Pollutants and Heavy Metals. Processes, 2020, 8, 504.	1.3	29
1998	Pattern Stimulated CVD Growth of 2D MoS ₂ . ChemistrySelect, 2020, 5, 6709-6714.	0.7	2
1999	Defect-related anomalous low-frequency Raman scattering in a few-layered MoS ₂ . Applied Physics Express, 2020, 13, 072003.	1.1	5
2000	Characteristics of Cl-doped MoS2 field-effect transistors. Sensors and Actuators A: Physical, 2020, 312, 112165.	2.0	11
2001	Dark-current reduction accompanied photocurrent enhancement in p-type MnO quantum-dot decorated n-type 2D-MoS2-based photodetector. Applied Physics Letters, 2020, 116, .	1.5	46
2002	Enhanced Carrier–Exciton Interactions in Monolayer MoS2 under Applied Voltages. ACS Applied Materials & Interfaces, 2020, 12, 18870-18876.	4.0	7

#	Article	IF	CITATIONS
2003	Influence of extensive disorder on the first order phase transformation and its implications on the rate capability and cycling stability of MoS2 nanosheets in intercalation regime. Journal of Power Sources, 2020, 453, 227867.	4.0	3
2004	Surface curvature-confined strategy to ultrasmall nickel-molybdenum sulfide nanoflakes for highly efficient deep hydrodesulfurization. Nano Research, 2020, 13, 882-890.	5.8	22
2005	2D Thin Sheet Heterostructures of MoS ₂ on MoSe ₂ as Efficient Electrocatalyst for Hydrogen Evolution Reaction in Wide pH Range. Inorganic Chemistry, 2020, 59, 4377-4388.	1.9	41
2006	Effect of reaction temperature and reaction time on the structure and properties of MoS ₂ synthesized by hydrothermal method. Vietnam Journal of Chemistry, 2020, 58, 92-100.	0.7	34
2007	Transition from Hopping to Band-like Transport in Weakly Coupled Multilayer MoS ₂ Field Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 971-979.	2.0	14
2008	Dualâ€Gated MoS ₂ Transistors for Synaptic and Programmable Logic Functions. Advanced Electronic Materials, 2020, 6, 1901408.	2.6	41
2009	PVP Functionalized Marigold-like MoS2 as a New Electrocatalyst for Highly Efficient Electrochemical Hydrogen Evolution. Electrocatalysis, 2020, 11, 383-392.	1.5	6
2010	Nanoscale heterojunctions of rGO-MoS ₂ composites for nitrogen dioxide sensing at room temperature. Nano Express, 2020, 1, 010003.	1.2	19
2011	A MoS ₂ nanoflower and gold nanoparticle-modified surface plasmon resonance biosensor for a sensitivity-improved immunoassay. Journal of Materials Chemistry C, 2020, 8, 6861-6868.	2.7	35
2012	Strongly Coupled Coherent Phonons in Single-Layer MoS ₂ . ACS Nano, 2020, 14, 5700-5710.	7.3	44
2013	Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020, 515, 146033.	3.1	79
2014	Ferromagnetic behaviors in monolayer MoS2 introduced by nitrogen-doping. Applied Physics Letters, 2020, 116, .	1.5	23
2015	In situ atomic level studies of thermally controlled interlayer stacking shifts in 2D transition metal dichalcogenide bilayers. Journal of Materials Research, 2020, 35, 1407-1416.	1.2	0
2016	MoS ₂ Van der Waals p–n Junctions Enabling Highly Selective Roomâ€Temperature NO ₂ Sensor. Advanced Functional Materials, 2020, 30, 2000435.	7.8	190
2017	A Monolayer Leaky Integrateâ€andâ€Fire Neuron for 2D Memristive Neuromorphic Networks. Advanced Electronic Materials, 2020, 6, 1901335.	2.6	50
2018	Chalcogen Incorporation Process during High-Vacuum Conversion of Bulk Mo Oxides to Mo Dichalcogenides. ACS Applied Electronic Materials, 2020, 2, 1020-1025.	2.0	5
2019	Intelligent Identification of MoS2 Nanostructures with Hyperspectral Imaging by 3D-CNN. Nanomaterials, 2020, 10, 1161.	1.9	13
2020	Thermal conductivity of van der Waals hetero-bilayer of MoS ₂ /MoSe ₂ . Applied Physics Express, 2020, 13, 075001.	1.1	3

#	Article	IF	CITATIONS
2021	Application-Oriented Growth of a Molybdenum Disulfide (MoS2) Single Layer by Means of Parametrically Optimized Chemical Vapor Deposition. Materials, 2020, 13, 2786.	1.3	20
2022	Simultaneous Monitoring of Molecular Thin Film Morphology and Crystal Structure by X-ray Scattering. Crystal Growth and Design, 2020, 20, 5269-5276.	1.4	5
2023	In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts. Surfaces, 2020, 3, 225-236.	1.0	3
2024	Improved electrochemical performance of interface modified MoS2/CNT nano-hybrid and understanding of its lithiation/delithiation mechanism. Journal of Alloys and Compounds, 2020, 844, 156076.	2.8	14
2025	Mechanoplastic Tribotronic Floatingâ€Gate Neuromorphic Transistor. Advanced Functional Materials, 2020, 30, 2002506.	7.8	103
2026	Photonâ€Memristive System for Logic Calculation and Nonvolatile Photonic Storage. Advanced Functional Materials, 2020, 30, 2002945.	7.8	18
2027	Bilayer a-C:H/MoS2 film to realize superlubricity in open atmosphere. Diamond and Related Materials, 2020, 108, 107973.	1.8	16
2028	Plasmonâ€Assisted Broadband Allâ€Optical Control of Highly Intense Femtosecond Laser by Weak Continuousâ€Wave Laser. Advanced Optical Materials, 2020, 8, 2000560.	3.6	6
2029	Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 2020, 10, 10759.	1.6	100
2030	Sandwich architecture of graphene/MoS 2 composite as anodes for enhanced reversible lithium and sodium storage. International Journal of Energy Research, 2020, 44, 8314-8327.	2.2	4
2031	Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nature Communications, 2020, 11, 3203.	5.8	31
2032	Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano, 2020, 14, 8838-8845.	7.3	36
2033	Universal Precise Growth of 2D Transition-Metal Dichalcogenides in Vertical Direction. ACS Applied Materials & Interfaces, 2020, 12, 35337-35344.	4.0	16
2034	Tuning Electrical Conductance in Bilayer MoS ₂ through Defect-Mediated Interlayer Chemical Bonding. ACS Nano, 2020, 14, 10265-10275.	7.3	40
2035	Epitaxial growth of In2Se3 on monolayer transition metal dichalcogenide single crystals for high performance photodetectors. Applied Materials Today, 2020, 20, 100734.	2.3	18
2036	Photoinduced Electron Transfer in a MoS2/Anthracene Mixed-Dimensional Heterojunction in Aqueous Media. Bulletin of the Chemical Society of Japan, 2020, 93, 745-750.	2.0	7
2037	Electrochemical study of hydrothermally synthesised reduced MoS2 layered nanosheets. Vacuum, 2020, 175, 109250.	1.6	17
2038	Switching Light for Site-Directed Spatial Loading of Cocatalysts onto Heterojunction Photocatalysts with Boosted Redox Catalysis. ACS Catalysis, 2020, 10, 3194-3202.	5.5	93

щ		IE	CITATIONS
#	Relationship between the structure and catalytic performance of MoS ₂ with different	IF	CHATIONS
2039	surfactant-assisted syntheses in the hydrodesulfurization reaction of 4,6-DMDBT. RSC Advances, 2020, 10, 7600-7608.	1.7	11
2040	Preparation of ultrathin molybdenum disulfide dispersed on graphene via cobalt doping: A bifunctional catalyst for hydrogen and oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 9583-9591.	3.8	25
2041	Direct Integration of Few‣ayer MoS 2 at Plasmonic Au Nanostructure by Substrateâ€Diffusion Delivered Mo. Advanced Materials Interfaces, 2020, 7, 1902093.	1.9	4
2042	Bottomâ€Up Synthesized MoS 2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 6635-6642.	1.7	12
2043	Enhanced Sunlight-Driven Photocatalytic and Antibacterial Activities of Flower-Like ZnO@MoS2 Nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	46
2044	The self-repairing of ion irradiation damaged Mo–S–Ti (MoST) lubricant films by thermal annealing. Journal Physics D: Applied Physics, 2020, 53, 155202.	1.3	2
2045	MCNT/MoS ₂ promoting the electrochemical performance of lithium-sulfur batteries by adsorption polysulfide. Materials Research Express, 2020, 7, 035507.	0.8	3
2046	Mo-Doped 2n, Co Zeolitic Imidazolate Framework-Derived Co ₉ S ₈ Quantum Dots and MoS ₂ Embedded in Three-Dimensional Nitrogen-Doped Carbon Nanoflake Arrays as an Efficient Trifunctional Electrocatalysts for the Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12,	4.0	69
2047	Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. Journal of Power Sources, 2020, 453, 227872.	4.0	73
2048	Hierarchical Mo2C@MoS2 nanorods as electrochemical sensors for highly sensitive detection of hydrogen peroxide and cancer cells. Sensors and Actuators B: Chemical, 2020, 311, 127863.	4.0	60
2049	Synthesis and Evaluation of Molybdenum Imido-Thiolato Complexes for the Aerosol-Assisted Chemical Vapor Deposition of Nitrogen-Doped Molybdenum Disulfide. Organometallics, 2020, 39, 956-966.	1.1	16
2050	Epitaxial synthesis of ultrathin β-ln ₂ Se ₃ /MoS ₂ heterostructures with high visible/near-infrared photoresponse. Nanoscale, 2020, 12, 6480-6488.	2.8	42
2051	Nanowire templated CVD synthesis and morphological control of MoS ₂ nanotubes. Journal of Materials Chemistry C, 2020, 8, 4133-4138.	2.7	12
2052	Gateâ€Couplingâ€Enabled Robust Hysteresis for Nonvolatile Memory and Programmable Rectifier in Van der Waals Ferroelectric Heterojunctions. Advanced Materials, 2020, 32, e1908040.	11.1	84
2053	Plasma-Induced Exfoliation Provides Onion-Like Graphene-Surrounded MoS ₂ Nanosheets for a Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 11533-11542.	4.0	49
2054	Research progress on the preparations, characterizations and applications of large scale 2D transition metal dichalcogenides films. FlatChem, 2020, 21, 100161.	2.8	42
2055	Mixed-Dimensional Vertical Point p <i>–</i> n Junctions. ACS Nano, 2020, 14, 3181-3189.	7.3	18
2056	Detonation exfoliated mechanism of graphene-like MoS2 prepared by the intercalation-detonation method and promising exfoliation for 2D materials. Applied Surface Science, 2020, 525, 145867.	3.1	10

#	Article	IF	CITATIONS
2057	Formation of Ni-doped MoS2 nanosheets on N-doped carbon nanotubes towards superior hydrogen evolution. Electrochimica Acta, 2020, 338, 135885.	2.6	71
2058	Ϊƒ-Aromaticity in the MoS ₂ Monolayer. Journal of Physical Chemistry C, 2020, 124, 6267-6273.	1.5	26
2059	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	5.8	47
2060	Ultrasonicâ€Ball Milling: A Novel Strategy to Prepare Largeâ€Size Ultrathin 2D Materials. Small, 2020, 16, e1906734.	5.2	45
2061	Tailoring the Potential Landscape and Electrical Properties of 2D MoS ₂ using Gold Nanostructures of Different Coverage Density. Journal of Physical Chemistry C, 2020, 124, 6461-6466.	1.5	3
2062	Size-Tunable Flowerlike MoS ₂ Nanospheres Combined with Laser-Induced Graphene Electrodes for NO ₂ Sensing. ACS Applied Nano Materials, 2020, 3, 2545-2553.	2.4	36
2063	Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nature Electronics, 2020, 3, 141-147.	13.1	126
2064	Polarizationâ€dependent anisotropic Raman response of CVDâ€grown vertically stacked MoS ₂ layers. Journal of Raman Spectroscopy, 2020, 51, 774-780.	1.2	16
2065	Enhanced Hydrogen Evolution Activity of Ni[MoS2] Hybrids in Alkaline Electrolyte. Electrocatalysis, 2020, 11, 309-316.	1.5	7
2066	Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method. Nanotechnology, 2020, 31, 225702.	1.3	14
2067	Investigating the transient response of Schottky barrier back-gated MoS ₂ transistors. 2D Materials, 2020, 7, 025040.	2.0	13
2068	Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020, 8, 1172-1197.	2.7	54
2069	Construction of Hybrid MoS ₂ Phase Coupled with SiC Heterojunctions with Promoted Photocatalytic Activity for 4-Nitrophenol Degradation. Langmuir, 2020, 36, 1174-1182.	1.6	41
2070	ZnO nanocrystal-coated MoS2 nanosheets with enhanced ultraviolet light gas sensitive activity studied by surface photovoltage technique. Ceramics International, 2020, 46, 11427-11431.	2.3	25
2071	Homogeneous catalytic activation of peroxymonosulfate and heterogeneous reductive regeneration of Co2+ by MoS2: The pivotal role of pH. Science of the Total Environment, 2020, 712, 136447.	3.9	53
2072	Molybdenum Disulphide Heterointerfaces as Potential Materials for Solar Cells, Energy Storage, and Hydrogen Evolution. Energy Technology, 2020, 8, 1901299.	1.8	12
2073	Multilayer Si shadow mask processing of wafer-scale MoS2 devices. 2D Materials, 2020, 7, 025019.	2.0	14
2074	Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure. Nano Research, 2020, 13, 576-582.	5.8	21

ARTICLE IF CITATIONS Large Area Vertically Oriented Few-Layer MoS₂ for Efficient Thermal Conduction and 2075 2.1 25 Optoelectronic Applications. Journal of Physical Chemistry Letters, 2020, 11, 1268-1275. Metallicity of 2H-MoS₂ induced by Au hybridization. 2D Materials, 2020, 7, 025021. Nanotip Contacts for Electric Transport and Field Emission Characterization of Ultrathin MoS2 2077 1.9 25 Flakes. Nanomaterials, 2020, 10, 106. Spatially Bandgap-Graded MoS2(1â°x)Se2x Homojunctions for Self-Powered Visible–Near-Infrared 14.4 Phototransistors. Nano-Micro Letters, 2020, 12, 26. Advantageous Functional Integration of Adsorptionâ€Intercalationâ€Conversion Hybrid Mechanisms in 3D Flexible Nb₂O₅@Hard Carbon@MoS₂@Soft Carbon Fiber Paper 2079 7.8 67 Anodes for Ultrafast and Superâ€Stable Sodium Storage. Advanced Functional Materials, 2020, 30, 1908665. Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity. Journal of 2080 6.6 the American Chemical Society, 2020, 142, 2948-2955. Extremely Low Dark Current MoS₂ Photodetector via 2D Halide Perovskite as the 2081 3.6 55 Electron Reservoir. Advanced Optical Materials, 2020, 8, 1901402. A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a 2082 3.1 liquid/liquid interface under hydrothermal conditions. Applied Surface Science, 2020, 511, 145579. Liquid exfoliation of electronic grade ultrathin tin(II) sulfide (SnS) with intriguing optical response. 2083 3.9 51 Npj 2D Materials and Applications, 2020, 4, . Defect Passivation and Photoluminescence Enhancement of Monolayer MoS₂ Crystals 2084 through Sodium Halide-Assisted Chemical Vapor Deposition Growth. ACS Applied Materials & Amp; Interfaces, 2020, 12, 9563-9571. Improved Interfacial and Electrical Properties of MoS2 Transistor With High/Low-Temperature Grown 2085 4 2.2 Hf0.5Al0.5O as Top-Gate Dielectric. IEEE Electron Device Letters, 2020, 41, 385-388. Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS2 nanocomposite prepared in situ hydrothermal synthesis. Environmental Science and Pollution 2086 2.7 Research, 2020, 27, 13882-13894. Effects of substrates on the optical properties of monolayer WS2. Journal of Crystal Growth, 2020, 2087 0.7 6 540, 125645. In Situ Formation of Nanoporous Silicon on a Silicon Wafer via the Magnesiothermic Reduction 2088 1.9 Reaction (MRR) of Diatomaceous Earth. Nanomaterials, 2020, 10, 601 Promising optoelectronic response of 2D monolayer MoS2: A first principles study. Chemical Physics, 2089 0.9 13 2020, 538, 110824. Programmable Synapseâ€Like MoS₂ Fieldâ€Effect Transistors Phaseâ€Engineered by Dynamic 2090 2.6 Lithium Ion Modulation. Advanced Electronic Materials, 2020, 6, 1901410. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage 2091 6.6 45 ionogel electrolyte. Chemical Engineering Journal, 2020, 394, 124883. Ultrathin-layered MoS2 hollow nanospheres decorating Ni3S2 nanowires as high effective self-supporting electrode for hydrogen evolution reaction. International Journal of Hydrogen 3.8 Energy, 2020, 45, 13149-13162.

#	Article	IF	CITATIONS
2093	Chemical vapor deposition of molybdenum disulphide on platinum foil. Materials Chemistry and Physics, 2020, 249, 123017.	2.0	5
2094	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
2095	Flexible and low power CO gas sensor with Au-functionalized 2D WS2 nanoflakes. Sensors and Actuators B: Chemical, 2020, 313, 128040.	4.0	80
2096	Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti ₃ C ₂ T <i>_x</i> MXene. Chemistry of Materials, 2020, 32, 3480-3488.	3.2	677
2097	MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction. Journal of Physical Chemistry Letters, 2020, 11, 3039-3044.	2.1	12
2098	Gap state distribution and Fermi level pinning in monolayer to multilayer MoS ₂ field effect transistors. Nanoscale, 2020, 12, 8883-8889.	2.8	17
2099	Measurement of interfacial thermal conductance of few-layer MoS2 supported on different substrates using Raman spectroscopy. Journal of Applied Physics, 2020, 127, .	1.1	28
2100	Oxygen doped MoS2 quantum dots for efficient electrocatalytic hydrogen generation. Journal of Chemical Physics, 2020, 152, 134704.	1.2	17
2101	Layered molybdenum disulfide coated carbon hollow spheres synthesized through supramolecular selfâ€assembly applied to supercapacitors. International Journal of Energy Research, 2020, 44, 7082-7092.	2.2	14
2102	Using strain to alter the energy bands of the monolayer MoSe2: A systematic study covering both tensile and compressive states. Applied Surface Science, 2020, 521, 146398.	3.1	20
2103	Surface-Enhanced Raman Scattering Detection Based on an Interconnected Network of Vertically Oriented Semiconducting Few-Layer MoS ₂ Nanosheets. ACS Applied Nano Materials, 2020, 3, 4851-4858.	2.4	27
2104	Tuning optical properties of monolayer MoS2 through the 0D/2D interfacial effect with C60 nanoparticles. Applied Surface Science, 2020, 523, 146371.	3.1	12
2105	Core-shell CoS2@MoS2 nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 835, 155264.	2.8	21
2106	Raman Spectroscopy of Dispersive Two-Dimensional Materials: A Systematic Study on MoS ₂ Solution. Journal of Physical Chemistry C, 2020, 124, 11092-11099.	1.5	8
2107	Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. Journal of Power Sources, 2020, 456, 227998.	4.0	23
2108	Controlled Growth of Vertically Oriented Trilayer MoS ₂ Nanoflakes for Roomâ€Temperature NO ₂ Gas Sensor Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000004.	0.8	16
2109	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€lon Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
2110	Tailoring NiMoS active phases with high hydrodesulfurization activity through facilely synthesized supports with tunable mesostructure and morphology. Journal of Catalysis, 2020, 387, 170-185.	3.1	18

#	Article	IF	CITATIONS
2111	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & amp; Interfaces, 2020, 12, 20383-20392.	4.0	38
2112	Tailorable and Rationally Designed MoS2 Based Heterostructure Photocatalyst for Efficient Photocatalytic Degradation of Phenol Under the Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3965-3972.	1.9	3
2113	Alternative synthesis of structurally defective MoS2 nanoflakes for efficient hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 256, 114539.	1.7	15
2114	Study of oxygen plasma induced modulation of photoconductivity in MoS2 field effect transistor. Superlattices and Microstructures, 2020, 142, 106507.	1.4	5
2115	Impedimetric electronic tongue based on molybdenum disulfide and graphene oxide for monitoring antibiotics in liquid media. Talanta, 2020, 217, 121039.	2.9	21
2116	Growth of 2D-molybdenum disulfide on top of magnetite and iron by chemical methods. Thin Solid Films, 2020, 701, 137943.	0.8	3
2117	Exceptionally Uniform and Scalable Multilayer MoS ₂ Phototransistor Array Based on Large-Scale MoS ₂ Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization. ACS Applied Materials & Interfaces, 2020, 12, 20645-20652.	4.0	60
2118	Line-Scan Hyperspectral Imaging Microscopy with Linear Unmixing for Automated Two-Dimensional Crystals Identification. ACS Photonics, 2020, 7, 1216-1225.	3.2	13
2119	Controlled synthesis of ultrathin MoS ₂ nanoflowers for highly enhanced NO ₂ sensing at room temperature. RSC Advances, 2020, 10, 12759-12771.	1.7	67
2120	Green molten salt synthesis and Li-ion storage performance of sodium dimolybdate. Journal of Alloys and Compounds, 2020, 831, 154781.	2.8	10
2121	Subthermionic field-effect transistors with sub-5Ânm gate lengths based on van der Waals ferroelectric heterostructures. Science Bulletin, 2020, 65, 1444-1450.	4.3	17
2122	DNA-driven dynamic assembly of MoS ₂ nanosheets. Faraday Discussions, 2021, 227, 233-244.	1.6	3
2123	Wafer scale growth of MoS2 and WS2 by pulsed laser deposition. Materials Today: Proceedings, 2021, 35, 494-496.	0.9	12
2124	Passivation layer effect on the positive bias temperature instability of molybdenum disulfide thin film transistors. Journal of Information Display, 2021, 22, 13-19.	2.1	3
2125	Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy and Environment, 2021, 6, 75-82.	4.7	41
2126	Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. Journal of Alloys and Compounds, 2021, 855, 157310.	2.8	37
2127	Engineering of MoS2 nanoribbons as high-performance materials for biosensing applications. Applied Surface Science, 2021, 540, 148349.	3.1	5
2128	Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Research, 2021, 14, 982-991.	5.8	25

#	Article	IF	CITATIONS
2129	MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes. Materials Science in Semiconductor Processing, 2021, 121, 105308.	1.9	9
2130	Selfâ€Deposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	7.8	41
2131	The effect of the dopant's reactivity for high-performance 2D MoS2 thin-film transistor. Nano Research, 2021, 14, 198-204.	5.8	9
2132	Morphological and structural evolutions of α-MoO3 single crystal belts towards MoS2/MoO2 heterostructures upon post-growth thermal vapor sulfurization. Applied Surface Science, 2021, 536, 147956.	3.1	8
2133	Reaction mechanism transformation of LPCVD-grown MoS2 from isolated triangular grains to continuous films. Journal of Alloys and Compounds, 2021, 853, 157374.	2.8	9
2134	Enhanced semiconductor charge-transfer resonance: Unprecedented oxygen bidirectional strategy. Sensors and Actuators B: Chemical, 2021, 327, 128903.	4.0	19
2135	Ultrasonically prepared photocatalyst of W/WO3 nanoplates with WS2 nanosheets as 2D material for improving photoelectrochemical water splitting. Ultrasonics Sonochemistry, 2021, 70, 105339.	3.8	37
2136	Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy, 2021, 79, 105460.	8.2	76
2137	A study of microbially fabricated bio-conjugated quantum dots for pico-molar sensing of H ₂ O ₂ and glucose. Biomaterials Science, 2021, 9, 157-166.	2.6	12
2138	NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Applied Surface Science, 2021, 538, 148201.	3.1	50
2139	Multifunctionalities of 2D MoS2 self-switching diode as memristor and photodetector. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114451.	1.3	15
2140	Electrochemically Exfoliating MoS ₂ into Atomically Thin Planar tacking Through a Selective Lateral Reaction Pathway. Advanced Functional Materials, 2021, 31, 2007840.	7.8	23
2141	Enhancement of 1Tâ€MoS ₂ Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer. ChemNanoMat, 2021, 7, 447-456.	1.5	11
2142	Structural and vibrational properties of CVD grown few layers MoS2 on catalyst free PAMBE grown GaN nanowires on Si (111) substrates. Journal of Alloys and Compounds, 2021, 861, 157965.	2.8	2
2143	Chemical vapor deposition of clean and pure MoS ₂ crystals by the inhibition of MoO _{3â^x} intermediates. CrystEngComm, 2021, 23, 146-152.	1.3	16
2144	FeS2 bridging function to enhance charge transfer between MoS2 and g–C3N4 for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421, 127804.	6.6	51
2145	Ultrathin MoS2 nanosheets hybridizing with reduced graphene oxide for high-performance pseudocapacitors. FlatChem, 2021, 26, 100212.	2.8	9
2146	Probing the structure and functionalized surface of colloidal AuSe. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114878.	1.7	6

#	Article	IF	CITATIONS
2147	Straining and Tuning Atomic Layer Nanoelectromechanical Resonators via Combâ€Drive MEMS Actuators. Advanced Materials Technologies, 2021, 6, 2000794.	3.0	13
2148	Nanoscale coupling of MoS2 and graphene via rapid thermal decomposition of ammonium tetrathiomolybdate and graphite oxide for boosting capacity of Li-ion batteries. Carbon, 2021, 173, 194-204.	5.4	25
2149	Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14, 1840-1862.	5.8	36
2150	MoS2/Co9S8/MoC heterostructure connected by carbon nanotubes as electrocatalyst for efficient hydrogen evolution reaction. Journal of Materials Science and Technology, 2021, 79, 29-34.	5.6	28
2151	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	8.2	46
2152	An efficient label-free immunosensor based on ce-MoS2/AgNR composites and screen-printed electrodes for PSA detection. Journal of Solid State Electrochemistry, 2021, 25, 973-982.	1.2	9
2153	A self-powered 2D-material sensor unit driven by a SnSe piezoelectric nanogenerator. Journal of Materials Chemistry A, 2021, 9, 4716-4723.	5.2	45
2154	Monolayer Excitonic Semiconductors Integrated with Au Quasi-Periodic Nanoterrace Morphology on Fused Silica Substrates for Light-Emitting Devices. ACS Applied Nano Materials, 2021, 4, 84-93.	2.4	2
2155	A flexible, integrated film battery configuration for ultrafast sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 1252-1259.	5.2	1
2156	Exfoliated Molybdenum Disulfide-Wrapped CdS Nanoparticles as a Nano-Heterojunction for Photo-Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 438-448.	4.0	22
2157	Preparation of MoS2 nanosheets to support Pd species for selective steerable hydrogenation of acetylene. Journal of Materials Science, 2021, 56, 2129-2137.	1.7	6
2158	Enhanced-photocurrent in monolayer phototransistor with Au-SiO2 core-shell nanoparticles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 385, 126984.	0.9	1
2159	Epitaxial growth, electronic hybridization and stability under oxidation of monolayer MoS2 on Ag(1 1) Tj ETQq0 C	0,rgBT /O 3.1	verlock 10 T
2160	Aqueous nickel-ion battery with Na2V6O16·2H2O nanowire as high-capacity and zero-strain host material. Chemical Engineering Journal, 2021, 413, 127441.	6.6	13
2161	Insight into mechanism of temperature-dependent limit of NO2 detection using monolayer MoS2. Sensors and Actuators B: Chemical, 2021, 329, 129138.	4.0	14
2162	Sulfidation characteristics of amorphous nonstoichiometric Mo-oxides for MoS2 synthesis. Applied Surface Science, 2021, 535, 147684.	3.1	7
2163	Tribodiffusion-driven triboelectric nanogenerators based on MoS ₂ . Journal of Materials Chemistry A, 2021, 9, 10316-10325.	5.2	9
2164	A high-performance short-wave infrared phototransistor based on a 2D tellurium/MoS ₂	2.7	32

#	Article	IF	CITATIONS
2165	Tailoring the structure of MoS2 using ball-milled MoO3 powders: hexagonal, triangular, and fullerene-like shapes. Nanotechnology, 2021, 32, 155605.	1.3	1
2166	MoS2/Ag2CO3 Z-scheme system with enhancing water splitting photocatalytic activity. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
2167	Covalent functionalization of molybdenum disulfide by chemically activated diazonium salts. Nanoscale, 2021, 13, 2972-2981.	2.8	23
2168	2D materials coated on etched optical fibers as humidity sensor. Scientific Reports, 2021, 11, 1771.	1.6	37
2169	Phonon Dephasing Dynamics in MoS ₂ . Nano Letters, 2021, 21, 1434-1439.	4.5	5
2170	Probing combinations of acoustic phonons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow> by intervalley double-resonance Raman scattering. Physical Review B. 2021, 103.</mml:math 	i 1.1	7
2171	Carbonaceous-MoS ₂ nanoflower-based counter electrodes for bifacial dye-sensitized solar cells. Journal Physics D: Applied Physics, 2021, 54, 135501.	1.3	6
2172	Highly Selective Nonâ€Covalent Onâ€Chip Functionalization of Layered Materials. Advanced Electronic Materials, 2021, 7, 2000564.	2.6	9
2173	Molybdenum disulfide/carbon nanocomposite with enhanced photothermal effect for doxorubicin delivery. European Physical Journal Plus, 2021, 136, 1.	1.2	10
2174	Optical identification of interlayer coupling of graphene/MoS2 van der Waals heterostructures. Nano Research, 2021, 14, 2241.	5.8	14
2175	Monolayer MoS ₂ /WO ₃ Heterostructures with Sulfur Anion Reservoirs as Electronic Synapses for Neuromorphic Computing. ACS Applied Nano Materials, 2021, 4, 1766-1775.	2.4	30
2176	A defect-rich ultrathin MoS ₂ /rGO nanosheet electrocatalyst for the oxygen reduction reaction. RSC Advances, 2021, 11, 24508-24514.	1.7	9
2177	Defect-Free MoS ₂ -Flakes/Amorphous-Carbon Hybrid as an Advanced Anode for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 3459-3468.	2.5	17
2178	MoS ₂ flake as a van der Waals homostructure: luminescence properties and optical anisotropy. Nanoscale, 2021, 13, 17566-17575.	2.8	7
2179	MoS ₂ stacking matters: 3R polytype significantly outperforms 2H MoS ₂ for the hydrogen evolution reaction. Nanoscale, 2021, 13, 19391-19398.	2.8	16
2180	Two-dimensional intrinsic ferromagnets with high Curie temperatures: synthesis, physical properties and device applications. Journal of Materials Chemistry C, 2021, 9, 6103-6121.	2.7	32
2181	Synthesis of large-area monolayer and few-layer MoSe ₂ continuous films by chemical vapor deposition without hydrogen assistance and formation mechanism. Nanoscale, 2021, 13, 8922-8930.	2.8	11
2182	Low-Temperature Synthesis of Wafer-Scale MoS ₂ –WS ₂ Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization. ACS Nano, 2021, 15, 707-718.	7.3	34

#	Article	IF	CITATIONS
2183	Modulation of MoTe ₂ /MoS ₂ van der Waals heterojunctions for multifunctional devices using N ₂ O plasma with an opposite doping effect. Nanoscale, 2021, 13, 7851-7860.	2.8	5
2184	Graphene Manufacture. , 2021, , 29-43.		0
2185	Exfoliation of large-flake, few-layer MoS ₂ nanosheets mediated by carbon nanotubes. Chemical Communications, 2021, 57, 4400-4403.	2.2	10
2186	Optical properties of two-dimensional materials. , 2021, , 165-206.		0
2187	Bandgap recovery of monolayer MoS ₂ using defect engineering and chemical doping. RSC Advances, 2021, 11, 20893-20898.	1.7	7
2188	Mechanically rollable photodetectors enabled by centimetre-scale 2D MoS2 layer/TOCN composites. Nanoscale Advances, 2021, 3, 3028-3034.	2.2	5
2189	Phase Transition-Induced Temperature-Dependent Phonon Shifts in Molybdenum Disulfide Monolayers Interfaced with a Vanadium Dioxide Film. ACS Applied Materials & Interfaces, 2021, 13, 3426-3434.	4.0	3
2190	An ultrathin memristor based on a two-dimensional WS ₂ /MoS ₂ heterojunction. Nanoscale, 2021, 13, 11497-11504.	2.8	39
2191	Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12, 616.	5.8	69
2192	Tuning of structural and optical properties with enhanced catalytic activity in chemically synthesized Co-doped MoS ₂ nanosheets. RSC Advances, 2021, 11, 1303-1319.	1.7	29
2193	Activation Strategy of MoS ₂ as HER Electrocatalyst through Doping-Induced Lattice Strain, Band Gap Engineering, and Active Crystal Plane Design. ACS Applied Materials & Interfaces, 2021, 13, 765-780.	4.0	86
2194	Electronic properties of hybrid WS2/MoS2 multilayer on flexible PET. Materials Research Express, 2021, 8, 016409.	0.8	2
2195	Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS Nano, 2021, 15, 2520-2531.	7.3	46
2196	Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide. Nano-Micro Letters, 2021, 13, 38.	14.4	103
2197	In-depth first-principle study on novel MoS ₂ polymorphs. RSC Advances, 2021, 11, 3759-3769.	1.7	13
2198	Ultrathin MoS ₂ flakes embedded in nanoporous graphene films for a multi-functional electrode. Journal of Materials Chemistry A, 2021, 9, 928-936.	5.2	7
2199	Many-particle induced band renormalization processes in few- and mono-layer MoS ₂ . Nanotechnology, 2021, 32, 135208.	1.3	10
2200	Trapped carrier hopping and unusual bottleneck in coalescence dynamics of MoS2 few layers. AIP Conference Proceedings, 2021, , .	0.3	0

#	Article	IF	CITATIONS
2201	Electrical and optical properties of transition metal dichalcogenides on talc dielectrics. Nanoscale, 2021, 13, 15853-15858.	2.8	14
2202	MoS2, a new perspective beyond graphene. , 2021, , 499-541.		0
2203	A large scaled-up monocrystalline 3R MoS ₂ electrocatalyst for efficient nitrogen reduction reactions. New Journal of Chemistry, 2021, 45, 2488-2495.	1.4	15
2204	Self-standing, hybrid three-dimensional-porous MoS2/Ni3S2 foam electrocatalyst for hydrogen evolution reaction in alkaline medium. International Journal of Hydrogen Energy, 2021, 46, 7759-7771.	3.8	31
2205	Light-induced persistent resonance frequency shift of MoS ₂ mechanical resonator. Applied Physics Express, 2021, 14, 035003.	1.1	2
2206	Defected MoS2: An efficient electrochemical nitrogen reduction catalyst under mild conditions. Electrochimica Acta, 2021, 370, 137695.	2.6	40
2207	Chemical functionalization of <scp>2D</scp> black phosphorus. InformaÄnÃ-Materiály, 2021, 3, 231-251.	8.5	41
2208	Synthesis and fabrication of nanostructured MoS2/PANI nanocomposites by microwave assisted method for electrochemical applications. Materials Today: Proceedings, 2021, 50, 17-17.	0.9	5
2209	Enhancement of Raman Scattering and Exciton/Trion Photoluminescence of Monolayer and Few-Layer MoS ₂ by Ag Nanoprisms and Nanoparticles: Shape and Size Effects. Journal of Physical Chemistry C, 2021, 125, 4119-4132.	1.5	32
2210	Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nature Communications, 2021, 12, 917.	5.8	99
2211	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	2.4	5
2212	Efficient Reversible Conversion between MoS ₂ and Mo/Na ₂ S Enabled by Grapheneâ€Supported Single Atom Catalysts. Advanced Materials, 2021, 33, e2007090.	11.1	108
2213	Electrochemical exfoliation of molybdenum disulfide nanosheets for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 7237-7248.	1.1	8
2214	Low-frequency Raman signature of Ag-intercalated few-layer MoS ₂ . 2D Materials, 2021, 8, 025031.	2.0	9
2215	S/Mo ratio and petal size controlled MoS2 nanoflowers with low temperature metal organic chemical vapor deposition and their application in solar cells. Nanotechnology, 2021, 32, 195206.	1.3	3
2216	Fabrication of 3D structured composites of crumpled graphene, polyaniline and molybdenum disulfide nanosheets for high performance alkali metal ion storage. Advanced Powder Technology, 2021, 32, 464-471.	2.0	4
2217	Photoluminescenceâ€Induced Fourâ€Wave Mixing Generation in a Monolayerâ€MoS ₂ â€Cladded GaN Microdisk Resonator. Laser and Photonics Reviews, 2021, 15, 2000459.	4.4	17
2218	Magnetism and thermal stability of layered TiO2–MoS2. Canadian Journal of Physics, 0, , 1-6.	0.4	0

#	Article	IF	CITATIONS
2219	Optically stimulated synaptic transistor based on MoS ₂ /quantum dots mixed-dimensional heterostructure with gate-tunable plasticity. Optics Letters, 2021, 46, 1748.	1.7	12
2220	Impact of the Surface and Microstructure on the Lubricative Properties of MoS ₂ Aging under Different Environments. Langmuir, 2021, 37, 2928-2941.	1.6	9
2221	Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. Research, 2021, 2021, 5130420.	2.8	31
2222	Study of the Synthesis Process of MoO3 to MoS2 Thin Films Deposited by Spray Pyrolysis: The Effect of [S/Mo] Mole Concentration and Sulfurization Process. Journal of Electronic Materials, 2021, 50, 3341-3347.	1.0	5
2223	Additiveâ€free Aqueous Dispersions of Twoâ€Dimensional Materials with Glial Cell Compatibility and Enzymatic Degradability. Chemistry - A European Journal, 2021, 27, 7434-7443.	1.7	5
2224	Laser printed two-dimensional transition metal dichalcogenides. Scientific Reports, 2021, 11, 5211.	1.6	14
2225	Rapid Charge Separation Boosts Solar Hydrogen Generation at the Graphene–MoS ₂ Junction: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2021, 12, 2763-2769.	2.1	16
2226	<i>Colloquium</i> : Physical properties of group-IV monochalcogenide monolayers. Reviews of Modern Physics, 2021, 93, .	16.4	87
2227	Bioinspired mechano-photonic artificial synapse based on graphene/MoS ₂ heterostructure. Science Advances, 2021, 7, .	4.7	184
2228	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, .	1.5	12
2228 2229	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, . Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524.	1.5 4.0	12 7
2228 2229 2230	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, . Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524. Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203.	1.5 4.0 1.3	12 7 9
2228 2229 2230 2231	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2films. Applied Physics Letters, 2021, 118, .Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ /Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524.Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203.Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ through hierarchically designed TiO ₂ /Au/MoS ₂ ternary coreâ^'shell heterostructure. Nanotechnology, 2021, 32, 215201.	1.5 4.0 1.3 1.3	12 7 9 8
2228 2229 2230 2231 2232	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, . Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524. Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203. Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ ternary coreâ shell heterostructure. Nanotechnology, 2021, 32, 215201. Large caleâ€Compatible Stabilization of a 2D Semiconductor Platform toward Discrete Components. Advanced Electronic Materials, 2021, 7, 2001109.	1.5 4.0 1.3 1.3 2.6	12 7 9 8
2228 2229 2230 2231 2232 2233	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, .Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524.Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203.Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ through hierarchically designed TiO ₂ /Au/MoS ₂ ternary coreâ~shell heterostructure. Nanotechnology, 2021, 32, 215201.Largeâ Caleâ Advanced Electronic Materials, 2021, 7, 2001109.Inâ <plane and="" outã<br=""></plane> to 1700 nm and Their Application in Photonic Device Design. Advanced Photonics Research, 2021, 2, 2000180.	1.5 4.0 1.3 1.3 2.6 1.7	12 7 9 8 0 35
2228 2229 2230 2231 2232 2233	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2films. Applied Physics Letters, 2021, 118, .Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ 222Sesub>2Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524.Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203.Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ through hierarchically designed TiO ₂ /Au/MoS ₂ ternary coreâ" shell heterostructure. Nanotechnology, 2021, 32, 215201.LargeâLargeâInâPhane and Outãofa2D Semiconductor Platform toward Discrete Components. Advanced Electronic Materials, 2021, 7, 2001109.InâPhane and OutãSymmetric Supercapacitors with layer-by-layer Molybdenum disulfide - reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. Journal of Energy Storage, 2021, 35, 102289.	 1.5 4.0 1.3 1.3 2.6 1.7 3.9 	12 7 9 8 0 35 12
2228 2229 2230 2231 2232 2233 2233	Utilizing complex oxide substrates to control carrier concentration in large-area monolayer MoS2 films. Applied Physics Letters, 2021, 118, . Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ /Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & amp; Interfaces, 2021, 13, 15518-15524. Dual-gate MoS ₂ phototransistor with atomic-layer-deposited HfO ₂ as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology, 2021, 32, 215203. Exciton-plasmon coupling and giant photoluminescence enhancement in monolayer MoS ₂ through hierarchically designed TiO ₂ /Au/MOS ₂ ternary coreâ shell heterostructure. Nanotechnology, 2021, 32, 215201. LargeâcEcaleâCCompatible Stabilization of a 2D Semiconductor Platform toward Discrete Components. Advanced Electronic Materials, 2021, 7, 2001109. InâEPlane and Outâ€ofâ€Plane Optical Properties of Monolayer, Fewâ€Layer, and Thinâ€Film MoS ₂ Symmetric Supercapacitors with layer-by-layer Molybdenum disulfide - reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. Journal of Energy Storage, 2021, 35, 102289. Direct Observation of the Light-Induced Exfoliation of Molybdenum Disulfide Sheets in Water Medium. ACS Nano, 2021, 15, 5661-5670.	 1.5 4.0 1.3 1.3 2.6 1.7 3.9 7.3 	12 7 9 8 0 35 12 21

#	Article	IF	CITATIONS
2237	Fractional exponents of electrical and thermal conductivity of vanadium intercalated layered 2H-NbS2 bulk crystal. Indian Journal of Physics, 2022, 96, 1335-1339.	0.9	3
2238	Interlayer spacing engineering in N doped MoS2 for efficient lithium ion storage. Materials Chemistry and Physics, 2021, 261, 124166.	2.0	11
2239	Plasmonically enhanced photoluminescence of monolayer MoS ₂ via nanosphere lithography-templated gold metasurfaces. Nanophotonics, 2021, 10, 1733-1740.	2.9	14
2240	Electrical Properties and Thermal Annealing Effects of Polycrystalline MoS2-MoSX Nanowalls Grown by Sputtering Deposition Method. Crystals, 2021, 11, 351.	1.0	0
2241	2D Siliconâ€Based Semiconductor Si ₂ Te ₃ toward Broadband Photodetection. Small, 2021, 17, e2006496.	5.2	19
2242	Phonon renormalization in reconstructed MoS2 moir \tilde{A} superlattices. Nature Materials, 2021, 20, 1100-1105.	13.3	121
2243	Interfacial Doping Effects in Fluoropolymer-Tungsten Diselenide Composites Providing High-Performance P-Type Transistors. Polymers, 2021, 13, 1087.	2.0	10
2244	Grapheneâ€Based Nanomaterials for Flexible and Stretchable Batteries. Small, 2021, 17, e2006262.	5.2	28
2245	Raman spectra evidence for the covalent-like quasi-bonding between exfoliated MoS2 and Au films. Science China Information Sciences, 2021, 64, 1.	2.7	10
2246	Thickness and Spin Dependence of Raman Modes in Magnetic Layered Fe ₃ GeTe ₂ . Advanced Electronic Materials, 2021, 7, 2001159.	2.6	16
2247	Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Catalysis Letters, 2022, 152, 315-323.	1.4	2
2248	Electrical and Photoelectrochemical Properties of Thin MoS2 Films Produced by Electrodeposition. Inorganic Materials, 2021, 57, 331-336.	0.2	0
2249	MoS ₂ Nanocomposite Films with High Irradiation Tolerance and Self-Adaptive Lubrication. ACS Applied Materials & Interfaces, 2021, 13, 20435-20447.	4.0	13
2250	Highly improved supercapacitance properties of MnFe2O4 nanoparticles by MoS2 nanosheets. Scientific Reports, 2021, 11, 8378.	1.6	40
2251	Two-Step Growth of Uniform Monolayer MoS ₂ Nanosheets by Metal–Organic Chemical Vapor Deposition. ACS Omega, 2021, 6, 10343-10351.	1.6	14
2252	Few-Layer MoS ₂ Photodetector Arrays for Ultrasensitive On-Chip Enzymatic Colorimetric Analysis. ACS Nano, 2021, 15, 7722-7734.	7.3	27
2253	Effect of high H2 pressure on the structural and the electrical properties of MoS2. Journal of the Korean Physical Society, 2021, 79, 38.	0.3	3
2254	Synthesis of Highâ€Performance Monolayer Molybdenum Disulfide at Low Temperature. Small Methods, 2021, 5, e2000720.	4.6	27

#	Article	IF	CITATIONS
2255	Development of hybrid hydrophobic molybdenum disulfide (MoS2) nanoparticles for super water repellent self-cleaning. Progress in Organic Coatings, 2021, 153, 106161.	1.9	13
2256	Energy band engineering and interface transfer strategies to optimize photocatalytic hydrogen evolution performance. Applied Surface Science, 2021, 546, 149137.	3.1	9
2257	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	13.3	119
2258	Photoluminescence and UV photosensitivity of few-layered MoS2 nanosheets synthesized under different hydrothermal growth times. Journal of Materials Science, 2021, 56, 11749-11768.	1.7	10
2259	Detection of Single Protein Molecules Using MoS ₂ Nanopores of Various Sizes. , 2021, , .		3
2260	Using Light for Better Programming of Ferroelectric Devices: Optoelectronic MoS ₂ â€Pb(Zr,Ti)O ₃ Memories with Improved On–Off Ratios. Advanced Electronic Materials, 2021, 7, 2001223.	2.6	16
2261	Synthesis of Few Layer Amorphous 1T/2H MoS2 by a One-Step Ethanol/Water Solvothermal Method and Its Hydrodesulfurization Performance. Catalysis Letters, 0, , 1.	1.4	4
2262	Macro-scale superlow friction enabled when MoS2 flakes lubricate hydrogenated diamond-like carbon film. Ceramics International, 2021, 47, 10980-10989.	2.3	15
2263	Microscopic evidence of strong interactions between chemical vapor deposited 2D MoS2 film and SiO2 growth template. Nano Convergence, 2021, 8, 11.	6.3	20
2264	Optical properties of molybdenum disulfide on different substrates affected by spin-orbit coupling. Optical Materials, 2021, 114, 110954.	1.7	5
2265	High-Performance CVD Bilayer MoS2 Radio Frequency Transistors and Gigahertz Mixers for Flexible Nanoelectronics. Micromachines, 2021, 12, 451.	1.4	11
2266	MoS2 two-dimensional quantum dots with weak lateral quantum confinement: Intense exciton and trion photoluminescence. Surfaces and Interfaces, 2021, 23, 100909.	1.5	15
2267	Quantifying photoinduced carriers transport in exciton–polariton coupling of MoS2 monolayers. Npj 2D Materials and Applications, 2021, 5, .	3.9	12
2268	Photoluminescence from Single-Walled MoS ₂ Nanotubes Coaxially Grown on Boron Nitride Nanotubes. ACS Nano, 2021, 15, 8418-8426.	7.3	35
2269	Improved morphology and excitonic emission of 2D MoS2 by incorporating mechanical grinding in the liquid phase exfoliation synthesis process. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114617.	1.3	5
2270	Davydov Splitting, Resonance Effect and Phonon Dynamics in Chemical Vapor Deposition Grown Layered MoS ₂ . Nanotechnology, 2021, 32, 285705.	1.3	12
2271	Effects of water molecules on the formation of transfer films and the occurrence of superlow friction. Ceramics International, 2021, 47, 21325-21333.	2.3	7
2272	Preparation and Tribological Properties of Modified MoS2/SiC/Epoxy Composites. Materials, 2021, 14, 1731.	1.3	10

#	Article	IF	CITATIONS
2273	Hysteresis in As-Synthesized MoS2 Transistors: Origin and Sensing Perspectives. Micromachines, 2021, 12, 646.	1.4	3
2274	Temperature dependent Raman spectroscopy of shear and layer breathing modes in bilayer MoS2. Current Applied Physics, 2021, 25, 41-46.	1.1	7
2275	The reinforcing role of 2D graphene analogue MoS2 nanosheets in multiscale carbon fibre composites: Improvement of interfacial adhesion. Composites Science and Technology, 2021, 207, 108717.	3.8	21
2276	Inkjet Printed Circuits with 2D Semiconductor Inks for Highâ€Performance Electronics. Advanced Electronic Materials, 2021, 7, 2100112.	2.6	46
2277	Nanocomposites of 2D-MoS ₂ Exfoliated in Thermotropic Liquid Crystals. , 2021, 3, 704-712.		9
2278	Electronically Weak Coupled Bilayer MoS ₂ at Various Twist Angles via Folding. ACS Applied Materials & Interfaces, 2021, 13, 22819-22827.	4.0	16
2279	2D Niobium-Doped MoS ₂ : Tuning the Exciton Transitions and Potential Applications. ACS Applied Electronic Materials, 2021, 3, 2564-2572.	2.0	12
2280	Electronic and structural properties of Janus MoSSe/MoX2 (XÂ=ÂS,Se) in-plane heterojunctions: A DFT study. Chemical Physics Letters, 2021, 771, 138495.	1.2	4
2281	Bi-layer molybdenum disulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock. Advanced Powder Technology, 2021, 32, 1594-1601.	2.0	2
2282	Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene. Journal of Semiconductors, 2021, 42, 051001.	2.0	11
2283	Direct growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2on electrolytic substrate and realization of high-mobility transistors. Physical Review Materials, 2021, 5</mml:mn></mml:msub></mml:math 	mn>0.9	ıl:mşub>
2284	Tunable Photoresponse in 2D WTe ₂ /MoS ₂ Van der Waals Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 10639-10645.	1.5	10
2285	Femtosecond photoluminescence from monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2: Time-domain study on exciton diffusion. Physical Review B, 2021, 103, .</mml:mn></mml:msub></mml:math 	m n.x <td>ll:nasub≻</td>	ll:nasub≻
2286	SERS Selective Enhancement on Monolayer MoS ₂ Enabled by a Pressure-Induced Shift from Resonance to Charge Transfer. ACS Applied Materials & Interfaces, 2021, 13, 26551-26560.	4.0	23
2287	Interlayer engineering of two-dimensional transition-metal disulfides for electrochemical and optical sensing applications. FlatChem, 2021, 27, 100242.	2.8	10
2288	Enhancing Light–Matter Interactions in MoS ₂ by Copper Intercalation. Advanced Materials, 2021, 33, e2008779.	11.1	25
2289	Steepâ€Slope Gateâ€Connected Atomic Threshold Switching Fieldâ€Effect Transistor with MoS ₂ Channel and Its Application to Infrared Detectable Phototransistors. Advanced Science, 2021, 8, 2100208.	5.6	9
2290	Mechanical transfer of electrochemically grown molybdenum sulfide layers to silicon wafer. Journal of Applied Electrochemistry, 2021, 51, 1279-1286.	1.5	3

#	Article	IF	CITATIONS
2291	Interlayer excitonic states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml: mathvariant="normal">S<mml:mn>2</mml:mn></mml: </mml:msub></mml:mrow> van der Waals heterostructures. Physical Review B, 2021, 103, .</mml:math 	mi}Se <td>ml:mi><mml:< td=""></mml:<></td>	ml:mi> <mml:< td=""></mml:<>
2292	Multibit tribotronic nonvolatile memory based on van der Waals heterostructures. Nano Energy, 2021, 83, 105785.	8.2	21
2293	Rapid formation of large-area MoS2 monolayers by a parameter resilient atomic layer deposition approach. APL Materials, 2021, 9, .	2.2	5
2294	Infrared Proximity Sensors Based on Photoâ€Induced Tunneling in van der Waals Integration. Advanced Functional Materials, 2021, 31, 2100966.	7.8	12
2295	Twisted graphene in graphite: Impact on surface potential and chemical stability. Carbon, 2021, 176, 431-439.	5.4	10
2296	MoS2 ZnO isotype heterostructure diode: Carrier transport and band alignment. Journal of Applied Physics, 2021, 129, 205702.	1.1	5
2297	All-Electrical High-Sensitivity, Low-Power Dual-Mode Gas Sensing and Recovery with a WSe ₂ /MoS ₂ pn Heterodiode. ACS Applied Materials & Interfaces, 2021, 13, 30785-30796.	4.0	24
2298	Multiple Weyl fermions and tunable quantum anomalous Hall effect in 2D half-metal with huge spin-related energy gap. Applied Surface Science, 2021, 551, 149390.	3.1	17
2299	Controlled growth of high spatial uniformity of monolayer single crystal MoS2. Journal of Materials Science: Materials in Electronics, 2021, 32, 17009-17020.	1.1	0
2300	PdPSe: Componentâ€Fusionâ€Based Topology Designer of Twoâ€Dimensional Semiconductor. Advanced Functional Materials, 2021, 31, 2102943.	7.8	15
2301	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
2302	CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance. Applied Surface Science, 2021, 551, 149452.	3.1	33
2303	CoMo ₂ S ₄ with Superior Conductivity for Electrocatalytic Hydrogen Evolution: Elucidating the Key Role of Co. Advanced Functional Materials, 2021, 31, 2103732.	7.8	37
2304	Ultrawide Frequency Tuning of Atomic Layer van der Waals Heterostructure Electromechanical Resonators. Nano Letters, 2021, 21, 5508-5515.	4.5	26
2305	Model MoS2@ZIF-71 interface acts as a highly active and selective electrocatalyst for catalyzing ammonia synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126529.	2.3	11
2306	Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. Emergent Materials, 2021, 4, 951-970.	3.2	24
2307	Monolayer MoS ₂ photodetectors with a buried-gate field-effect transistor structure. Nanotechnology, 2022, 33, 075206.	1.3	3
2308	MoS _{2–<i>x</i>} Se <i>_x</i> Nanoparticles for NO Detection at Room Temperature. ACS Applied Nano Materials, 2021, 4, 6861-6871.	2.4	13

#	Article	IF	CITATIONS
2309	Role of Surface Processes in Growth of Monolayer MoS ₂ : Implications for Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 6734-6744.	2.4	7
2310	Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nature Communications, 2021, 12, 3559.	5.8	94
2311	MoS _{2–2<i>x</i>} Se _{2<i>x</i>} Nanosheets Grown on Hollow Carbon Spheres for Enhanced Electrochemical Activity. Langmuir, 2021, 37, 8314-8322.	1.6	10
2312	Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy, 2021, 84, 105906.	8.2	56
2313	Bifacial DSSC fabricated using low-temperature processed 3D flower like MoS2 - high conducting carbon composite counter electrodes. Materials Today Communications, 2021, 27, 102208.	0.9	4
2314	Tailoring of Surface Acidic Sites in Co–MoS ₂ Catalysts for Hydrodeoxygenation Reaction. Journal of Physical Chemistry Letters, 2021, 12, 5668-5674.	2.1	14
2315	Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2021, 286, 119907.	10.8	37
2316	N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Research, 2021, 14, 3523-3530.	5.8	41
2317	Independent thickness and lateral size sorting of two-dimensional materials. Science China Materials, 2021, 64, 2739-2746.	3.5	4
2318	Davydov Splitting, Double-Resonance Raman Scattering, and Disorder-Induced Second-Order Processes in Chemical Vapor Deposited MoS ₂ Thin Films. Journal of Physical Chemistry Letters, 2021, 12, 6197-6202.	2.1	9
2319	Influence of Si-Substrate Concentration on Electrical Properties of Back- and Top-Gate MoSâ,, Transistors. IEEE Transactions on Electron Devices, 2021, 68, 3087-3090.	1.6	5
2320	Sulfurâ€Vacancy Defective MoS ₂ as a Promising Electrocatalyst for Nitrogen Reduction Reaction under Mild Conditions. ChemElectroChem, 2021, 8, 3030-3039.	1.7	23
2321	Phase-Dependent MoS ₂ Nanoflowers for Light-Driven Antibacterial Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 7904-7912.	3.2	77
2322	Friction performance and corrosion resistance of MoS2/DLC composite films deposited by magnetron sputtering. Results in Physics, 2021, 25, 104278.	2.0	18
2324	Substrate-mediated growth of oriented, vertically aligned MoS2 nanosheets on vicinal and on-axis SiC substrates. Applied Surface Science, 2021, 552, 149303.	3.1	12
2325	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38
2326	Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials, 2021, 11, 1585.	1.9	11
2327	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3

#	Article	IF	Citations
2328	Lattice Defect Engineering Enables Performance-Enhanced MoS ₂ Photodetection through a Paraelectric BaTiO ₃ Dielectric. ACS Nano, 2021, 15, 13370-13379.	7.3	18
2329	Roadmap and Direction toward High-Performance MoS ₂ Hydrogen Evolution Catalysts. ACS Nano, 2021, 15, 11014-11039.	7.3	179
2330	Thermal-Driven Dynamic Shape Change of Bimetallic Nanoparticles Extends Hot Electron Lifetime of Pt/MoS ₂ Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 7173-7179.	2.1	8
2331	Atomically Thin Layers of MoS2 Grown by the Method of Pulsed Laser Deposition. Journal of Contemporary Physics, 2021, 56, 234-239.	0.1	0
2332	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. Npj 2D Materials and Applications, 2021, 5, .	3.9	31
2333	Modification of interface and electronic transport in van der Waals heterojunctions by UV/O ₃ . Nanotechnology, 2021, 32, 415703.	1.3	2
2334	MoS2 nanosheets-decorated SnO2 nanofibers for enhanced SO2 gas sensing performance and classification of CO, NH3 and H2 gases. Analytica Chimica Acta, 2021, 1167, 338576.	2.6	29
2335	Dispersion behaviour of two dimensional monochalcogenides. Journal of Colloid and Interface Science, 2021, 594, 334-341.	5.0	4
2336	Optoelectronic Synapses Based on Photoâ€Induced Doping in MoS ₂ /hâ€BN Fieldâ€Effect Transistors. Advanced Optical Materials, 2021, 9, 2100937.	3.6	25
2337	The pivotal role of oxygen in establishing superlow friction by inducing the in situ formation of a robust MoS2 transfer film. Journal of Colloid and Interface Science, 2021, 594, 824-835.	5.0	15
2338	Large Perpendicular Magnetic Anisotropy in Ta/CoFeB/MgO on Full-Coverage Monolayer MoS ₂ and First-Principles Study of Its Electronic Structure. ACS Applied Materials & Interfaces, 2021, 13, 32579-32589.	4.0	11
2339	Tribological Properties of SiO2@Cu and SiO2@MoS2 Core–Shell Microspheres as Lubricant Additives. Tribology Letters, 2021, 69, 1.	1.2	16
2340	Fabrication of 3D MoS2-TiO2@PAN electro-spun membrane for efficient and recyclable photocatalytic degradation of organic dyes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115179.	1.7	30
2341	Ultrasensitive WSe ₂ field-effect transistor-based biosensor for label-free detection of cancer in point-of-care applications. 2D Materials, 2021, 8, 045005.	2.0	23
2342	Variable angle spectroscopic ellipsometry characterization of spin-coated MoS2 films. Vacuum, 2021, 189, 110232.	1.6	9
2343	Centimeter-Scale MoS2 on Solid Electrolyte Substrate by Sulfurization of Molybdenum Thin Film. , 2021, , .		0
2344	Few-Layer PdSe ₂ Nanofilm/Si Heterojunction for Sensing NO ₂ at Room Temperature. ACS Applied Nano Materials, 2021, 4, 7358-7370.	2.4	18
2345	Rashba-Edelstein magnetoresistance in two-dimensional materials at room temperature. Physical Review B, 2021, 104, .	1.1	7

#	Article	IF	CITATIONS
2346	Large-Scale Uniform-Patterned Arrays of Ultrathin All-2D Vertical Stacked Photodetector Devices. ACS Applied Materials & Interfaces, 2021, 13, 34696-34704.	4.0	2
2347	Micro-patterned deposition of MoS2 ultrathin-films by a controlled droplet dragging approach. Scientific Reports, 2021, 11, 13993.	1.6	5
2348	Hybrid ZnO/MoS2 Core/Sheath Heterostructures for Photoelectrochemical Water Splitting. Applied Nano, 2021, 2, 148-161.	0.9	5
2349	Precursor Concentration Ratio: The Key to Controllable Lateral-to-Standing MoO ₂ Flake Transition. Chemistry of Materials, 2021, 33, 6052-6058.	3.2	6
2350	Ultrahigh degradation efficiency of AB type in-plane reverse polarization WS2 nano sheets in dark by piezo-catalyst effect. Applied Surface Science, 2021, 553, 149557.	3.1	13
2351	Fast Photothermoelectric Response in CVDâ€Grown PdSe ₂ Photodetectors with Inâ€Plane Anisotropy. Advanced Functional Materials, 2021, 31, 2104787.	7.8	44
2352	Performance tunability of field-effect transistors using MoS2(1â^'x)Se2x alloys. Nanotechnology, 2021, 32, 435202.	1.3	1
2353	MoS ₂ /WS ₂ Nanosheet-Based Composite Films Irradiated by Atomic Oxygen: Implications for Lubrication in Space. ACS Applied Nano Materials, 2021, 4, 10307-10320.	2.4	16
2354	Nanocomposite synthesis of MoS2/nano-CeO2 for high-performance electromagnetic absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 22689-22698.	1.1	6
2355	Erythromycin dermal delivery by MoS2 nanoflakes. Journal of Pharmaceutical Investigation, 2021, 51, 691-700.	2.7	8
2356	Flowerâ€Like Interlayerâ€Expanded MoS _{2â^'} <i>_x</i> Nanosheets Confined in Hollow Carbon Spheres with Highâ€Efficiency Electrocatalysis Sites for Advanced Sodium–Sulfur Battery. Small, 2021, 17, e2101879.	5.2	53
2357	Tuning Interfacial Active Sites over Porous Mo ₂ N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 41573-41583.	4.0	30
2358	A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting. Journal of Advanced Research, 2022, 36, 15-26.	4.4	14
2359	Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS ₂ Heterostructures. ACS Nano, 2021, 15, 14394-14403.	7.3	36
2360	Wafer-scale MoS2 for P-type field effect transistor arrays and defects-related electrical characteristics. Thin Solid Films, 2021, 732, 138798.	0.8	0
2361	NaCl-Assisted CVD Growth of Large-Area High-Quality Trilayer MoS ₂ and the Role of the Concentration Boundary Layer. Crystal Growth and Design, 2021, 21, 4940-4946.	1.4	22
2362	Flowerâ€like Nitrogenâ€coâ€doped MoS ₂ @RGO Composites with Excellent Stability for Supercapacitors. ChemElectroChem, 2021, 8, 2903-2911.	1.7	12
2363	Photoinduced Anomalous Electron Transfer Dynamics at a Lateral MoS ₂ –Graphene Covalent Junction. Journal of Physical Chemistry Letters, 2021, 12, 7553-7559.	2.1	12

#	Article	IF	CITATIONS
2364	Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS2-based nanoconjugates. Biomedical Materials (Bristol), 2021, 16, 055009.	1.7	1
2365	Transition metals decorated g-C3N4/N-doped carbon nanotube catalysts for water splitting: A review. Journal of Electroanalytical Chemistry, 2021, 895, 115510.	1.9	59
2366	Defect-Enhanced Exciton–Exciton Annihilation in Monolayer Transition Metal Dichalcogenides at High Exciton Densities. ACS Photonics, 2021, 8, 2770-2780.	3.2	26
2367	Twisted Light-Enhanced Photovoltaic Effect. ACS Nano, 2021, 15, 14822-14829.	7.3	6
2368	Impact of H 2 gas on the properties of MoS 2 thin films deposited by sulfurization of Mo thin films. Micro and Nano Letters, 2021, 16, 525-532.	0.6	0
2369	Magnetic Field Controlled Interlayer Coupling in MoS 2 Field Effect Transistors. Advanced Electronic Materials, 0, , 2100548.	2.6	0
2370	Bilayer MoS2 on Silicon for higher Terahertz Amplitude Modulation. Nano Express, 0, , .	1.2	4
2371	Ultrafast dynamics of charge transfer in CVD grown MoS2–graphene heterostructure. Applied Physics Letters, 2021, 119, .	1.5	6
2372	Tuning bandstructure of folded MoS2 through fluid dynamics. Nano Research, 2022, 15, 2734-2740.	5.8	7
2373	Photoluminescence Kinetics of Dark and Bright Excitons in Atomically Thin MoS ₂ . Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100263.	1.2	4
2374	Vertically aligned MoS2 thin film catalysts with Fe-Ni sulfide nanoparticles by one-step sulfurization for efficient solar water reduction. Chemical Engineering Journal, 2021, 418, 129369.	6.6	26
2375	Enhanced Dielectric Screening and Photoluminescence from Nanopillar-Strained MoS ₂ Nanosheets: Implications for Strain Funneling in Optoelectronic Applications. ACS Applied Nano Materials, 2021, 4, 8101-8107.	2.4	12
2376	In situ X-ray photoelectron spectroscopy study: effect of inert Ar sputter etching on the core-level spectra of the CVD-grown tri-layer MoS2 thin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 8741-8746.	1.1	1
2377	A novel design by constructing MoS2/WS2 multilayer film doped with tantalum toward superior friction performance in multiple environment. Journal of Materials Science, 2021, 56, 17615-17631.	1.7	8
2378	Nano-patterning on multilayer MoS2 via block copolymer lithography for highly sensitive and responsive phototransistors. Communications Materials, 2021, 2, .	2.9	19
2379	Developing polydopamine modified molybdenum disulfide/epoxy resin powder coatings with enhanced anticorrosion performance and wear resistance on magnesium lithium alloys. Journal of Magnesium and Alloys, 2022, 10, 2534-2545.	5.5	14
2380	"Simple-Stir―Heterolayered MoS ₂ /Graphene Nanosheets for Zn–Air Batteries. ACS Applied Nano Materials, 2021, 4, 10389-10398.	2.4	17
2381	Graphene-based hybrid aerogels for energy and environmental applications. Chemical Engineering Journal, 2021, 420, 129700.	6.6	49

#	Article	IF	CITATIONS
2382	Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials <i>via</i> Interfacial Engineering. ACS Nano, 2021, 15, 15902-15909.	7.3	11
2383	MoS2 nanowires as additives of PFPE for enhanced tribological properties under high vacuum. Journal of Physics and Chemistry of Solids, 2021, 156, 110172.	1.9	6
2384	Harnessing the Volume Expansion of MoS ₃ Anode by Structure Engineering to Achieve High Performance Beyond Lithiumâ€Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232.	11.1	83
2385	Hierarchically Porous Metal–Organic Framework/MoS ₂ Interface for Selective Photocatalytic Conversion of CO ₂ with H ₂ O into CH ₃ COOH. Angewandte Chemie - International Edition, 2021, 60, 24849-24853.	7.2	76
2386	Capping technique for chemical vapor deposition of large and uniform MoS2 flakes. Thin Solid Films, 2021, 733, 138808.	0.8	7
2387	Adhesion strength and tribological property of self-lubricating Si/MoS2 nanocoating by pulsed laser deposition method. Ceramics International, 2021, 47, 35260-35267.	2.3	7
2388	Effects of dimensionality and excitation energy on the Raman tensors of triclinic ReSe ₂ . Journal of Raman Spectroscopy, 2021, 52, 2068-2080.	1.2	5
2389	Hierarchically Porous Metal–Organic Framework/MoS ₂ Interface for Selective Photocatalytic Conversion of CO ₂ with H ₂ O into CH ₃ COOH. Angewandte Chemie, 2021, 133, 25053-25057.	1.6	16
2390	Hierarchical MoS ₂ /polyaniline binary hybrids with high performance for improving fire safety of epoxy resin. Polymers for Advanced Technologies, 2022, 33, 163-172.	1.6	6
2391	Rapid Degradation of the Electrical Properties of 2D MoS ₂ Thin Films under Long-Term Ambient Exposure. ACS Omega, 2021, 6, 24075-24081.	1.6	8
2392	Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets. Sensors and Actuators A: Physical, 2021, 332, 113137.	2.0	28
2393	Junction Fieldâ€Effect Transistors Based on PdSe ₂ /MoS ₂ Heterostructures for Photodetectors Showing High Responsivity and Detectivity. Advanced Functional Materials, 2021, 31, 2106105.	7.8	61
2394	Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends, 2021, 5, 100103.	1.4	9
2395	One-pot exfoliation and surface functionalization of MoS2: A potential nanofiller to overcome the brittleness of polystyrene (PS). Polymer, 2021, 233, 124187.	1.8	1
2396	A MoS2 platform and thionine-carbon nanodots for sensitive and selective detection of pathogens. Biosensors and Bioelectronics, 2021, 189, 113375.	5.3	39
2397	Molybdenum disulfide/nanodiamonds hybrid for high electromagnetic absorption. Diamond and Related Materials, 2021, 118, 108535.	1.8	3
2398	Self-supporting NiFe LDH-MoS integrated electrode for highly efficient water splitting at the industrial electrolysis conditions. Chinese Journal of Catalysis, 2021, 42, 1732-1741.	6.9	50
2399	Ordered mesoporous NiMg bimetal oxides confined KMoS catalyst for selective CO hydrogenation into higher alcohols. Fuel, 2021, 303, 121321.	3.4	5

#	Article	IF	CITATIONS
2400	Edge defect-assisted synthesis of chemical vapor deposited bilayer molybdenum disulfide. Ceramics International, 2021, 47, 30106-30112.	2.3	11
2401	Insights into optical detection and three-dimensional characterization of monolayer molybdenum disulfide thin films based on machine learning. Applied Surface Science, 2021, 565, 150530.	3.1	4
2402	Encapsulation-enhanced switching stability of MoS2 memristors. Journal of Alloys and Compounds, 2021, 885, 161016.	2.8	12
2403	Investigation of uniaxial strain in twisted few-layer MoS2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 418, 127709.	0.9	12
2404	Performance and reliability in back-gated CVD-grown MoS2 devices. Solid-State Electronics, 2021, 186, 108173.	0.8	2
2405	Visible light driven Nd2O3/Mo(S,O)3-x·0.34H2O heterojunction for enhanced photocatalytic degradation of organic pollutants. Applied Surface Science, 2021, 569, 151091.	3.1	16
2406	Well-dispersed few-layered MoS2 connected with robust 3D conductive architecture for rapid capacitive deionization process and its specific ion selectivity. Desalination, 2021, 520, 115325.	4.0	43
2407	Highly efficient electrochemical dechlorination of florfenicol by an ultrathin molybdenum disulfide cathode. Chemical Engineering Journal, 2022, 427, 131600.	6.6	15
2408	Flexible MXene-Ti3C2Tx bond few-layers transition metal dichalcogenides MoS2/C spheres for fast and stable sodium storage. Chemical Engineering Journal, 2022, 427, 130960.	6.6	15
2409	Sphere-like MoS2 and porous TiO2 composite film on Ti foil as lithium-ion battery anode synthesized by plasma electrolytic oxidation and magnetron sputtering. Journal of Alloys and Compounds, 2022, 892, 162075.	2.8	10
2410	Highly sensitive detection of multiple proteins from single cells by MoS2-FET biosensors. Talanta, 2022, 236, 122839.	2.9	16
2411	One-pot hydrothermal approach towards 2D/2D heterostructure based on 1ÂT MoS2 chemically bonding with GO for extremely high electrocatalytic performance. Chemical Engineering Journal, 2022, 428, 132072.	6.6	22
2412	Ni–Mo–S Ternary Chalcogenide Thin Film for Enhanced Hydrogen Evolution Reaction. Catalysis Letters, 2021, 151, 2228.	1.4	5
2413	Growth mechanism and atomic structure of group-IIA compound-promoted CVD-synthesized monolayer transition metal dichalcogenides. Nanoscale, 2021, 13, 13030-13041.	2.8	7
2414	Atomically thin Schottky junction with a gap-mode plasmon for enhanced photoresponsivity in MoS2-based photodetectors. Journal Physics D: Applied Physics, 2021, 54, 145301.	1.3	6
2415	Single-step chemical vapour deposition of anti-pyramid MoS ₂ /WS ₂ vertical heterostructures. Nanoscale, 2021, 13, 4537-4542.	2.8	17
2416	Local Mapping of the Thickness-Dependent Dielectric Constant of MoS ₂ . Journal of Physical Chemistry C, 2021, 125, 3611-3615.	1.5	17
2417	Liquid-phase exfoliated MoS ₂ nanosheets doped with <i>p</i> -type transition metals: a comparative analysis of photocatalytic and antimicrobial potential combined with density functional theory. Dalton Transactions, 2021, 50, 6598-6619.	1.6	46

#	Article	IF	CITATIONS
2418	Design Principles and Synthesis of 3D Graphene-Analogous Materials and van der Waals Heterostructures. Springer Theses, 2021, , 119-137.	0.0	0
2419	Areaâ€Selective Atomic Layer Deposition of MoS ₂ using Simultaneous Deposition and Etching Characteristics of MoCl ₅ . Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000533.	1.2	7
2420	Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Physical Chemistry Chemical Physics, 2021, 23, 23428-23444.	1.3	26
2421	Catalytic Conversion of Tetrahydrofurfuryl Alcohol over Stable Pt/MoS2 Catalysts. Catalysis Letters, 2021, 151, 2734-2747.	1.4	6
2422	Gate induced charge transfer and hysteresis enlargement in MoS ₂ /GeSe ₂ vertical heterostructures. Journal of Materials Chemistry C, 2021, 9, 8213-8219.	2.7	7
2423	Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Physical Review B, 2021, 103, .	1.1	63
2424	Thickness-modulated lateral MoS ₂ diodes with sub-terahertz cutoff frequency. Nanoscale, 2021, 13, 8940-8947.	2.8	8
2425	WS ₂ /MoS ₂ Heterostructures through Thermal Treatment of MoS ₂ Layers Electrostatically Functionalized with W ₃ S ₄ Molecular Clusters. Chemistry - A European Journal, 2020, 26, 6670-6678.	1.7	6
2426	Optimization of the Concentration of Molybdenum Disulfide (MoS2) for Formation of Atomically Thin Layers. Springer Proceedings in Physics, 2019, , 39-43.	0.1	1
2427	Gas Sensing Using Monolayer MoS2. NATO Science for Peace and Security Series A: Chemistry and Biology, 2019, , 71-95.	0.5	1
2428	Large-Scale characterization of Two-Dimensional Monolayer MoS2 Island Domains Using Spectroscopic Ellipsometry and Reflectometry. Applied Surface Science, 2020, 524, 146418.	3.1	18
2429	Constructing three-dimensional ordered porous MoS2/C hierarchies for excellent high-rate long-life pseudocapacitive sodium storage. Chemical Engineering Journal, 2020, 397, 125385.	6.6	65
2430	The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chemical Engineering Journal, 2020, 397, 125454.	6.6	32
2431	Amorphous MoS2 nanosheets on MoO2 films/Mo foil as free-standing electrode for synergetic electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 17422-17433.	3.8	23
2432	Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 577, 38-47.	5.0	11
2433	Facile and low cost oxidative conversion of MoS2 in α-MoO3: Synthesis, characterization and application. Journal of Solid State Chemistry, 2017, 252, 111-118.	1.4	34
2434	Nitrogen-doped MoS2 quantum dots: Facile synthesis and application for the assay of hematin in human blood. Materials Science and Engineering C, 2020, 112, 110898.	3.8	17
2435	Wrapping Plasmonic Silver Nanoparticles inside One-Dimensional Nanoscrolls of Transition-Metal Dichalcogenides for Enhanced Photoresponse. Inorganic Chemistry, 2021, 60, 4226-4235.	1.9	17

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2436	Three-Dimensional MoS ₂ Nanodot-Impregnated Nickel Foam Electrodes for High-Performance Supercapacitor Applications. ACS Omega, 2020, 5, 11721-11729.		1.6	34
2437	Highly Responsive Flexible Photodetectors Based on MOVPE Grown Uniform Few-Layer MoS ₂ . ACS Photonics, 2020, 7, 1388-1395.		3.2	60
2438	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .			1
2439	1% defect enriches MoS ₂ quantum dot: catalysis and blue luminescence. Na 12, 4352-4358.	noscale, 2020,	2.8	16
2440	Room temperature ferromagnetic and ambipolar behaviors of MoS2 doped by manganese electrochemical method. Applied Physics Letters, 2017, 110, .	e oxide using an	1.5	7
2441	Impact of thermal annealing in forming gas on the optical and electrical properties of Mo monolayer. Journal of Physics Condensed Matter, 2021, 33, 035001.	52	0.7	7
2442	Visible to near-infrared photodetectors based on MoS ₂ vertical Schottky jun Nanotechnology, 2017, 28, 484002.	ctions.	1.3	73
2443	Influence of MoS2-metal interface on charge injection: a comparison between various me Nanotechnology, 2020, 31, 395713.	tal contacts.	1.3	7
2444	Influence of chemical potential on shape evolution of 2D-MoS ₂ flakes produchemical vapor deposition. Nanotechnology, 2021, 32, 045301.	iced by	1.3	8
2445	Spectroscopic thickness and quality metrics for PtSe ₂ layers produced by to bottom-up techniques. 2D Materials, 2020, 7, 045027.	p-down and	2.0	21
2446	Monolayer MoS ₂ on sapphire: an azimuthal reflection high-energy electron operspective. 2D Materials, 2021, 8, 025003.	diffraction	2.0	26
2447	Scalable low-temperature synthesis of two-dimensional materials beyond graphene. JPhys 2020, 4, 012001.	Materials,	1.8	29
2448	Atomic-layered MoS2 on SiO2 under high pressure: Bimodal adhesion and biaxial strain er Physical Review Materials, 2017, 1, .	fects.	0.9	21
2449	Transient thermal characterization of suspended monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoSPhysical Review Materials, 2018, 2, .</mml:mi></mml:msub></mml:math 	l:mi> <mml:mn>2<td>mox/mm</td><td>l:msub></td></mml:mn>	m o x/mm	l:msub>
2450	CVD-grown back-gated MoS2 transistors. , 2020, , .			1
2451	Tunable light emission from chemical vapor deposited two-dimensional MoSe2 by layer va incorporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films	ariation and S , 2020, 38, .	0.9	8
2452	Electrodeposition of MoS ₂ from Dichloromethane. Journal of the Electroche Society, 2020, 167, 106511.	mical	1.3	16
2453	On a Two-Dimensional MoS ₂ /Mo ₂ CT _x Hydrogen I Catalyst Obtained by the Topotactic Sulfurization of Mo ₂ CT _x N of the Electrochemical Society, 2020, 167, 124507.	Evolution MXene. Journal	1.3	26

#	Article	IF	CITATIONS
2454	Is Molybdenum Disulfide Modified with Molybdenum Metal Catalytically Active for the Nitrogen Reduction Reaction?. Journal of the Electrochemical Society, 2020, 167, 146507.	1.3	16
2455	γ-ray Irradiation-Induced Chemical and Structural Changes in CVD Monolayer MoS ₂ . ECS Journal of Solid State Science and Technology, 2020, 9, 093011.	0.9	15
2456	Investigation of Band Alignment for Hybrid 2D-MoS2/3D-β-Ga2O3 Heterojunctions with Nitridation. Nanoscale Research Letters, 2019, 14, 360.	3.1	10
2457	Low Voltage Operating 2D MoS2 Ferroelectric Memory Transistor with Hf1-xZrxO2 Gate Structure. Nanoscale Research Letters, 2020, 15, 157.	3.1	31
2458	STRATEGIES OF FABRICATING GRAPHENE AND GRAPHENE-ANALOGOUS 2D NANOSHEETS. Ceramics - Silikaty, 2018, , 211-220.	0.2	2
2459	Passively Q-switched erbium-doped fiber laser based on antimonene as saturable absorber. Applied Optics, 2019, 58, 7845.	0.9	18
2460	Enhanced laser crystallization of thin film amorphous molybdenum disulfide (MoS ₂) by means of pulsed laser ultrasound. Optics Express, 2019, 27, 5859.	1.7	10
2461	Optical properties and applications of molybdenum disulfide/SiO ₂ saturable absorber fabricated by sol-gel technique. Optics Express, 2019, 27, 6348.	1.7	22
2462	Twin-ZnSe nanowires as surface enhanced Raman scattering substrate with significant enhancement factor upon defect. Optics Express, 2020, 28, 18843.	1.7	15
2463	Elevating the density and intensity of hot spots by repeated annealing for high-efficiency SERS. Optics Express, 2020, 28, 29357.	1.7	15
2464	Composite material anti-resonant optical fiber electromodulator with a 35  dB depth. Optics Letters, 2020, 45, 1132.	1.7	6
2465	Raman tensor of layered MoS ₂ . Optics Letters, 2020, 45, 1313.	1.7	29
2466	Surface-enhanced Raman scattering of monolayer transition metal dichalcogenides on Ag nanorod arrays. Optics Letters, 2019, 44, 5493.	1.7	5
2467	MoS ₂ /graphene heterostructure incorporated passively mode-locked fiber laser: from anomalous to normal average dispersion. Optical Materials Express, 2020, 10, 46.	1.6	16
2468	Dual-loss-modulated Q-switched Tm:Ca(Gd,Lu)AlO4 laser using AOM and a MoS2 nanosheet. Optical Materials Express, 2020, 10, 752.	1.6	8
2469	Robust and efficient optical limiters based on molybdenum disulfide nanosheets embedded in solid-state heavy-metal oxide glasses. Optical Materials Express, 2020, 10, 1463.	1.6	5
2470	Enhanced absorption of CVD grown molybdenum disulfide monolayers via surface plasmon resonance with silver nano-triangles. OSA Continuum, 2019, 2, 1401.	1.8	1
2471	Raman spectroscopy regulation in van der Waals crystals. Photonics Research, 2018, 6, 991.	3.4	25

#	Article	IF	CITATIONS
2472	Enhanced four-wave mixing process near the excitonic resonances of bulk MoS ₂ . Photonics Research, 2019, 7, 251.	3.4	13
2473	Soliton and bound-state soliton mode-locked fiber laser based on a MoS ₂ /fluorine mica Langmuir–Blodgett film saturable absorber. Photonics Research, 2019, 7, 431.	3.4	37
2474	Layer-modulated two-photon absorption in MoS ₂ : probing the shift of the excitonic dark state and band-edge. Photonics Research, 2019, 7, 762.	3.4	22
2475	Absorption and emission modulation in a MoS ₂ –GaN (0001) heterostructure by interface phonon–exciton coupling. Photonics Research, 2019, 7, 1511.	3.4	10
2476	Ellipsometry and optical spectroscopy of low-dimensional family TMDs. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2017, 20, 284-296.	0.3	24
2477	Raman Spectra of Graphene-Like Nanoparticles of Molybdenum and Tungsten Disulfides. Ukrainian Journal of Physics, 2016, 61, 556-561.	0.1	5
2478	Direct Synthesis of Multi-layer MoS(_2) Nanodots by Chemical Vapor Deposition. Communications in Physics, 2018, 28, 379.	0.0	3
2480	PL enhancement of MoS2 by Au nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 217802.	0.2	6
2481	Recent progress of two-dimensional layered molybdenum disulfide. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 018102.	0.2	6
2482	Thermal stability of MoS2 encapsulated by graphene. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 226501.	0.2	3
2483	Microscopic origin of near- and far-field contributions to tip-enhanced optical spectra of few-layer MoS2. Nanoscale, 2021, 13, 17116-17124.	2.8	3
2484	Enhanced photoresponse of a MoS ₂ monolayer using an AAO template. RSC Advances, 2021, 11, 34410-34415.	1.7	0
2485	High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy, 2022, 91, 106649.	8.2	35
2486	CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor. Nanomaterials, 2021, 11, 2642.	1.9	10
2487	Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. IScience, 2021, 24, 103313.	1.9	12
2488	Interface effect of graphene oxide in MoS2 layered nanosheets for thermoelectric application. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
2489	Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal Conversion for Large-Scale Ultrathin Flexible Electronics. Nano Letters, 2021, 21, 9153-9163.	4.5	29
2490	Enhanced Surface-Enhanced Raman Scattering Activity of MoS ₂ –Ag-Reduced Graphene Oxide: Structure-Mediated Excitonic Transition. Journal of Physical Chemistry C, 2021, 125, 23259-23266.	1.5	8

#	Article	IF	CITATIONS
2491	Threshold voltage modulation in monolayer MoS2 field-effect transistors via selective gallium ion beam irradiation. Science China Materials, 2022, 65, 741-747.	3.5	5
2492	Wear characteristics of exfoliated MoS ₂ /polyamide-6,6 composite. Journal of Elastomers and Plastics, 2022, 54, 374-384.	0.7	1
2493	Influence of anharmonicity and interlayer interaction on Raman spectra in mono- and few-layer MoS2: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 114999.	1.3	9
2494	Radiation damage and abnormal photoluminescence enhancement of multilayer MoS ₂ under neutron irradiation. Journal of Physics Condensed Matter, 2022, 34, 055701.	0.7	2
2495	Elucidating the layer-number impact of MoS2 on the adsorption and hydrogenation of CO. Journal of Catalysis, 2021, 404, 258-272.	3.1	6
2496	Multiplexing implementation of rubbing-induced site-selective growth of MoS2 feature arrays. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 062203.	0.6	1
2497	Rational design of a polysulfide catholyte electrocatalyst by interfacial engineering based on novel MoS2/MoN heterostructures for superior room-temperature Na–S batteries. Nano Energy, 2021, 90, 106590.	8.2	22
2498	Recent progress in preparation of material and device of two-dimensional MoS2. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 056801.	0.2	4
2500	Investigation on the Friction-Wear Properties and Tribological Microscopic Mechanism of MoS ₂ Films. Material Sciences, 2017, 07, 403-412.	0.0	1
2501	Tunable Order Parameters in Nickelate Heterostructures. Springer Theses, 2017, , 69-107.	0.0	0
2502	Mechanically Exfoliated MoS2 onto D-shaped Optical Fiber for Erbium Doped Fiber Laser Mode-locking. , 2017, , .		0
2503	Controllable Growth of Single Layer MoS ₂ and Resistance Switching Effect in Polymer/MoS ₂ Structure. Applied Science and Convergence Technology, 2017, 26, 129-132.	0.3	1
2504	Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy. Korean Journal of Materials Research, 2017, 27, 705-709.	0.1	3
2507	Passively Q-switched Thulium Laser with CWCVD Synthesized MoS2 Saturable Absorber. , 2019, , .		0
2508	Preparation and Characterization of Two Dimensional MoS ₂ /MoO ₂ Mixed Structures. Advances in Condensed Matter Physics, 2019, 08, 33-40.	0.1	0
2509	Atomically Thin Optical Lenses and Gratings. , 2019, , 67-92.		2
2510	Rapid thickness and optoelectronic properties characterization of few-layer 2D materials based on hyperspectral microscopy. , 2019, , .		0
2511	Material and Heterostructure Interface Characterization. Springer Theses, 2020, , 123-139.	0.0	0

#	Article	IF	CITATIONS
2512	First-principles study of structures, elastic and optical properties of single-layer metal iodides under strain. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 877-886.	0.7	2
2513	Few-layered MoS2 with S-vacancies anchored on N-doped carbon flower for high performance sodium storage. Journal of Alloys and Compounds, 2022, 895, 162514.	2.8	14
2514	Molecular docking and DFT analyses of magnetic cobalt doped MoS2 and BN nanocomposites for catalytic and antimicrobial explorations. Surfaces and Interfaces, 2021, 27, 101571.	1.5	19
2516	Hierarchical core/shell titanium dioxide/molybdenum disulfide nanosheets coupled with carbon architecture for superior lithium/sodium ion storage. Journal of Colloid and Interface Science, 2022, 608, 2641-2649.	5.0	7
2517	Morphology and Phase Engineering of MoS2 Cocatalyst for High-Efficiency Hydrogen Evolution: One-Step Clean Synthesis and Comparative Studies. Journal of Physical Chemistry C, O, , .	1.5	10
2518	Few-Layered MoS2 Nanoparticles Covering Anatase TiO2 Nanosheets: Comparison between Ex Situ and In Situ Synthesis Approaches. Applied Sciences (Switzerland), 2021, 11, 143.	1.3	5
2519	A biodegradable polymer-assisted efficient and universal exfoliation route to a stable few layer dispersion of transition metal dichalcogenides. Materials Chemistry and Physics, 2022, 276, 125347.	2.0	6
2520	An Optothermal Field Effect Transistor Based on PMN-26PT Single Crystal. Springer Theses, 2020, , 29-48.	0.0	0
2521	Resistance state evolution under constant electric stress on a MoS ₂ non-volatile resistive switching device. RSC Advances, 2020, 10, 42249-42255.	1.7	8
2522	Layered Structures. , 2020, , 415-445.		0
2523	Integration of bubble phobicity, gas sensing and friction alleviation into a versatile MoS2/SnO2/CNF heterostructure by an impressive, simple and effective method. Nanoscale, 2020, 12, 18629-18639.	2.8	2
2524	Caveats in obtaining high-quality 2D materials and property characterization. Journal of Materials Research, 2020, 35, 855-863.	1.2	4
2525	Experimental Techniques, Instruments, and Cryostat. Springer Theses, 2020, , 79-121.	0.0	0
2526	Spectral Manifestations of Nonlinear Resonant Wave Interactions in the Vibrational Spectra of Transition Metal Dichalcogenides. Springer Proceedings in Physics, 2020, , 337-361.	0.1	0
2527	Facile fabrication of conductive MoS ₂ thin films by sonication in hot water and evaluation of their electrocatalytic performance in the hydrogen evolution reaction. Nanoscale Advances, 2021, 4, 125-137.	2.2	10
2528	Controlled vanadium doping of mos2 thin films through co-sputtering and thermal sulfurization. Cumhuriyet Science Journal, 2020, 41, 305-310.	0.1	5
2529	A Facile Liquidâ€Phase, Solventâ€Dependent Exfoliation of Large Scale MoS ₂ Nanosheets and Study of Their Photoconductive Behaviour for UVâ€Photodetector Application. ChemistrySelect, 2021, 6, 11285-11292.	0.7	10
2530	Atomic scale friction properties of confined water layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	3

#	Article	IF	CITATIONS
2531	In-situ hydrothermal growth of MoS2 absorber layer for planar heterojunction solar cells. Solar Energy, 2021, 230, 754-763.	2.9	7
2532	Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials deposition. Optics Express, 2020, 28, 34461.	1.7	1
2533	Real-time spatially resolved determination of twist angle in transition metal dichalcogenide heterobilayers. 2D Materials, 2021, 8, 015015.	2.0	7
2534	Lateral monolayer MoS ₂ homojunction devices prepared by nitrogen plasma doping. Nanotechnology, 2021, 32, 015701.	1.3	2
2535	Flexible, heat-resistant photodetector based on MoS ₂ nanosheets thin film on transparent muscovite mica substrate. Nanotechnology, 2021, 32, 025206.	1.3	9
2536	Single crystal flake parameters of MoS ₂ and MoSe ₂ exfoliated using anodic bonding technique and its potential in rapid prototyping. Journal of Physics Communications, 2020, 4, 105015.	0.5	2
2537	Temperature-switching logic in MoS ₂ single transistors*. Chinese Physics B, 2020, 29, 097201.	0.7	3
2539	An experimental and theoretical study on nanomachining forces along zigzag and armchair lattice orientations of monolayer MoS2. Materials Research Express, 2020, 7, 095002.	0.8	1
2540	Induced anisotropic superconductivity in ionic liquid cation intercalated 1T-SnSe ₂ . 2D Materials, 2021, 8, 015024.	2.0	6
2541	Structural and mechanical properties study of CNx/MoS ₂ multilayer coatings obtained by sputtering. Materials Research Express, 2020, 7, 116411.	0.8	0
2542	Flexible electronics based on 2D transition metal dichalcogenides. Journal of Materials Chemistry A, 2021, 10, 89-121.	5.2	66
2543	Different optical characteristics between monolayer and bilayer WS2 due to interlayer interaction. Optik, 2022, 251, 168374.	1.4	3
2544	Large-Area Monolayer MoS ₂ Nanosheets on GaN Substrates for Light-Emitting Diodes and Valley-Spin Electronic Devices. ACS Applied Nano Materials, 2021, 4, 12127-12136.	2.4	17
2545	Fast and controllable synthesis of AB-stacked bilayer MoS ₂ for photoelectric detection. 2D Materials, 2022, 9, 015016.	2.0	11
2546	MoS2/CF synergistic reinforcement on tribological properties of NBR/PU/EP interpenetrating polymer networks. Tribology International, 2022, 167, 107384.	3.0	11
2547	Amino Acid-Functionalized MoS ₂ Quantum Dots for Selective Antibacterial Activity. ACS Applied Nano Materials, 2021, 4, 13947-13954.	2.4	17
2548	Intrinsic half-metallic properties of MnHm (M: Fe, V, Co, and Cr) in various space groups: A first-principles study. Journal of Magnetism and Magnetic Materials, 2022, 547, 168758.	1.0	6
2549	Tailoring the Fluorescent and Electronic Properties of 2H-MoS ₂ by Step-by-Step Functionalization. Journal of Physical Chemistry C, 2021, 125, 25739-25748.	1.5	5

#	Article	IF	CITATIONS
2550	Single-Layer MoS2-MoO3-x Heterojunction Nanosheets with Simultaneous Photoluminescence and Co-Photocatalytic Features. Catalysts, 2021, 11, 1445.	1.6	30
2551	MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Solar Energy Materials and Solar Cells, 2022, 236, 111502.	3.0	33
2552	Millimeter-Scale Continuous Film of MoS2 Synthesized Using a Mo, Na, and Seeding Promoter-Based Coating as a Solid Precursor. ACS Omega, 2021, 6, 32208-32214.	1.6	1
2553	Synthesis of vertically-aligned large-area MoS ₂ nanofilm and its application in MoS ₂ /Si heterostructure photodetector. Nanotechnology, 2022, 33, 105709.	1.3	6
2554	2D Indium Phosphorus Sulfide (In ₂ P ₃ S ₉): An Emerging van der Waals Highâ€ <i>k</i> Dielectrics. Small, 2022, 18, e2104401.	5.2	9
2555	Low-Temperature Chemical Vapor Deposition Growth of MoS2 Nanodots and Their Raman and Photoluminescence Profiles. Frontiers in Nanotechnology, 2021, 3, .	2.4	3
2556	Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips. Nano Research, 2022, 15, 3794-3803.	5.8	14
2557	Carbon nanotubes-reinforced preparation of flat MoS2 nanomaterials: Co-enhancement of acoustic exfoliation efficiency and dye removal capacity. FlatChem, 2021, 30, 100312.	2.8	7
2558	Toward high load-bearing, ambient robust and macroscale structural superlubricity through contact stress dispersion. Chemical Engineering Journal, 2022, 431, 133548.	6.6	10
2559	Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. Progress in Solid State Chemistry, 2022, 65, 100336.	3.9	18
2560	Electrophoretic Codeposition of MoOx/MoS2 Thin Film for Platinum-Free Counter Electrode in Quantum Dot Solar Cells. International Journal of Photoenergy, 2021, 2021, 1-12.	1.4	2
2561	Template-assisted hydrothermal synthesized hydrophilic spherical 1T-MoS2 with excellent zinc storage performance. Journal of Alloys and Compounds, 2022, 898, 162854.	2.8	20
2562	Encapsulate SrCoO3 perovskite crystal within molybdenum disulfide layer as core-shell structure to enhance electron transfer for peroxymonosulfate activation. Separation and Purification Technology, 2022, 283, 120199.	3.9	18
2563	Hydrothermal synthesis of Co3O4 nanoparticles decorated three dimensional MoS2 nanoflower for exceptionally stable supercapacitor electrode with improved capacitive performance. Journal of Energy Storage, 2022, 47, 103551.	3.9	18
2564	Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 353, 131191.	4.0	24
2565	Controllable Synthesis of Defect-Rich CoMoS Catalysts with Different Morphologies for the Ultradeep Hydrodesulfurization of 4,6-Dimethydibenzothiophene. Langmuir, 2021, 37, 14254-14264.	1.6	5
2567	Facile Synthesis of 1T-Phase MoS2 Nanosheets on N-Doped Carbon Nanotubes towards Highly Efficient Hydrogen Evolution. Nanomaterials, 2021, 11, 3273.	1.9	6
2568	Exfoliation Routes to the Production of Nanoflakes of Graphene Analogous 2D Materials and Their Applications. Indian Institute of Metals Series, 2022, , 377-443.	0.2	1

#	Article	IF	CITATIONS
2569	An Insightful Picture of Multi-Particle Recombination in Few-Layer MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2022, 126, 416-422.	1.5	10
2570	Highly Sensitive NO ₂ Detection by TVS-Grown Multilayer MoS ₂ Films. ACS Omega, 2022, 7, 1851-1860.	1.6	3
2571	Facile exfoliation of MoS2 powders into nanosheets with excellent fluorescence quenching performance of perovskite. Optik, 2022, 251, 168480.	1.4	2
2572	Silver nanoparticles decorated two dimensional MoS2 nanosheets for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128102.	2.3	11
2573	Development of multiwalled carbon nanotubes (MWCNT's) functionalized with molybdenum disulfide (MoS2) by separate methodology. Diamond and Related Materials, 2022, 122, 108814.	1.8	11
2574	Role of catalyst defect sites towards product selectivity in the upgrading of vacuum residue. Fuel, 2022, 314, 123062.	3.4	11
2575	Interfacial Charge Transfers and Ultrafast Nonlinear Optical Response Via Constructing Electronic Structure-Induced MoS ₂ /ZnO Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
2576	Interfacial Charge Transfers and Ultrafast Nonlinear Optical Response Via Constructing Electronic Structure-Induced MoS ₂ /ZnO Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
2577	Influence of Crystal Disorder in MoS. Australian Journal of Chemistry, 2021, 74, 819-825.	0.5	2
2578	Photoluminescence and charge transfer in the prototypical 2D/3D semiconductor heterostructure MoS2/GaAs. Applied Physics Letters, 2021, 119, .	1.5	10
2579	A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Reports Physical Science, 2022, 3, 100693.	2.8	9
2580	Twist-angle two-dimensional superlattices and their application in (opto)electronics. Journal of Semiconductors, 2022, 43, 011001.	2.0	10
2581	Morphology Regulation of MoS ₂ Nanosheet-Based Domain Boundaries for the Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 2273-2279.	2.4	14
2582	The influence of single layer MoS ₂ flake on the propagated surface plasmons of silver nanowire. Nanotechnology, 2022, 33, 155401.	1.3	2
2583	Patterning Functionalized Surfaces of 2D Materials by Nanoshaving. Nanomanufacturing and Metrology, 2022, 5, 23-31.	1.5	1
2584	MoS ₂ quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorganic Chemistry Frontiers, 2022, 9, 1171-1178.	3.0	69
2585	Confined growth of molybdenum disulfide in cellulose microspheres with highly porous structure for environmental applications. Journal of Cleaner Production, 2022, 332, 130048.	4.6	4
2586	Chemical vapor deposited WS ₂ /MoS ₂ heterostructure photodetector with enhanced photoresponsivity. Journal Physics D: Applied Physics, 2022, 55, 175101.	1.3	3
#	Article	IF	CITATIONS
------	--	-----	-----------
2587	Volatilization behavior of impurities in molybdenum concentrate through vacuum distillation. Vacuum, 2022, 199, 110926.	1.6	7
2588	Defects, band bending and ionization rings in MoS ₂ . Journal of Physics Condensed Matter, 2022, 34, 174002.	0.7	3
2589	Excitonic absorption and defect-related emission in three-dimensional MoS ₂ pyramids. Nanoscale, 2022, 14, 1179-1186.	2.8	3
2590	Fabrication of Fe-Doped Molybdenum Multisulfide MoS2/Mo2S3 Thin Film Via Aerosol-Assisted Chemical Vapor Deposition (AACVD) for Photoelectrochemical (PEC) Water Splitting. Electrocatalysis, 2022, 13, 182-194.	1.5	8
2591	Linear response calculation with nonlocal van der Waals density functionals. Physical Review B, 2022, 105, .	1.1	3
2592	Self-Assembled 1T-MoS ₂ /Functionalized Graphene Composite Electrodes for Supercapacitor Devices. ACS Applied Energy Materials, 2022, 5, 61-70.	2.5	31
2593	The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Tradeâ€Off in Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	3
2594	Interlayer exciton emission in a MoS ₂ /VOPc inorganic/organic van der Waals heterostructure. Materials Horizons, 2022, 9, 1253-1263.	6.4	6
2595	Hot carrier dynamics in MoS ₂ /WS ₂ heterostructure. Nanotechnology, 2022, 33, 195701.	1.3	1
2596	Facile fabrication of 2D material multilayers and vdW heterostructures with multimodal microscopy and AFM characterization. Materials Today, 2022, 52, 31-42.	8.3	6
2597	Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nature Communications, 2022, 13, 510.	5.8	19
2598	Direct Detection of Inhomogeneity in CVD-Grown 2D TMD Materials via K-Means Clustering Raman Analysis. Nanomaterials, 2022, 12, 414.	1.9	4
2599	(INVITED) Opto-electronic properties of solution-synthesized MoS2 metal-semiconductor-metal photodetector. Optical Materials: X, 2022, 13, 100135.	0.3	4
2600	A floating gate negative capacitance MoS ₂ phototransistor with high photosensitivity. Nanoscale, 2022, 14, 2013-2022.	2.8	11
2601	Microwave absorption in epoxy composites filled with MoS2 and carbon nanotubes. Journal of Applied Physics, 2022, 131, 035103.	1.1	4
2602	Characterization of high quality, monolayer WS2 domains via chemical vapor deposition technique. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
2603	Two-dimensional molybdenum disulfide artificial synapse with high sensitivity. Neuromorphic Computing and Engineering, 2022, 2, 014004.	2.8	3
2604	The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Tradeâ€Off in Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28

#	Article	IF	CITATIONS
2605	Preparation and microwave absorption characteristics of MoS2/Nd2O2CO3Âcomposites. Journal of Materials Science: Materials in Electronics, 2022, 33, 4902.	1.1	3
2606	Interface effects of Schottky devices built from MoS ₂ and high work function metals. Journal of Physics Condensed Matter, 2022, 34, 165001.	0.7	6
2607	Uniform growth of MoS2 films using ultra-low MoO3 precursor in one-step heating chemical vapor deposition. Thin Solid Films, 2022, 744, 139092.	0.8	6
2608	Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals. Beilstein Journal of Nanotechnology, 2022, 13, 160-171.	1.5	5
2609	Organo-functionalized MoS2 as a nanofiller to enhance and control the swelling behavior of polybutadiene rubber nanocomposites. Composites Communications, 2022, 30, 101053.	3.3	3
2610	Plasmonic MXene Nanoparticle-Enabled High-Performance Two-Dimensional MoS ₂ Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 8243-8250.	4.0	18
2611	Bifunctional Application of Viologen-MoS ₂ -CNT/Polythiophene Device as Electrochromic Diode and Half-Wave Rectifier. ACS Materials Au, 2022, 2, 293-300.	2.6	14
2612	MoS2 nanosheets coupled with double-layered hollow carbon spheres towards superior electrochemical activity. Electrochimica Acta, 2022, 407, 139929.	2.6	12
2613	Electrochemically deposited molybdenum disulfide surfaces enable polymer adsorption studies using quartz crystal microbalance with dissipation monitoring (QCM-D). Journal of Colloid and Interface Science, 2022, 614, 522-531.	5.0	2
2614	Self-powered near-infrared MoS2/n-Si photodetectors with Al2O3 interface passivation. Journal of Alloys and Compounds, 2022, 902, 163878.	2.8	8
2615	UV excited enhanced Raman scattering on carbon-doped SnS2 nanoflowers. Materials Research Bulletin, 2022, 150, 111757.	2.7	10
2616	Activating MoS2 via electronic structure modulation and phase engineering for hydrogen evolution reaction. Catalysis Communications, 2022, 164, 106427.	1.6	3
2617	Morphological Evolution of Monolayer MoS ₂ Single-Crystalline Flakes. Journal of Physical Chemistry C, 2022, 126, 3549-3559.	1.5	8
2618	Oneâ€Interlayerâ€Twisted Multilayer MoS ₂ Moiré Superlattices. Advanced Functional Materials, 2022, 32, .	7.8	16
2619	Elucidation of PVD MoS ₂ film formation process and its structure focusing on sub-monolayer region. Japanese Journal of Applied Physics, 2022, 61, SC1023.	0.8	5
2620	Mechanically exfoliated MoS2 nanoflakes for optimizing the thermoelectric performance of SrTiO3-based ceramic composites. Journal of Materiomics, 2022, 8, 790-798.	2.8	7
2621	Synthesis of Monodisperse MoS2 Nanoparticles by the Template Method. Semiconductors, 2021, 55, 525.	0.2	0
2622	Efficient and Air-Stable Doping of Folded MoS ₂ Nanosheets for Use in Field-Effect Transistors. ACS Applied Nano Materials, 2022, 5, 2068-2074.	2.4	2

#	Article	IF	CITATIONS
2623	Graphene supported flower-like NiS2/MoS2 mixed phase nano-composites as a low cost electrode material for hydrogen evolution reaction in alkaline media. Materials Chemistry and Physics, 2022, 280, 125839.	2.0	11
2624	Construction of 2D MoS2@ZnO heterojunction as superior photocatalyst for highly efficient and selective CO2 conversion into liquid fuel. Journal of Environmental Chemical Engineering, 2022, 10, 107337.	3.3	19
2625	Surface plasmon enhancement in different spatial distributions of nanowires and two-dimensional materials. Physical Chemistry Chemical Physics, 2022, 24, 8296-8302.	1.3	2
2626	Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS ₂ layers on gold surfaces. Nanoscale, 2022, 14, 6811-6821.	2.8	2
2627	Electrochemical studies of biofunctionalized MoS ₂ matrix for highly stable immobilization of antibodies and detection of lung cancer protein biomarker. New Journal of Chemistry, 2022, 46, 7477-7489.	1.4	4
2628	Ni-promoted MoS ₂ in hollow zeolite nanoreactors: enhanced catalytic activity and stability for deep hydrodesulfurization. Journal of Materials Chemistry A, 2022, 10, 7263-7270.	5.2	8
2629	Twist-angle-controlled neutral exciton annihilation in WS ₂ homostructures. Nanoscale, 2022, 14, 5537-5544.	2.8	4
2630	Water-induced dual ultrahigh mobilities over 400 cm ² V ^{â^'1} s ^{â^'1} in 2D MoS ₂ transistors for ultralow-voltage operation and photoelectric synapse perception. Journal of Materials Chemistry C, 2022, 10, 5249-5256.	2.7	6
2631	Chemical vapor deposition merges MoS ₂ grains into high-quality and centimeter-scale films on Si/SiO ₂ . RSC Advances, 2022, 12, 5990-5996.	1.7	4
2632	Interfacial Charge Transfers and Carrier Regulation Characteristics of Narrow/Wide Band Gap Tmds@Ga2o3 N-N Heterojunction Film. SSRN Electronic Journal, 0, , .	0.4	0
2633	High-performance, self-powered flexible MoS ₂ photodetectors with asymmetric van der Waals gaps. Physical Chemistry Chemical Physics, 2022, 24, 7323-7330.	1.3	11
2634	Excitons and Trions in MoS ₂ Quantum Dots: The Influence of the Dispersing Medium. ACS Omega, 2022, 7, 6531-6538.	1.6	16
2635	Layer by Layer Deposition of 1T′â€MoS ₂ for the Hydrogen Evolution Reaction. ChemistrySelect, 2022, 7, .	0.7	1
2636	Electron-phonon coupling, thermal expansion coefficient, resonance effect, and phonon dynamics in high-quality CVD-grown monolayer and bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2<td>l:mn><td>ml⁵msub><!--</td--></td></td></mml:mn></mml:msub></mml:math>	l:mn> <td>ml⁵msub><!--</td--></td>	ml ⁵ msub> </td
2637	Construction of Hierarchical SnO ₂ @NC@MoS ₂ /C Nanotubes for Ultrastable Lithium- and Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 3166-3179.	3.2	16
2638	In-situ constructed three-dimensional MoS2–MoN heterostructure as the cathode of lithium–sulfur battery. Rare Metals, 2022, 41, 1743-1752.	3.6	35
2639	Direct Thermal Enhancement of Hydrogen Evolution Reaction of On-Chip Monolayer MoS ₂ . ACS Nano, 2022, 16, 2921-2927.	7.3	44
2640	Van der Waals MoS ₂ /PdSe ₂ Heterostructures Grown by Chemical Vapor Deposition for Broadband and Polarized Photodetection. Advanced Materials Interfaces, 2022, 9, .	1.9	17

		CITATION REPORT		
#	Article		IF	CITATIONS
2641	Neutral-atom-scattering-based mapping of atomically thin layers. Physical Review A, 2022	2, 105, .	1.0	6
2642	CRYSTALLINE AND NANOSTRUCTURED MATERIALS BASED ON TRANSITION METAL DICH. SYNTHESIS AND ELECTRONIC PROPERTIES. Journal of Structural Chemistry, 2022, 63, 17	ALCOGENIDES: '6-226.	0.3	6
2643	Geometric progress in the thickness of exfoliated van der Waals crystals on the example Advances, 2022, 12, .	of MoS2. AIP	0.6	5
2644	Utilizing trapped charge at bilayer 2D MoS ₂ /SiO ₂ interface for applications. Nanotechnology, 2022, 33, 275201.	memory	1.3	3
2645	Effect of morphology and stacking on atomic interaction and magnetic characteristics in two-dimensional H-phase VS2 few layers. Journal of Materials Science, 2022, 57, 5873-58	384.	1.7	8
2646	A Novel Methodology of Using Nonsolvent in Achieving Ultraclean Transferred Monolaye MoS ₂ . Advanced Materials Interfaces, 2022, 9, .	r	1.9	4
2647	Tuning the morphology of 2D transition metal chalcogenides via oxidizing conditions. Jou Physics Condensed Matter, 2022, 34, 195001.	ırnal of	0.7	3
2648	Preparation of a Coal-Based MoS ₂ /SiO ₂ /GO Composite Cataly Performance in the Photocatalytic Degradation of Wastewater and Hydrogen Production 2022, 38, 3305-3315.	st and Its 1. Langmuir,	1.6	14
2649	Facile Synthesis of Templateâ€Free SnS ₂ with Different Morphologies and E Gasâ€Sensing Performance for NO ₂ Gasâ€Sensor Applications. Physica Stat Applications and Materials Science, 2022, 219, .	Excellent tus Solidi (A)	0.8	3
2650	Exfoliation of MoS ₂ Nanosheets Enabled by a Redox-Potential-Matched Che Lithiation Reaction. Nano Letters, 2022, 22, 2956-2963.	mical	4.5	35
2651	Molybdenum Disulfide/Doubleâ€Wall Carbon Nanotube Mixedâ€Dimensional Heterostru Materials Interfaces, 2022, 9, .	ctures. Advanced	1.9	6
2652	Optoelectronic Properties of MoS ₂ in Proximity to Carrier Selective Metal O Advanced Optical Materials, 2022, 10, .	xides.	3.6	7
2653	Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: fro to modifications in doping, surface and heterojunction engineering. Materials Today Nan 100191.	m synthesis o, 2022, 18,	2.3	15
2654	Hybrid MoS _{2+<i>x</i>} Nanosheet/Nanocarbon Heterostructures for Lithium ACS Applied Nano Materials, 2022, 5, 5103-5118.	n-Ion Batteries.	2.4	7
2655	Constructing van der Waals heterostructures by dry-transfer assembly for novel optoeled device. Nanotechnology, 2022, 33, 465601.	tronic	1.3	7
2656	High-Performance Photodetectors Based on MoTe ₂ –MoS ₂ v Heterostructures. ACS Omega, 2022, 7, 10049-10055.	an der Waals	1.6	24
2657	Functional polymeric passivation-led improvement of bias stress with long-term durability edge-rich nanoporous MoS2 thin-film transistors. Npj 2D Materials and Applications, 202	/ of 2, 6, .	3.9	5
2658	Aerosol-Printed MoS ₂ Ink as a High Sensitivity Humidity Sensor. ACS Omeg 9388-9396.	a, 2022, 7,	1.6	17

#	Article	IF	CITATIONS
2659	Multilayer MoS ₂ Backâ€Gate Transistors with ZrO ₂ Dielectric Layer Optimization for Lowâ€Power Electronics. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	2
2660	Schottky barrier height modulation and photoconductivity in a vertical graphene/ReSe2 vdW p-n heterojunction barristor. Journal of Materials Research and Technology, 2022, 17, 2796-2806.	2.6	7
2661	Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nature Nanotechnology, 2022, 17, 500-506.	15.6	104
2662	Platinum nanoparticle sensitized plasmonic-enhanced broad spectral photodetection in large area vertical-aligned MoS ₂ flakes. Nanotechnology, 2022, 33, 255702.	1.3	15
2663	Lowâ€Temperature Carrier Transport Mechanism of Waferâ€Scale Grown Polycrystalline Molybdenum Disulfide Thinâ€Film Transistor Based on Radio Frequency Sputtering and Sulfurization. Advanced Materials Interfaces, 2022, 9, .	1.9	6
2664	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
2665	Non-invasive digital etching of van der Waals semiconductors. Nature Communications, 2022, 13, 1844.	5.8	8
2666	Drastically-enlarged interlayer-spacing MoS2 nanocages by inserted carbon motifs as high performance cathodes for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 49, 144-152.	9.5	48
2667	High aspect-ratio of MoS2 nanoribbons via a single-source precursor route for photocatalytic degradation. Materials Letters, 2022, 315, 131987.	1.3	4
2668	Hyperspectral microscopy of two-dimensional semiconductors. Optical Materials: X, 2022, 14, 100145.	0.3	5
2669	Mono-elemental saturable absorber in near-infrared mode-locked fiber laser: A review. Infrared Physics and Technology, 2022, 122, 104103.	1.3	8
2670	MoS2/LaF3 for enhanced photothermal therapy performance of poorly-differentiated hepatoma. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112462.	2.5	4
2671	Conductometric NO2 gas sensor based on Co-incorporated MoS2 nanosheets for room temperature applications. Sensors and Actuators B: Chemical, 2022, 360, 131600.	4.0	38
2672	Fine fabrication of TiO2/MoOx nano-heterojunctions and investigating on the improved charge transfer for SERS application. Materials Today Nano, 2022, 18, 100179.	2.3	13
2673	Direct acidic graphene oxide enabled fabrication of three-dimensional molybdenum trisulfide and reduced graphene oxide nanohybrid aerogels with simultaneous energy storage and electrocatalytic capability. Journal of Energy Storage, 2022, 50, 104296.	3.9	6
2674	Metal-Support interaction modulate the sulfidation and dispersion of MoS2 slabs on hierarchical KNiMo ZnCrAl-Based multifunctional catalysts for selective conversion of syngas to higher alcohols. Chemical Engineering Journal, 2022, 440, 135831.	6.6	3
2675	Light Emission by Monolayers of Molybdenum Disulfide. Optoelectronics, Instrumentation and Data Processing, 2021, 57, 532-538.	0.2	1
2676	Ordered Macroporous MoS ₂ arbon Composite with Fast and Robust Sodium Storage Properties to Solve the Issue of Kinetics Mismatch of Sodiumâ€ion Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	10

#	Article	IF	CITATIONS
2677	Growth of MoS ₂ –Nb-doped MoS ₂ lateral homojunctions: A monolayer <i>p</i> – <i>n</i> diode by substitutional doping. APL Materials, 2021, 9, 121115.	2.2	5
2678	Design Principles and Insights into the Liquid-Phase Exfoliation of Alpha-MoO ₃ for the Production of Colloidal 2D Nano-inks in Green Solvents. Journal of Physical Chemistry C, 2022, 126, 404-415.	1.5	2
2679	A Polarization-Sensitive Self-Powered Photodetector Based on a p-WSe ₂ /TalrTe ₄ /n-MoS ₂ van der Waals Heterojunction. ACS Applied Materials & Interfaces, 2021, 13, 61544-61554.	4.0	22
2680	Tunable Multiâ€Bit Nonvolatile Memory Based on Ferroelectric Fieldâ€Effect Transistors. Advanced Electronic Materials, 2022, 8, .	2.6	7
2681	Enhancement of InSe Field-Effect-Transistor Performance against Degradation of InSe Film in Air Environment. Nanomaterials, 2021, 11, 3311.	1.9	5
2682	Spectral properties of polycrystalline MoS ₂ films grown by RF magnetron sputtering. Journal of Applied Physics, 2021, 130, 224302.	1.1	1
2683	Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Research, 2022, 15, 4395-4402.	5.8	19
2684	Effect of Al2O3 Passive Layer on Stability and Doping of MoS2 Field-Effect Transistor (FET) Biosensors. Biosensors, 2021, 11, 514.	2.3	6
2685	Oxide Scale Sublimation Chemical Vapor Deposition for Controllable Growth of Monolayer MoS ₂ Crystals. Small Methods, 2022, 6, e2101107.	4.6	7
2686	Stabilizing the heavily-doped and metallic phase of MoS ₂ monolayers with surface functionalization. 2D Materials, 2022, 9, 015033.	2.0	5
2687	An efficient route to prepare suspended monolayer for feasible optical and electronic characterizations of <scp>twoâ€dimensional</scp> materials. InformaÄnÃ-Materiály, 2022, 4, .	8.5	25
2688	Ultrasensitive and Selective Field-Effect Transistor-Based Biosensor Created by Rings of MoS ₂ Nanopores. ACS Nano, 2022, 16, 1826-1835.	7.3	40
2689	Stepwise growth of crystalline MoS ₂ in atomic layer deposition. Journal of Materials Chemistry C, 2022, 10, 7031-7038.	2.7	5
2690	Highly Sensitive Photodetectors Based on Monolayer MoS ₂ Field-Effect Transistors. ACS Omega, 2022, 7, 13615-13621.	1.6	10
2691	Preparation and Photocatalytic Performance of MoS ₂ /ZnS/ZnOâ€T Heterojunction Photocatalyst for Dye Degradation in Water. Particle and Particle Systems Characterization, 2022, 39, .	1.2	1
2692	Modifications of optical, structural, chemical and morphological properties of molybdenum disulfide (MoS2) sputtered thin films under high dose gamma radiation. Radiation Physics and Chemistry, 2022, 197, 110144.	1.4	6
2693	Isopropanol solvent-treated MoS2 nanosheets from liquid phase exfoliation and their applications to solution-processed anode buffer layer of organic light-emitting diode. Journal of Materials Science: Materials in Electronics, 2022, 33, 12137-12146.	1.1	3
2694	Observation of Strong Interlayer Couplings in WS2/MoS2 Heterostructures via Low-Frequency Raman Spectroscopy. Nanomaterials, 2022, 12, 1393.	1.9	7

#	Article	IF	CITATIONS
2695	Electrically Controlled Wavelength-Tunable Photoluminescence from van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2022, 14, 19869-19877.	4.0	4
2696	Ti ₃ C ₂ T <i>_x</i> /MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	5.6	85
2697	Low-temperature electrical conductivity of composite film formed by carbon nanotubes with MoS ₂ flakes. Low Temperature Physics, 2022, 48, 322-329.	0.2	0
2698	Centimeter-Scale Synthesis of Monolayer WS ₂ Using Single-Zone Atmospheric-Pressure Chemical Vapor Deposition: A Detailed Study of Parametric Dependence, Growth Mechanism, and Photodetector Properties. Crystal Growth and Design, 2022, 22, 3206-3217.	1.4	15
2699	A Highâ€Speed Photodetector Fabricated with Tungstenâ€Doped MoS ₂ by Ion Implantation. Advanced Electronic Materials, 2022, 8, .	2.6	10
2700	Phonon and Exciton Properties between WS ₂ and MoS ₂ Layers via Inversion Heterostructure Engineering. ACS Applied Materials & Interfaces, 2022, 14, 19012-19022.	4.0	1
2701	Multifunctional TiO2/C nanosheets derived from 3D metal–organic frameworks for mild-temperature-photothermal-sonodynamic-chemodynamic therapy under photoacoustic image guidance. Journal of Colloid and Interface Science, 2022, 621, 360-373.	5.0	10
2705	Liquidâ€Phase Exfoliation of Nonlayered Nonâ€Vanâ€Derâ€Waals Crystals into Nanoplatelets. Advanced Materials, 2022, 34, e2202164.	11.1	40
2706	Photoluminescence properties of CuPc/MoS ₂ van der Waals heterostructure. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2707	Coupling nanobubbles in 2D lateral heterostructures. Nanoscale, 2022, 14, 8050-8059.	2.8	7
2708	One-step fabrication of MoS ₂ /Ni ₃ S ₂ with P-doping for efficient water splitting. CrystEngComm, 2022, 24, 4057-4062.	1.3	9
2709	Stable Al ₂ O ₃ Encapsulation of MoS ₂ â€FETs Enabled by CVD Grown hâ€BN. Advanced Electronic Materials, 2022, 8, .	2.6	10
2710	Monolayer MoS2-Based Flexible and Highly Sensitive Pressure Sensor with Wide Sensing Range. Micromachines, 2022, 13, 660.	1.4	8
2711	High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation. Nano Research, 2022, 15, 6500-6506.	5.8	7
2712	Absorbance enhancement of monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2in a perfect absorbing system. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	m o xy/mm	າ l:າສ sub>
2713	Silver Nanocluster/MoS ₂ Heterostructures for Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 7132-7141.	2.4	15
2714	Heat annealing influences the optical properties of 2D-MoS ₂ nanoparticles. Molecular Crystals and Liquid Crystals, 2022, 749, 1-8.	0.4	2
2715	Enhanced Light Absorption and Efficient Carrier Collection in MoS2 Monolayers on Au Nanopillars. Nanomaterials, 2022, 12, 1567.	1.9	2

#	Article	IF	CITATIONS
2716	Plasmon-enhanced third-order optical nonlinearity of monolayer MoS2. Applied Physics Letters, 2022, 120, .	1.5	5
2717	High Throughput Data-Driven Design of Laser-Crystallized 2D MoS ₂ Chemical Sensors: A Demonstration for NO ₂ Detection. ACS Applied Nano Materials, 2022, 5, 7549-7561.	2.4	5
2718	Monitoring substrate-induced electron–phonon coupling at interfaces of 2D organic/inorganic van der Waals heterostructures with <i>in situ</i> Raman spectroscopy. Applied Physics Letters, 2022, 120, 181602.	1.5	3
2719	Stacking monolayers at will: A scalable device optimization strategy for two-dimensional semiconductors. Nano Research, 2022, 15, 6620-6627.	5.8	4
2720	Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. Npj 2D Materials and Applications, 2022, 6, .	3.9	18
2721	Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Physical Review B, 2022, 105, .	1.1	9
2722	Sustainable N2 photofixation promoted by Fe-doped MoSy/CuxS grown on copper mesh. Optical Materials, 2022, 128, 112373.	1.7	3
2723	Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size. Journal of Catalysis, 2022, 410, 128-143.	3.1	25
2724	Interfacial charge transfers and ultrafast nonlinear optical response via constructing electronic structure-induced MoS2/ZnO heterostructure. Journal of Alloys and Compounds, 2022, 912, 165183.	2.8	6
2725	Optoelectronic Properties of MoS2/Graphene Heterostructures Prepared by Dry Transfer for Light-Induced Energy Applications. Journal of Electronic Materials, 2022, 51, 4257-4269.	1.0	8
2726	Electrochemical method integrating exfoliation and in-situ growth to synthesize MoS2 nanosheets/MnO2 heterojunction for performance-enhanced supercapacitor. Ceramics International, 2022, 48, 23498-23503.	2.3	11
2727	Insight into the growth behaviors of MoS2 nanograins influenced by step edges and atomic structure of the substrate. Nano Research, 2022, 15, 7646-7654.	5.8	2
2728	Selective Chemical Vapor Deposition Growth of WS2/MoS2 Vertical and Lateral Heterostructures on Gold Foils. Nanomaterials, 2022, 12, 1696.	1.9	2
2729	Resonance Photoluminescence Enhancement of Monolayer MoS ₂ via a Plasmonic Nanowire Dimer Optical Antenna. ACS Applied Materials & Interfaces, 2022, 14, 23756-23764.	4.0	7
2730	2D Transition Metal Dichalcogenide with Increased Entropy for Piezoelectric Electronics. Advanced Materials, 2022, 34, e2201630.	11.1	15
2731	BrÃnsted acid-enhanced CoMoS catalysts for hydrodeoxygenation reactions. Catalysis Science and Technology, 2022, 12, 3426-3430.	2.1	5
2732	Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for Ni–Zn batteries and catalyst towards hydrogen evolution reaction. Renewable Energy, 2022, 194, 152-162.	4.3	20
2733	Imaging Spatial Distribution of Photogenerated Carriers in Monolayer MoS ₂ with Kelvin Probe Force Microscopy. ACS Applied Materials & Interfaces, 2022, 14, 26295-26302.	4.0	5

#	Article	IF	CITATIONS
2734	Development of 4-aminophenol sensor based on Co-MoS2 nanomaterials decorated on glassy carbon electrode using electrochemical technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 282, 115778.	1.7	6
2735	A Facile Approach for Site-Selective and Large-Area Growth of Mos2 Through Heterogeneous Nucleation. SSRN Electronic Journal, 0, , .	0.4	0
2736	The Potential Application of Exfoliated Mos2 to Aqueous Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
2737	Simple Ballâ€Milled Molybdenum Sulfide Nanosheets for Effective Interface Passivation with Selfâ€Repairing Function to Attain Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	7
2738	MoS ₂ doping and concentration optimization for application-specific design of P3HT-viologen-based solid state electrochromic device. Journal Physics D: Applied Physics, 2022, 55, 375101.	1.3	11
2739	MoS2 nanosheets functionalized with ferrocene-containing polymer via SI-ATRP for memristive devices with multilevel resistive switching. European Polymer Journal, 2022, 174, 111316.	2.6	6
2740	High-Temperature Coefficient of Resistance in MoxW1â^'xS2 Thin Film. Applied Sciences (Switzerland), 2022, 12, 5110.	1.3	2
2741	Low Temperature Heating of Silverâ€Mediated Exfoliation of MoS ₂ . Advanced Materials Interfaces, 2022, 9, .	1.9	9
2742	Synthesis, Characterization, and Typical Application of Nitrogenâ€Doped MoS ₂ Nanosheets Based on Pulsed Laser Ablation in Liquid Nitrogen. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	1
2743	Raman Scattering Measurement of Suspended Graphene under Extreme Strain Induced by Nanoindentation. Advanced Materials, 2022, 34, .	11.1	12
2744	Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2. Nature Communications, 2022, 13, .	5.8	20
2745	Maillard reaction-derived laser lithography for printing functional inorganics. Science China Chemistry, 0, , .	4.2	1
2746	Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS ₂ Nanoflakes. ACS Physical Chemistry Au, 2022, 2, 417-422.	1.9	19
2747	A Review on MX2 (MÂ=ÂMo, W and XÂ=ÂS, Se) layered material for opto-electronic devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2022, 13, 023001.	0.7	5
2748	Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering. Science Bulletin, 2022, 67, 1345-1351.	4.3	5
2749	Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	10
2750	Evaluation of TEM methods for their signature of the number of layers in mono- and few-layer TMDs as exemplified by MoS2 and MoTe2. Micron, 2022, 160, 103303.	1.1	2
2751	Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory. Materials, 2022, 15, 3988.	1.3	6

	CITA	CITATION REPORT		
#	Apticije	IE	CITATIONS	
#	ARTICLE	IF	CHATIONS	
2752	Large-Area MoS ₂ Nanosheets with Triangular Nanopore Arrays as Active and Robust Electrocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 9696-9703.	1.5	16	
2753	New insight to piezocatalytic peroxymonosulfate activation: The critical role of dissolved oxygen in mediating radical and nonradical pathways. Applied Catalysis B: Environmental, 2022, 315, 121584.	10.8	43	
2754	First-principles calculations of double resonance Raman spectra for monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoTePhysical Review B, 2022, 105, .</mml:mi></mml:mrow></mml:msub></mml:math 	:mi><	maml:mn>2∢	
2755	Synergistic lubrication mechanisms of molybdenum disulfide film under graphene-oil lubricated conditions. Applied Surface Science, 2022, 598, 153845.	3.1	21	
2757	Tearing behavior induced by van der Waals force at heterogeneous interface during two-dimensional MoS ₂ nanoindentation. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 194601.	0.2	1	
2759	Analysis of Single BSA Protein Molecules Using MoS ₂ Nanopores [*] ., 2022, , .		0	
2760	Demonstration of Enhanced Switching Variability and Conductance Quantization Properties in a SiO ₂ Conducting Bridge Resistive Memory with Embedded Two-Dimensional MoS ₂ Material. ACS Applied Electronic Materials, 2022, 4, 2869-2878.	2.0	0	
2761	Fabrication of UV-VIS photodetector based on the ZnO/MoS ₂ and ZnO/WS ₂ heterostructures. Journal of Physics: Conference Series, 2022, 2274, 012004.	0.3	0	
2762	Distinctive Photoâ€Induced Memory Effect in Heterostructure of 2D Van Der Waals Materials and Lanthanum Aluminate. Advanced Optical Materials, 0, , 2200124.	3.6	2	
2763	MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 2008.	1.9	10	
2764	Novel wide spectrum light absorber heterostructures based on hBN/In(Ga)Te. Journal of Physics Condensed Matter, 2022, 34, 345301.	0.7	3	
2765	Manipulating Coordination Structures of Mixed-Valence Copper Single Atoms on 1T-MoS ₂ for Efficient Hydrogen Evolution. ACS Catalysis, 2022, 12, 7687-7695.	5.5	26	
2766	Investigation of structural and magnetic characteristic of pure and M-doped (M: Fe and Cu) MoS2Âthin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 16574-16585.	1.1	2	
2767	A Brief Review of the Chemical Structure and Raman Spectrum of Mono- and Multilayer Molybdenum- and Tungsten-Based Transition Metal Dichalcogenides. Journal of Electronic Materials, 2022, 51, 4808-4815.	1.0	1	
2768	Toward an Ultrahigh-Performance Near-Infrared Photoresponsive Field-Effect Transistor Using a Lead Phthalocyanine/MoS ₂ Organic–Inorganic Planar Heterojunction. ACS Applied Electronic Materials, 2022, 4, 2777-2786.	2.0	5	
2769	Steep-slope Schottky diode with cold metal source. Applied Physics Letters, 2022, 120, 243506.	1.5	4	
2770	Solvent-assisted exfoliation for high-quality molybdenum disulfide nanoflakes and relevant field-effect transistors. Journal of Materials Science, 2022, 57, 11215-11225.	1.7	2	
2771	Structural Evolution of Atomically Thin 1T'â€MoTe ₂ Alloyed in Chalcogen Atmosphere. Small Structures, 2022, 3, .	6.9	6	

#	Article	IF	CITATIONS
2772	Structural and optical characterization of nanometer sized MoS2/graphene heterostructures for potential use in optoelectronic devices. FlatChem, 2022, , 100397.	2.8	3
2773	Ultra-fast and linear polarization-sensitive photodetectors based on ReSe2/MoS2 van der Waals heterostructures. Journal of Materiomics, 2022, 8, 1158-1164.	2.8	11
2774	Plasmon-enhanced Raman spectroscopy of two-dimensional semiconductors. Journal of Physics Condensed Matter, 2022, 34, 333001.	0.7	3
2775	A critical assessment of the role of ionic surfactants in the exfoliation and stabilization of 2D nanosheets: The case of the transition metal dichalcogenides MoS2, WS2 and MoSe2. Journal of Colloid and Interface Science, 2022, 626, 167-177.	5.0	11
2776	Superparamagnetic Nickel Nanocluster-Embedded MoS ₂ Nanosheets for Gram-Selective Bacterial Adhesion and Antibacterial Activity. ACS Biomaterials Science and Engineering, 2022, 8, 2932-2942.	2.6	9
2777	Plant-cell oriented few-layer MoS2/C as high performance anodes for lithium-ion batteries. Electrochimica Acta, 2022, 424, 140685.	2.6	16
2778	The same band alignment of two hybrid 2D/3D vertical heterojunctions formed by combining monolayer MoS2 with semi-polar (11–22) GaN and c-plane (0001) GaN. Applied Surface Science, 2022, 599, 153965.	3.1	3
2779	Optical parameters of graphene/MoS2 van der Waals heterostructure investigated by spectroscopic ellipsometry. Applied Surface Science, 2022, 599, 153987.	3.1	10
2780	Casted MoS ₂ nanostructures and their Raman properties. Nanoscale, 2022, 14, 10449-10455.	2.8	2
2781	The Novel Wood/Mos2 Architecture with Good Adsorption and Photocatalysis Ability for High Efficient Removal of Organic Dye Molecules. SSRN Electronic Journal, 0, , .	0.4	0
2782	Edgeâ€Enriched Mo ₂ TiC ₂ T _x /MoS ₂ Heterostructure with Coupling Interface for Selective NO ₂ Monitoring. Advanced Functional Materials, 2022, 32, .	7.8	58
2783	Inducing Strong Light–Matter Coupling and Optical Anisotropy in Monolayer MoS ₂ with High Refractive Index Nanowire. ACS Applied Materials & Interfaces, 2022, 14, 31140-31147.	4.0	4
2784	Hydrodesulfurization on Supported CoMoS2 Catalysts Ex Ammonium Tetrathiomolybdate: Effects of Support Morphology and Al Modification Method. Topics in Catalysis, 2022, 65, 1394-1407.	1.3	3
2785	Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. Small, 2022, 18, .	5.2	22
2786	Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS ₂ . Nano Letters, 2022, 22, 5742-5750.	4.5	27
2788	Boosting Highly Active Exposed Mo Atoms by Fine-Tuning S-Vacancies of MoS ₂ -Based Materials for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 30746-30759.	4.0	14
2789	Improving carrier mobility in two-dimensional semiconductors with rippled materials. Nature Electronics, 2022, 5, 489-496.	13.1	52
2790	Phase-Dependent 1T/2H-MoS ₂ Nanosheets for Effective Photothermal Killing of Bacteria. ACS Sustainable Chemistry and Engineering, 2022, 10, 8949-8957.	3.2	34

#	Article	IF	CITATIONS
2791	The potential application of exfoliated MoS2 to aqueous lithium-ion batteries. Electrochemistry Communications, 2022, 139, 107307.	2.3	0
2792	In situ growth of petal-like MoS2–MoO2 heterostructure on carbon cloth for superior Zn-ion storage. Ceramics International, 2022, 48, 30582-30588.	2.3	5
2793	CVD growth and optical characterization of homo and heterobilayer TMDs. Journal of Applied Physics, 2022, 132, .	1.1	7
2794	MoS ₂ Defect Healing for High-Performance Chemical Sensing of Polycyclic Aromatic Hydrocarbons. ACS Nano, 2022, 16, 11234-11243.	7.3	9
2795	A Sparse and Spikeâ€Timingâ€Based Adaptive Photoencoder for Augmenting Machine Vision for Spiking Neural Networks. Advanced Materials, 2022, 34, .	11.1	28
2796	Large-Scale Multilayer MoS ₂ Nanosheets Grown by Atomic Layer Deposition for Sensitive Photodetectors. ACS Applied Nano Materials, 2022, 5, 10431-10440.	2.4	5
2797	Heterogeneous Integration of Atomically Thin Semiconductors for Nonâ€von Neumann CMOS. Small, 2022, 18, .	5.2	20
2798	Allâ€Printed Ultrahighâ€Responsivity MoS ₂ Nanosheet Photodetectors Enabled by Megasonic Exfoliation. Advanced Materials, 2022, 34, .	11.1	25
2799	Electron irradiation effects on single layer MoS ₂ obtained by gold assisted exfoliation. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	1
2800	Transition metal (Ni, co)â€doped graphitic carbon nitride/ <scp> MoS ₂ </scp> heterojunctions as efficient photocatalysts for hydrogen evolution reaction under visible light. International Journal of Energy Research, 2022, 46, 17189-17203.	2.2	12
2801	Metal Cocatalyst Dictates Electron Transfer in Ag-Decorated MoS ₂ Nanosheets. Journal of Physical Chemistry C, 2022, 126, 11907-11914.	1.5	3
2802	Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS ₂ through Machineâ€Learning Models. Advanced Materials, 2022, 34, .	11.1	20
2803	2H Tantalum Disulfide Nanosheets as Substrates for Ultrasensitive SERS-Based Sensing. ACS Applied Nano Materials, 2022, 5, 8913-8920.	2.4	10
2804	In Situ Generation of Ultrathin MoS ₂ Nanosheets in Carbon Matrix for High Energy Density Photoâ€Responsive Supercapacitors. Advanced Science, 2022, 9, .	5.6	13
2805	Detailed study on MOCVD of wafer-scale MoS2 monolayers: From nucleation to coalescence. MRS Advances, 2022, 7, 751-756.	0.5	6
2806	Understanding the Linear and Nonlinear Optical Responses of Few-Layer Exfoliated MoS2 and WS2 Nanoflakes: Experimental and Simulation Studies. Nanotechnology, 0, , .	1.3	4
2807	Co-axial hierarchical structures composed of Mo-S-Ni nanosheets on carbon nanotube backbone for accelerating electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 600, 154066.	3.1	4
2808	Wide-pH-compatible MoSx co-catalyst layer on TiO2 nanowire arrays photoanode for simultaneous acceleration of charge carrier separation and catalytic reactions. Chemical Engineering Journal, 2022, 450, 137900.	6.6	5

#	Article	IF	CITATIONS
2809	Role of Surface Adsorbates on the Photoresponse of (MO)CVD-Grown Graphene–MoS ₂ Heterostructure Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 35184-35193.	4.0	7
2810	Electrochemical Sensors Based on MoS _x â€Functionalized Laserâ€Induced Graphene for Realâ€Time Monitoring of Phenazines Produced by <i>Pseudomonas aeruginosa</i> . Advanced Healthcare Materials, 2022, 11, .	3.9	8
2811	Raman Spectroscopy of Few‣ayers TaS ₂ and Moâ€Doped TaS ₂ with Enhanced Superconductivity. Advanced Electronic Materials, 2022, 8, .	2.6	3
2812	Direct Band Gap in Multilayer Transition Metal Dichalcogenide Nanoscrolls with Enhanced Photoluminescence. , 2022, 4, 1547-1555.		4
2813	Rapid Layer-Number Identification of MoS ₂ Nanosheet in MoS ₂ /MoO ₂ Conformal Heterostructures by Color: Implications for the Fabrication of 2D/3D Heterostructures. ACS Applied Nano Materials, 2022, 5, 11280-11288.	2.4	3
2814	Growth of Fe-doped and V-doped MoS2 and their magnetic-electrical effects. Journal of Electronic Science and Technology, 2022, 20, 100167.	2.0	2
2815	Two-dimensional van der Waals: characterization and manipulation of superconductivity. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
2816	Unencapsulated and washable two-dimensional material electronic-textile for NO2 sensing in ambient air. Scientific Reports, 2022, 12, .	1.6	5
2817	Vacancy-Assisted Fast Electron Transport Non-noble Metal Electrocatalyst Mn0.09-MoS2 for Hydrogen Evolution Reaction. Electrocatalysis, 2022, 13, 807-817.	1.5	4
2818	Strain-Induced Performance Enhancement of a Monolayer Photodetector via Patterned Substrate Engineering. ACS Applied Materials & Interfaces, 2022, 14, 36052-36059.	4.0	6
2819	Colloidal Continuous Injection Synthesis of Fluorescent MoX ₂ (X = S, Se) Nanosheets as a First Step Toward Photonic Applications. ACS Applied Nano Materials, 2022, 5, 10311-10320.	2.4	9
2820	Chemical Vapor Deposition of Uniform and Large-Domain Molybdenum Disulfide Crystals on Glass/Al2O3 Substrates. Nanomaterials, 2022, 12, 2719.	1.9	2
2821	A self-powered photoelectrochemical molecular imprinted sensor for chloroquine phosphate with enhanced cathodic photocurrent via stepped energy band alignment engineering. Chemical Engineering Journal, 2023, 451, 138748.	6.6	11
2822	Direct growth of monolayer MoS ₂ on nanostructured silicon waveguides. Nanophotonics, 2022, 11, 4397-4408.	2.9	6
2823	High-κ van der Waals Oxide MoO3 as Efficient Gate Dielectric for MoS2 Field-Effect Transistors. Materials, 2022, 15, 5859.	1.3	4
2824	Enhancement of valley polarization in CVD grown monolayer MoS2 films. Applied Physics Letters, 2022, 121, .	1.5	3
2825	Band alignment of monolayer MoS2/4H-SiC heterojunction via first-principles calculations and x-ray photoelectron spectroscopy. Applied Physics Letters, 2022, 121, .	1.5	2
2826	Nanoscale Control of DNA-Linked MoS ₂ -Quantum Dot Heterostructures. Bioconjugate Chemistry, 2023, 34, 78-84.	1.8	4

#	Article	IF	CITATIONS
2827	Two Birds with One Stone: Prelithiated Two-Dimensional Nanohybrids as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35673-35681.	4.0	6
2828	Sensitive Electrochemical Detection of Thiabendazole in Fruits Using Agâ^'MoS ₂ Electrode. Electroanalysis, 2023, 35, .	1.5	1
2829	Formation and Characterization of Three-Dimensional Tetrahedral MoS ₂ Thin Films by Chemical Vapor Deposition. Crystal Growth and Design, 0, , .	1.4	3
2830	Efficient Point-of-Care Detection of Uric Acid in the Human Blood Sample with an Enhanced Electrocatalytic Response Using Nanocomposites of Cobalt and Mixed-Valent Molybdenum Sulfide. ACS Applied Bio Materials, 2022, 5, 4191-4202.	2.3	4
2831	Magnetic Field Alignment and Optical Anisotropy of MoS ₂ Nanosheets Dispersed in a Liquid Crystal Polymer. Journal of Physical Chemistry Letters, 2022, 13, 7994-8001.	2.1	2
2832	Edge reconstruction of layer-dependent \hat{l}^2 -In2Se3/MoS2 vertical heterostructures for accelerated hydrogen evolution. Nano Research, 2023, 16, 1670-1678.	5.8	8
2833	A multifunctional nanostructured molybdenum disulphide (MoS ₂): an overview on synthesis, structural features, and potential applications. Materials Research Innovations, 2023, 27, 177-193.	1.0	6
2834	A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction. Chinese Chemical Letters, 2023, 34, 107771.	4.8	17
2835	MoS ₂ Transistor with Weak Fermi Level Pinning via MXene Contacts. Advanced Functional Materials, 2022, 32, .	7.8	13
2836	Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. Chemistry of Materials, 2022, 34, 7280-7292.	3.2	15
2837	NaCl-Assisted Temperature-Dependent Controllable Growth of Large-Area MoS ₂ Crystals Using Confined-Space CVD. ACS Omega, 2022, 7, 30074-30086.	1.6	11
2838	Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. Npj 2D Materials and Applications, 2022, 6, .	3.9	29
2839	Flexible, Transparent, and Broadband Trilayer Photodetectors Based on MoS ₂ /WS ₂ Nanostructures. ACS Applied Nano Materials, 2022, 5, 13637-13648.	2.4	14
2840	Embedding amorphous MoS within hierarchical porous carbon by facile one-pot synthesis for superior sodium ion storage. Journal of Energy Chemistry, 2022, 75, 240-249.	7.1	10
2841	Thermal stability and high-temperature photoluminescence of chemical vapor deposited MoS ₂ in different atmosphere. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 052201.	0.9	2
2842	Ultrafast photoresponse in n-MoS2/AlN/p-Si (SIS) heterojunction based visible to NIR photodetectors. Solar Energy Materials and Solar Cells, 2022, 246, 111942.	3.0	12
2843	Electronic properties of borophene based heterojunctions with MoS2 and WSe2. Chemical Physics, 2022, 562, 111666.	0.9	3
2844	Synthesis of type-II heterojunction films between ReS2 and XS2 (XÂ=ÂMo,W) with high electrocatalystic activities in dye-sensitized solar cells. Catalysis Communications, 2022, 170, 106497.	1.6	3

#	Article	IF	CITATIONS
2845	Passively Q-switched mode-locked laser based on a MoS2/MoSe2 heterostructure saturable absorber. Optical Materials, 2022, 133, 112864.	1.7	4
2846	Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag2S-MoS2 interface. Journal of Energy Chemistry, 2022, 74, 481-488.	7.1	8
2847	A universal substrate for the nanoscale investigation of two-dimensional materials. Applied Surface Science, 2022, 604, 154585.	3.1	3
2848	Probing the interfacial interactions of N719 with MoS2 using intrinsic surface enhanced Raman scattering. Applied Surface Science, 2022, 604, 154581.	3.1	3
2849	Observation of H ₂ Evolution and Electrolyte Diffusion on MoS ₂ Monolayer by In Situ Liquidâ€Phase Transmission Electron Microscopy. Advanced Materials, 2022, 34, .	11.1	16
2850	Second harmonic scattering of redox exfoliated two-dimensional transition metal dichalcogenides. Optical Materials, 2022, 133, 112780.	1.7	1
2851	Non-centrosymmetric features in nanostructured MoS2 and WS2 exfoliated in liquid phase. Optical Materials, 2022, 133, 112890.	1.7	0
2852	Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel. Materials Chemistry and Physics, 2022, 291, 126728.	2.0	1
2853	MoS2/SiNWs heterostructure based repeatable and highly responsive photodetector. Optical Materials, 2022, 133, 112918.	1.7	4
2854	The influence of lanthanum (La) promoter on Mo/Al2O3 for the catalytic synthesis of methyl mercaptan (CH3SH) from COS/H2/H2S. Fuel Processing Technology, 2022, 238, 107488.	3.7	4
2855	Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews, 2022, 472, 214765.	9.5	15
2856	Two-dimensional z-type MoS2/g-C3N4 semiconductor heterojunction nanocomposites for industrial methylene blue dye degradation under daylight. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130090.	2.3	16
2857	High-performance 2D/3D hybrid dimensional p–n heterojunction solar cell with reduced recombination rate by an interfacial layer. Journal of Materials Chemistry C, 2022, 10, 14982-14992.	2.7	5
2858	Molten-droplet-driven growth of MoS ₂ flakes with controllable morphology transition for hydrogen evolution reactions. Dalton Transactions, 2022, 51, 13351-13360.	1.6	2
2859	Exciton-dominant photoluminescence of MoS ₂ by a functionalized substrate. Nanoscale, 2022, 14, 14106-14112.	2.8	3
2860	Vertically oriented SnS ₂ on MoS ₂ nanosheets for high-photoresponsivity and fast-response self-powered photoelectrochemical photodetectors. Nanoscale Horizons, 2022, 7, 1217-1227.	4.1	16
2861	Local strain and tunneling current modulate excitonic luminescence in MoS ₂ monolayers. RSC Advances, 2022, 12, 24922-24929.	1.7	3
2862	Organic–Inorganic Nanohybrids in Supercapacitors. Materials Horizons, 2022, , 359-383.	0.3	2

#	Article	IF	CITATIONS
2863	Dual-electron-enhanced effect in K-doped MoS ₂ few layers for high electrocatalytic activity as the counter electrode in dye-sensitized solar cells. Chemical Communications, 2022, 58, 10857-10860.	2.2	3
2864	Wafer-scale MoS ₂ with water-vapor assisted showerhead MOCVD. Nanoscale Advances, 2022, 4, 4391-4401.	2.2	9
2865	The adsorption behaviors of N ₂ O on penta-graphene and Ni-doped penta-graphene. RSC Advances, 2022, 12, 23937-23945.	1.7	4
2866	Molybdenum(<scp>iv</scp>) dithiocarboxylates as single-source precursors for AACVD of MoS ₂ thin films. Dalton Transactions, 2022, 51, 12540-12548.	1.6	4
2867	A facile approach for site-selective and large-area growth of MoS2 through heterogeneous nucleation. Applied Surface Science, 2023, 607, 155066.	3.1	3
2868	Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nature Communications, 2022, 13, .	5.8	25
2869	Stitchingâ€Induced Structural Corrugation of Twisted Grain Boundaries in CVDâ€Grown MoS ₂ Domains. Physica Status Solidi - Rapid Research Letters, 0, , 2200291.	1.2	0
2870	Pressure Tuning Resonance Raman Scattering in Monolayer, Trilayer, and Many-Layer Molybdenum Disulfide. ACS Applied Nano Materials, 2022, 5, 14464-14469.	2.4	3
2871	Largeâ€Area Growth of MoS ₂ /WS ₂ Heterostructures by a Sequential Atomic Layer Deposition and Spin oating Approach. Advanced Materials Interfaces, 2022, 9, .	1.9	2
2872	One-Step Epitaxial Growth of Multilayer MoS ₂ /SnS ₂ Vertical Nanosheets for High-Performance Photodetectors. ACS Applied Nano Materials, 2022, 5, 14978-14986.	2.4	1
2873	Effect of exfoliated MoS2 on the Microstructure, Hardness, and Tribological Properties of Copper Matrix Nanocomposite Fabricated via the Hot Pressing Method. Transactions of the Indian Institute of Metals, 2023, 76, 195-204.	0.7	10
2874	Indirect Band Gap in Scrolled MoS2 Monolayers. Nanomaterials, 2022, 12, 3353.	1.9	5
2875	Laser-assisted growth of hierarchically architectured 2D MoS ₂ crystals on metal substrate for potential energy applications. International Journal of Extreme Manufacturing, 2022, 4, 045102.	6.3	4
2876	Optical Microscope Based Universal Parameter for Identifying Layer Number in Two-Dimensional Materials. ACS Nano, 2022, 16, 14456-14462.	7.3	7
2877	Tuning Schottky Barrier of Single-Layer MoS2 Field-Effect Transistors with Graphene Electrodes. Nanomaterials, 2022, 12, 3038.	1.9	3
2878	Allâ€Gasâ€Phase Synthesis of Heterolayered Twoâ€Dimensional Nanohybrids Decorated with Metallic Nanocatalysts for Water Splitting. Small, 2022, 18, .	5.2	5
2879	Superradiance of optical phonons in two-dimensional materials. Physical Review Research, 2022, 4, .	1.3	1
2880	Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties. Frontiers of Physics, 2022, 17, .	2.4	4

ARTICLE IF CITATIONS # Tunable, stable, and reversible n-type doping of MoS₂ via thermal treatment in 2881 1.3 1 N-methyl-2-pyrrolidone. Nanotechnology, 2022, 33, 50LT01. High-Luminescence and Submillimeter-Scale MoS₂ Monolayer Growth Using 2882 Combinational Phase Precursors via Chemical Vapor Deposition. ACS Applied Electronic Materials, 2022, 4, 5072-5080. Probing the interaction between 2D materials and oligoglycine tectomers. 2D Materials, 2022, 9, 2883 2.0 2 045033. Threeâ€dimensional <scp>MoS</scp><i>_x</i>/polyaniline@graphene heteroaerogels as 2884 electrode materials for highâ€performance symmetric supercapacitors. Energy Storage, 2023, 5, . Robust room-temperature ferromagnetism induced by defect engineering in monolayer MoS2. Applied 2885 3.1 3 Surface Science, 2023, 608, 155220. Nanohybrid Comprising Gold Nanoparticles $\hat{a} \in MoS < sub > 2 < /sub > Nanosheets for Electrochemical Sensing of Folic Acid in Serum Samples. Electroanalysis, 2023, 35, .$ 2886 1.5 Optical characteristics of bilayer decoupling MoS₂ grown by the CVD method. Optics 2887 1.7 0 Express, 2022, 30, 38492. Periodically Poled Monolayer Lithium Niobate for Photonic Chips of Quantum Devices., 2023, 1, 115-122. 2888 Pâ€Type Nbâ€Doped MoS₂ Layer for Solar Cell Application. Physica Status Solidi - Rapid 2889 1.2 1 Research Letters, 2023, 17, . The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes. 2890 1.1 Journal of Materials Science: Materials in Electronics, 2022, 33, 25153-25162. Chromium ditelluride monolayer: A novel promising 2H phase thermoelectric material with direct bandgap and ultralow lattice thermal conductivity. Journal of Alloys and Compounds, 2023, 930, 2891 2.8 14 167485. P-doped MoS2/CoxSy heterojunction for high-efficiency electrocatalytic hydrogen evolution 2.6 performance in both acidic and alkaline electrolytes. Electrochimica Ácta, 2022, 433, 141269. Constructing angustifolia-like MoS2 on Ag nanowires as anode with enhanced diffusion kinetics for 2893 1.9 3 Li-ion batteries. Journal of Physics and Chemistry of Solids, 2022, 171, 111018. $\label{eq:linear} Electron \widehat{a} \in \mbox{``phonon interaction and ultrafast photoemission from doped monolayer MoS < sub>2 < /sub>. Physical Chemistry Chemical Physics, 2022, 24, 25298-25306.$ 2894 1.3 Defect-engineered room temperature negative differential resistance in monolayer MoS₂ 2895 2 4.1 transistors. Nanoscale Horizons, 2022, 7, 1533-1539. Insights into the multifunctional applications of strategically Co doped MoS₂ 2896 nanoflakes. Materials Advances, 2022, 3, 8740-8759. Synthesis of Transition Metal Dichalcogenides (TMDs). Topics in Applied Physics, 2022, , 155-179. 2897 0.4 1 2898 Short-Term Plasticity in 2D Materials for Neuromorphic Computing., 2022, 33-53.

#	Article	IF	CITATIONS
2899	Tuning the optical absorption performance of MoS ₂ monolayers with compressive strain. Nanoscale, 2022, 14, 17065-17071.	2.8	3
2900	Self-powered broadband photodetector based on MoS ₂ /Sb ₂ Te ₃ heterojunctions: a promising approach for highly sensitive detection. Nanophotonics, 2022, 11, 5113-5119.	2.9	20
2901	Near-Infrared Plasmon-Induced Hot Electron Extraction Evidence in an Indium Tin Oxide Nanoparticle/Monolayer Molybdenum Disulfide Heterostructure. Journal of Physical Chemistry Letters, 2022, 13, 9903-9909.	2.1	5
2902	The origin of edge-enhanced second harmonic generation in monolayer MoS ₂ flakes. AIP Advances, 2022, 12, 105009.	0.6	0
2903	Interface modified MoS2/CNT with enhanced power factor via energy filtering effect for flexible thermoelectric applications. Sensors and Actuators A: Physical, 2022, 348, 113938.	2.0	6
2904	Spatiotemporal Modulation of Plasticity in Multiâ€Terminal Tactile Synaptic Transistor. Advanced Electronic Materials, 2023, 9, .	2.6	3
2905	Highly Efficient Deposition of Centimeter‣cale MoS ₂ Monolayer Film on Dragontrail Glass with Large Singleâ€Crystalline Domains. Small Methods, 0, , 2201079.	4.6	2
2906	Direct Epitaxial Growth of InP Nanowires on MoS ₂ with Strong Nonlinear Optical Response. Chemistry of Materials, 2022, 34, 9055-9061.	3.2	5
2907	Saturable absorption performance of large area monolayer MoS ₂ coated planarized optical waveguide. Laser Physics Letters, 2022, 19, 116205.	0.6	0
2908	Contributions of symmetric metal contacts on liquid exfoliation 2D-MoS2 flakes based MSM photodetector by spray pyrolysis: a CVD-free technique. Optical and Quantum Electronics, 2022, 54, .	1.5	1
2909	High-yield exfoliation of MoS2 nanosheets by a novel spray technique and the importance of soaking and surfactants. Nano Structures Nano Objects, 2022, 32, 100922.	1.9	3
2910	Reactivity of Diazonium Salts on Single- and Multilayer MoS ₂ on Au(111). Journal of Physical Chemistry C, 2022, 126, 18266-18274.	1.5	2
2911	Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions. Frontiers of Physics, 2023, 18, .	2.4	3
2912	Anomalous Dynamics of Defect-Assisted Phonon Recycling in Few-Layer Mo _{0.5} W _{0.5} S ₂ . Journal of Physical Chemistry Letters, 2022, 13, 10395-10403.	2.1	1
2913	A simple and robust machine learning assisted process flow for the layer number identification of TMDs using optical contrast spectroscopy. Journal of Physics Condensed Matter, 2023, 35, 025901.	0.7	2
2914	2H-MoS2 as an electrode material for oxygen reduction reaction and supercapacitor applications. Materials Today: Proceedings, 2022, , .	0.9	2
2915	Nucleation and growth studies of large-area deposited WS ₂ on flexible substrates. Materials Research Express, 2022, 9, 116401.	0.8	3
2916	Direct growth and properties of few-layer MoS2 on multilayer graphene prepared by chemical vapor deposition. Journal of Materials Science, 2022, 57, 19704-19715.	1.7	2

#	Article	IF	CITATIONS
2917	Mathematical modelling of angle dependent polarization raman spectroscopy of molybdenum disulfide before and after adding strain agent. Inorganic Chemistry Communication, 2022, 146, 110075.	1.8	4
2918	Highly Sensitive MoS ₂ Photodetector Based on Charge Integration and Field-Coupled Effect. IEEE Transactions on Electron Devices, 2022, 69, 6884-6889.	1.6	2
2919	Porphyrin covalently functionalized MoS2 nanosheets: "Click―synthesis and tunable nonlinear absorption. Journal of Alloys and Compounds, 2023, 934, 167902.	2.8	2
2920	High Uniformity Ferroelectric MoS2 Nonvolatile Memory Array. , 2022, , .		ο
2921	Highly Reproducible Heterosynaptic Plasticity Enabled by MoS ₂ /ZrO _{2–<i>x</i>} Heterostructure Memtransistor. ACS Applied Materials & Interfaces, 2022, 14, 52173-52181.	4.0	2
2922	An All-in-One Bioinspired Neural Network. ACS Nano, 2022, 16, 20100-20115.	7.3	9
2923	S and O Co-Coordinated Mo Single Sites in Hierarchically Porous Tubes from Sulfur–Enamine Copolymerization for Oxygen Reduction and Evolution. Journal of the American Chemical Society, 2022, 144, 20571-20581.	6.6	39
2924	Controlling sulfurization of 2D Mo2C crystal for Mo2C/MoS2-based memristor and artificial synapse. Npj Flexible Electronics, 2022, 6, .	5.1	8
2925	In Situ Assembly of Well-Defined MoS2 Slabs on Shape-Tailored Anatase TiO2 Nanostructures: Heterojunctions Role in Phenol Photodegradation. Catalysts, 2022, 12, 1414.	1.6	0
2926	Nonvolatile n-Type Doping and Metallic State in Multilayer-MoS ₂ Induced by Hydrogenation Using Ionic-Liquid Gating. Nano Letters, 2022, 22, 8957-8965.	4.5	0
2927	Characterization strategy for graphene oxide and molybdenum disulfide: Proceedings based on the ISO/TS 21356-1:2021 standard. FlatChem, 2022, 36, 100448.	2.8	3
2928	MoS ₂ -on-GaN Plasmonic Photodetector Using a Bowtie Striped Antenna Structure. ACS Applied Electronic Materials, 2022, 4, 5277-5283.	2.0	3
2929	Transferable Thru-Hole Epitaxy of GaN and ZnO, Respectively, Over Graphene and MoS ₂ as a 2D Space Layer. Crystal Growth and Design, 2022, 22, 6995-7007.	1.4	3
2930	Activation of 2D MoS2 electrodes induced by high-rate lithiation processes. Journal of Energy Chemistry, 2023, 78, 56-70.	7.1	7
2931	Polyethylene with <scp>MoS₂</scp> nanoparticles toward antibacterial active packaging. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
2932	Nitrogen-doped reduced graphene oxide/MoS2 â€~nanoflower' composites for high-performance supercapacitors. Journal of Energy Storage, 2022, 56, 105935.	3.9	2
2933	Tuning of the electronic and vibrational properties of epitaxial MoS ₂ through He-ion beam modification. Nanotechnology, 2023, 34, 085702.	1.3	2
2934	A Gate Programmable van der Waals Metalâ€Ferroelectricâ€Semiconductor Vertical Heterojunction Memory. Advanced Materials, 2023, 35, .	11.1	15

#	Akercually robust optical properties of the wafer-scale < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si124.svg" display="inline"	IF	CITATIONS
2935	id= d1e581 > <mmi:mi>i±</mmi:mi> -S6 <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si121.svg" display="inline" id="d1e586"><mmi:msub><mmi:mrow< td=""><td>3.1</td><td>1</td></mmi:mrow<></mmi:msub></mmi:math 	3.1	1
2936	growth of MoS2 Thin Films Using the Two-step Approach. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	0.2	Ο
2937	2D MoS ₂ /BiOBr van der Waals heterojunctions by liquid-phase exfoliation as photoelectrocatalysts for hydrogen evolution. Nanoscale, 0, , .	2.8	6
2938	Large area MoS2 films fabricated via sol-gel used for photodetectors. Optical Materials, 2023, 135, 113257.	1.7	1
2939	Nucleation and growth mechanism for atomic layer deposition of Al ₂ O ₃ on two-dimensional WS ₂ monolayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, 013201.	0.9	1
2940	Hydrothermal synthesis of MoS2-decorated silicon nanowires heterostructure with enhanced performance of photocatalytic activity under visible light. Inorganic Chemistry Communication, 2023, 147, 110270.	1.8	1
2941	Atomic arrangement of van der Waals heterostructures using X-ray scattering and crystal truncation rod analysis. Current Applied Physics, 2023, 46, 70-75.	1.1	3
2942	Laser-assisted hydrothermal synthesis of MoS2 nanosheets under different laser energies and potential application in nonlinear optics. Optik, 2023, 272, 170305.	1.4	9
2943	Role of dielectric medium on optical behaviour of blue emitting colloidal MoS2 quantum Dots. Journal of Luminescence, 2023, 255, 119598.	1.5	3
2944	Facile synthesis of layered 2H-WSe2 nanosheets for asymmetric supercapacitor device application. Synthetic Metals, 2023, 293, 117263.	2.1	4
2945	Band alignment of 2ÂH-phase two-dimensional MoS2/graphene oxide van der Waals heterojunction. Journal of Alloys and Compounds, 2023, 936, 168244.	2.8	6
2946	One-step construction of Ti3C2Tx/MoS2 hierarchical 3D porous heterostructure for ultrahigh-rate supercapacitor. Journal of Colloid and Interface Science, 2023, 634, 460-468.	5.0	10
2947	Improved Monolayer MoS Performance With Two-Step Atomic Layer Deposited High- Dielectrics <i></i> . IEEE Journal of the Electron Devices Society, 2022, 10, 1033-1039.	1.2	1
2948	Raman Spectroscopy-Based Techniques for 2D Layered Materials. , 2022, , 3-1-3-20.		2
2949	Interaction Length-Dependent Saturable Absorption of MoS ₂ -Coated Planarized Waveguide and its Effect on the Performance of Q-Switched Pulse Laser Generation. Journal of Lightwave Technology, 2023, 41, 2458-2464.	2.7	0
2950	Ultrafast Ion Sputtering Modulation of Two-Dimensional Substrate for Highly Sensitive Raman Detection. , 2022, 4, 2622-2630.		6
2951	Doughty-electronegative heteroatom-induced defective MoS2 for the hydrogen evolution reaction. Frontiers in Chemistry, 0, 10, .	1.8	8
2952	Study of structural, optical, and thermal properties in MoS2-based nanocomposites: iron and gold. Furopean Physical Journal Plus, 2022, 137	1.2	1

#	Article	IF	CITATIONS
2953	Tunable 0D/2D/2D Nanocomposite Based on Green Zn-Doped CuInS ₂ Quantum Dots and MoS ₂ /rGO as Photoelectrodes for Solar Hydrogen Production. ACS Applied Materials & Interfaces, 2022, 14, 54790-54802.	4.0	7
2955	Nucleation and growth of molybdenum disulfide grown by thermal atomic layer deposition on metal oxides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	5
2956	Dielectric Function of 2D Tungsten Disulfide in Homo―and Heterobilayer Stacking. Advanced Materials Interfaces, 2023, 10, .	1.9	3
2957	Pulsed Carrier Gas Assisted High-Quality Synthetic 3 <i>R</i> -Phase Sword-like MoS ₂ : A Versatile Optoelectronic Material. ACS Nano, 2022, 16, 21366-21376.	7.3	4
2958	Unusual stacking sequence of MoS2 and WS2 vertical heterostructures in one-pot chemical vapor deposition growth. Journal of the Korean Physical Society, 0, , .	0.3	0
2959	Only gold can pull this off: mechanical exfoliations of transition metal dichalcogenides beyond scotch tape. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	7
2960	Band Alignments, Electronic Structure, and Core-Level Spectra of Bulk Molybdenum Dichalcogenides (MoS ₂ , MoSe ₂ , and MoTe ₂). Journal of Physical Chemistry C, 2022, 126, 21022-21033.	1.5	4
2961	Piezoâ€Activated Atomicâ€Thin Molybdenum Disulfide/MXene Nanoenzyme for Integrated and Efficient Tumor Therapy via Ultrasoundâ€Triggered Schottky Electric Field. Small, 2023, 19, .	5.2	17
2962	Fully Optical in Operando Investigation of Ambient Condition Electrical Switching in MoS ₂ Nanodevices. Advanced Materials, 2023, 35, .	11.1	2
2963	Multiwavelength High-Detectivity MoS ₂ Photodetectors with Schottky Contacts. ACS Nano, 2022, 16, 20272-20280.	7.3	17
2964	MoS2/graphene nanosheet composites prepared by xylitol-assisted ball milling as high-performance anode materials for lithium-ion batteries. Ionics, 2023, 29, 917-930.	1.2	4
2965	Role of Defects in the Transport Properties and Photoresponse of a Silicon–MoS ₂ Mixed-Dimensional Van der Waals Heterostructure. ACS Applied Electronic Materials, 2022, 4, 6038-6046.	2.0	1
2966	Controllable synthesis and optoelectronic applications of wafer-scale MoS ₂ films. Materials Research Express, 2022, 9, 125004.	0.8	0
2967	High Detectivity and Fast MoS ₂ Monolayer MSM Photodetector. ACS Applied Electronic Materials, 2022, 4, 5739-5746.	2.0	9
2968	Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS ₂ for the Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 342-354.	5.5	11
2969	Synthesis, Structural, and Photoluminescence Properties of MoS ₂ Nanowall Films. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	2
2970	Time-dependent exfoliation study of MoS ₂ for its use as a cathode material in high-performance hybrid supercapacitors. Nanoscale Advances, 2023, 5, 1172-1182.	2.2	4
2971	Tunable biaxial strain device for low-dimensional materials. Review of Scientific Instruments, 2023, 94,	0.6	1

#	Article	IF	CITATIONS
2972	Rapid Colorimetric Detection of Thiabendazole Based on Its Inhibition Effect on the Peroxidase Mimetic Activity of Ag-MoS ₂ Nanozyme. ACS Agricultural Science and Technology, 2023, 3, 82-89.	1.0	4
2973	Heterointerfacial Cobalt/Zinc Sulfides on Molybdenum Disulfide Coated Carbon Cloth as Self‣upporting Electrode for Flexible Metalâ€Air Batteries. ChemCatChem, 2023, 15, .	1.8	3
2974	Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures. Micromachines, 2023, 14, 140.	1.4	1
2975	Thermal Atomic Layer Etching of MoS ₂ Using MoF ₆ and H ₂ O. Chemistry of Materials, 0, , .	3.2	2
2976	Electric-field-driven interfacial trapping of drifting triboelectric charges <i>via</i> contact electrification. Energy and Environmental Science, 2023, 16, 598-609.	15.6	11
2977	Towards Low-cost and Sustainable SERS Substrate: A Novel Ultra-Sensitive AMS5 Nanoflowers. Dalton Transactions, 0, , .	1.6	0
2978	Liquid Phase Exfoliation and Characterization of Few Layer MoS2 and WS2 Nanosheets as Channel Material in Field Effect Transistor. Transactions on Electrical and Electronic Materials, 0, , .	1.0	0
2979	Monolayer and bilayer lanthanide compound Gd2C with large magnetic anisotropy energy and high Curie temperature. Journal of Materials Science, 2023, 58, 268-280.	1.7	1
2980	Inversion Symmetry and Exotic Interlayer Exciton Behavior in Twisted Trilayer MoS ₂ Produced by Vapor Deposition. ACS Applied Materials & Interfaces, 2023, 15, 4724-4732.	4.0	8
2981	Photocatalytic degradation of Naphthol Green in aqueous solution through the reusable ZnS/MoS2/Fe3O4 magnetic nanocomposite. Surfaces and Interfaces, 2023, 36, 102613.	1.5	1
2982	Boosting the sodium-ion storage capability of MoSe2 through the synergistic effect of rational sulfur substituting and carbon compositing. Solid State Ionics, 2023, 391, 116114.	1.3	0
2983	Ti@MoS2 incorporated Polypropylene/Nylon fabric-based porous, breathable triboelectric nanogenerator as respiration sensor and ammonia gas sensor applications. Sensors and Actuators B: Chemical, 2023, 380, 133346.	4.0	16
2984	Epitaxial Growth of High-Quality Monolayer MoS ₂ Single Crystals on Low-Symmetry Vicinal Au(101) Facets with Different Miller Indices. ACS Nano, 2023, 17, 312-321.	7.3	8
2985	Engineering the Performance and Stability of Molybdenum Disulfide for Heavy Metal Removal. ACS Applied Materials & Interfaces, 2023, 15, 6603-6611.	4.0	3
2986	Revealing the Modulation Effects on the Electronic Band Structures and Exciton Properties by Stacking Graphene/h-BN/MoS ₂ Schottky Heterostructures. ACS Applied Materials & Interfaces, 2023, 15, 2468-2478.	4.0	6
2987	Biomimetic Catalysts Based on Au@TiO2-MoS2-CeO2 Composites for the Production of Hydrogen by Water Splitting. International Journal of Molecular Sciences, 2023, 24, 363.	1.8	3
2988	In Situ Porousized MoS ₂ Nano Islands Enhance HER/OER Bifunctional Electrocatalysis. Small, 2023, 19, .	5.2	42
2989	Nanostructured MoS ₂ with Interlayer Controllably Regulated by Ionic Liquids/Cellulose for Highâ€Capacity and Durable Sodium Storage Properties. Small, 2023, 19, .	5.2	14

#	Article	IF	CITATIONS
2990	Bioâ€Voltage Memristors: From Physical Mechanisms to Neuromorphic Interfaces. Advanced Electronic Materials, 2023, 9, .	2.6	4
2991	MoS2/Au Heterojunction Catalyst for SERS Monitoring of a Fenton-like Reaction. Materials, 2023, 16, 1169.	1.3	0
2992	Room-temperature spin-valve devices based on Fe ₃ GaTe ₂ /MoS ₂ /Fe ₃ GaTe ₂ 2D van der Waals heterojunctions. Nanoscale, 2023, 15, 5371-5378.	2.8	22
2993	Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine. Chemical Society Reviews, 2023, 52, 1288-1330.	18.7	18
2994	Significantly increased Raman enhancement enabled by hot-electron-injection-induced synergistic resonances on anisotropic ReS ₂ films. Physical Chemistry Chemical Physics, 2023, 25, 6537-6544.	1.3	2
2995	Characterization of 2D transition metal dichalcogenides. , 2023, , 97-139.		1
2996	Electrostatic spray catalytic particle coating on carbon electrode for enhancing electrochemical reaction. International Journal of Hydrogen Energy, 2023, 48, 15796-15808.	3.8	2
2997	Raman spectroscopic study of the layer-dependent Davydov splitting and thermal conductivity of chemically vapor deposited two-dimensional MoSe ₂ . Applied Physics Letters, 2023, 122, 042201.	1.5	1
2998	High Resolution Electrochemical Imaging for Sulfur Vacancies on 2D Molybdenum Disulfide. Small Methods, 2023, 7, .	4.6	11
2999	Role of the electrode-edge in optically sensitive three-dimensional carbon foam-MoS ₂ based high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2023, 11, 4963-4976.	5.2	6
3000	All-Optical Reconfigurable Excitonic Charge States in Monolayer MoS ₂ . Nano Letters, 2023, 23, 1514-1521.	4.5	3
3001	The plasticity of synaptic memristor based on 2D-MoS2 thin film prepared in large-scale by a PLD-assisted CVD method. Materials Today Communications, 2023, 35, 105511.	0.9	0
3002	Energy transfer and patterning characteristics in pulsed-laser subtractive manufacturing of single layer of MoS2. International Journal of Heat and Mass Transfer, 2023, 204, 123873.	2.5	2
3003	Laser-enabled localized synthesis of Mo1-xWxS2 alloys with tunable composition. Materials Today Advances, 2023, 17, 100351.	2.5	2
3004	Synergy mechanism of defect engineering in MoS2/FeS2/C heterostructure for high-performance sodium-ion battery. Journal of Energy Chemistry, 2023, 82, 268-276.	7.1	21
3005	Environmentally adaptive lubrication enabled by gradient structure design of TiN-MoS2/Ti. Surface and Coatings Technology, 2023, 458, 129317.	2.2	3
3006	Band Positionâ€Independent Piezoâ€Electrocatalysis for Ultrahigh CO ₂ Conversion. Advanced Materials, 2023, 35, .	11.1	31
3007	A Novel C Doped MoS ₂ /CoP/MoO ₂ Ternary Heterostructure Nanoflower for Hydrogen Evolution Reaction at Wide pH Range and Efficient Overall Water Splitting in Alkaline Media. Chemistry - A European Journal, 2023, 29, .	1.7	2

#	ARTICLE	IF	CITATIONS
" 3008	Controllable synthesis by hydrothermal method and optical properties of 2D MoS2/rGO nanocomposites. Journal of Sol-Gel Science and Technology, 2023, 106, 699-714.	1.1	4
3009	Radio-frequency controlled crystalline phase transformation of MoS2 thin film fabricated by unique vapour-plasma mixing technique. Physica B: Condensed Matter, 2023, 660, 414896.	1.3	3
3010	Improved performance in MoS2 homogeneous junction field effect transistors by optimizing electrodes contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116348.	1.7	1
3011	Boosting highly active defect MoV sites for amorphous molybdenum sulfide from catalyst-substrate effect toward efficient hydrogen evolution. Electrochimica Acta, 2023, 449, 142191.	2.6	1
3012	Scaling up the fabrication of wafer-scale Ni-MoS2/WS2 nanocomposite moulds using novel intermittent ultrasonic-assisted dual-bath micro-electroforming. Ultrasonics Sonochemistry, 2023, 95, 106359.	3.8	3
3013	Photoactive decontamination and reuse of face masks. E-Prime, 2023, 4, 100129.	2.1	Ο
3014	Effective threshold voltage modulation technique for steep-slope 2D atomic threshold switching field-effect transistor. Materials Today Advances, 2023, 18, 100367.	2.5	0
3015	Effective ways to enhance the performance of n-MoS2/p-CuO heterojunction based self-powered photodetectors. Solar Energy Materials and Solar Cells, 2023, 255, 112285.	3.0	11
3016	Functionalized Ti3C2T <i>x</i> MXene with layer-dependent band gap for flexible NIR photodetectors. Applied Physics Reviews, 2023, 10, .	5.5	7
3017	Experimental and theoretical insights into colossal supercapacitive performance of graphene quantum dots incorporated Ni3S2/CoS2/MoS2 electrode. Journal of Energy Storage, 2023, 65, 107274.	3.9	3
3018	Modulation the metal-support interactions of potassium molybdenum-based catalysts for tuned catalytic performance of synthesizing CH3SH. Separation and Purification Technology, 2023, 316, 123815.	3.9	3
3019	Al2O3-MgO Supported Ni, Mo, and NiMo Mixed Phosphidic-Sulphidic Phase for Hydrotreating of Stearic and Oleic Acids Into Green Diesel. Frontiers in Chemistry, 0, 10, .	1.8	0
3020	Negative piezoelectricity and enhanced electrical conductivity at the interfaces of two-dimensional dialkali oxide and chalcogenide monolayers. Physical Review B, 2023, 107, .	1.1	7
3021	Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms. Laser and Photonics Reviews, 2023, 17, .	4.4	3
3022	Phonon dynamics in lead free perovskite (1-x)KNN-xBAN (x = 0.0–0.1): a temperature dependent raman study. Physica Scripta, 2023, 98, 035711.	1.2	0
3023	Recrystallization of MBEâ€Grown MoS ₂ Monolayers Induced by Annealing in a Chemical Vapor Deposition Furnace. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	3
3024	hBN-Layer-Promoted Heteroepitaxy in Reactively Sputter-Deposited MoS _{<i>x</i>â‰^2} (0001)/Al ₂ O ₃ (0001) Thin Films: Implications for Nanoelectronics. ACS Applied Nano Materials, 2023, 6, 2908-2916.	2.4	5
3025	Multifunctional poly(3-hydroxybutyrate) composites with MoS2 for food packaging applications. European Polymer Journal, 2023, 188, 111914.	2.6	4

#	Article	IF	CITATIONS
3027	Gate-Tunable Electrostatic Friction of Grain Boundary in Chemical-Vapor-Deposited MoS ₂ . Nano Letters, 2023, 23, 3085-3089.	4.5	1
3028	Layer Dependence of Thermally Induced Quantum Confinement and Higher Order Phonon Scattering for Thermal Transport in CVD-Grown Triangular MoS ₂ . Journal of Physical Chemistry C, 2023, 127, 3787-3799.	1.5	9
3029	Ohmic-contacted WSe ₂ /MoS ₂ heterostructures for broadband photodetector with fast response. Applied Physics Express, 2023, 16, 034001.	1.1	1
3030	AÂWaferâ€6cale Nanoporous 2D Active Pixel Image Sensor Matrix with High Uniformity, High Sensitivity, and Rapid Switching. Advanced Materials, 2023, 35, .	11.1	17
3031	Exciton recombination in fewâ€layer MoS ₂ nanosheets: Role of free carriers and defects. Surface and Interface Analysis, 2023, 55, 521-525.	0.8	1
3032	Ultrafast Charge Transfer 2D MoS ₂ /Organic Heterojunction for Sensitive Photodetector. Advanced Science, 2023, 10, .	5.6	14
3033	Observation of carrier dynamics in MoS ₂ thin layer by femtosecond transient absorption microscopy. Japanese Journal of Applied Physics, 2023, 62, SG1029.	0.8	0
3034	Surface engineering of nanoflower-like MoS ₂ decorated porous Si ₃ N ₄ ceramics for electromagnetic wave absorption. Journal of Materials Chemistry A, 2023, 11, 6274-6285.	5.2	18
3035	Digital laser-induced printing of MoS ₂ . Nanophotonics, 2023, 12, 1491-1498.	2.9	2
3036	Perforated Carbon Nanotube Film Assisted Growth of Uniform Monolayer MoS ₂ . Small, 2023, 19, .	5.2	2
3037	Dual Catalytic and Selfâ€Assembled Growth of Twoâ€Dimensional Transition Metal Dichalcogenides Through Simultaneous Predeposition Process. Small, 2023, 19, .	5.2	3
3038	MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. Biosensors, 2023, 13, 348.	2.3	9
3039	Three-Dimensional MoS2 Nanosheet Structures: CVD Synthesis, Characterization, and Electrical Properties. Crystals, 2023, 13, 448.	1.0	1
3040	Photodegradation of Ciprofloxacin and Levofloxacin by Au@ZnONPs-MoS2-rGO Nanocomposites. Catalysts, 2023, 13, 538.	1.6	1
3041	Charge Carrier Dynamics in Colloidally Synthesized Monolayer MoX ₂ Nanosheets. Journal of Physical Chemistry Letters, 2023, 14, 2620-2626.	2.1	2
3042	Self-assembled GA-Repeated Peptides as a Biomolecular Scaffold for Biosensing with MoS ₂ Electrochemical Transistors. ACS Applied Materials & Interfaces, 0, , .	4.0	3
3043	Catalytic Conversion of Sugars into Lactic Acid via a RuOx/MoS2 Catalyst. Catalysts, 2023, 13, 545.	1.6	3
3044	Microwave-Driven Exfoliation of Bulk 2H-MoS ₂ after Acetonitrile Prewetting Produces Large-Area Ultrathin Flakes with Exceptionally High Yield. ACS Nano, 2023, 17, 5984-5993.	7.3	4

#	Article	IF	CITATIONS
3045	Investigations of Vacancy-Assisted Selective Detection of NO ₂ Molecules in Vertically Aligned SnS ₂ . ACS Sensors, 2023, 8, 1357-1367.	4.0	11
3046	Physics-based bias-dependent compact modeling of 1/ <i>f</i> noise in single- to few-layer 2D-FETs. Nanoscale, 2023, 15, 6853-6863.	2.8	1
3047	Sulfur isotope engineering of exciton and lattice dynamics in MoS2 monolayers. 2D Materials, 2023, 10, 025024.	2.0	0
3048	<i>Ex Situ</i> Characterization of 1T/2H MoS ₂ and Their Carbon Composites for Energy Applications, a Review. ACS Nano, 2023, 17, 5163-5186.	7.3	9
3049	Ultrashort pulse generation in erbium-doped fiber lasers in South America: a historical review. Journal of the Optical Society of America B: Optical Physics, 2023, 40, C148.	0.9	1
3050	Efficient Multiple Exciton Generation in Monolayer MoS ₂ . Journal of Physical Chemistry Letters, 2023, 14, 2965-2972.	2.1	1
3051	Enhancing optical characteristics of mediator-assisted wafer-scale MoS ₂ and WS ₂ on h-BN. Nanotechnology, 2023, 34, 255703.	1.3	4
3052	Two-dimensional dichalcogenides of type XY\$\$_2\$\$ (X=Mo,W; Y=S,Se): A DFT study of the structural, optoelectronic, thermodynamic properties, infrared, and Raman spectra. Journal of Materials Research, 2023, 38, 2072-2083.	1.2	2
3053	High-Performance C ₆₀ Coupled Ferroelectric Enhanced MoS ₂ Nonvolatile Memory. ACS Applied Materials & Interfaces, 2023, 15, 16910-16917.	4.0	3
3054	Evidence of defect formation in monolayer MoS ₂ at ultralow accelerating voltage electron irradiation. 2D Materials, 2023, 10, 035002.	2.0	4
3055	Large-area synthesis of high electrical performance MoS2 by a commercially scalable atomic layer deposition process. Npj 2D Materials and Applications, 2023, 7, .	3.9	8
3056	Interface coupling in Au-supported MoS ₂ –WS ₂ heterobilayers grown by pulsed laser deposition. Nanoscale, 2023, 15, 7493-7501.	2.8	3
3057	A molybdenum disulfide/nickel ferrite-modified voltammetric sensing platform for ultra-sensitive determination of clenbuterol under the presence of an external magnetic field. RSC Advances, 2023, 13, 10577-10591.	1.7	5
3058	Tip-enhanced photoluminescence of monolayer MoS ₂ increased and spectrally shifted by injection of electrons. Nanophotonics, 2023, 12, 2937-2943.	2.9	1
3059	Investigation on the Tribological Properties of FeS, Cu ₂ S, MoS ₂ , and WS ₂ Sulfide Films Under Water Lubrication. Tribology Transactions, 2023, 66, 551-564.	1.1	2
3060	Reliability Improvement and Effective Switching Layer Model of Thinâ€Film MoS ₂ Memristors. Advanced Functional Materials, 2024, 34, .	7.8	7
3061	Sensitive and Reversible Ammonia Gas Sensor Based on Single-Walled Carbon Nanotubes. Chemosensors, 2023, 11, 247.	1.8	3
3062	Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors. Composites Part B: Engineering, 2023, 259, 110759.	5.9	16

#	Article	IF	CITATIONS
3063	Ultrafast and Resist-Free Nanopatterning of 2D Materials by Femtosecond Laser Irradiation. ACS Nano, 2023, 17, 8041-8052.	7.3	5
3064	Mechanism on heterogeneous transfer film formed by diamond-like carbon film under molybdenum disulfide hybrid polyethylene glycol lubrication. Carbon, 2023, 210, 118030.	5.4	4
3065	Transferring 2D TMDs through Water-Soluble Sodium Salt Catalytic Layer. Nanotechnology, 0, , .	1.3	0
3066	Chitosan induced synthesis of few-layer MoS2/Fe-doped biochar and its dual applications in Cr(VI) removal. Separation and Purification Technology, 2023, 317, 123880.	3.9	4
3067	Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films. Cell Reports Physical Science, 2023, 4, 101390.	2.8	3
3072	Enhanced Exciton-to-Trion Conversion by Proton Irradiation of Atomically Thin WS ₂ . Nano Letters, 2023, 23, 3754-3761.	4.5	2
3084	Dual metal site-mediated efficient C–N coupling toward electrochemical urea synthesis. Journal of Materials Chemistry A, 2023, 11, 13249-13254.	5.2	18
3135	Enhanced Emission of Molybdenum Disulfide by Organic–Inorganic Hybrid Heterojunctions. , 0, , .		0
3160	Optical Properties of Two-Dimensional Islands of Tungsten Disulfide (WS2). , 2023, , .		0
3183	Evaluating Graphene and Molybdenum Disulfide Nanopores for DNA Sequencing. , 2023, , .		0
3228	High conversion continuous flow exfoliation of 2D MoS ₂ . Nanoscale Advances, 2023, 5, 6405-6409.	2.2	1
3235	Exploration of Molybdenum Disulfide Nanostructures Through Raman Mode Detection. Springer Proceedings in Materials, 2024, , 137-153.	0.1	0
3250	Recent advances in memristors based on two-dimensional ferroelectric materials. Frontiers of Physics, 2024, 19, .	2.4	2