Simple one-step synthesis of highly luminescent carbon as excellent bio-imaging agents

Chemical Communications

48, 8835

DOI: 10.1039/c2cc33796g

Citation Report

#	Article	IF	CITATIONS
7	A general route to make non-conjugated linear polymers luminescent. Chemical Communications, 2012, 48, 10889.	2.2	183
8	Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	75
9	Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 2013, 1, 4925.	2.7	275
10	Versatility with carbon dots $\hat{a} \in \text{``from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Advances, 2013, 3, 15604.}$	1.7	108
11	Blue and green luminescence of reduced graphene oxide quantum dots. Carbon, 2013, 63, 537-546.	5.4	66
12	Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. Journal of Chromatography A, 2013, 1304, 234-240.	1.8	66
13	Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites. Chemical Communications, 2013, 49, 8078.	2.2	150
14	Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Advances, 2013, 3, 15589.	1.7	42
16	Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Advances, 2013, 3, 13119.	1.7	106
17	Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst, The, 2013, 138, 6551.	1.7	241
18	Facile synthesis of core–shell–satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties. CrystEngComm, 2013, 15, 6305.	1.3	24
19	A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology, 2013, 24, 365101.	1.3	105
20	Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272.	2.8	1,018
21	Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 2013, 64, 424-434.	5.4	723
22	Preparation of highly luminescent and biocompatible carbon dots using a new extraction method. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
23	One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances, 2013, 3, 21691.	1.7	295
24	Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells. Nanotechnology, 2013, 24, 335502.	1.3	79
25	Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation. Dalton Transactions, 2013, 42, 13821.	1.6	108

#	Article	IF	CITATIONS
26	Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications, 2013, 49, 1103.	2.2	261
27	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	7.2	2,907
28	A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 2013, 3, 8286.	1.7	705
29	One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk – natural proteins. Journal of Materials Chemistry B, 2013, 1, 2868.	2.9	440
30	Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Materials Science and Engineering C, 2013, 33, 2914-2917.	3.8	262
31	Chemical Regulation of Carbon Quantum Dots from Synthesis to Photocatalytic Activity. Chemistry - an Asian Journal, 2013, 8, 1035-1041.	1.7	152
32	Preparation of high-quality biocompatible carbon dots by extraction, with new thoughts on the luminescence mechanisms. Nanotechnology, 2013, 24, 225601.	1.3	62
33	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	1.3	266
34	Highly sensitive and selective novel core–shell molecularly imprinted polymer based on NaYF4: Yb3+, Er3+ upconversion fluorescent nanorods. RSC Advances, 2013, 3, 3825.	1.7	22
35	Luminescence phenomena of biodegradable photoluminescent poly(diol citrates). Chemical Communications, 2013, 49, 6445.	2.2	95
36	Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.	5.4	560
37	Photoluminescent C-dots@RGO Probe for Sensitive and Selective Detection of Acetylcholine. Analytical Chemistry, 2013, 85, 3263-3270.	3.2	103
38	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247-259.	14.4	241
39	Label-free fluorimetric detection of histone using quaternized carbon dot–DNA nanobiohybrid. Chemical Communications, 2013, 49, 8851.	2.2	67
40	Industrial Waste-Derived Nanoparticles and Microspheres Can Be Potent Antimicrobial and Functional Ingredients. Hindawi Journal of Chemistry, 2014, 2014, 1-12.	1.6	12
41	Carbon Dot Based Sensing of Dopamine and Ascorbic Acid. Journal of Nanoparticles, 2014, 2014, 1-8.	1.4	53
42	Hydrothermal Carbonization of Spent Osmotic Solution (SOS) Generated from Osmotic Dehydration of Blueberries. Agriculture (Switzerland), 2014, 4, 239-259.	1.4	4
43	Cadmium-Free Quantum Dots for Biophotonic Imaging and Sensing. , 2014, , 1-27.		2

#	ARTICLE	IF	CITATIONS
44	From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability, 2014, $1,1.$	1.3	43
45	Dual functional carbonaceous nanodots exist in a cup of tea. RSC Advances, 2014, 4, 63414-63419.	1.7	39
46	Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. Journal of Drug Delivery, 2014, 2014, 1-9.	2.5	144
47	Preparation and Characterization of the Fluorescent Carbon Dots Derived from the Lithiumâ€Intercalated Graphite used for Cell Imaging. Particle and Particle Systems Characterization, 2014, 31, 771-777.	1.2	10
48	Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New Journal of Chemistry, 2014, 38, 906.	1.4	129
49	Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2014, 2, 4564.	2.9	258
50	Quantum size effect of poly(o-phenylenediamine) quantum dots: From controllable fabrication to tunable photoluminescence properties. Synthetic Metals, 2014, 198, 142-149.	2.1	42
51	Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging. Particle and Particle Systems Characterization, 2014, 31, 433-438.	1.2	56
52	Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Advances, 2014, 4, 54060-54065.	1.7	161
53	An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism. Chinese Physics B, 2014, 23, 128103.	0.7	13
54	Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications. Bioanalytical Reviews, $2014, 135-175$.	0.1	4
55	A ratiometric fluorescent nanoprobe for H ₂ O ₂ sensing and in vivo detection of drug-induced oxidative damage to the digestive system. Journal of Materials Chemistry B, 2014, 2, 8528-8537.	2.9	46
56	Synthesis of hydrophobic photoluminescent carbon nanodots by using L-tyrosine and citric acid through a thermal oxidation route. Beilstein Journal of Nanotechnology, 2014, 5, 1513-1522.	1.5	31
57	Design and development of fluorescent nanostructures for bioimaging. Progress in Polymer Science, 2014, 39, 365-395.	11.8	257
58	One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon, 2014, 68, 258-264.	5.4	308
59	Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon, 2014, 71, 87-93.	5.4	218
60	Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale, 2014, 6, 4676.	2.8	360
61	Photoluminescent Green Carbon Nanodots from Food-Waste-Derived Sources: Large-Scale Synthesis, Properties, and Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3365-3370.	4.0	405

#	Article	IF	CITATIONS
62	Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Materials Letters, 2014, 123, 107-111.	1.3	86
63	One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering C, 2014, 38, 20-27.	3.8	342
64	Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chemistry, 2014, 16, 2509.	4.6	159
65	Applications of quantum dots with upconverting luminescence in bioimaging. Journal of Photochemistry and Photobiology B: Biology, 2014, 135, 23-32.	1.7	33
66	Synthesis of Ultraâ€Stable Fluorescent Carbon Dots from Polyvinylpyrrolidone and Their Application in the Detection of Hydroxyl Radicals. Chemistry - an Asian Journal, 2014, 9, 1054-1059.	1.7	32
67	Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Advances, 2014, 4, 21101.	1.7	61
68	Biological applications of carbon dots. Science China Chemistry, 2014, 57, 522-539.	4.2	77
69	Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off―fluorescent probe for detection of Hg2+ ions. Biosensors and Bioelectronics, 2014, 55, 83-90.	5.3	778
70	Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. New Journal of Chemistry, 2014, 38, 784.	1.4	106
71	Carbon dots in magnetic colloidal nanocrystal clusters. RSC Advances, 2014, 4, 58758-58761.	1.7	4
72	One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag ⁺ detection. RSC Advances, 2014, 4, 62446-62452.	1.7	38
73	Nitrogen-doped carbon dots as multifunctional fluorescent probes. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	20
74	Fluorescent Carbonaceous Nanodots for Noninvasive Glioma Imaging after Angiopep-2 Decoration. Bioconjugate Chemistry, 2014, 25, 2252-2259.	1.8	45
75	High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H ₂ O ₂ , Ag ⁺ and Fe ³⁺ . RSC Advances, 2014, 4, 17387-17392.	1.7	103
76	Synthesis and Unique Photoluminescence Properties of Nitrogenâ∈Rich Quantum Dots and Their Applications. Angewandte Chemie - International Edition, 2014, 53, 12542-12547.	7.2	159
77	Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances, 2014, 4, 58084-58089.	1.7	31
78	Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water. RSC Advances, 2014, 4, 57137-57143.	1.7	66
79	Nitrogen-doped photoluminescent carbon nanospheres: green, simple synthesis via hair and application as a sensor for Hg ²⁺ ions. RSC Advances, 2014, 4, 37342.	1.7	45

#	Article	IF	Citations
80	Graphitic nanoparticles from thermal dissociation of camphor as an effective filler in polymeric coatings. RSC Advances, 2014, 4, 23043-23049.	1.7	17
81	Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology, 2014, 25, 315702.	1.3	133
82	Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH ₄ OH passivation. Journal of Materials Chemistry C, 2014, 2, 9760-9766.	2.7	92
83	Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale, 2014, 6, 8162.	2.8	89
84	Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags. RSC Advances, 2014, 4, 47169-47176.	1.7	46
85	Sustainable alternative in environmental monitoring using carbon nanoparticles as optical probes. Trends in Environmental Analytical Chemistry, 2014, 3-4, 36-42.	5 . 3	12
86	Accelerated reducing synthesis of $Ag@CDs$ composite and simultaneous determination of glucose during the synthetic process. RSC Advances, 2014, 4, 3992-3997.	1.7	19
87	One-step synthesis of noble metal/oxide nanocomposites with tunable size of noble metal particles and their size-dependent catalytic activity. RSC Advances, 2014, 4, 30624-30629.	1.7	19
88	Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H ₂ production. RSC Advances, 2014, 4, 44117-44123.	1.7	89
89	Nitrogen-doped carbon dots with heterogeneous multi-layered structures. RSC Advances, 2014, 4, 37536.	1.7	42
90	Antioxidative, Hemocompatible, Fluorescent Carbon Nanodots from an "End-of-Pipe―Agricultural Waste: Exploring Its New Horizon in the Food-Packaging Domain. Journal of Agricultural and Food Chemistry, 2014, 62, 4509-4520.	2.4	53
91	Bioimaging based on fluorescent carbon dots. RSC Advances, 2014, 4, 27184.	1.7	335
92	Polyol-mediated C-dot formation showing efficient Tb ³⁺ /Eu ³⁺ emission. Chemical Communications, 2014, 50, 7503-7506.	2.2	49
93	A facile, green, and solvent-free route to nitrogen–sulfur-codoped fluorescent carbon nanoparticles for cellular imaging. RSC Advances, 2014, 4, 11872-11875.	1.7	51
94	Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 2014, 42, 1252-1258.	0.9	68
95	Preparation of multicolor emitting carbon dots for HeLa cell imaging. New Journal of Chemistry, 2014, 38, 6152-6160.	1.4	215
96	Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2014, 2, 6921.	2.7	1,814
97	Better understanding of carbon nanoparticles via highâ€performance liquid chromatographyâ€fluorescence detection and mass spectrometry. Electrophoresis, 2014, 35, 2454-2462.	1.3	36

#	Article	IF	CITATIONS
98	Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. Journal of Biotechnology, 2014, 189, 114-119.	1.9	42
99	Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sensors and Actuators B: Chemical, 2014, 202, 741-747.	4.0	95
100	Surface passivated carbon nanodots prepared by microwave assisted pyrolysis: effect of carboxyl group in precursors on fluorescence properties. RSC Advances, 2014, 4, 18818-18826.	1.7	36
101	Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured imaging of E. coli and sensing cholesterol. RSC Advances, 2014, 4, 30100.	1.7	81
102	Facile hydrothermal synthesis of carbon nanoparticles and possible application as white light phosphors and catalysts for the reduction of nitrophenol. RSC Advances, 2014, 4, 11481.	1.7	34
103	Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. Journal of Materials Chemistry C, 2014, 2, 7477-7481.	2.7	150
104	One-step synthesis of fluorescent carbon nanoparticles for degradation of naphthol green under visible light. Journal of Luminescence, 2014, 156, 36-40.	1.5	12
105	Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and application as a photosensitizer. Applied Surface Science, 2014, 315, 66-72.	3.1	31
106	Membrane analysis with amphiphilic carbon dots. Chemical Communications, 2014, 50, 10299-10302.	2.2	84
107	Luminescent magnetic hollow mesoporous silica nanotheranostics for camptothecin delivery and multimodal imaging. Journal of Materials Chemistry B, 2014, 2, 3799-3808.	2.9	63
109	One-pot green synthesis of water-soluble carbon nanodots with multicolor photoluminescence from polyethylene glycol. Journal of Materials Chemistry B, 2014, 2, 3937-3945.	2.9	76
110	Sodium hydroxide-mediated hydrogel of citrus pectin for preparation of fluorescent carbon dots for bioimaging. Colloids and Surfaces B: Biointerfaces, 2014, 123, 493-497.	2.5	42
111	Preparation and photoluminescent properties of magnetic Ni@SiO2–CDs fluorescent nanocomposites. RSC Advances, 2014, 4, 7435.	1.7	11
112	Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale, 2014, 6, 13817-13823.	2.8	497
113	Carbon dotsâ€"Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9, 590-603.	6.2	788
114	Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application. Analytical Chemistry, 2014, 86, 8902-8905.	3.2	484
115	Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. RSC Advances, 2014, 4, 51658-51665.	1.7	52
116	Carbon nanodots as reductant and stabilizer for one-pot sonochemical synthesis of amorphous carbon-supported silver nanoparticles for electrochemical nonenzymatic H2O2 sensing. Journal of Electroanalytical Chemistry, 2014, 728, 26-33.	1.9	39

#	Article	IF	CITATIONS
117	Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale, 2014, 6, 7410-7415.	2.8	201
118	Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors. Applied Surface Science, 2014, 301, 156-160.	3.1	54
119	Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances, 2014, 4, 10791.	1.7	298
120	Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2014, 2, 8660.	5.2	405
121	Carbon nanodots from date molasses: new nanolights for the in vitro scavenging of reactive oxygen species. Journal of Materials Chemistry B, 2014, 2, 6839-6847.	2.9	109
122	Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry. RSC Advances, 2014, 4, 18065-18073.	1.7	88
123	Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Advances, 2014, 4, 20915-20921.	1.7	112
124	A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science, 2014, 422, 25-29.	5.0	53
125	Bifunctional Peppermint Oil Nanoparticles for Antibacterial Activity and Fluorescence Imaging. ACS Sustainable Chemistry and Engineering, 2014, 2, 1769-1775.	3.2	26
126	A Targeted and FRETâ€Based Ratiometric Fluorescent Nanoprobe for Imaging Mitochondrial Hydrogen Peroxide in Living Cells. Small, 2014, 10, 964-972.	5.2	144
127	Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 2014, 60, 292-298.	5. 3	387
128	Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon, 2014, 77, 775-782.	5.4	315
129	Luminescence properties of silk cocoon derived carbonaceous fluorescent nanoparticles/PVA hybrid film. Optical Materials, 2014, 36, 1787-1791.	1.7	8
130	PEGylated Fluorescent Carbon Nanoparticles for Noninvasive Heart Imaging. Bioconjugate Chemistry, 2014, 25, 1061-1068.	1.8	43
131	Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. Journal of Colloid and Interface Science, 2014, 429, 77-82.	5.0	17
132	One-pot Hydrothermal Synthesis of N-Doped Carbon Quantum Dots Using the Waste of Shrimp for Hydrogen Evolution from Formic Acid. Chemistry Letters, 2015, 44, 241-243.	0.7	26
133	Selective Probing of Gaseous Ammonia Using Redâ€Emitting Carbon Dots Based on an Interfacial Response Mechanism. Chemistry - A European Journal, 2015, 21, 18993-18999.	1.7	56
134	H ₂ O ₂ -Assisted Hydrothermal Process: A Green, Versatile Route to Synthesize Size-Controllable Nitrogen-Doped Fluorescent Carbon Nanoparticles from Natural Macromolecules. Particle and Particle Systems Characterization, 2015, 32, 176-181.	1.2	11

#	Article	IF	CITATIONS
136	An Efficient Templating Approach for the Synthesis of Redispersible Sizeâ€Controllable Carbon Quantum Dots from Graphitic Polymeric Micelles. Chemistry - A European Journal, 2015, 21, 15142-15147.	1.7	27
137	Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study. PLoS ONE, 2015, 10, e0144906.	1.1	133
138	Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg2+ with high sensitivity and selectivity. New Journal of Chemistry, 2015, 39, 6201-6206.	1.4	27
139	Generation of nitrogen-doped photoluminescent carbonaceous nanodots via the hydrothermal treatment of fish scales for the detection of hypochlorite. RSC Advances, 2015, 5, 44636-44641.	1.7	48
140	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
141	Largeâ€Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. Advanced Optical Materials, 2015, 3, 103-111.	3.6	93
142	Fluorescent carbon quantum dots, capacitance and catalysis active porous carbon microspheres from beer. RSC Advances, 2015, 5, 48665-48674.	1.7	26
143	Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation. Scientific Reports, 2015, 5, 10012.	1.6	88
144	Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 6764-6770.	2.7	51
145	Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015, 7, 20743-20748.	2.8	86
146	A Review of Hydrophilization of Oxidized Nanocarbons. ACS Symposium Series, 2015, , 25-41.	0.5	1
147	Facile Microwaveâ€Assisted Solidâ€Phase Synthesis of Highly Fluorescent Nitrogen–Sulfurâ€Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry - A European Journal, 2015, 21, 13004-13011.	1.7	101
148	Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent. Applied Surface Science, 2015, 328, 368-373.	3.1	73
149	Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Analytica Chimica Acta, 2015, 861, 74-84.	2.6	283
150	Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Biosensors and Bioelectronics, 2015, 64, 517-522.	5.3	100
151	Carbon dot based nanopowders and their application for fingerprint recovery. Chemical Communications, 2015, 51, 4902-4905.	2.2	113
152	Biomassâ€Derived Carbon Quantum Dot Sensitizers for Solidâ€State Nanostructured Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 4463-4468.	7.2	315
153	Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting. RSC Advances, 2015, 5, 16368-16375.	1.7	62

#	Article	IF	CITATIONS
154	One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Analytical Methods, 2015, 7, 2373-2378.	1.3	113
155	Purification, organophilicity and transparent fluorescent bulk material fabrication derived from hydrophilic carbon dots. RSC Advances, 2015, 5, 14492-14496.	1.7	4
156	Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Science China Chemistry, 2015, 58, 863-870.	4.2	44
157	Simple and Efficient Synthesis of Strongly Green Fluorescent Carbon Dots with Upconversion Property for Direct Cell Imaging. Particle and Particle Systems Characterization, 2015, 32, 542-546.	1.2	33
158	Theoretical and experimental study of folic acid conjugated silver nanoparticles through electrostatic interaction for enhance antibacterial activity. RSC Advances, 2015, 5, 21515-21524.	1.7	35
159	Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. Journal of Materials Chemistry C, 2015, 3, 2798-2801.	2.7	145
160	Scaleâ€Up Synthesis of Fragrant Nitrogenâ€Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis. Advanced Science, 2015, 2, 1500002.	5.6	164
161	One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators B: Chemical, 2015, 213, 434-443.	4.0	394
162	Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon, 2015, 93, 999-1007.	5.4	103
163	Fluorescent chemosensor for pyridine based on N-doped carbon dots. Journal of Colloid and Interface Science, 2015, 458, 209-216.	5.0	56
164	A luminescent mesoporous zirconium complex and it as a precursor of environmentally benign catalysts. Microporous and Mesoporous Materials, 2015, 213, 100-107.	2.2	5
165	Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice. Journal of Fluorescence, 2015, 25, 803-810.	1.3	137
166	Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing. Sensors and Actuators B: Chemical, 2015, 221, 769-776.	4.0	74
167	Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. Journal of Materials Chemistry B, 2015, 3, 6783-6789.	2.9	140
168	Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. Journal of Materials Chemistry B, 2015, 3, 6813-6819.	2.9	144
169	Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe. RSC Advances, 2015, 5, 65913-65921.	1.7	66
170	Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c. Biosensors and Bioelectronics, 2015, 74, 498-503.	5.3	72
171	High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios. Langmuir, 2015, 31, 8063-8073.	1.6	175

#	Article	IF	CITATIONS
172	Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chemistry, 2015, 17, 4107-4132.	4.6	324
173	Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties. Journal of Materials Chemistry A, 2015, 3, 15074-15081.	5.2	31
174	Development of a Carbon Dot (C-Dot)-Linked Immunosorbent Assay for the Detection of Human \hat{l}_{\pm} -Fetoprotein. Analytical Chemistry, 2015, 87, 8510-8516.	3.2	100
175	Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16609-16616.	4.0	100
176	Property relationship of alginate and alginate–carbon dot nanocomposites with bivalent and trivalent cross-linker ions. RSC Advances, 2015, 5, 62864-62870.	1.7	30
177	Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. Journal of Colloid and Interface Science, 2015, 456, 1-6.	5.0	70
178	Biogenic Synthesis of Fluorescent Carbon Dots at Ambient Temperature Using Azadirachta indica (Neem) gum. Journal of Fluorescence, 2015, 25, 1103-1107.	1.3	41
179	Design of Fe ₃ O ₄ @SiO ₂ @Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion. Langmuir, 2015, 31, 8111-8120.	1.6	80
181	Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst, The, 2015, 140, 4260-4269.	1.7	412
182	Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites. Applied Surface Science, 2015, 347, 428-434.	3.1	35
183	Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 17-24.	1.3	46
184	Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. Journal of Controlled Release, 2015, 210, 230-245.	4.8	187
185	Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds. Journal of Alloys and Compounds, 2015, 642, 148-152.	2.8	16
186	Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers. Journal of Materials Chemistry B, 2015, 3, 4577-4584.	2.9	51
187	Novel pH sensitive N-doped carbon dots with both long fluorescence lifetime and high quantum yield. RSC Advances, 2015, 5, 32319-32322.	1.7	99
188	Integrative Selfâ€Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials, 2015, 25, 3183-3192.	7.8	62
189	Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Advances, 2015, 5, 46817-46822.	1.7	242
190	Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres. RSC Advances, 2015, 5, 25428-25436.	1.7	12

#	Article	IF	CITATIONS
191	Cancer Nanotheranostics. SpringerBriefs in Applied Sciences and Technology, 2015, , .	0.2	6
192	Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 309, 8-14.	2.0	94
193	Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chemistry, 2015, 17, 3791-3797.	4.6	337
194	Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chemical Communications, 2015, 51, 7164-7167.	2.2	86
195	DNA–Carbon Dots Function as Fluorescent Vehicles for Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6889-6897.	4.0	181
196	Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging. RSC Advances, 2015, 5, 31250-31254.	1.7	67
197	Green synthesis of fluorescent carbon nanoparticles from lychee (Litchi chinensis) plant. Korean Journal of Chemical Engineering, 2015, 32, 1707-1711.	1.2	17
198	A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. RSC Advances, 2015, 5, 87528-87534.	1.7	38
199	Light emitting diodes based on carbon dots derived from food, beverage, and combustion wastes. Physical Chemistry Chemical Physics, 2015, 17, 27642-27652.	1.3	87
200	Fluorescent Nanoparticles from Several Commercial Beverages: Their Properties and Potential Application for Bioimaging. Journal of Agricultural and Food Chemistry, 2015, 63, 8527-8533.	2.4	64
201	Identification of Carbon Dots in Waste Cooking Oil. Advanced Materials Research, 0, 1123, 402-405.	0.3	6
202	Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Advances, 2015, 5, 84276-84279.	1.7	5
203	Fluorescent carbon â€~quantum' dots from thermochemical functionalization of carbon nanoparticles. Chemical Physics Letters, 2015, 639, 109-113.	1.2	10
204	Single and repeated dose toxicity of citric acid-based carbon dots and a derivative in mice. RSC Advances, 2015, 5, 91398-91406.	1.7	25
205	Multicolor Nitrogen-Doped Carbon Dots for Live Cell Imaging. Journal of Biomedical Nanotechnology, 2015, 11, 780-788.	0.5	63
206	A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Advances, 2015, 5, 90245-90254.	1.7	60
207	Fluorescent citric acid-modified silicone materials. RSC Advances, 2015, 5, 90473-90477.	1.7	11
208	An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite. RSC Advances, 2015, 5, 74692-74704.	1.7	49

#	Article	IF	CITATIONS
209	Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe 3+ detection. Applied Surface Science, 2015, 356, 747-752.	3.1	120
210	A facile, green synthesis of highly fluorescent carbon nanoparticles from oatmeal for cell imaging. Journal of Materials Chemistry C, 2015, 3, 9514-9518.	2.7	52
211	N-doped carbon dots derived from bovine serum albumin and formic acid with one- and two-photon fluorescence for live cell nuclear imaging. Colloids and Surfaces B: Biointerfaces, 2015, 136, 141-149.	2.5	44
212	High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with inÂvitro cytocompatibility. Composites Science and Technology, 2015, 118, 39-46.	3.8	69
213	Development of Statues from Domestic Waste Composites Coated with Carboneus Phosphor Materials. Advanced Materials Research, 2015, 1112, 406-409.	0.3	0
214	Synthesis of Sulfur-Doped Carbon Dots by Simple Heating Method. Advanced Materials Research, 0, 1123, 233-236.	0.3	5
215	Tumor cell responses to carbon dots derived from chondroitin sulfate. RSC Advances, 2015, 5, 81388-81394.	1.7	10
216	Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(<scp>ii</scp>) ions into cancer cells. Nanoscale, 2015, 7, 16841-16847.	2.8	99
217	Facile synthesis of nitrogen-doped carbon dots and its application as sensing probes for serum iron. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	12
218	Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages. RSC Advances, 2015, 5, 97836-97840.	1.7	22
219	Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles. Current Opinion in Colloid and Interface Science, 2015, 20, 354-361.	3.4	39
220	Porous carbon quantum dots: one step green synthesis via < scp > l < /scp > - cysteine and applications in metal ion detection. RSC Advances, 2015, 5, 2039-2046.	1.7	43
221	One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide. Journal of Materials Chemistry C, 2015, 3, 789-795.	2.7	54
222	Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). Journal of Materials Chemistry B, 2015, 3, 700-706.	2.9	86
223	Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor. Materials Science and Engineering C, 2015, 48, 700-703.	3.8	48
224	One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 2015, 68, 1-6.	5.3	141
225	Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale, 2015, 7, 2504-2510.	2.8	100
226	Unexpected Fluorescence of Polyols and PEGylated Nanoparticles Derived from Carbon Dot Formation. Particle and Particle Systems Characterization, 2015, 32, 467-475.	1.2	21

#	Article	IF	CITATIONS
227	Carbon quantum dots as a macromolecular crowder. RSC Advances, 2015, 5, 4489-4492.	1.7	11
228	Fluorescent labels in biosensors for pathogen detection. Critical Reviews in Biotechnology, 2015, 35, 82-93.	5.1	71
229	Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Scientific Reports, 2014, 4, 4665.	1.6	93
230	Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chemical Papers, 2015, 69, .	1.0	30
231	Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(<scp>ii</scp>) detection and bioimaging. Journal of Materials Chemistry C, 2015, 3, 73-78.	2.7	284
232	A fluorescent turn-off/on method based on carbon dots as fluorescent probes for the sensitive determination of Pb2+ and pyrophosphate in an aqueous solution. Sensors and Actuators B: Chemical, 2015, 207, 25-33.	4.0	91
233	Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology. Materials Science and Engineering C, 2015, 47, 325-332.	3.8	107
234	Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. Journal of Colloid and Interface Science, 2015, 437, 28-34.	5.0	67
235	Carbon quantum dots and their applications. Chemical Society Reviews, 2015, 44, 362-381.	18.7	3,811
236	Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosensors and Bioelectronics, 2015, 64, 119-125.	5.3	142
237	Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers, 2015, 115, 238-245.	5.1	192
238	Carbon Nanodots from Frying Oil as Catalyst for Photocatalytic Degradation of Methylene Blue Assisted Solar Light Irradiation. American Journal of Applied Sciences, 2016, 13, 432-438.	0.1	12
239	Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging. Nanomaterials, 2016, 6, 130.	1.9	17
240	Biodegradable Nitrogen-Doped Carbon Nanodots for Non-Invasive Photoacoustic Imaging and Photothermal Therapy. Theranostics, 2016, 6, 2196-2208.	4.6	138
241	Ionic liquid-assisted electrochemical exfoliation of carbon dots of different size for fluorescent imaging of bacteria by tuning the water fraction in electrolyte. Mikrochimica Acta, 2016, 183, 2525-2532.	2.5	31
242	Influence of Inert and Oxidizing Atmospheres on the Physical and Optical Properties of Luminescent Carbon Dots Prepared through Pyrolysis of a Model Molecule. Chemistry - A European Journal, 2016, 22, 4556-4563.	1.7	12
243	Controlled Synthesis of Recyclable, Porous FMO/C@TiO ₂ Core–Shell Nanofibers with High Adsorption and Photocatalysis Properties for the Efficient Treatment of Dye Wastewater. ChemPlusChem, 2016, 81, 282-291.	1.3	11
244	Multifunctional carbon dots as efficient fluorescent nanotags for tracking cells through successive generations. Journal of Materials Chemistry B, 2016, 4, 4862-4871.	2.9	17

#	ARTICLE	IF	CITATIONS
245	A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans. Journal of Fluorescence, 2016, 26, 1541-1548.	1.3	19
246	Synthetic Developments of Nontoxic Quantum Dots. ChemPhysChem, 2016, 17, 598-617.	1.0	80
247	Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids. Scientific Reports, 2016, 6, 38252.	1.6	6
248	High performance bio-based hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent. Biofabrication, 2016, 8, 045013.	3.7	54
249	Template synthesis of monodisperse carbon nanodots. Physics of the Solid State, 2016, 58, 2545-2549.	0.2	31
250	Highly efficient photocatalysis toward tetracycline under simulated solar-light by Ag+-CDs-Bi2WO6: Synergistic effects of silver ions and carbon dots. Applied Catalysis B: Environmental, 2016, 192, 277-285.	10.8	79
251	Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon, 2016, 104, 33-39.	5.4	117
252	Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. Materials Science and Engineering C, 2016, 68, 37-42.	3.8	26
253	Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots. Journal of Luminescence, 2016, 178, 314-323.	1.5	67
254	Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells. Sensors and Actuators B: Chemical, 2016, 235, 179-187.	4.0	76
255	Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. New Carbon Materials, 2016, 31, 135-143.	2.9	57
256	Cellulose nanocrystals: A versatile precursor for the preparation of different carbon structures and luminescent carbon dots. Industrial Crops and Products, 2016, 93, 121-128.	2.5	44
257	Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 154-161.	1.7	261
258	All-Carbon Nanosized Hybrid Materials: Fluorescent Carbon Dots Conjugated to Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 8550-8558.	1.5	15
259	Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9961-9968.	4.0	88
260	Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties. Applied Surface Science, 2016, 367, 518-527.	3.1	26
261	Nitrogen-Doping Enhanced Fluorescent Carbon Dots: Green Synthesis and Their Applications for Bioimaging and Label-Free Detection of Au ³⁺ lons. ACS Sustainable Chemistry and Engineering, 2016, 4, 3053-3061.	3.2	194
262	A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles. Journal of Luminescence, 2016, 177, 228-234.	1.5	37

#	Article	IF	CITATIONS
263	Domestic pressure cooker as inexpensive hydrothermal vessel: Demonstrated utility for eco-friendly synthesis of non-toxic carbon dots. Nano Structures Nano Objects, 2016, 6, 52-58.	1.9	21
264	Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal, 2016, 300, 75-82.	6.6	208
265	Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation. Carbon, 2016, 105, 416-423.	5.4	25
266	Pseudo-multicolor carbon dots emission and the dilution-induced reversible fluorescence shift. RSC Advances, 2016, 6, 44024-44028.	1.7	24
267	Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Applied Surface Science, 2016, 384, 432-441.	3.1	177
268	Solid phase reaction method for preparation of carbon dots and multi-purpose applications. Sensors and Actuators B: Chemical, 2016, 234, 15-20.	4.0	18
269	A hydrothermal route for synthesizing highly luminescent sulfur- and nitrogen-co-doped carbon dots as nanosensors for Hg ²⁺ . RSC Advances, 2016, 6, 86436-86442.	1.7	22
270	Low dark current and improved detectivity of hybrid ultraviolet photodetector based on carbon-quantum-dots/zinc-oxide-nanorod composites. Organic Electronics, 2016, 39, 250-257.	1.4	45
271	Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. Journal of Materials Chemistry B, 2016, 4, 7130-7137.	2.9	109
272	Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon, 2016, 110, 278-285.	5.4	121
273	A novel fluorescent carbon dots derived from tamarind. Chemical Physics Letters, 2016, 661, 179-184.	1.2	66
274	Microwave-assisted hydrothermal synthesis of UV-emitting carbon dots from tannic acid. New Journal of Chemistry, 2016, 40, 8110-8117.	1.4	40
275	Blue photoluminescent carbon nanodots from limeade. Materials Science and Engineering C, 2016, 69, 914-921.	3.8	49
276	Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. Journal of Alloys and Compounds, 2016, 688, 611-619.	2.8	92
277	Soy flour-derived carbon dots: facile preparation, fluorescence enhancement, and sensitive Fe3+ detection. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	27
278	Lightâ€Active Carbon Nanodots from Autoclaved Bioresources. ChemistrySelect, 2016, 1, 608-611.	0.7	3
279	Synthesis of Cellulose-Based Carbon Dots for Bioimaging. ChemistrySelect, 2016, 1, 1314-1317.	0.7	59
280	Fabrication of new gas diffusion electrode based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14684-14691.	3.8	25

#	Article	IF	CITATIONS
281	Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe ³⁺ ions in cancer cells. Luminescence, 2016, 31, 81-87.	1.5	142
282	Hydrothermal synthesis of carbon quantum dots and study of its photoluminecence property. , 2016, ,		2
283	In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Scientific Reports, 2016, 6, 37860.	1.6	44
284	On the article "Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles―[J. Control. Release 224 (2016) 229–238]. Journal of Controlled Release, 2016, 243, 382-385.	4.8	10
285	Molecular origin of photoluminescence of carbon dots: aggregation-induced orange-red emission. Physical Chemistry Chemical Physics, 2016, 18, 28274-28280.	1.3	143
286	Simultaneously obtaining fluorescent carbon dots and porous active carbon for supercapacitors from biomass. RSC Advances, 2016, 6, 88674-88682.	1.7	32
287	Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Advances, 2016, 6, 72423-72432.	1.7	336
288	One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli. RSC Advances, 2016, 6, 72471-72478.	1.7	38
289	Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-Inflammation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32706-32716.	4.0	140
290	Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Scientific Reports, 2016, 6, 31100.	1.6	136
291	One-pot microwave-assisted in situ reduction of Ag ⁺ and Au ³⁺ ions by Citrus limon extract and their carbon-dots based nanohybrids: a potential nano-bioprobe for cancer cellular imaging. RSC Advances, 2016, 6, 103482-103490.	1.7	30
292	Coordination-driven multilayer of phosvitin-polyphenol functional nanofibrous membranes: antioxidant and biomineralization applications for tissue engineering. RSC Advances, 2016, 6, 98935-98944.	1.7	5
293	White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific Reports, 2016, 6, 28557.	1.6	54
294	Polymer Dots of Peryleneimide-Functionalized Polyethyleneimine: Facile Synthesis and Effective Fluorescent Sensing of Iron (III) Ions. Macromolecular Rapid Communications, 2016, 37, 2052-2056.	2.0	12
295	Synthesis of silicon nanowire and carbon quantum dot hybrid nanostructure and study of its photoresponse property. , 2016, , .		0
296	N,Sâ€Induced Electronic States of Carbon Nanodots Toward White Electroluminescence. Advanced Optical Materials, 2016, 4, 276-284.	3.6	60
297	Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia, 2016, 41, 1-16.	4.1	175
298	Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 2016, 4, 6927-6945.	2.7	408

#	Article	IF	CITATIONS
299	Novel thermal quenching characteristics of luminescent carbon nanodots via tailoring the surface chemical groups. Carbon, 2016, 104, 226-232.	5.4	28
300	Ionic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Advances, 2016, 6, 61292-61300.	1.7	24
301	Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, 2016, , .	0.1	18
302	Carbon Based Dots and Their Luminescent Properties and Analytical Applications. Carbon Nanostructures, 2016, , 161-238.	0.1	9
303	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	2.8	378
304	Highly luminescent N-doped carbon quantum dots from lemon juice with porphyrin-like structures surrounded by graphitic network for sensing applications. RSC Advances, 2016, 6, 59927-59934.	1.7	51
305	Synthesis of cell-penetrated nitrogen-doped carbon dots by hydrothermal treatment of eggplant sepals. Science China Chemistry, 2016, 59, 836-842.	4.2	17
306	Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties. Nanotechnology, 2016, 27, 295202.	1.3	18
307	An investigation on the chemical structure of nitrogen and sulfurÂcodoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 5347-5357.	1.9	31
308	Single step synthesized sulfur and nitrogen doped carbon nanodots from whey protein: nanoprobes for longterm cell tracking crossing the barrier of photo-toxicity. RSC Advances, 2016, 6, 60794-60805.	1.7	19
309	Facilely prepared carbon dots and rare earth ion doped hybrid composites for ratio-metric pH sensing and white-light emission. RSC Advances, 2016, 6, 61468-61472.	1.7	32
310	Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sensors and Actuators B: Chemical, 2016, 237, 408-415.	4.0	146
311	A biocompatible poly(N-vinylimidazole)-dot with both strong luminescence and good catalytic activity. RSC Advances, 2016, 6, 2141-2148.	1.7	19
312	Highly Hydrophilic Luminescent Magnetic Mesoporous Carbon Nanospheres for Controlled Release of Anticancer Drug and Multimodal Imaging. Langmuir, 2016, 32, 1611-1620.	1.6	66
313	Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Analytica Chimica Acta, 2016, 911, 100-107.	2.6	14
314	Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Advances, 2016, 6, 18134-18140.	1.7	57
315	Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Advances, 2016, 6, 15192-15200.	1.7	76
316	Microwave synthesis of carbon dots with multi-response using denatured proteins as carbon source. RSC Advances, 2016, 6, 11711-11718.	1.7	51

#	Article	IF	CITATIONS
317	Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Optics Express, 2016, 24, A312.	1.7	235
318	Transformation of crystalline starch nanoparticles into highly luminescent carbon nanodots: Toxicity studies and their applications. Carbohydrate Polymers, 2016, 137, 488-496.	5.1	27
319	Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors and Actuators B: Chemical, 2016, 226, 506-511.	4.0	176
320	A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochimica Acta, 2016, 183, 519-542.	2.5	510
321	High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosensors and Bioelectronics, 2016, 79, 1-8.	5.3	143
322	White light emission from a mixture of pomegranate extract and carbon nanoparticles obtained from the extract. Journal of Materials Chemistry C, 2016, 4, 3131-3137.	2.7	47
323	Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a "turn-on―fluorescent probe for cystein, glutathione and homocysteine. Mikrochimica Acta, 2016, 183, 1409-1416.	2.5	108
324	Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Mikrochimica Acta, 2016, 183, 1611-1618.	2.5	82
325	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	1.7	238
326	Insecticide as a precursor to prepare highly bright carbon dots for patterns printing and bioimaging: A new pathway for making poison profitable. Chemical Engineering Journal, 2016, 294, 323-332.	6.6	44
327	Water soluble luminescent cyclometalated platinum(II) complex â€" A suitable probe for bio-imaging applications. Inorganic Chemistry Communication, 2016, 67, 107-111.	1.8	23
328	A review of carbon dots in biological applications. Journal of Materials Science, 2016, 51, 4728-4738.	1.7	263
329	Facile and Purification-Free Synthesis of Nitrogenated Amphiphilic Graphitic Carbon Dots. Chemistry of Materials, 2016, 28, 1481-1488.	3.2	74
330	Functionalized C@TiO ₂ hollow spherical architecture for multifunctional applications. Dalton Transactions, 2016, 45, 5111-5121.	1.6	16
331	Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale, 2016, 8, 6770-6776.	2.8	214
332	Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, 2016, , .	0.1	4
333	The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chemical Reviews, 2016, 116, 3436-3486.	23.0	1,895
334	Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Advances, 2016, 6, 27829-27835.	1.7	91

#	Article	IF	CITATIONS
335	Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal. RSC Advances, 2016, 6, 29545-29553.	1.7	56
336	Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+. Nanoscale Research Letters, 2016, 11, 110.	3.1	150
337	Iron(III) porphyrin supported on S and N co-doped graphene quantum dot as an efficient photocatalyst for aerobic oxidation of alcohols under visible light irradiation. Applied Catalysis A: General, 2016, 517, 100-109.	2.2	55
338	Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 235-242.	1.7	271
339	Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Advances, 2016, 6, 28633-28639.	1.7	198
340	Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New Journal of Chemistry, 2016, 40, 1698-1703.	1.4	167
341	Fluorescent carbon dots derived from lactose for assaying folic acid. Science China Chemistry, 2016, 59, 487-492.	4.2	35
342	One-pot synthesis of polyamines improved magnetism and fluorescence Fe ₃ O ₄ –carbon dots hybrid NPs for dual modal imaging. Dalton Transactions, 2016, 45, 5484-5491.	1.6	42
343	Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction. Nanoscale, 2016, 8, 2219-2226.	2.8	61
344	Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 2016, 19, 382-393.	8.3	575
345	Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. Journal of Environmental Chemical Engineering, 2016, 4, 835-856.	3.3	77
346	Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. Journal of Materials Chemistry B, 2016, 4, 387-393.	2.9	143
347	Unravelling the Multiple Emissive States in Citric-Acid-Derived Carbon Dots. Journal of Physical Chemistry C, 2016, 120, 1252-1261.	1.5	255
348	Size controllable preparation of graphitic quantum dots and their photoluminescence behavior. Materials Letters, 2016, 162, 56-59.	1.3	3
349	Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sensors and Actuators B: Chemical, 2016, 222, 857-863.	4.0	49
350	Plant-derived nanostructures: types and applications. Green Chemistry, 2016, 18, 20-52.	4.6	341
351	Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnology Letters, 2016, 38, 191-201.	1.1	58
352	Hierarchical ZnO/S,N:GQD composites: Biotemplated synthesis and enhanced visible-light-driven photocatalytic activity. Applied Surface Science, 2017, 391, 484-490.	3.1	48

#	Article	IF	Citations
353	Chiroptical luminescent nanostructured cellulose films. Materials Chemistry Frontiers, 2017, 1, 979-987.	3.2	51
354	Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine and Pharmacotherapy, 2017, 87, 209-222.	2.5	419
356	Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers. Acta Biomaterialia, 2017, 50, 361-369.	4.1	45
357	Terbium–Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties. ACS Nano, 2017, 11, 1973-1981.	7.3	27
358	Carbonâ€Nanodot Solar Cells from Renewable Precursors. ChemSusChem, 2017, 10, 1004-1013.	3.6	57
359	Plantâ€Mediated Biogenic Synthesis of Palladium Nanoparticles: Recent Trends and Emerging Opportunities. ChemBioEng Reviews, 2017, 4, 18-36.	2.6	50
360	Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells. ChemPhotoChem, 2017, 1, 116-119.	1.5	51
361	Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. Journal of Controlled Release, 2017, 248, 144-152.	4.8	51
362	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	1.7	60
363	Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions. Ceramics International, 2017, 43, 7011-7019.	2.3	42
364	Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosensors and Bioelectronics, 2017, 94, 292-297.	5.3	263
365	Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder (4% ash) by laser ablation in solution. Materials Research Bulletin, 2017, 91, 220-226.	2.7	32
366	One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III). Sensors and Actuators B: Chemical, 2017, 245, 835-844.	4.0	77
367	A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin. Canadian Journal of Chemistry, 2017, 95, 641-648.	0.6	18
368	Multicolor Functional Carbon Dots via One-Step Refluxing Synthesis. ACS Sensors, 2017, 2, 354-363.	4.0	130
369	Biological and catalytic applications of green synthesized fluorescent N-doped carbon dots using Hylocereus undatus. Journal of Photochemistry and Photobiology B: Biology, 2017, 168, 142-148.	1.7	128
370	Experimental Investigations on Fluorescence Excitation and Depletion of Carbon Dots. Journal of Fluorescence, 2017, 27, 1435-1441.	1.3	3
371	Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria <i>Escherichia coli</i> Nanotechnology, 2017, 28, 195501.	1.3	109

#	Article	IF	CITATIONS
372	Well incorporation of carbon nanodots with silicon nanowire arrays featuring excellent photocatalytic performances. Physical Chemistry Chemical Physics, 2017, 19, 11786-11792.	1.3	36
373	Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. Journal of Colloid and Interface Science, 2017, 501, 341-349.	5.0	92
374	One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. RSC Advances, 2017, 7, 21969-21973.	1.7	28
375	Removal of Heavy Metal Nickel-Ions from Wastewaters Using Carbon Nanodots from Frying Oil. Procedia Engineering, 2017, 170, 36-40.	1.2	33
376	Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrasonics Sonochemistry, 2017, 39, 577-588.	3.8	133
377	Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Materials Today Chemistry, 2017, 5, 1-10.	1.7	87
378	Synthesis and formation mechanism of s-doped carbon dots from low-molecule-weight organics. Journal of Luminescence, 2017, 190, 108-114.	1.5	29
379	Enhanced photocatalytic water splitting by gold carbon dot core shell nanocatalyst under visible/sunlight. New Journal of Chemistry, 2017, 41, 4573-4581.	1.4	42
380	Green Preparation of S and N Co-Doped Carbon Dots from <i>Water Chestnut</i> and <i>Onion</i> as Well as Their Use as an Off–On Fluorescent Probe for the Quantification and Imaging of Coenzyme A. ACS Sustainable Chemistry and Engineering, 2017, 5, 4992-5000.	3.2	140
381	Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst. Nano-Micro Letters, 2017, 9, 40.	14.4	48
382	Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 2017, 7, 23502-23514.	1.7	131
383	Polydopamine nanotubes-templated synthesis of TiO ₂ and its photocatalytic performance under visible light. RSC Advances, 2017, 7, 23535-23542.	1.7	23
384	Highly fluorescent carbon dots from Pseudo-stem of banana plant: Applications as nanosensor and bio-imaging agents. Sensors and Actuators B: Chemical, 2017, 252, 894-900.	4.0	150
385	Strongly blue-luminescent N-doped carbogenic dots as a tracer metal sensing probe in aqueous medium and its potential activity towards in situ Ag-nanoparticle synthesis. Sensors and Actuators B: Chemical, 2017, 252, 735-746.	4.0	50
386	Cadmium-Free Quantum Dots for Biophotonic Imaging and Sensing. , 2017, , 841-870.		2
387	A Photochemical Avenue to Photoluminescent N-Dots and their Upconversion Cell Imaging. Scientific Reports, 2017, 7, 1793.	1.6	9
388	Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. Journal of Materials Science, 2017, 52, 9979-9989.	1.7	32
389	Oneâ€pot synthesis of fluorescent nitrogenâ€doped carbon dots with good biocompatibility for cell labeling. Luminescence, 2017, 32, 1488-1493.	1.5	9

#	Article	IF	Citations
390	Lignin derived reduced fluorescence carbon dots with theranostic approaches: Nano-drug-carrier and bioimaging. Journal of Luminescence, 2017, 190, 492-503.	1.5	99
391	Preparation of Carbon Dots for Cellular Imaging by the Molecular Aggregation of Cellulolytic Enzyme Lignin. Langmuir, 2017, 33, 5786-5795.	1.6	75
392	Synthesis of N doped graphene quantum dots-interspersed CdWO4 heterostructure nanorods as an effective photocatalyst with enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2017, 724, 1014-1022.	2.8	18
393	Blue and cyan fluorescent carbon dots: one-pot synthesis, selective cell imaging and their antiviral activity. RSC Advances, 2017, 7, 28016-28023.	1.7	37
394	Novel CdS quantum dots templated hydrogel nanocomposites: Synthesis, characterization, swelling and dye adsorption properties. Journal of Molecular Liquids, 2017, 240, 630-641.	2.3	27
395	Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. Journal of Materials Chemistry B, 2017, 5, 6579-6592.	2.9	98
396	Amino acid derivatized carbon dots with tunable selectivity as logic gates for fluorescent sensing of metal cations. Mikrochimica Acta, 2017, 184, 3179-3187.	2.5	18
397	Presence and formation of fluorescence carbon dots in a grilled hamburger. Food and Function, 2017, 8, 2558-2565.	2.1	60
398	Enhanced photoresponsive polyethyleneimine/citric acid co-carbonized dots for facile and selective sensing and intracellular imaging of cobalt ions at physiologic pH. Analytica Chimica Acta, 2017, 970, 64-72.	2.6	39
399	Ultrasensitive and Selective Sensing of Selenium Using Nitrogen-Rich Ligand Interfaced Carbon Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13448-13456.	4.0	44
400	Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 2017, 5, 3794-3809.	2.9	264
401	N-doped multi-fluorescent carbon dots for â€~turn off-on' silver-biothiol dual sensing and mammalian cell imaging application. Sensors and Actuators B: Chemical, 2017, 248, 481-492.	4.0	95
402	A hydrothermal route to multicolor luminescent carbon dots from adenosine disodium triphosphate for bioimaging. Materials Science and Engineering C, 2017, 76, 1146-1153.	3.8	49
403	Preparation of highly luminescent nitrogen and sulfur co-doped carbon nanoparticles for iron (III) ions detection and cell imaging. Chinese Chemical Letters, 2017, 28, 1385-1390.	4.8	11
404	Waste derivitized blue luminescent carbon quantum dots for selenite sensing in water. Talanta, 2017, 170, 49-55.	2.9	55
405	Carrot-derived carbon dots modified with polyethyleneimine and nile blue for ratiometric two-photon fluorescence turn-on sensing of sulfide anion in biological fluids. Talanta, 2017, 169, 141-148.	2.9	85
406	Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	38
407	pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. Journal of Physical Chemistry Letters, 2017, 8, 1389-1395.	2.1	125

#	Article	IF	CITATIONS
408	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
409	A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg 2+ in water. Journal of Luminescence, 2017, 187, 274-280.	1.5	58
410	Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosensors and Bioelectronics, 2017, 94, 523-529.	5.3	123
411	Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin. Sensors and Actuators B: Chemical, 2017, 247, 428-435.	4.0	61
412	Facile synthesis of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications. Materials Science and Engineering C, 2017, 73, 643-652.	3.8	53
413	Enhanced Electrochemical and Photocatalytic Performance of Core–Shell CuS@Carbon Quantum Dots@Carbon Hollow Nanospheres. ACS Applied Materials & Dots@Carbon Hollow Nanospheres.	4.0	87
414	Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 2017, 5, 1826-1859.	5.2	132
415	Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Conference Proceedings, 2017, , .	0.3	13
416	Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9955-9964.	3.2	42
417	Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28, 485705.	1.3	81
418	Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron(III) Sensing. Analytical Chemistry, 2017, 89, 11348-11356.	3.2	71
419	A novel carbon dots derived from reduced <scp> </scp> -glutathione as fluorescent probe for the detection of the <scp> </scp> -/ <scp>d</scp> -arginine. New Journal of Chemistry, 2017, 41, 15216-15228.	1.4	33
420	Preparation of an Efficient Ratiometric Fluorescent Nanoprobe (<i>m</i> -CDs@[Ru(bpy) ₃] ²⁺) for Visual and Specific Detection of Hypochlorite on Site and in Living Cells. ACS Sensors, 2017, 2, 1684-1691.	4.0	61
421	Preparation of Carbon Dots and Their Application in Food Analysis as Signal Probe. Chinese Journal of Analytical Chemistry, 2017, 45, 1571-1581.	0.9	37
422	Synthesis of multicolor photoluminescent carbon quantum dots functionalized with hydrocarbons of different chain lengths. New Carbon Materials, 2017, 32, 327-337.	2.9	28
423	One step, high yield synthesis of amphiphilic carbon quantum dots derived from chia seeds: a solvatochromic study. New Journal of Chemistry, 2017, 41, 13130-13139.	1.4	80
424	Highly Efficient Fluorescent Carbon Quantum Dots: Synthesis, Properties and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 81-111.	0.1	0
425	N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese(VII) and <scp>I</scp> -Ascorbic Acid and AND Logic Gate Operation. ACS Applied Materials & Description of Manganese (VII) and Section 1. Section 2017, 9, 38761-38772.	4.0	93

#	Article	IF	CITATIONS
426	Functionalized fluorescent nanomaterials for sensing pollutants in the environment: A critical review. TrAC - Trends in Analytical Chemistry, 2017, 97, 458-467.	5.8	75
427	Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. Journal of Materials Chemistry B, 2017, 5, 8904-8924.	2.9	370
428	High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots. Journal of Materials Chemistry C, 2017, 5, 9629-9637.	2.7	62
429	Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Advances, 2017, 7, 40973-40989.	1.7	159
430	Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon, 2017, 124, 429-472.	5.4	253
431	Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and <i>Citrus japonica </i> via a Microwave-Assisted Method. ACS Omega, 2017, 2, 5196-5208.	1.6	52
432	Facile and Ultrafast Green Approach to Synthesize Biobased Luminescent Reduced Carbon Nanodot: An Efficient Photocatalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9454-9466.	3.2	33
433	Ultrasmall and photostable nanotheranostic agents based on carbon quantum dots passivated with polyamine-containing organosilane molecules. Nanoscale, 2017, 9, 15441-15452.	2.8	67
434	Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-10.	1.9	25
435	Ultrahigh-yield synthesis of N-doped carbon nanodots that down-regulate ROS in zebrafish. Journal of Materials Chemistry B, 2017, 5, 7848-7860.	2.9	31
436	Understanding the Capsanthin Tails in Regulating the Hydrophilic–Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane. Langmuir, 2017, 33, 10259-10270.	1.6	27
437	A carbon quantum dot-encapsulated micellar reactor for the synthesis of chromene derivatives in water. Molecular Catalysis, 2017, 439, 100-107.	1.0	15
438	Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta, 2017, 175, 305-312.	2.9	124
439	One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydrate Polymers, 2017, 175, 7-17.	5.1	54
440	Carbonâ€Dot/Naturalâ€Dye Sensitizer for TiO ₂ Solar Cells Prepared by a Oneâ€Step Treatment of Celery Leaf Extract. ChemPhotoChem, 2017, 1, 470-478.	1.5	11
441	Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 159, 349-359.	2.5	136
442	Fast Dynamic Visualizations in Microfluidics Enabled by Fluorescent Carbon Nanodots. Small, 2017, 13, 1700869.	5.2	14
443	Introducing Schottky barrier into electrochemical response: A novel adjusting strategy for designing electrochemical sensors. Electrochimica Acta, 2017, 249, 173-178.	2.6	10

#	Article	IF	CITATIONS
444	Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sensors and Actuators B: Chemical, 2017, 252, 1169-1178.	4.0	135
445	Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment. Chemical Engineering Journal, 2017, 330, 651-662.	6.6	62
446	In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications. Journal of Materials Chemistry B, 2017, 5, 7328-7334.	2.9	93
447	Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. European Journal of Pharmaceutical Sciences, 2017, 109, 359-371.	1.9	79
448	Carbon dots/Fe ₃ O ₄ hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H ₂ O ₂ and ascorbic acid. Inorganic Chemistry Frontiers, 2017, 4, 1621-1627.	3.0	51
449	Stable and Photoswitchable Carbon-Dot Liposome. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44259-44263.	4.0	30
450	A Simple Approach for Synthesizing of Fluorescent Carbon Quantum Dots from Tofu Wastewater. Nanoscale Research Letters, 2017, 12, 611.	3.1	40
451	A facile and universal strategy for preparation of long wavelength emission carbon dots. Dalton Transactions, 2017, 46, 16905-16910.	1.6	20
452	Fluorescent nanoparticles from mature vinegar: their properties and interaction with dopamine. Food and Function, 2017, 8, 4744-4751.	2.1	30
453	Crystal lattice distortion in ultrathin Co(OH) ₂ nanosheets inducing elongated Coâ€"O _{OH} bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 5809-5817.	4.6	43
454	Excitationâ€Dependent Photoluminescence from Singleâ€Carbon Dots. Small, 2017, 13, 1702098.	5.2	102
455	Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon, 2017, 122, 247-257.	5.4	130
456	Fluorescent carbon nanoparticles obtained from charcoal via green methods and their application for sensing Fe ³⁺ in an aqueous medium. Luminescence, 2017, 32, 1466-1472.	1.5	12
457	Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Iranian Physical Journal, 2017, 11, 119-126.	1.2	38
458	Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. Sensors and Actuators B: Chemical, 2017, 253, 1026-1033.	4.0	39
459	Preparation of carbon nanodots capped by polyethylene glycol as a multifunctional sensor for temperature and paracetamol. Analytical Methods, 2017, 9, 4533-4538.	1.3	4
460	Sesame-derived ions co-doped fluorescent carbon nanoparticles for bio-imaging, sensing and patterning applications. Sensors and Actuators B: Chemical, 2017, 253, 900-910.	4.0	31
461	Photoinduced interaction of arylamine dye with carbon quantum dots ensued from Centella asiatica. Journal of Luminescence, 2017, 192, 321-327.	1.5	15

#	Article	IF	CITATIONS
462	Size-tunable carbon nanoparticles with excitation-independent fluorescent properties. Materials Today: Proceedings, 2017, 4, 4896-4899.	0.9	4
463	A novel one-step and green synthesis of highly fluorescent carbon dots from saffron for cell imaging and sensing of prilocaine. Sensors and Actuators B: Chemical, 2017, 253, 451-460.	4.0	91
464	High luminescent carbon dots as an eco-friendly fluorescence sensor for Cr(VI) determination in water and soil samples. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 502-511.	2.0	71
465	Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors and Actuators B: Chemical, 2017, 241, 190-198.	4.0	427
466	Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1436.	3.3	48
467	Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 202, 33-41.	10.8	155
468	A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors and Actuators B: Chemical, 2017, 240, 949-955.	4.0	178
469	Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. Journal of Applied Polymer Science, 2017, 134, .	1.3	47
470	Green Synthetic Approach for Synthesis of Fluorescent Carbon Dots for Lisinopril Drug Delivery System and their Confirmations in the Cells. Journal of Fluorescence, 2017, 27, 111-124.	1.3	70
471	Synthesis of Water Dispersible Fluorescent Carbon Nanocrystals from Syzygium cumini Fruits for the Detection of Fe3+ Ion in Water and Biological Samples and Imaging of Fusarium avenaceum Cells. Journal of Fluorescence, 2017, 27, 125-134.	1.3	35
472	Gas assisted method synthesis nitrogen-doped carbon quantum dots and Hg (II) sensing. Environmental Technology (United Kingdom), 2017, 38, 1507-1513.	1.2	12
473	Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites. Talanta, 2017, 162, 65-71.	2.9	81
474	Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Applied Surface Science, 2017, 393, 276-286.	3.1	146
475	Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors and Actuators B: Chemical, 2017, 241, 1324-1330.	4.0	139
476	Polymer carbon dotsâ€"a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. Journal of Polymer Science Part A, 2017, 55, 610-615.	2.5	82
477	Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO 2 nanosheets. Talanta, 2017, 165, 136-142.	2.9	153
478	Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein Journal of Organic Chemistry, 2017, 13, 675-693.	1.3	88
479	Polymers in Carbon Dots: A Review. Polymers, 2017, 9, 67.	2.0	112

#	Article	IF	CITATIONS
480	Graphene-Based Materials for Biosensors: A Review. Sensors, 2017, 17, 2161.	2.1	351
481	Characterization and Analytical Separation of Fluorescent Carbon Nanodots. Journal of Nanomaterials, 2017, 2017, 1-23.	1.5	40
482	A microwave synthesized mesoporous carbon sponge as an efficient adsorbent for Cr(<scp>vi</scp>) removal. RSC Advances, 2018, 8, 7892-7898.	1.7	15
483	Green synthesis of fluorescent carbon dots from Hongcaitai for selective detection of hypochlorite and mercuric ions and cell imaging. Sensors and Actuators B: Chemical, 2018, 263, 426-435.	4.0	107
484	Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. Journal of Alloys and Compounds, 2018, 748, 818-853.	2.8	77
485	One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescence sensing for Cr(<scp>vi</scp>) ions. Analyst, The, 2018, 143, 1906-1915.	1.7	46
486	Fabrication by Laser Irradiation in a Continuous Flow Jet of Carbon Quantum Dots for Fluorescence Imaging. ACS Omega, 2018, 3, 2735-2742.	1.6	93
487	Detection of metronidazole in honey and metronidazole tablets using carbon dotsâ€based sensor via the inner filter effect. Luminescence, 2018, 33, 704-712.	1.5	28
488	Microwave-assisted synthesis of water-soluble Eu ³⁺ hybrid carbon dots with enhanced fluorescence for the sensing of Hg ²⁺ ions and imaging of fungal cells. New Journal of Chemistry, 2018, 42, 6125-6133.	1.4	51
489	Green synthesis of fluorescent carbon quantum dots for the detection of mercury(<scp>ii</scp>) and glutathione. New Journal of Chemistry, 2018, 42, 5814-5821.	1.4	135
490	Visual detection of cyclobutane pyrimidine dimer DNA damage lesions by Hg2+ and carbon dots. Analytica Chimica Acta, 2018, 1016, 49-58.	2.6	5
491	Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling. Nanoscale, 2018, 10, 6660-6670.	2.8	21
492	A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renewable Energy, 2018, 125, 64-72.	4.3	82
493	Design of Fe3O4@SiO2@mSiO2-organosilane carbon dots nanoparticles: Synthesis and fluorescence red-shift properties with concentration dependence. Materials and Design, 2018, 151, 89-101.	3.3	17
494	Design of Pyrrolic-N-Rich Carbon Dots with Absorption in the First Near-Infrared Window for Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 2368-2375.	2.4	94
495	Resonant energy transfer and trace-level sensing using branched Ag-rod-supported carbon dots. Journal Physics D: Applied Physics, 2018, 51, 205101.	1.3	4
496	Carbonization of Human Fingernails: Toward the Sustainable Production of Multifunctional Nitrogen and Sulfur Codoped Carbon Nanodots with Highly Luminescent Probing and Cell Proliferative/Migration Properties. ACS Applied Materials & D., 16024-16032.	4.0	42
497	Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions. Separation Science and Technology, 2018, 53, 2536-2549.	1.3	23

#	Article	IF	CITATIONS
498	Highly photoluminescent carbon dots derived from linseed and their applications in cellular imaging and sensing. Journal of Materials Chemistry B, 2018, 6, 3181-3187.	2.9	54
499	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
500	A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon, 2018, 134, 519-530.	5.4	119
501	Foxtail millet-derived highly fluorescent multi-heteroatom doped carbon quantum dots towards fluorescent inks and smart nanosensors for selective ion detection. New Journal of Chemistry, 2018, 42, 7326-7331.	1.4	22
502	Green synthesis of amphiphilic carbon dots from organic solvents: application in fluorescent polymer composites and bio-imaging. RSC Advances, 2018, 8, 12556-12561.	1.7	26
503	Facile synthesis of the nitrogen-doped graphene quantum dots at low temperature for cellular labeling. Materials Research Bulletin, 2018, 104, 83-86.	2.7	8
504	Magnetic Mesoporous Silica Gated with Doped Carbon Dot for Site-Specific Drug Delivery, Fluorescence, and MR Imaging. Langmuir, 2018, 34, 5253-5262.	1.6	39
505	Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen- and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 2018, 20, 11673-11681.	1.3	27
506	Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: Analytical and bioimaging applications. Sensors and Actuators B: Chemical, 2018, 267, 494-501.	4.0	55
507	On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon, 2018, 134, 232-243.	5.4	224
508	Carbon dots: emerging theranostic nanoarchitectures. Drug Discovery Today, 2018, 23, 1219-1232.	3.2	153
509	Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 56-67.	1.7	72
510	Influence of the various synthesis methods on the ZnO nanoparticles property made using the bark extract of Terminalia arjuna. Materials Chemistry and Physics, 2018, 209, 208-216.	2.0	47
511	Largeâ€Scale Oneâ€Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. Advanced Optical Materials, 2018, 6, 1701150.	3.6	76
512	Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sensors and Actuators B: Chemical, 2018, 262, 928-937.	4.0	88
513	Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta, 2018, 183, 39-47.	2.9	110
514	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie, 2018, 130, 2401-2406.	1.6	52
515	9. HEALTH BENEFITS OF VANADIUM AND ITS POTENTIAL AS AN ANTICANCER AGENT. , 2018, 18, 251-280.		34

#	Article	IF	CITATIONS
516	Bluish green emitting carbon quantum dots synthesized from jackfruit (<i>Artocarpus) Tj ETQq0 0 0 rgBT /Overloc 2018, 5, 024008.</i>	ck 10 Tf 50 0.8) 747 Td (he 16
517	Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts. Chemosphere, 2018, 197, 526-534.	4.2	23
518	Hexamethylenetetramine: an effective and universal nitrogen-doping reagent to enhance the photoluminescence of carbon nanodots. New Journal of Chemistry, 2018, 42, 3519-3525.	1.4	8
519	Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie - International Edition, 2018, 57, 2377-2382.	7.2	249
520	Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. Journal of Materials Chemistry B, 2018, 6, 1149-1178.	2.9	78
521	Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International Journal of Biological Macromolecules, 2018, 109, 687-697.	3.6	90
522	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	2.8	68
523	High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes. New Journal of Chemistry, 2018, 42, 2167-2179.	1.4	25
524	A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New Journal of Chemistry, 2018, 42, 2074-2080.	1.4	31
525	Turn-on fluorescent assay based on purification system via magnetic separation for highly sensitive probing of adenosine. Sensors and Actuators B: Chemical, 2018, 259, 855-861.	4.0	15
526	Dual band emission in carbon dots. Chemical Physics Letters, 2018, 692, 196-201.	1.2	29
527	Luminescence of lemonâ€derived carbon quantum dot and its potential application in luminescent probe for detection of Mo ⁶⁺ ions. Luminescence, 2018, 33, 545-551.	1.5	36
528	Generation of a carbon dots/ammonium persulfate redox initiator couple for free radical frontal polymerization. Polymer Chemistry, 2018, 9, 420-427.	1.9	17
529	Facile synthesis of blue-emitting carbon dots@mesoporous silica composite spheres. Solid State Sciences, 2018, 76, 100-104.	1.5	28
530	Multi-level fluorescent logic gate based on polyamine coated carbon dots capable of responding to four stimuli. Chemical Engineering Journal, 2018, 337, 471-479.	6.6	33
531	Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik, 2018, 158, 893-900.	1.4	75
532	Structural, Optical, Electrical and Electrocatalytic Activity Properties Of Luminescent Organic Carbon Quantum Dots. ChemistrySelect, 2018, 3, 4730-4737.	0.7	1
533	Striking Similarities in the Fluorescence Behavior between Carbon Dots and Ionic Liquids: Toward Understanding the Fluorescence Behavior of Carbon Dots. Journal of Physical Chemistry C, 2018, 122, 12384-12394.	1.5	10

#	Article	IF	CITATIONS
534	Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Applied Surface Science, 2018, 453, 192-203.	3.1	133
535	Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution. Solar Energy, 2018, 169, 120-127.	2.9	104
536	Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Scientific Reports, 2018, 8, 6559.	1.6	121
537	Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Materials Science and Engineering C, 2018, 88, 115-129.	3.8	76
538	Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceramics International, 2018, 44, 11828-11834.	2.3	87
539	GSH-doped GQDs using citric acid rich-lime oil extract for highly selective and sensitive determination and discrimination of Fe ³⁺ and Fe ²⁺ in the presence of H ₂ O ₂ by a fluorescence "turn-off―sensor. RSC Advances, 2018, 8, 10148-10157.	1.7	22
540	NIR upconversion characteristics of carbon dots for selective detection of glutathione. New Journal of Chemistry, 2018, 42, 6399-6407.	1.4	42
541	Facile oneâ€pot hydrothermal synthesis of stable and biocompatible fluorescent carbon dots from lemon grass herb. IET Nanobiotechnology, 2018, 12, 127-132.	1.9	13
542	Carbon quantum dots from natural resource: A review. Materials Today Chemistry, 2018, 8, 96-109.	1.7	522
543	Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. Nanoscale, 2018, 10, 7155-7162.	2.8	38
544	Multifunctional carbon dots for live cell staining and tissue engineering applications. Polymer Composites, 2018, 39, 73-80.	2.3	15
545	Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta, 2018, 178, 879-885.	2.9	38
546	Naturalâ∈Productâ∈Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	3.6	278
547	Construction of a novel "Off-On" fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots. Journal of Luminescence, 2018, 194, 768-777.	1.5	32
548	Synthesis of Luminescent Nâ€Đoped Carbon Dots by Hydrothermal Treatment. Physica Status Solidi (B): Basic Research, 2018, 255, 1700222.	0.7	25
549	Synthesis of carbonâ€based quantum dots from starch extracts: Optical investigations. Luminescence, 2018, 33, 260-266.	1.5	31
550	Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage. Energy Storage Materials, 2018, 12, 331-340.	9.5	58
551	Luminescent carbon dots obtained from cellulose. Materials Chemistry and Physics, 2018, 203, 148-155.	2.0	104

#	ARTICLE	IF	CITATIONS
552	Synthesis, Structural, Optical and Dielectric Studies on Carbon Dot-Zinc Oxide Nanocomplexes. International Journal of Nanoscience, 2018, 17, 1750021.	0.4	1
554	Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sensors and Actuators B: Chemical, 2018, 255, 1130-1138.	4.0	106
555	Highly photoluminescent N-isopropylacrylamide (NIPAAM) passivated carbon dots for multicolor bioimaging applications. European Polymer Journal, 2018, 98, 191-198.	2.6	19
556	Artful and multifaceted applications of carbon dot in biomedicine. Journal of Controlled Release, 2018, 269, 302-321.	4.8	115
557	Pharmaceutical potential of quantum dots. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 57-65.	1.9	35
558	A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents. Chemistry - A European Journal, 2018, 24, 2257-2263.	1.7	14
559	One-step solvothermal synthesis of high-emissive amphiphilic carbon dots <i>via</i> rigidity derivation. Chemical Science, 2018, 9, 1323-1329.	3.7	71
560	Towards high-powered remote WLED based on flexible white-luminescent polymer composite films containing S, N co-doped graphene quantum dots. Chemical Engineering Journal, 2018, 336, 406-415.	6.6	54
561	Designing Multifunctional Coatings for Cost-Effectively Sustainable Water Remediation. ACS Sustainable Chemistry and Engineering, 2018, 6, 1881-1890.	3.2	50
562	Microwaveâ€Assisted Synthesis of Biocompatible Silk Fibroinâ€Based Carbon Quantum Dots. Particle and Particle Systems Characterization, 2018, 35, 1700300.	1.2	23
563	Experimental investigation of conduction and convection heat transfer properties of a novel nanofluid based on carbon quantum dots. International Communications in Heat and Mass Transfer, 2018, 90, 85-92.	2.9	24
564	One-step synthesis and characterization of highly luminescent nitrogen and phosphorus co-doped carbon dots and their application as highly selective and sensitive nanoprobes for low level detection of uranyl ion in hair and water samples and application to cellular imaging. Sensors and Actuators B: Chemical. 2018, 257, 772-782.	4.0	59
565	Carbon dots with multi-functional groups and the application in proton exchange membranes. Electrochimica Acta, 2018, 260, 92-100.	2.6	29
566	Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology, 2018, 29, 025706.	1.3	19
567	Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane. Nano Research, 2018, 11, 542-553.	5.8	23
568	Hemostatic effect of novel carbon dots derived from <i>Cirsium setosum</i> Carbonisata. RSC Advances, 2018, 8, 37707-37714.	1.7	25
569	A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Advances, 2018, 8, 38091-38099.	1.7	31
571	Preparation of N-doped carbon dots based on starch and their application in white LED. Optical Materials, 2018, 86, 530-536.	1.7	35

#	Article	IF	Citations
573	Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 2018, 13, 175.	3.1	104
574	FUNCTIONAL FILLERS – STRUCTURE. , 2018, , 101-151.		8
576	Carbon Nanodots: A Reviewâ€"From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	1.4	137
577	Oneâ€Step Synthesis of Fluorescent Carbon Dots for Bioâ€Labeling Assay. Macromolecular Symposia, 2018, 382, 1800077.	0.4	19
578	Incorporation of Carbon Quantum Dots for Improvement of Supercapacitor Performance of Nickel Sulfide. ACS Omega, 2018, 3, 17936-17946.	1.6	80
579	Indian Gooseberry-Derived Tunable Fluorescent Carbon Dots as a Promise for In Vitro/In Vivo Multicolor Bioimaging and Fluorescent Ink. ACS Omega, 2018, 3, 17590-17601.	1.6	76
580	Exopolysaccharide-Derived Carbon Dots for Microbial Viability Assessment. Frontiers in Microbiology, 2018, 9, 2697.	1.5	29
581	Photoinduced Electron Transfer in Carbon Dots with Long-Wavelength Photoluminescence. Journal of Physical Chemistry C, 2018, 122, 29507-29515.	1.5	44
582	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	0.8	13
583	Applications of carbon quantum dots (CQDs) in membrane technologies: A review. Water Research, 2018, 147, 43-49.	5.3	220
584	Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega, 2018, 3, 12584-12592.	1.6	97
585	Turning date palm frondsÂinto biocompatible mesoporous fluorescent carbon dots. Scientific Reports, 2018, 8, 16269.	1.6	47
586	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37835-37845.	4.0	58
587	Capsicum-Derived Biomass Quantum Dots Coupled with Alizarin Red S as an Inner-Filter-Mediated Illuminant Nanosystem for Imaging of Intracellular Calcium Ions. Analytical Chemistry, 2018, 90, 13059-13064.	3.2	35
588	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon Dots for Catalysis. ACS Applied Materials & Design of Carbon Dots for Carbon	4.0	79
589	Microwave-assisted synthesis of carbon dots from eggshell membrane ashes by using sodium hydroxide and their usage for degradation of methylene blue. Journal of Environmental Chemical Engineering, 2018, 6, 7426-7433.	3.3	48
590	Luminescent N, S-Doped Carbon Nanodot: An Effective Two-Fluorophore System of Pyridone and Thiazolopyridone. Journal of Physical Chemistry C, 2018, 122, 26722-26732.	1.5	7
591	Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Letters, 2018, 10, 72.	14.4	133

#	Article	IF	Citations
592	The Effect of Ligands and Solvents on Nonradiative Transitions in Semiconductor Quantum Dots (A) Tj ETQq0 0	O rgBT /Ov	verlock 10 Tf 5
593	A nanocomposite probe consisting of carbon quantum dots and phosphotungstic acid for fluorometric determination of chromate(VI) with improved selectivity. Mikrochimica Acta, 2018, 185, 470.	2.5	20
594	Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy. Nanoscale, 2018, 10, 18124-18130.	2.8	76
595	Exploring of multicolor emissive carbon dots with novel double emission mechanism. Sensors and Actuators B: Chemical, 2018, 277, 373-380.	4.0	52
596	Embedding Carbon Dots in Superabsorbent Polymers for Additive Manufacturing. Polymers, 2018, 10, 921.	2.0	39
597	Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Optical Materials, 2018, 85, 329-336.	1.7	97
598	Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemical Engineering, 2018, 6, 5561-5569.	3.3	53
599	Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin, 2018, 108, 250-254.	2.7	53
600	A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Mikrochimica Acta, 2018, 185, 303.	2.5	42
601	Highly biocompatible yogurt-derived carbon dots as multipurpose sensors for detection of formic acid vapor and metal ions. Optical Materials, 2018, 81, 93-101.	1.7	46
602	Transition Metal Ion (Mn ²⁺ , Fe ²⁺ , Co ²⁺ , and) Tj ETQq0 0 0 rgBT /Overloo Nanoprobe for Magneto-fluorescent Dual-Modality Bioimaging. ACS Biomaterials Science and Engineering, 2018, 4, 2582-2596.	2.6	0 352 Td (Ni<: 90
603	Hydrothermal conversion of Magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink. Colloids and Surfaces B: Biointerfaces, 2018, 169, 321-328.	2.5	134
604	Spore-derived color-tunable multi-doped carbon nanodots as sensitive nanosensors and intracellular imaging agents. Sensors and Actuators B: Chemical, 2018, 271, 128-136.	4.0	24
605	Facile preparation of reduced graphene oxide/copper sulfide composite as electrode materials for supercapacitors with high energy density. Composites Part B: Engineering, 2018, 150, 60-67.	5.9	53
606	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	1.0	49
607	Facile synthesis of carbon nanodots with surface state-modulated fluorescence for highly sensitive and real-time detection of water in organic solvents. Analytica Chimica Acta, 2018, 1034, 144-152.	2.6	55
608	Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. , 2018, , 227-295.		19
609	Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Scientific Reports, 2018, 8, 9770.	1.6	158

#	Article	IF	CITATIONS
610	Green synthesis of fluorescent carbon dots from <i>Borassus flabellifer</i> flowers for label-free highly selective and sensitive detection of Fe ³⁺ ions. New Journal of Chemistry, 2018, 42, 13297-13307.	1.4	72
611	Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids and Surfaces B: Biointerfaces, 2018, 170, 347-354.	2.5	98
612	One-pot synthesis of hydrophilic and hydrophobic fluorescent carbon dots using deep eutectic solvents as designer reaction media. Journal of Materials Science, 2018, 53, 15362-15375.	1.7	38
613	Green Synthesis of Carbon Dot Weak Gel from Pear Juice: Optical Properties and Sensing Application. ChemistrySelect, 2018, 3, 8444-8457.	0.7	14
614	Carbon Quantum Dots: A Component of Efficient Visible Light Photocatalysts. , 2018, , .		11
615	Efficient one-pot synthesis of carbon dots as a fluorescent probe for the selective and sensitive detection of rifampicin based on the inner filter effect. Analytical Methods, 2018, 10, 4085-4093.	1.3	27
616	Exciton Self-Trapping in sp ² Carbon Nanostructures Induced by Edge Ether Groups. Journal of Physical Chemistry Letters, 2018, 9, 4857-4864.	2.1	55
617	A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. Journal of Colloid and Interface Science, 2018, 532, 767-773.	5.0	53
618	Synthesis of biocompatible carbon dots from yogurt and gas vapor sensing. IOP Conference Series: Materials Science and Engineering, 2018, 378, 012005.	0.3	4
619	Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. Beilstein Journal of Nanotechnology, 2018, 9, 353-363.	1.5	38
620	Phosphorus-doped carbon dots for sensing both Au (III) and l-methionine. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 178-184.	2.0	16
621	One-pot synthesis of graphitic and nitrogen-doped graphitic layers on nickel nanoparticles produced by pulsed laser ablation in liquid: Solvent as the carbon and nitrogen source. Applied Surface Science, 2018, 457, 1050-1056.	3.1	31
622	Doped Carbon Dots for Sensing and Bioimaging Applications: A Minireview. Nanomaterials, 2018, 8, 342.	1.9	154
623	Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 2018, 8, 386.	1.9	76
624	Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Medicinal Chemistry Letters, 2018, 9, 832-837.	1.3	95
625	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	4.1	274
626	Black sesame-derived carbon dots for metal ion and amine vapour sensing. IOP Conference Series: Materials Science and Engineering, 2018, 378, 012003.	0.3	2
627	Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UVâ€active marker and fluorescent polymer composite. Luminescence, 2018, 33, 1136-1145.	1.5	55

#	Article	IF	CITATIONS
628	Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis. Journal of Colloid and Interface Science, 2018, 531, 47-55.	5.0	13
629	Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Materials Today Chemistry, 2018, 9, 103-113.	1.7	60
630	Polydopamineâ€functionalised graphene–Fe ₃ O ₄ –Ag magnetic composites with high catalytic activity and antibacterial capability. Micro and Nano Letters, 2018, 13, 518-523.	0.6	6
631	In situ synthesis of sulfur-doped graphene quantum dots decorated carbon nanoparticles hybrid as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Science: Materials in Electronics, 2018, 29, 17695-17705.	1.1	19
632	Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. Journal of Molecular Liquids, 2018, 269, 766-774.	2.3	114
633	Surface PEGylation and biological imaging of fluorescent Tb3+-doped layered double hydroxides through the photoinduced RAFT polymerization. Journal of Colloid and Interface Science, 2018, 532, 641-649.	5.0	11
634	Synthesis of ecofriendly fluorescent carbon dots and their biomedical and environmental applications. Materials Technology, 2018, 33, 672-680.	1.5	31
635	Eco-friendly synthesis of cuprizone-functionalized luminescent carbon dots and application as a sensor for the determination of copper(<scp>ii</scp>) in wastewater. Analytical Methods, 2018, 10, 4570-4578.	1.3	11
636	Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact. Carbon, 2018, 129, 438-449.	5.4	115
637	High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties. Journal of Colloid and Interface Science, 2018, 529, 205-213.	5.0	22
638	Controllable spherical aggregation of monodisperse carbon nanodots. Nanoscale, 2018, 10, 13223-13235.	2.8	32
639	Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chemical Society Reviews, 2018, 47, 5866-5890.	18.7	169
640	Nonâ∈Metalâ∈Heteroatomâ∈Doped Carbon Dots: Synthesis and Properties. Chemistry - A European Journal, 2019, 25, 1165-1176.	1.7	122
641	Functionalization of Carbon Nanostructures. , 2019, , 123-144.		25
642	How an environmental issue could turn into useful high-valued products: The olive mill wastewater case. Science of the Total Environment, 2019, 647, 1097-1105.	3.9	16
643	A universal strategy to obtain chiroptical carbon quantum dots through the optically active surface passivation procedure. New Journal of Chemistry, 2019, 43, 13735-13740.	1.4	15
644	Manipulating the Optical Properties of Carbon Dots by Fine†Tuning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	3.6	33
645	Solvent-controlled synthesis of multicolor photoluminescent carbon dots for bioimaging. RSC Advances, 2019, 9, 24057-24065.	1.7	24

#	Article	IF	CITATIONS
646	Tandem structured luminescent solar concentrator based on inorganic carbon quantum dots and organic dyes. Solar Energy, 2019, 190, 488-494.	2.9	58
647	Reed-derived fluorescent carbon dots as highly selective probes for detecting Fe3+ and excellent cell-imaging agents. RSC Advances, 2019, 9, 21715-21723.	1.7	6
648	Environmentally friendly synthesis of photoluminescent biochar dots from waste soy residues for rapid monitoring of potentially toxic elements. RSC Advances, 2019, 9, 21653-21659.	1.7	10
649	Fluorescence Detection of Hydrazine Hydrate Using Carbon Nanodots Synthesized from Mandarin Rind. Applied Mechanics and Materials, 2019, 891, 71-77.	0.2	1
650	Waste Utilization of Synthetic Carbon Quantum Dots Based on Tea and Peanut Shell. Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	19
651	Hydrothermal Synthesis to Water-stable Luminescent Carbon Dots from Acerola Fruit for Photoluminescent Composites Preparation and its Application as Sensors. Materials Research, 2019, 22, .	0.6	31
652	pHâ€sensitive carbon quantum dotsâ^'doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polymers for Advanced Technologies, 2019, 30, 2664-2673.	1.6	34
653	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	2.4	15
654	A composite consisting of bromine-doped carbon dots and ferric ions as a fluorescent probe for determination and intracellular imaging of phosphate. Mikrochimica Acta, 2019, 186, 576.	2.5	30
655	Carbon dots with molecular fluorescence and their application as a "turn-off―fluorescent probe for ferricyanide detection. Scientific Reports, 2019, 9, 10723.	1.6	53
656	Synthesis of dual-emissive carbon dots with a unique solvatochromism phenomenon. Journal of Colloid and Interface Science, 2019, 555, 607-614.	5.0	66
657	Synthesis of Triâ€functional Coreâ€shell CuO@carbon Quantum Dots@carbon Hollow Nanospheres Heterostructure for Nonâ€enzymatic H 2 O 2 Sensing and Overall Water Splitting Applications. Electroanalysis, 2019, 31, 2120-2129.	1.5	6
658	Biomassâ€Derived Carbon Dots and Their Applications. Energy and Environmental Materials, 2019, 2, 172-192.	7.3	295
659	Luminescence properties of carbon dots synthesis from sugar for enhancing glows in paints. Materials Research Express, 2019, 6, 095006.	0.8	9
660	Synthesis of Photoluminescent Core–Shell-Structured Carbon dots@silica Nanocomposite Fingermark Powders for Latent Fingermarks Visualization. Nano, 2019, 14, 1950068.	0.5	7
661	Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method. Sensors, 2019, 19, 3692.	2.1	6
662	Revisiting fluorescent carbon nanodots for environmental, biomedical applications and puzzle about fluorophore impurities. Nano Structures Nano Objects, 2019, 20, 100391.	1.9	9
663	Rapid and large-scale production of carbon dots by salt-assisted electrochemical exfoliation of graphite rods. Journal of Electroanalytical Chemistry, 2019, 851, 113390.	1.9	12

#	Article	IF	CITATIONS
664	Optical properties comparison of carbon nanodots synthesized from commercial granulated sugar using hydrothermal method and microwave. Materials Research Express, 2019, 6, 105041.	0.8	7
665	Carbon nanoparticles synthesized by laser ablation of coconut shell charcoal in liquids for glucose sensing applications. Materials Research Express, 2019, 6, 115610.	0.8	13
666	Green fluorescent carbon quantum dots functionalized with polyethyleneimine, and their application to aptamer-based determination of thrombin and ATP. Mikrochimica Acta, 2019, 186, 717.	2.5	29
667	Facile Synthesis of Nitrogen-Doped Carbon Quantum Dots with Chitosan for Fluorescent Detection of Fe3+. Polymers, 2019, 11, 1731.	2.0	74
669	Sunlight induced photodegradation of toxic azo dye by self-doped iron oxide nano-carbon from waste printer ink. Solar Energy, 2019, 193, 65-73.	2.9	42
670	Designed Synthesis of Multiluminescent Materials Using Lanthanide Metal-Organic Frameworks and Carbon Dots as Building-Blocks. European Journal of Inorganic Chemistry, 2019, 2019, 3925-3932.	1.0	15
671	Luminescent carbon nanoparticles separation and purification. Advances in Colloid and Interface Science, 2019, 274, 102043.	7.0	25
672	Polyol-Mediated Synthesis of Nitrogen-Containing Carbon-Dots from Tetracyanobenzene with Intense Red Fluorescence. Nanomaterials, 2019, 9, 1470.	1.9	3
673	Immobilization of Lipases – A Review. Part II: Carrier Materials. ChemBioEng Reviews, 2019, 6, 167-194.	2.6	48
674	Effect of initial precursor concentration on the spectral-luminescent characteristics and cytotoxicity of carbon nanoparticles. Biomedical Physics and Engineering Express, 2019, 5, 025017.	0.6	0
675	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	1.3	7
676	Facile direct synthesis of graphene-wrapped ZnO nanospheres from cyanobacterial cells. Chemical Communications, 2019, 55, 11410-11413.	2.2	9
677	Ionic liquid mediated carbon dots: Preparations, properties and applications. TrAC - Trends in Analytical Chemistry, 2019, 119, 115638.	5.8	31
678	Strong luminescence carbon nanodots by green synthesis based microwave assisted from fruit peel. Journal of Physics: Conference Series, 2019, 1242, 012038.	0.3	4
680	Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides. Sensors and Actuators B: Chemical, 2019, 301, 127149.	4.0	51
681	In Situ Ratiometric Fluorescence Imaging for Tracking Targeted Delivery and Release of Anticancer Drug in Living Tumor Cells. ACS Applied Bio Materials, 2019, 2, 4687-4692.	2.3	8
682	One-step hydrothermal-assisted synthesis of highly fluorescent N-doped carbon dots from gum tragacanth: Luminescent stability and sensitive probe for Au3+ ions. Optical Materials, 2019, 97, 109356.	1.7	39
683	Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Materials, 2019, 34, 390-402.	2.9	36

#	Article	IF	CITATIONS
684	A novel multifunctional fluorescent sensor based on N/S co-doped carbon dots for detecting Cr (VI) and toluene. Microchemical Journal, 2019, 151 , 104246 .	2.3	22
685	Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Advances, 2019, 1, 913-936.	2.2	42
686	Ratiometric target-triggered fluorescent silicon nanoparticles probe for quantitative visualization of tyrosinase activity. Talanta, 2019, 197, 113-121.	2.9	32
687	Bioinspired carbon dots: from rose petals to tunable emissive nanodots. Nanoscale Advances, 2019, 1, 1290-1296.	2.2	47
688	Effects of nitrogen-doping on the photophysical properties of carbon dots. Journal of Materials Chemistry C, 2019, 7, 853-862.	2.7	126
689	Solvent-free growth of carbon dots by sputter-plasma assisted chemical vapour deposition over large areas. Carbon, 2019, 146, 28-35.	5.4	12
690	Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging. International Journal of Biological Macromolecules, 2019, 128, 537-545.	3.6	119
691	Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals. Journal of Materials Science, 2019, 54, 6140-6150.	1.7	28
692	Adverse effects of fluorescent carbon dots from canned yellow croaker on cellular respiration and glycolysis. Food and Function, 2019, 10, 1123-1131.	2.1	21
693	A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Mikrochimica Acta, 2019, 186, 132.	2.5	47
694	Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochimica Acta, 2019, 186, 157.	2.5	30
695	Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids and Surfaces B: Biointerfaces, 2019, 176, 488-493.	2.5	71
696	Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 2019, 21, 449-471.	4.6	821
697	Fish-scale-derived carbon dots as efficient fluorescent nanoprobes for detection of ferric ions. RSC Advances, 2019, 9, 940-949.	1.7	71
698	Minireview: Plausible Applications of Chemical Sensors for the Detection of Toxic Metal Ions. Analytical Chemistry Letters, 2019, 9, 113-127.	0.4	1
699	Fluorescent carbon nanoparticles from laser-ablated Bougainvillea alba flower extract for bioimaging applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	9
700	Parameters affecting the synthesis of carbon dots for quantitation of copper ions. Nanoscale Advances, 2019, 1, 2553-2561.	2.2	16
701	Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Materials Research Express, 2019, 6, 0850g8.	0.8	47

#	Article	IF	CITATIONS
702	Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. Chinese Chemical Letters, 2019, 30, 2323-2327.	4.8	172
703	Facile and green synthesis of highly fluorescent nitrogen-doped carbon dots from jackfruit seeds and its applications towards the fluorimetric detection of Au ³⁺ ions in aqueous medium and in <i>in vitro</i> multicolor cell imaging. New Journal of Chemistry, 2019, 43, 11710-11719.	1.4	53
704	Tunable photoluminescence studies based on blue-emissive carbon dots and sequential determination of Fe(III) and pyrophosphate ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117231.	2.0	19
705	Fe ₃ O ₄ /Carbon Nanodot Hybrid Nanoparticles for the Indirect Colorimetric Detection of Glutathione. ACS Applied Nano Materials, 2019, 2, 3951-3959.	2.4	42
706	Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC - Trends in Analytical Chemistry, 2019, 118, 315-337.	5.8	127
707	Synthesis of carbon quantum dots with green luminescence from potato starch. New Journal of Chemistry, 2019, 43, 10826-10833.	1.4	84
708	Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 2019, 7, 7175-7195.	2.7	270
709	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
710	Tunable excitation-independent emissions from graphene quantum dots through microplasma-assisted electrochemical synthesis. Nano Structures Nano Objects, 2019, 19, 100341.	1.9	18
711	Solution Processed Highly Responsive UV Photodetectors from Carbon Nanodot/Silicon Heterojunctions. ACS Applied Nano Materials, 2019, 2, 3971-3976.	2.4	18
712	Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn ²⁺ and carbon dots. Nanoscale, 2019, 11, 12804-12816.	2.8	67
713	Connecting the Dots of Carbon Nanodots: Excitation (In)dependency and White-Light Emission in One-Step. Journal of Physical Chemistry C, 2019, 123, 20502-20511.	1.5	23
714	Template-Assisted Synthesis of Luminescent Carbon Nanofibers from Beverage-Related Precursors by Microwave Heating. Molecules, 2019, 24, 1455.	1.7	7
715	Fluorescence Based Platform to Discriminate Protein Using Carbon Quantum Dots. ChemistrySelect, 2019, 4, 5619-5627.	0.7	13
716	Label-free carbon dots from black sesame seeds for real-time detection of ammonia vapor via optical electronic nose and density functional theory calculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575, 118-128.	2.3	22
717	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
718	Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting l-cysteine-derived carbon dots. Journal of Luminescence, 2019, 213, 6-14.	1.5	18
719	Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance. Journal of Luminescence, 2019, 213, 474-481.	1.5	20

#	Article	IF	CITATIONS
720	Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology, 2019, 2019, 1-9.	1.5	104
721	Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. Journal of Carbon Research, 2019, 5, 24.	1.4	42
722	Carbon dots from roasted mackerel (scomberomorus niphonius) for free radical scavenging. LWT - Food Science and Technology, 2019, 111, 588-593.	2.5	12
723	Environmentally Benign Carbon Nanodots Prepared from Lemon for the Sensitive and Selective Fluorescence Detection of Fe(III) and Tannic Acid. Journal of Fluorescence, 2019, 29, 631-643.	1.3	19
724	Diamond-like carbon structure-doped carbon dots: A new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes. Carbon, 2019, 149, 342-349.	5.4	49
725	Carbon dots: Applications in bioimaging and theranostics. International Journal of Pharmaceutics, 2019, 564, 308-317.	2.6	199
726	Recent Advancements and New Perspectives of Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 1-32.	0.4	1
727	A smartphone-coalesced nanoprobe for high selective ammonia sensing based on the pH-responsive biomass carbon nanodots and headspace single drop microextraction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 382-390.	2.0	21
728	Close-Packed Langmuir Monolayers of Saccharide-Based Carbon Dots at the Air–Subphase Interface. Langmuir, 2019, 35, 6708-6718.	1.6	21
729	Utilization of carbon dots from jackfruit for real-time sensing of acetone vapor and understanding the electronic and interfacial interactions using density functional theory. Applied Surface Science, 2019, 487, 1233-1244.	3.1	36
730	Labelâ€Free Fluorometric Detection of Adulterant Malachite Green Using Carbon Dots Derived from the Medicinal Plant Source <i>Ocimum tenuiflorum</i> . ChemistrySelect, 2019, 4, 4839-4847.	0.7	25
731	Mint leaf derived carbon dots for dual analyte detection of Fe(<scp>iii</scp>) and ascorbic acid. RSC Advances, 2019, 9, 12070-12077.	1.7	90
732	Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 7833-7843.	3.2	149
733	Ratiometric Fluorescent Hydrogel Test Kit for On-Spot Visual Detection of Nitrite. ACS Sensors, 2019, 4, 1252-1260.	4.0	94
734	Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots after HPLC fractionation. New Journal of Chemistry, 2019, 43, 6153-6159.	1.4	37
735	Design of carbon quantum dots via hydrothermal carbonization synthesis from renewable precursors. Biomass Conversion and Biorefinery, 2019, 9, 689-694.	2.9	17
736	Boswellia ovalifoliolata bark extract derived carbon dots for selective fluorescent sensing of Fe3+. Journal of Environmental Chemical Engineering, 2019, 7, 103013.	3.3	38
737	Carbon nanodot-based heterostructures for improving the charge separation and the photocurrent generation. Nanoscale, 2019, 11, 7414-7423.	2.8	22

#	Article	IF	CITATIONS
738	Fluorescent nanoparticles in the popular pizza: properties, biodistribution and cytotoxicity. Food and Function, 2019, 10, 2408-2416.	2.1	28
739	The advanced role of carbon quantum dots in nanomedical applications. Biosensors and Bioelectronics, 2019, 141, 111158.	5.3	198
740	One Pot Synthesis of Amphiphilic Carbogenic Fluorescent Nanodots for Bioimaging. ChemNanoMat, 2019, 5, 417-421.	1.5	2
741	Sustainable Production of Carbon Nanoparticles from Olive Pit Biomass: Understanding Proton Transfer in the Excited State on Carbon Dots. ACS Sustainable Chemistry and Engineering, 2019, 7, 10493-10500.	3.2	26
742	Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC - Trends in Analytical Chemistry, 2019, 114, 171-195.	5.8	165
743	Synthesis of N-Doped Micropore Carbon Quantum Dots with High Quantum Yield and Dual-Wavelength Photoluminescence Emission from Biomass for Cellular Imaging. Nanomaterials, 2019, 9, 495.	1.9	65
744	Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+. Optical Materials, 2019, 91, 386-395.	1.7	106
745	"Vigna radiata―based green C-dots: Photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (III) and multicolor live cell imaging probe. Sensors and Actuators B: Chemical, 2019, 291, 275-286.	4.0	45
746	Carbon quantum dots: synthesis, properties, and sensing applications as a potential clinical analytical method. Analytical Methods, 2019, 11, 2240-2258.	1.3	53
747	Multicolor photoluminescent carbon nanodots regulated by degree of oxidation for multicolor patterning, invisible inks, and detection of metal ions. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	3
748	Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging. Materials Science and Engineering C, 2019, 102, 106-112.	3.8	87
749	Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca. ChemistrySelect, 2019, 4, 4140-4146.	0.7	29
750	Relation between excitation dependent luminescence and particle size distributions for the selenium nanoparticles in \hat{I}^2 -carrageenan shell. Journal of Luminescence, 2019, 211, 305-313.	1.5	18
751	Biocompatible carbon dots derived from \hat{l}^{o} -carrageenan and phenyl boronic acid for dual modality sensing platform of sugar and its anti-diabetic drug release behavior. International Journal of Biological Macromolecules, 2019, 132, 316-329.	3.6	65
752	High drug-loading system of hollow carbon dots–doxorubicin: preparation, <i>in vitro</i> release and pH-targeted research. Journal of Materials Chemistry B, 2019, 7, 2130-2137.	2.9	49
7 53	Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. Journal of Chemical Education, 2019, 96, 540-545.	1.1	36
754	Functionalized carbon dots from zein biopolymer as a sensitive and selective fluorescent probe for determination of sumatriptan. Microchemical Journal, 2019, 146, 965-973.	2.3	18
755	High performance hybrid supercapacitor based on doped zucchini-derived carbon dots and graphene. Materials Today Energy, 2019, 12, 198-207.	2.5	67

#	Article	IF	Citations
756	Structural, chemical and electronic differences between bare and nitrogen-doped carbon nanoparticles. Carbon Letters, 2019, 29, 255-262.	3.3	6
757	Using N-doped Carbon Dots Prepared Rapidly by Microwave Digestion as Nanoprobes and Nanocatalysts for Fluorescence Determination of Ultratrace Isocarbophos with Label-Free Aptamers. Nanomaterials, 2019, 9, 223.	1.9	14
758	Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Applied Catalysis B: Environmental, 2019, 248, 157-166.	10.8	165
7 59	Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 2019, 9, 6460-6481.	1.7	314
760	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	5. 2	124
761	Green Synthesis of Fluorescent Carbon Dots from Gynostemma for Bioimaging and Antioxidant in Zebrafish. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9832-9840.	4.0	168
762	The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance. Nanoscale, 2019, 11, 4428-4437.	2.8	19
763	Effect of Halogen lons on the Photocycle of Fluorescent Carbon Nanodots. Journal of Carbon Research, 2019, 5, 64.	1.4	1
764	Sustainable Synthesis Processes for Carbon Dots through Response Surface Methodology and Artificial Neural Network Processes, 2019, 7, 704.	1.3	20
765	High-Purity Carbon Dots Prepared by Modulating Morphology of Carbon Nano-Crystals: In Vitro and In Vivo Multi-Color Bioimaging. Nano, 2019, 14, 1950150.	0.5	1
766	Sucrose Derived Luminescent Carbon Dots as a Promising Bio-Medical Agent. Materials Today: Proceedings, 2019, 18, 1724-1728.	0.9	4
767	Rapid synthesis of nitrogen doped carbon dots with green fluorescent for bio-imaging. Optical Materials, 2019, 98, 109486.	1.7	11
768	A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 251, 114455.	1.7	36
769	Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 26133-26145.	1.3	21
770	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
771	High-activity Mo, S co-doped carbon quantum dot nanozyme-based cascade colorimetric biosensor for sensitive detection of cholesterol. Journal of Materials Chemistry B, 2019, 7, 7042-7051.	2.9	98
772	Synthesis of CDs from βâ€Cyclodextrin for Smart Utilization in Visual Detection of Cholesterol and Cellular Imaging. ChemistrySelect, 2019, 4, 14222-14227.	0.7	10
773	Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 2019, 9, 1500.	1.9	54

#	Article	IF	CITATIONS
774	A Facile, Effective Synthesis of Excellent Fluorescent Carbon Dots with Optical Properties. ChemistrySelect, 2019, 4, 12762-12767.	0.7	1
775	Bioimaging Applications of Carbon dots (C. dots) and its Cystamine Functionalization for the Sensitive Detection of Cr(VI) in Aqueous Samples. Journal of Fluorescence, 2019, 29, 1381-1392.	1.3	29
776	The Application of Green-Synthesis-Derived Carbon Quantum Dots to Bioimaging and the Analysis of Mercury(II). Journal of Analytical Methods in Chemistry, 2019, 2019, 1-9.	0.7	20
777	Carbon Dots as Cosensitizers in Dye-Sensitized Solar Cells and Fluorescence Chemosensors for 2,4,6-Trinitrophenol Detection. Industrial & Engineering Chemistry Research, 2019, 58, 22771-22778.	1.8	24
778	Dual-ligand functionalized carbon nanodots as green fluorescent nanosensors for cellular dual receptor-mediated targeted imaging. Analyst, The, 2019, 144, 6729-6735.	1.7	14
779	A new ratiometric fluorescence assay based on resonance energy transfer between biomass quantum dots and organic dye for the detection of sulfur dioxide derivatives. RSC Advances, 2019, 9, 41955-41961.	1.7	15
780	Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science, 2019, 54, 1171-1183.	1.7	74
781	A Facile and Simple Strategy for the Synthesis of Label Free Carbon Quantum Dots from the <i>latex</i> of <i>Euphorbia milii</i> and Its Peroxidase-Mimic Activity for the Naked Eye Detection of Glutathione in a Human Blood Serum. ACS Sustainable Chemistry and Engineering, 2019, 7, 1923-1932.	3.2	46
782	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2243-2253.	4.0	94
783	Mechanistic studies on the \hat{l}^2 -resorcylic acid mediated carbon dots for the pH-induced fluorescence switch and sensing application. Dyes and Pigments, 2019, 163, 538-546.	2.0	8
784	Time-resolved photoluminescence of pH-sensitive carbon dots. Carbon, 2019, 144, 500-508.	5 . 4	33
785	Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum. Solar Energy, 2019, 178, 48-55.	2.9	59
786	A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta, 2019, 196, 456-478.	2.9	336
787	l-tryptophan adsorption differentially changes the optical behaviour of pseudo-enantiomeric cysteine-functionalized quantum dots: Towards chiral fluorescent biosensors. Sensing and Bio-Sensing Research, 2019, 22, 100251.	2.2	12
788	Green Synthesis of Fluorescent Carbon Quantum Dots from <i>Azadirachta indica</i> Leaves and Their Peroxidase-Mimetic Activity for the Detection of H ₂ O ₂ and Ascorbic Acid in Common Fresh Fruits. ACS Biomaterials Science and Engineering, 2019, 5, 623-632.	2.6	138
789	Nitrogen-Doped Durian Shell Derived Carbon Dots for Inner Filter Effect Mediated Sensing of Tetracycline and Fluorescent Ink. Journal of Fluorescence, 2019, 29, 221-229.	1.3	49
790	Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 363-372.	2.0	82
791	Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. International Journal of Biological Macromolecules, 2019, 122, 954-961.	3.6	92

#	Article	IF	CITATIONS
792	Review on carbon dots in food safety applications. Talanta, 2019, 194, 809-821.	2.9	121
793	Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 2019, 96, 887-903.	3.8	148
794	Green Synthesis of Blue Fluorescent P-doped Carbon Dots for the Selective Determination of Picric Acid in an Aqueous Medium. Analytical Sciences, 2019, 35, 147-152.	0.8	12
795	Novel Enteromorpha Prolifera based carbon dots: Probing the radical scavenging of natural phenolic compounds. Colloids and Surfaces B: Biointerfaces, 2019, 174, 161-167.	2.5	11
796	Carbon dotsâ€involved chemiluminescence: Recent advances and developments. Luminescence, 2019, 34, 4-22.	1.5	49
797	<i>In Vivo</i> Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomaterials Science and Engineering, 2019, 5, 346-356.	2.6	34
798	Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatalysis and Agricultural Biotechnology, 2019, 17, 168-176.	1.5	30
799	Low-cost synthesis of carbon nanodots from millets for bioimaging. MRS Advances, 2019, 4, 249-254.	0.5	4
800	Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence â€~turn-off' sensor probe for selective detection of Cu2+. Applied Surface Science, 2019, 476, 468-480.	3.1	165
801	A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. Journal of Molecular Liquids, 2019, 278, 175-182.	2.3	31
802	Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Materials Science and Engineering C, 2019, 98, 834-842.	3.8	151
803	Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Mikrochimica Acta, 2019, 186, 50.	2.5	28
804	Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. Nanotechnology, 2019, 30, 135101.	1.3	38
805	Facile Synthesis of Fluorescent Nitrogenâ€Doped Carbon Quantum Dots Using Scindapsus as a Carbon Source. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800404.	0.8	10
806	Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. Journal of Photochemistry and Photobiology B: Biology, 2019, 191, 150-155.	1.7	113
807	One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their antitumor activity against breast cancer cell lines. Inorganic Chemistry Communication, 2019, 101, 11-15.	1.8	14
808	Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. Journal of Advanced Research, 2019, 18, 81-93.	4.4	102
809	Activating room temperature phosphorescence by organic materials using synergistic effects. Journal of Materials Chemistry C, 2019, 7, 230-236.	2.7	43

#	Article	IF	CITATIONS
810	Amphiphilic carbon dots derived by cationic surfactant for selective and sensitive detection of metal ions. Materials Science and Engineering C, 2019, 95, 72-77.	3.8	32
811	Study on the fluorescence properties of carbon dots prepared via combustion process. Journal of Luminescence, 2019, 206, 608-612.	1.5	30
812	Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. , 2019, , 109-134.		9
813	High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. Journal of Electroanalytical Chemistry, 2019, 832, 87-96.	1.9	105
814	White light emission by energy transfer from areca nut husk extract loaded with carbon dots synthesized from the same extract. Journal of Luminescence, 2019, 208, 356-362.	1.5	13
815	Carbon Dots and Their Polymeric Nanocomposites. , 2019, , 217-260.		5
816	Carbon quantum dots sensitized ZnSn(OH)6 for visible light-driven photocatalytic water purification. Applied Surface Science, 2019, 466, 515-524.	3.1	25
817	A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices. Journal of Luminescence, 2019, 206, 97-104.	1.5	29
818	Green and efficient synthesis of carbon quantum dots and their luminescent properties. Journal of Luminescence, 2019, 206, 158-163.	1.5	22
819	Excitation dependent light emission and enhanced photocatalytic response of WS2/C-dot hybrid nanoscale systems. Journal of Luminescence, 2019, 206, 530-539.	1.5	9
820	Enhanced Visible-Light Photocatalytic Activity of a TiO ₂ Membrane-Assisted with N-Doped Carbon Quantum Dots and SiO ₂ Opal Photonic Crystal. Industrial & Engineering Chemistry Research, 2019, 58, 120-127.	1.8	19
821	Fuel waste to fluorescent carbon dots and its multifarious applications. Sensors and Actuators B: Chemical, 2019, 282, 972-983.	4.0	28
822	Role of reactive oxygen species in the visible light photocatalytic mineralization of rhodamine B dye by P25â€"carbon dot photocatalyst. Dyes and Pigments, 2019, 163, 274-284.	2.0	35
823	One-step hydrothermal synthesis of fluorescence carbon quantum dots with high product yield and quantum yield. Nanotechnology, 2019, 30, 085406.	1.3	32
824	A ratiometric fluorescent and colorimetric dual-signal sensing platform based on N-doped carbon dots for selective and sensitive detection of copper(II) and pyrophosphate ion. Sensors and Actuators B: Chemical, 2019, 283, 215-221.	4.0	100
825	Turn–on fluorescent sensor for the detection of periodate anion following photochemical synthesis of nitrogen and sulphur co–doped carbon dots from vegetables. Sensors and Actuators B: Chemical, 2019, 280, 290-297.	4.0	43
826	Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 495-503.	2.7	75
827	Cholesterol derived carbon quantum dots as fluorescence probe for the specific detection of hemoglobin in diluted human blood samples. Materials Science and Engineering C, 2019, 94, 580-586.	3.8	41

#	Article	IF	CITATIONS
828	Nanomaterials. , 2020, , 515-539.		3
829	Carbon nanodots synthesized from chitosan and its application as a corrosion inhibitor in boat-building carbon steel BIS2062. Applied Nanoscience (Switzerland), 2020, 10, 1061-1071.	1.6	33
830	Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine. Talanta, 2020, 209, 120431.	2.9	23
831	Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging. Chemical Engineering Journal, 2020, 384, 123260.	6.6	82
832	Preparation and application of solventâ€modulated selfâ€doped N–S multicolour fluorescence carbon quantum dots. Luminescence, 2020, 35, 34-42.	1.5	7
833	A facile synthesis of nontoxic luminescent carbon dots for detection of chromium and iron in real water sample and bioâ€imaging. Canadian Journal of Chemical Engineering, 2020, 98, 194-204.	0.9	23
834	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	4.6	145
835	Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Materials Chemistry and Physics, 2020, 239, 122266.	2.0	6
836	Carbon nanodots from natural (re)sources: a new perspective on analytical chemistry., 2020, , 3-28.		3
837	Highly photoluminescent and pH sensitive nitrogen doped carbon dots (NCDs) as a fluorescent sensor for the efficient detection of Cr (VI) ions in aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117572.	2.0	50
838	N,Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chemistry, 2020, 310, 125832.	4.2	56
839	New insight into the engineering of green carbon dots: Possible applications in emerging cancer theranostics. Talanta, 2020, 209, 120547.	2.9	34
840	Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence, 2020, 35, 196-202.	1.5	56
841	Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 2020, 275, 102046.	7.0	117
842	A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solidâ€state nuclear magnetic resonance. Magnetic Resonance in Chemistry, 2020, 58, 1130-1138.	1.1	34
843	In situ generation of carbon dots within a polymer matrix. Polymer, 2020, 188, 122159.	1.8	24
844	<i>In situ</i> green synthesis of highly fluorescent Fe ₂ O ₃ @CQD/graphene oxide using hard pistachio shells via the hydrothermalâ€assisted ball milling method. Luminescence, 2020, 35, 684-693.	1.5	6
845	Structural, luminescence and geno/cytoxicity study of carbon dots derived from Opuntia ficus-indica (L.) Mill. New Journal of Chemistry, 2020, 44, 942-950.	1.4	3

#	Article	IF	CITATIONS
846	Direct covalent immobilization of new nitrogen-doped carbon nanodots by electrografting for sensing applications. Carbon, 2020, 159, 303-310.	5.4	28
847	Peroxymonosulfate activation by Co9S8@ S and N coâ€doped biochar for sulfamethoxazole degradation. Chemical Engineering Journal, 2020, 385, 123933.	6.6	128
848	Eco-friendly synthesis of tunable fluorescent carbon nanodots from Malus floribunda for sensors and multicolor bioimaging. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 390, 112336.	2.0	38
849	Fluorescent carbon nanodots as efficient nitro aromatic sensor- analysis based on computational perspectives. Sensors and Actuators A: Physical, 2020, 302, 111817.	2.0	22
850	A sustainable synthesis of green carbon quantum dot (CQD) from Catharanthus roseus (white) Tj ETQqO 0 0 rgBT detection and biological applications. Sustainable Materials and Technologies, 2020, 23, e00138.	/Overlock 1.7	10 Tf 50 58 54
851	Cellulose hydrogel is a novel carbon-source and doping-material-carrier to prepare fluorescent carbon dots for intracellular bioimaging. SN Applied Sciences, 2020, 2, 1.	1.5	1
852	Surface structure and fluorescence characteristics of concentrated carbon point. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124201.	2.3	4
853	Carbon dots; the smallest photoresponsive structure of carbon in advanced drug targeting. Journal of Drug Delivery Science and Technology, 2020, 55, 101408.	1.4	32
854	Recycling hot-water extractions of lignocellulosic biomass in bio-refinery for synthesis of carbon nanoparticles with amplified luminescence and its application in temperature sensing. Industrial Crops and Products, 2020, 145, 112066.	2.5	14
855	Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Critical Reviews in Analytical Chemistry, 2022, 52, 814-847.	1.8	34
856	Structural characterization, antifungal and cytotoxic profiles of quaternized heteropolysaccharide from Anadenanthera colubrina. International Journal of Biological Macromolecules, 2020, 165, 279-290.	3.6	12
857	Hydrothermal synthesis of gelatin quantum dots for high-performance biological imaging applications. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112014.	1.7	9
858	An innovative highly sensitive electrochemical sensor based on modified electrode with carbon quantum dots and multiwall carbon nanotubes for determination of methadone hydrochloride in real samples. Analytical Methods, 2020, 12, 5210-5218.	1.3	13
859	The influence of inorganic electrolyte on the properties of carbon quantum dots in electrochemical exfoliation. Journal of Electroanalytical Chemistry, 2020, 878, 114673.	1.9	16
860	Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine. Materials Today: Proceedings, 2021, 47, 790-799.	0.9	10
861	Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. International Journal of Food Microbiology, 2020, 334, 108835.	2.1	19
862	A spectroscopic investigation of Carbon dots and its reduced state towards fluorescence performance. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112847.	2.0	13
863	Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electronic Journal of Biotechnology, 2020, 47, 36-42.	1.2	16

#	Article	IF	CITATIONS
864	Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today, 2020, 34, 100953.	6.2	95
865	A fluorescent sensor for intracellular Zn ²⁺ based on cylindrical molecular brushes of poly(2-oxazoline) through ion-induced emission. Polymer Chemistry, 2020, 11, 6650-6657.	1.9	11
866	Carbon Dots Derived from the Maillard Reaction for pH Sensors and Cr (VI) Detection. Nanomaterials, 2020, 10, 1924.	1.9	14
867	Design of pH-Responsive Dissociable Nanosystem Based on Carbon Dots with Enhanced Anti-biofilm Property and Excellent Biocompatibility. ACS Applied Bio Materials, 2020, 3, 1105-1115.	2.3	35
868	Fluorescent Carbon Dots Functionalized with Self-Assembled Glycan Monolayers for Probing Interactions across the Glyco-Interactome. ACS Applied Nano Materials, 2020, 3, 7804-7817.	2.4	4
869	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Description (2020, 59, 22017-22039).	1.8	67
870	Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. 3 Biotech, 2020, 10, 540.	1.1	30
871	Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Advances, 2020, 10, 38437-38445.	1.7	7
872	DES-N-doped oxygenated carbon dot colloidal solutions for light harvesting and bio-imaging applications. Materials Advances, 2020, 1, 3476-3482.	2.6	4
873	Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd2+ Removal from Wastewater. Molecules, 2020, 25, 3541.	1.7	19
874	Oneâ€Step Synthesis of Solidâ€State Photoluminescent Carbon Nanodots from Grains for Latent Fingerprint Detection. ChemistrySelect, 2020, 5, 8915-8923.	0.7	7
875	Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar. Materials, 2020, 13, 3356.	1.3	24
876	Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science, 2020, 55, 15074-15105.	1.7	36
877	Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Advances in Colloid and Interface Science, 2020, 283, 102236.	7.0	46
878	Identification of fluorescent nanoparticles from roasted sweet potato (Ipomoea batatas) during normal cooking procedures. LWT - Food Science and Technology, 2020, 134, 109989.	2.5	6
879	Carbon Dots for Forensic Applications: A Critical Review. Nanomaterials, 2020, 10, 1535.	1.9	36
880	Lab-in-a-Box: A Guide for Remote Laboratory Instruction in an Instrumental Analysis Course. Journal of Chemical Education, 2020, 97, 2971-2975.	1.1	27
881	Detecting Mercury (II) and Thiocyanate Using "Turn-on―Fluorescence of Graphene Quantum Dots. Journal of Fluorescence, 2020, 30, 1181-1187.	1.3	14

#	Article	IF	Citations
882	Engineering Photo-Luminescent Centers of Carbon Dots to Achieve Higher Quantum Yields. ACS Applied Electronic Materials, 2020, 2, 2470-2478.	2.0	12
883	Fluorescent Turn-on Aptasensor of Staphylococcus aureus Based on the FRET Between Green Carbon Quantum Dot and Gold Nanoparticle. Food Analytical Methods, 2020, 13, 2070-2079.	1.3	50
884	Adverse effect assessment of fluorescent carbon dots in cigarette smoke. NanoImpact, 2020, 19, 100241.	2.4	4
885	Natural polysaccharide derived carbon dot based in situ facile green synthesis of silver nanoparticles: Synergistic effect on breast cancer. International Journal of Biological Macromolecules, 2020, 162, 1605-1615.	3.6	28
886	Starch fermentation wastewater as a precursor to prepare S,N-doped carbon dots for selective Fe(III) detection and carbon microspheres for solution decolorization. Microchemical Journal, 2020, 159, 105338.	2.3	18
887	Detection of Dopamine in Human Fluids Using N-Doped Carbon Dots. ACS Applied Nano Materials, 2020, 3, 8004-8011.	2.4	39
888	Green synthesis of blue-fluorescent carbon nanospheres from the pith of tapioca (Manihot esculenta) stem for Fe(III) detection. Journal of Materials Science: Materials in Electronics, 2020, 31, 21767-21778.	1.1	10
889	Bioimaging of C2C12 Muscle Myoblasts Using Fluorescent Carbon Quantum Dots Synthesized from Bread. Nanomaterials, 2020, 10, 1575.	1.9	5
890	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	8.2	100
891	Analysis of the Nanoparticle Dispersion and Its Effect on the Crystalline Microstructure in Carbon-Additivated PA12 Feedstock Material for Laser Powder Bed Fusion. Materials, 2020, 13, 3312.	1.3	17
892	Synthesis and applications of amino-functionalized carbon nanomaterials. Chemical Communications, 2020, 56, 12698-12716.	2.2	36
893	Simple and Cost-Effective Electrochemical Method for Norepinephrine Determination Based on Carbon Dots and Tyrosinase. Sensors, 2020, 20, 4567.	2.1	26
894	DNA-damage and cell cycle arrest initiated anti-cancer potency of super tiny carbon dots on MCF7 cell line. Scientific Reports, 2020, 10, 13880.	1.6	33
895	Effects of nitrogen doping on the optical properties of carbon quantum dots. AIP Conference Proceedings, 2020, , .	0.3	0
896	A novel synthesis of graphene quantum dots via thermal treatment of crude graphite oxide in a dry and alkaline condition, and their application in uranyl detection. Heliyon, 2020, 6, e04533.	1.4	7
897	A New Anti-counterfeiting Feature Relying on Invisible Non-toxic Fluorescent Carbon Dots. Journal of Analysis and Testing, 2020, 4, 307-315.	2.5	15
898	Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities. BioNanoScience, 2020, 10, 731-744.	1.5	40
899	One step synthesis of fluorescent carbon dots from <i>neera</i> for the detection of silver ions. Spectroscopy Letters, 2020, 53, 407-415.	0.5	19

#	Article	IF	Citations
901	Woodâ€Derived Carbon Materials and Lightâ€Emitting Materials. Advanced Materials, 2021, 33, e2000596.	11.1	7 5
902	Water hyacinth derived carbon quantum dots and g-C3N4 composites for sunlight driven photodegradation of 2,4-dichlorophenol. SN Applied Sciences, 2020, 2, 1.	1.5	18
903	Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118462.	2.0	61
904	A facile approach for the synthesis of carbon dots from Hibiscus sabdariffa & Dication as bio-imaging agent and Cr (VI) sensor. Materials Today: Proceedings, 2020, 33, 2279-2285.	0.9	16
905	A fluorescent sensor based on oyster mushroom-carbon dots for sensing nitroarenes in aqueous solutions. New Journal of Chemistry, 2020, 44, 10525-10535.	1.4	19
906	Design of long-wavelength emission carbon dots for hypochlorous detection and cellular imaging. Talanta, 2020, 219, 121170.	2.9	26
907	Enhanced visible/near-infrared light harvesting and superior charge separation via OD/2D all-carbon hybrid architecture for photocatalytic oxygen evolution. Carbon, 2020, 167, 724-735.	5.4	26
908	Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. Journal of Colloid and Interface Science, 2020, 579, 96-108.	5.0	109
909	Endogenous Fluorescence Carbon Dots Derived from Food Items. Innovation(China), 2020, 1, 100009.	5. 2	37
910	Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118598.	2.0	47
911	The effects of carbon dots produced by the Maillard reaction on the HepG2 cell substance and energy metabolism. Food and Function, 2020, 11, 6487-6495.	2.1	7
912	Carbon nanoparticles production using solvent assisted hydrothermal carbonization. Diamond and Related Materials, 2020, 108, 107960.	1.8	7
913	Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes. Carbon, 2020, 167, 696-708.	5.4	46
914	A highly efficient biomass based electrocatalyst for cathodic performance of lithium–oxygen batteries: Yeast derived hydrothermal carbon. Electrochimica Acta, 2020, 349, 136411.	2.6	13
915	Plant Part-Derived Carbon Dots for Biosensing. Biosensors, 2020, 10, 68.	2.3	55
916	Green Nanomaterials. Advanced Structured Materials, 2020, , .	0.3	5
917	Precise Surface State Control of Carbon Quantum Dots to Enhance Charge Extraction for Solar Cells. Nanomaterials, 2020, 10, 460.	1.9	5
918	Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe 3+ ion sensing. Luminescence, 2020, 35, 870-876.	1.5	17

#	Article	IF	CITATIONS
919	Highly fluorescent carbon dots from wheat bran as a novel drug delivery system for bacterial inhibition. Luminescence, 2020, 35, 913-923.	1.5	33
920	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	2.4	71
921	Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks. ACS Omega, 2020, 5, 7025-7031.	1.6	52
922	Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE, 2020, 15, e0230646.	1.1	67
923	Recent advancements in the applications of carbon nanodots: exploring the rising star of nanotechnology. Nanoscale Advances, 2020, 2, 1760-1773.	2.2	37
924	Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18395-18406.	4.0	78
925	A multifunctional nanoprobe for targeting tumors and mitochondria with singlet oxygen generation and monitoring mitochondrion pH changes in cancer cells by ratiometric fluorescence imaging. Chemical Science, 2020, 11, 3636-3643.	3.7	39
926	Synthesis of dual functional procaine-derived carbon dots for bioimaging and anticancer therapy. Nanomedicine, 2020, 15, 677-689.	1.7	17
927	A facile synthesis of CDs from quinoa for nanosensors and bio-imagining. Nano Express, 2020, 1 , 020001.	1.2	4
928	Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: synthesis and investigation. Biomass Conversion and Biorefinery, 2022, 12, 2407-2416.	2.9	45
929	Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 2020, 22, 4747-4800.	4.6	136
930	Utilization of Carbon Dots Derived from Volvariella volvacea Mushroom for a Highly Sensitive Detection of Fe3+ and Pb2+ Ions in Aqueous Solutions. Chemosensors, 2020, 8, 47.	1.8	30
931	Waterborne fluorescent dual anti-counterfeiting ink based on Yb/Er-carbon quantum dots grafted with dialdehyde nano-fibrillated cellulose. Carbohydrate Polymers, 2020, 247, 116721.	5.1	37
932	Facile synthesis and extended visible light activity of oxygen and sulphur co-doped carbon nitride quantum dots modified Bi2MoO6 for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112588.	2.0	47
933	Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and <i>in vitro</i> imaging applications. Theranostics, 2020, 10, 7841-7856.	4.6	70
934	One-step hydrothermal preparation of highly stable N doped oxidized carbon dots for toxic organic pollutants sensing and bioimaging. Chemical Engineering Journal, 2020, 401, 126097.	6.6	50
935	Carbon dots from dragonfruit peels as growth-enhancer on <i>ipomoea aquatica</i> vegetable cultivation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 035005.	0.7	2
936	Haemostatic Nanoparticles-Derived Bioactivity of from Selaginella tamariscina Carbonisata. Molecules, 2020, 25, 446.	1.7	13

#	Article	IF	CITATIONS
937	Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 105009.	3.8	132
938	Usage of coconut coir for sustainable production of high-valued carbon dots with discriminatory sensing aptitude toward metal ions. Materials Today Chemistry, 2020, 16, 100247.	1.7	24
939	Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Science of the Total Environment, 2020, 720, 137604.	3.9	83
940	Fluorescent-Nitrogen-Doped Carbon Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell Imaging. ACS Omega, 2020, 5, 3889-3898.	1.6	95
941	Green Synthesized Luminescent Carbon Nanodots for the Sensing Application of Fe3+ Ions. Journal of Fluorescence, 2020, 30, 357-363.	1.3	39
942	Carbon dots reinforced polypyrrole/ graphene nanoplatelets on flexible eggshell membranes as electrodes of all-solid flexible supercapacitors. Journal of Energy Storage, 2020, 28, 101284.	3.9	29
943	A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118174.	2.0	19
944	Tungsten oxide modified with carbon nanodots: Integrating adsorptive and photocatalytic functionalities for water remediation. Journal of Science: Advanced Materials and Devices, 2020, 5, 73-83.	1.5	16
945	Carbon Dot-Sensitized Photoanodes for Visible Light-Driven Organic Transformations. ACS Applied Nano Materials, 2020, 3, 2756-2765.	2.4	7
946	FRET Study Between Carbon Quantum Dots and Malachite Green by Steady-State and Time-Resolved Fluorescence Spectroscopy. Current Physical Chemistry, 2020, 10, 178-188.	0.1	1
947	Application of magnesium ion doped carbon dots obtained <i>via</i> hydrothermal synthesis for arginine detection. New Journal of Chemistry, 2020, 44, 4842-4849.	1.4	18
948	Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Solar Energy, 2020, 197, 326-331.	2.9	86
949	Effects of endogenous molasses carbon dots on macrophages and their potential utilization as anti-inflammatory agents. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	9
950	Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Research, 2020, 23, 61-82.	4.4	94
951	N-doped photoluminescent carbon dots from water hyacinth for tumour detection. Materials Today: Proceedings, 2020, 25, 213-217.	0.9	12
952	Facile one-pot synthesis of self-assembled nitrogen-doped carbon dots/cellulose nanofibril hydrogel with enhanced fluorescence and mechanical properties. Green Chemistry, 2020, 22, 3296-3308.	4.6	53
953	Toward near-white electroluminescence with enhanced blue emission from carbon dots in PEDOT:PSS/ZnO organic/inorganic hybrid heterojunctions. Journal of Luminescence, 2020, 224, 117230.	1.5	10
954	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92

#	Article	IF	CITATIONS
955	Investigation on the Relationship Between Carbon Cores and Fluorescence Moieties by Measurement of Fluorescence Anisotropy of CDs with Different Sizes. Chemical Research in Chinese Universities, 2020, 36, 894-900.	1.3	0
956	Carbon membrane bridged ZnSe and TiO2 nanotube arrays: Fabrication and promising application in photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 9635-9647.	3.8	23
957	A new nano biosensor for maitotoxin with high sensitivity and selectivity based fluorescence resonance energy transfer between carbon quantum dots and gold nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112523.	2.0	15
958	Soybean-derived blue photoluminescent carbon dots. Beilstein Journal of Nanotechnology, 2020, 11, 606-619.	1.5	28
959	Upconverting carbon quantum dots: An eco-friendly material for light energy harvesting and bio-imaging. Materials Today: Proceedings, 2020, 33, 1298-1300.	0.9	6
960	Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple (Ananas comosus): Development of miniaturized analytical method. Journal of Molecular Structure, 2020, 1216, 128343.	1.8	39
961	Carbon quantum dots promote charge transfer of Ce0.7Zr0.3O2@Bi2MoO6 heterojunction for efficient photodegradation of RhB in visible region. Optical Materials, 2020, 105, 109828.	1.7	8
962	Development of a fluorescent m <scp>icrowaveâ€assisted</scp> synthesized carbon dots/Cu ²⁺ probe for rapid detection of tea polyphenols. Journal of Food Process Engineering, 2020, 43, e13419.	1.5	8
963	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
964	Actinobacteria mediated synthesis of bio-conjugate of carbon dot with enhanced biological activity. Applied Nanoscience (Switzerland), 2020, 10, 2199-2206.	1.6	6
965	Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. International Journal of Biological Macromolecules, 2020, 155, 216-225.	3.6	95
966	pH-Responsive Hybrid Jute Carbon Dot-Cotton Patch. ACS Sustainable Chemistry and Engineering, 2020, 8, 7394-7402.	3.2	19
967	UV photobleaching of carbon nanodots investigated by <i>in situ</i> optical methods. Physical Chemistry Chemical Physics, 2020, 22, 13398-13407.	1.3	21
968	Porous Carbon Materials Obtained by the Hydrothermal Carbonization of Orange Juice. Nanomaterials, 2020, 10, 655.	1.9	29
969	Photocatalytic activation of peroxymonosulfate by surface-tailored carbon quantum dots. Journal of Hazardous Materials, 2020, 395, 122695.	6.5	88
970	Facile synthesis of fluorescent carbon quantum dots from Betel leafs (Piper betle) for Fe3+sensing. Materials Today: Proceedings, 2021, 34, 488-492.	0.9	19
971	Development of nitrogen doped carbon dot (N-CDs) encapsulated zeolitic imidazolate Framework-8 (N-CDs@ZIF-8). Materials Today: Proceedings, 2021, 41, 564-569.	0.9	1
972	Preparation of ZnO-carbon quantum dot composite thin films with superhydrophilic surface. Materials Technology, 2021, 36, 72-80.	1.5	12

#	Article	IF	CITATIONS
973	Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews, 2021, 135, 110391.	8.2	144
974	Electrochemical synthesis of carbon dots with a Stokes shift of 309Ânm for sensing of Fe3+ and ascorbic acid. Dyes and Pigments, 2021, 185, 108878.	2.0	51
975	Nitrogen, silicon co-doped carbon dots as the fluorescence nanoprobe for trace p-nitrophenol detection based on inner filter effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118876.	2.0	32
976	Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111362.	2.5	62
977	Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114417.	1.3	158
978	In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Analytica Chimica Acta, 2021, 1141, 13-20.	2.6	65
979	Facile synthesis of carbon dots from wheat straw for colorimetric and fluorescent detection of fluoride and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118964.	2.0	44
980	A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF ₄ : Yb ³⁺ , Er ³⁺ (Tm ³⁺) by combining with carbon dots. CrystEngComm, 2021, 23, 935-943.	1.3	6
981	Table sugar derived carbon nanodots for the extraction of bulk silver. Materials Letters, 2021, 284, 128985.	1.3	1
982	Structural design of carbon dots/porous materials composites and their applications. Chemical Engineering Journal, 2021, 421, 127743.	6.6	55
983	Recent advances in the modification of carbon-based quantum dots for biomedical applications. Materials Science and Engineering C, 2021, 120, 111756.	3.8	104
984	A Redox-induced Dual-mode Colorimetric and Fluorometric Method based on N-CDs and MnO2 for Determination of Isoniazid in Tablets and Plasma Samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119097.	2.0	13
985	Carbon dots $\hat{a}\in$ Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchemical Journal, 2021, 161, 105773.	2.3	10
986	Carbon dot supported bimetallic nanocomposite for the hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 859, 157895.	2.8	18
987	Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Optics and Laser Technology, 2021, 135, 106717.	2.2	27
988	A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II). Applied Surface Science, 2021, 544, 148725.	3.1	16
989	Bio-nano emulsion fuel based on graphene quantum dot nanoparticles for reducing energy consumption and pollutants emission. Energy, 2021, 218, 119551.	4.5	14
990	Optimization and characterization of ecoâ€friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (<scp><i>Morus alba</i></scp> L.). Journal of the Science of Food and Agriculture, 2021, 101, 3439-3447.	1.7	31

#	Article	IF	CITATIONS
991	Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125781.	2.3	28
992	Ultrafast responsive humidity sensor based on roasted gram derived carbon quantum dots: Experimental and theoretical study. Sensors and Actuators B: Chemical, 2021, 329, 129116.	4.0	25
993	Green Synthesis of Carbon Dots and Their Application as Photocatalyst in Dye Degradation Studies. Arabian Journal for Science and Engineering, 2021, 46, 437-446.	1.7	51
994	Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection. Carbon Letters, 2021, 31, 523-536.	3.3	9
995	Fluorescent Carbon Dots and their Applications in Sensing of Small Organic Molecules. Current Analytical Chemistry, 2022, 18, 145-162.	0.6	5
996	Nanotechnology and its application: a review. , 2021, , 1-33.		21
997	Evaluation of biopolymer-derived carbon dots as cancer diagnostic biomarkers for human monocyte cell lines (THP-1). 3 Biotech, 2021, 11, 31.	1.1	8
998	Green synthesis of carbon nanoparticles: characterization and their biocidal properties., 2021,, 277-306.		3
999	Carbon dots: Discovery, structure, fluorescent properties, and applications. Green Processing and Synthesis, 2021, 10, 134-156.	1.3	35
1000	â€`Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications'. Methods and Applications in Fluorescence, 2021, 9, 012001.	1.1	20
1001	Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances, 2021, 11, 2253-2291.	1.7	10
1002	Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an "off-on―fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Mikrochimica Acta, 2021, 188, 16.	2.5	16
1003	Facile synthesis of biomass waste-derived fluorescent N, S, P co-doped carbon dots for detection of Fe ³⁺ ions in solutions and living cells. Analytical Methods, 2021, 13, 789-795.	1.3	39
1004	Diagnostic and Therapeutic Nanomedicine. Advances in Experimental Medicine and Biology, 2021, 1310, 401-447.	0.8	7
1005	Influence of chitosan-based carbon dots added in MgAC-containing culture medium on green alga Tetraselmis sp Journal of Applied Phycology, 2021, 33, 765-775.	1.5	8
1006	Long-term effects of impurities on the particle size and optical emission of carbon dots. Nanoscale Advances, 2021, 3, 182-189.	2.2	18
1007	Prospective of microwave-assisted and hydrothermal synthesis of carbon quantum dots/silver nanoparticles for spectrophotometric determination of losartan potassium in pure form and pharmaceutical formulations. Materials Today: Proceedings, 2021, 42, 2141-2149.	0.9	13
1008	Fluorescent Carbon Dots Prepared from Hazelnut Kohl as an Affordable Probe for Determination of Dopamine. Journal of Fluorescence, 2021, 31, 455-463.	1.3	6

#	Article	IF	CITATIONS
1009	Carbon dots: synthesis, properties and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6553-6575.	2.9	106
1010	Greener synthesis of carbon dots. , 2021, , 219-244.		2
1011	Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Select, 2021, 2, 1117-1145.	1.9	43
1012	Impacts of nanomaterials synthesized by greener methods on aquatic vertebrates. , 2021, , 463-486.		O
1013	Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano, 2021, 8, 848-862.	2.2	55
1014	Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. Research on Chemical Intermediates, 2021, 47, 2421.	1.3	11
1015	Formation of Carbon Quantum Dots via Hydrothermal Carbonization: Investigate the Effect of Precursors. Energies, 2021, 14, 986.	1.6	27
1016	Orange Peel Derivedâ€Nitrogen and Sulfur Coâ€doped Carbon Dots: a Nanoâ€booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis, 2021, 33, 1356-1369.	1.5	142
1017	Antibacterial carbon dots derived from polyethylene glycol/polyethyleneimine with potent antiâ€friction performance as waterâ€based lubrication additives. Journal of Applied Polymer Science, 2021, 138, 50620.	1.3	4
1018	N-doped carbon dot from cigarette-tobacco: Picric acid sensing in real water sample and synthesis of CD-MWCNT nano-composite for UV-photodetection. Journal of Environmental Chemical Engineering, 2021, 9, 104971.	3.3	22
1019	Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. Journal of Drug Delivery Science and Technology, 2021, 61, 102118.	1.4	20
1020	Highly Fluorescent <i>N</i> -Doped Carbon Quantum Dots Derived from Bamboo Stems for Selective Detection of Fe ³⁺ lons in Biological Systems. Journal of Biomedical Nanotechnology, 2021, 17, 312-321.	0.5	15
1021	Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect. Optical Materials, 2021, 112, 110743.	1.7	33
1022	Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomaterials, 2021, 11, 369.	1.9	69
1023	Recycling Biowaste to Synthesize Nitrogen-Doped Highly Porous Activated Carbon Scaffolds for Selenium Stuffing with Superior Electrochemical Properties. ACS Applied Energy Materials, 2021, 4, 2786-2796.	2.5	6
1024	Synthesis of Fluorescent Nitrogen and Phosphorous Co-doped Carbon Quantum Dots for Sensing of Iron, Cell Imaging and Antioxidant Activities. Journal of Fluorescence, 2021, 31, 763-774.	1.3	15
1025	Carbon Dots and Stability of Their Optical Properties. Particle and Particle Systems Characterization, 2021, 38, 2000271.	1.2	45
1026	Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multiâ€Sensing Platform. ChemistrySelect, 2021, 6, 2774-2789.	0.7	26

#	Article	IF	CITATIONS
1027	Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano, 2021, 15, 6872-6885.	7.3	184
1028	Coffee Grounds-Derived CNPs for Efficient Cr(VI) Water Remediation. Nanomaterials, 2021, 11, 1064.	1.9	4
1029	Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers, 2021, 13, 1991.	1.7	73
1030	A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications. Frontiers in Energy Research, 2021, 9, .	1.2	54
1031	Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. Journal of Nanobiotechnology, 2021, 19, 105.	4.2	38
1032	One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high electron/ion transfer rate for lithium-ion batteries. Chemical Engineering Science, 2021, 234, 116453.	1.9	15
1033	A carbon-based nanocarrier for efficient gene delivery. Therapeutic Delivery, 2021, 12, 311-323.	1.2	4
1034	Renalâ€Clearable Nickelâ€Doped Carbon Dots with Boosted Photothermal Conversion Efficiency for Multimodal Imagingâ€Guided Cancer Therapy in the Second Nearâ€Infrared Biowindow. Advanced Functional Materials, 2021, 31, 2100549.	7.8	107
1035	Carbon Dots Derived from Coffee Residue for Sensitive and Selective Detection of Picric Acid and Iron(III) Ions. Chemical Research in Chinese Universities, 2021, 37, 623-628.	1.3	7
1036	Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science, 2021, 15, 253-265.	1.1	24
1037	Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules, 2021, 26, 3085.	1.7	39
1038	Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. International Journal of Molecular Sciences, 2021, 22, 5608.	1.8	22
1039	Photoluminescent chiral carbon dots derived from glutamine. Chinese Chemical Letters, 2021, 32, 3916-3920.	4.8	25
1040	Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 2021, 10, 623.	1.5	48
1041	A rich gallery of carbon dots based photoluminescent suspensions and powders derived by citric acid/urea. Scientific Reports, 2021, 11, 10554.	1.6	47
1042	Emerging theranostic applications of carbon dots and its variants. View, 2022, 3, 20200089.	2.7	17
1044	Natural source of carbon dots from part of a plant and its applications: a review. Luminescence, 2021, 36, 1354-1364.	1.5	31
1045	Fluorescent nitrogen-doped carbon nanodots synthesized through a hydrothermal method with different isomers. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 302-302.	2.7	13

#	Article	IF	CITATIONS
1046	Sustainable process to co-synthesize nano carbon dots, nano hydroxyapatite and nano \hat{l}^2 -dicalcium diphosphate from the fish scale. Applied Nanoscience (Switzerland), 2021, 11, 1929-1947.	1.6	10
1047	Carbon Dots-Mediated Fluorescent Scaffolds: Recent Trends in Image-Guided Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 5378.	1.8	23
1048	Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells. ACS Omega, 2021, 6, 13300-13309.	1.6	3
1049	Aqueous Conversion of Fructose Phosphate Precursor Nanoparticles into Emissive Câ€Dot Composite Nanoparticles. ChemNanoMat, 2021, 7, 916-926.	1.5	0
1050	Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance. Chemical Engineering Research and Design, 2021, 170, 423-433.	2.7	11
1051	Biomassâ€derived Carbon Quantum Dots – A Review. Part 1: Preparation and Characterization. ChemBioEng Reviews, 2021, 8, 265-301.	2.6	13
1052	Green Route for the Synthesis of Fluorescent Carbon Nanoparticles from Circassian Seeds for Fe(III) Ion Detection. Journal of Fluorescence, 2021, 31, 1323-1332.	1.3	4
1053	Flexible sodium-ion batteries using electrodes from <i>Samanea saman</i> tree leaf <i>-</i> derived carbon quantum dots decorated with SnO2 and NaVO3. Clean Energy, 2021, 5, 354-374.	1.5	11
1054	Fabrication of blue fluorescent carbon quantum dots using green carbon precursor Psidium guajava leaf extract and its application in water treatment. Carbon Letters, 2022, 32, 119-129.	3.3	14
1055	Synthesis and Applications of Organic-Based Fluorescent Carbon Dots: Technical Review. , 0, , .		0
1057	Carbon Quantum Dots from Lemon Waste Enable Communication among Biodevices. Chemosensors, 2021, 9, 202.	1.8	14
1058	Photophysical Investigation of a Benzimidazole Derivative and Its Applications in Selective Detection of Fe3+, Thermosensing and Logic Gates. Journal of Fluorescence, 2021, 31, 1503-1512.	1.3	10
1059	Highly Efficient N-Doped Carbon Quantum Dots for Detection of Hg2+ and Cd2+ ions in Dendrobium huoshanense. International Journal of Electrochemical Science, 2021, 16, 210716.	0.5	7
1060	Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials, 2021, 4, 6515-6541.	2.4	145
1061	pH-Dependent surface properties of N–Cdots obtained by the hydrothermal method with multicolored emissions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126578.	2.3	8
1062	Evolution of large-area reduced graphene oxide nanosheets from carbon dots via thermal treatment. Carbon Trends, 2021, 4, 100074.	1.4	16
1063	Recent developments on fluorescent hybrid nanomaterials for metal ions sensing and bioimaging applications: A review. Journal of Molecular Liquids, 2021, 333, 115950.	2.3	60
1064	Carbon quantum dots modified Ag2S/CS nanocomposite as effective antibacterial agents. Journal of Inorganic Biochemistry, 2021, 220, 111456.	1.5	14

#	Article	IF	CITATIONS
1065	Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119736.	2.0	33
1066	Controllable power-conversion efficiency in organic-solar cells. Chemical Physics, 2021, 547, 111203.	0.9	1
1067	An insight into the solvatochromic and photophysical behaviours of biowaste-origin carbon nanodots. Journal of Molecular Liquids, 2021, 336, 116360.	2.3	8
1068	Green synthesis of biomass-derived carbon quantum dots as fluorescent probe for Fe3+ detection. Inorganic Chemistry Communication, 2021, 130, 108636.	1.8	61
1069	One-pot sonochemical preparation of carbon dots, influence of process parameters and potential applications: a review. Carbon Letters, 2022, 32, 39-55.	3.3	12
1070	Study on the Origin of Fluorescence by Using Dual-Emission Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 18543-18551.	1.5	17
1071	Carbon Quantum Dots for Biomedical Applications: Review and Analysis. Frontiers in Materials, 2021, 8, .	1.2	87
1072	Carbon Dots Evoked Li Ion Dynamics for Solid State Battery. Small, 2021, 17, e2102978.	5. 2	54
1073	Advances, opportunities, and challenge for full-color emissive carbon dots. Chinese Chemical Letters, 2022, 33, 613-625.	4.8	75
1074	Continuous response fluorescence sensor for three small molecules based on nitrogen-doped carbon quantum dots from prunus lannesiana and their logic gate operation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 257, 119774.	2.0	8
1075	Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126673.	2.3	22
1076	Fluorescent xylitol carbon dots: A potent antimicrobial agent and drug carrier. Biotechnology and Applied Biochemistry, 2022, 69, 1679-1689.	1.4	6
1077	Novel N-doped carbon dots prepared via citric acid and benzoylurea by green synthesis for high selectivity Fe(III) sensing and imaging in living cells. Microchemical Journal, 2021, 167, 106273.	2.3	27
1078	One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. Journal of Environmental Chemical Engineering, 2021, 9, 105461.	3.3	28
1079	Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano, 2021, 15, 15471-15501.	7.3	269
1080	Rapid trace analysis of ceftriaxone using new fluorescent carbon dots as a highly sensitive turn-off nanoprobe. Microchemical Journal, 2021, 168, 106372.	2.3	15
1081	Yellow-emission and pH-responsive carbon dots employed for "turn-off―and "turn-off-on―assaying adenosine triphosphate and kanamycin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127640.	2.3	8
1082	Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustainable Materials and Technologies, 2021, 29, e00304.	1.7	51

#	Article	IF	CITATIONS
1084	Highly Efficient Flowerâ€Like Graphene Quantum Dotsâ€Based Fuschin Photocatalyst for Selective NAD(P)H Cofactor Regeneration Under Solar Light Irradiation. Photochemistry and Photobiology, 2022, 98, 412-420.	1.3	9
1085	Near infrared-response ratiometric fluorescence sensor for the sensitive detection of Cu2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126812.	2.3	7
1086	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
1087	Fluorescence tuning, all-optical switching and OR gate realization of phloroglucinol derived carbon dots. Optik, 2021, 248, 168049.	1.4	7
1088	Preparation of monodispersed carbonaceous nanomaterials – A review. Colloids and Interface Science Communications, 2021, 44, 100479.	2.0	2
1089	Solvent effect on the absorption and emission spectra of carbon dots: evaluation of ground and excited state dipole moment. BMC Chemistry, 2021, 15, 53.	1.6	19
1090	Biomass-derived carbon nanospheres decorated by manganese oxide nanosheets, intercalated into polypyrrole, as an inside-needle capillary adsorption trap sorbent for the analysis of linear alkylbenzenes. Talanta, 2021, 233, 122583.	2.9	3
1091	Defects coordination triggers red-shifted photoluminescence in carbon dots and their application in ratiometric Cr(VI) sensing. Microchemical Journal, 2021, 169, 106552.	2.3	13
1092	Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging. Materials Science and Engineering C, 2021, 129, 112366.	3.8	27
1093	A green path to extract carbon quantum dots by coconut water: Another fluorescent probe towards Fe3+ ions. Particuology, 2021, 58, 251-258.	2.0	20
1094	Long-wavelength emissive solid-state carbon dots in nanoporous glass with excellent thermal stability. Journal of Colloid and Interface Science, 2021, 599, 686-693.	5.0	21
1095	Graphene quantum dots functionalized with Bovine Serum Albumin for sensing of hypochlorite ions. Materials Chemistry and Physics, 2021, 273, 125088.	2.0	6
1096	Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Progress in Energy and Combustion Science, 2021, 87, 100929.	15.8	52
1097	Highly fluorescent carbon dots from coix seed for the determination of furazolidone and temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119969.	2.0	20
1098	Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119967.	2.0	20
1099	Synthesis and properties of carbon quantum dots and their research progress in cancer treatment. Dyes and Pigments, 2021, 196, 109766.	2.0	15
1100	Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: A review. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100578.	1.7	17
1101	A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120132.	2.0	56

#	Article	IF	CITATIONS
1102	Luminescent properties of carbon dots originated from pine pollen for anti-counterfeiting application. Optics and Laser Technology, 2022, 145, 107452.	2.2	10
1103	Synthesis and study of carbon quantum dots (CQDs) for enhancement of luminescence intensity of CQD@LaPO4:Eu3+ nanocomposite. Materials Chemistry and Physics, 2022, 275, 125277.	2.0	20
1104	CHAPTER 1. Carbon Nanostructures: Drug Delivery and Beyond. RSC Nanoscience and Nanotechnology, 2021, , 1-38.	0.2	3
1105	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
1106	Facile synthesis of carbon dots using tender coconut water for the fluorescence detection of heavy metal ions. Materials Today: Proceedings, 2021, 43, 3821-3825.	0.9	14
1107	Fabrication and analysis of starch-based green materials. , 2021, , 301-318.		0
1108	"Synthesis of carbon nanomaterials by chemical vapor deposition method using green chemistry principlesâ€, 2021, , 273-314.		5
1109	Influence of carbon dot synthetic parameters on photophysical and biological properties. Nanoscale, 2021, 13, 11138-11149.	2.8	20
1110	Nanostructures for biomedical devices. , 2021, , 299-326.		3
1111	Carbon Nanolights as Optical Nanosensors for Water Contaminants. Environmental Chemistry for A Sustainable World, 2020, , 157-196.	0.3	2
1112	Quantum Dots Synthesis and Application. Engineering Materials, 2021, , 229-265.	0.3	2
1113	Carbon Dots from Renewable Resources: A Review on Precursor Choices and Potential Applications. Advanced Structured Materials, 2020, , 159-208.	0.3	3
1114	Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging. Journal of Colloid and Interface Science, 2018, 513, 505-514.	5.0	62
1115	Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. Journal of Photochemistry and Photobiology B: Biology, 2017, 175, 219-225.	1.7	102
1116	Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO 2 nanocomposites. Materials Research Bulletin, 2018, 97, 428-435.	2.7	49
1117	Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today, 2020, 33, 100879.	6.2	318
1119	Sulfonated glycosaminoglycan bioinspired carbon dots for effective cellular labelling and promotion of the differentiation of mesenchymal stem cells. Journal of Materials Chemistry B, 2020, 8, 5655-5666.	2.9	22
1120	A pilot study on carbon quantum dots for bioimaging of muscle myoblasts. , 2020, , .		2

#	Article	IF	CITATIONS
1121	Carbon Dots: Highlight on Their Synthesis, Properties and Applications in Tumor Imaging and Therapy. Nanoscience and Nanotechnology Letters, 2017, 9, 1827-1848.	0.4	5
1122	Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics, 2020, 10, 877-908.	2.9	57
1123	Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI Journal, 2019, 18, 454-466.	0.5	13
1124	Green synthesis of carbon quantum dots from sumac: characterization and investigation with cyclic voltammetry technique. Cumhuriyet Science Journal, 2020, 41, 808-814.	0.1	7
1125	Carbon Dots as Nanotherapeutics for Biomedical Application. Current Pharmaceutical Design, 2020, 26, 2207-2221.	0.9	26
1126	Carbon Quantum Dots: Surface Passivation and Functionalization. Current Organic Chemistry, 2016, 20, 682-695.	0.9	135
1127	Versatile Coffee Carbon Dots as Lead (ii) and Copper (ii) ion Fluorescence Detectors and Copper Corrosion Inhibitor. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 129-138.	0.1	1
1128	Eco-Friendly Sustainable Fluorescent Carbon Dots for the Adsorption of Heavy Metal Ions in Aqueous Environment. Nanomaterials, 2020, 10, 315.	1.9	94
1129	Carbon dots as artificial peroxidases for analytical applications. Journal of Food and Drug Analysis, 2020, 28, 559-575.	0.9	18
1130	The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. Journal of Food and Drug Analysis, 2020, 28, 678-696.	0.9	25
1131	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247.	14.4	9
1132	Carbon Quantum Dots: A Safe Tool to Learn about Quantum Phenomenon in Nanomaterials. Journal of Laboratory Chemical Education, 2017, 5, 48-54.	1.0	9
1133	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
1134	Biological Activity Test of Dendrobium Huoshanense and Its Application in the Detection of Environmental Pollutant Phenols. Science of Advanced Materials, 2021, 13, 1205-1214.	0.1	0
1135	Carbon dots derived from Beta vulgaris: evaluation of its potential as antioxidant and anticancer agent. Nanotechnology, 2022, 33, 045403.	1.3	15
1136	Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review. Applied Physics A: Materials Science and Processing, 2021, 127, .	1.1	37
1137	Blue–Green Electroluminescent Carbon Dots Derived from Fenugreek Seeds for Display and Lighting Applications. ACS Applied Nano Materials, 2021, 4, 12472-12480.	2.4	7
1138	Carbon Quantum Dots. Engineering Materials, 2022, , 71-88.	0.3	1

#	ARTICLE	IF	Citations
1139	Use of microalgal lipids and carbohydrates for the synthesis of carbon dots via hydrothermal microwave treatment. Inorganic Chemistry Communication, 2021, 134, 109021.	1.8	8
1140	Facile synthesis of quantum dots/TiO2 photocatalyst with superior photocatalytic activity: the effect of carbon nitride quantum dots and N-doped carbon dots. Research on Chemical Intermediates, 2021, 47, 5229-5247.	1.3	6
1141	Betel leaf derived multicolor emitting carbon dots as a fluorescent probe for imaging mouse normal fibroblast and human thyroid cancer cells. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 136, 115010.	1.3	10
1142	Carbon Quantum Dots as Potential Drug Carriers. Engineering and Protection of Environment, 2016, 19, 277-288.	0.3	0
1143	Synthesis and Applications of Carbon Quantum Dots. Journal of Advances in Physical Chemistry, 2017, 06, 128-136.	0.1	0
1144	Broadband fluorescence from green-synthesized carbon dots. , 2018, , .		0
1145	Study on the Purification and Fluorescence Properties of Carbon Quantum Dots by Gel Penetrate Chromatography. Advances in Analytical Chemistry, 2018, 08, 103-111.	0.1	O
1146	The Preparation of Magnetic Carbon Quantum Dots. Hans Journal of Medicinal Chemistry, 2018, 06, 13-19.	0.0	0
1147	Carbon Nanomaterials in Analytical Separations. RSC Detection Science, 2018, , 69-104.	0.0	0
1148	Carbon Dots Synthesized from Green Precursors with an Amplified Photoluminescence: Synthesis, Characterization, and Its Application. Nanotechnology in the Life Sciences, 2019, , 1-33.	0.4	0
1149	Fluorescent Property of Carbon Nanodots Synthesized by Microwave Method from Crystal Nanocellulose as Precursor. , 2019, , .		0
1150	Fluorescence cell imaging using carbon quantum dots generated by continuous fragmentation. , 2019, , .		0
1151	Improvement on fluorescent properties of photonic crystals filled by quantum dots based on multi-layer films. , 2019, , .		0
1152	Studies on new material: carbon dot-graphene oxide-zinc oxide nanocomplex. Materials Science-Poland, 2019, .	0.4	1
1153	Kırmızı SoÄŸandan Karbon Kuantum Noktaların Sentezi ve FotolÃ⅓minesans Özelliklerinin İncelenmes Journal of Natural and Applied Sciences, 0, , 48-56.	öi. 0.1	1
1154	Nitrogen-induced shift of photoluminescence from green to blue emission for xylose-derived carbon dots. Nano Express, 2020, 1, 020018.	1.2	3
1155	Microwave-assisted synthesis of photoluminescent carbon dots from palm fronds biomass wastes. IOP Conference Series: Materials Science and Engineering, 2021, 1195, 012008.	0.3	3
1156	One-Step Synthesis of Fluorescent Carbon Nanodots from Two Widely Available Natural Sources. , 2020, , .		O

#	Article	IF	Citations
1157	Review on green carbon dot-based materials for the photocatalytic degradation of dyes: fundamentals and future perspective. Materials Advances, 2021, 2, 7559-7582.	2.6	38
1158	Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. Journal of Colloid and Interface Science, 2022, 607, 1825-1835.	5.0	97
1159	Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics, 2021, 13, 1874.	2.0	27
1160	A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128023.	2.3	7
1161	Designing of a pH-activatable carbon dots as a luminescent nanoprobe for recognizing folate receptor-positive cancer cells. Nanotechnology, 2022, 33, 075103.	1.3	5
1162	Green carbon dots with multifaceted applications– Waste to wealth strategy. FlatChem, 2022, 31, 100310.	2.8	26
1163	N-Doped Carbon Quantum Dot-MnO ₂ Nanowire FRET Pairs: Detection of Cholesterol, Glutathione, Acetylcholinesterase, and Chlorpyrifos. ACS Applied Nano Materials, 2021, 4, 13612-13624.	2.4	39
1164	Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54677-54689.	4.0	19
1165	Luminescent Carbon Dots for Environmental Photocatalytic. Environmental Footprints and Eco-design of Products and Processes, 2022, , 201-228.	0.7	0
1166	Developing electropositive citric acid–polyethylenimine carbon quantum dots with high biocompatibility and labeling performance for mesenchymal stem cells <i>in vitro</i> and <i>in vivo</i> . New Journal of Chemistry, 2022, 46, 2508-2517.	1.4	8
1167	A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chemistry, 2022, 24, 675-700.	4.6	26
1168	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022, 4, 353-376.	2.2	46
1169	CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye. Materials Chemistry and Physics, 2022, 278, 125583.	2.0	15
1170	TEMPO oxidized nanofiber carbon quantum dots/TiO2 composites with enhanced photocatalytic activity for degradation of methylene blue. Chemical Physics Letters, 2022, 788, 139297.	1.2	9
1171	Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. Environmental Pollution, 2022, 295, 118695.	3.7	13
1172	Electron spin dynamics in sucrose-derived luminescent carbon dot-silica nanocomposites. Journal of Physics and Chemistry of Solids, 2022, 162, 110536.	1.9	3
1173	Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 2021, 11, 3419.	1.9	115
1174	Biocompatibility and Antioxidant Capabilities of Carbon Dots Obtained from Tomato (Solanum) Tj ETQq1 1 0.784	1314 rgBT 1.3	/Qyerlock 1

#	Article	IF	CITATIONS
1175	Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation. Topics in Catalysis, 0 , 1 .	1.3	11
1176	Solid waste management through the concept of zero waste. , 2022, , 293-318.		2
1177	Optical properties and photoactivity of carbon nanodots synthesized from olive solid wastes at different carbonization temperatures. RSC Advances, 2022, 12, 4490-4500.	1.7	12
1178	Ultrasmall fluorescent nanomaterials for sensing and bioimaging applications. , 2022, , 531-570.		0
1179	A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. Journal of Fluorescence, 2022, 32, 449-471.	1.3	18
1180	Carbon-Dot-Enhanced Electrocatalytic Hydrogen Evolution. Accounts of Materials Research, 2022, 3, 319-330.	5.9	72
1181	Highly Sensitive Fingerprint Detection under UV Light on Non-Porous Surface Using Starch-Powder Based Luminol-Doped Carbon Dots (N-CDs) from Tender Coconut Water as a Green Carbon Source. Nanomaterials, 2022, 12, 400.	1.9	12
1182	Preparation of carbon quantum dots using bike pollutant soot: Evaluation of structural, optical and moisture sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115174.	1.3	18
1183	Synthesis, characterization, and application of gene conjugated polymerized nitrogen-doped graphene quantum dots carriers for in vivo bio-targeting in neuroblastoma treatment. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104167.	2.7	4
1184	Green synthesis of fluorescent carbon dots from canon ball fruit for sensitive detection of Fe3+ and catalytic reduction of textile dyes. Dyes and Pigments, 2022, 199, 110101.	2.0	11
1185	One-pot synthesis of UV-protective carbon nanodots from sea cauliflower (Leathesia difformis). Electronic Journal of Biotechnology, 2022, 56, 22-30.	1.2	3
1186	Facile approach for green synthesis of fluorescent carbon dots from Manihot esculenta and their potential applications as sensor and bio-imaging agents. Inorganic Chemistry Communication, 2022, 137, 109219.	1.8	16
1187	Synthesis of corn straw-based graphene quantum dots (GQDs) and their application in PO43-detection. Journal of Environmental Chemical Engineering, 2022, 10, 107150.	3.3	19
1188	Biomass-derived carbonaceous materials and their applications. , 2022, , 431-467.		0
1189	Developmental toxicity of nanomaterials used in drug delivery: understanding molecular biomechanics and potential remedial measures., 2022,, 685-725.		4
1190	A new Fe/N doped carbon dot naocatalytic amplification-aptamer SERS/RRS/Abs trimode assay platform for ultratrace Pb2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 121008.	2.0	6
1191	Green fluorescent nanomaterials for rapid detection of chromium and iron ions: wool keratin-based carbon quantum dots. RSC Advances, 2022, 12, 8108-8118.	1.7	15
1192	Citrus Bio-wastes: A Source of Bioactive, Functional Products and Non-food Uses., 2022,, 221-260.		1

#	Article	IF	CITATIONS
1193	Cd2+ Ion Adsorption and Reuse of Spent Adsorbent with N-Doped Carbon Nanoparticles Coated on Cerium Oxide Nanorods Nanocomposite for Fingerprint Detection. SSRN Electronic Journal, 0, , .	0.4	0
1194	Green synthetic nitrogen-doped graphene quantum dot fluorescent probe for the highly sensitive and selective detection of tetracycline in food samples. RSC Advances, 2022, 12, 8160-8171.	1.7	14
1195	Multifunctional applications for waste zinc–carbon battery to synthesize carbon dots and symmetrical solid-state supercapacitors. RSC Advances, 2022, 12, 10608-10618.	1.7	6
1196	Sustainable and Green Synthesis of Waste-Biomass-Derived Carbon Dots for Parallel and Semi-Quantitative Visual Detection of Cr(VI) and Fe3+. Molecules, 2022, 27, 1258.	1.7	18
1197	Synthesizing Luminescent Carbon from Condensed Tobacco Smoke: Bio-Waste for Possible Bioimaging. Canadian Journal of Chemistry, 0, , .	0.6	0
1198	Sensitive and Selective Detection of Clenbuterol in Meat Samples by a Graphene Quantum Dot Fluorescent Probe Based on Cationic-Etherified Starch. Nanomaterials, 2022, 12, 691.	1.9	8
1199	Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Frontiers in Pharmacology, 2022, 13, 815479.	1.6	13
1200	Preparation, Properties, and Application of Lignocellulosicâ€Based Fluorescent Carbon Dots. ChemSusChem, 2022, 15, e202102486.	3.6	20
1201	A Label-Free Fluorescent Sensor Based on Si,N-Codoped Carbon Quantum Dots with Enhanced Sensitivity for the Determination of Cr(VI). Materials, 2022, 15, 1733.	1.3	6
1202	Microwave-Assisted Green Synthesis of Carbon Quantum Dots Derived from Calotropis Gigantea as a Fluorescent Probe for Bioimaging. Journal of Fluorescence, 2022, 32, 1039-1049.	1.3	24
1203	Green synthesis of multifunctional carbon quantum dots: An approach in cancer theranostics. , 2022, 136, 212756.		28
1204	One-Step Green Synthesis of Water-Soluble Fluorescent Carbon Dots and Its Application in the Detection of Cu2+. Nanomaterials, 2022, 12, 958.	1.9	17
1205	Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation. ACS Nano, 2022, 16, 6480-6492.	7.3	14
1206	Depletion of carbon dots in stimulated emission depletion microscopy developed with 405/532 nm continuous-wave lasers. Journal of Modern Optics, 2022, 69, 427-435.	0.6	0
1207	Immunoregulatory Activity of Herbal Tea-Derived Carbon Dots. ACS Applied Bio Materials, 2022, 5, 1604-1609.	2.3	11
1208	Construction of N-CDs and Calcein-Based Ratiometric Fluorescent Sensor for Rapid Detection of Arginine and Acetaminophen. Nanomaterials, 2022, 12, 976.	1.9	4
1209	Green Synthesis of Nitrogen–Doped Carbon Dots from Fresh Tea Leaves for Selective Fe3+ Ions Detection and Cellular Imaging. Nanomaterials, 2022, 12, 986.	1.9	21
1210	A new insights into multicolor emissive carbon dots using Trachelospermum jasminoides leaves for the application of WLEDs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128959.	2.3	13

#	Article	IF	CITATIONS
1211	Current scenario and recent advancement of doped carbon dots: a short review scientocracy update (2013–2022). Carbon Letters, 2022, 32, 953-977.	3.3	18
1212	A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+. Science of the Total Environment, 2022, 825, 153913.	3.9	27
1213	Sustainable fabrication of N-doped carbon quantum dots and their applications in fluorescent inks, Fe (III) detection and fluorescent films. Inorganic Chemistry Communication, 2022, 140, 109387.	1.8	10
1214	Green fluorescent carbon dots from chitosan as selective and sensitive "off-on―probes for nitrite and "on-off-on―probes for enrofloxacin detection. Journal of Alloys and Compounds, 2022, 908, 164519.	2.8	21
1215	Construction of Photoelectrochemical DNA Biosensors Based on TiO2@Carbon Dots@Black Phosphorous Quantum Dots. Micromachines, 2021, 12, 1523.	1.4	6
1216	Photodegradation of acetone vapor by carbon dots decorated TiO ₂ catalyst: effects of experimental conditions. IOP Conference Series: Earth and Environmental Science, 2021, 947, 012014.	0.2	1
1217	Biocompatible carbon nanodots from red onion peels for anti-oxidative and bioimaging applications. Materials Express, 2021, 11, 1958-1965.	0.2	2
1218	Eco Friendly Synthesis of Carbon Dot by Hydrothermal Method for Metal Ions Salt Identification. Materials, 2021, 14, 7604.	1.3	17
1219	Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803138.	2.0	10
1220	Uso de la NanotecnologÃa para el desarrollo de empaques alimenticios del sector pesquero. QuÃmica Central, 2022, 7, 05-14.	0.0	0
1221	Visible-light-driven N and Fe co-doped carbon dots for peroxymonosulfate activation and highly efficient aminopyrine photodegradation. Chemical Engineering Journal, 2022, 443, 136473.	6.6	19
1223	Fabrication of ultra-bright carbon nano-onions <i>via</i> a one-step microwave pyrolysis of fish scale waste in seconds. Green Chemistry, 2022, 24, 3969-3976.	4.6	16
1224	Non-Toxic Carbon Dot Fluorescence Sensor Based on Chitosan for Sensitive and Selective Detection of Cr (Vi) in Water. SSRN Electronic Journal, 0, , .	0.4	0
1225	Carbon Nanomaterials for Imaging. Monographs in Supramolecular Chemistry, 2022, , 242-277.	0.2	1
1226	Sustainable development information management of carbon nanomaterial-based sensors. , 2022, , 3-12.		7
1227	An Innovative Microwave-Assisted One-Step Green Synthetic Approach of Biowaste Derived Fluorescent Carbon-Dot Invisible Ink for Currency Anti-Counterfeiting Applications. Nano, 2022, 17, .	0.5	2
1228	Microwave-assisted synthesis and formation mechanism of fluorescent carbon dots from starch. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100218.	1.6	7
1229	Spontaneously sp ² -Carbonized Fluorescent Polyamides as a Probe Material for Bioimaging. ACS Applied Bio Materials, 2022, 5, 3057-3066.	2.3	0

#	Article	IF	CITATIONS
1230	Efficient detection of glucose by graphene-based non-enzymatic sensing material based on carbon dot. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129122.	2.3	2
1231	State-of-the-art developments in carbon quantum dots (CQDs): Photo-catalysis, bio-imaging, and bio-sensing applications. Chemosphere, 2022, 302, 134815.	4.2	81
1232	Green Synthesis: A Land of Complex Nanostructures. Current Pharmaceutical Biotechnology, 2023, 24, 3-22.	0.9	2
1233	Carbon Dots from Natural Sources for Biomedical Applications. Particle and Particle Systems Characterization, 2022, 39, .	1.2	15
1234	Visible-light-driven hierarchical porous CeO2 derived from wood for effective photocatalytic degradation of methylene blue. Optical Materials, 2022, 129, 112429.	1.7	7
1235	A dual-channel "on–off–on―fluorescent probe for the detection and discrimination of Fe ³⁺ and Hg ²⁺ in piggery feed and swine wastewater. Analytical Methods, 2022, 14, 2318-2328.	1.3	6
1237	Colorimetric and fluorescent probes for the rapid detection of profenofos in farmland system. Food Chemistry, 2022, 393, 133321.	4.2	8
1238	Avocado seeds derived carbon dots for highly sensitive Cu (II)/Cr (VI) detection and copper (II) removal via flocculation. Chemical Engineering Journal, 2022, 446, 137171.	6.6	22
1239	Selective Detection of Nitrofurantoin by Carbon Dots with Blueâ€Emissive Fluorescence. ChemistrySelect, 2022, 7, .	0.7	0
1240	A Strategic Review on Carbon Quantum Dots for Cancer-Diagnostics and Treatment. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	31
1241	Silver nanoparticles embedded sulfur doped graphitic carbon nitride quantum dots: A fluorescent nanosensor for detection of mercury ions in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129377.	2.3	14
1242	Clustering of photoluminescent carbon quantum dots using biopolymers for biomedical applications. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102382.	1.5	7
1243	Non-toxic carbon dots fluorescence sensor based on chitosan for sensitive and selective detection of Cr (VI) in water. Microchemical Journal, 2022, 180, 107627.	2.3	11
1244	Development of carbon quantum dot-based lateral flow immunoassay for sensitive detection of aflatoxin M1 in milk. Food Chemistry, 2022, 393, 133374.	4.2	35
1245	Green Synthesis of Fluorescent Carbon Dots through Solvothermal Treatment of Buchnania lanzan Leaf Extract. , 0, , .		0
1246	Nanocomposites of Epoxy and Carbon Dots. ACS Symposium Series, 0, , 201-233.	0.5	0
1247	A fluorescence digital image-based method using carbon quantum dots to evaluate the compliance of a biocidal agent. Analytical Methods, 2022, 14, 2631-2641.	1.3	6
1248	Controllable fabrication of carbon dots based corrosion inhibitors with fluorescence properties., 2022,, 505-526.		1

#	Article	IF	CITATIONS
1249	Green carbon quantum dots: eco-friendly and sustainable synthetic approaches to nanocrystals. , 2022, , 443-466.		1
1250	Study on optical properties of carbon nanodots by annealing of rice powder as a carbon source. Journal of Physics: Conference Series, 2022, 2243, 012103.	0.3	1
1251	Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Materials, 2022, 37, 595-602.	2.9	9
1252	Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. Journal of the Chinese Chemical Society, 0, , .	0.8	2
1253	A review on properties and antibacterial applications of polymer-functionalized carbon dots. Journal of Materials Science, 2022, 57, 12752-12781.	1.7	6
1254	Cd2+ ion adsorption and re-use of spent adsorbent with N-doped carbon nanoparticles coated on cerium oxide nanorods nanocomposite for fingerprint detection. Chemical Physics Impact, 2022, 5, 100083.	1.7	13
1255	Synthesis of carbon dots from biomass resources. , 2022, , 69-116.		1
1256	Overview of carbon dot synthesis. , 2022, , 39-68.		O
1257	Comparative studies on carbon dots applications in plant systems. , 2022, , 199-224.		1
1258	Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots. Sensors and Actuators B: Chemical, 2022, 369, 132381.	4.0	27
1259	Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry - A European Journal, 2022, 28, .	1.7	21
1260	A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. Nanomaterials, 2022, 12, 2365.	1.9	21
1261	Photobleaching and Recovery Kinetics of a Palette of Carbon Nanodots Probed by In Situ Optical Spectroscopy. ACS Applied Materials & Spectroscopy. ACS Applied Materials & Spectroscopy. ACS Applied Materials & Spectroscopy. 14, 36038-36051.	4.0	3
1262	Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Materials Today Communications, 2022, 32, 104068.	0.9	28
1263	Multicolor Emitting Carbon Dot-Reinforced PVA Composites as Edible Food Packaging Films and Coatings with Antimicrobial and UV-Blocking Properties. ACS Omega, 2022, 7, 29967-29983.	1.6	17
1264	Solvatochromism, electrochemical characterization and anti-proliferative activity of bio-assisted fabrication of hierarchical carbon dots. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	O
1265	Carbon quantum dots: An environmentally friendly and valued approach to sludge disposal. Frontiers in Chemistry, 0, 10 , .	1.8	6
1266	A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications. Luminescence, 2022, 37, 1612-1638.	1.5	22

#	Article	IF	CITATIONS
1267	Luminescent carbon dots obtained from cellulose and their applications as sensors for metal ions. Materials Chemistry and Physics, 2022, 290, 126633.	2.0	5
1268	AND logic gate supported novel speckled phosphorus-doped carbon dots decorated ZrO2/CaO/MgO sonocatalysts for efficient MB dye decolorization. Materials Chemistry and Physics, 2022, 290, 126609.	2.0	2
1269	Two kinds of biomass-derived carbon dots with one-step synthesis for Fe3+ and tetracyclines detection. Dyes and Pigments, 2022, 206, 110555.	2.0	8
1270	In-situ growth of nitrogen-doped carbonized polymer dots on black phosphorus for electrochemical DNA biosensor of Escherichia coli O157: H7. Bioelectrochemistry, 2022, 148, 108226.	2.4	15
1271	Dual-mode detection sensor based on nitrogen-doped carbon dots from pine needles for the determination of Fe3+ and folic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121891.	2.0	11
1272	Multicolor carbon dots for imaging applications. , 2023, , 305-317.		2
1273	Optically advanced carbon dots for sensing of harmful toxins. , 2023, , 155-181.		0
1274	Carbon Quantum Dots. Nanotechnology in the Life Sciences, 2022, , 75-102.	0.4	0
1275	Plant-Derived Nanoparticles for Heavy Metal Remediation. , 2022, , 59-76.		0
1276	Facile synthesis of a luminescent carbon material from yogurt for the efficient photocatalytic degradation of methylene blue. RSC Advances, 2022, 12, 25549-25564.	1.7	5
1277	Biogenic synthesis of carbon quantum dots from garlic peel bioâ€waste for use as a fluorescent probe for sensing of quercetin. Luminescence, 2022, 37, 1991-2001.	1.5	4
1278	Synthesis, characterization and antibacterial properties of chitosan/Ag2S/CQDs hydrogel. Chemical Papers, 0, , .	1.0	1
1279	Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their Application in Light-Emitting Diodes. Nanomaterials, 2022, 12, 3132.	1.9	5
1280	Nitrogen and sulfur co-doped carbon dots derived from granatums and ammonium persulfate to detect tetracyclines in milk., 2022, 1, 100112.		1
1281	Fluorescent carbon quantum dots: Synthesis methods, functionalization and biomedical applications. Applied Surface Science Advances, 2022, 11, 100311.	2.9	22
1282	Folic acid conjugated capecitabine capped green synthesized fluorescent carbon dots as a targeted nano-delivery system for colorectal cancer. Materials Today Communications, 2022, 33, 104590.	0.9	3
1283	Tunable carbon quantum dots from starch via microwave assisted carbonization., 0,, 13-21.		6
1284	The highly sensitive "turn-on―detection of morin using fluorescent nitrogen-doped carbon dots. Analyst, The, 2022, 147, 5455-5461.	1.7	6

#	Article	IF	CITATIONS
1285	Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. Green Energy and Technology, 2023, , 1-73.	0.4	0
1286	Luminescent carbon dots obtained from different precursors and methods and their applications as sensors for metal ions. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-10.	1.0	0
1287	Emerging and Versatile Platforms of Metalâ€lonâ€Doped Carbon Dots for Biosensing, Bioimaging, and Disease Therapy. ChemMedChem, 2023, 18, .	1.6	5
1288	Synthesis and enhancement of carbon quantum dots from Mopan persimmons for Fe3+ sensing and anti-counterfeiting applications. Chemical Engineering Journal, 2023, 453, 139906.	6.6	39
1289	Sustainable synthesis of biomass-derived carbon quantum dots and their catalytic application for the assessment of $\hat{l}\pm,\hat{l}^2$ -unsaturated compounds. RSC Advances, 2022, 12, 32619-32629.	1.7	10
1290	Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine. Environmental Research, 2023, 216, 114803.	3.7	10
1291	Bioresource-Functionalized Quantum Dots for Energy Generation and Storage: Recent Advances and Feature Perspective. Nanomaterials, 2022, 12, 3905.	1.9	4
1292	One-pot synthesized multifunctional carbon nitride dots for fluorescent sensing, bioimaging, and selective cytotoxic effect on cancer cells. Journal of Molecular Liquids, 2022, 368, 120809.	2.3	5
1293	A review of the capabilities of carbon dots for the treatment and diagnosis of cancer-related diseases. Journal of Drug Delivery Science and Technology, 2022, 78, 103946.	1.4	2
1294	Green conversion of excess sludge to N-Ca self-doping sustainable carbon quantum dots with remarkable fluorescence enhancement and residual heavy metal reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108934.	3.3	4
1295	Green synthesis of carbon quantum dots from plant turmeric holds promise as novel photosensitizer for inÂvitro photodynamic antimicrobial activity. Journal of Materials Research and Technology, 2023, 22, 17-34.	2.6	15
1296	Ultra-fast microwave-assisted synthesis of photoluminescent carbon dots with an ultra-high quantum yield for H2O2 detection. Journal of Environmental Chemical Engineering, 2022, 10, 109008.	3.3	11
1297	Sustainable synthesis of nitrogen-doped fluorescent carbon quantum dots derived from Cissus quadrangularis for biomarker applications. Materials Chemistry and Physics, 2023, 296, 127237.	2.0	5
1298	Synthesis of luminescent chitosan-based carbon dots for Candida albicans bioimaging. International Journal of Biological Macromolecules, 2023, 227, 805-814.	3.6	9
1299	Synthesis of Green fluorescent Nitrogen doped Vitis vinifera derived Carbon dots and their in-vitro antimicrobial studies. Journal of Molecular Structure, 2023, 1275, 134660.	1.8	1
1300	Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation. Journal of Hazardous Materials, 2023, 445, 130512.	6.5	6
1301	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	1.7	3
1302	Eco-friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent. Journal of Fluorescence, 2023, 33, 423-435.	1.3	11

#	Article	IF	CITATIONS
1303	Development of Probe for Arsenic and Fluoride Detection in Drinking Water. Lecture Notes in Mechanical Engineering, 2023, , 145-160.	0.3	0
1304	Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. Biosensors, 2022, 12, 1158.	2.3	3
1305	N-Dopant Site Formulation for White-Light-Emitting Carbon Dots with Tunable Chromaticity. ACS Sustainable Chemistry and Engineering, 2022, 10, 16136-16149.	3.2	2
1306	Review of 2D MnO (sub) 2 (/sub) Nanosheets as FRET-Based Nanodot Fluorescence Quenchers in Chemosensing Applications. ACS Applied Nano Materials, 2022, 5, 17373-17412.	2.4	8
1307	Effect of synthesis parameters on the structural, morphological characteristics, and photocatalytic activity of La2O3 nanoparticles. Journal of the Indian Chemical Society, 2023, 100, 100860.	1.3	6
1308	A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium. Dyes and Pigments, 2023, 210, 111048.	2.0	11
1309	Facile Synthesis of Carbon Dots from Amido Black 10b for Sensing in Real Samples. ACS Omega, 2022, 7, 47002-47008.	1.6	0
1311	Effect of Operating Parameters on the Properties of Carbon Dots from Spent Coffee Grounds. , 2023, , 56-64.		1
1312	Picomolar Detection of Lead Ions (Pb2+) by Functionally Modified Fluorescent Carbon Quantum Dots from Watermelon Juice and Their Imaging in Cancer Cells. Journal of Imaging, 2023, 9, 19.	1.7	5
1313	Green synthesis of CQDs for determination of iron and isoniazid in pharmaceutical formulations. Analytical Methods, 2023, 15, 944-950.	1.3	3
1314	The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small, 2023, 19, .	5.2	27
1315	Synthesis, characterization and potential sensing application of carbon dots synthesized via the hydrothermal treatment of cow milk. Scientific Reports, 2022, 12, .	1.6	19
1316	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & E	2.5	7
1317	Intense Blue Photo Emissive Carbon Dots Prepared through Pyrolytic Processing of Ligno-Cellulosic Wastes. Nanomaterials, 2023, 13, 131.	1.9	2
1318	Photocatalytic applications of carbon quantum dots for wastewater treatment., 2023,, 263-294.		0
1319	Current prospective of green chemistry in the pharmaceutical industry. , 2023, , 419-450.		0
1320	Functionalized carbon nanomaterials: Fabrication, properties and potential applications., 2023,, 19-53.		1
1321	Emerging Trends of Carbonâ€Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19,	5 . 2	33

#	Article	IF	CITATIONS
1322	Current prospects of carbon-based nanodots in photocatalytic CO2 conversion. , 2023, , 295-340.		0
1323	Sustainable applications of carbon dots-based composites as photocatalyst for environmental pollutants remediation., 2023,, 555-577.		O
1324	Synthesis of carbon quantum dots. , 2023, , 39-54.		0
1325	Application of functionalized carbon nanomaterials in therapeutic formulations. , 2023, , 55-74.		0
1326	A Perspective on Using Organic Molecules Composing Carbon Dots for Cancer Treatment. Nanotheranostics, 2023, 7, 187-201.	2.7	4
1327	Acrylate-based polymeric nanotheranostics. , 2023, , 85-111.		0
1328	Hydrophobic Carbon Dots Derived from Organic Pollutants and Applications in NIR Anticounterfeiting and Bioimaging. Langmuir, 2023, 39, 5056-5064.	1.6	6
1329	Parameters Affecting Methylene Blue Dye Photodegradation by Carbon dots Prepared from Olive Pomace. ChemistrySelect, 2023, 8, .	0.7	2
1330	Nanoporous N/O:sp2-C films functionalized at nonbonding electrons of a biogenic husk (green chili) with deep UV-visible light absorption-emission for photocatalysis and other applications. Surfaces and Interfaces, 2023, 38, 102824.	1.5	0
1331	Facile and Green Synthesis of Novel Fluorescent Carbon Quantum Dots and Their Silver Heterostructure: An <i>In Vitro</i> Anticancer Activity and Imaging on Colorectal Carcinoma. ACS Omega, 2023, 8, 4566-4577.	1.6	9
1332	Carbon Dots Based Photoinduced Reactions: Advances and Perspective. Advanced Science, 2023, 10, .	5.6	20
1333	High Performance Carbon Material Prepared from Phalsa Using Mild Pyrolytic Process towards Photodegradation of Methylene Blue under the Irradiation of UV Light. Catalysts, 2023, 13, 365.	1.6	1
1334	Dual functions of nitrogen and phosphorus co-doped carbon dots for drug-targeted delivery and two-photon cell imaging. Arabian Journal of Chemistry, 2023, 16, 104671.	2.3	2
1335	Synthesis of Fluorescent Carbon Quantum Dots Doped Graphitic Carbon Nitride and Its Application as Fe3+ Sensors. Journal of Cluster Science, 2023, 34, 2591-2607.	1.7	2
1336	Valorization of Yellow Oleander to Nitrogen Doped Carbon Dots: Theragnostic and Genotoxicity Assessment. ChemistrySelect, 2023, 8, .	0.7	0
1337	A novel antibacterial and fluorescent coating composed of polydopamine and carbon dots on the surface of orthodontic brackets. Journal of Materials Science: Materials in Medicine, 2023, 34, .	1.7	6
1338	Rambutan seed waste-derived nitrogen-doped carbon dots with <scp> </scp> -aspartic acid for the sensing of Congo red dye. RSC Advances, 2023, 13, 6422-6432.	1.7	1
1339	Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots. Nanomaterials, 2023, 13, 805.	1.9	9

#	Article	IF	Citations
1340	Spirulina carbon dots: a promising biomaterial for photocatalytic textile industry Reactive Red M8B dye degradation. Environmental Science and Pollution Research, 2023, 30, 52073-52086.	2.7	3
1341	FUNCTIONAL FILLERS – STRUCTURE. , 2023, , 147-222.		0
1342	Preparation of biomass waterâ€soluble carbon quantum dots and their application in Cr (VI) ions detection. Packaging Technology and Science, 2023, 36, 465-472.	1.3	2
1343	Facile and Green Synthesis of Carbon Dots from Melia Azedarach Leaves for pH Sensing and Cell Imaging. Journal of Fluorescence, 2023, 33, 1841-1851.	1.3	2
1344	Photoluminescent Carbon Dots: A New Generation Nanocarbon Material. Materials Horizons, 2023, , 231-256.	0.3	0
1345	Resculpting carbon dots via electrochemical etching. Scientific Reports, 2023, 13, .	1.6	0
1346	Simultaneous synthesis of carbon quantum dots, fluorescent probes, biofilms and hydrochar from sustainable vermicompost for versatile applications. Chemical Papers, 2023, 77, 3385-3398.	1.0	2
1347	Carbon quantum dots derived from fish scales as fluorescence sensors for detection of malachite green. Journal of Food Measurement and Characterization, 2023, 17, 3368-3376.	1.6	2
1348	Role of Noncovalent Interactions in N,P-Functionalized Luminescent Carbon Dots for Ultrasensitive Detection of Moisture in D ₂ O: Boosting Visible-NIR Light Sensitivity. ACS Applied Materials & Light Sensitivity. ACS Applied Materi	4.0	5
1349	Preparation of carbon quantum dots from ionic liquid modified biomass for the detection of Fe3+ and Pd2+ in environmental water. Ecotoxicology and Environmental Safety, 2023, 255, 114795.	2.9	7
1350	Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. Journal of Nanoparticle Research, 2023, 25, .	0.8	10
1351	Self-passivated carbon dots derived from Bougainvillea spectabilis for photovoltaic application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
1352	Carbon dots prepared by different bottom-up methods: a study on optical properties and the application as nanoprobes for metal ions detection. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 641-651.	1.0	4
1353	Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. Science of the Total Environment, 2023, 882, 163565.	3.9	8
1354	Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. Advanced Science, 2023, 10, .	5.6	13
1355	Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Scientific Reports, 2023, 13, .	1.6	20
1362	Natural Polymer-Carbon Dot Nanocomposites for Biomedical Use. Advances in Material Research and Technology, 2023, , 297-341.	0.3	0
1364	ZnO nanoparticles: A promosing greener catalytic approach for synthesis of bioactive heterocycles. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
1370	Green Carbon (Nano)Materials-Based Sensors for Analysis of Hazardous Metal Ions. ACS Symposium Series, 0, , 91-138.	0.5	0
1371	Advances in Synthetic Methods, Surface Chemistry, and Characterizations of Fullerenes. ACS Symposium Series, 0, , 41-74.	0.5	1
1372	Synthesis, Characterization, and Properties of Green Carbon Nanodots. ACS Symposium Series, 0 , , $25-39$.	0.5	0
1375	Green Carbon Materials for Removal of Environmental Pollutants. ACS Symposium Series, 0, , 75-89.	0.5	0
1376	Green Carbon Materials for Sensing Applications. ACS Symposium Series, 0, , 163-179.	0.5	0
1377	Green Carbon Materials: Synthesis from Waste Biomass, Properties, and Environmental Applications. ACS Symposium Series, 0, , 181-193.	0.5	0
1379	Future of Carbon Materials in Environmental Analysis. ACS Symposium Series, 0, , 195-231.	0.5	0
1380	Green Synthesis, Characterization, and Properties of Carbon Aerogels. ACS Symposium Series, 0, , 1-23.	0.5	0
1381	Carbon-Dots Based Sensors for Detection of Pollutants from Soil. ACS Symposium Series, 0, , 139-162.	0.5	0
1386	Future aspects of carbon and graphene quantum dots for biomedical applications. , 2023, , 261-273.		0
1394	Recent Progress and Perspective of an Evolving Carbon Family From 0D to 3D: Synthesis, Biomedical Applications, and Potential Challenges. ACS Applied Bio Materials, 2023, 6, 2043-2088.	2.3	3
1395	Multicomponent Hydrogels for Bioimaging and Biosensing Applications. , 2023, , 502-541.		0
1407	Carbon Quantum Dots: Green Nano-biomaterials in the Future of Biosensing., 2023,, 283-306.		0
1409	Functional carbon dots derived from biomass and plastic wastes. Green Chemistry, 2023, 25, 6581-6602.	4.6	7
1411	Synthesis and applications of carbon quantum dots derived from biomass waste: a review. Environmental Chemistry Letters, 2023, 21, 3393-3424.	8.3	8
1418	Future Prospect of Carbonaceous Quantum Dots. , 2023, , 192-203.		0
1430	A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Natural Products and Bioprospecting, 2023, 13, .	2.0	3
1432	Large-scale Synthesis of Carbon Dots for Pollutant Adsorption and Photodegradation. , 2023, , 88-106.		0

#	Article	IF	CITATIONS
1437	Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring., 2024, 2, 11-36.		1
1450	Advances in the synthesis approaches of carbon and graphene quantum dots. , 2024, , 17-59.		0
1455	Electronic properties of zero-dimensional carbon–based nanomaterials. , 2024, , 185-248.		0
1476	Blue to green fluorescence of carbon-dots from lignin residual liquid synthesized from hydrothermal method. AIP Conference Proceedings, 2024, , .	0.3	0