Trends in activity for the water electrolyser reactions o hydr(oxy)oxide catalysts

Nature Materials 11, 550-557 DOI: 10.1038/nmat3313

Citation Report

#	Article	IF	CITATIONS
3	Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH) ₂ /Metal Catalysts. Angewandte Chemie - International Edition, 2012, 51, 12495-12498.	13.8	615
5	Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C, 2012, 116, 21077-21082.	3.1	305
6	Ni-Doped Overlayer Hematite Nanotube: A Highly Photoactive Architecture for Utilization of Visible Light. Journal of Physical Chemistry C, 2012, 116, 24060-24067.	3.1	69
7	Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes. Journal of Physical Chemistry C, 2012, 116, 22231-22237.	3.1	71
8	The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy and Environmental Science, 2012, 5, 9246.	30.8	224
9	Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society, 2012, 134, 17253-17261.	13.7	1,403
10	Electrooxidation of Methanol at SnO _{<i>x</i>} –Pt Interface: A Tunable Activity of Tin Oxide Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 3286-3290.	4.6	44
11	An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Physical Chemistry Chemical Physics, 2013, 15, 5224.	2.8	216
12	Oxygen evolution in alkali with gas diffusion electrodes. International Journal of Hydrogen Energy, 2013, 38, 11496-11506.	7.1	21
13	Covalent Immobilization of Oriented Photosystem II on a Nanostructured Electrode for Solar Water Oxidation. Journal of the American Chemical Society, 2013, 135, 10610-10613.	13.7	112
14	Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications, 2013, 4, 2390.	12.8	923
15	Waterâ€5plitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move. Angewandte Chemie - International Edition, 2013, 52, 10426-10437.	13.8	421
16	Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013, 135, 13521-13530.	13.7	1,093
17	Effect of Ammonia on Pt, Ru, Rh, and Ni Cathodes During the Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2013, 117, 17429-17441.	3.1	28
18	Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 13493-13501.	7.1	78
19	Hierarchically Porous Nitrogen-Doped Graphene–NiCo ₂ O ₄ Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano, 2013, 7, 10190-10196.	14.6	506
20	Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst. Journal of Power Sources, 2013, 243, 908-912.	7.8	16
21	Manganese molybdate and its Fe-substituted products as new efficient electrocatalysts for oxygen evolution in alkaline solutions. International Journal of Hydrogen Energy, 2013, 38, 13587-13595.	7.1	23

		CITATION REPORT		
#	Article		IF	CITATIONS
22	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimension evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	al oxygen	30.8	309
23	Electrochemical tuning of vertically aligned MoS ₂ nanofilms and its applicat improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences United States of America, 2013, 110, 19701-19706.		7.1	894
24	Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous tem electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2013, 1, 12606.	plate for	10.3	72
25	Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generat the oxygen evolution reaction in alkaline water electrolysis. Chemical Communications, 2	ed during 013, 49, 9323.	4.1	146
26	Number of outer electrons as descriptor for adsorption processes on transition metals an oxides. Chemical Science, 2013, 4, 1245.	d their	7.4	273
27	Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Th Electrocatalyst. Journal of the American Chemical Society, 2013, 135, 3662-3674.	in Film	13.7	430
28	Molecular Catalytic Assemblies for Electrodriven Water Splitting. ChemPlusChem, 2013,	78, 35-47.	2.8	47
29	Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chemistry, 2013, 5, 300-306.	ure	13.6	945
30	An Efficient Threeâ€Dimensional Oxygen Evolution Electrode. Angewandte Chemie - Inter Edition, 2013, 52, 5248-5253.	national	13.8	307
31	Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 1254-1259.	Battery	4.6	294
32	Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at neutral pH. N 2013, 5, 6826.	anoscale,	5.6	60
33	Redox and electrochemical water splitting catalytic properties of hydrated metal oxide me electrodes. Physical Chemistry Chemical Physics, 2013, 15, 13737.	odified	2.8	482
34	Surface Interrogation Scanning Electrochemical Microscopy (SI-SECM) of Photoelectroch W/Mo-BiVO ₄ Semiconductor Electrode: Quantification of Hydroxyl Radicals Water Oxidation. Journal of Physical Chemistry C, 2013, 117, 12093-12102.		3.1	103
35	Size-Dependent Subnanometer Pd Cluster (Pd ₄ , Pd ₆ , and Pd <s Water Oxidation Electrocatalysis. ACS Nano, 2013, 7, 5808-5817.</s 	ub>17)	14.6	137
36	Deposition of β-Co(OH) ₂ Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chemistry of Materials, 2013, 25, 19.	22-1926.	6.7	168
37	Self-Organized One-Dimensional Cobalt Compound Nanostructures from CoC ₂ O ₄ for Superior Oxygen Evolution Reaction. Journal of Phy Chemistry C, 2013, 117, 23712-23715.	/sical	3.1	34
38	EQCM Investigation of Electrochemical Deposition and Stability of Co–Pi Oxygen Evolu of Solar Energy Storage. Journal of Physical Chemistry C, 2013, 117, 8001-8008.	tion Catalyst	3.1	15
40	Spin states in Co-PI catalysts. Applied Physics Letters, 2013, 102, .		3.3	10

#	Article	IF	CITATIONS
42	Confinement dependence of electro-catalysts for hydrogen evolution from water splitting. Beilstein Journal of Nanotechnology, 2014, 5, 195-201.	2.8	9
44	Water Electrolysis. SpringerBriefs in Energy, 2014, , 19-39.	0.3	3
45	The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution. Journal of Solid State Electrochemistry, 2014, 18, 3271-3286.	2.5	42
46	Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 102-121.	13.8	1,186
47	Nitrogen and Oxygen Dualâ€Doped Carbon Hydrogel Film as a Substrateâ€Free Electrode for Highly Efficient Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 2925-2930.	21.0	594
48	Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. ChemElectroChem, 2014, 1, 2075-2081.	3.4	301
49	Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discussions, 2014, 176, 125-133.	3.2	83
51	Precise oxygen evolution catalysts: Status and opportunities. Scripta Materialia, 2014, 74, 25-32.	5.2	165
52	Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction. Electrochimica Acta, 2014, 140, 359-365.	5.2	314
53	Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes. Angewandte Chemie - International Edition, 2014, 53, 3654-3658.	13.8	187
54	Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces. Science, 2014, 344, 499-504.	12.6	152
56	Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 2014, 136, 7077-7084.	13.7	1,202
57	Electrochemically fabricated hierarchical porous Ni(OH)2/NiCu electrodes for hydrogen evolution reaction. Electrochimica Acta, 2014, 117, 84-91.	5.2	25
58	Graphitic Carbon Nitride Nanoribbons: Grapheneâ€Assisted Formation and Synergic Function for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 13934-13939.	13.8	470
59	Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst. Journal of the American Chemical Society, 2014, 136, 16481-16484.	13.7	1,092
60	Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. Chemistry of Materials, 2014, 26, 6886-6895.	6.7	149
61	Low Overpotential in Vacancy-Rich Ultrathin CoSe ₂ Nanosheets for Water Oxidation. Journal of the American Chemical Society, 2014, 136, 15670-15675.	13.7	970
62	One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH) ₂ nanoplate composite as efficient catalysts for water oxidation. Journal of Materials Chemistry A, 2014, 2, 11799-11806.	10.3	129

#	Article	IF	CITATIONS
63	A Comparative Study of Composition and Morphology Effect of Ni _{<i>x</i>} Co _{1–<i>x</i>} (OH) ₂ on Oxygen Evolution/Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 10172-10180.	8.0	118
64	A Highâ€Performance Binary Ni–Co Hydroxideâ€based Water Oxidation Electrode with Threeâ€Dimensional Coaxial Nanotube Array Structure. Advanced Functional Materials, 2014, 24, 4698-4705.	14.9	348
65	Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Advances, 2014, 4, 9579.	3.6	117
66	Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale, 2014, 6, 3376.	5.6	62
67	Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction. Chemical Communications, 2014, 50, 13135-13137.	4.1	235
68	Si photoanode protected by a metal modified ITO layer with ultrathin NiOx for solar water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 4612-4625.	2.8	55
69	Synthesis of Highly Active and Stable Spinelâ€Type Oxygen Evolution Electrocatalysts by a Rapid Inorganic Selfâ€Templating Method. Chemistry - A European Journal, 2014, 20, 12669-12676.	3.3	42
70	Pt/Ru/C nanocomposites for methanol electrooxidation: how Ru nanocrystals' surface structure affects catalytic performance of deposited Pt particles. Inorganic Chemistry Frontiers, 2014, 1, 109-117.	6.0	12
71	Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. Journal of Applied Electrochemistry, 2014, 44, 1165-1170.	2.9	20
72	Nitrogen-Doped Graphene Supported CoSe ₂ Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano, 2014, 8, 3970-3978.	14.6	516
73	Influence of co-electrodeposited Gold particles on the electrocatalytic properties of CoHCF thin films. Electrochimica Acta, 2014, 139, 88-95.	5.2	9
74	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	47.7	329
75	Charge Carrier Dynamics of Photoexcited Co ₃ O ₄ in Methanol: Extending High Harmonic Transient Absorption Spectroscopy to Liquid Environments. Nano Letters, 2014, 14, 5883-5890.	9.1	37
76	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	12.6	2,260
77	Infrared-driven unimolecular reaction of CH ₃ CHOO Criegee intermediates to OH radical products. Science, 2014, 345, 1596-1598.	12.6	125
78	Photoexcited Hole Transfer to a MnOxCocatalyst on a SrTiO3Photoelectrode during Oxygen Evolution Studied by In Situ X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 24302-24309.	3.1	42
79	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	13.7	1,744
80	Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2014, 4, 3800-3821.	4.1	1,006

#	Article	IF	CITATIONS
81	Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments. Journal of Physical Chemistry Letters, 2014, 5, 2474-2478.	4.6	569
82	Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nature Communications, 2014, 5, 4191.	12.8	252
83	Molybdenum carbide–carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 10548-10556.	10.3	135
84	Comparative Study of the Electrocatalytically Active Surface Areas (ECSAs) of Pt Alloy Nanoparticles Evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis, 2014, 5, 408-418.	3.0	194
85	Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2014, 136, 4920-4926.	13.7	205
86	Hydrogen Evolution Reaction Kinetics on Electrodeposited Pt-M (M = Ir, Ru, Rh, and Ni) Cathodes for Ammonia Electrolysis. Journal of the Electrochemical Society, 2014, 161, E12-E22.	2.9	23
87	La ₂ O ₃ Doped Carbonaceous Microspheres: A Novel Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions with Ultrahigh Mass Activity. Journal of Physical Chemistry C, 2014, 118, 20229-20237.	3.1	42
88	Beyond the volcano limitations in electrocatalysis – oxygen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 13682-13688.	2.8	292
89	Trends in the Electrochemical Synthesis of H ₂ O ₂ : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Letters, 2014, 14, 1603-1608.	9.1	521
90	Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society, 2014, 136, 6744-6753.	13.7	2,659
91	Electrochemical investigations on amorphous Fe-base alloys for alkaline water electrolysis. International Journal of Hydrogen Energy, 2014, 39, 8926-8937.	7.1	54
92	Modulated crystalline Ag-Ci oxygen-evolving catalysts for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2014, 39, 1364-1370.	7.1	13
93	A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries. Energy and Environmental Science, 2014, 7, 2017.	30.8	140
94	Interfacial Effects in Iron-Nickel Hydroxide–Platinum Nanoparticles Enhance Catalytic Oxidation. Science, 2014, 344, 495-499.	12.6	591
95	A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency. Journal of the American Chemical Society, 2014, 136, 4201-4211.	13.7	136
96	Theory and Simulations of Electrocatalyst-Coated Semiconductor Electrodes for Solar Water Splitting. Physical Review Letters, 2014, 112, 148304.	7.8	87
97	The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 1. General considerations: A mini review. Electrochemistry Communications, 2014, 45, 60-62.	4.7	40
98	Bioâ€Inspired Leafâ€Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst. Advanced Science, 2015, 2, 1500003.	11.2	90

#	ARTICLE	IF	CITATIONS
99	Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media. Scientific Reports, 2015, 5, 13552.	3.3	47
100	Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 2015, 5, 13801.	3.3	2,017
101	CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media. Scientific Reports, 2014, 4, 5620.	3.3	36
102	Highâ€lateral resolution Xâ€ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts. X-Ray Spectrometry, 2015, 44, 263-275.	1.4	22
104	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	13.8	628
106	CoOOH Nanosheets with High Mass Activity for Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 8722-8727.	13.8	547
107	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 12361-12365.	13.8	751
108	Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Waterâ€Oxidation Performance. Angewandte Chemie - International Edition, 2015, 54, 10530-10534.	13.8	301
110	A Flexible Electrode Based on Iron Phosphide Nanotubes for Overall Water Splitting. Chemistry - A European Journal, 2015, 21, 18062-18067.	3.3	228
111	Molecular Mixedâ€Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts. Chemistry - A European Journal, 2015, 21, 13420-13430.	3.3	20
112	Spatially Confined Hybridization of Nanometerâ€Sized NiFe Hydroxides into Nitrogenâ€Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials, 2015, 27, 4516-4522.	21.0	612
113	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	21.0	705
114	The Synthesis of Nanostructured Ni ₅ P ₄ Films and their Use as a Nonâ€Noble Bifunctional Electrocatalyst for Full Water Splitting. Angewandte Chemie, 2015, 127, 12538-12542.	2.0	240
115	Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation. Nanomaterials, 2015, 5, 1971-1984.	4.1	32
116	Ultrathin porous Co ₃ O ₄ nanoplates as highly efficient oxygen evolution catalysts. Journal of Materials Chemistry A, 2015, 3, 8107-8114.	10.3	95
117	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	11.2	420
118	Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces, 2015, 7, 12930-12936.	8.0	151
119	Novel Co–Ni–graphene composite electrodes for hydrogen production. RSC Advances, 2015, 5, 47398-47407.	3.6	54

#	Article	IF	CITATIONS
120	Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials, 2015, 5, 1401880.	19.5	307
121	High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Applied Surface Science, 2015, 349, 629-635.	6.1	85
122	Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 7071-7074.	13.7	299
123	Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catalysis, 2015, 5, 3801-3806.	11.2	142
124	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. ChemNanoMat, 2015, 1, 298-318.	2.8	117
125	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	14.0	458
126	Fundamental Insights into High-Temperature Water Electrolysis Using Ni-Based Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 26980-26988.	3.1	26
127	Ultrathin CoOOH Oxides Nanosheets Realizing Efficient Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 26362-26366.	3.1	43
128	Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress in Natural Science: Materials International, 2015, 25, 545-553.	4.4	218
129	Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. Journal of Physical Chemistry C, 2015, 119, 1921-1927.	3.1	96
130	Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2100-2104.	13.8	1,092
131	<scp>H₂</scp> generation from alkaline electrolyzer. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4, 365-381.	4.1	82
133	Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H ₂ Evolution from Water. Journal of the American Chemical Society, 2015, 137, 2840-2843.	13.7	59
134	Composite Ni/NiO-Cr ₂ O ₃ Catalyst for Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 5467-5477.	3.1	121
135	Five-Fold Twinned Pd ₂ NiAg Nanocrystals with Increased Surface Ni Site Availability to Improve Oxygen Reduction Activity. Journal of the American Chemical Society, 2015, 137, 2820-2823.	13.7	100
136	A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. ACS Nano, 2015, 9, 1977-1984.	14.6	635
137	Evidence of Localized Lithium Removal in Layered and Lithiated Spinel Li _{1–<i>x</i>} CoO ₂ (0 ≤i>x≤0.9) under Oxygen Evolution Reaction Conditions. Journal of Physical Chemistry C, 2015, 119, 2335-2340.	3.1	29
138	Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters, 2015, 15, 1421-1427.	9.1	933

#	Article	IF	CITATIONS
139	Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications, 2015, 51, 5261-5263.	4.1	138
140	Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H ₂ Treatment. ChemSusChem, 2015, 8, 1557-1567.	6.8	51
141	Hierarchical porous Co ₃ O ₄ @Co _x Fe _{3â^'x} O ₄ film as an advanced electrocatalyst for oxygen evolution reaction. RSC Advances, 2015, 5, 8882-8886.	3.6	8
142	Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015, 137, 1305-1313.	13.7	2,018
143	Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(<scp>vi</scp>) by surfactant free hydrophilic Cu ₂ ZnSnS ₄ nanoparticles. Journal of Materials Chemistry A, 2015, 3, 8098-8106.	10.3	134
144	Tuning Complex Transition Metal Hydroxide Nanostructures as Active Catalysts for Water Oxidation by a Laser–Chemical Route. Nano Letters, 2015, 15, 2498-2503.	9.1	42
145	Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society, 2015, 137, 3638-3648.	13.7	1,587
146	Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nature Communications, 2015, 6, 6430.	12.8	848
147	Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production. RSC Advances, 2015, 5, 34100-34108.	3.6	53
148	Core–shell-structured nanoporous PtCu with high Cu content and enhanced catalytic performance. Journal of Materials Chemistry A, 2015, 3, 7939-7944.	10.3	55
149	Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams. Journal of Physical Chemistry C, 2015, 119, 18177-18187.	3.1	97
150	Enhanced Interactions between Gold and MnO ₂ Nanowires for Water Oxidation: A Comparison of Different Chemical and Physical Preparation Methods. ACS Sustainable Chemistry and Engineering, 2015, 3, 2049-2057.	6.7	33
151	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	11.2	800
152	Platinum/manganese oxide nanocomposites as water-oxidizing catalysts: New findings and current controversies. International Journal of Hydrogen Energy, 2015, 40, 10825-10832.	7.1	54
153	Ultrathin nanosheets constructed CoMoO ₄ porous flowers with high activity for electrocatalytic oxygen evolution. Chemical Communications, 2015, 51, 14361-14364.	4.1	166
154	Solar Water Splitting Using Semiconductor Photocatalyst Powders. Topics in Current Chemistry, 2015, 371, 73-103.	4.0	52
155	Gold nanorods or nanoparticles deposited on layered manganese oxide: new findings. New Journal of Chemistry, 2015, 39, 7260-7267.	2.8	8
156	Effect of the Transition Metal on Metal–Nitrogen–Carbon Catalysts for the Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H719-H726.	2.9	90

#	Article	IF	CITATIONS
157	Reactivity of Perovskites with Water: Role of Hydroxylation in Wetting and Implications for Oxygen Electrocatalysis. Journal of Physical Chemistry C, 2015, 119, 18504-18512.	3.1	88
158	Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194-8205.	14.6	181
159	An optimized mild reduction route towards excellent cobalt–graphene catalysts for water oxidation. RSC Advances, 2015, 5, 64858-64864.	3.6	2
160	High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 15765-15776.	8.0	55
161	In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science, 2015, 1, 244-251.	11.3	373
162	Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold. Photosynthesis Research, 2015, 126, 477-487.	2.9	12
163	Correlations among Structure, Electronic Properties, and Photochemical Water Oxidation: A Case Study on Lithium Cobalt Oxides. ACS Catalysis, 2015, 5, 3791-3800.	11.2	35
164	A nanotubular framework with customized conductivity and porosity for efficient oxidation and reduction of water. Journal of Materials Chemistry A, 2015, 3, 11040-11047.	10.3	9
165	Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design. Advanced Energy Materials, 2015, 5, 1402307.	19.5	85
166	Insight into the electrochemical activation of carbon-based cathodes for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 13080-13086.	10.3	198
167	Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chemical Science, 2015, 6, 3572-3576.	7.4	49
168	Quasi-graphene-envelope Fe-doped Ni ₂ P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. Journal of Materials Chemistry A, 2015, 3, 9587-9594.	10.3	61
169	Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Research, 2015, 8, 3725-3736.	10.4	117
170	Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction. Journal of Power Sources, 2015, 300, 301-308.	7.8	78
171	Synthesis and Alkaline Stability of Solubilized Anion Exchange Membrane Binders Based on Poly(phenylene oxide) Functionalized with Quaternary Ammonium Groups via a Hexyl Spacer. Journal of the Electrochemical Society, 2015, 162, F1236-F1242.	2.9	47
172	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	5.6	327
173	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	9.1	233
174	Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. Topics in Current Chemistry, 2015, 371, 173-213.	4.0	46

#	Article	IF	CITATIONS
175	Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science, 2015, 6, 6624-6631.	7.4	378
176	Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films. Applied Physics Letters, 2015, 106, .	3.3	27
177	Eco-friendly and facilely prepared silica modified amorphous titania (TiO2–SiO2) electrocatalyst for the O2 and H2 evolution reactions. Catalysis Science and Technology, 2015, 5, 5016-5022.	4.1	24
178	Copper-Intercalated Birnessite as a Water Oxidation Catalyst. Langmuir, 2015, 31, 12807-12813.	3.5	69
179	Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation. Journal of Physical Chemistry Letters, 2015, 6, 4224-4228.	4.6	142
180	When Small is Big: The Role of Impurities in Electrocatalysis. Topics in Catalysis, 2015, 58, 1174-1180.	2.8	26
181	Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2015, 6, 4178-4183.	4.6	89
182	Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 2015, 6, 8625.	12.8	694
183	Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles. Chemistry of Materials, 2015, 27, 7549-7558.	6.7	944
184	Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature Communications, 2015, 6, 8106.	12.8	377
185	Hollow Fluffy Co ₃ O ₄ Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2015, 7, 20322-20331.	8.0	163
186	Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 2015, 60, 92-96.	4.7	210
187	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	47.7	770
188	Covalency-reinforced oxygen evolution reaction catalyst. Nature Communications, 2015, 6, 8249.	12.8	393
189	An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical waterAoxidation. Nature Materials, 2015, 14, 1150-1155.	27.5	214
190	MoS ₂ quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 21772-21778.	10.3	127
191	NiCo ₂ S ₄ nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale, 2015, 7, 15122-15126.	5.6	390
192	Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. Journal of Physical Chemistry Letters, 2015, 6, 3737-3742.	4.6	417

#	Article	IF	CITATIONS
193	NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 11996-12005.	13.7	61
194	Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered Li <i>M</i> O ₂ . Journal of Physical Chemistry Letters, 2015, 6, 3787-3791.	4.6	23
195	Carbon nanodots modified cobalt phosphate as efficient electrocatalyst forÂwater oxidation. Journal of Materiomics, 2015, 1, 236-244.	5.7	29
196	Molybdenum-Carbide-Modified Nitrogen-Doped Carbon Vesicle Encapsulating Nickel Nanoparticles: A Highly Efficient, Low-Cost Catalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 15753-15759.	13.7	415
197	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
198	Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials, 2015, 27, 8011-8020.	6.7	395
199	Enhancement of Stability and Activity of MnO _{<i>x</i>} /Au Electrocatalysts for Oxygen Evolution through Adequate Electrolyte Composition. ACS Catalysis, 2015, 5, 7265-7275.	11.2	49
200	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 24540-24546.	10.3	124
201	Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015, 278, 445-451.	7.8	494
202	Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides?. ACS Catalysis, 2015, 5, 869-873.	11.2	189
203	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	10.3	1,609
204	Water Oxidation at Electrodes Modified with Earthâ€Abundant Transitionâ€Metal Catalysts. ChemElectroChem, 2015, 2, 37-50.	3.4	213
205	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie, 2015, 127, 2375-2380.	2.0	27
206	Self-terminating electrodeposition of ultrathin Pt films on Ni: An active, low-cost electrode for H2 production. Surface Science, 2015, 631, 141-154.	1.9	40
207	A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires. Nano Energy, 2015, 11, 333-340.	16.0	291
208	Towards a Molecular Level Understanding of the Multi-Electron Catalysis of Water Oxidation on Metal Oxide Surfaces. Catalysis Letters, 2015, 145, 420-435.	2.6	40
209	Highly Porous Materials as Tunable Electrocatalysts for the Hydrogen and Oxygen Evolution Reaction. Advanced Functional Materials, 2015, 25, 393-399.	14.9	169
210	Characterization of Layered LiMO ₂ Oxides for the Oxygen Evolution Reaction of Metal–Air Batteries (M=Mn, Co, Ni). ChemPlusChem, 2015, 80, 422-427.	2.8	13

#	Article	IF	CITATIONS
211	Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides. ChemCatChem, 2015, 7, 149-154.	3.7	114
212	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 2345-2350.	13.8	119
213	An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation. Small, 2015, 11, 182-188.	10.0	325
214	Binary Cobalt and Magnesium Hydroxide Catalyst for Oxygen Evolution Reaction in Alkaline Water Electrolysis. International Journal of Electrochemical Science, 2016, 11, 6204-6214.	1.3	9
215	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	8.0	284
216	Pt–Ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte. Journal of Materials Chemistry A, 2016, 4, 12392-12397.	10.3	103
217	N-Doped graphene-supported Co@CoO core–shell nanoparticles as high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 12046-12053.	10.3	91
218	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle and Particle Systems Characterization, 2016, 33, 473-486.	2.3	106
219	Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 2016, 45, 4873-4891.	38.1	383
220	Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe‣ayered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016, 3, 1500782.	3.7	165
221	3D Porous Hierarchical Nickel–Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogenâ€Evolutionâ€Reaction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600221.	19.5	464
222	Electrostatic Interactionâ€Directed Growth of Nickel Phosphate Singleâ€Walled Nanotubes for High Performance Oxygen Evolution Reaction Catalysts. Small, 2016, 12, 2969-2974.	10.0	42
223	Anab initiocharacterization of the electronic structure of LaCoxFe1-xO3forx â‰ 8 €‰0.5. Physica Status Solidi (B): Basic Research, 2016, 253, 1673-1687.	1.5	0
224	Experimental and Quantum Chemical Approaches to Develop Highly Selective Nanocatalysts for CO ₂ â€free Power Circulation. Chemical Record, 2016, 16, 2249-2259.	5.8	16
225	Abnormal Cathodic Photocurrent Generated on an nâ€Type FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	3.3	6
226	Design and Synthesis of FeOOH/CeO ₂ Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 4698-4703.	21.0	592
227	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7, 13638.	12.8	1,521
228	Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution. Nature Communications, 2016, 7, 13549.	12.8	98

#	Article	IF	CITATIONS
229	Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules. Journal of Chemical Physics, 2016, 144, 154706.	3.0	20
230	Optimization of the Nickel Square Wave Treatment to Produce Highly Active Bifunctional Alkaline Hydrogen Evolution Catalysts. Journal of the Electrochemical Society, 2016, 163, F3146-F3152.	2.9	1
231	Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts. Journal of the American Chemical Society, 2016, 138, 5603-5614.	13.7	888
232	Self-Terminated Electrodeposition of Ni, Co, and Fe Ultrathin Films. Journal of Physical Chemistry C, 2016, 120, 16228-16237.	3.1	30
233	Dual-valence nickel nanosheets covered with thin carbon as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2016, 4, 7297-7304.	10.3	73
234	Water oxidation investigated by rapid-scan FT-IR spectroscopy. Current Opinion in Chemical Engineering, 2016, 12, 91-97.	7.8	7
235	The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction. Journal of Power Sources, 2016, 304, 196-206.	7.8	30
236	Nitrogen and sulfur co-doped graphene/carbon nanotube as metal-free electrocatalyst for oxygen evolution reaction: the enhanced performance by sulfur doping. Electrochimica Acta, 2016, 204, 169-175.	5.2	93
237	Iron and nickel co-doped cobalt hydroxide nanosheets with enhanced activity for oxygen evolution reaction. RSC Advances, 2016, 6, 42255-42262.	3.6	37
238	Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode. Journal of Power Sources, 2016, 319, 159-167.	7.8	64
239	Electrocatalysis and bioelectrocatalysis – Distinction without a difference. Nano Energy, 2016, 29, 466-475.	16.0	53
240	Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 7245-7250.	10.3	178
241	Electrodeposition of sizeable and compositionally tunable rhodium-iron nanoparticles and their activity toward hydrogen evolution reaction. Electrochimica Acta, 2016, 194, 263-275.	5.2	16
242	Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45, 3221-3243.	38.1	124
243	Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29, 29-36.	16.0	629
244	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. , 2016, , 41-104.		81
245	Manganese oxide supported on gold/iron as a water-oxidizing catalyst in artificial photosynthetic systems. Dalton Transactions, 2016, 45, 9201-9208.	3.3	3
246	One-pot hydrothermal fabrication of layered β-Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	20.2	102

#	Article	IF	CITATIONS
247	Co ₃ ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 9204-9212.	10.3	154
248	MOF Derived Nonstoichiometric Ni <i>_x</i> Co _{3â^'} <i>_x</i> O _{4â^'} <i>_y</i> Nanocage for Superior Electrocatalytic Oxygen Evolution. Advanced Materials Interfaces, 2016, 3, 1600632.	3.7	111
249	A Quantitative Scale of Oxophilicity and Thiophilicity. Inorganic Chemistry, 2016, 55, 9461-9470.	4.0	360
250	A type of raspberry-like silica composite with tunable nickel nanoparticles coverage towards nanocatalysis and protein adsorption. Green Chemistry, 2016, 18, 6282-6290.	9.0	50
251	Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy, 2016, 28, 366-372.	16.0	107
252	Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26041-26050.	8.0	30
253	Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis. Journal of the Electrochemical Society, 2016, 163, F3197-F3208.	2.9	232
254	A cobalt-based hybrid electrocatalyst derived from a carbon nanotube inserted metal–organic framework for efficient water-splitting. Journal of Materials Chemistry A, 2016, 4, 16057-16063.	10.3	156
255	Co 4 S 3 /Ni x S 6 (7 ≥ x ≥ 6)/NiOOH in-situ encapsulated carbon-based hybrid as a high-efficient oxygen electrode catalyst in alkaline media. Electrochimica Acta, 2016, 213, 163-173.	5.2	31
256	New Insight into the Hydrogen Evolution Reaction under Buffered Near-Neutral pH Conditions: Enthalpy and Entropy of Activation. Journal of Physical Chemistry C, 2016, 120, 24187-24196.	3.1	41
257	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	2.0	58
258	Shaping electrocatalysis through tailored nanomaterials. Nano Today, 2016, 11, 587-600.	11.9	133
259	Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation. Progress in Natural Science: Materials International, 2016, 26, 303-307.	4.4	18
260	Self-sacrificial template method of Mo 3 O 10 (C 6 H 8 N) 2 •2H 2 O to fabricate MoS 2 /carbon-doped MoO 2 nanobelts as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 216, 397-404.	5.2	26
261	Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Research, 2016, 9, 3598-3621.	10.4	103
262	Driving electrocatalytic activity by interface electronic structure control in a metalloprotein hybrid catalyst for efficient hydrogen evolution. Physical Chemistry Chemical Physics, 2016, 18, 23220-23230.	2.8	6
263	Enhancing alkaline hydrogen evolution reaction activity through Ni–Mn ₃ O ₄ nanocomposites. Chemical Communications, 2016, 52, 10566-10569.	4.1	106
264	Mechanistic Insights on Ternary Ni _{2â^'} <i>_x</i> Co <i>_x</i> P for Hydrogen Evolution and Their Hybrids with Graphene as Highly Efficient and Robust Catalysts for Overall Water Splitting. Advanced Functional Materials, 2016, 26, 6785-6796.	14.9	500

#	Article	IF	CITATIONS
265	Electrodeposited ternary iron-cobalt-nickel catalyst on nickel foam for efficient water electrolysis at high current density. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 694-702.	4.7	34
266	Electro-synthesis of 3D porous hierarchical Ni–Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13866-13873.	10.3	124
267	A class of transition metal-oxide@MnOx core–shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13881-13889.	10.3	42
268	Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect. ACS Applied Materials & amp; Interfaces, 2016, 8, 23774-23783.	8.0	101
269	Nanostructured iron(III) oxide catalyst electrodeposited from Fe(II) triflate for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2016, 41, 17193-17198.	7.1	8
270	Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016, 8, 16379-16386.	5.6	128
271	Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15327-15332.	10.3	116
272	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters, 2016, 16, 7588-7596.	9.1	186
273	Ultramicroelectrode Studies of Self-Terminated Nickel Electrodeposition and Nickel Hydroxide Formation upon Water Reduction. Journal of Physical Chemistry C, 2016, 120, 27478-27489.	3.1	27
274	Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid. Scientific Reports, 2016, 5, 18505.	3.3	6
275	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12859-12863.	13.8	311
276	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie - International Edition, 2016, 55, 12812-12816.	13.8	34
277	Nickel/cobalt oxide as a highly efficient OER electrocatalyst in an alkaline polymer electrolyte water electrolyzer. RSC Advances, 2016, 6, 90397-90400.	3.6	26
278	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13051-13055.	2.0	73
279	NiMnO ₃ /NiMn ₂ O ₄ Oxides Synthesized via the Aid of Pollen: Ilmenite/Spinel Hybrid Nanoparticles for Highly Efficient Bifunctional Oxygen Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 26740-26757.	8.0	88
280	Poly(ionic liquid)â€Mediated Morphogenesis of Bismuth Sulfide with a Tunable Band Gap and Enhanced Electrocatalytic Properties. Angewandte Chemie, 2016, 128, 13004-13008.	2.0	10
281	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	13.8	598
282	Highly active and durable flowerlike Pd/Ni(OH) ₂ catalyst for the electrooxidation of ethanol in alkaline medium. RSC Advances, 2016, 6, 72722-72727.	3.6	28

#	Article	IF	Citations
	Carbon supported IrM (M = Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in		
283	acidic and alkaline medium. Chinese Journal of Catalysis, 2016, 37, 1142-1148.	14.0	33
284	Efficient water oxidation through strongly coupled graphitic C ₃ N ₄ coated cobalt hydroxide nanowires. Journal of Materials Chemistry A, 2016, 4, 12940-12946.	10.3	88
285	NiFeâ€Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Nonâ€Acidic Electrolytes. Advanced Energy Materials, 2016, 6, 1600621.	19.5	765
286	Toward a Low ost Artificial Leaf: Driving Carbonâ€Based and Bifunctional Catalyst Electrodes with Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2016, 6, 1600738.	19.5	28
287	Engineering water dissociation sites in MoS ₂ nanosheets for accelerated electrocatalytic hydrogen production. Energy and Environmental Science, 2016, 9, 2789-2793.	30.8	503
288	Influence of Potential on the Electrodeposition of Co on Au(111) by In Situ STM and Reflectivity Measurements. Journal of the Electrochemical Society, 2016, 163, D3062-D3068.	2.9	7
289	Pd Nanoparticle/CoP Nanosheet Hybrids: Highly Electroactive and Durable Catalysts for Ethanol Electrooxidation. ACS Catalysis, 2016, 6, 7962-7969.	11.2	90
290	Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy, 2016, 1, .	39.5	458
291	In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co ₃ O ₄ Water Oxidation Electrocatalyst. Journal of Physical Chemistry Letters, 2016, 7, 4847-4853.	4.6	136
292	Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts. Electrochimica Acta, 2016, 220, 672-682.	5.2	31
293	Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 2016, 6, 8069-8097.	11.2	1,936
294	Hierarchical nickel–cobalt phosphide yolk–shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale, 2016, 8, 19129-19138.	5.6	140
295	Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts. Advanced Energy Materials, 2016, 6, 1501661.	19.5	232
296	Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie, 2016, 128, 3868-3872.	2.0	47
297	Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332.	21.0	145
298	A Cuâ€Based Nanoparticulate Film as Superâ€Active and Robust Catalyst Surpasses Pt for Electrochemical H ₂ Production from Neutral and Weak Acidic Aqueous Solutions. Advanced Energy Materials, 2016, 6, 1502319.	19.5	36
299	Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 605-635.	6.8	303
300	Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2016, 6, 4347-4355.	11.2	125

#	Article	IF	CITATIONS
301	Molecular engineering of Ni–/Co–porphyrin multilayers on reduced graphene oxide sheets as bifunctional catalysts for oxygen evolution and oxygen reduction reactions. Chemical Science, 2016, 7, 5640-5646.	7.4	120
302	Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A, 2016, 4, 11973-12000.	10.3	823
303	Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications. Applied Surface Science, 2016, 386, 393-404.	6.1	27
304	Highly dispersed PtO2 on layered Mn oxide as water-oxidizing catalysts. International Journal of Hydrogen Energy, 2016, 41, 6798-6804.	7.1	8
305	Synthesis and development of nano WO3 catalyst incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 10090-10102.	7.1	33
306	Stability of 3D-porous Ni/Cu cathodes under real alkaline electrolyzer operating conditions and its effect on catalytic activity. Applied Catalysis B: Environmental, 2016, 198, 142-153.	20.2	8
307	X20CoCrWMo10-9//Co ₃ O ₄ : a metal–ceramic composite with unique efficiency values for water-splitting in the neutral regime. Energy and Environmental Science, 2016, 9, 2609-2622.	30.8	84
308	Electronic Properties of Pure and Fe-Doped β-Ni(OH) ₂ : New Insights Using Density Functional Theory with a Cluster Approach. Journal of Physical Chemistry C, 2016, 120, 12344-12350.	3.1	18
309	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	10.0	113
310	A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction. Journal of Solid State Electrochemistry, 2016, 20, 2737-2747.	2.5	8
311	Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews, 2016, 116, 10473-10512.	47.7	492
312	Controlling the Active Sites of Sulfurâ€Doped Carbon Nanotube–Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis. Advanced Energy Materials, 2016, 6, 1501966.	19.5	242
313	Size Fractionation of Twoâ€Dimensional Subâ€Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion. Angewandte Chemie - International Edition, 2016, 55, 3804-3808.	13.8	288
314	Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews, 2016, 116, 2886-2936.	47.7	549
315	Ni–Mo–B alloys as cathode material for alkaline water electrolysis. International Journal of Hydrogen Energy, 2016, 41, 2165-2176.	7.1	41
316	Promoting Photochemical Water Oxidation with Metallic Band Structures. Journal of the American Chemical Society, 2016, 138, 1527-1535.	13.7	32
317	CoO _x thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity. Physical Chemistry Chemical Physics, 2016, 18, 10708-10718.	2.8	99
318	Dynamical changes of a Ni-Fe oxide water splitting catalyst investigated at different pH. Catalysis Today, 2016, 262, 65-73.	4.4	86

#	Article	IF	CITATIONS
319	Mesoporous Ni ₆₀ Fe ₃₀ Mn ₁₀ -alloy based metal/metal oxide composite thick films as highly active and robust oxygen evolution catalysts. Energy and Environmental Science, 2016, 9, 540-549.	30.8	166
320	Active Sites Implanted Carbon Cages in Core–Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction. ACS Nano, 2016, 10, 684-694.	14.6	426
321	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1, 156-160.	8.0	99
322	Platinum-like oxidation of nickel surfaces by rapidly switching voltage to generate highly active bifunctional catalysts. Electrochemistry Communications, 2016, 67, 22-25.	4.7	4
323	Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 6376-6384.	10.3	164
324	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
325	Electrochemically activated-iron oxide nanosheet arrays on carbon fiber cloth as a three-dimensional self-supported electrode for efficient water oxidation. Journal of Materials Chemistry A, 2016, 4, 6048-6055.	10.3	66
326	Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. Journal of Power Sources, 2016, 310, 41-46.	7.8	111
327	Enhanced Supply of Hydroxyl Species in CeO ₂ -Modified Platinum Catalyst Studied by in Situ ATR-FTIR Spectroscopy. ACS Catalysis, 2016, 6, 2026-2034.	11.2	63
328	Electrolyte Engineering toward Efficient Hydrogen Production Electrocatalysis with Oxygen-Crossover Regulation under Densely Buffered Near-Neutral pH Conditions. Journal of Physical Chemistry C, 2016, 120, 1785-1794.	3.1	31
329	CoSe ₂ and NiSe ₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 5327-5334.	8.0	425
330	A cobalt oxyhydroxide nanoflake-based nanoprobe for the sensitive fluorescence detection of T4 polynucleotide kinase activity and inhibition. Nanoscale, 2016, 8, 8202-8209.	5.6	71
331	A New Family of Perovskite Catalysts for Oxygen-Evolution Reaction in Alkaline Media: BaNiO ₃ and BaNi _{0.83} O _{2.5} . Journal of the American Chemical Society, 2016, 138, 3541-3547.	13.7	204
332	In situ surface X-ray diffraction study of ultrathin epitaxial Co films on Au(111) in alkaline solution. Electrochimica Acta, 2016, 197, 273-281.	5.2	16
333	Effect of doping β-NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Physical Chemistry Chemical Physics, 2016, 18, 7490-7501.	2.8	32
334	Zn0.76Co0.24S/CoS2 nanowires array for efficient electrochemical splitting of water. Electrochimica Acta, 2016, 190, 360-364.	5.2	99
335	Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chemical Science, 2016, 7, 1690-1695.	7.4	745
336	When Layered Nickel–Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 945-951.	8.0	97

#	Article	IF	CITATIONS
337	The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 1454-1460.	10.3	120
338	Direct carbonization of cobalt-doped NH ₂ -MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. Nanoscale, 2016, 8, 1033-1039.	5.6	93
339	Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Materials, 2016, 15, 197-203.	27.5	825
340	Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. Journal of Materials Chemistry A, 2016, 4, 167-172.	10.3	153
341	Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis, 2016, 6, 155-161.	11.2	413
342	In-grown structure of NiFe mixed metal oxides and CNT hybrid catalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 1439-1442.	4.1	74
343	Reversible fuel cells. , 2016, , 115-145.		7
344	Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(1 1 1), Pt(1 1 1) and Ir(1 1 1) in alkaline media containing Na and Li cations. Catalysis Today, 2016, 262, 41-47.	4.4	67
345	Anion exchange membrane water electrolyzer with an ultra-low loading of Pt-decorated Ni electrocatalyst. Applied Catalysis B: Environmental, 2016, 180, 674-679.	20.2	47
346	Petal-like hierarchical array of ultrathin Ni(OH) ₂ nanosheets decorated with Ni(OH) ₂ nanoburls: a highly efficient OER electrocatalyst. Catalysis Science and Technology, 2017, 7, 882-893.	4.1	123
347	Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorganic Chemistry, 2017, 56, 1742-1756.	4.0	102
348	Graphene-coated hybrid electrocatalysts derived from bimetallic metal–organic frameworks for efficient hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 5000-5006.	10.3	92
349	Multimetallic Ni–Mo/Cu nanowires as nonprecious and efficient full water splitting catalyst. Journal of Materials Chemistry A, 2017, 5, 4207-4214.	10.3	83
350	The noble metal loading binary iron–zinc electrode for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 6455-6461.	7.1	26
351	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Interfaces, 2017, 9, 3785-3791.	8.0	108
352	Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands. Nature Communications, 2017, 8, 14169.	12.8	117
353	Turn-on fluorescence detection of pyrophosphate anion based on DNA-attached cobalt oxyhydroxide. New Journal of Chemistry, 2017, 41, 1993-1996.	2.8	14
354	MOF Templateâ€Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1602643.	19.5	281

#	Article	IF	CITATIONS
355	Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1486-1491.	7.1	488
356	Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography. Faraday Discussions, 2017, 199, 101-114.	3.2	3
357	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	38.1	4,505
358	Direct Synthesis of Highly Designable Hybrid Metal Hydroxide Nanosheets by Using Tripodal Ligands as Oneâ€Sizeâ€Fitsâ€All Modifiers. Chemistry - A European Journal, 2017, 23, 5023-5032.	3.3	24
359	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	8.7	15
360	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochimica Acta, 2017, 230, 22-28.	5.2	39
361	Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2017, 9, 7059-7067.	8.0	101
362	Coupling Subâ€Nanometric Copper Clusters with Quasiâ€Amorphous Cobalt Sulfide Yields Efficient and Robust Electrocatalysts for Water Splitting Reaction. Advanced Materials, 2017, 29, 1606200.	21.0	350
363	Electrodeposition-Solvothermal Access to Ternary Mixed Metal Ni-Co-Fe Sulfides for Highly Efficient Electrocatalytic Water Oxidation in Alkaline Media. Electrochimica Acta, 2017, 230, 151-159.	5.2	54
364	Hydrous RuO 2 nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Chemical Physics Letters, 2017, 673, 89-92.	2.6	48
365	Electrodeposited-hydroxide surface-covered porous nickel–cobalt alloy electrodes for efficient oxygen evolution reaction. Chemical Communications, 2017, 53, 3365-3368.	4.1	35
366	Nonâ€Noble Metalâ€based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Advanced Materials, 2017, 29, 1605838.	21.0	1,199
367	Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of Materials Chemistry A, 2017, 5, 5995-6012.	10.3	142
368	Fe-Treated Heteroatom (S/N/B/P)-Doped Graphene Electrocatalysts for Water Oxidation. ACS Catalysis, 2017, 7, 2381-2391.	11.2	99
369	Microwave-Initiated Facile Formation of Ni ₃ Se ₄ Nanoassemblies for Enhanced and Stable Water Splitting in Neutral and Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 8714-8728.	8.0	139
370	A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2017, 139, 4854-4858.	13.7	113
371	Preparation and phase transition of FeOOH nanorods: strain effects on catalytic water oxidation. Nanoscale, 2017, 9, 4751-4758.	5.6	50
372	A Highly Active CoFe Layered Double Hydroxide for Water Splitting. ChemPlusChem, 2017, 82, 483-488.	2.8	86

#	Article	IF	CITATIONS
373	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	19.5	216
374	Regulating the active species of Ni(OH) ₂ using CeO ₂ : 3D CeO ₂ /Ni(OH) ₂ /carbon foam as an efficient electrode for the oxygen evolution reaction. Chemical Science, 2017, 8, 3211-3217.	7.4	141
375	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	21.0	525
376	Highly active and durable cauliflower-like NiCo 2 O 4 film for oxygen evolution with electrodeposited SiO 2 as template. International Journal of Hydrogen Energy, 2017, 42, 10813-10825.	7.1	30
377	Electrospun Porous Perovskite La _{0.6} Sr _{0.4} Co ₁ _– <i>_x</i> Fe <i>_x</i>	<td>∍>374/sub><su< td=""></su<></td>	∍>374/sub> <su< td=""></su<>
378	Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nature Communications, 2017, 8, 15131.	12.8	364
379	Defectâ€Engineered Ultrathin Î′â€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1700005.	19.5	553
380	Incorporating Nitrogen-Doped Graphene Quantum Dots and Ni ₃ S ₂ Nanosheets: A Synergistic Electrocatalyst with Highly Enhanced Activity for Overall Water Splitting. Small, 2017, 13, 1700264.	10.0	120
381	Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nature Energy, 2017, 2, .	39.5	167
382	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	16.0	1,257
383	Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni ²⁺ and Its Combination with Photoelectrode. ACS Omega, 2017, 2, 432-442.	3.5	13
384	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 16187-16193.	8.0	175
385	Metal–organic framework – derived Co ₉ S ₈ @CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 10495-10509.	10.3	103
386	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie - International Edition, 2017, 56, 6589-6593.	13.8	72
387	Phaseâ€Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie - International Edition, 2017, 56, 7769-7773.	13.8	157
388	Phaseâ€Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie, 2017, 129, 7877-7881.	2.0	24
389	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie, 2017, 129, 6689-6693.	2.0	5
390	Theoretical study on in situ synthesis of Pt/Ni Al hydroxide composites by etching of Pt Ni nanoparticles. Chemical Physics Letters, 2017, 679, 200-206.	2.6	3

CITATION REP	ORT

#	Article	IF	CITATIONS
391	A nanostructured nickel–cobalt alloy with an oxide layer for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 10669-10677.	10.3	98
392	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	10.3	85
393	Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: an efficient and self-supported bifunctional electrode for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2017, 5, 10561-10566.	10.3	130
394	Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy, 2017, 36, 374-380.	16.0	58
395	CoO _x –carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters. Journal of Materials Chemistry A, 2017, 5, 10510-10516.	10.3	45
396	One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy, 2017, 38, 576-584.	16.0	65
397	The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy and Environmental Science, 2017, 10, 321-330.	30.8	104
398	Fe incorporated α-Co(OH) ₂ nanosheets with remarkably improved activity towards the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 1078-1084.	10.3	225
399	NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn–air batteries. Nanoscale, 2017, 9, 774-780.	5.6	130
400	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie, 2017, 129, 334-338.	2.0	38
401	Engineering the Electrical Conductivity of Lamellar Silverâ€Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 328-332.	13.8	172
402	Design and synthesis of Cu modified cobalt oxides with hollow polyhedral nanocages as efficient electrocatalytic and photocatalytic water oxidation catalysts. Journal of Catalysis, 2017, 352, 246-255.	6.2	66
403	Surfactant- and Binder-Free Hierarchical Platinum Nanoarrays Directly Grown onto a Carbon Felt Electrode for Efficient Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 22476-22489.	8.0	25
404	Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 22578-22587.	8.0	128
405	Na _{0.86} Co _{0.95} Fe _{0.05} O ₂ Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Interfaces, 2017, 9, 21587-21592.	8.0	21
406	Optoâ€electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 10598-10601.	13.8	48
407	Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8, 15437.	12.8	813
408	Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Science China Materials, 2017, 60, 1121-1128.	6.3	39

#	Article	IF	CITATIONS
409	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	4.9	19
410	A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting. Small, 2017, 13, 1700355.	10.0	72
411	Highly Electrochemically Stable Morphology of Mesoscale Co₃O₄Flowerlike Oriented Aggregate (FLOA) for Electrocatalytic Water Splitting . Journal of the Electrochemical Society, 2017, 164, H526-H536.	2.9	2
412	Highly Stable Threeâ€Dimensional Porous Nickelâ€Iron Nitride Nanosheets for Full Water Splitting at High Current Densities. Chemistry - A European Journal, 2017, 23, 10187-10194.	3.3	61
413	Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions. Nano Research, 2017, 10, 3522-3533.	10.4	27
414	Highly stable three-dimensional nickel–iron oxyhydroxide catalysts for oxygen evolution reaction at high current densities. Electrochimica Acta, 2017, 245, 770-779.	5.2	37
415	Clarifying the Controversial Catalytic Performance of Co(OH) ₂ and Co ₃ O ₄ for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 22694-22703.	8.0	121
416	Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2017, 5, 13648-13658.	10.3	191
417	Controlled decoration of Pd on Ni(OH) 2 nanoparticles by atomic layer deposition for high ethanol oxidation activity. Applied Surface Science, 2017, 420, 214-221.	6.1	19
418	Bottom-up synthesis of fully sp ² hybridized three-dimensional microporous graphitic frameworks as metal-free catalysts. Journal of Materials Chemistry A, 2017, 5, 12080-12085.	10.3	44
419	In situ grown nickel nanoparticles in a calixarene nanoreactor on a graphene–MoS ₂ support for efficient water electrolysis. Sustainable Energy and Fuels, 2017, 1, 1329-1338.	4.9	13
420	Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. Journal of Materials Chemistry A, 2017, 5, 13336-13340.	10.3	49
421	Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. Journal of Catalysis, 2017, 348, 151-159.	6.2	64
422	High-Performance Rh ₂ P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society, 2017, 139, 5494-5502.	13.7	343
423	New insights into high-valence state Mo in molybdenum carbide nanobelts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 10880-10890.	7.1	29
424	Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7744-7748.	10.3	90
425	Nâ€; Oâ€; and Sâ€Tridoped Carbonâ€Encapsulated Co ₉ S ₈ Nanomaterials: Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606585.	14.9	365
426	Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy, 2017, 2, .	39.5	791

#	Article	IF	CITATIONS
427	Nitrogen-doped carbon encapsulating γ-MoC/Ni heterostructures for efficient oxygen evolution electrocatalysts. Nanoscale, 2017, 9, 5583-5588.	5.6	66
428	Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society, 2017, 139, 5156-5163.	13.7	243
429	Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31, 456-461.	16.0	119
430	In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2017, 224, 551-560.	5.2	48
431	Threeâ€Dimensional Fibrous Network of Na _{0.21} MnO ₂ for Aqueous Sodiumâ€Ion Hybrid Supercapacitors. Chemistry - A European Journal, 2017, 23, 2379-2386.	3.3	58
432	High-Performance Hydrogen Evolution Electrocatalyst Derived from Ni ₃ C Nanoparticles Embedded in a Porous Carbon Network. ACS Applied Materials & Interfaces, 2017, 9, 60-64.	8.0	68
433	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. Advanced Materials, 2017, 29, 1604607.	21.0	224
434	An Operando Investigation of (Ni–Fe–Co–Ce)O _{<i>x</i>} System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 1248-1258.	11.2	156
435	Developments of Metal Phosphides as Efficient OER Precatalysts. Journal of Physical Chemistry Letters, 2017, 8, 144-152.	4.6	290
436	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002.	2.8	12
436 437	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray	2.8 30.8	12 284
	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the		
437	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603.	30.8	284
437 438	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603. Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands.	30.8 27.5	284 1,484
437 438 439	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603. Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Physical Chemistry Chemical Physics, 2017, 19, 2425-2433. Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials	30.8 27.5 2.8	284 1,484 38
437 438 439 440	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603. Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Physical Chemistry Chemical Physics, 2017, 19, 2425-2433. Highly crystallized 1±-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028. Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline	30.8 27.5 2.8 10.3	284 1,484 38 140
437 438 439 440 441	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002. Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603. Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69. Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands. Physical Chemistry Chemical Physics, 2017, 19, 2425-2433. Highly crystallized 1±-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028. Reduced Graphene Oxide Supported Nickelâ€"Manganeseâ€"Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis, 2017, 7, 819-832. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting:	 30.8 27.5 2.8 10.3 11.2 	284 1,484 38 140 101

ARTICLE IF CITATIONS Preparation of Porous Ni–Cu Alloy Electrodes and their Electrocatalytic Performance as Cathode for 445 1.0 1 Hydrogen Evolution Reaction in Alkaline Solution. Nano, 2017, 12, 1750125. High-efficient electrocatalysts by unconventional acid-etching for overall water splitting. Journal of 446 Materials Chemistry A, 2017, 5, 24153-24158. Improved Electrocatalytic Performance of Core-shell NiCo/NiCoO with amorphous FeOOH for 447 5.250 Oxygen-evolution Reaction. Electrochimica Acta, 2017, 257, 1-8. 3D nickel-cobalt diselenide nanonetwork for highly efficient oxygen evolution. Science Bulletin, 2017, 448 9.0 62, 1373-1379. Iron hydroxyphosphate and Sn-incorporated iron hydroxyphosphate: efficient and stable 449 4.1 34 electrocatalysts for oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 5092-5104. Recovered spinel MnCo₂O₄from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Transactions, 2017, 46, 14382-14392. 3.3 Facile synthesis of Cu doped cobalt hydroxide (Cu–Co(OH)₂) nano-sheets for efficient 451 10.3 108 electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 22568-22575. Adsorbed Hydroxide Does Not Participate in the Volmer Step of Alkaline Hydrogen Electrocatalysis. 11.2 ACS Catalysis, 2017, 7, 8314-8319. Chemical-state evolution of Ni in Mn Ni/polypyrrole nanocomposites under bifunctional air electrode 453 conditions, investigated by quasi-in situ multi-scale soft X-ray absorption spectroscopy. Materials 4.7 6 Today Energy, 2017, 6, 154-163. A Ni(OH)₂–CoS₂ hybrid nanowire array: a superior non-noble-metal catalyst 454 5.6 toward the hydrogen evolution reaction in alkaline media. Nanoscale, 2017, 9, 16632-16637. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS 455 11.2 656 Catalysis, 2017, 7, 8006-8022. Core–Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution. Nano 9.1 135 Letters, 2017, 17, 6040-6046. High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and 457 6.7 80 Cr Removal. ACS Sustainable Chemistry and Engineering, 2017, 5, 10072-10083. Firstâ€Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small, 2017, 13, 1701931. 10.0 In situ growth of cobalt@cobalt-borate coreâ€"shell nanosheets as highly-efficient electrocatalysts 459 5.6 64 for oxygen evolution reaction in alkaline/neutral medium. Nanoscale, 2017, 9, 16059-16065. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Nanoscale, 2017, 9, 16467-16475. Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for 461 5.2114 Oxygen Evolution Reaction. Electrochimica Acta, 2017, 257, 118-127. Energy Level Engineering of MoS₂ by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 15479-15485.

#	Article	IF	CITATIONS
463	Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media. Angewandte Chemie, 2017, 129, 15800-15804.	2.0	23
464	Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media. Angewandte Chemie - International Edition, 2017, 56, 15594-15598.	13.8	194
465	Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 54-82.	11.6	101
466	Synergistic effect of two actions sites on cobalt oxides towards electrochemical water-oxidation. Nano Energy, 2017, 42, 98-105.	16.0	101
467	Vertically oriented CoO@FeOOH nanowire arrays anchored on carbon cloth as a highly efficient electrode for oxygen evolution reaction. Electrochimica Acta, 2017, 257, 356-363.	5.2	45
468	Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy, 2017, 42, 69-89.	16.0	157
469	Highly Active Fe Sites in Ultrathin Pyrrhotite Fe ₇ S ₈ Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science, 2017, 3, 1221-1227.	11.3	136
470	Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Materials Today Energy, 2017, 6, 1-26.	4.7	301
471	Molecularly dispersed nickel-containing species on the carbon nitride network as electrocatalysts for the oxygen evolution reaction. Carbon, 2017, 124, 180-187.	10.3	55
472	Rational Design of Cobalt–Iron Selenides for Highly Efficient Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 33833-33840.	8.0	140
473	Subnanometric Hybrid Pd-M(OH)2, MÂ= Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. CheM, 2017, 3, 477-493.	11.7	212
474	Gold atom-decorated CoSe ₂ nanobelts with engineered active sites for enhanced oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 20202-20207.	10.3	57
475	Formation of Ni–Fe Mixed Diselenide Nanocages as a Superior Oxygen Evolution Electrocatalyst. Advanced Materials, 2017, 29, 1703870.	21.0	428
476	Understanding the structure and reactivity of NiCu nanoparticles: an atomistic model. Physical Chemistry Chemical Physics, 2017, 19, 26812-26820.	2.8	14
477	Architecting a Mesoporous N-Doped Graphitic Carbon Framework Encapsulating CoTe ₂ as an Efficient Oxygen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 36146-36153.	8.0	73
478	NiMoS ₃ Nanorods as pH-Tolerant Electrocatalyst for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 9006-9013.	6.7	43
479	Ultrafine Pt Nanoparticle-Decorated Co(OH) ₂ Nanosheet Arrays with Enhanced Catalytic Activity toward Hydrogen Evolution. ACS Catalysis, 2017, 7, 7131-7135.	11.2	195
480	Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit. Nature Communications, 2017, 8, 645.	12.8	49

ARTICLE IF CITATIONS # Pt/RuO₂-TiO₂Electrocatalysts Exhibit Excellent Hydrogen Evolution Activity 2.9 20 481 in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, F1234-F1240. Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma. Nanoscale, 2017, 9, 482 5.6 <u>1507</u>0-15082. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, 483 11.2 857 and Hydrogen Evolution Reactions. ACS Catalysis, 2017, 7, 7196-7225. Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving 484 Electrocatalysis in Alkaline Media. Scientific Reports, 2017, 7, 8236. Porous Structured Niâ€"Feâ€"P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst 485 8.0 220 for Efficient Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2017, 9, 26134-26142. Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts. ACS Catalysis, 2017, 7, 5399-5409. 11.2 Graphene/graphitic carbon nitride hybrids for catalysis. Materials Horizons, 2017, 4, 832-850. 487 12.2 168 In-situ synthesis of Ag-Pi oxygen-evolving catalyst in phosphate environment for water splitting. International Journal of Hydrogen Energy, 2017, 42, 19935-19941. 488 7.1 Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a 489 Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. 14.9 198 Advanced Functional Materials, 2017, 27, 1700451. Preparation of rimose NiZnP electrode for hydrogen evolution reaction in alkaline medium by 5.5 electroless and H 2 SO 4 etching. Journal of Alloys and Compounds, 2017, 719, 376-382. Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst 491 11.2 149 for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 6000-6007. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 5.6 403 9, 12231-12247. NiZn double hydroxide nanosheet-anchored nitrogen-doped graphene enriched with the Î³-NiOOH phase 493 5.6 64 as an activity modulated water oxidation electrocatalyst. Nanoscale, 2017, 9, 12590-12600. NiWO₃ Nanoparticles Grown on Graphitic Carbon Nitride (g ₃N₄) Supported Toray Carbon as an Efficient Bifunctional Electrocatalyst 494 2.3 for Oxygen and Hydrogen Evolution Reactions. Particle and Particle Systems Characterization, 2017, 34.1700043 Promoting Effect of Ni(OH)₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 495 21.0 251 2017, 29, 1703057. A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nanoâ€₽d Surface in Alkaline Media. Advanced Energy Materials, 2017, 7, 1701129. 108 Optoelektrochemische Inâ€situâ€Beobachtung der kathodischen Abscheidung einzelner 497 2.0 5 Cobaltnanopartikel. Angewandte Chemie, 2017, 129, 10734-10737. Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined 498 1.8 experimental and first-principles study. MRS Communications, 2017, 7, 563-569.

#	Article	IF	CITATIONS
499	Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. Journal of the American Chemical Society, 2017, 139, 12283-12290.	13.7	207
500	Formation of nanoporous NiS films from electrochemically modified GC surface with Nickel Hexacyanoferrate film and its performance for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 22866-22876.	7.1	37
501	Polyoxometalates Assemblies and Their Electrochemical Applications. Structure and Bonding, 2017, , 89-119.	1.0	7
502	Soft Chemical Fabrication of Iron-Based Thin Film Electrocatalyst for Water Oxidation under Neutral pH and Structure–Activity Tuning by Cerium Incorporation. Langmuir, 2017, 33, 8372-8382.	3.5	5
503	<i>In Situ</i> Atomic-Scale Studies of the Formation of Epitaxial Pt Nanocrystals on Monolayer Molybdenum Disulfide. ACS Nano, 2017, 11, 9057-9067.	14.6	27
504	Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH) ₂ /graphite electrode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8986-8990.	7.1	93
505	Pt/C/Ni(OH) ₂ Bi-Functional Electrocatalyst for Enhanced Hydrogen Evolution Reaction Activity under Alkaline Conditions. Journal of the Electrochemical Society, 2017, 164, F1307-F1315.	2.9	41
506	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	12.8	361
507	Hierarchical Mesoporous NiO/MnO ₂ @PANI Core–Shell Microspheres, Highly Efficient and Stable Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Interfaces, 2017, 9, 42676-42687.	8.0	100
508	Porous NiFe-Oxide Nanocubes as Bifunctional Electrocatalysts for Efficient Water-Splitting. ACS Applied Materials & Interfaces, 2017, 9, 41906-41915.	8.0	229
509	Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nature Communications, 2017, 8, 1449.	12.8	250
510	Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 24433-24443.	10.3	161
511	Surface Modification of a NiS ₂ Nanoarray with Ni(OH) ₂ toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorganic Chemistry, 2017, 56, 13651-13654.	4.0	84
512	Decreasing the Hydroxylation Affinity of La _{1–<i>x</i>} Sr _{<i>x</i>} MnO ₃ Perovskites To Promote Oxygen Reduction Electrocatalysis. Chemistry of Materials, 2017, 29, 9990-9997.	6.7	37
513	Synergistic Activity of Co and Fe in Amorphous Co <i>x</i> –Fe–B Catalyst for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40333-40343.	8.0	145
514	Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis. Nature Communications, 2017, 8, 1341.	12.8	37
515	Bimetallic thin film NiCo–NiCoO ₂ @NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2017, 5, 15901-15912.	10.3	109
516	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	1.3	16

#	Article	IF	CITATIONS
517	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. Nanotechnology, 2017, 28, 375401.	2.6	33
518	Controlled Synthesis of Unique Porous FeSe2 Nanomesh Arrays towards Efficient Hydrogen Evolution Reaction. Electrochimica Acta, 2017, 247, 435-442.	5.2	24
519	Achieving efficient room-temperature catalytic H2 evolution from formic acid through atomically controlling the chemical environment of bimetallic nanoparticles immobilized by isoreticular amine-functionalized metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 460-469.	20.2	62
520	Mn doped MoS 2 /reduced graphene oxide hybrid for enhanced hydrogen evolution. Applied Surface Science, 2017, 425, 470-477.	6.1	103
521	Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 23852-23858.	8.0	115
522	A facile conversion of a Ni/Fe coordination polymer to a robust electrocatalyst for the oxygen evolution reaction. RSC Advances, 2017, 7, 32819-32825.	3.6	21
523	Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2017, 1, 709-715.	5.9	62
524	Metal–Organic Framework Derived Carbon Nanotube Grafted Cobalt/Carbon Polyhedra Grown on Nickel Foam: An Efficient 3D Electrode for Full Water Splitting. ChemElectroChem, 2017, 4, 188-193.	3.4	43
525	Simple Aqueous Preparation of High Activity and Stability NiFe Hydrous Oxide Catalysts for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 1106-1112.	6.7	24
526	Bifunctional Ni1â^'xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42, 5560-5568.	7.1	55
527	Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces. Journal of Energy Chemistry, 2017, 26, 259-269.	12.9	20
528	Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/\hat{I}^3 -Al2O3 with a low Pt content. Applied Catalysis B: Environmental, 2017, 200, 543-551.	20.2	159
529	Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis. Journal of Colloid and Interface Science, 2017, 489, 57-67.	9.4	51
530	Measurement Techniques for the Study of Thin Film Heterogeneous Water Oxidation Electrocatalysts. Chemistry of Materials, 2017, 29, 120-140.	6.7	473
531	In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode. Applied Surface Science, 2017, 392, 144-152.	6.1	52
532	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Đecorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	19.5	225
533	Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58, 1-35.	31.2	506
534	Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction. Catalysis Today, 2017, 288, 48-53.	4.4	34

#	Article	IF	CITATIONS
535	Superior Electrochemical Oxygen Evolution Enabled by Threeâ€Đimensional Layered Double Hydroxide Nanosheet Superstructures. ChemCatChem, 2017, 9, 84-88.	3.7	40
536	A one-dimensional porous carbon-supported Ni/Mo ₂ C dual catalyst for efficient water splitting. Chemical Science, 2017, 8, 968-973.	7.4	372
537	Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 2017, 42, 2018-2033.	7.1	488
538	Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co _{3–<i>x</i>} Cr _{<i>x</i>} O ₄ Spinel Catalysts. ACS Catalysis, 2017, 7, 443-451.	11.2	92
539	Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	5
540	Hybrid Organic–Inorganic Transitionâ€Metal Phosphonates as Precursors for Water Oxidation Electrocatalysts. Advanced Functional Materials, 2017, 27, 1703158.	14.9	55
541	Practical Cluster Models for a Layered \hat{I}^2 -NiOOH Material. Materials, 2017, 10, 480.	2.9	7
542	Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution. Nanomaterials, 2017, 7, 433.	4.1	5
543	Interface engineering: The Ni(OH) 2 /MoS 2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy, 2017, 37, 74-80.	16.0	436
544	Surface engineering of hierarchical Ni(OH)2 nanosheet@nanowire configuration toward superior urea electrolysis. Electrochimica Acta, 2018, 268, 211-217.	5.2	67
545	Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy and Environmental Science, 2018, 11, 744-771.	30.8	1,055
546	Aerosol-spray metal phosphide microspheres with bifunctional electrocatalytic properties for water splitting. Journal of Materials Chemistry A, 2018, 6, 4783-4792.	10.3	53
547	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	8.0	38
548	NiOOH Exfoliation-Free Nickel Octahedra as Highly Active and Durable Electrocatalysts Toward the Oxygen Evolution Reaction in an Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 10115-10122.	8.0	68
549	Ultrathin NiCo ₂ P _x nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7420-7427.	10.3	302
550	The role of Cr doping in Ni Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution. Electrochimica Acta, 2018, 265, 10-18.	5.2	79
551	Monocrystalline platinum–nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction. Nanoscale, 2018, 10, 5072-5077.	5.6	39
552	Selfâ€Templated Synthesis of Co _{1â€<i>x</i>} S Porous Hexagonal Microplates for Efficient Electrocatalytic Oxygen Evolution. ChemElectroChem, 2018, 5, 1167-1172.	3.4	13

#	Article	IF	CITATIONS
553	Nickel-Incorporated, Nitrogen-Doped Graphene Nanoribbons as Efficient Electrocatalysts for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, H141-H146.	2.9	34
554	Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Applied Catalysis B: Environmental, 2018, 227, 340-348.	20.2	110
555	Microwave-Assisted Template-Free Synthesis of Ni3(BO3)2(NOB) Hierarchical Nanoflowers for Electrocatalytic Oxygen Evolution. Energy & Fuels, 2018, 32, 6224-6233.	5.1	11
556	Synthesis of mesoporous Co 3 O 4 nanosheet-assembled hollow spheres towards efficient electrocatalytic oxygen evolution. Journal of Alloys and Compounds, 2018, 754, 72-77.	5.5	26
557	A facile strategy to construct CoOx in situ embedded nanoflowers as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 275, 218-224.	5.2	13
558	Palladium-based nanoelectrocatalysts for renewable energy generation and conversion. Materials Today Nano, 2018, 1, 29-40.	4.6	26
559	Two-Dimensional MoS ₂ Confined Co(OH) ₂ Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS Nano, 2018, 12, 4565-4573.	14.6	302
560	Precious Versus Non-precious Electrocatalyst Centers. Nanostructure Science and Technology, 2018, , 101-168.	0.1	0
561	Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 5062-5069.	11.2	124
562	Synergistically enhanced hydrogen evolution electrocatalysis by <i>in situ</i> exsolution of metallic nanoparticles on perovskites. Journal of Materials Chemistry A, 2018, 6, 13582-13587.	10.3	85
563	Facile synthesis of Ni based metal-organic frameworks wrapped MnO2 nanowires with high performance toward electrochemical oxygen evolution reaction. Talanta, 2018, 186, 154-161.	5.5	24
564	Construction of amorphous interface in an interwoven NiS/NiS ₂ structure for enhanced overall water splitting. Journal of Materials Chemistry A, 2018, 6, 8233-8237.	10.3	159
565	Enhanced Redox properties of amorphous Fe 63.3-83.3 Co 0-20 Si 4 B 8 P 4 Cu 0.7 alloys via long-term CV cycling. Journal of Alloys and Compounds, 2018, 751, 349-358.	5.5	3
566	Molecular structure and interactions of water intercalated in nickel hydroxide. Physical Chemistry Chemical Physics, 2018, 20, 11444-11453.	2.8	14
567	MOF-mediated synthesis of monodisperse Co(OH)2 flower-like nanosheets for enhanced oxygen evolution reaction. Electrochimica Acta, 2018, 273, 327-334.	5.2	48
568	Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis. International Journal of Hydrogen Energy, 2018, 43, 11326-11334.	7.1	43
569	Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 8430-8440.	10.3	65
570	Probing Interfacial Electrochemistry on a Co ₃ O ₄ Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 13894-13901.	3.1	33

#	Article	IF	CITATIONS
571	In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy, 2018, 49, 14-22.	16.0	53
572	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	11.2	141
573	Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy and Environmental Science, 2018, 11, 1819-1827.	30.8	350
574	Ru nanodendrites composed of ultrathin fcc/hcp nanoblades for the hydrogen evolution reaction in alkaline solutions. Chemical Communications, 2018, 54, 4613-4616.	4.1	58
575	Iron and cobalt hydroxides: Describing the oxygen evolution reaction activity trend with the amount of electrocatalyst. Electrochimica Acta, 2018, 274, 224-232.	5.2	6
576	Iron doped cobalt sulfide derived boosted electrocatalyst for water oxidation. Applied Surface Science, 2018, 448, 9-15.	6.1	56
577	Surface Sensitive Nickel Electrodeposition in Deep Eutectic Solvent. ACS Applied Energy Materials, 2018, 1, 1016-1028.	5.1	38
578	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	5.2	42
579	Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO _{<i>x</i>} /SiO ₂ /Si Photocathode with an Open-Circuit Potential of 0.75 V. ACS Applied Materials & Interfaces, 2018, 10, 7955-7962.	8.0	30
580	Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702774.	19.5	615
581	Metal–Organic Framework-Derived Co ₃ ZnC/Co Embedded in Nitrogen-Doped Carbon Nanotube-Grafted Carbon Polyhedra as a High-Performance Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 6245-6252.	8.0	72
582	Nonanuclear Ni(<scp>ii</scp>) complexes in a [1-7-1] formation derived from asymmetric multidentate ligands: magnetic and electrochemical properties. Dalton Transactions, 2018, 47, 4036-4039.	3.3	1
583	Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703189.	19.5	509
584	Prussian Blueâ€Derived Iron Phosphide Nanoparticles in a Porous Graphene Aerogel as Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 679-685.	3.3	32
585	Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. Science China Materials, 2018, 61, 686-696.	6.3	18
586	Nâ€Modified NiO Surface for Superior Alkaline Hydrogen Evolution. ChemSusChem, 2018, 11, 1020-1024.	6.8	12
587	Accelerated Hydrogen Evolution Kinetics on NiFe‣ayered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials, 2018, 30, 1706279.	21.0	601
588	Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.	2.0	78

#	Article	IF	CITATIONS
589	Cobalt Sulfide Nanotubes (Co ₉ S ₈) Decorated with Amorphous MoS _{<i>x</i>} as Highly Efficient Hydrogen Evolution Electrocatalyst. ACS Applied Nano Materials, 2018, 1, 1083-1093.	5.0	31
590	A platinum oxide decorated amorphous cobalt oxide hydroxide nanosheet array towards alkaline hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3864-3868.	10.3	67
591	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	19.5	152
592	Binary FeCo Oxyhydroxide Nanosheets as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Chemistry - A European Journal, 2018, 24, 4724-4728.	3.3	54
593	Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem, 2018, 2, 332-339.	3.0	4
594	Synergistic effect of the valence bond environment and exposed crystal facets of the TiO ₂ /SnS ₂ heterojunction for achieving enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 3488-3499.	10.3	48
595	Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2018, 6, 3202-3210.	10.3	63
596	Origin of the overpotentials for HCOO ^{â^'} and CO formation in the electroreduction of CO ₂ on Cu(211): the reductive desorption processes decide. Physical Chemistry Chemical Physics, 2018, 20, 5756-5765.	2.8	19
597	Nonprecious Intermetallic Al ₇ Cu ₄ Ni Nanocrystals Seamlessly Integrated in Freestanding Bimodal Nanoporous Copper for Efficient Hydrogen Evolution Catalysis. Advanced Functional Materials, 2018, 28, 1706127.	14.9	64
598	CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 6288-6298.	8.0	67
599	Oxygen evolution reaction on Pt sphere and Ir-modified Pt sphere electrodes with porous structures. International Journal of Hydrogen Energy, 2018, 43, 2130-2138.	7.1	24
600	Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe ₂ O ₄ /Ni ₃ Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stability. Journal of Materials Chemistry A, 2018. 6. 1551-1560.	10.3	96
601	Interface engineered <i>in situ</i> anchoring of Co ₉ S ₈ nanoparticles into a multiple doped carbon matrix: highly efficient zinc–air batteries. Nanoscale, 2018, 10, 2649-2657.	5.6	66
602	Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochemistry Communications, 2018, 87, 1-4.	4.7	62
603	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of Ni ₂ P–CeO ₂ . Inorganic Chemistry, 2018, 57, 548-552.	4.0	78
604	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	17.4	230
605	Charge Transfer Kinetics of Photoâ€Electrochemical Hydrogen Evolution Improved by Nonstoichiometric Niâ€rich NiO <i>_{x}</i> àê€Coated Si Photocathode in Alkaline Electrolyte. Advanced Sustainable Systems, 2018, 2, 1700138.	5.3	12
606	Nickel Hydr(oxy)oxide Nanoparticles on Metallic MoS ₂ Nanosheets: A Synergistic Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700644.	11.2	104

#	Article	IF	CITATIONS
607	Rational Design of Nickel Hydroxideâ€Based Nanocrystals on Graphene for Ultrafast Energy Storage. Advanced Energy Materials, 2018, 8, 1702247.	19.5	211
608	Simple routes for the improvement of hydrogen evolution activity of Ni-Mo catalysts: From sol-gel derived powder catalysts to graphene supported co-electrodeposits. International Journal of Hydrogen Energy, 2018, 43, 16846-16858.	7.1	22
609	Ultrafine PtO ₂ nanoparticles coupled with a Co(OH)F nanowire array for enhanced hydrogen evolution. Chemical Communications, 2018, 54, 810-813.	4.1	65
610	Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale, 2018, 10, 1766-1773.	5.6	57
611	High Spin State Promotes Water Oxidation Catalysis at Neutral pH in Spinel Cobalt Oxide. Industrial & Engineering Chemistry Research, 2018, 57, 1441-1445.	3.7	28
612	A Stable Graphitic, Nanocarbonâ€Encapsulated, Cobaltâ€Rich Core–Shell Electrocatalyst as an Oxygen Electrode in a Water Electrolyzer. Advanced Energy Materials, 2018, 8, 1702838.	19.5	113
613	CoFe -CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2018, 262, 18-26.	5.2	28
614	Selective phosphidation: an effective strategy toward CoP/CeO ₂ interface engineering for superior alkaline hydrogen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 1985-1990.	10.3	212
615	Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochimica Acta, 2018, 263, 147-157.	5.2	57
616	Enhancement Effect of Borate Doping on the Oxygen Evolution Activity of α-Nickel Hydroxide. ACS Applied Nano Materials, 2018, 1, 751-758.	5.0	39
617	Accelerating Neutral Hydrogen Evolution with Tungsten Modulated Amorphous Metal Hydroxides. ACS Catalysis, 2018, 8, 5200-5205.	11.2	73
618	Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 7789-7798.	6.7	31
619	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	17.4	183
620	Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion <i>via</i> urea electrolysis. Energy and Environmental Science, 2018, 11, 1890-1897.	30.8	599
621	The Flexibility of an Amorphous Cobalt Hydroxide Nanomaterial Promotes the Electrocatalysis of Oxygen Evolution Reaction. Small, 2018, 14, e1703514.	10.0	121
622	Electrodeposition of Cobalt Phosphosulfide Nanosheets on Carbon Fiber Paper as Efficient Electrocatalyst for Oxygen Evolution. ChemElectroChem, 2018, 5, 1677-1682.	3.4	11
623	Unconventional noble metal-free catalysts for oxygen evolution in aqueous systems. Journal of Materials Chemistry A, 2018, 6, 8147-8158.	10.3	66
624	Study of cobalt boride-derived electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 6076-6087.	7.1	86

#	Article	IF	CITATIONS
625	NiO as a Bifunctional Promoter for RuO ₂ toward Superior Overall Water Splitting. Small, 2018, 14, e1704073.	10.0	214
626	Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 5789-5796.	10.3	102
627	Benign synthesis of robust nickel thin films as stretchable electrodes for electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7397-7404.	7.1	7
628	Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. Journal of Materials Chemistry A, 2018, 6, 7608-7622.	10.3	223
629	Heterostructured binary Ni-W sulfides nanosheets as pH-universal electrocatalyst for hydrogen evolution. Applied Surface Science, 2018, 445, 445-453.	6.1	32
630	Bioinspired Engineering of Cobalt-Phosphonate Nanosheets for Robust Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 3895-3902.	11.2	69
631	Systematic Study of Oxygen Evolution Activity and Stability on La _{1–<i>x</i>} Sr _{<i>x</i>} FeO _{3â[^]î´} Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 11715-11721.	8.0	173
632	Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. Journal of Catalysis, 2018, 361, 204-213.	6.2	115
633	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	47.7	1,552
634	Importance of Surface IrO _{<i>x</i>} in Stabilizing RuO ₂ for Oxygen Evolution. Journal of Physical Chemistry B, 2018, 122, 947-955.	2.6	95
635	Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni ₃ S ₂ Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption. Journal of the American Chemical Society, 2018, 140, 610-617.	13.7	563
636	Free-standing, flexible β-Ni(OH) 2 /electrochemically-exfoliated graphene film electrode for efficient oxygen evolution. Applied Surface Science, 2018, 433, 88-93.	6.1	17
637	Dynamics of electrochemical Pt dissolution at atomic and molecular levels. Journal of Electroanalytical Chemistry, 2018, 819, 123-129.	3.8	74
638	An efficient catalyst film fabricated by electrophoretic deposition of cobalt hydroxide for electrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 395-401.	3.9	4
639	Observing the Electrochemical Oxidation of Co Metal at the Solid/Liquid Interface Using Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 666-671.	2.6	73
640	Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions. Journal of Physical Chemistry B, 2018, 122, 561-571.	2.6	26
641	Aqueous-phase synthesis of metal hydroxide nanoplates and platinum/nickel hydroxide hybrid nanostructures and their enhanced electrocatalytic properties. Applied Catalysis B: Environmental, 2018, 225, 238-242.	20.2	16
642	Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER). Nano-Micro Letters, 2018, 10, 15.	27.0	124

#	Article	IF	CITATIONS
643	An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media. Applied Catalysis B: Environmental, 2018, 225, 1-7.	20.2	104
644	<i>In situ</i> synthesis of magnesium hydroxides modified with tripodal ligands in an organic medium. Dalton Transactions, 2018, 47, 3074-3083.	3.3	10
645	Electrochemically Inert g ₃ N ₄ Promotes Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1705583.	14.9	84
646	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.	13.8	1,018
647	Coffeeâ€Waste Templating of Metal Ionâ€Substituted Cobalt Oxides for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 605-611.	6.8	40
648	Fabrication of Pt nanoparticles on nitrogen-doped carbon/Ni nanofibers for improved hydrogen evolution activity. Journal of Colloid and Interface Science, 2018, 514, 199-207.	9.4	42
649	Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. ChemSusChem, 2018, 11, 948-958.	6.8	25
650	Simple room temperature synthesis of porous nickel phosphate foams for electrocatalytic ethanol oxidation. Journal of Electroanalytical Chemistry, 2018, 808, 236-244.	3.8	26
651	Facile Synthesis of Self-Assembled Cobalt Oxide Supported on Iron Oxide as the Novel Electrocatalyst for Enhanced Electrochemical Water Electrolysis. ACS Applied Nano Materials, 2018, 1, 401-409.	5.0	24
652	Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy, 2018, 44, 7-14.	16.0	201
653	Boron―and Ironâ€incorporated αâ€Co(OH) ₂ Ultrathin Nanosheets as an Efficient Oxygen Evolution Catalyst. ChemElectroChem, 2018, 5, 593-597.	3.4	21
654	Carbon fibers supported NiSe nanowire arrays as efficient and flexible electrocatalysts for the oxygen evolution reaction. Carbon, 2018, 129, 245-251.	10.3	65
655	When NiO@Ni Meets WS ₂ Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting. ACS Central Science, 2018, 4, 112-119.	11.3	120
656	Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte. Nano Energy, 2018, 44, 319-326.	16.0	118
657	Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 2018, 43, 103-109.	16.0	515
658	Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting. Advanced Functional Materials, 2018, 28, 1704594.	14.9	91
659	Underpotential deposition of Nickel on platinum single crystal electrodes. Journal of Electroanalytical Chemistry, 2018, 819, 391-400.	3.8	16
660	Oxygen Reduction Reaction Activity for Cobalt-Deposited Pt(111) Model Catalyst Surfaces in Alkaline Solution. Electrochemistry, 2018, 86, 243-245.	1.4	6

#	ARTICLE	IF	CITATIONS
661	Efficient synthesis of 2-arylquinazolin-4-amines <i>via</i> a copper-catalyzed diazidation and ring expansion cascade of 2-arylindoles. Chemical Communications, 2018, 54, 12602-12605.	4.1	24
662	Amorphous Y(OH) ₃ -promoted Ru/Y(OH) ₃ nanohybrids with high durability for electrocatalytic hydrogen evolution in alkaline media. Chemical Communications, 2018, 54, 12202-12205.	4.1	19
663	Constructing bundle-like Co-Mn oxides and Co-Mn selenides for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 22697-22704.	10.3	42
664	Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Letters, 2018, 10, 75.	27.0	412
665	Boosting Alkaline Hydrogen Evolution Activity with Niâ€Đoped MoS ₂ /Reduced Graphene Oxide Hybrid Aerogel. ChemSusChem, 2019, 12, 457-466.	6.8	56
666	Determination of Hydrogen Oxidation Reaction Mechanism Based on Ptâ^'H _{ad} Energetics in Alkaline Electrolyte. Journal of the Electrochemical Society, 2018, 165, J3355-J3362.	2.9	38
667	Carbon-coated cobalt molybdenum oxide as a high-performance electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23101-23108.	7.1	9
668	Homogeneous Metal Nitrate Hydroxide Nanoarrays Grown on Nickel Foam for Efficient Electrocatalytic Oxygen Evolution. Small, 2018, 14, e1803783.	10.0	50
669	Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Current Opinion in Electrochemistry, 2018, 12, 209-217.	4.8	64
670	Enhancement of Hydrogen Evolution Reaction Performance of Graphitic Carbon Nitride with Incorporated Nickel Boride. ACS Sustainable Chemistry and Engineering, 2018, 6, 16198-16204.	6.7	50
672	Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics, 2018, 7, 121-138.	6.0	203
673	FacileInâ€SituElectrosynthesis and High Electrocatalytic Performance of Interconnected Layered Double Hydroxides/Graphene Hybrids for Dopamine Oxidation: a Comparative Study. Electroanalysis, 2018, 31, 485.	2.9	4
674	Effects of Metal Combinations on the Electrocatalytic Properties of Transition-Metal-Based Layered Double Hydroxides for Water Oxidation: A Perspective with Insights. ACS Omega, 2018, 3, 16529-16541.	3.5	42
675	Facile Synthesis of Superstructured MoS ₂ and Graphitic Nanocarbon Hybrid for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14441-14449.	6.7	41
676	Co ₃ O ₄ Nanoparticles Anchored on Selectively Oxidized Graphene Flakes as Bifunctional Electrocatalysts for Oxygen Reactions. ChemistrySelect, 2018, 3, 10064-10076.	1.5	14
677	Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution. Nano Energy, 2018, 53, 690-697.	16.0	175
678	Selective Electrochemical H ₂ O ₂ Production through Twoâ€Electron Oxygen Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.	19.5	498
679	In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. ACS Applied Materials & Interfaces, 2018, 10, 35025-35038.	8.0	185

#	Article	IF	CITATIONS
680	Hierarchical Hollow Spheres Assembled with Ultrathin CoMn Double Hydroxide Nanosheets as Trifunctional Electrocatalyst for Overall Water Splitting and Zn Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 14641-14651.	6.7	51
681	Transformation of a Cobalt Carbide (Co ₃ C) Oxygen Evolution Precatalyst. ACS Applied Energy Materials, 0, , .	5.1	20
682	Open hollow Co–Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. Journal of Materials Chemistry A, 2018, 6, 20214-20223.	10.3	42
683	3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochimica Acta, 2018, 292, 107-114.	5.2	30
684	Recent advances in understanding the pH dependence of the hydrogen oxidation and evolution reactions. Journal of Catalysis, 2018, 367, 328-331.	6.2	40
685	Identification of Facetâ€Governing Reactivity in Hematite for Oxygen Evolution. Advanced Materials, 2018, 30, e1804341.	21.0	96
686	Two-Dimensional Lamellar Mo ₂ C for Electrochemical Hydrogen Production: Insights into the Origin of Hydrogen Evolution Reaction Activity in Acidic and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 40500-40508.	8.0	38
687	Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 2018, 8, 11342-11351.	11.2	414
688	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie, 2018, 131, 471.	2.0	19
689	Activating p-Blocking Centers in Perovskite for Efficient Water Splitting. CheM, 2018, 4, 2902-2916.	11.7	99
690	Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15954-15969.	6.7	151
691	Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa _{0.5} Sr _{0.5} Co ₂ O _{5+δ} Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 38032-38041.	8.0	66
692	Electrocatalytic Water Oxidation at Quinone-on-Carbon: A Model System Study. Journal of the American Chemical Society, 2018, 140, 14717-14724.	13.7	48
693	Alkali and Alkaline Earth Hydrides-Driven N ₂ Activation and Transformation over Mn Nitride Catalyst. Journal of the American Chemical Society, 2018, 140, 14799-14806.	13.7	81
694	Determining the Viability of Hydroxide-Mediated Bifunctional HER/HOR Mechanisms through Single-Crystal Voltammetry and Microkinetic Modeling. Journal of the Electrochemical Society, 2018, 165, J3209-J3221.	2.9	55
695	Thermal decomposition behavior of nickel-iron hydrotalcite and its electrocatalytic properties of oxygen reduction and oxygen evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 20734-20738.	7.1	11
696	Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation. Advanced Science, 2018, 5, 1801632.	11.2	17
697	Enhancing the hydrogen evolution reaction with Ni-W-TiO2 composites. Electrochemistry Communications, 2018, 96, 108-112.	4.7	11

#	Article	IF	CITATIONS
698	Control Synthesis of Nickel Selenides and Their Multiwalled Carbon Nanotubes Composites as Electrocatalysts for Enhanced Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 26096-26104.	3.1	38
699	Coupling Bimetallic Oxides/Alloys and N-Doped Carbon Nanotubes as Tri-Functional Catalysts for Overall Water Splitting and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39828-39838.	8.0	54
700	Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9, 4531.	12.8	410
701	Electro-Oxidation of Ethanol Using Pt ₃ Sn Alloy Nanoparticles. ACS Catalysis, 2018, 8, 10931-10937.	11.2	53
702	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie, 2018, 130, 15697-15701.	2.0	11
703	Pyrite FeS ₂ /C nanoparticles as an efficient bi-functional catalyst for overall water splitting. Dalton Transactions, 2018, 47, 14917-14923.	3.3	68
704	Coâ€Moâ€P Based Electrocatalyst for Superior Reactivity in the Alkaline Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 4832-4837.	3.7	33
705	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	2.6	27
706	Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy, 2018, 53, 458-467.	16.0	222
707	Nitrate-induced and <i>in situ</i> electrochemical activation synthesis of oxygen deficiencies-rich nickel/nickel (oxy)hydroxide hybrid films for enhanced electrocatalytic water splitting. Nanoscale, 2018, 10, 17546-17551.	5.6	31
708	Highly Efficient, Biocharâ€Derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst. Advanced Energy Materials, 2018, 8, 1801461.	19.5	75
709	Enhanced electrocatalytic performance of NiOx@MnOx@graphene for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 18992-19001.	7.1	33
710	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	8.0	52
711	Self-supported nickel–cobalt nanowires as highly efficient and stable electrocatalysts for overall water splitting. Nanoscale, 2018, 10, 18767-18773.	5.6	48
712	Template Electro-Etching-Mediated FeOOH Nanotubes as Highly Efficient Photoactive Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	5.1	5
713	Epitaxial growth of Ni(OH) ₂ nanoclusters on MoS ₂ nanosheets for enhanced alkaline hydrogen evolution reaction. Nanoscale, 2018, 10, 19074-19081.	5.6	74
714	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15471-15475.	13.8	178
715	Structural modulation of CdS/ZnO nanoheterojunction arrays for full solar water splitting and their related degradation mechanisms. Catalysis Science and Technology, 2018, 8, 5280-5287.	4.1	11

#	Article	IF	CITATIONS
716	Modulating Electronic Structure of Metalâ€Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Advanced Energy Materials, 2018, 8, 1801564.	19.5	240
717	Oxygen-Incorporated NiMoP ₂ Nanowire Arrays for Enhanced Hydrogen Evolution Activity in Alkaline Solution. ACS Applied Energy Materials, 0, , .	5.1	6
718	Molecule-Assisted Synthesis of Highly Dispersed Ultrasmall RuO ₂ Nanoparticles on Nitrogen-Doped Carbon Matrix as Ultraefficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11529-11535.	6.7	58
719	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	10.0	192
720	Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.	11.9	86
721	Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 13420-13426.	6.7	27
722	Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst. Journal of Power Sources, 2018, 395, 106-127.	7.8	68
723	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12140-12145.	7.1	26
724	Identification of the Nearby Hydroxyls' Role in Promoting HCHO Oxidation over a Pt Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 8183-8189.	3.7	20
725	Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry, 2018, 90, 7341-7348.	6.5	33
726	Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748-7759.	13.7	1,157
727	Promoting effect of nickel hydroxide on the electrocatalytic performance of Pt in alkaline solution. Dalton Transactions, 2018, 47, 7975-7982.	3.3	24
728	Mo-Triggered amorphous Ni ₃ S ₂ nanosheets as efficient and durable electrocatalysts for water splitting. Materials Chemistry Frontiers, 2018, 2, 1462-1466.	5.9	43
729	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	10.3	215
730	Ni ₃ [Fe(CN) ₆] ₂ nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1683-1689.	6.0	23
731	Engineering a stereo-film of FeNi ₃ nanosheet-covered FeOOH arrays for efficient oxygen evolution. Nanoscale, 2018, 10, 10971-10978.	5.6	40
732	Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Advanced Materials, 2018, 30, e1801171.	21.0	180
733	Metal–Organic Framework Hybridâ€Assisted Formation of Co ₃ O ₄ /Coâ€Fe Oxide Doubleâ€Shelled Nanoboxes for Enhanced Oxygen Evolution. Advanced Materials, 2018, 30, e1801211.	21.0	374

#	Article	IF	CITATIONS
734	Effect of Zn(II) coprecipitation on Mn(II)-induced reductive transformation of birnessite. Chemical Geology, 2018, 492, 12-19.	3.3	16
735	Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catalysis, 2018, 8, 5621-5629.	11.2	146
736	Ordered-Vacancy-Induced Cation Intercalation into Layered Double Hydroxides: A General Approach for High-Performance Supercapacitors. CheM, 2018, 4, 2168-2179.	11.7	105
737	Facile, Room Temperature, Electroless Deposited (Fe _{1â~} <i>_x</i> _, Mn <i>_x</i>)OOH Nanosheets as Advanced Catalysts: The Role of Mn Incorporation. Small, 2018, 14, e1801226.	10.0	54
738	Pt and Pt–Ni(OH) ₂ Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem, 2018, 11, 2643-2653.	6.8	99
739	Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. Journal of Materials Chemistry A, 2018, 6, 14025-14042.	10.3	224
740	Structure and Electronic Properties of Transition-Metal/Mg Bimetallic Clusters at Realistic Temperatures and Oxygen Partial Pressures. Journal of Physical Chemistry C, 2018, 122, 16788-16794.	3.1	8
741	Composite Metal Oxideâ€Carbon Nanotube Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2018, 5, 2850-2856.	3.4	18
742	Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 24715-24724.	8.0	60
743	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	11.7	225
744	A metallic MoS ₂ nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. Journal of Materials Chemistry A, 2018, 6, 16458-16464.	10.3	33
745	Convenient one step synthesis of molybdenum carbide embedded N-doped carbon nanolayer hybrid architecture using cheap cotton as precursor for efficient hydrogen evolution. Journal of Electroanalytical Chemistry, 2018, 824, 207-215.	3.8	4
746	Cocatalysis: Role of Organic Cations in Oxygen Evolution Reaction on Oxide Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 26825-26829.	8.0	5
747	Enhancing the catalytic activity of the alkaline hydrogen evolution reaction by tuning the S/Se ratio in the Mo(S _x Se _{1â^³x}) ₂ catalyst. Nanoscale, 2018, 10, 16211-16216.	5.6	35
748	Activity enhancement <i>via</i> borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 16959-16964.	10.3	21
749	Insight into Mn and Ni doping of Ni1-Mn PS3 and Mn1-Ni PS3 nanosheets on electrocatalytic hydrogen and oxygen evolution activity. Journal of Alloys and Compounds, 2018, 769, 532-538.	5.5	20
750	Hierarchical NiMo Phosphide Nanosheets Strongly Anchored on Carbon Nanotubes as Robust Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 29647-29655.	8.0	82
751	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanced Materials, 2018, 30, e1800528.	21.0	135

ARTICLE IF CITATIONS Synthesis of a Highly Efficient Oxygenâ€Evolution Electrocatalyst by Incorporation of Iron into 752 6.8 41 Nanoscale Cobalt Bórides. ChemŚusChem, 2018, 11, 3150-3156. Cobalt-doped Ni–Mn layered double hydroxide nanoplates as high-performance electrocatalyst for 753 5.2 oxygen evolution reaction. Applied Clay Science, 2018, 165, 277-283. The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting. 754 13.8 90 Angewandte Chemie - International Edition, 2018, 57, 11893-11897. The Structure of the Cobalt Oxide/Au Catalyst Interface in Electrochemical Water Splitting. 2.0 Angewandte Chemie, 2018, 130, 12069-12073. Intrinsic Activity of Some Oxygen and Hydrogen Evolution Reaction Electrocatalysts under 756 5.1 14 Industrially Relévant Conditions. ACS Applied Energy Materials, 2018, 1, 4196-4202. Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen Evolution Activity. Angewandte Chemie, 2018, 130, 11852-11856. Aqueous Synthesis of Ultrathin Platinum/Nonâ€Noble Metal Alloy Nanowires for Enhanced Hydrogen 758 13.8 133 Evolution Activity. Angewandte Chemie - International Edition, 2018, 57, 11678-11682. Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen 10.3 evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 15684-15689. Towards Highâ€Efficiency Hydrogen Production through inâ€...situ Formation of Wellâ€Dispersed Rhodium 760 6.8 57 Nanoclusters. ChemSusChem, 2018, 11, 3253-3258. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction 10.3 94 electrocatalysts. Science Advances, 2018, 4, eaap8817 Cobalt-Doped Goethite-Type Iron Oxyhydroxide (α-FeOOH) for Highly Efficient Oxygen Evolution 762 3.5 28 Catalysis. ACS Omega, 2018, 3, 7840-7845. Electroless Plating of Highly Efficient Bifunctional Borideâ€Based Electrodes toward Practical Overall 763 19.5 127 Water Splitting. Advanced Energy Materials, 2018, 8, 1801372. PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction 764 5.6 44 of amorphous MoS_x/TiO₂ nanotube arrays. Nanoscale, 2018, 10, 10288-10295. Designing Hybrid NiP₂/NiO Nanorod Arrays for Efficient Alkaline Hydrogen Evolution. ACS 8.0 Applied Matérials & amp; Interfaces, 2018, 10, 17896-17902. NiFeâ€Based Metal–Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust 766 Electrodes for Electrochemical Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 19.5 442 1800584. MoS2 nanoparticles coupled to SnS2 nanosheets: The structural and electronic modulation for 48 synergetic electrocatalytic hydrogen evolution. Journal of Catalysis, 2018, 366, 8-15. Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower 768 16.0 114 valence-state doping. Nano Energy, 2018, 53, 144-151. Highly Dispersed Platinum on Honeycomb-like NiO@Ni Film as a Synergistic Electrocatalyst for the 769 11.2 141 Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8866-8872.

#	ARTICLE	IF	Citations
770	Study of the Active Sites in Porous Nickel Oxide Nanosheets by Manganese Modulation for Enhanced Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 2150-2158.	17.4	131
771	HMTA-assisted formation of hierarchical Co-based materials built by low-dimensional substructures as water oxidation electrocatalysts. CrystEngComm, 2018, 20, 5249-5255.	2.6	12
772	Role of Surface Oxophilicity in Copper-Catalyzed Water Dissociation. ACS Catalysis, 2018, 8, 9327-9333.	11.2	46
773	A general ligand-assisted self-assembly approach to crystalline mesoporous metal oxides. NPG Asia Materials, 2018, 10, 800-809.	7.9	43
774	Morphological and structure dual modulation of cobalt-based layer double hydroxides by Ni doping and 2-methylimidazole inducting as bifunctional electrocatalysts for overall water splitting. Journal of Power Sources, 2018, 400, 172-182.	7.8	32
775	Nanometric Ni ₅ P ₄ Clusters Nested on NiCo ₂ O ₄ for Efficient Hydrogen Production via Alkaline Water Electrolysis. Advanced Energy Materials, 2018, 8, 1801690.	19.5	99
776	Discovery of Layered Indium Hydroxide via a Hydroperoxyl Anion Coordinated Precursor at Room Temperature. Chemistry - A European Journal, 2018, 24, 15491-15494.	3.3	0
777	Dopedâ€MoSe ₂ Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for pHâ€Universal Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801764.	19.5	67
778	Ni/Co-based nanosheet arrays for efficient oxygen evolution reaction. Nano Energy, 2018, 52, 360-368.	16.0	135
779	Activation of defective nickel molybdate nanowires for enhanced alkaline electrochemical hydrogen evolution. Nanoscale, 2018, 10, 16539-16546.	5.6	29
780	Use of CO as a Cleaning Tool of Highly Active Surfaces in Contact with Ionic Liquids: Ni Deposition on Pt(111) Surfaces in IL. ACS Applied Energy Materials, 2018, 1, 4617-4625.	5.1	8
781	Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018, 9, 3367.	12.8	159
782	Superaerophobic P-doped Ni(OH) ₂ /NiMoO ₄ hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting. Dalton Transactions, 2018, 47, 8787-8793.	3.3	64
783	Ir ⁴⁺ -Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting. Chemical Communications, 2018, 54, 6400-6403.	4.1	114
784	Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 21891-21895.	10.3	27
785	3D–2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation. Nanoscale, 2018, 10, 12605-12611.	5.6	28
786	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	2.0	31
787	Modulating the Electrocatalytic Performance of Palladium with the Electronic Metal–Support Interaction: A Case Study on Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 6617-6626.	11.2	73

#	Article	IF	CITATIONS
788	Crystal Phase and Architecture Engineering of Lotusâ€Thalamusâ€Shaped Ptâ€Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1801741.	21.0	163
789	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	13.8	205
790	Structurally distorted wolframite-type CoxFe1-xWO4 solid solution for enhanced oxygen evolution reaction. Nano Energy, 2018, 50, 717-722.	16.0	41
791	Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9, 2373.	12.8	336
792	In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Science Bulletin, 2018, 63, 853-876.	9.0	107
793	Boosting water oxidation electrocatalysts with surface engineered amorphous cobalt hydroxide nanoflakes. Nanoscale, 2018, 10, 12991-12996.	5.6	55
794	Inâ€situâ€Methoden zur Charakterisierung elektrochemischer NiFeâ€Sauerstoffentwicklungskatalysatoren. Angewandte Chemie, 2019, 131, 1264-1277.	2.0	21
795	Application of In Situ Techniques for the Characterization of NiFeâ€Based Oxygen Evolution Reaction (OER) Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 1252-1265.	13.8	443
796	Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. Journal of Energy Chemistry, 2019, 32, 93-104.	12.9	70
797	Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 6672-6680.	5.1	28
798	Lamellar NiMoCo@CuS enabling electrocatalytic activity and stability for hydrogen evolution. Chemical Communications, 2019, 55, 10555-10558.	4.1	8
799	NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1903747.	14.9	108
800	Synergistic Cobalt Sulfide/Eggshell Membrane Carbon Electrode. ACS Applied Materials & Interfaces, 2019, 11, 32244-32250.	8.0	32
801	Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catalysis, 2019, 9, 8712-8718.	11.2	103
802	Water oxidation by Ferritin: A semi-natural electrode. Scientific Reports, 2019, 9, 11499.	3.3	6
803	Ultrathin MoS ₂ Nanosheets Vertically Grown on CoS ₂ Acicular Nanorod Arrays: A Synergistic Three-Dimensional Shell/Core Heterostructure for High-Efficiency Hydrogen Evolution at Full pH. ACS Applied Energy Materials, 2019, 2, 6751-6760.	5.1	34
804	Revealing Energetics of Surface Oxygen Redox from Kinetic Fingerprint in Oxygen Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 13803-13811.	13.7	151
805	Synthesis of Pt nano catalyst in the presence of carbon monoxide: Superior activity towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 23969-23974.	7.1	15

#	Article	IF	CITATIONS
806	Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67.	0.3	0
807	Synthesis and Characterization of Fe3+ and CeO2 Co-decorated NiOOH Electrocatalysts Supported by Nickel Foam for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2019, 14, 6532-6545.	1.3	13
808	Self-supporting MOF-derived CoNi@C–Au/TiO ₂ nanotube array Z-scheme heterocatalysts for plasmon-enhanced high-efficiency full water splitting. Journal of Materials Chemistry A, 2019, 7, 19704-19708.	10.3	23
809	Exceptional oxygen evolution reactivities on CaCoO ₃ and SrCoO ₃ . Science Advances, 2019, 5, eaav6262.	10.3	132
810	Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Applied Catalysis B: Environmental, 2019, 258, 118023.	20.2	114
811	Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy, 2019, 64, 103963.	16.0	30
812	Liâ€Breathing Air Batteries Catalyzed by MnNiFe/Laserâ€Induced Graphene Catalysts. Advanced Materials Interfaces, 2019, 6, 1901035.	3.7	26
813	Recent advances of nanoporous metal-based catalyst: synthesis, application and perspectives. Journal of Iron and Steel Research International, 2019, 26, 779-795.	2.8	9
814	Molybdenum-Doped Porous Cobalt Phosphide Nanosheets for Efficient Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 6302-6310.	5.1	22
815	Tracking Electrical Fields at the Pt/H ₂ O Interface during Hydrogen Catalysis. Journal of the American Chemical Society, 2019, 141, 15524-15531.	13.7	52
816	Multifunctional electrochemical application of a novel 3D AgInS 2 /rGO nanohybrid for electrochemical detection and HER. Journal of Chemical Technology and Biotechnology, 2019, 94, 3713-3724.	3.2	9
817	Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7, 18380-18387.	10.3	21
818	In situ electro-oxidation modulation of Ru(OH)x/Ag supported on nickel foam for efficient hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 21683-21691.	7.1	12
819	Template/surfactant free and UV light irradiation assisted fabrication of Mn-Co oxides composite nanorings: Structure and synthesis mechanism. Progress in Natural Science: Materials International, 2019, 29, 163-169.	4.4	2
820	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. CheM, 2019, 5, 2429-2441.	11.7	150
821	Creation of controllable cationic and anionic defects in tunnel manganese oxide nanowires for enhanced oxygen evolution reaction. Polyhedron, 2019, 171, 32-40.	2.2	5
822	Initiating an efficient electrocatalyst for water splitting via valence configuration of cobalt-iron oxide. Applied Catalysis B: Environmental, 2019, 258, 117968.	20.2	70
823	Lamellar platinum–rhodium aerogels with superior electrocatalytic performance for both hydrogen oxidation and evolution reaction in alkaline environment. Journal of Power Sources, 2019, 435, 226798.	7.8	40

#	Article	IF	Citations
824	Catalytic Surface Specificity of Ni(OH) 2 â€Decorated Pt Nanocubes for the Hydrogen Evolution Reaction in an Alkaline Electrolyte. ChemSusChem, 2019, 12, 4021-4028.	6.8	28
825	Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes. Chinese Journal of Catalysis, 2019, 40, 1147-1152.	14.0	31
826	PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. Nano Letters, 2019, 19, 5431-5436.	9.1	93
827	Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 258, 117953.	20.2	68
828	Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode. International Journal of Hydrogen Energy, 2019, 44, 22947-22954.	7.1	5
829	NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. Journal of Materials Chemistry A, 2019, 7, 18816-18822.	10.3	30
830	Self-Growing NiFe-Based Hybrid Nanosheet Arrays on Ni Nanowires for Overall Water Splitting. ACS Applied Energy Materials, 2019, 2, 5465-5471.	5.1	22
831	An organic ligand promoting the electrocatalytic activity of cobalt oxide for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 2205-2210.	4.9	7
832	Dinitrosyl iron complexes: From molecular electrocatalysts to electrodepositedâ€film electrodes for hydrogen evolution reaction. Journal of the Chinese Chemical Society, 2019, 66, 1186-1194.	1.4	3
833	A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catalysis Science and Technology, 2019, 9, 4718-4724.	4.1	22
834	Promotion of the Electrocatalytic Oxygen Evolution Reaction by Chemical Coupling of CoOOH Particles to 3D Branched Î ³ -MnOOH Rods. ACS Sustainable Chemistry and Engineering, 2019, 7, 13015-13022.	6.7	29
835	Self-Supported Hierarchical IrO ₂ @NiO Nanoflake Arrays as an Efficient and Durable Catalyst for Electrochemical Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 25854-25862.	8.0	56
836	Recent Progress on Surface Reconstruction of Earthâ€Abundant Electrocatalysts for Water Oxidation. Small, 2019, 15, e1901980.	10.0	158
837	Utilization of a dicopper(II) complex of tetrapyridyl ligand as the precursor for the synthesis of copper-based composites and their catalysis. Applied Surface Science, 2019, 493, 185-192.	6.1	6
838	Highly Efficient and Self-Standing Nanoporous NiO/Al ₃ Ni ₂ Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 7913-7922.	5.1	38
839	Ni–Fe Phosphate/Ni Foam Electrode: Facile Hydrothermal Synthesis and Ultralong Oxygen Evolution Reaction Durability. ACS Sustainable Chemistry and Engineering, 2019, 7, 18332-18340.	6.7	40
840	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nature Communications, 2019, 10, 4876.	12.8	220
841	Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials, 2019, 31, e1902069.	21.0	215

#	Article	IF	CITATIONS
842	Synergistically Tuning Water and Hydrogen Binding Abilities Over Co ₄ N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis. Advanced Energy Materials, 2019, 9, 1902449.	19.5	205
843	A Minireview on Nickelâ€Based Heterogeneous Electrocatalysts for Water Splitting. ChemCatChem, 2019, 11, 5913-5928.	3.7	68
844	Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. Energies, 2019, 12, 3846.	3.1	9
845	Enhanced Electrocatalytic Performance through Body Enrichment of Coâ€Based Bimetallic Nanoparticles In Situ Embedded Porous Nâ€Doped Carbon Spheres. Small, 2019, 15, e1903395.	10.0	70
846	Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24572-24579.	7.1	63
847	Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media. Electrochimica Acta, 2019, 327, 135016.	5.2	17
848	Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Topics in Current Chemistry, 2019, 377, 29.	5.8	26
849	Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy, 2019, 66, 104173.	16.0	116
850	Facile Synthesis of Graphene Aerogel Supported Nickel/Nickel Oxide Core–Shell Nanoparticles: Efficient Electrocatalysts for Oxygen Evolution Reactions. Journal of Physical Chemistry C, 2019, 123, 28131-28141.	3.1	22
851	Advanced Co3O4–CuO nano-composite based electrocatalyst for efficient hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 26148-26157.	7.1	63
852	The catalytic performance enhancement of Ni2P electrocatalysts for hydrogen evolution reaction by carbon-based substrates. International Journal of Hydrogen Energy, 2019, 44, 31960-31968.	7.1	20
853	Selfâ€Supportive Mesoporous Ni/Co/Fe Phosphosulfide Nanorods Derived from Novel Hydrothermal Electrodeposition as a Highly Efficient Electrocatalyst for Overall Water Splitting. Small, 2019, 15, e1905201.	10.0	80
854	Boosting Hydrogen Transfer during Volmer Reaction at Oxides/Metal Nanocomposites for Efficient Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 3002-3010.	17.4	142
855	Short O–O separation in layered oxide Na _{0.67} CoO ₂ enables an ultrafast oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23473-23479.	7.1	52
856	Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Research, 2019, 12, 2941-2946.	10.4	25
857	Highly dispersed Ni2â^'Mo P nanoparticles on oxygen-defect-rich NiMoO4â^' nanosheets as an active electrocatalyst for alkaline hydrogen evolution reaction. Journal of Power Sources, 2019, 444, 227311.	7.8	32
858	Hierarchical Bimetallic Ni–Co–P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS Applied Materials & Interfaces, 2019, 11, 42233-42242.	8.0	70
859	Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis. ACS Catalysis, 2019, 9, 11242-11254.	11.2	96

#	Article	IF	CITATIONS
860	Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. ACS Nano, 2019, 13, 12987-12995.	14.6	67
862	Geometric and Electronic Engineering of Mn-Doped Cu(OH) ₂ Hexagonal Nanorings for Superior Oxygen Evolution Reaction Electrocatalysis. Inorganic Chemistry, 2019, 58, 15433-15442.	4.0	30
863	Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 10870-10875.	11.2	86
864	Numerical Simulations of Seasonal Variations of Rainfall over the Island of Hawaii. Journal of Applied Meteorology and Climatology, 2019, 58, 1219-1232.	1.5	3
865	Electrochemical Approach for the Production of Layered Double Hydroxides with a Wellâ€Defined Co/Me ^{III} Ratio. Chemistry - A European Journal, 2019, 25, 16301-16310.	3.3	7
866	Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nature Communications, 2019, 10, 162.	12.8	396
867	Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts. ACS Catalysis, 2019, 9, 9222-9230.	11.2	80
868	Intrinsically Synergistic Active Centers Coupled with Surface Metal Doping To Facilitate Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 24220-24224.	3.1	9
869	Recent progress in Pt and Pd-based hybrid nanocatalysts for methanol electrooxidation. Physical Chemistry Chemical Physics, 2019, 21, 21185-21199.	2.8	17
870	A Co–Mo ₂ N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media. Journal of Materials Chemistry A, 2019, 7, 20579-20583.	10.3	52
871	Induction of Concerted Proton-Coupled Electron Transfer during Oxygen Evolution on Hematite Using Lanthanum Oxide as a Solid Proton Acceptor. ACS Catalysis, 2019, 9, 9212-9215.	11.2	27
872	The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science, 2019, 10, 9165-9181.	7.4	560
873	Precipitating Metal Nitrate Deposition of Amorphous Metal Oxyhydroxide Electrodes Containing Ni, Fe, and Co for Electrocatalytic Water Oxidation. ACS Catalysis, 2019, 9, 9650-9662.	11.2	43
874	Elucidation of Structure–Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS Applied Materials & Interfaces, 2019, 11, 38595-38605.	8.0	49
875	Synergetic Effects of Dual Electrocatalysts for High-Performance Solar-Driven Water Oxidation. ACS Applied Energy Materials, 2019, 2, 7256-7262.	5.1	7
876	Electron penetration from metal core to metal species attached skin in nitrogen-doped core-shell catalyst for enhancing oxygen evolution reaction. Electrochimica Acta, 2019, 327, 134939.	5.2	31
877	Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni–Mo/Ni. Journal of Materials Chemistry A, 2019, 7, 2200-2209.	10.3	63
878	Effect of Manganese Porphyrin Covalent Immobilization on Electrocatalytic Water Oxidation and Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3838-3848.	6.7	46

#	Article	IF	CITATIONS
879	Concentrated-acid triggered superfast generation of porous amorphous cobalt oxide toward efficient water oxidation catalysis in alkaline solution. Chemical Communications, 2019, 55, 1797-1800.	4.1	19
880	Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials Horizons, 2019, 6, 684-702.	12.2	149
881	Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A, 2019, 7, 3592-3602.	10.3	81
882	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	10.3	422
883	Ni Strongly Coupled with Mo ₂ C Encapsulated in Nitrogenâ€Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803185.	19.5	306
884	CoNi/Ba0.5Sr0.5Co0.8Fe0.2O3â^`î/N-doped-carbon as a highly-active bifunctional electrocatalyst for water splitting. Journal of Power Sources, 2019, 415, 91-98.	7.8	11
885	Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with Inâ€Situ Soft Xâ€Ray Spectroscopy. Angewandte Chemie, 2019, 131, 3464-3470.	2.0	28
886	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	10.3	128
887	α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: Fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochimica Acta, 2019, 301, 87-96.	5.2	76
888	NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. Journal of Energy Chemistry, 2019, 39, 39-53.	12.9	157
889	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	16.0	81
890	Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. Journal of the American Chemical Society, 2019, 141, 3232-3239.	13.7	220
891	Engineering NiO/NiFe LDH Intersection to Bypass Scaling Relationship for Oxygen Evolution Reaction via Dynamic Tridimensional Adsorption of Intermediates. Advanced Materials, 2019, 31, e1804769.	21.0	264
892	The OH ^{â^'} -driven synthesis of Pt–Ni nanocatalysts with atomic segregation for alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5475-5481.	10.3	46
893	One-step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc–air batteries. Catalysis Science and Technology, 2019, 9, 1245-1254.	4.1	52
894	Ultrafast fabrication of amorphous bimetallic hydroxide layer on nickel nanocones array for oxygen evolution electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 5899-5911.	7.1	24
895	Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chemical Communications, 2019, 55, 1044-1047.	4.1	102
896	Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and Environmental Science, 2019, 12, 41-58.	30.8	310

#	Article	IF	CITATIONS
897	High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy and Environmental Science, 2019, 12, 684-692.	30.8	169
898	Nanosized (Ni _{1â^'x} Zn _x)Fe ₂ O ₄ for water oxidation. Nanoscale Advances, 2019, 1, 686-695.	4.6	5
899	Combining Co ₃ S ₄ and Ni:Co ₃ S ₄ nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11, 2202-2210.	5.6	79
900	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	10.3	163
901	Active Pore-Edge Engineering of Single-Layer Niobium Diselenide Porous Nanosheets Electrode for Hydrogen Evolution. Nanomaterials, 2019, 9, 751.	4.1	11
902	Does the oxophilic effect serve the same role for hydrogen evolution/oxidation reaction in alkaline media?. Nano Energy, 2019, 62, 601-609.	16.0	68
903	Electrocatalytic Performance of Titania Nanotube Arrays Coated with MoS ₂ by ALD toward the Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 8816-8823.	3.5	16
904	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	25.5	74
905	Polarized Electronic Configuration in Transition Metal–Fluoride Oxide Hollow Nanoprism for Highly Efficient and Robust Water Splitting. ACS Applied Energy Materials, 2019, 2, 3999-4007.	5.1	24
906	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	2.0	22
907	Nitrogen Engineering on 3D Dandelionâ€Flower‣ike CoS ₂ for Highâ€Performance Overall Water Splitting. Small, 2019, 15, e1901993.	10.0	124
908	Fast sulfurization of nickel foam-supported nickel-cobalt carbonate hydroxide nanowire array at room temperature for hydrogen evolution electrocatalysis. Electrochimica Acta, 2019, 318, 252-261.	5.2	25
909	Hierarchical Iron-Doped Nickel Diselenide Hollow Spheres for Efficient Oxygen Evolution Electrocatalysis. ACS Applied Energy Materials, 2019, 2, 4737-4744.	5.1	33
910	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	10.3	128
911	Rational construction of cross-linked porous nickel arrays for efficient oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1063-1069.	14.0	9
912	Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 25227-25235.	8.0	29
913	Atomic-scale perturbation of oxygen octahedra via surface ion exchange in perovskite nickelates boosts water oxidation. Nature Communications, 2019, 10, 2713.	12.8	96
914	Nanoâ€Microâ€6tructured Nickelâ€Cobalt Hydroxide/Ni ₂ P ₂ O ₇ Assembly on Nickel Foam: An Outstanding Electrocatalyst for Alkaline Oxygen Evolution Reaction. ChemCatChem, 2019, 11, 4256-4261.	3.7	20

#	Article	IF	CITATIONS
915	In-Situ Transformed Ni, S-Codoped CoO from Amorphous Co–Ni Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, , .	6.7	8
916	Facile Synthesis of Monodispersed α-Ni(OH)2 Microspheres Assembled by Ultrathin Nanosheets and Its Performance for Oxygen Evolution Reduction. Frontiers in Materials, 2019, 6, .	2.4	30
917	High performance of Co–P/NF electrocatalyst for oxygen evolution reaction. Materials Chemistry and Physics, 2019, 235, 121772.	4.0	15
918	Reliable electrochemical phase diagrams of magnetic transition metals and related compounds from high-throughput ab initio calculations. Npj Materials Degradation, 2019, 3, .	5.8	30
919	Room temperature thiosulfate ion redox reaction-driven synthesis of a robust porous copper–cobalt–sulfur–oxygen nanowire coating on copper foam for highly-efficient and low-cost oxygen evolution reaction. Chemical Communications, 2019, 55, 8587-8590.	4.1	0
920	Carbon-supported Ni(OH)2 nanospheres decorated with Au nanoparticles: a promising catalyst for BH4â°' electrooxidation. Ionics, 2019, 25, 5153-5161.	2.4	5
921	Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy and Environmental Science, 2019, 12, 2620-2645.	30.8	1,052
922	Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting. Electrochimica Acta, 2019, 318, 892-900.	5.2	43
923	3D hierarchical V–Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15823-15830.	10.3	100
924	Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 219-239.	6.8	223
925	Well dispersive Ni nanoparticles embedded in core-shell supports as efficient catalysts for 4-nitrophenol reduction. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	5
926	Surface functionalization of Pt nanoparticles with metal chlorides for bifunctional CO oxidation. Polyhedron, 2019, 170, 239-244.	2.2	3
927	Structureâ€Sensitivity and Electrolyte Effects in CO ₂ Electroreduction: From Model Studies to Applications. ChemCatChem, 2019, 11, 3626-3645.	3.7	61
928	A nanostructured nickel/carbon matrix as an efficient oxygen evolution reaction electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 1873-1880.	6.0	4
929	Perovskite La _{0.5} Sr _{0.5} CoO _{3â^´Î} Grown on Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets as Bifunctional Efficient Hybrid Catalysts for Li–Oxygen Batteries. ACS Applied Energy Materials, 2019, 2, 4144-4150.	5.1	26
930	Mesoporous Co <i> _x </i> Sn _(1– <i>x</i>) O ₂ as an efficient oxygen evolution catalyst support for SPE water electrolyzer. Royal Society Open Science, 2019, 6, 182223.	2.4	3
931	The Doping Effect of 13-Atom Iron Clusters on Water Adsorption and O–H Bond Dissociation. Journal of Physical Chemistry A, 2019, 123, 4891-4899.	2.5	12
932	Mo-Doped NiCu as an efficient and stable electrocatalyst for the hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 9652-9657.	2.8	22

#	Article	IF	CITATIONS
933	Enhancing the Cooperative Catalytic Effect in Ni/Co Hydr(oxy)oxide Porous Electrodes for Overall Water Splitting and Glucose Sensing. ACS Sustainable Chemistry and Engineering, 2019, 7, 11303-11312.	6.7	23
934	Surface-modified Pt1Ni1–Ni(OH)2 nanoparticles with abundant Pt–Ni(OH)2 interfaces enhance electrocatalytic properties. Dalton Transactions, 2019, 48, 10313-10319.	3.3	14
935	High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. Journal of Power Sources, 2019, 427, 184-193.	7.8	47
936	One-step electrodeposition of cerium-doped nickel hydroxide nanosheets for effective oxygen generation. RSC Advances, 2019, 9, 17891-17896.	3.6	20
937	Performance evaluation of molybdenum dichalcogenide (MoX2; X= S, Se, Te) nanostructures for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 17878-17886.	7.1	61
938	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	13.8	155
939	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	6.8	150
940	Layerâ€byâ€Layer Coating of Cobaltâ€Based Ink for Largeâ€Scale Fabrication of OER Electrocatalyst. Energy Technology, 2019, 7, 1900603.	3.8	6
941	Multifunctional Dicyandiamide Blowing-Induced Formation of Electrocatalysts for the Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 10347-10353.	3.5	7
942	Hierarchically heterostructured metal hydr(oxy)oxides for efficient overall water splitting. Nanoscale, 2019, 11, 11736-11743.	5.6	14
942 943		5.6 20.2	14 132
	Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts		
943	Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478. Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through	20.2	132
943 944	 Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478. Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149. Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of 	20.2 6.2	132 13
943 944 945	Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478. Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149. Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640. Ordered Mesoporous Metastable αâ€MoC _{lâ° Ordered Mesoporous Metastable αâ€MoC_{lâ° Dissociation Capability for Boosting Alkaline Hydrogen Evolution Activity. Advanced Functional}}	20.2 6.2 10.3	132 13 24
943 944 945 946	Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478. Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149. Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640. Ordered Mesoporous Metastable αâ€MoC _{lâ° Ordered Mesoporous Metastable αâ€MoC_{lâ° Defectâ€Rich Heterogeneous MoS₂/NiS₂ Nanosheets Electrocatalysts for}}	20.2 6.2 10.3 14.9	132 13 24 92
943 944 945 946 947	Nanoscale, 2019, 11, 11736-11743. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 471-478. Tunable catalytic activity of cobalt-intercalated layered MnO2 for water oxidation through confinement and local ordering. Journal of Catalysis, 2019, 374, 143-149. Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640. Ordered Mesoporous Metastable î±â€MoC _{1â* Ordered Mesoporous Metastable î±â€MoC_{1â* Materials, 2019, 29, 1901217. Defectâ€Rich Heterogeneous MoS₂/NiS₂ Nanosheets Electrocatalysts for Efficient Overall Water Splitting. Advanced Science, 2019, 6, 1900246. Biomimetic design of ultrathin edge-riched FeOOH@Carbon nanotubes as high-efficiency}}	20.2 6.2 10.3 14.9 11.2	 132 13 24 92 468

#	Article	IF	CITATIONS
951	Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy and Environmental Science, 2019, 12, 2443-2454.	30.8	315
952	3D self-supported Ni nanoparticle@N-doped carbon nanotubes anchored on NiMoN pillars for the hydrogen evolution reaction with high activity and anti-oxidation ability. Journal of Materials Chemistry A, 2019, 7, 13671-13678.	10.3	71
953	CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Applied Surface Science, 2019, 487, 315-321.	6.1	64
954	CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency. Applied Catalysis B: Environmental, 2019, 254, 634-646.	20.2	109
955	NiO/NiS Heterostructures: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3587-3594.	5.1	71
956	Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 2019, , 241-303.	1.0	14
957	Influence of Electrochemical Aging on Bead-Blasted Nickel Electrodes for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3166-3178.	5.1	5
958	The versatility of copper tin sulfide. Journal of Materials Chemistry A, 2019, 7, 17118-17182.	10.3	42
959	Investigation of Fe-Based Integrated Electrodes for Water Oxidation in Neutral and Alkaline Solutions. Journal of Physical Chemistry C, 2019, 123, 12313-12320.	3.1	16
960	Exploring oxygen electrocatalytic activity and pseudocapacitive behavior of Co3O4 nanoplates in alkaline solutions. Electrochimica Acta, 2019, 310, 86-95.	5.2	21
961	Co _x Fe _y N nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12489-12497.	10.3	56
963	Metalâ€Organicâ€Frameworkâ€Derived Nitrogenâ€Doped Hybrid Nickelâ€Ironâ€Sulfide Architectures on Carbon Cloth as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2741-2747.	3.4	20
964	Metal–organic framework-derived hierarchical MoS ₂ /CoS ₂ nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 13339-13346.	10.3	133
965	<i>In situ</i> growth of layered double hydroxides on boehmite AlOOH for active and stable oxygen evolution in alkaline media. Nanoscale, 2019, 11, 10348-10357.	5.6	13
966	Atomically Dispersed Cobalt- and Nitrogen-Codoped Graphene toward Bifunctional Catalysis of Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9249-9256.	6.7	57
967	Efficient Oxygen Evolution Catalysis Triggered by Nickel Phosphide Nanoparticles Compositing with Reduced Graphene Oxide with Controlled Architecture. ACS Sustainable Chemistry and Engineering, 2019, 7, 9566-9573.	6.7	34
968	Double‣ite Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density >500 mA cm ^{â^'2} . Advanced Materials Interfaces, 2019, 6, 1900308.	3.7	24
969	Rational Design of Metallic NiTe _{<i>x</i>} (<i>x</i> = 1 or 2) as Bifunctional Electrocatalysts for Efficient Urea Conversion. ACS Applied Energy Materials, 2019, 2, 3363-3372.	5.1	40

ARTICLE IF CITATIONS Papillae-like morphology of Ni/Ni(OH)₂ hybrid crystals by stepwise electrodeposition for 970 2.6 24 synergistically improved HER. CrystEngComm, 2019, 21, 3431-3438. Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt 971 69 Spinel Öxides. Angewandte Chemie, 2019, 131, 6103-6108. Twoâ€Dimensional Amorphous Cr 2 O 3 Modified Metallic Electrodes for Hydrogen Evolution Reaction. 972 2.4 21 Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900025. NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. 243 ACS Energy Letters, 2019, 4, 952-959. Robust and superwetting island-shaped phytate bimetallic oxyhydroxide porous nanoclusters <i>via</i> a mild self-assemblyâ€"etchingâ€"catchingâ€"electrochemical oxidization strategy for an 974 4.1 4 enhanced oxygen evolution reaction. Chemical Communications, 2019, 55, 4503-4506. Synthesis of ultrasmall and monodisperse sulfur nanoparticle intercalated CoAl layered double hydroxide and its electro-catalytic water oxidation reaction at neutral pH. Nanoscale, 2019, 11, 5.6 7560-7566. Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through 976 10.3 80 combinatorial electrodeposition. Journal of Materials Chemistry A, 2019, 7, 9877-9889. Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media. Applied Catalysis B: Environmental, 2019, 251, 181-194. 20.2 260 Nanocrystalline Fe60Co20Si10B10 as a cathode catalyst for alkaline water electrolysis: Impact of 978 5.2 9 surface activation. Electrochimica Acta, 2019, 306, 688-697. Unprecedented High Oxygen Evolution Activity of Electrocatalysts Derived from Surface-Mounted 979 13.7 Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5926-5933. Migration of Cobalt Species within Mixed Platinum-Cobalt Oxide Bifunctional Electrocatalysts in 980 2.9 7 Alkaline Electrolytes. Journal of the Electrochemical Society, 2019, 166, F3093-F3097. Engineering MoS₂ Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping 11.2 148 and Nanocarbon Hybridization. Advanced Science, 2019, 6, 1900090. WxCoyS core-shell grown on hollow-porous carbon fiber (HCF) as synergetic electrocatalysts for 982 5.2 19 efficient water splitting. Electrochimica Acta, 2019, 306, 437-445. Carbon Nanotube-Supported MoSe₂ Holey Flake:Mo₂C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano, 2019, 13, 3162-3176. 14.6 Support and Interface Effects in Waterâ€splitting Electrocatalysts. Advanced Materials, 2019, 31, 984 21.0 531 e1808167. Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell. Nano Energy, 2019, 59, 683-688. Engineering 2D Metal–Organic Framework/MoS₂ Interface for Enhanced Alkaline 986 10.0 169 Hydrogen Evolution. Small, 2019, 15, e1805511. Mesoporous Ultrathin Cobalt Oxides Nanosheets Grown on Carbon Cloth as a High-Performance 5.1 Electrode for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1977-1987.

#	Article	IF	CITATIONS
988	High-performance hierarchical ultrathin sheet-based CoOOH hollow nanospheres with rich oxygen vacancies for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7777-7783.	10.3	77
989	Facile and Largeâ€Scale Fabrication of Subâ€3â€nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry - A European Journal, 2019, 25, 7191-7200.	3.3	18
990	Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. Journal of Alloys and Compounds, 2019, 791, 779-785.	5.5	32
991	Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10338-10345.	10.3	22
992	Self-reconstruction mechanism in NiSe2 nanoparticles/carbon fiber paper bifunctional electrocatalysts for water splitting. Electrochimica Acta, 2019, 305, 37-46.	5.2	46
993	One-step synthesis of wire-in-plate nanostructured materials made of CoFe-LDH nanoplates coupled with Co(OH) ₂ nanowires grown on a Ni foam for a high-efficiency oxygen evolution reaction. Chemical Communications, 2019, 55, 4218-4221.	4.1	75
994	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie - International Edition, 2019, 58, 6042-6047.	13.8	226
995	Flowerlike Ag-Supported Ce-Doped Mn ₃ O ₄ Nanosheet Heterostructure for a Highly Efficient Oxygen Reduction Reaction: Roles of Metal Oxides in Ag Surface States. ACS Catalysis, 2019, 9, 3498-3510.	11.2	74
996	Ultrathin mesoporous F-doped α-Ni(OH) ₂ nanosheets as an efficient electrode material for water splitting and supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9656-9664.	10.3	85
997	Nanoporous gold supported chromium-doped NiFe oxyhydroxides as high-performance catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9690-9697.	10.3	33
998	Electroactive Edgeâ€Siteâ€Enriched αâ€Co 0.9 Fe 0.1 (OH) x Nanoplates for Efficient Overall Water Splitting. ChemElectroChem, 2019, 6, 2415-2422.	3.4	4
999	Water oxidation at base metal molecular catalysts. Advances in Organometallic Chemistry, 2019, , 1-52.	1.0	10
1000	Probing the Hydrogen Evolution Reaction and Charge Transfer on Platinum Electrodes on Femtosecond Timescales. ChemElectroChem, 2019, 6, 2675-2682.	3.4	8
1001	Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 20987-20996.	7.1	46
1002	Tuning water oxidation reactivity by employing surfactant directed synthesis of porous Co ₃ O ₄ nanomaterials. New Journal of Chemistry, 2019, 43, 6540-6548.	2.8	12
1003	Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances. Advanced Materials, 2019, 31, e1808066.	21.0	418
1004	Corrosion Engineering To Synthesize Ultrasmall and Monodisperse Alloy Nanoparticles Stabilized in Ultrathin Cobalt (Oxy)hydroxide for Enhanced Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 14745-14752.	8.0	13
1005	Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A European Journal, 2019, 25, 9799-9815.	3.3	41

#	Article	IF	CITATIONS
1006	Insights into periodate oxidation of bisphenol A mediated by manganese. Chemical Engineering Journal, 2019, 369, 1034-1039.	12.7	80
1007	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	6.1	22
1008	Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 249, 98-105.	20.2	98
1009	Morphologyâ€Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	21.0	500
1010	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	21.0	470
1011	Tree-Like NiS2/MoS2-RGO Nanocomposites as pH Universal Electrocatalysts for Hydrogen Evolution Reaction. Catalysis Letters, 2019, 149, 1197-1210.	2.6	33
1012	Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7526-7532.	10.3	72
1013	Adsorption and On-Site Transformation of Transition Metal Cations on Ni-Doped AlOOH Nanoflowers for OER Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5953-5962.	6.7	14
1014	Marigold shaped N-rGO-MoS2-Ni(OH)2 nanocomposite as a bifunctional electrocatalyst for the promotion of overall water splitting in alkaline medium. Electrochimica Acta, 2019, 303, 257-267.	5.2	44
1015	Electrocatalytic property of water oxidation reaction depends on charging state of intermediates on Ag-M (M = Fe, co, Ni, Cu) in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 5863-5871.	7.1	5
1016	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	17.4	323
1017	Constituent-tunable ternary CoM _{2x} Se _{2(1â^²x)} (M = Te, S) sandwich-like graphitized carbon-based composites as highly efficient electrocatalysts for water splitting. Nanoscale, 2019, 11, 6108-6119.	5.6	10
1018	Amorphous Ni-Nb-Y Alloys as Hydrogen Evolution Electrocatalysts. Electrocatalysis, 2019, 10, 243-252.	3.0	18
1019	Prussian blue analog-derived 2D ultrathin CoFe ₂ O ₄ nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. Journal of Materials Chemistry A, 2019, 7, 7328-7332.	10.3	75
1020	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	14.6	62
1021	Synergistic Effects of Mo 2 Câ€NC@Co x Fe y Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction. Energy Technology, 2019, 7, 1801121.	3.8	7
1022	Synergistic effects of platinum–cerium carbonate hydroxides–reduced graphene oxide on enhanced durability for methanol electro-oxidation. Journal of Materials Chemistry A, 2019, 7, 6562-6571.	10.3	48
1023	Electronically Doubleâ€Layered Metal Boride Hollow Nanoprism as an Excellent and Robust Water Oxidation Electrocatalysts. Advanced Energy Materials, 2019, 9, 1803799.	19.5	74

#	Article	IF	CITATIONS
1024	Noble-Metal-Free MOF-74-Derived Nanocarbons: Insights on Metal Composition and Doping Effects on the Electrocatalytic Activity Toward Oxygen Reactions. ACS Applied Energy Materials, 2019, 2, 1854-1867.	5.1	60
1025	Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nature Catalysis, 2019, 2, 106-113.	34.4	65
1026	Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). Journal of Chemical Physics, 2019, 150, 041731.	3.0	14
1027	Recent advances in developing high-performance nanostructured electrocatalysts based on 3d transition metal elements. Nanoscale Horizons, 2019, 4, 789-808.	8.0	53
1028	Ag-Cd-B-P ternary alloy with efficient electrocatalytic activity towards hydrogen evolution reaction (HER). IOP Conference Series: Materials Science and Engineering, 2019, 577, 012122.	0.6	1
1029	Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1867-1873.	14.0	33
1030	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	12.8	201
1031	Environmentally friendly room temperature synthesis of hierarchical porous α-Ni(OH) ₂ nanosheets for supercapacitor and catalysis applications. Green Chemistry, 2019, 21, 5960-5968.	9.0	34
1032	Excavated RhNi alloy nanobranches enable superior CO-tolerance and CO ₂ selectivity at low potentials toward ethanol electro-oxidation. Journal of Materials Chemistry A, 2019, 7, 26266-26271.	10.3	22
1033	Hierarchical nanoporous intermetallic compounds with self-grown transition-metal hydroxides as bifunctional catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25925-25931.	10.3	15
1034	Carbon-Based Nanomaterials as Sustainable Noble-Metal-Free Electrocatalysts. Frontiers in Chemistry, 2019, 7, 759.	3.6	29
1035	Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. CheM, 2019, 5, 3243-3259.	11.7	98
1036	Understanding Electrochemical Stabilities of Ni-Based Nanofilms from a Comparative Theory–Experiment Approach. Journal of Physical Chemistry C, 2019, 123, 28925-28940.	3.1	11
1037	Magnetic and Electrocatalytic Properties of Nanoscale Cobalt Boride, Co ₃ 8. Inorganic Chemistry, 2019, 58, 16609-16617.	4.0	19
1038	Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano, 2019, 13, 14368-14376.	14.6	34
1039	Niobium disulphide (NbS ₂)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25593-25608.	10.3	50
1040	Multiple modulations of pyrite nickel sulfides <i>via</i> metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 25628-25640.	10.3	69
1041	Efficient Electrolytic Water Splitting with FeCoPt Trimetallic Cubic Nanocatalysts. IOP Conference Series: Materials Science and Engineering, 2019, 592, 012043.	0.6	4

#	Article	IF	CITATIONS
1042	Reconstructing bimetallic carbide Mo ₆ Ni ₆ C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Materials Horizons, 2019, 6, 115-121.	12.2	62
1043	Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes. Journal of Colloid and Interface Science, 2019, 534, 55-63.	9.4	34
1044	Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with Inâ€Situ Soft Xâ€Ray Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 3426-3432.	13.8	52
1045	Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 122-129.	20.2	132
1046	One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution. Catalysis Today, 2019, 335, 326-332.	4.4	24
1047	Morphology engineering of CoSe2 as efficient electrocatalyst for water splitting. Journal of Colloid and Interface Science, 2019, 539, 646-653.	9.4	52
1048	Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. Journal of Power Sources, 2019, 413, 367-375.	7.8	118
1049	Virus-templated Pt–Ni(OH)2 nanonetworks for enhanced electrocatalytic reduction of water. Nano Energy, 2019, 58, 167-174.	16.0	46
1050	Dual Tuning of Ultrathin α-Co(OH) ₂ Nanosheets by Solvent Engineering and Coordination Competition for Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 3527-3535.	6.7	56
1051	Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nature Catalysis, 2019, 2, 134-141.	34.4	629
1052	MicroRNA detection based on duplex-specific nuclease-assisted target recycling and gold nanoparticle/graphene oxide nanocomposite-mediated electrocatalytic amplification. Biosensors and Bioelectronics, 2019, 127, 188-193.	10.1	28
1053	Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 2019, 29, 1806419.	14.9	223
1054	Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation. Electrochimica Acta, 2019, 296, 418-426.	5.2	25
1055	Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting. Journal of Colloid and Interface Science, 2019, 537, 280-294.	9.4	28
1056	Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon, 2019, 143, 457-466.	10.3	105
1057	Boosting oxygen evolution by surface nitrogen doping and oxygen vacancies in hierarchical NiCo/NiCoP hybrid nanocomposite. Electrochimica Acta, 2019, 296, 259-267.	5.2	48
1058	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catalysis, 2019, 9, 7-15.	11.2	189
1059	Electrochemical Scanning Probe Microscopies in Electrocatalysis. Small Methods, 2019, 3, 1800387.	8.6	50

#	Article	IF	CITATIONS
1060	Effect of phosphate variation on morphology and electrocatalytic activity (OER) of hydrous nickel pyrophosphate thin films. Journal of Alloys and Compounds, 2019, 779, 49-58.	5.5	29
1061	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	11.2	103
1062	Co–Fe Bimetal Phosphate Composite Loaded on Reduced Graphene Oxide for Oxygen Evolution. Nano, 2019, 14, 1950003.	1.0	8
1063	The synergistic effect of light irradiation and interface engineering of the Co(OH)2/MoS2 heterostructure to realize the efficient alkaline hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 618-625.	5.2	37
1064	Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nature Communications, 2019, 10, 269.	12.8	431
1065	Cobalt oxyhydroxide and carbon dots modified by platinum as superior electrocatalyst for methanol oxidation. Materials Chemistry and Physics, 2019, 225, 64-71.	4.0	20
1066	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	16.0	298
1067	Facile fabrication of Pt–Ni alloy nanoparticles supported on reduced graphene oxide as excellent electrocatalysts for hydrogen evolution reaction in alkaline environment. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	35
1068	Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2019, 145, 201-208.	10.3	70
1069	Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCoâ€nitrides Nanoparticle/NiCo ₂ O ₄ Nanoflake/graphite Fibers. Advanced Science, 2019, 6, 1801829.	11.2	122
1070	Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity. Electrochemistry Communications, 2019, 100, 30-33.	4.7	72
1071	Electrochemical Energy Conversion on Intermetallic Compounds: A Review. ACS Catalysis, 2019, 9, 2018-2062.	11.2	253
1072	Self-supported Pt nanoflakes-doped amorphous Ni(OH)2 on Ni foam composite electrode for efficient and stable methanol oxidation. Journal of Colloid and Interface Science, 2019, 536, 189-195.	9.4	45
1073	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 461-466.	13.8	95
1074	Modes of Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts. ChemSusChem, 2019, 12, 2015-2021.	6.8	55
1075	Rapid low-temperature synthesis of hollow CuS0.55 nanoparticles for efficient electrocatalytic water oxidation. Chemical Engineering Science, 2019, 195, 665-670.	3.8	28
1076	Nanostructured mixed Ni/Pt hydroxides electrodes for BIA-amperometry determination of hydralazine. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 475-480.	5.3	13
1077	3D hollow nanoflowers assembled by ultrathin molybdenum-nickel phosphide nanosheets as robust electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 536, 71-79.	9.4	22

#	Article	IF	CITATIONS
1078	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4, 107-114.	39.5	470
1079	Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. Journal of the American Chemical Society, 2019, 141, 232-239.	13.7	56
1080	Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 613-623.	8.0	94
1081	Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 2019, 10, 2019-2024.	7.4	163
1082	When MoS2 meets FeOOH: A "one-stone-two-birds'' heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Applied Catalysis B: Environmental, 2019, 244, 1004-1012.	20.2	144
1083	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0003.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{<mml:mi>01</mml:mi><mml:mover accent="true"><mml:mi mathvariant="bold">1<mml:mo>Â⁻</mml:mo></mml:mi </mml:mover><mml:mover< td=""><td>16.0</td><td>68</td></mml:mover<></mml:mo </mml:mrow>	16.0	68
1084	Catalytic Oxidation of Chlorinated Organics over Lanthanide Perovskites: Effects of Phosphoric Acid Etching and Water Vapor on Chlorine Desorption Behavior. Environmental Science & amp; Technology, 2019, 53, 884-893.	10.0	154
1085	MOFs for Electrocatalysis: From Serendipity to Design Strategies. Small Methods, 2019, 3, 1800415.	8.6	100
1086	Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Applied Catalysis B: Environmental, 2019, 242, 60-66.	20.2	332
1087	Structural Design and Electronic Modulation of Transitionâ€Metalâ€Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Advanced Materials, 2019, 31, e1802880.	21.0	422
1088	Layered by layered Ni-Mn-LDH/g-C3N4 nanohybrid for multi-purpose photo/electrocatalysis: Morphology controlled strategy for effective charge carriers separation. Applied Catalysis B: Environmental, 2019, 242, 485-498.	20.2	164
1089	CoNiSe2 heteronanorods decorated with layered-double-hydroxides for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 242, 132-139.	20.2	198
1090	Three dimensional flower like cobalt sulfide (CoS)/functionalized MWCNT composite catalyst for efficient oxygen evolution reactions. Applied Surface Science, 2019, 466, 830-836.	6.1	62
1091	Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 2618-2625.	8.0	73
1092	Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 5590-5594.	8.0	58
1093	Recent advances in heterogeneous Mn-based electrocatalysts toward biological photosynthetic Mn4Ca cluster. Catalysis Today, 2020, 353, 232-241.	4.4	9
1094	Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. National Science Review, 2020, 7, 27-36.	9.5	192
1095	Co(Ni)–Mo–Sx Chalcogels Films as pH-Universal Electrocatalysts for the H2 Evolution Reaction. Catalysis Letters, 2020, 150, 623-630.	2.6	4

#	Article	IF	CITATIONS
1096	One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles: A high-efficiency electrocatalyst for hydrogen generation. Journal of Colloid and Interface Science, 2020, 558, 1-8.	9.4	31
1097	N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity. Applied Surface Science, 2020, 503, 144146.	6.1	41
1098	Hierarchical three-dimensional framework interface assembled from oxygen-doped cobalt phosphide layer-shelled metal nanowires for efficient electrocatalytic water splitting. Applied Catalysis B: Environmental, 2020, 261, 118268.	20.2	87
1099	Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting. Journal of Power Sources, 2020, 448, 227434.	7.8	41
1100	Stannites – A New Promising Class of Durable Electrocatalysts for Efficient Water Oxidation. ChemCatChem, 2020, 12, 1161-1168.	3.7	18
1101	Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. Journal of Alloys and Compounds, 2020, 819, 152943.	5.5	82
1102	OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis, 2020, 10, 20-35.	11.2	102
1103	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	5.5	9
1104	High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Applied Catalysis B: Environmental, 2020, 266, 118575.	20.2	40
1105	Understanding the Enhancement of the Catalytic Properties of Goethite by Transition Metal Doping: Critical Role of O* Formation Energy Relative to OH* and OOH*. ACS Applied Energy Materials, 2020, 3, 1634-1643.	5.1	17
1106	Engineered porous Co–Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment. Journal of Alloys and Compounds, 2020, 823, 153784.	5.5	34
1107	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	10.0	328
1108	Single-Atom Ir-Anchored 3D Amorphous NiFe Nanowire@Nanosheets for Boosted Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 3539-3546.	8.0	39
1109	Strain effects on Co,N co-decorated graphyne catalysts for overall water splitting electrocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 2457-2465.	2.8	32
1110	Phase segregated Cu _{2â^²x} Se/Ni ₃ Se ₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chemical Science, 2020, 11, 1523-1530.	7.4	26
1111	Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1â^'xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Research, 2020, 13, 246-254.	10.4	28
1112	Engineering heterometallic bonding in bimetallic electrocatalysts: towards optimized hydrogen oxidation and evolution reactions. Catalysis Science and Technology, 2020, 10, 893-903.	4.1	15
1113	Karst landform-featured monolithic electrode for water electrolysis in neutral media. Energy and Environmental Science, 2020, 13, 174-182.	30.8	109

#	Article	IF	CITATIONS
1114	Ultrafine Pt cluster and RuO ₂ heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horizons, 2020, 5, 316-324.	8.0	34
1115	Vertically stacked bilayer heterostructure CoFe ₂ O ₄ @Ni ₃ S ₂ on a 3D nickel foam as a high-performance electrocatalyst for the oxygen evolution reaction. New Journal of Chemistry, 2020, 44. 1455-1462.	2.8	23
1116	Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Research, 2020, 13, 231-237.	10.4	15
1117	Ternary boron-, phosphorus- and oxygen-doped amorphous nickel nanoalloys for enhanced activity towards the oxygen evolution reaction. Electrochemistry Communications, 2020, 111, 106649.	4.7	9
1118	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	5.5	191
1119	Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sensors and Actuators B: Chemical, 2020, 308, 127520.	7.8	33
1120	Hollow Cobalt Sulfide Nanoparticles: A Robust and Low-Cost pH-Universal Oxygen Evolution Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 977-986.	5.1	36
1121	Co–Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4366-4372.	8.0	34
1122	Electrodeposition of NiS/Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 2546-2556.	7.1	42
1123	Interfacial Hydrogen-Bonding Dynamics in Surface-Facilitated Dehydrogenation of Water on TiO ₂ (110). Journal of the American Chemical Society, 2020, 142, 826-834.	13.7	31
1124	RuNi Nanoparticles Embedded in Nâ€Đoped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Science, 2020, 7, 1901833.	11.2	152
1125	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 2313-2317.	13.8	214
1126	Interpretation of lead removal by two biomasses at different size via monitoring the solution environment. Journal of Cleaner Production, 2020, 244, 118756.	9.3	4
1127	CoFe-based electrocatalysts for oxygen evolution and reduction reaction. , 2020, , 265-293.		0
1128	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8
1129	Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for inÂvivo analysis of ascorbic acid. Analytica Chimica Acta, 2020, 1100, 191-199.	5.4	18
1130	Modulating ternary Mo–Ni–P by electronic reconfiguration and morphology engineering for boosting all-pH electrocatalytic overall water splitting. Electrochimica Acta, 2020, 330, 135294.	5.2	30
1131	Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy, 2020, 68, 104301.	16.0	138

#	Article	IF	CITATIONS
1132	Vertical Nickel–Iron layered double hydroxide nanosheets grown on hills-like nickel framework for efficient water oxidation and splitting. International Journal of Hydrogen Energy, 2020, 45, 3986-3994.	7.1	13
1133	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	10.3	48
1134	The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts. Molecules, 2020, 25, 157.	3.8	47
1135	Eutectoid-structured WC/W2C heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials. Nano Energy, 2020, 68, 104335.	16.0	98
1136	Preparation of palladium/nickel hydroxides nanoflakes on carbon cloth support as robust anode catalyst for electrocatalytic alcohol oxidation. Materials Chemistry and Physics, 2020, 242, 122552.	4.0	6
1137	Metal hydroxide hybridized tungsten carbide nanorod arrays for enhancing hydrogen evolution in alkaline media. Applied Surface Science, 2020, 509, 144912.	6.1	10
1138	Lattice distortion in hybrid NiTe2/Ni(OH)2 nanosheets as efficient synergistic electrocatalyst for water and urea oxidation. Journal of Power Sources, 2020, 449, 227585.	7.8	40
1139	Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via polymer-mediated self-assembly of CoOx nanoparticles. Solar Energy Materials and Solar Cells, 2020, 207, 110349.	6.2	26
1140	Atomically Embedded Ag via Electrodiffusion Boosts Oxygen Evolution of CoOOH Nanosheet Arrays. ACS Catalysis, 2020, 10, 562-569.	11.2	93
1141	Kineticâ€Oriented Construction of MoS ₂ Synergistic Interface to Boost pHâ€Universal Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 1908520.	14.9	59
1142	V3+ Incorporated β-Co(OH)2: A Robust and Efficient Electrocatalyst for Water Oxidation. Inorganic Chemistry, 2020, 59, 730-740.	4.0	20
1143	Sulfate-Functionalized Nickel Hydroxide Nanobelts for Sustained Oxygen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 443-450.	8.0	31
1144	One-pot synthesis of NiCoP/CNTs composites for lithium ion batteries and hydrogen evolution reaction. Ionics, 2020, 26, 1771-1778.	2.4	14
1145	Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis. Journal of Colloid and Interface Science, 2020, 564, 418-427.	9.4	43
1146	Si-Based Water Oxidation Photoanodes Conjugated with Earth-Abundant Transition Metal-Based Catalysts. , 2020, 2, 107-126.		35
1147	Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Applied Catalysis B: Environmental, 2020, 264, 118502.	20.2	47
1148	CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy, 2020, 68, 104332.	16.0	202
1149	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2020, 132, 2333-2337.	2.0	24

#	Article	IF	CITATIONS
1150	Ï€-Ï€ interaction boosts catalytic oxygen evolution by self-supporting metal-organic frameworks. Journal of Power Sources, 2020, 448, 227406.	7.8	25
1151	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Singleâ€Site Catalysts Made of 3d Transition Metals. Advanced Materials, 2020, 32, e1905548.	21.0	23
1152	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	11.2	133
1153	Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. Journal of Colloid and Interface Science, 2020, 562, 400-408.	9.4	29
1154	Preparation of Co-Fe oxides immobilized on carbon paper using water-dispersible Prussian-blue analog nanoparticles and their oxygen evolution reaction (OER) catalytic activities. Inorganica Chimica Acta, 2020, 502, 119345.	2.4	15
1155	Electrochemical Synthesis of a Multipurpose Ptâ°'Ni Catalyst for Renewable Energyâ€Related Electrocatalytic Reactions. ChemElectroChem, 2020, 7, 4369-4377.	3.4	9
1156	Hybrid Co@Ni12P5/PPy microspheres with dual synergies for high performance oxygen evolution. Journal of Catalysis, 2020, 391, 357-365.	6.2	19
1157	The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nature Energy, 2020, 5, 891-899.	39.5	400
1158	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	34.4	390
1159	Ni modified ultrafine MoxC (xÂ=Â1, 2) wrapped by nitrogen-doped carbon for efficient hydrogen evolution reaction in acid and alkaline electrolytes. International Journal of Hydrogen Energy, 2020, 45, 28285-28293.	7.1	11
1160	Bifunctional Behavior of Pd/Ni Nanocatalysts on MOFâ€Đerived Carbons for Alkaline Waterâ€splitting. Electroanalysis, 2020, 32, 3060-3074.	2.9	23
1161	Accelerating hydrogen evolution in Ru-doped FeCoP nanoarrays with lattice distortion toward highly efficient overall water splitting. Catalysis Science and Technology, 2020, 10, 8314-8324.	4.1	24
1162	PtMn/PtCo alloy nanofascicles: robust electrocatalysts for electrocatalytic hydrogen evolution reaction under both acidic and alkaline conditions. Inorganic Chemistry Frontiers, 2020, 7, 4377-4386.	6.0	25
1163	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	8.2	22
1164	FeMnO3 nanoparticles promoted electrocatalysts Ni–Fe–P–FeMnO3/NF with superior hydrogen evolution performances. Renewable Energy, 2020, 161, 956-962.	8.9	19
1165	2D Metalâ€Organic Framework Derived Co 3 O 4 for the Oxygen Evolution Reaction and Highâ€Performance Lithiumâ€Ion Batteries. ChemNanoMat, 2020, 6, 1770-1775.	2.8	5
1166	Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization. Electrochimica Acta, 2020, 364, 137170.	5.2	16
1167	Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Materials Today Energy, 2020, 18, 100524.	4.7	28

#	Article	IF	Citations
	Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays		
1168	for hydrogen evolution in neutral media. Nano Energy, 2020, 78, 105375.	16.0	148
1169	Ultrathin Nanosheet-Assembled Co–Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 46578-46587.	8.0	12
1170	Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.	30.8	268
1171	Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction. Nanoscale, 2020, 12, 21479-21496.	5.6	39
1172	An inclusive review on the synthesis of molybdenum carbide and its hybrids as catalyst for electrochemical water splitting. Molecular Catalysis, 2020, 494, 111116.	2.0	24
1173	Tailoring the d-Band Centers Endows (Ni _{<i>x</i>} Fe _{1–<i>x</i>}) ₂ P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catalysis, 2020, 10, 9086-9097.	11.2	417
1174	Simultaneous interfacial chemistry and inner Helmholtz plane regulation for superior alkaline hydrogen evolution. Energy and Environmental Science, 2020, 13, 3007-3013.	30.8	83
1175	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	6.8	28
1176	Mechanically alloyed NiTiO ₃ /transition metal heterostructures: introducing oxygen vacancies for exceptionally enhanced hydrogen evolution reaction activity. Journal of Materials Chemistry A, 2020, 8, 14908-14914.	10.3	22
1177	Recent advances in metal–organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions. Dalton Transactions, 2020, 49, 12483-12502.	3.3	50
1178	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	21.0	304
1179	TaS ₂ , TaSe ₂ , and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 3313-3325.	11.2	60
1180	Nanosheet-Derived Ultrafine CoRuOx@NC Nanoparticles with a Core@Shell Structure as Bifunctional Electrocatalysts for Electrochemical Water Splitting with High Current Density or Low Power Input. ACS Sustainable Chemistry and Engineering, 2020, 8, 12089-12099.	6.7	20
1181	Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel, 2020, 280, 118666.	6.4	49
1182	Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 529, 147173.	6.1	25
1183	Single-Crystalline Mo-Nanowire-Mediated Directional Growth of High-Index-Faceted MoNi Electrocatalyst for Ultralong-Term Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 36259-36267.	8.0	18
1184	FeS ₂ crystal lattice promotes the nanostructure and enhances the electrocatalytic performance of WS ₂ nanosheets for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 9804-9810.	3.3	17
1185	Perovskiteâ€Type Solid Solution Nanoâ€Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution. Advanced Materials, 2020, 32, e2001430.	21.0	107

#	Article	IF	CITATIONS
1186	High-efficiency Ni–P catalysts in amorphous and crystalline states for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 4733-4742.	4.9	15
1187	Interfacing metals and compounds for enhanced hydrogen evolution from water splitting. MRS Bulletin, 2020, 45, 548-554.	3.5	1
1188	Hydrogen Oxidation Reaction on Pdâ€Ni(OH) 2 Composite Electrocatalysts in an Alkaline Electrolyte. ChemistrySelect, 2020, 5, 7803-7807.	1.5	6
1189	Ferrites for electrocatalytic water splitting applications. , 2020, , 123-145.		2
1190	V(III)-Doped Nickel Oxide-Based Nanocatalysts for Electrochemical Water Splitting: Influence of Phase, Composition, and Doping on the Electrocatalytic Activity. Chemistry of Materials, 2020, 32, 10394-10406.	6.7	14
1191	Electro- and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 8265-8282.	4.1	13
1192	Hexadecyltrimethylammonium hydroxide promotes electrocatalytic activity for the oxygen evolution reaction. Communications Chemistry, 2020, 3, .	4.5	2
1193	Influence and Electrochemical Stability of Oxygen Groups and Edge Sites in Vanadium Redox Reactions. ChemElectroChem, 2020, 7, 4745-4754.	3.4	10
1194	Highly active hollow mesoporous NiFeCr hydroxide as an electrode material for the oxygen evolution reaction and a redox capacitor. Chemical Communications, 2020, 56, 15549-15552.	4.1	16
1195	Manganese-based oxygen evolution catalysts boosting stable solar-driven water splitting: MnSe as an intermetallic phase. Journal of Materials Chemistry A, 2020, 8, 25298-25305.	10.3	28
1196	"Beyond Adsorption―Descriptors in Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 14747-14762.	11.2	95
1197	Ni ₁₇ W ₃ –W Interconnected Hybrid Prepared by Atmosphereâ€and Thermalâ€Induced Phase Separation for Efficient Electrocatalysis of Alkaline Hydrogen Evolution. Small, 2020, 16, e2005184.	10.0	31
1198	Facile electrochemical synthesis of Ni(OH)2/MoS catalyst on oxidized carbon fiber for efficient alkaline hydrogen evolution reaction. Chemical Engineering and Processing: Process Intensification, 2020, 155, 108090.	3.6	5
1199	Influence of the flexible tetrapyridines on electrocatalytic water oxidation by cobalt complexes. Polyhedron, 2020, 189, 114731.	2.2	6
1200	A Facile Route to Efficient Water Oxidation Electrodes via Electrochemical Activation of Iron in Nickel Sulfate Solution. ACS Sustainable Chemistry and Engineering, 2020, 8, 15550-15559.	6.7	5
1201	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.	8.0	35
1202	Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review. Chemical Engineering Journal Advances, 2020, 1, 100008.	5.2	33
1203	A novel nickel electrode with gradient porosity distribution for alkaline water splitting. International Journal of Hydrogen Energy, 2020, 45, 24248-24252.	7.1	1

#	Article	IF	CITATIONS
1204	Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline. Nano Energy, 2020, 78, 105224.	16.0	27
1205	Nanoporous V-Doped Ni ₅ P ₄ Microsphere: A Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH. ACS Applied Materials & Interfaces, 2020, 12, 37092-37099.	8.0	40
1206	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	30.8	225
1207	Ni11â—j (HPO3)8(OH)6 multifunctional materials: Electrodes for oxygen evolution reaction and potential visible-light active photocatalysts. Journal of Alloys and Compounds, 2020, 848, 156595.	5.5	10
1208	W-Doped Ni ₃ S ₂ Nanoparticles Modified with NiFeLa Hydroxide for Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 8372-8381.	5.0	21
1209	Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy and Environmental Science, 2020, 13, 3064-3074.	30.8	80
1210	Well-dispersed Pt nanodots interfaced with Ni(OH)2 on anodized nickel foam for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 27067-27077.	7.1	20
1211	Development of Ni–Fe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 24232-24247.	7.1	55
1212	Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. International Journal of Hydrogen Energy, 2021, 46, 23334-23357.	7.1	48
1213	Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catalysis Science and Technology, 2020, 10, 6420-6448.	4.1	33
1214	Organic Photochemistry-Assisted Nanoparticle Segregation on Perovskites. Cell Reports Physical Science, 2020, 1, 100243.	5.6	11
1215	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	47.7	563
1216	Cubic Nanostructures of Nickel–Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media. Inorganic Chemistry, 2020, 59, 16690-16702.	4.0	24
1217	High-Performance and Stable Hydrogen Evolution Reaction Achieved by Pt Trimer Decoration on Ultralow-Metal Loading Bimetallic PtPd Nanocatalysts. ACS Applied Energy Materials, 2020, 3, 11142-11152.	5.1	18
1218	Hydrogen Evolution Reaction Electrocatalysts Based on Electrolytic and Chemical-Catalytic Alloys of Rhenium and Nickel. Russian Journal of Electrochemistry, 2020, 56, 821-831.	0.9	5
1219	Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction. Renewable Energy, 2020, 162, 2190-2196.	8.9	20
1220	<i>Operando</i> Observations of a Manganese Oxide Electrocatalyst for Water Oxidation Using Hard/Tender/Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 23611-23618.	3.1	22
1221	Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. Journal of Semiconductors, 2020, 41, 091705.	3.7	13

#	Article	IF	CITATIONS
1222	Benchmark Electrocatalysis Activity of 3D-Ni-Co-TiO2 Nanocomposites for Hydrogen Fuel Production Via Alkaline Electrolytes. Journal of Materials Engineering and Performance, 2020, 29, 6940-6951.	2.5	8
1223	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	38.1	231
1224	Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorganic Chemistry Frontiers, 2020, 7, 3805-3836.	6.0	85
1225	Quasi-1D Mn ₂ O ₃ Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials, 2020, 3, 9889-9898.	5.0	12
1226	Additive manufacturing assisted van der Waals integration of 3D/3D hierarchically functional nanostructures. Communications Materials, 2020, 1, .	6.9	5
1227	Atomic-Level Functionalized Graphdiyne for Electrocatalysis Applications. Catalysts, 2020, 10, 929.	3.5	11
1228	Surface decoration accelerates the hydrogen evolution kinetics of a perovskite oxide in alkaline solution. Energy and Environmental Science, 2020, 13, 4249-4257.	30.8	33
1229	Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach. Korean Journal of Chemical Engineering, 2020, 37, 1411-1418.	2.7	5
1230	Construction of hierarchical NiFe-LDH/FeCoS2/CFC composites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution reaction. Journal of Materials Science, 2020, 55, 16625-16640.	3.7	32
1231	Insights into the Mo-Doping Effect on the Electrocatalytic Performance of Hierarchical Co _{<i>x</i>} Mo _{<i>y</i>} S Nanosheet Arrays for Hydrogen Generation and Urea Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 40194-40203.	8.0	85
1232	Boosting Electrocatalytic Hydrogen Evolution of Nickel foam Supported Nickel Hydroxide by Ruthenium Doping. ChemistrySelect, 2020, 5, 9626-9634.	1.5	4
1233	FeNi-Layered Double-Hydroxide Nanoflakes with Potential for Intrinsically High Water-Oxidation Catalytic Activity. ACS Applied Energy Materials, 2020, 3, 9040-9050.	5.1	16
1234	Direct Observation of Ni–Mo Bimetallic Catalyst Formation via Thermal Reduction of Nickel Molybdate Nanorods. ACS Catalysis, 2020, 10, 10390-10398.	11.2	23
1235	<i>Operando</i> characterization techniques for electrocatalysis. Energy and Environmental Science, 2020, 13, 3748-3779.	30.8	159
1236	Nanoporous electrodes of phase-dealloyed Fe83.3-xCoxSi4B8P4Cu0.7 (xÂ=Â4, 10 and 20Âat.%) precursors with superior Redox performances and high stabilities. Materials Characterization, 2020, 169, 110658.	4.4	5
1237	Superior ethanol electrooxidation activity of Pd supported on Ni(OH)2/C. The effect of Ni(OH)2 nanosheets content. Journal of Electroanalytical Chemistry, 2020, 878, 114683.	3.8	16
1238	Synthesis and Photoelectrochemical Activity of αâ€Fe ₂ O ₃ â^2CdFe ₂ O ₄ Hybrid Structure for the Water Oxidation Reaction. Israel Journal of Chemistry, 2023, 63, .	2.3	0
1239	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	12.8	134

#	Article	IF	Citations
1240	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	14.6	37
1241	Three-Dimensional Ni Foam-Supported CoO Nanoparticles/N-Doped Carbon Multilayer Nanocomposite Electrode for Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 11416-11425.	5.0	6
1242	Amorphous Multimetal Alloy Oxygen Evolving Catalysts. , 2020, 2, 624-632.		45
1243	NiO–Ni/CNT as an Efficient Hydrogen Electrode Catalyst for a Unitized Regenerative Alkaline Microfluidic Cell. ACS Applied Energy Materials, 2020, 3, 4746-4755.	5.1	18
1244	Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1908521.	21.0	115
1245	Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125160.	12.7	174
1246	Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy, 2020, 75, 104945.	16.0	47
1247	In-plane intergrowth CoS ₂ /MoS ₂ nanosheets: binary metal–organic framework evolution and efficient alkaline HER electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 11435-11441.	10.3	74
1248	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	5.1	100
1249	Optimizing Platinum Location on Nickel Hydroxide Nanosheets to Accelerate the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 24683-24692.	8.0	21
1250	Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters, 2020, 20, 4278-4285.	9.1	201
1251	Identifying the Transfer Kinetics of Adsorbed Hydroxyl as a Descriptor of Alkaline Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15232-15237.	13.8	112
1252	Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10096-10129.	10.3	67
1253	Advances and Challenges of Fe-MOFs Based Materials as Electrocatalysts for Water Splitting. Applied Materials Today, 2020, 20, 100692.	4.3	35
1254	Caffeinated Interfaces Enhance Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 6798-6802.	11.2	20
1255	Ni-doped hierarchical porous carbon with a p/n-junction promotes electrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 17493-17503.	7.1	10
1256	Identifying the Transfer Kinetics of Adsorbed Hydroxyl as a Descriptor of Alkaline Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 15344-15349.	2.0	24
1257	Hierarchical Cu(OH) ₂ @Co(OH) ₂ Nanotrees for Water Oxidation Electrolysis. ChemCatChem, 2020, 12, 4038-4043.	3.7	26

#	Article	IF	CITATIONS
1258	Template-Assisted Fabrication of ZnO/Co ₃ O ₄ One-Dimensional Metal–Organic Framework Array Decorated with Amorphous Iron Oxide/Hydroxide Nanoparticles as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. Energy & Fuels, 2020, 34, 7716-7725.	5.1	27
1259	Thermodynamic driven phase engineering in VMo2S4 nanosheets for superior water splitting. Applied Surface Science, 2020, 527, 146755.	6.1	0
1260	Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125149.	12.7	53
1261	Moderate oxophilic CoFe in carbon nanofiber for the oxygen evolution reaction in anion exchange membrane water electrolysis. Electrochimica Acta, 2020, 353, 136521.	5.2	37
1262	Accelerating hydrogen evolution at neutral pH by destabilization of water with a conducting oxophilic metal oxide. Journal of Materials Chemistry A, 2020, 8, 12169-12176.	10.3	21
1263	Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts. Journal of Materials Chemistry A, 2020, 8, 13340-13350.	10.3	6
1264	Enabling Ironâ€Based Highly Effective Electrochemical Waterâ€Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst. Advanced Energy Materials, 2020, 10, 2001377.	19.5	96
1265	Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting. Chemical Engineering Journal, 2020, 398, 125669.	12.7	38
1266	Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution. Journal of Materials Chemistry A, 2020, 8, 12603-12612.	10.3	23
1267	Metalâ€Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2020, 2020, 2679-2690.	2.0	27
1268	Tailoring eletronic structure of Pd nanoparticles via MnO2 as electron transfer intermediate for enhanced hydrogen evolution reaction. Chemical Physics Letters, 2020, 748, 137405.	2.6	5
1269	Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9206-9216.	6.7	15
1270	MOF-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chemical Communications, 2020, 56, 7702-7705.	4.1	36
1271	Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Research, 2020, 13, 2407-2412.	10.4	41
1272	2D MoSe2/CoP intercalated nanosheets for efficient electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 19246-19256.	7.1	32
1273	IrMo Nanocatalysts for Efficient Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 7322-7327.	11.2	87
1274	Importance of Cobalt-Doping for the Preparation of Hollow CuBr/Co@CuO Nanocorals on Copper Foils with Enhanced Electrocatalytic Activity and Stability for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9794-9802.	6.7	13
1275	Promoting Alkaline Hydrogen Evolution Catalysis on P-Decorated, Ni-Segregated Pt–Ni–P Nanowires via a Synergetic Cascade Route. Chemistry of Materials, 2020, 32, 3144-3149.	6.7	38

#	Article	IF	CITATIONS
1276	Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nature Energy, 2020, 5, 222-230.	39.5	540
1277	Heterostructured CoP/MoO ₂ on Mo foil as high-efficiency electrocatalysts for the hydrogen evolution reaction in both acidic and alkaline media. Journal of Materials Chemistry A, 2020, 8, 6732-6739.	10.3	58
1278	First-Principles Mechanistic Insights into the Hydrogen Evolution Reaction on Ni2P Electrocatalyst in Alkaline Medium. Catalysts, 2020, 10, 307.	3.5	8
1279	Multi-scale X-ray tomography and machine learning algorithms to study MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam. BMC Materials, 2020, 2, .	6.8	14
1280	Hydrogen Evolution Reaction-From Single Crystal to Single Atom Catalysts. Catalysts, 2020, 10, 290.	3.5	46
1281	Electrochemical modification and tuning Ni/Ni(OH)2–Ag heterogeneous interface for efficient electrocatalytic hydrogen and oxygen evolution reactions. Electrochimica Acta, 2020, 341, 136051.	5.2	18
1282	Two-dimensional metal oxide nanomaterials for sustainable energy applications. , 2020, , 39-72.		3
1283	Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy and Fuels, 2020, 4, 2114-2133.	4.9	367
1284	Aktivitässteigerung der Wasserstoffentwicklung von Platinelektroden in alkalischen Medien unter Verwendung von Niâ€Feâ€Clustern. Angewandte Chemie, 2020, 132, 11026-11031.	2.0	8
1285	Factors Governing the Activity of αâ€MnO ₂ Catalysts in the Oxygen Evolution Reaction: Conductivity versus Exposed Surface Area of Cryptomelane. Chemistry - A European Journal, 2020, 26, 12256-12267.	3.3	17
1286	Nickel induced electronic structural regulation of cobalt hydroxide for enhanced water oxidation. Journal of Materials Chemistry A, 2020, 8, 6699-6708.	10.3	29
1287	Facile Synthesis of an Efficient Ni–Fe–Co Based Oxygen Evolution Reaction Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 046507.	2.9	26
1288	Influence of the NaOH Concentration on the Hydrogen Electrode Reaction Kinetics of Ni and NiCu Electrodes. ChemElectroChem, 2020, 7, 1438-1447.	3.4	11
1289	Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: A case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy, 2020, 72, 104669.	16.0	108
1290	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of Î ³ -CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	11.2	174
1291	Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale, 2020, 12, 9669-9679.	5.6	62
1292	Undoped SnO ₂ as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 18407-18420.	8.0	17
1293	NiMo–NiCu Inexpensive Composite with High Activity for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 17492-17501.	8.0	69

#	Article	IF	CITATIONS
1294	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170.	10.3	180
1295	Coulometric Titration of Active Sites at Mesostructured Cobalt Oxide Spinel by Surface Interrogation Mode of Scanning Electrochemical Microscopy. Journal of Physical Chemistry C, 2020, 124, 7737-7748.	3.1	9
1296	Quantitative Resolution of Complex Stoichiometric Changes during Electrochemical Cycling by Density Functional Theory-Assisted Electrochemical Quartz Crystal Microbalance. ACS Applied Energy Materials, 2020, 3, 3347-3357.	5.1	14
1297	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	38.1	1,466
1298	Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel–Iron Clusters. Angewandte Chemie - International Edition, 2020, 59, 10934-10938.	13.8	70
1299	Highly Robust Nonâ€Noble Alkaline Hydrogenâ€Evolving Electrocatalyst from Seâ€Doped Molybdenum Disulfide Particles on Interwoven CoSe ₂ Nanowire Arrays. Small, 2020, 16, e1906629.	10.0	70
1300	Nickel-iron borate coated nickel-iron boride hybrid for highly stable and active oxygen evolution electrocatalysis. Chinese Chemical Letters, 2020, 31, 2469-2472.	9.0	30
1301	Efficient Electronic Transport in Partially Disordered Co ₃ O ₄ Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 3071-3081.	5.1	27
1302	2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction. Dalton Transactions, 2020, 49, 6355-6362.	3.3	32
1303	Nanosponge-like Solid Solution of NiMo with a High Hydrogen Evolution Reaction Performance over a Wide Range of Current Densities. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	7
1304	Hydrogen storage performance of the multi-principal-component CoFeMnTiVZr alloy in electrochemical and gas–solid reactions. RSC Advances, 2020, 10, 24613-24623.	3.6	34
1305	Pt/N-rGO/Nb4N5 Electrocatalyst with Multilayered Structure and Ternary Synergy for Promoting Alcohol Oxidation. Journal of Alloys and Compounds, 2020, 845, 156117.	5.5	12
1306	High electrocatalytic activity of carbon-supported nickel hydroxide-doped platinum nanocatalysts for BH4â^' electrooxidation. Ionics, 2020, 26, 5133-5141.	2.4	0
1307	Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Research, 2020, 13, 2469-2477.	10.4	54
1308	Synergetic modulation of the electronic structure and hydrophilicity of nickel–iron hydroxide for efficient oxygen evolution by UV/ozone treatment. Journal of Materials Chemistry A, 2020, 8, 13437-13442.	10.3	15
1309	CoNiFe Layered Double Hydroxide/RuO _{2.1} Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33083-33093.	8.0	47
1310	Crystallized RuTe2 as unexpected bifunctional catalyst for overall water splitting. Applied Catalysis B: Environmental, 2020, 278, 119281.	20.2	161
1311	Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.	20.2	166

#	Article	IF	CITATIONS
1312	Structural engineering of hierarchically hetestructured Mo2C/Co conformally embedded in carbon for efficient water splitting. International Journal of Hydrogen Energy, 2020, 45, 22629-22637.	7.1	21
1313	Recent advances in 2D transition metal compounds for electrocatalytic full water splitting in neutral media. Materials Today Advances, 2020, 8, 100081.	5.2	43
1314	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	5.6	83
1315	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	19.5	295
1316	Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis, 2020, 10, 4019-4047.	11.2	379
1317	High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2020, 142, 4550-4554.	13.7	208
1318	Hollow FeP/Fe ₃ O ₄ Hybrid Nanoparticles on Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 12783-12792.	8.0	41
1319	The electrochemical synthesis of CNTs/N-Cu2S composites as efficient electrocatalysts for water oxidation. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	2
1320	Ir-Doped Pd Nanosheet Assemblies as Bifunctional Electrocatalysts for Advanced Hydrogen Evolution Reaction and Liquid Fuel Electrocatalysis. Inorganic Chemistry, 2020, 59, 3321-3329.	4.0	63
1321	Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nature Communications, 2020, 11, 1116.	12.8	108
1322	Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 828, 154465.	5.5	51
1323	Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution. Journal of Energy Chemistry, 2020, 48, 398-423.	12.9	39
1324	Engineering MoS ₂ nanostructures from various MoO ₃ precursors towards hydrogen evolution reaction. CrystEngComm, 2020, 22, 2258-2267.	2.6	15
1325	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	14.9	760
1326	Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer. Angewandte Chemie, 2020, 132, 8489-8493.	2.0	1
1327	Pt nanoparticles/Fe-doped α-Ni(OH)2 nanosheets array with low Pt loading as a high-performance electrocatalyst for alkaline hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 823, 153790.	5.5	17
1328	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
1329	Enhanced Anti-CO poisoning of platinum on mesoporous carbon spheres by abundant hydroxyl groups in methanol electro-oxidation. Electrochimica Acta, 2020, 336, 135751.	5.2	19

#	Article	IF	CITATIONS
1330	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	21.0	62
1331	In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Research, 2020, 13, 328-334.	10.4	52
1332	Flexible Co–Mo–N/Au Electrodes with a Hierarchical Nanoporous Architecture as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1907214.	21.0	114
1333	Accelerated alkaline hydrogen evolution on M(OH) _x /M-MoPO _x (M = Ni, Co, Fe,) Tj ETQc Science, 2020, 11, 2487-2493.	1 1 0.784 7.4	314 rgBT (O 54
1334	Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 574-591.	14.0	72
1335	FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Applied Catalysis B: Environmental, 2020, 269, 118600.	20.2	152
1336	FeCoNi Ternary Spinel Oxides Nanosheets as High Performance Water Oxidation Electrocatalyst. ChemCatChem, 2020, 12, 2209-2214.	3.7	10
1337	Enhancing Hydrogen Evolution Activity of Au(111) in Alkaline Media through Molecular Engineering of a 2D Polymer. Angewandte Chemie - International Edition, 2020, 59, 8411-8415.	13.8	15
1338	Self-Templating Strategies for Transition Metal Sulfide Nanoboxes as Robust Bifunctional Electrocatalysts. Chemistry of Materials, 2020, 32, 1371-1383.	6.7	50
1339	Amorphous Co–Mo–P–O Bifunctional Electrocatalyst via Facile Electrodeposition for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 2835-2842.	6.7	56
1340	Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 6926-6956.	10.3	158
1341	Recent Advances on Waterâ€6plitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	19.5	560
1342	Achieving Rich and Active Alkaline Hydrogen Evolution Heterostructures via Interface Engineering on 2D 1Tâ€MoS ₂ Quantum Sheets. Advanced Functional Materials, 2020, 30, 2000551.	14.9	83
1343	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	5.6	24
1344	Interconnected porous nanoflakes of CoMo ₂ S ₄ as an efficient bifunctional electrocatalyst for overall water electrolysis. Inorganic Chemistry Frontiers, 2020, 7, 2241-2247.	6.0	10
1345	Recent Advances in Layered Tungsten Disulfide as Electrocatalyst for Water Splitting. ChemCatChem, 2020, 12, 4962-4999.	3.7	39
1346	Carbon Nanofibers Encapsulated Nickelâ€Molybdenum Nanoparticles as Hydrogen Evolution Catalysts for Aqueous Znâ^'CO 2 System. ChemNanoMat, 2020, 6, 937-946.	2.8	9
1347	Production of NiO/N-doped carbon hybrid and its electrocatalytic performance for oxygen evolution reactions. Carbon Letters, 2020, 30, 485-491.	5.9	13

#	Article	IF	CITATIONS
1348	Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 13805-13813.	7.1	44
1349	Controllable fabrication of graphitic nanocarbon encapsulating FexNiy hybrids for efficient splitting of water. Journal of Alloys and Compounds, 2020, 829, 154421.	5.5	2
1350	Subnano Ruthenium Species Anchored on Tin Dioxide Surface for Efficient Alkaline Hydrogen Evolution Reaction. Cell Reports Physical Science, 2020, 1, 100026.	5.6	16
1351	V-Doping Triggered Formation and Structural Evolution of Dendritic Ni ₃ S ₂ @NiO Core–Shell Nanoarrays for Accelerating Alkaline Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 6222-6233.	6.7	66
1352	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	13.7	234
1353	Atomic-scale engineering of metal–oxide interfaces for advanced catalysis using atomic layer deposition. Catalysis Science and Technology, 2020, 10, 2695-2710.	4.1	25
1354	Three-dimensional self-supporting NiFe-X (X = OH, O, P) nanosheet arrays for high-efficiency overall water splitting. 2D Materials, 2020, 7, 035016.	4.4	14
1355	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	9.5	56
1356	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Scale Production. Advanced Functional Materials, 2020, 30, 2000503.	14.9	226
1357	In situ self-assembled 3-D interconnected pristine graphene supported NiO nanosheets as superior catalysts for oxygen evolution. Electrochimica Acta, 2020, 342, 136118.	5.2	21
1358	Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting. Journal of Materials Chemistry A, 2020, 8, 9871-9881.	10.3	144
1359	Three-dimensional Ni2P–MoP2 mesoporous nanorods array as self-standing electrocatalyst for highly efficient hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 15063-15075.	7.1	28
1360	Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydroxides as oxygen evolution reaction catalysts. Sustainable Energy and Fuels, 2020, 4, 2625-2637.	4.9	28
1361	Transition metal based heterogeneous electrocatalysts for the oxygen evolution reaction at near-neutral pH. Nanoscale, 2020, 12, 9924-9934.	5.6	25
1362	Fabrication and Applications of 3D Nanoarchitectures for Advanced Electrocatalysts and Sensors. Advanced Materials, 2020, 32, e1907500.	21.0	17
1363	Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118988.	20.2	101
1364	Into the "secret―double layer: Alkali cation mediates the hydrogen evolution reaction in basic medium. Journal of Energy Chemistry, 2020, 51, 101-104.	12.9	7
1365	Ultrafine carbon encapsulated NiRu alloys as bifunctional electrocatalysts for boosting overall water splitting: morphological and electronic modulation through minor Ru alloying. Journal of Materials Chemistry A, 2020, 8, 9049-9057.	10.3	48

#	Article	IF	CITATIONS
1366	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	38.1	609
1367	Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chemical Science, 2020, 11, 10614-10625.	7.4	117
1368	Quantum electrocatalysts: theoretical picture, electrochemical kinetic isotope effect analysis, and conjecture to understand microscopic mechanisms. Physical Chemistry Chemical Physics, 2020, 22, 11219-11243.	2.8	19
1369	Fabrication of cobalt doped titania for enhanced oxygen evolution reaction. Molecular Catalysis, 2020, 488, 110894.	2.0	3
1370	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	10.3	33
1371	Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. Journal of Energy Chemistry, 2021, 54, 202-207.	12.9	44
1372	Rice straw derived activated carbon-based Ni-containing electrocatalyst for methanol oxidation. Carbon Letters, 2021, 31, 253-267.	5.9	5
1373	NiFe hydroxide pillared by metaborate for efficient oxygen evolution reaction. Electrochimica Acta, 2021, 366, 137427.	5.2	7
1374	Destabilizing Alkaline Water with 3dâ€Metal (Oxy)(Hydr)Oxides for Improved Hydrogen Evolution. Chemistry - A European Journal, 2021, 27, 553-564.	3.3	17
1375	Carbon quantum dots for advanced electrocatalysis. Journal of Energy Chemistry, 2021, 55, 279-294.	12.9	175
1376	Operating redox couple transport mechanism for enhancing photocatalytic H2 generation of Pt and CrOx-decorated ZnCdS nanocrystals. Applied Catalysis B: Environmental, 2021, 283, 119601.	20.2	44
1377	Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. Journal of Energy Chemistry, 2021, 57, 547-566.	12.9	116
1378	Rational design of a low-cost, durable and efficient bifunctional oxygen electrode for rechargeable metal-air batteries. Journal of Power Sources, 2021, 482, 228900.	7.8	23
1379	Nickel decorated bimetallic catalysts derived from metal-organic frameworks as cathode materials for rechargeable Zinc-Air batteries. Materials Letters, 2021, 283, 128781.	2.6	22
1380	Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Materials Today Physics, 2021, 16, 100292.	6.0	108
1381	Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Progress in Solid State Chemistry, 2021, 61, 100294.	7.2	24
1382	Electrochemical determination of the degree of atomic surface roughness in Pt–Ni alloy nanocatalysts for oxygen reduction reaction. , 2021, 3, 375-383.		57
1383	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140

#	Article	IF	CITATIONS
1384	"The Fe Effect†A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80, 105514.	16.0	437
1385	Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance. Chemical Engineering Journal, 2021, 404, 127054.	12.7	50
1386	Bimetallic chalcogenide nanocrystallites as efficient electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2021, 852, 156736.	5.5	30
1387	Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 408, 127275.	12.7	64
1388	Preparation of Ni(Zn)Cr-LDH/LDO coated magnetic-graphene composites using simulative electroplating wastewaters for oxygen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125839.	4.7	6
1389	Facilitated Water Adsorption and Dissociation on Ni/Ni 3 S 2 Nanoparticles Embedded in Porous Sâ€doped Carbon Nanosheet Arrays for Enhanced Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2001665.	3.7	10
1390	Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Applied Catalysis B: Environmental, 2021, 284, 119740.	20.2	302
1391	A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 2021, 9, 1314-1352.	10.3	206
1392	A review: Target-oriented transition metal phosphide design and synthesis for water splitting. International Journal of Hydrogen Energy, 2021, 46, 5131-5149.	7.1	80
1393	Metal–metal (hydr)oxide heterostructures for electrocatalysis of hydrogen electrode reactions. Current Opinion in Electrochemistry, 2021, 26, 100667.	4.8	8
1394	Building up bimetallic active sites for electrocatalyzing hydrogen evolution reaction under acidic and alkaline conditions. Chemical Engineering Journal, 2021, 413, 128027.	12.7	35
1395	Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. Chemical Engineering Journal, 2021, 421, 127786.	12.7	43
1396	Highly Efficient Alkaline Water Splitting with Ruâ€Đoped Coâ^'V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst. ChemSusChem, 2021, 14, 730-737.	6.8	63
1397	Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Applied Catalysis B: Environmental, 2021, 284, 119684.	20.2	73
1398	Partial‣ingleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	11.2	85
1399	Recent advances of metal-organic frameworks and their composites towardÂoxygen evolution electrocatalysis. Materials Today Energy, 2021, 19, 100597.	4.7	34
1400	Oneâ€Pot Hydrothermal Synthesis of Ni ₃ S ₂ /MoS ₂ /FeOOH Hierarchical Microspheres on Ni Foam as a Highâ€Efficiency and Durable Dualâ€Function Electrocatalyst for Overall Water Splitting. ChemElectroChem, 2021, 8, 665-674.	3.4	14
1401	Nanostructured metallic FeNi2S4 with reconstruction to generate FeNi-based oxide as a highly-efficient oxygen evolution electrocatalyst. Nano Energy, 2021, 81, 105619.	16.0	68

ARTICLE IF CITATIONS Origin of the electrocatalytic oxygen evolution activity of nickel phosphides: in-situ electrochemical 1402 9.0 55 oxidation and Cr doping to achieve high performance. Science Bulletin, 2021, 66, 708-719. Enhanced hydrogen evolution from the face-sharing [RuO6] octahedral motif. Journal of Energy 1403 Chemistry, 2021, 56, 276-282. Tungstate-modulated Ni/Ni(OH)₂interface for efficient hydrogen evolution reaction in 1404 10.3 57 neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462. Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and 1405 234 Hydrazine Oxidation Catalysis. Angewandte Chemie - International Edition, 2021, 60, 5984-5993. Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient 1406 5.5 17 hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 857, 158086. Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water 89 Electrolysis. Advanced Energy Materials, 2021, 11, 2003188. Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie, 2021, 133, 19702-19723. 1408 2.0 114 Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and 1409 2.0 Hydrazine Oxidation Catalysis. Angewandte Chemie, 2021, 133, 6049-6058. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and 1410 10.3 34 environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042. Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. 1411 94 Advanced Energy Materials, 2021, 11, 2002967. Nanoporous Surface Highâ€Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic 1412 14.9 145 Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009613. Defects induced growth of Pt on the heterojunction of TaON | N-rGO as highly CO-tolerant 6.1 electrocatalyst for ethylene glycol oxidation. Applied Surface Science, 2021, 536, 147668. Enhanced pseudocapacitive energy storage of oxides grown on nanoporous alloys by solid solution. 1414 12.7 6 Chemical Engineering Journal, 2021, 405, 126632. Further insights into bifunctional mechanism in alkaline hydrogen evolution for hybridized 1415 16.0 23 nanocatalysts and general route toward mechanism-oriented synthesis. Nano Energy, 2021, 81, 105645. Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of 1416 10.3 32 CO₂ to ethanol. Journal of Materials Chemistry A, 2021, 9, 3044-3051. Phase engineering of cobalt hydroxide toward cation intercalation. Chemical Science, 2021, 12, 1417 23 1756-1761. Structure engineering of electrodeposited NiMoÂfilms for highly efficient and durable seawater 1418 5.245 splitting. Electrochimica Acta, 2021, 365, 137366. Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from 1419 material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.

#	Article	IF	CITATIONS
1420	Deposition of FeOOH layers onto porous PbO2 by galvanic displacement and their use as electrocatalysts for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2021, 880, 114844.	3.8	9
1421	Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 1399-1408.	13.7	161
1422	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	14.9	86
1423	One-step synthesis of interwoven MoS2-CoNi2S4 heterostructures as high-activity water oxidation electrocatalysts. Catalysis Today, 2021, 364, 132-139.	4.4	11
1424	A Perspective on New Opportunities in Atom-by-Atom Synthesis of Heterogeneous Catalysts Using Atomic Layer Deposition. Catalysis Letters, 2021, 151, 1535-1545.	2.6	30
1425	Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction. National Science Review, 2021, 8, nwaa204.	9.5	33
1426	Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chemical Reviews, 2021, 121, 736-795.	47.7	269
1427	Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie - International Edition, 2021, 60, 19550-19571.	13.8	220
1428	Iron-based binary metal-organic framework nanorods as an efficient catalyst for the oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 637-647.	14.0	57
1429	Atomistic modeling of electrocatalysis: Are we there yet?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1499.	14.6	79
1430	Tri-atomic Pt clusters induce effective pathways in a Co _{core} –Pd _{shell} nanocatalyst surface for a high-performance oxygen reduction reaction. Physical Chemistry Chemical Physics, 2021, 23, 18012-18025.	2.8	5
1431	Tuning of Pt–Co nanoparticle motifs for enhancing the HOR performance in alkaline media. Journal of Materials Chemistry A, 2021, 9, 15415-15431.	10.3	19
1432	Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy and Environmental Science, 2021, 14, 5228-5259.	30.8	198
1433	Promoting urea oxidation and water oxidation through interface construction on a CeO ₂ @CoFe ₂ O ₄ heterostructure. Dalton Transactions, 2021, 50, 12301-12307.	3.3	108
1434	A Review and Perspective on Electrocatalysts Containing Cr for Alkaline Water Electrolysis: Hydrogen Evolution Reaction. Electrocatalysis, 2021, 12, 104-116.	3.0	11
1435	Density Functional Theory Studies of Doping and Curvature Effects on the Electrocatalytic Hydrogen Evolution Activity of Carbon Nanotubes. ACS Applied Nano Materials, 2021, 4, 600-611.	5.0	14
1436	3D porous Ni/NiO _x as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH) ₂ . Nanoscale, 2021, 13, 5530-5535.	5.6	21
1437	Electrocatalysis for the Water Splitting: Recent Strategies for Improving the Performance of Electrocatalyst. , 2021, , 315-339.		1

#	Article	IF	CITATIONS
1438	Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. , 2022, , 473-504.		2
1439	Bifunctional PGM-free metal organic framework-based electrocatalysts for alkaline electrolyzers: trends in the activity with different metal centers. Nanoscale, 2021, 13, 4576-4584.	5.6	8
1440	Understanding synergistic metal–oxide interactions of <i>in situ</i> exsolved metal nanoparticles on a pyrochlore oxide support for enhanced water splitting. Energy and Environmental Science, 2021, 14, 3053-3063.	30.8	39
1441	Design strategies toward transition metal selenide-based catalysts for electrochemical water splitting. Sustainable Energy and Fuels, 2021, 5, 1347-1365.	4.9	30
1442	Atomic layer deposition-triggered hierarchical core/shell stable bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 21132-21141.	10.3	10
1443	Extensive Active-Site Formation in Trirutile CoSb ₂ O ₆ by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting. ACS Energy Letters, 2021, 6, 364-370.	17.4	66
1444	Interfacial atomic Ni tetragon intercalation in a NiO ₂ -to-Pd hetero-structure triggers superior HER activity to the Pt catalyst. Journal of Materials Chemistry A, 2021, 9, 12019-12028.	10.3	19
1445	Low-cost and multi-level structured NiFeMn alloy@NiFeMn oxyhydroxide electrocatalysts for highly efficient overall water splitting. Inorganic Chemistry Frontiers, 2021, 8, 2713-2724.	6.0	5
1446	Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorganic Chemistry Frontiers, 2021, 8, 2900-2917.	6.0	75
1447	Tuning the properties of CoFe-layered double hydroxide by vanadium substitution for improved water splitting activity. Dalton Transactions, 2021, 50, 2359-2363.	3.3	30
1448	Ni(OH) ₂ –Ag hybrid nanosheet array with ultralow Ag loading as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. New Journal of Chemistry, 2021, 45, 13286-13292.	2.8	8
1449	Surface self-reconstruction of nickel foam triggered by hydrothermal corrosion for boosted water oxidation. International Journal of Hydrogen Energy, 2021, 46, 1501-1508.	7.1	40
1450	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.		1
1451	Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3180-3208.	10.3	224
1452	Solar-driven valorisation of glycerol on BiVO ₄ photoanodes: effect of co-catalyst and reaction media on reaction selectivity. Journal of Materials Chemistry A, 2021, 9, 6252-6260.	10.3	34
1453	Two-dimensional Ti ₃ C ₂ MXene-based nanostructures for emerging optoelectronic applications. Materials Horizons, 2021, 8, 2929-2963.	12.2	37
1454	Controllable atomic defect engineering in layered Ni _x Fe _{1â^'x} (OH) ₂ nanosheets for electrochemical overall water splitting. Journal of Materials Chemistry A, 2021, 9, 14432-14443.	10.3	84
1455	Dual modulation of lattice strain and charge polarization induced by Co(OH) ₂ /Ni(OH) ₂ interfaces for efficient oxygen evolution catalysis. Journal of Materials Chemistry A, 2021, 9, 13279-13287.	10.3	32

#	Article	IF	CITATIONS
1456	Ultrathin Metal Silicate Hydroxide Nanosheets with Moderate Metal–Oxygen Covalency Enables Efficient Oxygen Evolution. Energy and Environmental Materials, 2022, 5, 231-237.	12.8	28
1457	Five novel MOFs with various dimensions as efficient catalysts for oxygen evolution reactions. CrystEngComm, 2021, 23, 5475-5480.	2.6	6
1458	Promoted alkaline hydrogen evolution by an N-doped Pt–Ru single atom alloy. Journal of Materials Chemistry A, 2021, 9, 14941-14947.	10.3	39
1459	Nickel–cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction. Nanoscale Advances, 2021, 3, 3770-3779.	4.6	19
1460	Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. Journal of Materials Chemistry C, 2021, 9, 1709-1720.	5.5	15
1461	Boosting the oxygen evolution activity in non-stoichiometric praseodymium ferrite-based perovskites by A site substitution for alkaline electrolyser anodes. Sustainable Energy and Fuels, 2021, 5, 154-165.	4.9	14
1462	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	30.8	213
1463	Hierarchical sheet-on-sheet heterojunction array of a β-Ni(OH)2/Fe(OH)3 self-supporting anode for effective overall alkaline water splitting. Dalton Transactions, 2021, 50, 12547-12554.	3.3	11
1464	Partially reduced Ru/RuO ₂ composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy and Environmental Science, 2021, 14, 5433-5443.	30.8	73
1465	Hybrid layered double hydroxides as multifunctional nanomaterials for overall water splitting and supercapacitor applications. Journal of Materials Chemistry A, 2021, 9, 4528-4557.	10.3	98
1466	The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews, 2021, 4, 146-168.	25.5	30
1467	Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 5320-5363.	10.3	322
1468	Enhanced electrocatalytic activity of CuO-SnO2 nanocomposite in alkaline medium. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	6
1469	Elucidating the electronic structures of β-Ag ₂ MoO ₄ and Ag ₂ O nanocrystals <i>via</i> theoretical and experimental approaches towards electrochemical water splitting and CO ₂ reduction. Physical Chemistry Chemical Physics, 2021, 23, 9539-9552.	2.8	17
1470	Reevesite with Ordered Intralayer Atomic Arrangement as an Optimized Nickelâ€ I ron Oxygen Evolution Electrocatalyst. ChemElectroChem, 2021, 8, 558-562.	3.4	4
1471	Design of Lewis Pairs via Interface Engineering of Oxide–Metal Composite Catalyst for Water Activation. Journal of Physical Chemistry Letters, 2021, 12, 1443-1452.	4.6	18
1472	Identifying the Activity Origin of a Cobalt Singleâ€Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021, 31, 2100547.	14.9	93
1473	Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews, 2021, 4, 473-507.	25.5	224

#	Article	IF	CITATIONS
1475	Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion. International Journal of Hydrogen Energy, 2021, 46, 8356-8376.	7.1	48
1476	Pulsed Laser Confinement of Single Atomic Catalysts on Carbon Nanotube Matrix for Enhanced Oxygen Evolution Reaction. ACS Nano, 2021, 15, 4416-4428.	14.6	29
1477	Elucidating intrinsic contribution of d-orbital states to oxygen evolution electrocatalysis in oxides. Nature Communications, 2021, 12, 824.	12.8	63
1478	Unsymmetrical Dinuclear Ru ^{II} Complexes with Bridging Polydentate Nitrogen Ligands as Potential Water Oxidation Catalysts. European Journal of Inorganic Chemistry, 2021, 2021, 861-869.	2.0	4
1479	Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32, 2597-2616.	9.0	94
1480	Enhanced Methanol Electroâ€Oxidation Activity of Nanoclustered Gold. Small, 2021, 17, 2004541.	10.0	6
1481	Fabrication of hierarchically flower-like trimetallic coordination polymers via ion-exchange strategy for efficient electrocatalytic oxygen evolution. Journal of Electroanalytical Chemistry, 2021, 883, 115036.	3.8	8
1482	CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis. International Journal of Hydrogen Energy, 2021, 46, 35886-35895.	7.1	20
1483	Stable and Highly Efficient Hydrogen Evolution from Seawater Enabled by an Unsaturated Nickel Surface Nitride. Advanced Materials, 2021, 33, e2007508.	21.0	278
1484	Co ₉ S ₈ Nanosheet Coupled Cu ₂ S Nanorod Heterostructure as Efficient Catalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 9865-9874.	8.0	101
1485	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	10.0	135
1486	Sustainable catalysts for water electrolysis: Selected strategies for reduction and replacement of platinum-group metals. Materials Today Sustainability, 2021, 11-12, 100060.	4.1	17
1487	Electrodeposited Nickel/Chromium(III) Oxide Nanostructure-Modified Pencil Graphite Electrode for Enhanced Electrocatalytic Hydrogen Evolution Reaction Activity. Energy & Fuels, 2021, 35, 6298-6304.	5.1	14
1488	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	17.4	130
1489	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^'C Bond Cleavage by a Mnâ€Đoped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie, 2021, 133, 9058-9064.	2.0	22
1490	Impact of Surface Hydrophilicity on Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 11940-11947.	8.0	65
1491	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^'C Bond Cleavage by a Mnâ€Đoped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 8976-8982.	13.8	93
1492	Efficient Oxygen Evolution Electrocatalyst by Incorporation of Nickel into Nanoscale Dicobalt Boride. ChemCatChem, 2021, 13, 1772-1780.	3.7	8

#	Article	IF	Citations
" 1493	Non-stoichiometric NiOx nanocrystals for highly efficient electrocatalytic oxygen evolution	3.8	15
	reaction. Journal of Electroanalytical Chemistry, 2021, 885, 114966.		
1494	Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4, 212-222.	34.4	266
1495	Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Research, 2021, 14, 4528-4533.	10.4	42
1496	Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3, 100053.	19.1	68
1497	Toward Rational Design of Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2837-2847.	4.6	45
1498	A general strategy for synthesizing hierarchical architectures assembled by dendritic Pt-based nanoalloys for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 11573-11586.	7.1	9
1499	Revealing the Synergy of Cation and Anion Vacancies on Improving Overall Water Splitting Kinetics. Advanced Functional Materials, 2021, 31, 2010718.	14.9	48
1500	Dual Active Center-Assembled Cu ₃₁ S ₁₆ –Co _{9-<i>x</i>} Ni _{<i>x</i>} S ₈ Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials &: Interfaces. 2021. 13. 20094-20104.	8.0	7
1501	l ³ O ⁰ -Type 3D Framework of Cobalt Cinnamate and Its Efficient Electrocatalytic Activity toward the Oxygen Evolution Reaction. Chemistry of Materials, 2021, 33, 2804-2813.	6.7	9
1502	Valenceâ€State Effect of Iridium Dopant in NiFe(OH) ₂ Catalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2100203.	10.0	31
1503	Design and fabrication of Pt-free FeNi2S4/rGO hybrid composite thin films counter electrode for high-performance dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 11910-11920.	2.2	4
1504	Fe(Co)OOH Dynamically Stable Interface Based on Self-Sacrificial Reconstruction for Long-Term Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2021, 13, 17450-17458.	8.0	32
1505	Niâ€Feâ€Cuâ€layered double hydroxides as highâ€performance electrocatalysts for alkaline water oxidation. International Journal of Energy Research, 2021, 45, 15312-15322.	4.5	13
1506	Ni-, Co-, and Mn-Doped Fe ₂ O ₃ Nano-Parallelepipeds for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 5131-5140.	5.0	33
1507	Defect engineering in oxides by liquid Na-K alloy for oxygen evolution reaction. Applied Surface Science, 2021, 544, 148813.	6.1	7
1508	NiFe2O4–Ni3S2 nanorod array/Ni foam composite catalyst indirectly controlled by Fe3+ immersion for an efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 14407-14417.	7.1	9
1509	High-Performance-Based Perovskite-Supported Nanocomposite for the Development of Green Energy Device Applications: An Overview. Nanomaterials, 2021, 11, 1006.	4.1	11
1510	Activation Strategies of Perovskiteâ€īype Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	8.6	29

#	Article	IF	CITATIONS
1511	Core-shell structure Co–Ni@Fe–Cu doped MOF–GR composites for water splitting. International Journal of Hydrogen Energy, 2021, 46, 15124-15134.	7.1	10
1512	Rationally Designed Ni–Ni ₃ S ₂ Interfaces for Efficient Overall Water Electrolysis. Advanced Energy and Sustainability Research, 2021, 2, 2100078.	5.8	40
1513	Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies, 2021, 14, 3193.	3.1	40
1514	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	19.1	20
1515	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie, 2021, 133, 14692-14698.	2.0	4
1516	Ni-doped carbon nanotubes fabricated by pulsed laser ablation in liquid as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 2021, 547, 149197.	6.1	17
1517	Cost-effective and efficient plum-pudding-like FexNi1-xS2/C composite electrocatalysts for oxygen evolution reaction. Renewable Energy, 2021, 168, 416-423.	8.9	12
1518	Regulation of Perovskite Surface Stability on the Electrocatalysis of Oxygen Evolution Reaction. , 2021, 3, 721-737.		61
1519	Improved oxygen evolution reaction performance with addition of Fe to form FeyCux-yCo3-xO4 and FeyNix-yCo3-xO4 (xÂ=Â0.5, 1 and yÂ=Â0.1, 0.15) spinel oxides. Electrochimica Acta, 2021, 378, 138116.	5.2	7
1520	Microporous Film of Ternary Ni/Co/Fe Alloy for Superior Electrolytic Hydrogen Production in Alkaline Medium. Journal of the Electrochemical Society, 2021, 168, 054509.	2.9	14
1521	Challenges in the Application of Manganese Oxide Powders as OER Electrocatalysts: Synthesis, Characterization, Activity and Stability of Nine Different Mn x O y Compounds. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1363-1372.	1.2	6
1522	Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coordination Chemistry Reviews, 2021, 435, 213806.	18.8	97
1523	Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values. ACS Applied Materials & Interfaces, 2021, 13, 22077-22097.	8.0	133
1524	Alkaline fuel cell technology - A review. International Journal of Hydrogen Energy, 2021, 46, 18489-18510.	7.1	166
1525	Library Creation of Ultrasmall Multiâ€metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angewandte Chemie - International Edition, 2021, 60, 14571-14577.	13.8	11
1526	Controlled Periodic Illumination Enhances Hydrogen Production by over 50% on Pt/TiO ₂ . ACS Catalysis, 2021, 11, 6484-6488.	11.2	14
1527	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€īransition Metal Layered Double Hydroxides. Angewandte Chemie, 2021, 133, 14567-14578.	2.0	30
1528	Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. , 2021, 3, 752-780.		62

#	Article	IF	CITATIONS
1529	Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy, 2021, 83, 105850.	16.0	66
1530	<i>In-Situ</i> Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution. Nano Letters, 2021, 21, 4795-4801.	9.1	47
1531	Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 6104-6112.	11.2	103
1532	Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3dâ€Transition Metal Layered Double Hydroxides. Angewandte Chemie - International Edition, 2021, 60, 14446-14457.	13.8	170
1533	Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst. Nano-Micro Letters, 2021, 13, 120.	27.0	28
1534	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	27.5	235
1535	Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catalysis, 2021, 11, 8165-8173.	11.2	37
1536	Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy, 2021, 84, 105932.	16.0	63
1537	Theoretical Insights into the Hydrogen Evolution Reaction on the Ni3N Electrocatalyst. Catalysts, 2021, 11, 716.	3.5	9
1538	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	4.2	11
1539	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782.	18.8	52
1540	Layerâ€byâ€Layer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÃAÂcm ^{â^'2} in Waterâ€Splitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	14.9	15
1541	Progress of Nonpreciousâ€Metalâ€Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials, 2021, 33, e2003786.	21.0	166
1542	Water at charged interfaces. Nature Reviews Chemistry, 2021, 5, 466-485.	30.2	186
1543	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	21.0	781
1544	Hexagonal nickel selenide nanoflakes decorated carbon fabric: An efficient binder-free water loving electrode for electrochemical water splitting. Solid State Sciences, 2021, 116, 106613.	3.2	7
1545	Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12, 3783.	12.8	355
1546	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	14.6	27

#	Article	IF	CITATIONS
1547	Boosting electrocatalytic nitrogen reduction to ammonia in alkaline media. International Journal of Energy Research, 2021, 45, 19634-19644.	4.5	3
1548	Engineering Platinum–Cobalt Nanoâ€alloys in Porous Nitrogenâ€Đoped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19216-19221.	2.0	9
1549	Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications, 2021, 12, 4218.	12.8	38
1550	Highly Efficient Oxygen Evolution Reaction Enabled by Phosphorus Doping of the Fe Electronic Structure in Iron–Nickel Selenide Nanosheets. Advanced Science, 2021, 8, e2101775.	11.2	109
1551	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	18
1552	Accelerate the alkaline hydrogen evolution reaction of the heterostructural Ni2P@Ni(OH)2/NF by dispersing a trifle of Ru on the surface. International Journal of Hydrogen Energy, 2021, 46, 26329-26339.	7.1	12
1553	Two-dimensional metal-organic framework nanosheet composites: Preparations and applications. Chinese Chemical Letters, 2022, 33, 693-702.	9.0	51
1554	Electro-deoxidation Process for Producing FeTi from Low-Grade Ilmenite: Tailoring Precursor Composition for Hydrogen Storage. Journal of Sustainable Metallurgy, 2021, 7, 1178-1189.	2.3	2
1555	Metal Phosphides and Sulfides in Heterogeneous Catalysis: Electronic and Geometric Effects. ACS Catalysis, 2021, 11, 9102-9127.	11.2	36
1556	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. Small Structures, 2021, 2, 2100069.	12.0	30
1557	Principles of Water Electrolysis and Recent Progress in Cobaltâ€, Nickelâ€, and Ironâ€Based Oxides for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	286
1558	Enhanced Electrocatalysis for Hydrogen Evolution over a Nanoporous NiAlTi/Al ₃ Ti Hybrid. ACS Applied Energy Materials, 2021, 4, 7579-7588.	5.1	6
1559	Progress and challenges pertaining to the earthly-abundant electrocatalytic materials for oxygen evolution reaction. Sustainable Materials and Technologies, 2021, 28, e00252.	3.3	12
1560	MOF-derived hollow heterostructures for advanced electrocatalysis. Coordination Chemistry Reviews, 2021, 439, 213946.	18.8	142
1561	Oxygen Electrocatalysis on Mixed-Metal Oxides/Oxyhydroxides: From Fundamentals to Membrane Electrolyzer Technology. Accounts of Materials Research, 2021, 2, 548-558.	11.7	41
1562	Engineering Platinum–Cobalt Nanoâ€alloys in Porous Nitrogenâ€Đoped Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19068-19073.	13.8	149
1563	Rational construction of vertical few layer graphene/NiO core-shell nanoflake arrays for efficient oxygen evolution reaction. Materials Research Bulletin, 2021, 139, 111260.	5.2	11
1564	Modulating 3d Orbitals of Ni Atoms on Niâ€Pt Edge Sites Enables Highlyâ€Efficient Alkaline Hydrogen Evolution. Advanced Energy Materials, 2021, 11, 2101789.	19.5	30

#	Article	IF	CITATIONS
1565	Boosting neutral hydrogen evolution reaction on iridium by support effect of W18O49. Applied Catalysis A: General, 2021, 623, 118293.	4.3	8
1566	Solution-State Catalysis of Visible Light-Driven Water Oxidation by Macroanion-Like Inorganic Complexes of γ-FeOOH Nanocrystals. ACS Catalysis, 2021, 11, 11385-11395.	11.2	22
1567	Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 2021, 33, e2103004.	21.0	142
1568	Tailoring the hydrophilic and hydrophobic reaction fields of the electrode interface on single crystal Pt electrodes for hydrogen evolution/oxidation reactions. International Journal of Hydrogen Energy, 2021, 46, 28078-28086.	7.1	9
1569	FeOOH Modified H-TiO2 Nanorods Array (NRA) for Stable and Improved Low-Bias Photoelectrochemical Water Splitting. Journal of the Electrochemical Society, 2021, 168, 086505.	2.9	1
1570	MnO ₂ Electrocatalysts Coordinating Alcohol Oxidation for Ultraâ€Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie, 2021, 133, 21634-21642.	2.0	14
1571	MnO ₂ Electrocatalysts Coordinating Alcohol Oxidation for Ultraâ€Durable Hydrogen and Chemical Productions in Acidic Solutions. Angewandte Chemie - International Edition, 2021, 60, 21464-21472.	13.8	93
1572	Surface microenvironment optimization―induced robust oxygen reduction for neutral zincâ€air batteries. Natural Sciences, 2021, 1, e20210005.	2.1	6
1573	Functionalized Embedded Monometallic Nickel Catalysts for Enhanced Hydrogen Evolution: Performance and Stability. Journal of the Electrochemical Society, 2021, 168, 084501.	2.9	9
1574	Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH) ₂ -Modified Cu(111). ACS Catalysis, 2021, 11, 10324-10332.	11.2	20
1575	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	3.7	6
1576	A review on cerium-containing electrocatalysts for oxygen evolution reaction. Functional Materials Letters, 2021, 14, .	1.2	4
1577	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	4.6	28
1578	Deep Learning Accelerates the Discovery of Twoâ€Dimensional Catalysts for Hydrogen Evolution Reaction. Energy and Environmental Materials, 2023, 6, .	12.8	20
1579	Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Applied Catalysis B: Environmental, 2021, 291, 119987.	20.2	151
1580	Amorphous Manganese–Cobalt Nanosheets as Efficient Catalysts for Hydrogen Evolution Reaction (HER). Catalysis Surveys From Asia, 2021, 25, 437-444.	2.6	10
1581	Spontaneously engineering heterogeneous interface of silver nanoparticles on α-Co(OH)2 for boosting electrochemical oxygen evolution. Journal of Alloys and Compounds, 2021, 873, 159766.	5.5	19
1582	Interface-engineered Co ₃ S ₄ /CoMo ₂ S ₄ nanosheets as efficient bifunctional electrocatalysts for alkaline overall water splitting. Nanotechnology, 2021, 32, 455706.	2.6	5

#	Article	IF	CITATIONS
1583	Dischargeable nickel matrix charges iron species for oxygen evolution electrocatalysis. Electrochimica Acta, 2021, 386, 138401.	5.2	10
1584	(NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2021, 290, 120049.	20.2	47
1585	Amine group ligand-modified hydrotalcite-like nano cobalt hydroxide for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 29905-29915.	7.1	3
1586	Unraveling the Synergy of Chemical Hydroxylation and the Physical Heterointerface upon Improving the Hydrogen Evolution Kinetics. ACS Nano, 2021, 15, 15017-15026.	14.6	59
1587	Surface-Engineered Ni(OH) ₂ /PtNi Nanocubes as Cocatalysts for Photocatalytic Hydrogen Production. ACS Applied Nano Materials, 2021, 4, 8390-8398.	5.0	13
1588	The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nature Catalysis, 2021, 4, 711-718.	34.4	182
1589	Multiâ€Sites Electrocatalysis in Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2106715.	14.9	128
1590	Amorphous-crystalline catalytic interface of CoFeOH/CoFeP with double sites based on ultrafast hydrolysis for hydrogen evolution at high current density. Journal of Power Sources, 2021, 507, 230279.	7.8	24
1591	Novel MoSe2–Ni(OH)2 nanocomposite as an electrocatalyst for high efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 32471-32479.	7.1	9
1592	Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion. Advanced Science, 2021, 8, e2102777.	11.2	27
1593	Structure–property correlations for analysis of heterogeneous electrocatalysts. Chemical Physics Reviews, 2021, 2, .	5.7	8
1594	The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162.	16.0	149
1595	Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chemical Engineering Journal, 2022, 430, 132623.	12.7	58
1596	Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
1597	Inside solid-liquid interfaces: Understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021, 293, 120220.	20.2	38
1598	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	10.4	396
1599	Amorphous/Crystalline Heterostructured Nickel Phosphide Nanospheres for Electrocatalytic Water and Methanol Oxidation Reactions. Journal of Physical Chemistry C, 2021, 125, 21443-21452.	3.1	10
1600	Understanding the Enhancement of Electrocatalytic Activity toward Hydrogen Evolution in Alkaline Water Splitting by Anodically Formed Oxides on Ni and Câ€containing Ni. ChemElectroChem, 2021, 8, 3371-3378.	3.4	5

#	Article	IF	CITATIONS
1601	Ni _{0.67} Fe _{0.33} Hydroxide Incorporated with Oxalate for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 42870-42879.	8.0	30
1602	Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 2021, 507, 230072.	7.8	93
1603	Self-supported NiFe-LDH@CoSx nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 419, 129512.	12.7	89
1604	Ni Nanoparticles on Ni Core/N-Doped Carbon Shell Heterostructures for Electrocatalytic Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 9418-9429.	5.0	21
1605	General and scalable preparation of Prussian blue analogues on arbitrary conductive substrates and their derived metal phosphides as highly efficient and ultra-long-life bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 420, 129972.	12.7	17
1606	Regulating electronic structure and adsorptivity in molybdenum selenide for boosting electrocatalytic water splitting. Electrochimica Acta, 2021, 390, 138888.	5.2	9
1607	Synergistic catalysis of PtM alloys and nickel hydroxide on highly enhanced electrocatalytic activity and durability for methanol oxidation reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126942.	4.7	5
1608	Atomically Dispersed Ruthenium on Nickel Hydroxide Ultrathin Nanoribbons for Highly Efficient Hydrogen Evolution Reaction in Alkaline Media. Advanced Materials, 2021, 33, e2104764.	21.0	70
1609	Electrocatalytic Hydrogen Evolution Reaction Related to Nanochannel Materials. Small Structures, 2021, 2, 2100076.	12.0	36
1610	Mechanism of Nickel–Iron Water Oxidation Electrocatalysts. Energy & Fuels, 2021, 35, 19164-19169.	5.1	18
1610 1611	Mechanism of Nickel–Iron Water Oxidation Electrocatalysts. Energy & amp; Fuels, 2021, 35, 19164-19169. Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685.	5.1 3.4	18 39
	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water		
1611	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte	3.4	39
1611 1612	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, . Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate	3.4 2.0	39 5
1611 1612 1613	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, . Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. Nano Energy, 2021, 87, 106217. Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated	3.4 2.0 16.0	39 5 54
1611 1612 1613 1614	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, . Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. Nano Energy, 2021, 87, 106217. Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated Alkaline Hydrogen Production. Frontiers in Chemistry, 2021, 9, 737495. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. Journal of	3.42.016.03.6	39 5 54 6
1611 1612 1613 1614 1615	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685. Main Descriptors To Correlate Structures with the Performances of Electrocatalysts. Angewandte Chemie, 2022, 134, . Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. Nano Energy, 2021, 87, 106217. Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated Alkaline Hydrogen Production. Frontiers in Chemistry, 2021, 9, 737495. Interfacial electron rearrangement: Ni activated Ni(OH)2 for efficient hydrogen evolution. Journal of Energy Chemistry, 2021, 61, 236-242. Cu2Se nanowires shelled with NiFe layered double hydroxide nanosheets for overall water-splitting.	 3.4 2.0 16.0 3.6 12.9 	 39 5 54 6 47

#	Article	IF	CITATIONS
1619	Synthesis and comparative evaluation of optical and electrochemical properties of efficacious heterostructured-nanocatalysts of ZnSe with commercial and reduced titania. Journal of Alloys and Compounds, 2021, 879, 160449.	5.5	11
1620	Hydrogen evolution reaction in an alkaline environment through nanoscale Ni, Pt, NiO, Fe/Ni and Pt/Ni surfaces: Reactive molecular dynamics simulation. Materials Chemistry and Physics, 2021, 271, 124886.	4.0	10
1621	Nitrogen-doped graphite encapsulating RuCo nanoparticles toward high-activity catalysis of water oxidation and reduction. Chemical Engineering Journal, 2021, 422, 130077.	12.7	23
1622	Oxygen vacancies and band gap engineering of vertically aligned MnO2 porous nanosheets for efficient oxygen evolution reaction. Surfaces and Interfaces, 2021, 26, 101398.	3.0	10
1623	Atomically dispersed Ni–N4 species and Ni nanoparticles constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon, 2021, 185, 96-104.	10.3	10
1624	Preparation of highly active MoNi4 alloys in 3D porous nanostructures and their application as bifunctional electrocatalysts for overall water splitting. Catalysis Communications, 2021, 159, 106350.	3.3	12
1625	Ultra-small NiFe-layered double hydroxide nanoparticles confined in ordered mesoporous carbon as efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2021, 565, 150533.	6.1	17
1626	Various metal (Fe, Mo, V, Co)-doped Ni2P nanowire arrays as overall water splitting electrocatalysts and their applications in unassisted solar hydrogen production with STH 14 %. Applied Catalysis B: Environmental, 2021, 297, 120434.	20.2	82
1627	Cu(111) single crystal electrodes: Modifying interfacial properties to tailor electrocatalysis. Electrochimica Acta, 2021, 396, 139222.	5.2	4
1628	Rational design of Schottky heterojunction with modulating surface electron density for high-performance overall water splitting. Applied Catalysis B: Environmental, 2021, 299, 120660.	20.2	58
1629	Synergistically integrated Co9S8@NiFe-layered double hydroxide core-branch hierarchical architectures as efficient bifunctional electrocatalyst for water splitting. Journal of Colloid and Interface Science, 2021, 604, 680-690.	9.4	39
1630	Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 2275-2286.	14.0	20
1631	Multicomponent Pt/PtTe2/NiCoTe2 embedded in ternary heteroatoms-doped carbon for efficient and pH-universal hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 884, 161042.	5.5	9
1632	Controllable dry synthesis of binder-free nanostructured platinum electrocatalysts supported on multi-walled carbon nanotubes and their performance in the oxygen reduction reaction. Chemical Engineering Journal, 2021, 426, 131706.	12.7	17
1633	Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current. Applied Catalysis B: Environmental, 2021, 298, 120559.	20.2	14
1634	Boosting hydrogen evolution electrocatalysis through defect engineering: A strategy of heat and cool shock. Chemical Engineering Journal, 2021, 426, 131524.	12.7	17
1635	High-valence Ni and Fe sites on sulfated NiFe-LDH nanosheets to enhance O-O coupling for water oxidation. Chemical Engineering Journal, 2021, 426, 130873.	12.7	70
1636	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	12.7	11

#	Article	IF	CITATIONS
1637	Tailoring the interfacial active center of MnSxO2â^'x/MnCo2S4 heterostructure to boost the performance for oxygen evolution reaction and Zn-Air batteries in neutral electrolyte. Chemical Engineering Journal, 2022, 427, 131966.	12.7	13
1638	Recent advances in alkaline hydrogen oxidation reaction. Journal of Energy Chemistry, 2022, 66, 107-122.	12.9	51
1639	Fe and Co dual-doped Ni3S4 nanosheet with enriched high-valence Ni sites for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 427, 130742.	12.7	59
1640	Mixed- ligand-devised anionic MOF with divergent open Co(II)-nodes as chemo-resistant, bi-functional material for electrochemical water oxidation and mild-condition tandem CO2 fixation. Chemical Engineering Journal, 2022, 429, 132301.	12.7	51
1641	Reactive molecular dynamics simulations of nickel-based heterometallic catalysts for hydrogen evolution in an alkaline KOH solution. Computational Materials Science, 2022, 201, 110860.	3.0	5
1642	Sandwich-like Co(OH)x/Ag/Co(OH)2 nanosheet composites for oxygen evolution reaction in anion exchange membrane water electrolyzer. Journal of Alloys and Compounds, 2021, 889, 161674.	5.5	14
1643	First-principles study of Mn ₃ adsorbed on Au(111) and Cu(111) surfaces. RSC Advances, 2021, 11, 31073-31083.	3.6	3
1644	The rational design of Ni ₃ S ₂ nanosheets–Ag nanorods on Ni foam with improved hydrogen adsorption sites for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 3428-3435.	4.9	12
1645	Adsorption site engineering: Cu–Ni(OH) ₂ sheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 17521-17527.	10.3	28
1646	MoS ₂ Nanosheets on MoNi ₄ /MoO ₂ Nanorods for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 886-896.	5.0	35
1647	Ni _{1â^'2<i>x</i>} Mo _{<i>x</i>} Se nanowires@ammonium nickel phosphate–MoO _{<i>x</i>} heterostructures as a high performance electrocatalyst for water splitting. Sustainable Energy and Fuels, 2021, 5, 5581-5593.	4.9	5
1648	The <i>in situ</i> derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction. CrystEngComm, 2021, 23, 1172-1180.	2.6	17
1649	Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano, 2021, 15, 3468-3480.	14.6	54
1650	Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. Journal of Materials Chemistry A, 2021, 9, 14043-14051.	10.3	127
1651	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	30.8	415
1652	Nanoscale electrocatalyst design for alkaline hydrogen evolution reaction through activity descriptor identification. Materials Chemistry Frontiers, 2021, 5, 4042-4058.	5.9	17
1653	Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy and Environmental Science, 2021, 14, 4610-4619.	30.8	118
1654	PtNiFe nanoalloys with co-existence of energy-optimized active surfaces for synergistic catalysis of oxygen reduction and evolution. Journal of Materials Chemistry A, 2021, 9, 16187-16195.	10.3	9

#	Article	IF	CITATIONS
1655	Metal oxide-based electrocatalysts for low-temperature electrochemical production and oxidation of hydrogen (HER and HOR). , 2021, , 9-35.		0
1656	Bridging the two ends: Designing materials to bridge electronic conductivity and catalytic activity in an electrochemical energy converter. , 2021, , 1-8.		0
1657	<i>Operando</i> X-ray absorption spectroscopy of a Pd/γ-NiOOH 2 nm cubes hydrogen oxidation catalyst in an alkaline membrane fuel cell. Catalysis Science and Technology, 2021, 11, 1337-1344.	4.1	4
1658	Controlled assembly of cobalt embedded N-doped graphene nanosheets (Co@NGr) by pyrolysis of a mixed ligand Co(<scp>ii</scp>) MOF as a sacrificial template for high-performance electrocatalysts. RSC Advances, 2021, 11, 21179-21188.	3.6	9
1659	Phosphorus-decorated Mo-MXene/CQD hybrid: a 2D/0D architecture for bifunctional electrochemical water splitting. Nanoscale, 2021, 13, 14795-14806.	5.6	12
1660	Hierarchical MoO ₄ ^{2–} Intercalating α-Co(OH) ₂ Nanosheet Assemblies: Green Synthesis and Ultrafast Reconstruction for Boosting Electrochemical Oxygen Evolution. Energy & Fuels, 2021, 35, 2775-2784.	5.1	13
1661	Structural Dynamics of Ultrathin Cobalt Oxide Nanoislands under Potential Control. Advanced Functional Materials, 2021, 31, 2009923.	14.9	26
1662	Engineering Bimetallic NiFeâ€Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highlyâ€Efficient Oxygen Evolution Reaction. Small, 2021, 17, e2007334.	10.0	103
1663	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	38.1	461
1664	<i>In situ</i> electrochemical activation as a generic strategy for promoting the electrocatalytic hydrogen evolution reaction and alcohol electro-oxidation in alkaline medium. RSC Advances, 2021, 11, 10615-10624.	3.6	11
1665	Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. ACS Applied Materials & Interfaces, 2021, 13, 3369-3376.	8.0	29
1666	Controlling hydrogen evolution reaction activity on Ni core–Pt island nanoparticles by tuning the size of the Pt islands. Chemical Communications, 2021, 57, 2788-2791.	4.1	8
1667	Enabling and Inducing Oxygen Vacancies in Cobalt Iron Layer Double Hydroxide via Selenization as Precatalysts for Electrocatalytic Hydrogen and Oxygen Evolution Reactions. Inorganic Chemistry, 2021, 60, 2023-2036.	4.0	91
1668	Nonâ€Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts. Advanced Science, 2017, 4, 1700176.	11.2	29
1669	Identifying the Activation Mechanism and Boosting Electrocatalytic Activity of Layered Perovskite Ruthenate. Small, 2020, 16, e1906380.	10.0	13
1670	Interface Chemistry of Platinum-Based Materials for Electrocatalytic Hydrogen Evolution in Alkaline Conditions. , 2020, , 453-473.		3
1671	Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction. Electrochimica Acta, 2020, 350, 136382.	5.2	20
1672	Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review. International Journal of Hydrogen Energy, 2020, 45, 15763-15784.	7.1	116

#	Article	IF	CITATIONS
1673	Boosting visible light driven hydrogen production: Bifunctional interface of Ni(OH)2/Pt cocatalyst on TiO2. International Journal of Hydrogen Energy, 2020, 45, 16614-16621.	7.1	20
1674	Boosted up stability and activity of oxygen vacancy enriched RuO2/MoO3 mixed oxide composite for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 17287-17298.	7.1	30
1675	Construction of hierarchical Mn–CoO@Fe(OH)3 nanofiber array for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 847, 155560.	5.5	5
1676	Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism. Journal of Catalysis, 2020, 389, 29-37.	6.2	7
1677	The possible implications of magnetic field effect on understanding the reactant of water splitting. Chinese Journal of Catalysis, 2022, 43, 148-157.	14.0	31
1678	Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. , 0, .		1
1679	Electrosynthesis of CuO nanocrystal array as a highly efficient and stable electrocatalyst for oxygen evolution reaction. Chinese Journal of Chemical Physics, 2018, 31, 806-812.	1.3	3
1680	Nanostructured Pt-Ru / Ionic Liquid Crystal Composite for Electrocatalytic Oxidation of Methanol. International Journal of Electrochemical Science, 0, , 11271-11286.	1.3	8
1681	Bimetallic Co-Based (CoM, M = Mo, Fe, Mn) Coatings for High-Efficiency Water Splitting. Materials, 2021, 14, 92.	2.9	19
1682	Boosting Lattice Oxygen Oxidation of Perovskite to Efficiently Catalyze Oxygen Evolution Reaction by FeOOH Decoration. Research, 2020, 2020, 6961578.	5.7	114
1683	The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis. Journal of Energy Engineering, 2015, 24, 34-39.	0.2	3
1684	Trimetallic PtNiCo branched nanocages as efficient and durable bifunctional electrocatalysts towards oxygen reduction and methanol oxidation reactions. Journal of Materials Chemistry A, 2021, 9, 23444-23450.	10.3	49
1685	A simple, rapid and scalable synthesis approach for ultra-small size transition metal selenides with efficient water oxidation performance. Journal of Materials Chemistry A, 2021, 9, 24261-24267.	10.3	16
1686	Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustainable Energy and Fuels, 2021, 5, 6215-6268.	4.9	44
1687	Design principles of noble metal-free electrocatalysts for hydrogen production in alkaline media: combining theory and experiment. Nanoscale Advances, 2021, 3, 6797-6826.	4.6	23
1688	Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy and Environmental Science, 2021, 14, 6419-6427.	30.8	154
1689	Pt Decorated Niâ€Ni(OH)2 Nanotube Arrays for Efficient Hydrogen Evolution Reaction. ChemCatChem, 0, , .	3.7	7
1690	Synergistic Electrocatalysts for Alkaline Hydrogen Oxidation and Evolution Reactions. Advanced Functional Materials, 2022, 32, 2107479.	14.9	66

#	Article	IF	CITATIONS
1691	Universalâ€Descriptorsâ€Guided Design of Single Atom Catalysts toward Oxidation of Li ₂ S in Lithium–Sulfur Batteries. Advanced Science, 2021, 8, e2102809.	11.2	46
1692	Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. Journal of the American Chemical Society, 2021, 143, 18519-18526.	13.7	96
1693	Efficient Hydrogen Evolution Reaction Using FeCrMn Alloy as Novel Electrocatalyst in Acidic and Alkaline Media. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	0
1694	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81.	27.8	229
1695	Recent developments on transition <scp>metal–based</scp> electrocatalysts for application in anion exchange membrane water electrolysis. International Journal of Energy Research, 2022, 46, 2241-2276.	4.5	41
1696	Recent progress on bimetallic NiCo and CoFe based electrocatalysts for alkaline oxygen evolution reaction: A review. Journal of Energy Chemistry, 2022, 67, 101-137.	12.9	109
1697	Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism. Nano Letters, 2021, 21, 8901-8909.	9.1	13
1698	Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO <i>_x</i> /Pt Catalyst. Small, 2021, 17, e2104288.	10.0	63
1699	Atomic Heterointerface Boosts the Catalytic Activity toward Oxygen Reduction/Evolution Reaction. Advanced Energy Materials, 2021, 11, 2102235.	19.5	19
1700	Production and characterization of high-performance cobalt–nickel selenide catalyst with excellent activity in HER. Journal of Materials Research and Technology, 2021, 15, 3942-3950.	5.8	3
1701	Preparation and Catalytic Performance of Ni/NiO@C and SiO2@C Composites as using Bamboo as Carbon Source for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 0, , ArticleID:211134.	1.3	2
1702	Boosted hydrogen evolution in alkaline media enabled by a facile oxidation-involving surface modification. Electrochimica Acta, 2021, 398, 139337.	5.2	3
1703	One-pot synthesis of Ni3S2/Co3S4/FeOOH flower-like microspheres on Ni foam: An efficient binder-free bifunctional electrode towards overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127689.	4.7	9
1705	High Value-Added Products From Recycling of Spent Lithium-Ion Batteries. , 2019, , 141-159.		0
1706	Constructing the Fe/Cr double (oxy)hydroxides on Fe3O4 for boosting the electrochemical oxygen evolution in alkaline seawater and domestic sewage. Applied Catalysis B: Environmental, 2022, 302, 120847.	20.2	30
1707	Sulfur dopant-enhanced neutral hydrogen evolution performance in MoO ₃ nanosheets. Nanotechnology, 2022, 33, 065701.	2.6	1
1708	Metal–Organic Frameworkâ€Templated Graphitic Carbon Confining MnO/Mn ₃ O ₄ Nanoparticles via Direct Laser Printing for Electrocatalysis and Supercapacitor. Advanced Materials Interfaces, 2021, 8, .	3.7	4
1709	Interfacial Structural and Electronic Regulation of MoS ₂ for Promoting Its Kinetics and Activity of Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 53262-53270.	8.0	17

		15	2
#	Article	IF	CITATIONS
1711	Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical hydrogen production. Applied Catalysis B: Environmental, 2022, 303, 120873.	20.2	19
1712	Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52487-52497.	8.0	28
1713	Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Research, 2022, 15, 3812-3817.	10.4	10
1714	Electrochemical Reduction of CO ₂ to CO over Transition Metal/Nâ€Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science, 2021, 8, e2102886.	11.2	121
1715	Electrodeposition of Pt-Decorated Ni(OH) ₂ /CeO ₂ Hybrid as Superior Bifunctional Electrocatalyst for Water Splitting. Research, 2020, 2020, 9068270.	5.7	19
1716	Interfacial engineering of Ni(OH)2 on W2C for remarkable alkaline hydrogen production. Applied Catalysis B: Environmental, 2022, 301, 120818.	20.2	51
1717	Homogeneous Ni nanoparticles anchored on mesoporous N-doped carbon as highly efficient catalysts for Cr(VI), tetracycline and dyes reduction. Applied Surface Science, 2022, 575, 151748.	6.1	9
1718	New functional hybrid materials based on clay minerals for enhanced electrocatalytic activity. Journal of Alloys and Compounds, 2022, 892, 162239.	5.5	8
1719	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
1720	Dynamic Surface Reconstruction Unifies the Electrocatalytic Oxygen Evolution Performance of Nonstoichiometric Mixed Metal Oxides. Jacs Au, 2021, 1, 2224-2241.	7.9	23
1721	Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor. ChemElectroChem, 2022, 9, .	3.4	5
1722	Surface Reconstruction Enabled Efficient Hydrogen Generation on a Cobalt–Iron Phosphate Electrocatalyst in Neutral Water. ACS Applied Materials & Interfaces, 2021, 13, 53798-53809.	8.0	14
1723	Promotion of Oxygen Evolution Activity of Co-Based Nanocomposites by Introducing Fe3+ Ions. Topics in Catalysis, 0, , 1.	2.8	1
1724	Single-Atom Co Doped in Ultrathin WO ₃ Arrays for the Enhanced Hydrogen Evolution Reaction in a Wide pH Range. ACS Applied Materials & Interfaces, 2021, 13, 53915-53924.	8.0	17
1725	Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction. Synthetic Metals, 2021, 282, 116959.	3.9	27
1726	Nickel Integrated Carbon Electrodes for Improved Stability. Journal of the Electrochemical Society, 2020, 167, 130510.	2.9	1
1727	In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chinese Journal of Catalysis, 2022, 43, 33-46.	14.0	28
1728	Highly active oxygen evolution reaction electrocatalyst based on defective-CeO2-x decorated MOF(Ni/Fe). Electrochimica Acta, 2022, 403, 139630.	5.2	13

#	Article	IF	CITATIONS
1729	Structure Optimization of Cellulose Nanofibers/Poly(Lactic Acid) Composites by the Sizing of AKD. Polymers, 2021, 13, 4119.	4.5	3
1730	Critical Review, Recent Updates on Zeolitic Imidazolate Frameworkâ€67 (ZIFâ€67) and Its Derivatives for Electrochemical Water Splitting. Advanced Materials, 2022, 34, e2107072.	21.0	183
1731	Monoatomic Platinum-Embedded Hexagonal Close-Packed Nickel Anisotropic Superstructures as Highly Efficient Hydrogen Evolution Catalyst. Nano Letters, 2021, 21, 9381-9387.	9.1	30
1732	Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts, 2021, 11, 1394.	3.5	8
1733	Mn-doping tuned electron configuration and oxygen vacancies in NiO nanoparticles for stable electrocatalytic oxygen evolution reaction. Applied Surface Science, 2022, 577, 151952.	6.1	14
1734	Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Materials, 2022, 45, 281-290.	18.0	11
1735	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
1736	Urchin-liked FexCo1-x/CoOOH/FeOOH nanoparticles for highly efficient oxygen evolution reaction. Applied Surface Science, 2022, 577, 151830.	6.1	11
1737	High-performance nickel/iron catalysts for oxygen evolution in pH-near-neutral borate electrolyte synthesized by mechanochemical approach. Journal of Alloys and Compounds, 2022, 898, 162845.	5.5	7
1738	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , .	2.0	4
1739	Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media. ACS Catalysis, 2021, 11, 14328-14335.	11.2	87
1740	K-Edge XANES Investigation of Fe-Based Oxides by Density Functional Theory Calculations. Journal of Physical Chemistry C, 2021, 125, 26229-26239.	3.1	11
1741	Boosting Alkaline Hydrogen and Oxygen Evolution Kinetic Process of Tungsten Disulfideâ€Based Heterostructures by Multiâ€Site Engineering. Small, 2022, 18, e2104624.	10.0	44
1742	1D Nanowire Heterojunction Electrocatalysts of MnCo ₂ O ₄ /GDY for Efficient Overall Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	48
1743	Controlled high-density interface engineering of Fe3O4-FeS nanoarray for efficient hydrogen evolution. Journal of Energy Chemistry, 2022, 68, 96-103.	12.9	15
1744	Quenchâ€Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo ₂ O ₄ Nanowires. Small, 2022, 18, e2106187.	10.0	38
1745	Polyvinylpyrrolidone gel based Pt/Ni(OH) ₂ heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 27061-27071.	10.3	24
1746	Strain in a platinum plate induced by an ultrahigh energy laser boosts the hydrogen evolution reaction. RSC Advances, 2021, 11, 39087-39094.	3.6	4

#	Article	IF	CITATIONS
1747	Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. Nano-Micro Letters, 2022, 14, 43.	27.0	62
1748	Atomic‣evel Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	12.0	29
1749	NiMoFe/Cu nanowire core–shell catalysts for high-performance overall water splitting in neutral electrolytes. Chemical Communications, 2022, 58, 1569-1572.	4.1	14
1750	Structural Changes of Spinel MCo ₂ O ₄ (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 278-294.	5.1	41
1751	Unraveling the Reaction Interfaces and Intermediates of Ru-Catalyzed LiOH Decomposition in DMSO-Based Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2022, 13, 471-478.	4.6	9
1752	Thermo-selenized stainless steel as an efficient oxygen evolution electrode for water splitting and CO2 electrolysis in real water matrices. Journal of Power Sources, 2022, 521, 230953.	7.8	10
1753	Flower-like CuCoMoOx nanosheets decorated with CoCu nanoparticles as bifunctional electrocatalysts for hydrogen evolution reaction and water splitting. Electrochimica Acta, 2022, 404, 139748.	5.2	23
1754	Morphology engineering of iridium electrodes via modifying titanium substrates with controllable pillar structures for highly efficient oxygen evolution reaction. Electrochimica Acta, 2022, 405, 139797.	5.2	9
1755	Amorphous-crystalline heterostructure for simulated practical water splitting at high-current–density. Chemical Engineering Journal, 2022, 431, 134247.	12.7	29
1756	Molybdenum carbide nanosheets decorated with Ni(OH)2 nanoparticles toward efficient hydrogen evolution reaction in alkaline media. Applied Surface Science, 2022, 579, 152152.	6.1	11
1757	Achieving an efficient hydrogen evolution reaction with a bicontinuous nanoporous PtNiMg alloy of ultralow Noble-metal content at an ultrawide range of current densities. Chemical Engineering Journal, 2022, 433, 134571.	12.7	20
1758	Metal-organic frameworks derived RuP2 with yolk-shell structure and efficient performance for hydrogen evolution reaction in both acidic and alkaline media. Applied Catalysis B: Environmental, 2022, 305, 121043.	20.2	37
1759	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	5.6	38
1760	Spherical Co ₃ S ₄ grown directly on Ni–Fe sulfides as a porous nanoplate array on FeNi ₃ foam: a highly efficient and durable bifunctional catalyst for overall water splitting. Journal of Materials Chemistry A, 2022, 10, 5442-5451.	10.3	37
1761	Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. Chinese Chemical Letters, 2022, 33, 5196-5199.	9.0	8
1762	Unraveling the Function of Metal–Amorphous Support Interactions in Singleâ€Atom Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	4
1763	Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction. Chemical Communications, 2022, 58, 2746-2749.	4.1	4
1764	Understanding the high performance of PdSn–TaN(tantalum nitride)/C electrocatalysts for the methanol oxidation reaction: coupling nitrides and oxophilic elements. Journal of Materials Chemistry A, 2021, 10, 266-287.	10.3	18

#	Article	IF	CITATIONS
1765	Facile Synthesis of Feâ€Ðoped CoO Nanotubes as Highâ€Efficient Electrocatalysts for Oxygen Evolution Reaction. Small Structures, 2022, 3, .	12.0	22
1766	Operando Monitoring and Deciphering the Structural Evolution in Oxygen Evolution Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	90
1767	Unraveling the Function of Metal–Amorphous Support Interactions in Singleâ€Atom Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	62
1768	Fabrication of Coralâ€5haped MoS 2 @Ni(Mn)VO X Electrocatalyst for Efficient Alkaline Hydrogen Evolution. Energy Technology, 0, , 2101007.	3.8	1
1769	Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 2022, 51, 188-236.	38.1	53
1770	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie, 2022, 134, .	2.0	14
1771	Seamless separation of OH _{ad} and H _{ad} on a Ni–O catalyst toward exceptional alkaline hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 1278-1283.	10.3	9
1773	Advances of the functionalized carbon nitrides for electrocatalysis. , 2022, 4, 211-236.		33
1774	Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy and Environmental Science, 2022, 15, 760-770.	30.8	133
1775	Correlating Alkaline Hydrogen Electrocatalysis and Hydroxide Binding Energies on Mo-Modified Ru Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 1616-1623.	6.7	21
1776	Rational design, synthesis, and applications of carbon-assisted dispersive Ni-based composites. CrystEngComm, 2022, 24, 912-921.	2.6	14
1777	Applications of MXenes and their composites in catalysis and photoelectrocatalysis. , 2022, , 449-498.		0
1778	Core–shell and heterostructured silver–nickel nanocatalysts fabricated by γ-radiation induced synthesis for oxygen reduction in alkaline media. Dalton Transactions, 2022, 51, 3604-3615.	3.3	9
1779	Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes. ACS Catalysis, 2022, 12, 982-992.	11.2	49
1780	Development of Niâ€Ir Oxide Composites as Oxygen Catalysts for an Anionâ€Exchange Membrane Water Electrolyzer. Advanced Materials Interfaces, 2022, 9, .	3.7	14
1781	Heteroatomic Platinum–Cobalt Synergetic Active Centers with Charge Polarization Enable Superior Hydrogen Evolution Performance in both Acid and Base Media. ACS Applied Energy Materials, 2022, 5, 1496-1504.	5.1	19
1782	Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. Journal of Energy Chemistry, 2022, 69, 585-592.	12.9	77
1783	Comparison of Fe-enhanced oxygen evolution electrocatalysis in amorphous and crystalline nickel oxides to evaluate the structural contribution. Energy and Environmental Science, 2022, 15, 610-620.	30.8	37

#	Article	IF	CITATIONS
1784	Interfacial Water Enrichment and Reorientation on Pt/C Catalysts Induced by Metal Oxides Participation for Boosting the Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1069-1076.	4.6	15
1785	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	3.4	12
1786	Mixed metal oxides as efficient electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2022, 47, 5250-5259.	7.1	14
1787	Formation of Highly Active NiO(OH) Thin Films from Electrochemically Deposited Ni(OH) ₂ by a Simple Thermal Treatment at a Moderate Temperature: A Combined Electrochemical and Surface Science Investigation. ACS Catalysis, 2022, 12, 1508-1519.	11.2	34
1788	Facile deposition of NiFe-LDH ultrathin film on pyrolytic graphite sheet for oxygen evolution reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2022, 47, 8786-8798.	7.1	12
1789	Homogeneous Water Oxidation Catalyzed by Firstâ€Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. ChemSusChem, 2022, 15, .	6.8	18
1790	Surface engineering of MOF-derived FeCo/NC core-shell nanostructures to enhance alkaline water-splitting. International Journal of Hydrogen Energy, 2022, 47, 5036-5043.	7.1	31
1791	Nanoelectrocatalysis: An introduction. , 2022, , 3-10.		0
1792	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	130
1793	Boosted electrolytic hydrogen production at tailor-tuned nano-dendritic Ni-doped Co foam-like catalyst. Electrochimica Acta, 2022, 410, 139992.	5.2	11
1793 1794		5.2 7.1	11
	catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution		
1794	 catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 6691-6699. The Pivotal Role of sâ€; pâ€; and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. 	7.1	16
1794 1795	 catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 6691-6699. The Pivotal Role of sâ€, pâ€, and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432. Facile and rapid synthesis of Pt-NiOx/NiF composites as a highly efficient electrocatalyst for alkaline 	7.1 21.0	16 55
1794 1795 1796	 catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 6691-6699. The Pivotal Role of sâ€, pâ€, and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432. Facile and rapid synthesis of Pt-NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 7504-7510. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904, 	7.1 21.0 7.1	16 55 5
1794 1795 1796 1797	catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 6691-6699. The Pivotal Role of sâ€, pâ€, and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432. Facile and rapid synthesis of Pt-NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 7504-7510. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904, 164084. A Facile Synthetic Strategy for Decavanadate and Transition Metal Based Allâ€horganic Coordination Polymers and Insights into Their Electrocatalytic OER Activity. European Journal of Inorganic	7.121.07.15.5	16 55 5 29
1794 1795 1796 1797 1798	 catalyst. Electrochimica Acta, 2022, 410, 139992. Highly active and durable FexCuyNi1-x-y/FeOOH/NiOOH/CuO complex oxides for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 6691-6699. The Pivotal Role of sâ€, pâ€, and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432. Facile and rapid synthesis of Pt-NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 7504-7510. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904, 164084. A Facile Synthetic Strategy for Decavanadate and Transition Metal Based Allâ€horganic Coordination Polymers and Insights into Their Electrocatalytic OER Activity. European Journal of Inorganic Chemistry, 2022, 2022, . Cobalt supported on biomass carbon tubes derived from cotton fibers towards high-efficient 	 7.1 21.0 7.1 5.5 2.0 	16 55 5 29 6

#	Article	IF	CITATIONS
1802	Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 903, 163741.	5.5	10
1803	Rational design of self-supported WC/Co3W3N/Co@NC yolk/shell nitrogen-doped porous carbon catalyst for highly efficient overall water splitting. Journal of Alloys and Compounds, 2022, 902, 163627.	5.5	8
1804	Three-dimensional crystalline-Ni5P4@amorphous-NiOx core–shell nanosheets as bifunctional electrode for urea electro-oxidation and hydrogen evolution. Fuel, 2022, 315, 123279.	6.4	24
1805	Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production. Journal of Colloid and Interface Science, 2022, 614, 267-276.	9.4	10
1806	Nanosized high entropy spinel oxide (FeCoNiCrMn) ₃ O ₄ as a highly active and ultra-stable electrocatalyst for the oxygen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 1479-1488.	4.9	31
1807	Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nature Communications, 2022, 13, 763.	12.8	68
1808	Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production. Catalysts, 2022, 12, 204.	3.5	1
1809	Multifunctional photoâ€electrocatalysts of copper sulfides prepared via pulsed laser ablation in liquid: Phase formation kinetics and photoâ€electrocatalytic activity. International Journal of Energy Research, 2022, 46, 8201-8217.	4.5	5
1810	Facile Fabrication of Bifunctional Hydrogen Catalytic Electrodes for Long-Life Nickel–Hydrogen Gas Batteries. Nano Letters, 2022, 22, 1741-1749.	9.1	24
1811	Discharge Induced-Activation of Phosphorus-Doped Nickel Oxyhydroxide for Oxygen Evolution Reaction. Chemical Engineering Journal, 2022, 435, 135049.	12.7	14
1812	Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction. Catalysts, 2022, 12, 2.	3.5	8
1813	Enhanced electrochemical activity of Co3O4/Co9S8 heterostructure catalyst for water splitting. International Journal of Hydrogen Energy, 2022, 47, 30970-30980.	7.1	35
1814	Layered double (Ni, Fe) hydroxide grown on nickel foam and modified by nickel carbonyl powder and carbon black as an efficient electrode for water splitting. International Journal of Hydrogen Energy, 2022, 47, 19609-19618.	7.1	14
1815	Role of Pt and PtO ₂ in the Oxygen-Evolution Reaction in the Presence of Iron under Alkaline Conditions. Inorganic Chemistry, 2022, 61, 613-621.	4.0	22
1816	Tungsten–Nickel Alloy Boosts Alkaline Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 27185-27191.	3.1	15
1817	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. , 2022, 4, 181-189.		50
1818	In situ Raman spectroscopyÂreveals the structure and dissociation of interfacial water. Nature, 2021, 600, 81-85.	27.8	381
1819	Dynamic coordination transformation of active sites in single-atom MoS ₂ catalysts for boosted oxygen evolution catalysis. Energy and Environmental Science, 2022, 15, 2071-2083.	30.8	33

#	Article	IF	Citations
1820	Electrolyte pH-dependent hydrogen binding energies and coverages on platinum, iridium, rhodium, and ruthenium surfaces. Catalysis Science and Technology, 2022, 12, 3228-3233.	4.1	10
1821	<i>In situ</i> fluorescence yield soft X-ray absorption spectroscopy of electrochemical nickel deposition processes with and without ethylene glycol. RSC Advances, 2022, 12, 10425-10430.	3.6	1
1822	An <i>in situ</i> generated 3D porous nanostructure on 2D nanosheets to boost the oxygen evolution reaction for water-splitting. Nanoscale, 2022, 14, 4566-4572.	5.6	36
1823	Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. Journal of Materials Chemistry A, 2022, 10, 10209-10218.	10.3	24
1824	Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 6242-6250.	10.3	20
1825	Ultra-small-sized multi-element metal oxide nanofibers: an efficient electrocatalyst for hydrogen evolution. Nanoscale Advances, 2022, 4, 1758-1769.	4.6	3
1826	Enhanced methanol electrooxidation by electroactivated Pd/Ni(OH)2/N-rGO catalyst. International Journal of Hydrogen Energy, 2023, 48, 6680-6690.	7.1	24
1827	Ultraâ€Đurability and Enhanced Activity of Amorphous Cobalt Anchored Polyaniline Synergistic towards Electrocatalytic Water Oxidation. ChemistrySelect, 2022, 7, .	1.5	14
1828	Nickel-Based Electrocatalysts for Water Electrolysis. Energies, 2022, 15, 1609.	3.1	21
1829	Ni(II)-Based Coordination Polymer with Pi-Conjugated Organic Linker as Catalyst for Oxygen Evolution Reaction Activity. Energy & Fuels, 2022, 36, 2722-2730.	5.1	9
1830	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	125
1831	Selective Electrooxidation of Biomassâ€Derived Alcohols to Aldehydes in a Neutral Medium: Promoted Water Dissociation over a Nickelâ€Oxideâ€Supported Ruthenium Singleâ€Atom Catalyst. Angewandte Chemie, 2022, 134, .	2.0	41
1832	Toward stable photoelectrochemical water splitting using NiOOH coated hierarchical nitrogen-doped ZnO-Si nanowires photoanodes. Journal of Energy Chemistry, 2022, 71, 45-55.	12.9	24
1833	Bifunctional WC‣upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	89
1834	Bifunctional WC‣upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie, 2022, 134, .	2.0	11
1835	Lowâ€Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Longâ€Term Stability. Advanced Functional Materials, 2022, 32, .	14.9	51
1836	Polar Layered Intermetallic LaCo ₂ P ₂ as a Water Oxidation Electrocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 14120-14128.	8.0	4
1837	Transition-metal hydroxide nanosheets with peculiar double-layer structures as efficient electrocatalysts. Chem Catalysis, 2022, 2, 867-882.	6.1	10

#	Article	IF	CITATIONS
1838	A nano-spherical structure Ni3S2/Ni(OH)2 electrocatalyst prepared by one-step fast electrodeposition for efficient and durable water splitting. International Journal of Hydrogen Energy, 2022, 47, 14916-14929.	7.1	9
1839	In situ synthesis by organometallic method of vulcan supported PdNi nanostructures for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2022, 47, 15655-15672.	7.1	4
1840	An Enhanced Oxidation of Formate on PtNi/Ni Foam Catalyst in an Alkaline Medium. Crystals, 2022, 12, 362.	2.2	10
1841	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	2.8	6
1842	Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochemical Science Advances, 2023, 3, .	2.8	8
1843	Electrocatalytic properties of scandium metallofullerenes for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 11904-11915.	7.1	3
1844	The Effect of the 3D Nanoarchitecture and Niâ€Promotion on the Hydrogen Evolution Reaction in MoS ₂ /Reduced GO Aerogel Hybrid Microspheres Produced by a Simple Oneâ€Pot Electrospraying Procedure. Small, 2022, 18, e2105694.	10.0	5
1845	Hydrogen Spillover-Bridged Volmer/Tafel Processes Enabling Ampere-Level Current Density Alkaline Hydrogen Evolution Reaction under Low Overpotential. Journal of the American Chemical Society, 2022, 144, 6028-6039.	13.7	179
1846	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	6.3	6
1847	Engineering Sulfur Vacancies in Spinel-Phase Co ₃ S ₄ for Effective Electrocatalysis of the Oxygen Evolution Reaction. ACS Omega, 2022, 7, 12430-12441.	3.5	26
1848	Mesoporous Single Crystals with Feâ€Rich Skin for Ultralow Overpotential in Oxygen Evolution Catalysis. Advanced Materials, 2022, 34, e2200088.	21.0	33
1849	Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chinese Journal of Chemical Engineering, 2022, 43, 282-296.	3.5	75
1850	Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution. Journal of Energy Chemistry, 2022, 72, 210-216.	12.9	11
1851	Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022, 32, .	14.9	209
1852	Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. Journal of Colloid and Interface Science, 2022, 620, 442-453.	9.4	22
1853	Constructing Multiple Heterostructures on Nickel Oxide Using Rareâ€earth Oxide and Nickel as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemCatChem, 0, , .	3.7	6
1854	Synergistic regulation of hydrogen adsorption/desorption via dual interfaces of Cu/Ni/Ni(OH)2 toward efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 14053-14062.	7.1	4
1855	Atomic Engineering Catalyzed Redox Kinetics of Ni _x Co _{1â€x} (OH) ₂ on Nanoporous Phosphide Electrode for Efficient Niâ€Zn Batteries. Small, 2022, 18, e2200452.	10.0	7

#	Article	IF	CITATIONS
1856	From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy, 2022, 98, 107231.	16.0	76
1857	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	3.7	6
1858	Zeolitic-imidazolate frameworks-derived Co3S4/NiS@Ni foam heterostructure as highly efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 13616-13628.	7.1	9
1859	Modulating electronic structure of multilayer flake-like Ni–CoxP bimetallic catalyst for highly efficient hydrogen evolution reaction in alkaline and acidic medium. Ionics, 2022, 28, 2895-2902.	2.4	1
1860	An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells. Nature Materials, 2022, 21, 804-810.	27.5	97
1861	High throughput preparation of Ni–Mo alloy thin films as efficient bifunctional electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2022, 47, 15764-15774.	7.1	25
1862	Enhancement of hydrogen evolution reaction kinetics in alkaline media by fast galvanic displacement of nickel with rhodium – From smooth surfaces to electrodeposited nickel foams. Electrochimica Acta, 2022, 414, 140214.	5.2	10
1863	Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 616, 338-346.	9.4	21
1864	V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction. Chemical Engineering Journal, 2022, 438, 135515.	12.7	30
1865	Rational construction of S-doped FeOOH onto Fe2O3 nanorods for enhanced water oxidation. Journal of Colloid and Interface Science, 2022, 616, 749-758.	9.4	35
1866	Interface engineering of inâ^'situ formed nickel hydr(oxy)oxides on nickel nitrides to boost alkaline hydrogen electrocatalysis. Applied Catalysis B: Environmental, 2022, 309, 121279.	20.2	34
1867	FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution. Applied Surface Science, 2022, 589, 153041.	6.1	15
1868	Metal-organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting. Sustainable Materials and Technologies, 2022, 32, e00421.	3.3	6
1869	Highly efficient, field-assisted water splitting enabled by a bifunctional Ni3Fe magnetized wood carbon. Chemical Engineering Journal, 2022, 439, 135722.	12.7	17
1870	Simultaneous electrical and defect engineering of nickel iron metal-organic-framework via co-doping of metalloid and non-metal elements for a highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 439, 135720.	12.7	41
1871	Stainless steel: A high potential material for green electrochemical energy storage and conversion. Chemical Engineering Journal, 2022, 440, 135459.	12.7	22
1872	Electronic structure regulation and polysulfide bonding of Co-doped (Ni, Fe)1+xS enable highly efficient and stable electrocatalytic overall water splitting. Chemical Engineering Journal, 2022, 441, 136121.	12.7	41
1873	Rapid screening of NixFe1â^'x/Fe2O3/Ni(OH)2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method. Applied Surface Science, 2022, 592, 153251.	6.1	9

#	Article	IF	CITATIONS
1874	Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Research, 2022, 15, 2994-3000.	10.4	13
1875	Topochemical Transformation of Two-Dimensional VSe ₂ into Metallic Nonlayered VO ₂ for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano, 2022, 16, 351-367.	14.6	23
1876	Electrodeposition of Defectâ€Rich Ternary NiCoFe Layered Double Hydroxides: Fine Modulation of Co ³⁺ for Highly Efficient Oxygen Evolution Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	5
1877	Realizing High and Stable Electrocatalytic Oxygen Evolution for Ironâ€Based Perovskites by Coâ€Dopingâ€Induced Structural and Electronic Modulation. Advanced Functional Materials, 2022, 32, .	14.9	28
1878	Review of the Hydrogen Evolution Reaction—A Basic Approach. Energies, 2021, 14, 8535.	3.1	22
1879	Compositional modulation by elemental leaching and chronoamperometric aging of 4J36 INVAR alloy for facile and efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 911, 165059.	5.5	1
1880	Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. Advanced Science, 2022, 9, e2200307.	11.2	121
1881	The Synergistic Effect of Pyrrolicâ€N and Pyridinicâ€N with Pt Under Strong Metalâ€Support Interaction to Achieve Highâ€Performance Alkaline Hydrogen Evolution. Advanced Energy Materials, 2022, 12, .	19.5	72
1882	Synergy Promotion of Elemental Doping and Oxygen Vacancies in Fe ₂ O ₃ Nanorods for Photoelectrochemical Water Splitting. ACS Applied Nano Materials, 2022, 5, 6781-6791.	5.0	41
1883	Controlled synthesis of NiCo2O4@Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 17252-17262.	7.1	30
1884	Favorable surface etching of NiRuFe(OH)x in neutral hydrogen evolution reaction. Catalysis Today, 2022, 400-401, 1-5.	4.4	2
1885	Surface and Interface Engineering Strategies for MoS ₂ Towards Electrochemical Hydrogen Evolution. Chemistry - an Asian Journal, 2022, 17, .	3.3	6
1886	Heterostructures based on transition metal chalcogenides and layered double hydroxides for enhanced water splitting. Current Opinion in Electrochemistry, 2022, 34, 101016.	4.8	5
1887	High-entropy FeCoNiMn (oxy)hydroxide as high-performance electrocatalyst for OER and boosting clean carrier production under quasi-industrial condition. Journal of Cleaner Production, 2022, 356, 131680.	9.3	22
1888	Equilibrated PtIr/IrO <i>_x</i> Atomic Heterojunctions on Ultrafine 1D Nanowires Enable Superior Dualâ€Electrocatalysis for Overall Water Splitting. Small, 2022, 18, e2201333.	10.0	21
1889	Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickelâ€Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	7
1890	Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nature Communications, 2022, 13, 2024.	12.8	106
1891	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	41.6	171

#	Article	IF	CITATIONS
1892	Manipulating the Water Dissociation Electrocatalytic Sites of Bimetallic Nickelâ€Based Alloys for Highly Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
1893	Ni(OH)2 nanoparticles decorated on 1T phase MoS2 basal plane for efficient water splitting. Applied Surface Science, 2022, 593, 153408.	6.1	10
1896	Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?. Journal of Physical Chemistry B, 2022, 126, 3257-3268.	2.6	7
1897	Recent development in MOFs for oxygen evolution reactions. , 2022, , 135-163.		0
1898	Interfaces joining for modifying transition metal oxides. , 2022, , 191-216.		0
1899	Engineering Low-Coordination Single-Atom Cobalt on Graphitic Carbon Nitride Catalyst for Hydrogen Evolution. ACS Catalysis, 2022, 12, 5517-5526.	11.2	67
1900	Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catalysis Today, 2022, 402, 259-265.	4.4	17
1901	Crystal Facet-Manipulated 2D Pt Nanodendrites to Achieve an Intimate Heterointerface for Hydrogen Evolution Reactions. Journal of the American Chemical Society, 2022, 144, 9033-9043.	13.7	53
1902	Fabrication of Alkaline Electrolyzer Using Ni@MWCNT as an Effective Electrocatalyst and Composite Anion Exchange Membrane. ACS Omega, 2022, 7, 15467-15477.	3.5	4
1903	Promising Electrocatalytic Water and Methanol Oxidation Reaction Activity by Nickel Doped Hematite/Surface Oxidized Carbon Nanotubes Composite Structures. ChemPlusChem, 2022, 87, e202200036.	2.8	5
1904	In-situ synthesis of nickel/palladium bimetal/ZnIn2S4 Schottky heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 623, 205-215.	9.4	29
1905	Merging operando and computational X-ray spectroscopies to study the oxygen evolution reaction. Current Opinion in Electrochemistry, 2022, 35, 101039.	4.8	3
1906	Bifunctional Catalytic Activity of Solvothermally Synthesized CeO ₂ Nanosphere/NiO Nanoflake Nanocomposites. ACS Applied Energy Materials, 2022, 5, 5666-5679.	5.1	17
1907	Hierarchical Heterostructure of Amorphous CoFe@CoNi Hydroxides Composite on Nickel Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemCatChem, 2022, 14, .	3.7	4
1908	Computational design of ternary NiO/MPt interface active sites for H2O dissociation. International Journal of Hydrogen Energy, 2022, 47, 20040-20048.	7.1	2
1909	Anionic and Cationic Co-Substitutions of S into Vertically Aligned WTe ₂ Nanosheets as Catalysis for Hydrogen Evolution under Alkaline Conditions. ACS Applied Nano Materials, 2022, 5, 7123-7131.	5.0	3
1910	Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Frontiers in Chemistry, 2022, 10, .	3.6	15
1911	MoNi4–NiO heterojunction encapsulated in lignin-derived carbon for efficient hydrogen evolution reaction. Green Energy and Environment, 2023, 8, 1728-1736.	8.7	11

#	Article	IF	CITATIONS
1912	Promoting Oxygen Evolution Reaction Induced by Synergetic Geometric and Electronic Effects of IrCo Thin-Film Electrocatalysts. ACS Catalysis, 2022, 12, 6334-6344.	11.2	12
1913	Recent Development and Future Perspectives of Amorphous Transition Metalâ€Based Electrocatalysts for Oxygen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	19.5	158
1914	Promoting the water dissociation of nickel sulfide electrocatalyst through introducing cationic vacancies for accelerated hydrogen evolution kinetics in alkaline media. Journal of Catalysis, 2022, 410, 112-120.	6.2	14
1915	Hierarchical nanocomposites of nickel/iron-layered double hydroxide ultrathin nanosheets strong-coupled with nanocarbon networks for enhanced oxygen evolution reaction. Electrochimica Acta, 2022, 420, 140455.	5.2	14
1916	Short pulse laser structuring as a scalable process to produce cathodes for large alkaline water electrolyzers. Journal of Power Sources, 2022, 538, 231572.	7.8	2
1917	Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. Journal of Colloid and Interface Science, 2022, 622, 728-737.	9.4	21
1918	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	2.8	58
1919	A smart strategy of "laser-direct-writing―to achieve scalable fabrication of self-supported MoNi ₄ /Ni catalysts for efficient and durable hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 12722-12732.	10.3	8
1920	Mesoporous Mn–Fe oxyhydroxides for oxygen evolution. Inorganic Chemistry Frontiers, 2022, 9, 3559-3565.	6.0	20
1921	Oxygen-vacancy-rich nickel hydroxide nanosheet: a multifunctional layer between Ir and Si toward enhanced solar hydrogen production in alkaline media. Energy and Environmental Science, 2022, 15, 3051-3061.	30.8	27
1922	Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Metals, 2022, 41, 2606-2615.	7.1	45
1923	Uniform cobalt nanoparticles embedded in nitrogen-doped graphene with abundant defects as high-performance bifunctional electrocatalyst in overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 21191-21203.	7.1	10
1924	Interfacial Construction and Lattice Distortion-Triggered Bifunctionality of Mn-Nis/Mn-Ni3s4 for H2 Production. SSRN Electronic Journal, 0, , .	0.4	0
1925	TiO ₂ -enhanced <i>in situ</i> electrochemical activation of Co ₃ O ₄ for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 13769-13779.	10.3	6
1926	W ^{VI} –OH functionality on polyoxometalates for water reduction to molecular hydrogen. Inorganic Chemistry Frontiers, 2022, 9, 3566-3577.	6.0	5
1927	Multi-Interfacial Ni/Mo2c Ultrafine Hybrids Anchored on Nitrogen-Doped Carbon Nanosheets as a Highly Efficient Electrocatalyst for Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
1928	Coupling LaNiO3 Nanorods with FeOOH Nanosheets for Oxygen Evolution Reaction. Catalysts, 2022, 12, 594.	3.5	7
1929	Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Science Advances, 2022, 8, .	10.3	89

#	Article	IF	CITATIONS
1930	Synergistic effect of oxidation etching and phase transformation triggered by controllable ion-bath microenvironments toward constructing ultra-thin porous nanosheets for accelerated industrial water splitting at high current density. Journal of Colloid and Interface Science, 2022, 625, 50-58.	9.4	8
1931	Challenges in determining the electrochemically active surface area of Ni-oxides in the oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 918, 116479.	3.8	14
1932	Interface engineering of double-layered nanosheets via cosynergistic modification by LDH interlayer carbonate anion and molybdate for accelerated industrial water splitting at high current density. Applied Surface Science, 2022, 598, 153690.	6.1	10
1933	Electrocatalytic hydrogen production by CN– substituted cobalt triaryl corroles. Catalysis Science and Technology, 2022, 12, 5125-5135.	4.1	6
1934	Role of hydrogen generation technologies for renewable hydrogen production. , 2022, , 377-407.		0
1935	BrÃ,nsted Acid-Functionalized Ionic Co(II) Framework: A Tailored Vessel for Electrocatalytic Oxygen Evolution and Size-Exclusive Optical Speciation of Biothiols. ACS Applied Materials & Interfaces, 2022, 14, 29773-29787.	8.0	17
1936	Porous bimetallic cobalt-iron phosphide nanofoam for efficient and stable oxygen evolution catalysis. Journal of Colloid and Interface Science, 2022, 626, 515-523.	9.4	13
1937	Substitutional Doping Engineering toward W ₂ N Nanorod for Hydrogen Evolution Reaction at High Current Density. , 2022, 4, 1374-1380.		21
1938	Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Applied Catalysis B: Environmental, 2022, 316, 121667.	20.2	48
1939	Purification of Residual Ni and Co Hydroxides from Feâ€Free Alkaline Electrolyte for Electrocatalysis Studies. ChemElectroChem, 2022, 9, .	3.4	9
1940	Entwined Co(OH) ₂ <i>In Situ</i> Anchoring on 3D Nickel Foam with Phenomenal Bifunctional Activity in Overall Water Splitting. Energy & Fuels, 2022, 36, 7006-7016.	5.1	15
1941	Enhanced Electrochemical Hydrogen Evolution of WTe2 by Introducing Te vacancies. International Journal of Electrochemical Science, 2022, 17, 220738.	1.3	0
1942	Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism. Chinese Journal of Catalysis, 2022, 43, 2091-2110.	14.0	36
1943	Highly stable and efficient Pt single-atom catalyst for reversible proton-conducting solid oxide cells. Applied Catalysis B: Environmental, 2022, 316, 121627.	20.2	16
1944	Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction <i>via</i> lattice oxygen oxidation. Energy and Environmental Science, 2022, 15, 3912-3922.	30.8	95
1945	A carbonization/interfacial assembly-driven electroplating approach for water-splitting textile electrodes with remarkably low overpotentials and high operational stability. Energy and Environmental Science, 2022, 15, 3815-3829.	30.8	23
1946	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	11.2	72
1947	A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat, 0, , .	11.9	1

#	Article	IF	CITATIONS
1948	Activation of H ₂ O Tailored by Interfacial Electronic States at a Nanoscale Interface for Enhanced Electrocatalytic Hydrogen Evolution. Jacs Au, 2022, 2, 1457-1471.	7.9	6
1949	NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Nanomaterials, 2022, 12, 2200.	4.1	6
1950	Co ₃ O ₄ CoP Core–Shell Nanoparticles with Enhanced Electrocatalytic Water Oxidation Performance. ACS Applied Nano Materials, 2022, 5, 9150-9158.	5.0	2
1951	Polyol Synthesis of Ni and Fe Co-Incorporated Tungsten Oxide for Highly Efficient and Durable Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 076510.	2.9	3
1952	Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly. Energy Technology, 2022, 10, .	3.8	11
1953	Bimetallic Cobalt–Nickel Electrode Made by a Sputtering Technique for Electrocatalytic Hydrogen Evolution Reaction: Effect of Nickel Ratios. ACS Applied Energy Materials, 2022, 5, 8658-8668.	5.1	9
1954	Ternary PtRuTe alloy nanofibers as an efficient and durable electrocatalyst for hydrogen oxidation reaction in alkaline media. Science China Materials, 2022, 65, 3462-3469.	6.3	9
1955	Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nature Communications, 2022, 13, .	12.8	62
1956	Chameleon‣ike Reconstruction on Redox Catalysts Adaptive to Alkali Water Electrolysis. Small, 2022, 18, .	10.0	9
1957	Oxygen vacancies and surface reconstruction on NiFe LDH@Ni(OH)2 heterojunction synergistically triggering oxygen evolution and urea oxidation reaction. Journal of Alloys and Compounds, 2022, 921, 166145.	5.5	27
1958	Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2022, 33, 18180-18186.	2.2	2
1959	Competitive Adsorption: Reducing the Poisoning Effect of Adsorbed Hydroxyl on Ru Singleâ€Atom Site with SnO ₂ for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	75
1960	Electric-Field-Treated Ni/Co3O4 Film as High-Performance Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Nano-Micro Letters, 2022, 14, .	27.0	68
1961	Tungsten-Based Nanocatalysts: Research Progress and Future Prospects. Molecules, 2022, 27, 4751.	3.8	9
1962	Interfacial construction and lattice distortion-triggered bifunctionality of Mn-NiS/Mn-Ni3S4 for H2 production. Fuel, 2022, 328, 125337.	6.4	5
1963	Structure–activity relations of Cu-based single-crystal model electrocatalysts. , 2024, , 210-226.		1
1964	Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr _{0.2} Mn _{0.2} Fe _{0.2} Ni _{0.2} Zn _{0.2}) ₃ O for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 17633-17641.	<sub.84<td>ub7</td></s	u b 7
1965	Topologic Transition-Induced Abundant Undercoordinated Fe Active Sites in Nifeooh for Superior Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1966	Boosting the interfacial hydrogen migration for efficient alkaline hydrogen evolution on Pt-based nanowires. Journal of Materials Chemistry A, 2022, 10, 16834-16841.	10.3	13
1967	Electrochemically Tuned Synergistic Nanoâ€Interface of a Tertiary Ni(OH) ₂ â~'NiO(OH)/Ni _x P Heterojunction Material for Enhanced and Durable Alkaline Water Splitting. ChemistrySelect, 2022, 7, .	1.5	2
1968	Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning the Interfacial Hydrogenâ€Bonding Environment on Functionalized Platinum Surfaces. Angewandte Chemie, 2022, 134, .	2.0	1
1969	Enhancing Hydrogen Oxidation and Evolution Kinetics by Tuning the Interfacial Hydrogenâ€Bonding Environment on Functionalized Platinum Surfaces. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
1970	Barrel-Shaped-Polyoxometalates Exhibiting Electrocatalytic Water Reduction at Neutral pH: A Synergy Effect. Inorganic Chemistry, 2022, 61, 13868-13882.	4.0	3
1971	Coreâ€shell nanocatalysts with reduced platinum content toward more costâ€effective proton exchange membrane fuel cells. Nano Select, 2022, 3, 1459-1483.	3.7	2
1972	Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
1973	Competitive Adsorption: Reducing the Poisoning Effect of Adsorbed Hydroxyl on Ru Singleâ€Atom Site with SnO ₂ for Efficient Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	13
1974	Constructing synergy of sufficient hydroxyl and oxygen in <scp>PtNi</scp> / <scp>Al₂O₃</scp> enables roomâ€ŧemperature catalytic <scp>HCHO</scp> oxidation. AICHE Journal, 2023, 69, .	3.6	1
1975	Pt–Co Electrocatalysts: Syntheses, Morphologies, and Applications. Small, 2022, 18, .	10.0	10
1976	Physical insights into alkaline overall water splitting with NiO microflowers electrodes with ultra-low amount of Pt catalyst. International Journal of Hydrogen Energy, 2022, 47, 33988-33998.	7.1	14
1977	Te-mediated electro-driven oxygen evolution reaction. , 2022, 1, e9120029.		165
1978	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
1979	Design principle of electrocatalysts for the electrooxidation of organics. CheM, 2022, 8, 2594-2629.	11.7	44
1980	In Situ Engineering of the Cu ⁺ /Cu ⁰ Interface to Boost C ₂₊ Selectivity in CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 36527-36535.	8.0	13
1981	Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction. Angewandte Chemie, 0, , .	2.0	0
1982	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie, 2022, 134, .	2.0	4
1983	Boosting electrochemical nitrate-ammonia conversion via organic ligands-tuned proton transfer. Nano Energy, 2022, 103, 107705.	16.0	16

	CITATION REI	PORT	
#	Article	IF	CITATIONS
1984	Multi-interfacial Ni/Mo2C ultrafine hybrids anchored on nitrogen-doped carbon nanosheets as a highly efficient electrocatalyst for water splitting. Materials Today Nano, 2022, 20, 100248.	4.6	10
1985	The critical role of A, B-site cations and oxygen vacancies on the OER electrocatalytic performances of Bi0.15Sr0.85Co1â^'Fe O3â^'δ (0.2Ââ‰ÂxÂâ‰Â1) perovskites in alkaline media. Chemical Engineering Journal, 451, 138646.	2023,	16
1986	Insight into role of Ni/Fe existing forms in reversible oxygen catalysis based on Ni-Fe single-atom/nanoparticles and N-doped carbon. Rare Metals, 2022, 41, 4034-4040.	7.1	19
1987	The correlation of the nickel (1 1 1) facet with the hydrogen evolution performance of Ni electrodes in alkaline solutions. Journal of Electroanalytical Chemistry, 2022, 923, 116833.	3.8	4
1988	Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy, 2022, 103, 107753.	16.0	47
1989	Pd–Ni(OH)2 nanocatalyst on Ketjen black carbon as a potential alternative to commercial Pt-catalysts for oxygen reduction reactions. Materials Science in Semiconductor Processing, 2022, 152, 107116.	4.0	4
1990	Regulating d-orbital electronic character and HER free energy of VN electrocatalyst by anchoring single atom. Chemical Engineering Journal, 2023, 452, 139131.	12.7	16
1991	Carbon-Based Nanomaterials for Oxygen Evolution Reaction. Springer Series in Materials Science, 2022, , 147-167.	0.6	0
1992	β- and γ-NiFeOOH electrocatalysts for an efficient oxygen evolution reaction: an electrochemical activation energy aspect. Journal of Materials Chemistry A, 2022, 10, 20847-20855.	10.3	19
1993	Enhanced electrocatalytic activity of low-cost NiO microflowers on graphene paper for the oxygen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 4498-4505.	4.9	9
1994	High-frequency ultrasonic pyrolysis of 200 nm ultrafine Fe-doped NiO hollow spheres for efficient oxygen evolution catalysis. New Journal of Chemistry, 2022, 46, 19685-19693.	2.8	2
1995	Spinel-structured metal oxide-embedded MXene nanocomposites for efficient water splitting reactions. Inorganic Chemistry Frontiers, 2022, 9, 5903-5916.	6.0	16
1996	Lewis acid Mg ²⁺ -doped cobalt phosphate nanosheets for enhanced electrocatalytic oxygen evolution reaction. Chemical Communications, 2022, 58, 10801-10804.	4.1	9
1997	Regulating the coordination environment of a metal–organic framework for an efficient electrocatalytic oxygen evolution reaction. Energy Advances, 2022, 1, 641-647.	3.3	2
1998	An efficient vanadium/cobalt metaphosphate electrocatalyst for hydrogen and oxygen evolution in alkaline water splitting. Inorganic Chemistry Frontiers, 2022, 9, 4808-4816.	6.0	4
1999	One-pot synthesis and microstructure analysis of Fe-doped NiS ₂ for efficient oxygen evolution electrocatalysis. Materials Advances, 2022, 3, 7125-7131.	5.4	2
2000	Iron-induced electron modulation of nickel hydroxide/carbon nanotubes composite to effectively boost the oxygen evolution activity. Chemical Engineering Journal, 2023, 452, 139369.	12.7	8
2001	Ultra-high voltage efficiency rechargeable zinc-air battery based on high-performance structurally regulated metal-rich nickel phosphides and carbon hybrids bifunctional electrocatalysts. Applied Catalysis B: Environmental, 2023, 321, 122041.	20.2	19

#	Article	IF	CITATIONS
2002	Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition. Journal of Energy Chemistry, 2023, 76, 226-232.	12.9	13
2003	The contribution of water molecules to the hydrogen evolution reaction. Science China Chemistry, 2022, 65, 1854-1866.	8.2	7
2004	The advanced multi-functional carbon dots in photoelectrochemistry based energy conversion. International Journal of Extreme Manufacturing, 2022, 4, 042001.	12.7	5
2005	Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 0, , .	4.5	3
2006	Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nature Catalysis, 2022, 5, 900-911.	34.4	134
2007	A stable oxygen evolution splitting electrocatalysts high entropy alloy FeCoNiMnMo in simulated seawater. Journal of Materials Science and Technology, 2023, 138, 29-35.	10.7	12
2008	Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Research, 2023, 16, 2026-2034.	10.4	4
2009	Heterogeneousâ€Interfaceâ€Enhanced Adsorption of Organic and Hydroxyl for Biomass Electrooxidation. Advanced Materials, 2022, 34, .	21.0	85
2010	Gradient Heating Epitaxial Growth Well Latticeâ€Matched Mo2Câ€Mo2N Heterointerfaces Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie, 0, , .	2.0	0
2011	Gradient Heating Epitaxial Growth Gives Well Latticeâ€Matched Mo ₂ Câ^'Mo ₂ N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
2012	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	47.7	45
2013	Interfacial Structure of Pt(110) Electrode during Hydrogen Evolution Reaction in Alkaline Solutions. Journal of Physical Chemistry Letters, 2022, 13, 8403-8408.	4.6	7
2014	Co(OH)2 promoting the catalytic activity of CoP/Ni2P heterojunction for hydrogen evolution in both alkaline and acid media. Materials Today Energy, 2022, 30, 101142.	4.7	8
2015	Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem, 2023, 5, 100091.	19.1	36
2016	Mixed-Metal Nickel–Iron Oxide Aerogels for Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 12162-12169.	11.2	16
2017	Recent Advances in Upgrading of Lowâ€Cost Oxidants to Valueâ€Added Products by Electrocatalytic Reduction Reaction. Advanced Functional Materials, 2022, 32, .	14.9	20
2018	Surface microstructures and oxygen evolution properties of cobalt oxide deposited on Ir(111) and Pt(111) single crystal substrates. Electrochemical Science Advances, 0, , .	2.8	2
2019	A hierarchical nickel-iron hydroxide nanosheetÂfrom the high voltage cathodic polarization for alkaline water splitting. International Journal of Hydrogen Energy, 2022, 47, 34421-34429.	7.1	10

#	Article	IF	CITATIONS
2020	Boosting Oxygenâ€Evolving Activity via Atomâ€Stepped Interfaces Architected with Kinetic Frustration. Advanced Materials, 2023, 35, .	21.0	13
2021	Design of a Metal/Oxide/Carbon Interface for Highly Active and Selective Electrocatalysis. ACS Nano, 2022, 16, 16529-16538.	14.6	6
2022	Enhanced oxygen evolution over dual corner-shared cobalt tetrahedra. Nature Communications, 2022, 13, .	12.8	17
2023	OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nature Communications, 2022, 13, .	12.8	48
2024	1D@2D Hierarchical Structures of Co(OH) _x Nanosheets on NiMoO _x Nanorods Can Mediate Alkaline Hydrogen Evolution with Industry‣evel Current Density and Stability. Small Methods, 2022, 6, .	8.6	7
2025	Pulse-activation engineering induced lattice transformation of layered double hydroxides for efficient alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 39328-39337.	7.1	7
2026	Surface Oxalate Coordination: Facilitating Basic OER Activity by Regulating the Electronic Structure of Fe–Ni ₃ S ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 14396-14406.	6.7	22
2027	Optimised Ni ³⁺ /Ni ²⁺ and Mn ³⁺ /Mn ²⁺ Ratios in Nickel Manganese Layered Double Hydroxide for Boosting Oxygen and Hydrogen Evolution Reactions. ChemElectroChem, 2022, 9, .	3.4	3
2028	Bifunctional Mesoporous MO _{<i>x</i>} (M = Cr, Fe, Co, Ni, Ce) Oxygen Electrocatalysts for Platinum Group Metalâ€Free Oxygen Pumps. Energy Technology, 2022, 10, .	3.8	2
2029	Coupling NixSy-Ni2P heterostructure nanoarrays on Ni foam as environmentally friendly electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 38939-38950.	7.1	2
2030	Recent Development of Nanostructured Nickel Metal-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Topics in Catalysis, 2023, 66, 149-181.	2.8	4
2031	Bismuth–nickel bimetal nanosheets with a porous structure for efficient hydrogen production in neutral and alkaline media. Nanoscale, 2022, 14, 17210-17221.	5.6	3
2032	<i>In situ</i> electrochemical transformation of Ni ²⁺ to NiOOH as an effective electrode for water oxidation reaction. Dalton Transactions, 2022, 51, 17454-17465.	3.3	6
2033	Synergy between isolated Fe and Co sites accelerates oxygen evolution. Nano Research, 2023, 16, 2218-2223.	10.4	26
2034	Nickel Hydroxideâ€6upported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. Advanced Functional Materials, 2022, 32, .	14.9	43
2035	Constructing Air-Stable and Reconstruction-Inhibited Transition Metal Sulfide Catalysts via Tailoring Electron-Deficient Distribution for Water Oxidation. ACS Catalysis, 2022, 12, 13234-13246.	11.2	37
2036	Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Research, 2022, 15, 10234-10267.	10.4	9
2037	Electrodeposited amorphous nickel–iron phosphide and sulfide derived films for electrocatalytic oxygen evolution. International Journal of Hydrogen Energy, 2022, 47, 40849-40859.	7.1	19

#	Article	IF	CITATIONS
2038	Chemically coupling SnO ₂ quantum dots and MXene for efficient CO ₂ electroreduction to formate and Zn–CO ₂ battery. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27
2039	Construction of Niâ€Coâ€Fe Hydr(oxy)oxide@Niâ€Co Layered Double Hydroxide Yolkâ€Shelled Microrods for Enhanced Oxygen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
2040	Tailoring cation vacancies in Co, Ni phosphides for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 39731-39742.	7.1	4
2041	Unveiling Partial Transformation and Activity Origin of Sulfur Vacancies for Hydrogen Evolution. ACS Energy Letters, 2022, 7, 4198-4203.	17.4	20
2042	Construction of Niâ€Coâ€Fe Hydr(oxy)oxide@Niâ€Co Layered Double Hydroxide Yolkâ€Shelled Microrods for Enhanced Oxygen Evolution. Angewandte Chemie, 2022, 134, .	2.0	3
2043	The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction. Nature Catalysis, 2022, 5, 923-933.	34.4	79
2044	Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2023, 437, 141475.	5.2	6
2045	General strategy for enhanced CH4 selectivity in photocatalytic CO2 reduction reactions by surface oxophilicity engineering. Journal of Catalysis, 2022, 415, 77-86.	6.2	8
2046	Synergistic effect of Pt-loaded Co N C electrocatalysts for hydrogen evolution reaction in alkaline conditions. Applied Surface Science, 2023, 610, 155523.	6.1	7
2047	Effect of the interfacial electric field on the HER on Pt(111) modified with iron adatoms in alkaline media. Chinese Journal of Catalysis, 2022, 43, 2826-2836.	14.0	1
2048	Surface-Oxidized Iron–Cobalt–Nickel Alloy with Continuous Variable Composition for Hydrogen and Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 14926-14934.	6.7	5
2049	Boosting hydrogen evolution on NiFeZn electrocatalyst by defect surface modulation using alkali etching. International Journal of Hydrogen Energy, 2023, 48, 2090-2100.	7.1	2
2050	Irreversible oxidation of hydroxide ion in the light of negative capacitance by fast scan voltammetry. Journal of Electroanalytical Chemistry, 2022, 926, 116919.	3.8	0
2051	NiFeOxHy/Ni3Fe interface design via electropassivation for superior catalysis of HER. Journal of Environmental Chemical Engineering, 2022, 10, 108736.	6.7	9
2052	Hetero-structured NiMoO4/Ni3S4/MoS2 pompons decorated nickel foam electrode for high-efficient urea and urine electrolysis. Applied Surface Science, 2023, 608, 155166.	6.1	14
2053	A hybrid electrocatalyst derived from Co-MOF by doping molybdenum for efficient hydrogen generation. Inorganica Chimica Acta, 2023, 545, 121244.	2.4	7
2054	Fe–Co controlled super-hygroscopic hydrogels toward efficient atmospheric water harvesting. Nanoscale, 2022, 14, 18022-18032.	5.6	7
2055	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	38.1	93

#	Article	IF	Citations
2056	Electrochemical activation strategy assisted morphology engineering Co-Fe layered double hydroxides for oxygen hydrogen evolution and supercapacitor. Journal of Colloid and Interface Science, 2023, 632, 186-195.	9.4	32
2057	Tuning the d-Band States of Ni-Based Serpentine Materials via Fe ³⁺ Doping for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 52857-52867.	8.0	11
2058	Manifold improvement of water oxidation activity of NaCoO2 by selective cation exchange. International Journal of Hydrogen Energy, 2022, , .	7.1	1
2059	Platinum–Water Interaction Induced Interfacial Water Orientation That Governs the pH-Dependent Hydrogen Oxidation Reaction. Journal of Physical Chemistry Letters, 2022, 13, 10550-10557.	4.6	17
2060	Tailoring electronic structure of Ni-Fe oxide by V incorporation for effective electrocatalytic water oxidation. Applied Surface Science, 2023, 611, 155732.	6.1	6
2061	Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts. Chemistry - A European Journal, 2023, 29, .	3.3	30
2062	Feâ€Incorporated Ni/MoO ₂ Hollow Heterostructure Nanorod Arrays for Highâ€Efficiency Overall Water Splitting in Alkaline and Seawater Media. Small, 2022, 18, .	10.0	38
2063	General Approach to Synthesize Multilayer Graphitic Carbon-Nanotube-Encapsulated NiCo Alloys as Trifunctional Electrocatalysts: Deciphering the Role of N-Dopants. ACS Applied Energy Materials, 2022, 5, 14445-14454.	5.1	5
2064	Engineering Surface Oxophilicity of Copper for Electrochemical CO ₂ Reduction to Ethanol. Advanced Science, 2023, 10, .	11.2	28
2065	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	14.7	17
2066	Modulating Electronic Environment of Ru Nanoclusters via Local Charge Transfer for Accelerating Alkaline Water Electrolysis. Small, 2023, 19, .	10.0	5
2067	Metal-doped nickel-based chalcogenides and phosphochalcogenides for electrochemical water splitting. Energy Advances, 0, , .	3.3	3
2068	Porous TiNi ₃ -based intermetallics as active and robust monolith catalysts for hydrogen evolution. Chemical Communications, 2022, 58, 13943-13946.	4.1	0
2069	One-step hydrothermal preparation of bilayer films of NiCo LDH/Pt loaded on nickel foam surface for HER catalytic activity. New Journal of Chemistry, 2023, 47, 1040-1044.	2.8	3
2070	High-performing catalysts for energy-efficient commercial alkaline water electrolysis. Sustainable Energy and Fuels, 2022, 7, 31-60.	4.9	18
2071	Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chinese Journal of Catalysis, 2023, 44, 7-49.	14.0	47
2072	Engineering a local potassium cation concentrated microenvironment toward the ampere-level current density hydrogen evolution reaction. Energy and Environmental Science, 2023, 16, 285-294.	30.8	34
2073	Constructing sulfide/phosphide heterostructure boosts the activity of iron-manganese bimetallic electrocatalysts for oxygen evolution reaction at large current densities. Electrochimica Acta, 2023, 438, 141563.	5.2	1

#	Article	IF	CITATIONS
2074	Ni-based ultrathin nanostructures for overall electrochemical water splitting. Materials Chemistry Frontiers, 2023, 7, 194-215.	5.9	10
2075	Volcano relationships and a new activity descriptor of 2D transition metal–Fe layered double hydroxides for efficient oxygen evolution reaction. Materials Horizons, 0, , .	12.2	8
2076	Topologic transition-induced abundant undercoordinated Fe active sites in NiFeOOH for superior oxygen evolution. Nano Energy, 2023, 106, 108044.	16.0	10
2077	Effective electronic tuning of Pt single atoms <i>via</i> heterogeneous atomic coordination of (Co,Ni)(OH) ₂ for efficient hydrogen evolution. Energy and Environmental Science, 2023, 16, 1035-1048.	30.8	47
2078	Iron-nickel layered dihydroxide nanosheet-wrapped single-layer ordered mesoporous carbon with novel riveting structure as a superior composite electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2023, 440, 141739.	5.2	1
2079	Construction of nickel sulfide phase-heterostructure for alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 633, 640-648.	9.4	8
2080	Tailored nitrogen-defect induced by diels-alder reaction for enhanced electrochemical hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 633, 754-763.	9.4	2
2081	Alloying Pt into Ni partially amorphous for promoted alkaline hydrogen production. Journal of Colloid and Interface Science, 2023, 634, 897-905.	9.4	8
2082	Hydrogen Evolution Volcano(es)—From Acidic to Neutral and Alkaline Solutions. Catalysts, 2022, 12, 1541.	3.5	3
2083	Ultrathin NiPt Single-Atom Alloy for Synergistically Accelerating Alkaline Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 15136-15145.	5.1	6
2084	Ternary Synergism of Heterogeneous M ¹ N ₄ â€Câ€M ² N ₄ â€Câ€M ³ N ₄ Si Sites to Manipulate the Electrocatalytic Pathway for Znâ€Air Battery and Water Splitting. Advanced Energy Materials, 2023, 13, .	ngleâ€Ato 19.5	^m 6
2085	Metal Doping and Ligand Engineering as Tools for Tailoring the Electronic Structure of Coordination Polymers and their Oxygen Evolution Electrocatalytic Activity. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
2086	Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide. Chem Catalysis, 2023, 3, 100475.	6.1	13
2087	NiFeOx and NiFeCoOx Catalysts for Anion Exchange Membrane Water Electrolysis. Electrochem, 2022, 3, 843-861.	3.3	6
2088	Dense Platinum/Nickel Oxide Heterointerfaces with Abundant Oxygen Vacancies Enable Ampere‣evel Current Density Ultrastable Hydrogen Evolution in Alkaline. Advanced Functional Materials, 2023, 33, .	14.9	20
2089	Geometrical configuration modulation via iron doping and defect engineering in spinel oxides for enhanced oxygen revolution activity. Chemical Engineering Journal, 2023, 456, 140975.	12.7	5
2090	3D nanosheet networks like mesoporous structure of NiO/CoSe ₂ nanohybrid directly grown on nickel foam for oxygen evolution process. Journal of Taibah University for Science, 2022, 16, 1171-1180.	2.5	3
2091	Electrochemical Investigation of the OER Activity for Nickel Phosphite-Based Compositions and Its Morphology-Dependent Fluorescence Properties. Crystals, 2022, 12, 1803.	2.2	2

ARTICLE IF CITATIONS Facile synthesis of CuZrO3@PPY nanohybrid balls embedded 3-dimensional network with synergistic 2092 3.0 4 effect for efficient oxygen evolution reaction. Surfaces and Interfaces, 2023, 36, 102607. Development of Anion Exchange Membrane Water Electrolysis and the Associated Challenges: A 2093 3.4 Review. ChemElectroChem, 2023, 10, . Feâ€Alloyed MoNi Nanohybrids as Oxygen Evolution Reaction/Oxygen Reduction Reaction Bifunctional Electrocatalyst for Rechargeable Zinca€ Air Batteries. Physica Status Solidi (A) Applications and 2094 0 1.8 Materials Science, 0, , 2200581. Understanding Cation Effects on the Hydrogen Evolution Reaction. ACS Energy Letters, 2023, 8, 2095 657-665. Geometrical Engineering of Spinel Oxide Solid Solution to Enhance the Oxygen Evolution Reaction. 2096 5.1 4 ACS Applied Energy Materials, 2022, 5, 15239-15246. N-doped graphitic carbon encapsulating cobalt nanoparticles derived from novel metal–organic 2097 frameworks for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2023, 34, In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial 2098 12.0 16 water on a single-crystal surface. Nature Protocols, 2023, 18, 883-901. Electrocatalytic oxidation of 5â€hydroxymethylfurfural for sustainable 2,5â€furandicarboxylic acid 2099 14.9 productionấ€"From mechanism to catalysts design. SusMat, 2023, 3, 21-43. Electronic Structureâ€Dependent Waterâ€Dissociation Pathways of Rutheniumâ€Based Catalysts in Alkaline 2100 10.0 16 H₂â€Evolution. Small, 2023, 19, . Operando Reconstruction toward Dualâ€Cationâ€Defects Coâ€Containing NiFe Oxyhydroxide for Ultralow Energy Consumption Industrial Water Splitting Electrolyzer. Advanced Energy Materials, 2023, 13, . An overview of heteroatom doped cobalt phosphide for efficient electrochemical water splitting. 2102 12.7 44 Chemical Engineering Journal, 2023, 456, 141056. Creation and Application of Nano/microsystems That Control Ideal Experimental Conditions. Journal 0.1 of Japan Institute of Electronics Packaging, 2023, 26, 57-64. Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density 2104 6.7 8 Functional Theory Simulations. ACS Sustainable Chemistry and Engineering, 2023, 11, 467-481. Pd-based Metallic Glasses as Promising Materials for Hydrogen Energy Applications. Journal of the Electrochemical Society, 2023, 170, 014503. Hierarchical Ni₂P/Zn–Ni–P nanosheet array for efficient energy-saving hydrogen 2106 10.3 12 evolution and hydrazine oxidation. Journal of Materials Chemistry A, 2023, 11, 2191-2202. Redrawing HER Volcano with Interfacial Processesâ€"The Role of Hydrogen Spillover in Boosting H2 Evolution in Alkaline Media. Catalysts, 2023, 13, 89. Activating Ruï£;Oï£;Co Interaction on the <i>a</i> o(OH)₂@Ru Interface for Accelerating 2108 8.6 6 the Volmer Step of Alkaline Hydrogen Evolution. Small Methods, 2023, 7, . The adjacent Fe oxidation greatly enhancing OER activity on the Ni active site: S plays the role in optimizing local coordination and electronic structure. Materials Today Chemistry, 2023, 27, 101330.

#	Article	IF	CITATIONS
2110	Bimetallic metal-organic-framework-derived porous cobalt manganese oxide bifunctional oxygen electrocatalyst. Journal of Electroanalytical Chemistry, 2023, 930, 117161.	3.8	7
2111	Anodic Etching of Amorphous Ni ₈₁ P ₁₉ Alloy in Hot Concentrated Chloride Solution for Enhanced Hydrogen Evolution in Alkaline Water Electrolysis. ChemElectroChem, 0, , .	3.4	1
2112	Atomic-Scale Insights into Morphological, Structural, and Compositional Evolution of CoOOH during Oxygen Evolution Reaction. ACS Catalysis, 2023, 13, 1400-1411.	11.2	21
2113	A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment. Applied Catalysis A: General, 2023, 651, 119013.	4.3	13
2114	Designing In Situ Grown Ternary Oxide/2D Ni-BDC MOF Nanocomposites on Nickel Foam as Efficient Electrocatalysts for Electrochemical Water Splitting. ACS Materials Au, 2023, 3, 143-163.	6.0	14
2115	Composite non-noble system with bridging oxygen for catalyzing Tafel-type alkaline hydrogen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
2116	Excellent CoO _{<i>x</i>} H _{<i>y</i>} /C Oxygen Evolution Catalysts Evolved from the Rapid In Situ Electrochemical Reconstruction of Cobalt Transition Metals Doped into the V ₂ SnC MAX Phase at A Layers. ACS Applied Energy Materials, 2023, 6, 1116-1125.	5.1	1
2117	Alloyingâ€Triggered Phase Engineering of NiFe System via Laserâ€Assisted Al Incorporation for Full Water Splitting. Angewandte Chemie, 0, , .	2.0	0
2118	Alkaline Electro-Sorption of Hydrogen Onto Nanoparticles of Pt, Pd, Pt80Pd20 and Cu(OH)2 Obtained by Pulsed Laser Ablation. Nanomaterials, 2023, 13, 561.	4.1	1
2119	Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid. Journal of Materials Chemistry A, 2023, 11, 5527-5539.	10.3	7
2120	Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy and Environmental Science, 2023, 16, 663-672.	30.8	41
2121	Alloyingâ€Triggered Phase Engineering of NiFe System via Laserâ€Assisted Al Incorporation for Full Water Splitting. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
2122	Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chemical Science, 2023, 14, 3400-3414.	7.4	75
2123	<i>Ab initio</i> study of changing the oxygen reduction activity of Co–Fe-based perovskites by tuning the B-site composition. Physical Chemistry Chemical Physics, 2023, 25, 4236-4242.	2.8	0
2124	Heterostructured nanocatalysts to boost the hydrogen evolution reaction in neutral electrolyte. Chem Catalysis, 2023, 3, 100499.	6.1	3
2125	(Fe, F) co-doped nickel oxyhydroxide for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 4619-4626.	10.3	12
2126	High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Science China Materials, 2023, 66, 1681-1701.	6.3	24
2127	Surface-functionalized three-dimensional MXene supports to boost the hydrogen evolution activity of Pt catalysts in alkaline media. Journal of Materials Chemistry A, 2023, 11, 5328-5336.	10.3	6

#	Article	IF	CITATIONS
2128	<i>In situ</i> modification of metal electrode by integrated microbial corrosion and microbial mineralization using <i>Shewanella oneidensis</i> for efficient oxygen evolution. Catalysis Science and Technology, 0, , .	4.1	1
2129	Facile preparation of a methanol catalyst with ultra-high voltage efficiency and super-durability: Pt pollution introduction by composite electrodeposition. Journal of Materials Chemistry A, 2023, 11, 7556-7563.	10.3	5
2130	Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. Nanoscale, 2023, 15, 7202-7226.	5.6	8
2131	Effect of Fe on Calcined Ni(OH)2 Anode in Alkaline Water Electrolysis. Catalysts, 2023, 13, 496.	3.5	3
2132	Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis. Chinese Journal of Catalysis, 2023, 47, 93-120.	14.0	7
2133	Nitrate induced precise atom substitution and vacancies for overall water splitting. Chemical Engineering Journal, 2023, 463, 142380.	12.7	26
2134	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	18.8	29
2135	In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metalÂâ~Âorganic framework on Ti mesh as high-performance oxygen evolution electrodes. Journal of Colloid and Interface Science, 2023, 639, 274-283.	9.4	3
2136	Mo, V and M (M=Mn, Fe, Co, Cu) Co-modulated Ni oxides in-situ derived from nickel foam as efficient electrocatalysts for alkaline hydrogen evolution and oxygen evolution. Molecular Catalysis, 2023, 542, 113132.	2.0	4
2137	Recent advancement in manganese-based electrocatalyst for green hydrogen production. Journal of Electroanalytical Chemistry, 2023, 937, 117393.	3.8	1
2138	Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coordination Chemistry Reviews, 2023, 485, 215109.	18.8	10
2139	The synthesis of Ni-Co-Fe-Se@NiCo-LDH nanoarrays on Ni foam as efficient overall water splitting electrocatalyst. Journal of Alloys and Compounds, 2023, 946, 169451.	5.5	13
2140	Green fabrication of nanostructured Ni(OH)2/Ni/Carbon felt electrodes with water-containing deep eutectic solvent for enhanced water electrolysis performance. Journal of Power Sources, 2023, 570, 233043.	7.8	5
2141	Facile synthesis of a NiMnFeCrCu high entropy alloy for electrocatalytic oxygen evolution reactions. Materials Today Sustainability, 2023, 22, 100360.	4.1	2
2142	Synergistic interface engineering and structural optimization over hydroxide-phosphide nanoarray electrocatalysts for efficient alkaline water electrolysis. Journal of Alloys and Compounds, 2023, 946, 169465.	5.5	1
2143	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	18.8	7
2144	Cation effects on electrocatalytic reduction processes at the example of the hydrogen evolution reaction. Current Opinion in Electrochemistry, 2023, 39, 101268.	4.8	9
2145	Rational design of 2D heterostructured photo- & electro-catalysts for hydrogen evolution reaction: A review. Applied Surface Science Advances, 2023, 15, 100402.	6.8	5

#	Article	IF	CITATIONS
2146	Unveiling the in-situ hydrogen intercalation in Mo2COx for promoting the alkaline hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023, 332, 122739.	20.2	9
2147	Customizing the anisotropic electronic states of janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis. Applied Catalysis B: Environmental, 2023, 331, 122694.	20.2	7
2148	Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment. Journal of Energy Chemistry, 2023, 80, 658-688.	12.9	20
2149	Phase-dependent intermediate adsorption regulation on molybdenum carbides for efficient pH-universal hydrogen evolution. Applied Surface Science, 2023, 625, 157169.	6.1	4
2150	Insights into the synergy of platinum and nickel carbonate hydroxide for efficient methanol electro-oxidation. Applied Surface Science, 2023, 616, 156587.	6.1	3
2151	Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co ₃ O ₄ Catalyst for Water Oxidation. Journal of the American Chemical Society, 2023, 145, 3470-3477.	13.7	38
2152	MOF-derived ultrasmall Ru@RuO2 heterostructures as bifunctional and pH-universal electrocatalysts for 0.79ÂV asymmetric amphoteric overall water splitting. Chemical Engineering Journal, 2023, 460, 141672.	12.7	17
2153	Enhanced water electrolysis activity by CoNi-LDH/Co -nitrogen-doped carbon heterostructure with dual catalytic active sites. Electrochimica Acta, 2023, 444, 141956.	5.2	4
2154	Interface-Enhanced SiO _{<i>x</i>} /Ru Heterocatalysts for Efficient Electrochemical Water Splitting. ACS Applied Materials & amp; Interfaces, 2023, 15, 8200-8207.	8.0	8
2155	Recent advances of ruthenium-based electrocatalysts for hydrogen energy. Trends in Chemistry, 2023, 5, 225-239.	8.5	13
2156	Core-shell nanoparticle enhanced Raman spectroscopy in situ probing the composition and evolution of interfacial species on PtCo surfaces. Nano Research, 0, , .	10.4	1
2157	A review on cobalt-based oxides electrocatalytic materials for electrochemical water splitting. Ionics, 2023, 29, 1273-1284.	2.4	4
2159	Noble Metal-Based Heterogeneous Catalysts for Electrochemical Hydrogen Evolution Reaction. Applied Sciences (Switzerland), 2023, 13, 2177.	2.5	3
2160	Investigation of Charge–Discharging Behavior of Metal Oxide–Based Anode Electrocatalysts for Alkaline Water Electrolysis to Suppress Degradation due to Reverse Current. Electrocatalysis, 2023, 14, 499-510.	3.0	1
2161	Metal-organic framework derived Ni/Mo2C/Mo2TiC2Tx@NC as an efficient electrocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 17553-17564.	7.1	8
2162	Insights into the electronic structure coupling effect of dual-metal atomic electrocatalytic platform for efficient clean energy conversion. Chemical Engineering Journal, 2023, 461, 141911.	12.7	11
2163	Diffusion Coupling Kinetics in Multisite Catalysis: A Microkinetic Framework. ACS Catalysis, 2023, 13, 2937-2947.	11.2	0
2164	The bifunctional 3D-on-2D FeCo/Ni(OH)2 hierarchical nanocatalyst for industrial-level electrocatalytic water splitting. International Journal of Hydrogen Energy, 2023, , .	7.1	2

#	ARTICLE Construction of 2D C,N-co-doped ZnO/Co ₃ O ₄ over Ni(OH) ₂	IF	CITATIONS
2165	mesoporous ultrathin nanosheets on Ni foam as high-performance electrocatalysts for benzyl-alcohol oxidation and accelerating hydrogen evolution. New Journal of Chemistry, 2023, 47, 5970-5976.	2.8	0
2166	F and rare V ⁴⁺ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Transactions, 2023, 52, 4606-4615.	3.3	3
2167	Green carbon science: fundamental aspects. National Science Review, 2023, 10, .	9.5	8
2168	Synthesis of Cobalt Complex Containing Trans-Cinnamate and Its Electrocatalytic Activity for Oxygen Evolution Reaction. Catalysts, 2023, 13, 507.	3.5	2
2169	In Situ Generation of Pt ₂ Co ₃ Nanoâ€Alloys in Porous Nâ€Doped Carbon for Highly Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem, 2023, 15, .	3.7	2
2170	Electrocatalytic Hydrogen Evolution at Full Atomic Utilization over ITO-Supported Sub-nano-Pt _{<i>n</i>} Clusters: High, Size-Dependent Activity Controlled by Fluxional Pt Hydride Species. Journal of the American Chemical Society, 2023, 145, 5834-5845.	13.7	15
2171	Recent Advances on Transitionâ€Metalâ€Based Layered Double Hydroxides Nanosheets for Electrocatalytic Energy Conversion. Advanced Science, 2023, 10, .	11.2	30
2172	Rationally Modulating the Functions of Ni ₃ Sn ₂ â€NiSnO _{<i>x</i>} Nanocomposite Electrocatalysts towards Enhanced Hydrogen Evolution Reaction. Angewandte Chemie, 2023, 135, .	2.0	3
2173	Rationally Modulating the Functions of Ni ₃ Sn ₂ â€NiSnO _{<i>x</i>} Nanocomposite Electrocatalysts towards Enhanced Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
2174	Anchoring hydroxyl intermediate on NiCo(OOH) <i>_x</i> nanosheets to enable highly efficient electrooxidation of benzyl alcohols. AICHE Journal, 2023, 69, .	3.6	4
2175	A hierarchical cactus-like nanostructure as a bifunctional catalyst for overall water splitting. Electrochimica Acta, 2023, 449, 142219.	5.2	6
2176	Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation. Advanced Materials, 2023, 35, .	21.0	27
2177	Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Research, 2023, 16, 8836-8844.	10.4	10
2178	Interface engineering of CeO ₂ nanoparticle/Bi ₂ WO ₆ nanosheet nanohybrids with oxygen vacancies for oxygen evolution reactions under alkaline conditions. RSC Advances, 2023, 13, 8873-8881.	3.6	0
2179	Extending MoS ₂ -based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives. Materials Futures, 2023, 2, 022103.	8.4	12
2180	Two-Dimensional Hierarchical CoTe/NiFe Layered Double Hydroxide Heterostructure for High-Performance Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2023, 6, 3432-3441.	5.1	1
2181	Development of electrochemistry in Serbia-challenges and perspectives. Journal of Solid State Electrochemistry, 0, , .	2.5	0
2182	Recent Development of Self‧upported Alkaline Hydrogen Evolution Reaction Electrocatalysts for Industrial Electrolyzer. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	5

#	Article	IF	CITATIONS
2183	Understanding the Role of (W, Mo, Sb) Dopants in the Catalyst Evolution and Activity Enhancement of Co ₃ O ₄ during Water Electrolysis via In Situ Spectroelectrochemical Techniques. Small, 2023, 19, .	10.0	7
2184	Influence of Ni doping on hematite nanoparticles for enhanced structural, optical, magnetic properties and antibacterial analysis. Journal of Molecular Structure, 2023, 1284, 135397.	3.6	0
2185	Superior oxygen evolution reaction performance of NiCoFe spinel oxide nanowires <i>in situ</i> grown on β-Ni(OH) ₂ nanosheet-decorated Ni foam: case studies on stoichiometric and off-stoichiometric oxides. Journal of Materials Chemistry A, 2023, 11, 8972-8987.	10.3	7
2186	Nd-Gd–Platinum doped TiO2 nanotube arrays catalyst for water splitting in Alkaline Medium. International Journal of Electrochemical Science, 2023, 18, 100112.	1.3	1
2187	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	47.7	81
2188	Rational Design of Hydrogen Evolution Reaction Electrocatalysts for Commercial Alkaline Water Electrolysis. Small Structures, 2023, 4, .	12.0	21
2189	Porous NiCu Nanoarrays Decorated by Hydr(oxy)oxides As Highly Active Catalyst for Hydrogen Evolution Reaction. Russian Journal of Physical Chemistry A, 2022, 96, 3119-3125.	0.6	0
2190	Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. National Science Review, 2023, 10, .	9.5	6
2191	Heterostructured Ultrathin Two-Dimensional Co-FeOOH Nanosheets@1D Ir-Co(<i>OH</i>)F Nanorods for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2023, 15, 16702-16713.	8.0	15
2192	Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nature Communications, 2023, 14, .	12.8	30
2193	Tailored Electronic Structure of Ir in High Entropy Alloy for Highly Active and Durable Bifunctional Electrocatalyst for Water Splitting under an Acidic Environment. Advanced Materials, 2023, 35, .	21.0	51
2194	Al3+ leaching induced Co4+ on CoFeAl layered double hydroxide for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 23530-23539.	7.1	3
2195	Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14, .	12.8	28
2196	Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS Applied Materials & Interfaces, 2023, 15, 18928-18939.	8.0	10
2197	NiS/MoS ₂ Anchored Multiwall Carbon Nanotube Electrocatalyst for Hydrogen Generation and Energy Storage Applications. ChemNanoMat, 2023, 9, .	2.8	12
2198	Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nature Communications, 2023, 14, .	12.8	73
2199	N-doped bimetallic phosphides composite catalysts derived from metal–organic frameworks for electrocatalytic water splitting. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	11
2200	Electronic structure tuning for enhanced oxygen evolution performance of a NiMnFeCr medium entropy alloy. International Journal of Hydrogen Energy, 2023, 48, 25755-25769.	7.1	0

#	Article	IF	CITATIONS
2201	Iron‣ocked Hydr(oxy)oxide Catalysts via Ionâ€Compensatory Reconstruction Boost Largeâ€Currentâ€Density Water Oxidation. Advanced Science, 2023, 10, .	11.2	8
2202	Enhanced hydrogen evolution reaction activity of FeNi layered double hydroxide modified with Ruthenium nanoparticles at high current density. Journal of Electroanalytical Chemistry, 2023, 938, 117451.	3.8	3
2203	Enhanced Activity and Selectivity for Electrochemical CO ₂ Reduction through Water Activation by Oxophilic Metal Deposited on Ag. ACS Applied Energy Materials, 0, , .	5.1	1
2204	Anodically designing of refreshable bi-metallic oxides for highly-efficient hydrogen evolution. Chemical Engineering Journal, 2023, 466, 143045.	12.7	4
2205	Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting. Small, 2023, 19, .	10.0	10
2206	Additively Manufactured Ironâ€Based Bulk Metallic Glass Composite Electrocatalysts: Effect of Microstructural States on the Oxygen Evolution Reaction Activity. Advanced Materials Interfaces, 2023, 10, .	3.7	1
2207	Hydrogen bond-mediated pH-universal electrocatalytic hydrogen production by conjugated porous poly-indigo. Journal of Materials Chemistry A, 2023, 11, 10699-10709.	10.3	3
2208	Mechanism of corrosion and sedimentation of nickel electrodes for alkaline water electrolysis. Materials Chemistry and Physics, 2023, 303, 127806.	4.0	3
2209	Tuning Catalytic Activity of Ni–Co Nanoparticles Synthesized by Gammaâ€Radiolytic Reduction of Acetate Aqueous Solutions. Advanced Materials Interfaces, 2023, 10, .	3.7	1
2210	Hierarchical NiO nanotube arrays/CoP nanosheets heterostructure enables robust alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 643, 350-359.	9.4	3
2211	Amorphous dominated metal hydroxide-organic framework with compositional and structural heterogeneity for enhancing anodic electro-oxidation reactions. Journal of Colloid and Interface Science, 2023, 644, 358-367.	9.4	5
2212	Nanosized nickel hexacyanoferrate modified platinum electrode for promoting hydrogen evolution reaction in alkaline medium. Journal of Electroanalytical Chemistry, 2023, 940, 117513.	3.8	1
2213	Optimization sulfur doping of electronic structure with metal active center for defect-rich FeCo bimetallic hydroxyl oxide catalysts. International Journal of Hydrogen Energy, 2023, , .	7.1	0
2214	Balancing Volmer Step by Superhydrophilic Dualâ€Active Domains for Enhanced Hydrogen Evolution. Small, 2023, 19, .	10.0	5
2215	Capping Agents Effect Conducted Electrochemical Synthesis of NiMoCu Nanomushroom Catalyst for Hydrogen Evolution Reaction. Russian Journal of Electrochemistry, 2023, 59, 131-139.	0.9	0
2216	Synergistic Modulation of Electronic Interaction to Enhance Intrinsic Activity and Conductivity of Fe–Co–Ni Hydroxide Nanotube for Highly Efficient Oxygen Evolution Electrocatalyst. Small, 2023, 19, .	10.0	7
2217	Assembly Engineering of Rh Atoms on CoAl-Layered Double Hydroxide Nanosheets for Boosting Alkaline Water Splitting. ACS Applied Nano Materials, 2023, 6, 7984-7991.	5.0	3
2218	Electrochemical/Photoelectrochemical Water Splitting on Self-Limiting Electrodeposited Iron-Group Mutual Alloys. Journal of the Electrochemical Society, 2023, 170, 056511.	2.9	1

#	Article	IF	CITATIONS
2219	Effect of Transport Properties of Crystalline Transition Metal (Oxy)hydroxides on Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2023, 15, 25575-25583.	8.0	4
2220	Promoting water formation in sulphate-functionalized Ru for efficient hydrogen oxidation reaction under alkaline electrolytes. Chemical Science, 2023, 14, 6289-6294.	7.4	7
2221	Co _{3â^'<i>x</i>} Fe _{<i>x</i>} O ₄ inverse opals with tunable catalytic activity for high-performance overall water splitting. Nanoscale, 2023, 15, 10306-10318.	5.6	2
2222	Fe and Mo Coâ€Modulated Coralâ€like Nickel Pyrophosphate inâ€situ Derived from Nickelâ€Foam for Oxygen Evolution. ChemSusChem, 2023, 16, .	6.8	0
2223	Heterostructured Mo and Co-based phosphides as high-performance bifunctional electrocatalysts for overall water splitting. Physical Chemistry Chemical Physics, 0, , .	2.8	0
2224	Modulating the Interfacial Water Network of Dual-Site Pd/FeO _{<i>x</i>} /C Catalyst for Efficient Formate Electrooxidation. ACS Applied Materials & Interfaces, 2023, 15, 28790-28798.	8.0	0
2225	Amorphous TiO _{<i>x</i>} Stabilized Intermetallic Pt ₃ Ti Nanocatalyst for Methanol Oxidation Reaction. Nano Letters, 2023, 23, 5187-5193.	9.1	9
2226	A Monolayer Highâ€Entropy Layered Hydroxide Frame for Efficient Oxygen Evolution Reaction. Advanced Materials, 0, , .	21.0	6
2227	Alkaline fuel cells: Status and prospects. Energy Reports, 2023, 9, 6396-6418.	5.1	7
2228	Nickel Based Metal Oxide Electrocatalysts: From Model to Operando Conditions Studied by XPS and Vibrational Spectroscopy. , 2023, , .		0
2229	A coupling mechanism of anodic oxygen evolution reaction during organic pollutants oxidation. Journal of Electroanalytical Chemistry, 2023, 943, 117608.	3.8	2
2230	Recent advances in Ni (oxy) hydroxides and Ni sulfides catalysts for oxygen evolution reactions. Coordination Chemistry Reviews, 2023, 493, 215274.	18.8	13
2231	High Alkaline Electrochemical Hydrogen Evolution on a Pt/GaN Heterostructure. ChemNanoMat, 2023, 9, .	2.8	0
2232	Feâ€Ni ₂ P@NPC Synthesized by <i>Trametes Orientalis</i> as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	3.7	0
2233	Nanoscale heterogeneous FeB metallic glass as highly active and stable catalyst for hydrogen evolution. Journal of Alloys and Compounds, 2023, 960, 170964.	5.5	2
2234	Boosting Alkaline Hydrogen Evolution Reaction through Water Structure Manipulation. Angewandte Chemie, 0, , .	2.0	0
2235	Boosting Alkaline Hydrogen Evolution Reaction through Water Structure Manipulation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
2236	Electrochemical dealloying-assisted activity enhancement: The next big thing in water electrosplitting!. Nano Energy, 2023, 114, 108624.	16.0	3

#	Article	IF	CITATIONS
2237	Heterojunction Engineering for Electrocatalytic Applications. ACS Applied Energy Materials, 2023, 6, 7737-7784.	5.1	5
2238	Charge-counterbalance modulated amorphous nickel oxide for efficient alkaline hydrogen and oxygen evolution. Chemical Engineering Journal, 2023, 470, 144241.	12.7	3
2239	Interface-induced electron transfer in sandwich-like hierarchical hollow CoP@NC hybrid for boosted hydrogen evolution reaction in alkaline electrolyte. Journal of Alloys and Compounds, 2023, 956, 170315.	5.5	3
2240	Highly efficient and durable Y(OH)3/rGO/Pt ternary hybrid electro-catalyst for the methanol oxidation reaction. Materials Research Bulletin, 2023, 165, 112304.	5.2	2
2241	Pt nanoparticle dispersed Ni(OH) ₂ nanosheets <i>via</i> a pulsed laser deposition method efficiently enhanced hydrogen evolution reaction performance in alkaline conditions. RSC Advances, 2023, 13, 13840-13844.	3.6	1
2242	Identifying Fe as OER Active Sites and Ultralow ost Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2023, 19, .	10.0	13
2243	Ethylene glycol diethyl ether accelerated in-situ growth of Pt/Ni(OH)2 nanosheets on Ni foam for efficient alkaline hydrogen evolution reaction. Applied Surface Science, 2023, 629, 157433.	6.1	1
2244	Single atom supported on MXenes for the alkaline hydrogen evolution reaction: species, coordination environment, and action mechanism. Physical Chemistry Chemical Physics, 2023, 25, 13728-13740.	2.8	5
2245	Orderingâ€Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of Highâ€Entropy Intermetallic Pt ₄ FeCoCuNi. Advanced Materials, 2023, 35, .	21.0	21
2246	Charging dâ€Orbital Electron of ReS _{2+x} Cocatalyst Enables Splendid Alkaline Photocatalytic H ₂ Evolution. Advanced Functional Materials, 2023, 33, .	14.9	19
2247	Nanoscale Ni–NiO–ZnO Heterojunctions for Switchable Dehydrogenation and Hydrogenation through Modulation of Active Sites. ACS Applied Materials & Interfaces, 2023, 15, 24329-24345.	8.0	4
2248	Electrocatalytic nitrate reduction to ammonia coupled with organic oxidation. Chem Catalysis, 2023, 3, 100638.	6.1	12
2249	Ensemble Effect of the Nickel–Silica Interface Promotes the Water–Gas Shift Reaction. ACS Catalysis, 2023, 13, 7347-7357.	11.2	2
2250	Catalytic Activity and Stability of Non-Platinum Group Metal Oxides for the Oxygen Evolution Reaction in Anion Exchange Membrane Electrolyzers. Journal of the Electrochemical Society, 2023, 170, 064506.	2.9	1
2251	Waste is the best: end-of-life lithium ion battery-derived ultra-active Ni ³⁺ -enriched β-Ni(OH) ₂ for the electrocatalytic oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 13687-13696.	10.3	1
2252	Phaseâ€Engineered Robust Cocatalyst of NiFe Bicarbonate with Pt Dopant for Enhanced Photocatalytic Water Splitting. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
2253	Imaging the Footprint of Nanoscale Electrochemical Reactions for Assessing Synergistic Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
2254	Imaging the Footprint of Nanoscale Electrochemical Reactions for Assessing Synergistic Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
2255	Pt–Ni Thin-Film Catalyst for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Applied Energy Materials, 2023, 6, 5923-5929.	5.1	0
2256	Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction. Molecules, 2023, 28, 4464.	3.8	2
2257	Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nature Materials, 2023, 22, 1022-1029.	27.5	35
2258	Highly active bimetallic Pt–Cu nanoparticles for the electrocatalysis of hydrogen evolution reactions: Experimental and theoretical insight. International Journal of Hydrogen Energy, 2023, 48, 37209-37223.	7.1	1
2259	Defect activation of atomically thin electrocatalysts for the oxygen evolution reaction. Cell Reports Physical Science, 2023, 4, 101471.	5.6	0
2260	Low-loading and ultrasmall Ir nanoparticles coupled with Ni/nitrogen-doped carbon nanofibers with Pt-like hydrogen evolution performance in both acidic and alkaline media. Chemical Engineering Journal, 2023, 471, 144481.	12.7	5
2261	Tuning of Redox Energy of Transition-Metal Ions through the Utilization of Interlayer Potentials in Layered Perovskites: Development of a Titanium-Based Superior HER Catalyst in an Acidic Medium. ACS Applied Energy Materials, 2023, 6, 7323-7334.	5.1	2
2262	A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application. Sustainable Energy and Fuels, 2023, 7, 3741-3775.	4.9	4
2263	Toward Molecular Level Understandings of Hydrogen Evolution Reaction on Platinum Surface. Journal of Physical Chemistry C, 2023, 127, 12841-12848.	3.1	3
2264	Synergy of Torsion Strained and Ligand Effect for Relay Acceleration of Industrial Highâ€pH Hydrogen Evolution. Advanced Functional Materials, 2023, 33, .	14.9	0
2265	Wettability-modulated ordered mesoporous carbon electrodes for electrocatalytic reactions involving gases. Renewable and Sustainable Energy Reviews, 2023, 183, 113538.	16.4	1
2266	Three-dimensionally ordered macroporous trimetallic spinel for anion exchange membrane water electrolysis. Electrochimica Acta, 2023, 463, 142851.	5.2	1
2267	NiMo/CoMoO ₄ Heterostructure with Confined Oxygen Vacancy for Active and Durable Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 7658-7671.	5.1	9
2268	Nanoscale Metal Particle Modified Singleâ€Atom Catalyst: Synthesis, Characterization, and Application. Advanced Materials, 2024, 36, .	21.0	6
2269	Boosting alkaline hydrogen evolution reaction kinetics by a local electric field created by polarization of CeO2(100). International Journal of Hydrogen Energy, 2023, , .	7.1	0
2270	Controllable synthesis of M (M = Cr, Mo and W) and Fe co-doped Co2P catalysts for efficient urea electrolysis. International Journal of Hydrogen Energy, 2023, , .	7.1	1
2271	Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nature Communications, 2023, 14, .	12.8	22
2272	Iron-Containing Nickel Cobalt Sulfides, Selenides, and Sulfoselenides as Active and Stable Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline Solution. Solids, 2023, 4, 181-200.	2.4	2

#	Article	IF	CITATIONS
2273	Milestones of Electrocatalyst Development for Direct Alcohol Fuel Cells. Advanced Sustainable Systems, 2023, 7, .	5.3	5
2274	Study of engineering electronic structure modulated non-noble metal oxides for scaled-up alkaline blend seawater splitting. Journal of Energy Chemistry, 2023, 86, 167-179.	12.9	13
2275	Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting. Chemical Record, 2023, 23, .	5.8	1
2276	Fast joule heating synthesis of NiCoFeCrMo high-entropy alloy embedded in graphene for water oxidation. Journal of Alloys and Compounds, 2023, 966, 171535.	5.5	6
2277	Hydrogen Evolution Reaction on Ultra-Smooth Sputtered Nanocrystalline Ni Thin Films in Alkaline Media—From Intrinsic Activity to the Effects of Surface Oxidation. Nanomaterials, 2023, 13, 2085.	4.1	2
2278	Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects. Nanoscale, 2023, 15, 13515-13531.	5.6	1
2279	Self-Assembled α-Fe ₂ O ₃ @Co ₃ O ₄ /Graphene Quantum Dot Core–Hybrid Shell Wormlike Nanoarrays with Synergistic Effects for Photoelectrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2023, 11, 12102-12113.	6.7	1
2280	Tailoring the Atomic‣ocal Environment of Carbon Nanotube Tips for Selective H ₂ O ₂ Electrosynthesis at High Current Densities. Advanced Materials, 2023, 35, .	21.0	8
2281	Ag improves the performance of the oxygen evolution reaction by lowering the D-band center of the active site Ni. International Journal of Hydrogen Energy, 2023, , .	7.1	0
2282	Covalent organic framework derived synthesis of Ru embedded in carbon nitride for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 0, , .	10.3	2
2283	Dynamic Changes of an Anodized FeNi Alloy during the Oxygen Evolution Reaction under Alkaline Conditions. Langmuir, 2023, 39, 11807-11818.	3.5	1
2284	Cobalt vacancy-originated TiMnCoCN compounds with a self-adjusting ability for the high-efficiency acidic oxygen evolution reaction. Journal of Colloid and Interface Science, 2023, 652, 164-173.	9.4	5
2285	One-Step Electrosynthesis of Bifunctional NiCu Nanosheets on Iron Foam for Remarkably Enhanced Alkaline Water Splitting. Sustainability, 2023, 15, 12240.	3.2	2
2286	Catalytic activity and anti-passivation of single iron atoms and atomic clusters co-stabilized on carbonized waste polystyrene plastic. Chemical Engineering Journal, 2023, 474, 145488.	12.7	1
2287	A 3D-hierarchical flower like architecture of anion induced layered double hydroxides for competing anodic reactions. Energy Advances, 0, , .	3.3	0
2288	Facile self-oxidized Ni nano-foam as high-performance catalyst for hydrogen and oxygen evolution. Science China Materials, 0, , .	6.3	0
2289	GQD@NiFe‣DH Nanosheets for Photocatalytic Activity towards Textile Dye Degradation via Lattice Contraction. ChemPlusChem, 0, , .	2.8	0
2290	Tailoring the selective adsorption sites of NiMoO by Ni particles for biomass upgrading assisted hydrogen production. Journal of Energy Chemistry, 2023, 86, 480-489.	12.9	6

	Сітат	CITATION REPORT	
#	Article	IF	Citations
2291	Negatively Charging Nonprecious Metal Phosphides/Selenides via General Polyaniline Coating for Improved Alkaline H ₂ Evolution. Energy & Fuels, 2023, 37, 18038-18045.	5.1	5
2292	Modulating adsorption energy on nickel nitride-supported ruthenium nanoparticles through in-situ electrochemical activation for urea-assisted alkaline hydrogen production. Journal of Colloid and Interface Science, 2023, 652, 1665-1672.	9.4	1
2293	Efficient Alkaline Hydrogen Evolution Reaction Using Superaerophobic Ni Nanoarrays with Accelerated H ₂ Bubble Release. Advanced Materials, 2023, 35, .	21.0	3
2294	Exploration of a NiFeV multi-metal compositional space for the oxygen evolution reaction. Materials Advances, 2023, 4, 4472-4481.	5.4	1
2295	Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nature Communications, 2023, 14, .	12.8	25
2296	Highly efficient oxygen evolution catalysts prepared by bacteria Desulfovibrio caledoniensis and Pseudomonas stutzeri based on Ni-Fe foam. Journal of Industrial and Engineering Chemistry, 2024, 129, 331-340.	5.8	0
2297	Reducing the pH dependence of hydrogen evolution kinetics <i>via</i> surface reactivity diversity in medium-entropy alloys. , 2023, 1, 1017-1024.		2
2298	Ce3+-Induced Metal Vacancies Engineering of NiSe2 with Needle-like Structure for Alkaline Hydrogen Evolution. Applied Surface Science, 2023, , 158364.	6.1	0
2299	Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by <i>In Situ</i> and <i>Operando</i> Techniques. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
2300	Significantly Enhanced Energyâ€Saving H ₂ Production Coupled with Urea Oxidation by Low and Nonâ€Pt Anchored on NiSâ€Based Conductive Nanofibers. Small, 2024, 20, .	v― 10.0	3
2301	Auf dem Weg zum Verstädnis des Bildungs―und OERâ€Katalysemechanismus von Hydroxiden durch I situ―und <i>Operando</i> â€Techniken. Angewandte Chemie, 2023, 135, .	ln 2.0	0
2302	Recent advances in mechanistic understanding and catalyst design for alkaline hydrogen evolution reactions. Materials Chemistry Frontiers, 0, , .	5.9	0
2303	Solution combusted ultrathin Co ₃ O ₄ /CoO heterophase electrocatalyst for solarâ€energy driven bifunctional water electrolysis. ChemistrySelect, 2023, 8, .	1.5	0
2304	Recent advances in metal-organic frameworks for oxygen evolution reaction electrocatalysts. Science China Chemistry, 2023, 66, 2754-2779.	8.2	2
2305	Action at a distance: organic cation induced long range organization of interfacial water enhances hydrogen evolution and oxidation kinetics. Chemical Science, 2023, 14, 11076-11087.	7.4	2
2306	Metal-ion doping in metal–organic-frameworks: modulating the electronic structure and local coordination for enhanced oxygen evolution reaction activity. Dalton Transactions, 2023, 52, 13852-13857.	3.3	2
2307	Predictive Modeling of Molecular Mechanisms in Hydrogen Production and Storage Materials. Materials, 2023, 16, 6050.	2.9	0
2308	A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 10570-10601.	11.2	Ο

#	Article	IF	CITATIONS
2309	Anisotropic In-Plane strain engineering Ni(OH)2 to activate alkaline hydrogen evolution reaction. Chemical Engineering Journal, 2023, 474, 145881.	12.7	0
2310	Porous Carbon Template Decorated with MOFâ€Driven Bimetallic Phosphide: A Suitable Heterostructure for the Production of Uninterrupted Green Hydrogen via Renewable Energy Storage Device. Small, 2023, 19, .	10.0	5
2311	Spinelâ€Type Oxides for Acidic Oxygen Evolution Reaction: Mechanism, Modulation, and Perspective. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	0
2312	Highly Efficient Water Splitting with Pd-Integrated NiAl-LDH Nanosheets as Bifunctional Electrocatalysts. Energy & Fuels, 2023, 37, 13319-13330.	5.1	0
2313	Recent Advances in Synergistic Modulation of Transition-Metal-Based Electrocatalysts for Water Oxidation: A Mini Review. Catalysts, 2023, 13, 1230.	3.5	0
2314	Trace Ru-tuned NiO/CNT electrocatalysts outperform benchmark Pt for alkaline hydrogen evolution with superior mass activity. Chemical Engineering Journal, 2023, 472, 144922.	12.7	6
2315	Non-covalent interaction of atomically dispersed dual-site catalysts featuring Co and Ni nascent pair sites for efficient electrocatalytic overall water splitting. Journal of Materials Science and Technology, 2024, 178, 210-225.	10.7	4
2316	Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. Advanced Science, 2023, 10, .	11.2	1
2317	Synthesis and characterization of lead-based metal–organic framework nano-needles for effective water splitting application. Scientific Reports, 2023, 13, .	3.3	7
2318	Electrocatalysts Design Guided by Active Intermediates of Hydrogen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	19.5	4
2319	The Effect of Electrolytes on the Kinetics of the Hydrogen Evolution Reaction. Hydrogen, 2023, 4, 776-806.	3.4	3
2320	Methanol assisted water electrooxidation on noble metal free perovskite: RRDE insight into the catalyst's behaviour. Journal of Colloid and Interface Science, 2024, 654, 688-697.	9.4	0
2321	Volcanic-Size-Dependent Activity Trends in Ru-Catalyzed Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 13638-13649.	11.2	0
2322	In-situ growth of VS4 nanorods on Ni-Fe sulfides nanoplate array towards achieving a highly efficient and bifunctional electrocatalyst for total water splitting. Chemical Engineering Journal, 2023, 474, 145461.	12.7	6
2323	Synthesis of CuMoS microâ€rods material as efficient bifunctional electrocatalyst for overall water splitting. ChemistrySelect, 2023, 8, .	1.5	2
2324	Mo2C nanocrystalline coupling with Ni encapsulated in N-doped fibrous carbon network as bifunctional catalysts towards advanced anion exchange membrane electrolyzers. Journal of Alloys and Compounds, 2023, 968, 172111.	5.5	0
2325	Kinetics of Hydrogen Evolution Reaction on Monometallic Bulk Electrodes in Various Electrolytic Solutions. Catalysts, 2023, 13, 1373.	3.5	0
2326	Enhancing Water Oxidation Catalysis by Controlling Metal Cation Distribution in Layered Double Hydroxides. Advanced Functional Materials, 2024, 34, .	14.9	2

#	Article	IF	CITATIONS
2327	Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction. Chinese Journal of Catalysis, 2023, 50, 306-313.	14.0	4
2328	Effect of different crystalline phase of TiO2 on the catalytic activity of Ru catalysts in hydrogen evolution under acidic and alkaline media. International Journal of Hydrogen Energy, 2024, 52, 302-310.	7.1	1
2329	Orthorhombic (Ru, Mn)2O3: A superior electrocatalyst for acidic oxygen evolution reaction. Nano Energy, 2023, 115, 108727.	16.0	5
2330	Development of an FeOOH Electrocatalyst for Water Oxidation from the Recycling of Disposable Body Warmers. Chemistry Letters, 2023, 52, 715-719.	1.3	0
2331	Coupling Adsorbed Evolution and Lattice Oxygen Mechanism in Feâ€Co(OH) ₂ /Fe ₂ O ₃ Heterostructure for Enhanced Electrochemical Water Oxidation. Advanced Functional Materials, 2023, 33, .	14.9	18
2332	Hydrogen Evolution Reaction on Single-Atom Pt Doped in Ni Matrix under Strong Alkaline Condition. Journal of Physical Chemistry Letters, 2023, 14, 8121-8128.	4.6	1
2333	Persistent Homology and Bond Orientational Order in Ir–Cu Solid-Solution Alloy Nanoparticles: Implications for Electrocatalysts. ACS Applied Nano Materials, 2023, 6, 16653-16661.	5.0	0
2334	Joule heating synthesis of NiFe alloy/MoO2 and in-situ transformed (Ni,Fe)OOH/MoO2 heterostructure as effective complementary electrocatalysts for overall splitting in alkaline seawater. Applied Catalysis B: Environmental, 2024, 340, 123277.	20.2	6
2335	An overview of the catalytic activity of MN4 molecular catalysts for the heterogeneous hydrogen evolution reaction. Current Opinion in Electrochemistry, 2023, 42, 101387.	4.8	0
2336	Minireview of the Electrocatalytic Local Environment in Alkaline Hydrogen Evolution. Energy & Fuels, 0, , .	5.1	1
2337	Superior bifunctional oxygen electrocatalysts based on Co2MnO4 with mixed site occupancy, Mn-rich surfaces and twin defects. Chemical Engineering Journal, 2023, 475, 146183.	12.7	1
2338	High efficient alkaline hydrogen evolution catalyzed by W2COx-Ru composite system containing bridged oxygen. Chemical Engineering Journal, 2023, 475, 146443.	12.7	0
2339	Ferromagnetic ordering correlated strong metal–oxygen hybridization for superior oxygen reduction reaction activity. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
2340	Double Activation of Water Splitting by Strong Cation–Water Interaction. Journal of Physical Chemistry C, 2023, 127, 20718-20726.	3.1	1
2342	Emerging materials and technologies for electrocatalytic seawater splitting. Science Advances, 2023, 9, .	10.3	11
2343	A model study of ceria–Pt electrocatalysts: stability, redox properties and hydrogen intercalation. Physical Chemistry Chemical Physics, 2024, 26, 1630-1639.	2.8	0
2344	Recent advances towards increasing the Pt utilization efficiency for hydrogen evolution reaction: a review. Inorganic Chemistry Frontiers, 2023, 10, 6812-6848.	6.0	2
2345	Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy. Nature Communications, 2023, 14, .	12.8	6

#	Article	IF	CITATIONS
2346	High-entropy alloys in electrocatalysis: from fundamentals to applications. Chemical Society Reviews, 2023, 52, 8319-8373.	38.1	14
2347	Through the interface: New insights of the hydrogen evolution and oxidation reactions in aqueous solutions. Electrochemical Science Advances, 0, , .	2.8	0
2348	Amorphous hybrid tungsten oxide–nickel hydroxide nanosheets used as a highly efficient electrocatalyst for hydrogen evolution reaction. Nano Research, 0, , .	10.4	2
2349	Rational Lattice Engineering of Spinel Co _{<i>x</i>} Rh _{3–<i>x</i>} O ₄ Solid Solution Expediting Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 16205-16216.	6.7	0
2350	Observing the reconstruction of cobalt oxide model catalyst in electrocatalytic water oxidation. Applied Surface Science, 2024, 644, 158734.	6.1	0
2351	Highly efficient and stable vanadium-based electrocatalysts: Stoichiometric iron vanadium sulfides for water-oxidation at large current densities. Chemical Engineering Journal, 2023, 477, 146981.	12.7	0
2352	Synthesis of Poly (3‑bromo thiophene) supported cobalt molybdate bifunctional catalyst: Manifestation of overall water splitting and hydrazine assisted water splitting. Electrochimica Acta, 2024, 475, 143521.	5.2	0
2353	Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. Nature Communications, 2023, 14, .	12.8	5
2354	Two Birds with One Stone: Contemporaneously Enhancing OER Catalytic Activity and Stability for Dualâ€Phase Mediumâ€Entropy Metal Sulfides. Small, 0, , .	10.0	3
2355	Ammoniaâ€Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. Small, 0, , .	10.0	0
2356	Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting. Applied Energy, 2024, 356, 122369.	10.1	0
2357	Motivating Inert Strontium Manganate with Iridium Dopants as Efficient Electrocatalysts for Oxygen Evolution in Acidic Electrolyte. Small, 0, , .	10.0	0
2358	Oxygen-Bridged V–Co Atomic Pair in MOF-Derived Hierarchical Amorphous Leaf Networks Co-boost Alkaline Hydrogen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2023, 11, 17179-17189.	6.7	0
2359	Nanoelectrocatalysts for Anodic Oxygen Evolution in Acid: A Review. ACS Applied Nano Materials, 2023, 6, 21424-21450.	5.0	1
2360	Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review. Current Opinion in Electrochemistry, 2024, 43, 101436.	4.8	0
2361	A Review of Nanostructured Transition Metal Phosphide-Driven Electrocatalytic Oxygen Evolution Reaction. Energy & amp; Fuels, 2023, 37, 18291-18309.	5.1	1
2362	Ru–Co alloy coatings electrodeposited on a MAX phase substrate as efficient catalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 56, 28-40.	7.1	1
2363	Phosphidation treatment of surfactant-tuned iron polyphthalocyanine grown in situ on nickel foam: An efficient bifunctional catalyst for overall water splitting. International Journal of Hydrogen Energy, 2024, 55, 153-163.	7.1	0

#	Article	IF	CITATIONS
2364	A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chemical Reviews, 2023, 123, 12795-13208.	47.7	9
2365	Ru nanoclusters anchored on boron- and nitrogen-doped carbon for a highly efficient hydrogen evolution reaction in alkaline seawater. Nanoscale, 0, , .	5.6	0
2366	Structural Evolution of Ultrathin SrFeO _{3â^ʾδ} Films during Oxygen Evolution Reaction Revealed by <i>In Situ</i> Electrochemical Stress Measurements. ACS Applied Energy Materials, 2023, 6, 11882-11889.	5.1	0
2367	Heterogeneous Cu incorporated into Ni6Fe2-LDH/rGO induces spin exchange interaction to enhance alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2024, 51, 1476-1485.	7.1	0
2368	A self-phosphorized carbon-based monolithic chainmail electrode for high-current-density and durable alkaline water splitting. Sustainable Energy and Fuels, 0, , .	4.9	0
2369	Exploring the potential of cobalt hydroxide and its derivatives as a cost-effective and abundant alternative to noble metal electrocatalysts in oxygen evolution reactions: a review. Sustainable Energy and Fuels, 2024, 8, 422-459.	4.9	0
2370	Electrochemically engineered domain: nickel–hydroxide/nickel nitride composite for alkaline HER electrocatalysis. Journal of Materials Chemistry A, 2024, 12, 1654-1661.	10.3	1
2371	Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Applied Catalysis B: Environmental, 2024, 343, 123584.	20.2	5
2372	Long-range Pt-Ni dual sites boost hydrogen evolution through optimizing the adsorption configuration. Nano Research, 0, , .	10.4	0
2373	Surface-Modified Carbon Nanotubes with Ultrathin Co ₃ O ₄ Layer for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2023, 15, 58377-58387.	8.0	0
2374	Inducing Selenium Vacancy in Nickel Selenide/Iron Selenide by Hydrazineâ€Ultrasonic Treatment for Electrocatalytic Water Splitting Reaction. Energy Technology, 2024, 12, .	3.8	0
2375	Modulation of Electronic Synergy to Enhance the Intrinsic Activity of Fe ₅ Ni ₄ S ₈ Nanosheets in Restricted Space Carbonized Wood Frameworks for Efficient Oxygen Evolution Reaction. Small, 0, , .	10.0	0
2376	Competitive adsorption: Inhibiting the hydroxyl poisoning effect on lattice-confined Ru atoms in metal carbides nanoislands for boosting hydrogen production. Applied Catalysis B: Environmental, 2024, 344, 123644.	20.2	0
2377	Integrated Pt _{<i>x</i>} Co _{<i>y</i>} -Hierarchical Carbon Matrix Electrocatalyst for Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 0, , .	8.0	0
2378	A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy. Journal of Energy Chemistry, 2024, 91, 155-177.	12.9	0
2379	Extremely efficient and stable hydrogen evolution by a Pt/NiOx composite film deposited on a nickel foam using a mixed metal-imidazole casting method. Journal of Materials Chemistry A, 0, , .	10.3	0
2380	Nano-Scale Engineering of Heterojunction for Alkaline Water Electrolysis. Materials, 2024, 17, 199.	2.9	1
2381	Selfâ€Supported Earthâ€Abundant Carbonâ€Based Substrates in Electrocatalysis Landscape: Unleashing the Potentials Toward Paving the Way for Water Splitting and Alcohol Oxidation. Advanced Energy Materials, 2024, 14, .	19.5	1

#	Article	IF	CITATIONS
2382	Electrocatalytic water splitting: A review under the shade of metal-organic frameworks. International Journal of Hydrogen Energy, 2024, 57, 958-982.	7.1	0
2383	Non-metal doping regulation in transition metal and their compounds for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2024, 56, 1273-1283.	7.1	0
2384	A universal method to fabricate high-valence transition metal-based HER electrocatalysts and direct Raman spectroscopic evidence for interfacial water regulation. Journal of Colloid and Interface Science, 2024, 660, 157-165.	9.4	0
2385	Oxophilic Ce single atoms-triggered active sites reverse for superior alkaline hydrogen evolution. Nature Communications, 2024, 15, .	12.8	1
2386	Electrocatalytic hydrogenation of phenol on platinum-cobalt alloys. Journal of Catalysis, 2024, 430, 115331.	6.2	0
2387	Directional Electrosynthesis of Adipic Acid and Cyclohexanone by Controlling the Active Sites on NiOOH. Journal of the American Chemical Society, 2024, 146, 1282-1293.	13.7	0
2388	Ironâ€group Metal Compound Electrocatalysts for Efficient Hydrogen Production: Recent Advances and Future Prospects. ChemCatChem, 2024, 16, .	3.7	0
2389	Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media. Nano Materials Science, 2024, , .	8.8	1
2390	A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution. Chinese Journal of Catalysis, 2024, 56, 9-24.	14.0	0
2391	Controllable Electronic Transfer Tailoring <i>d</i> â€band Center via Cobalt–Oxygenâ€Bridged Ru/Fe Dualâ€sites for Boosted Oxygen Evolution. Small, 0, , .	10.0	0
2392	Construction of heterophase MoOx/Ru assisted by self-assembled carboxymethylcellulose-Ru3+ nanosheet for improved alkaline hydrogen evolution. Surfaces and Interfaces, 2024, 45, 103903.	3.0	0
2393	Design Strategies towards Advanced Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities. Chemistry - A European Journal, 2024, 30, .	3.3	0
2394	Coordination and Architecture Regulation of Electrocatalysts for Sustainable Hydrogen Energy Conversion. Accounts of Materials Research, 2024, 5, 160-172.	11.7	0
2395	Rapid synthesis of active Pt single atoms and Ru clusters on carbon black <i>via</i> a highly efficient microwave strategy for the hydrogen evolution reaction in acidic and alkaline media. Journal of Materials Chemistry A, 2024, 12, 4108-4122.	10.3	0
2396	High-throughput electrochemical strategy for synthesis of iron-based nanostructures for electrocatalytic water splitting. Journal of Materials Science, 2024, 59, 1265-1279.	3.7	0
2397	An electrochemical approach for designing thermochemical bimetallic nitrate hydrogenation catalysts. Nature Catalysis, 2024, 7, 262-272.	34.4	0
2398	Modulation of oxygen vacancies in boron nanosheets via nickel cobalt layered double hydroxides for boosting hydrogen-and oxygen-evolution reaction kinetics. Electrochimica Acta, 2024, 479, 143876.	5.2	0
2399	Crystalline to Amorphous: Unveiling the Potential of Transition Metal Oxideâ€based Electrocatalysts for Facile Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 0, , .	3.7	0

#	Article	IF	CITATIONS
2400	Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications. Scientific Reports, 2024, 14, .	3.3	1
2401	Modulating the electronic structure of Ni(OH) ₂ by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production. Energy and Environmental Science, 2024, 17, 1984-1996.	30.8	0
2402	Doubleâ€Walled Tubular Heuslerâ€Type Platinum–Ruthenium Phosphide as Allâ€pH Hydrogen Evolution Reaction Catalyst Outperforming Platinum and Ruthenium. Advanced Energy Materials, 2024, 14, .	19.5	0
2403	Enhanced catalytic activity through a unique cage structure of amorphous NiFe oxide via tri-doping P, B, N and introducing tungsten for the oxygen evolution reaction. Journal of Alloys and Compounds, 2024, 981, 173726.	5.5	0
2404	A Co and Fe bimetallic MOF with enhanced electrocatalytic oxygen evolution performance: exploring the electronic environment modifications upon Fe incorporation. Energy Advances, 2024, 3, 636-647.	3.3	0
2405	Insights into the active nickel centers embedded in graphitic carbon nitride for the oxygen evolution reaction. Journal of Materials Chemistry A, 2024, 12, 6652-6662.	10.3	0
2406	Fe,Co co-implanted dendritic CeO2/CeF3 heterostructure@MXene nanocomposites as structurally stable electrocatalysts with ultralow overpotential for the alkaline oxygen evolution reaction. Journal of Colloid and Interface Science, 2024, 662, 208-217.	9.4	0
2407	Alleviating OH Blockage on the Catalyst Surface by the Puncture Effect of Single-Atom Sites to Boost Alkaline Water Electrolysis. Journal of the American Chemical Society, 2024, 146, 4883-4891.	13.7	0
2408	Construction of Ag─Co(OH) ₂ Tandem Heterogeneous Electrocatalyst Induced Aldehyde Oxidation and the Coâ€Activation of Reactants for Biomass Effective and Multiâ€Selective Upgrading. Advanced Materials, 0, , .	21.0	0
2409	Alkaline Water Electrolysis for Green Hydrogen Production. Accounts of Chemical Research, 0, , .	15.6	0
2410	MoVN-coated MoNi4-MoO2 nanorods as a bifunctional electrode for electrochemical water splitting. Journal of Applied Electrochemistry, 0, , .	2.9	0
2411	Cu-Modified Palladium Catalysts: Boosting Formate Electrooxidation via Interfacially OH _{ad} -Driven H _{ad} Removal. ACS Applied Materials & Interfaces, 2024, 16, 8742-8750.	8.0	0
2412	Hierarchical Porous Nonprecious Highâ€entropy Alloys for Ultralow Overpotential in Hydrogen Evolution Reaction. Small Methods, 0, , .	8.6	0
2413	Turning natural copper phthalocyanine into high-loading single-atom catalysts using an electrochemically-generated template and cationic substitution. Materials Today Nano, 2024, 25, 100466.	4.6	0
2414	Ru nanoparticles modified Ni3Se4/Ni(OH)2 heterostructure nanosheets: A fast kinetics boosted bifunctional overall water splitting electrocatalyst. Journal of Colloid and Interface Science, 2024, 663, 847-855.	9.4	0
2415	Insight into the activation of periodate by Mn(II) for rapid degradation of sulfadiazine: Performance and mechanisms. Separation and Purification Technology, 2024, 342, 127023.	7.9	0
2416	Cooperative Effect of Cations and Catalyst Structure in Tuning Alkaline Hydrogen Evolution on Pt Electrodes. Journal of the American Chemical Society, 2024, 146, 7305-7312.	13.7	0
2417	Thermal evaporation-driven fabrication of Ru/RuO ₂ nanoparticles onto nickel foam for efficient overall water splitting. Nanoscale, 2024, 16, 6662-6668.	5.6	0

#	Article	IF	CITATIONS
2418	Layer-by-Layer Self-Assembly Strategies of Atomically Thin Two-Dimensional Nanomaterials: Principles, Methods, and Functional Applications. ACS Applied Nano Materials, 0, , .	5.0	0
2419	Phase Electronic Structure Tuning via Pt, P–Doped Ni ₄ Moâ€Implanted Ti ₄ O ₇ for Highly Efficient Water Splitting and Mg/Seawater Batteries. Small, 0, , .	10.0	0
2420	Progress on the Design of Electrocatalysts for Largeâ€Current Hydrogen Production by Tuning Thermodynamic and Kinetic Factors. Advanced Functional Materials, 0, , .	14.9	0
2421	Mechanistic insights into electrocatalytically reduced OER performance in marigold-like trimetallic NiFe-based LDH: charge localisation and d-band orbital filling. Journal of Materials Chemistry A, 2024, 12, 9532-9545.	10.3	0
2422	Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density. Nano Research, 0, , .	10.4	0
2423	Experimental and first-principles insights into an enhanced performance of Ru-doped copper phosphate electrocatalyst during oxygen evolution reaction. South African Journal of Chemical Engineering, 2024, 48, 306-316.	2.4	0