Mitochondrial transfer from bone-marrow–derived s protects against acute lung injury

Nature Medicine 18, 759-765

DOI: 10.1038/nm.2736

Citation Report

#	Article	IF	CITATIONS
1	Rationale for Regenerative Treatment in Neonatology. Klinische Padiatrie, 2012, 224, 230-232.	0.2	3
2	Germs gone wild. Nature Medicine, 2012, 18, 654-656.	15.2	1
3	The acute respiratory distress syndrome. Journal of Clinical Investigation, 2012, 122, 2731-2740.	3.9	1,434
4	Efficient Lentiviral Transduction of Human Mesenchymal Stem Cells That Preserves Proliferation and Differentiation Capabilities. Stem Cells Translational Medicine, 2012, 1, 886-897.	1.6	66
5	Pulmonary research in 2013 and beyond: a National Heart, Lung, and Blood Institute perspective. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L729-L732.	1.3	2
6	Successful Transplantation of Reduced-Sized Rat Alcoholic Fatty Livers Made Possible by Mobilization of Host Stem Cells. American Journal of Transplantation, 2012, 12, 3246-3256.	2.6	8
7	Mitochondria to the rescue. Nature Medicine, 2012, 18, 653-654.	15.2	29
8	Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell, 2012, 11, 596-606.	5.2	561
9	Kidney Protection and Regeneration Following Acute Injury: Progress Through Stem Cell Therapy. American Journal of Kidney Diseases, 2012, 60, 1012-1022.	2.1	121
10	Microparticles and acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L364-L381.	1.3	129
11	Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L967-L977.	1.3	286
12	The link between inhibition of nitric oxide metabolite production and reduction of LPS induced lung injury. International Immunopharmacology, 2012, 14, 232.	1.7	O
13	Mesenchymal stem cells and the stem cell niche: a new chapter. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1147-L1149.	1.3	16
14	A fresh perspective on asthma. Nature Medicine, 2012, 18, 631-631.	15.2	5
15	Update in Acute Respiratory Distress Syndrome and Mechanical Ventilation 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 285-292.	2.5	4
16	Therapeutic Effects of Human Mesenchymal Stem Cells in <i>Ex Vivo</i> Human Lungs Injured with Live Bacteria. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 751-760.	2.5	313
18	Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells, 2013, 31, 2443-2456.	1.4	159
19	Cell Therapy for Lung Diseases. Report from an NIH–NHLBI Workshop, November 13–14, 2012. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 370-375.	2.5	29

#	Article	IF	CITATIONS
20	Mesenchymal stem cell therapy in lung disorders: Pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Experimental Lung Research, 2013, 39, 315-327.	0.5	57
21	Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung. Free Radical Biology and Medicine, 2013, 65, 1455-1463.	1.3	20
22	When Cells Become Organelle Donors. Physiology, 2013, 28, 414-422.	1.6	64
23	Mesenchymal Stem Cells as Vectors for Lung Cancer Therapy. Respiration, 2013, 85, 443-451.	1.2	27
24	Pharmacological treatments in ARDS; a state-of-the-art update. BMC Medicine, 2013, 11, 166.	2.3	138
25	Neutrophil Intercellular Communication in Acute Lung Injury. Emerging Roles of Microparticles and Gap Junctions. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 1-5.	1.4	60
26	Mesenchymal stem cells and the lung. Respirology, 2013, 18, 397-411.	1.3	93
27	Amelioration of Radiation-Induced Pulmonary Fibrosis by a Water-Soluble Bifunctional Sulfoxide Radiation Mitigator (MMS350). Radiation Research, 2013, 180, 474.	0.7	28
28	The potential of cell-based therapy in lung diseases. Expert Opinion on Biological Therapy, 2013, 13, 1429-1440.	1.4	17
29	Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.	9.5	381
30	Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax, 2013, 68, 475-484.	2.7	217
31	Acute respiratory distress syndrome: from TRALI to trials. Lancet Respiratory Medicine, the, 2013, 1, e1-e2.	5.2	1
32	Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L665-L681.	1.3	171
33	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases. Comprehensive Review of the Recent Literature 2010–2012. Annals of the American Thoracic Society, 2013, 10, S45-S97.	1.5	48
34	Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H966-H982.	1.5	267
35	Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration. Expert Review of Cardiovascular Therapy, 2013, 11, 505-517.	0.6	47
36	Neutrophil Intercellular Communication in Acute Lung Injury: Emerging Roles of Microparticles and Gap Junctions. American Journal of Respiratory Cell and Molecular Biology, 0, , .	1.4	2
37	Mesenchymal stem cells for systemic therapy: Shotgun approach or magic bullets?. BioEssays, 2013, 35, 173-182.	1.2	26

3

#	Article	IF	Citations
38	The molecular basis of induction and formation of tunneling nanotubes. Cell and Tissue Research, 2013, 352, 67-76.	1.5	67
39	Regulation and Repair of the Alveolar-Capillary Barrier in Acute Lung Injury. Annual Review of Physiology, 2013, 75, 593-615.	5.6	266
40	Mesenchymal Stem Cells and Idiopathic Pulmonary Fibrosis. Potential for Clinical Testing. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 133-140.	2.5	116
41	Ischemia–reperfusion injury. Current Opinion in Organ Transplantation, 2013, 18, 34-43.	0.8	73
43	Mitochondria in lung diseases. Expert Review of Respiratory Medicine, 2013, 7, 631-646.	1.0	74
44	Mesenchymal Stem Cells: A Promising Therapy for the Acute Respiratory Distress Syndrome. Respiration, 2013, 85, 267-278.	1.2	39
45	Mesenchymal stem cells in acute lung injury: are they ready for translational medicine?. Journal of Cellular and Molecular Medicine, 2013, 17, 927-935.	1.6	39
46	Paracrine Effects and Heterogeneity of Marrow-Derived Stem/Progenitor Cells: Relevance for the Treatment of Respiratory Diseases. Cells Tissues Organs, 2013, 197, 445-473.	1.3	44
47	Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Scientific Reports, 2013, 3, 1349.	1.6	89
48	12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma. Scientific Reports, 2013, 3, 1540.	1.6	63
49	Plasminogen Plays a Crucial Role in Bone Repair. Journal of Bone and Mineral Research, 2013, 28, 1561-1574.	3.1	62
50	Concise Review: Two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells, 2013, 31, 2042-2046.	1.4	179
51	Therapeutic effect of exogenous bone marrow-derived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Molecular Medicine Reports, 2013, 8, 741-746.	1.1	30
52	Isolated Mitochondria Infusion Mitigates Ischemia-Reperfusion Injury of the Liver in Rats. Shock, 2013, 39, 304-310.	1.0	88
53	Effects of Intratracheal Mesenchymal Stromal Cell Therapy during Recovery and Resolution after Ventilator-induced Lung Injury. Anesthesiology, 2013, 118, 924-932.	1.3	92
54	Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation. PLoS ONE, 2013, 8, e62916.	1.1	43
55	Mitochondrial Respiration Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e77077.	1.1	192
56	Anti-Inflammatory Effects of Adult Stem Cells in Sustained Lung Injury: A Comparative Study. PLoS ONE, 2013, 8, e69299.	1.1	87

#	ARTICLE	IF	Citations
57	Microorganism and filamentous fungi drive evolution of plant synapses. Frontiers in Cellular and Infection Microbiology, 2013, 3, 44.	1.8	19
58	Human CD34+ Progenitor Cells Freshly Isolated from Umbilical Cord Blood Attenuate Inflammatory Lung Injury following LPS Challenge. PLoS ONE, 2014, 9, e88814.	1.1	18
59	MSC Therapy Attenuates Obliterative Bronchiolitis after Murine Bone Marrow Transplant. PLoS ONE, 2014, 9, e109034.	1.1	15
60	Oxidants in Acute and Chronic Lung Disease. Journal of Blood & Lymph, 2014, 04, .	0.0	15
61	Lung Mesenchymal Stromal Cells in Development and Disease: To Serve and Protect?. Antioxidants and Redox Signaling, 2014, 21, 1849-1862.	2.5	43
62	Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes. Frontiers in Physiology, 2014, 5, 400.	1.3	89
63	F-actin scaffold stabilizes lamellar bodies during surfactant secretion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L50-L57.	1.3	23
64	Manufacturing and use of human placenta-derived mesenchymal stromal cells for phase I clinical trials: Establishment and evaluation of a protocol. Vojnosanitetski Pregled, 2014, 71, 651-659.	0.1	20
65	Radiopharmaceutical Stem Cell Tracking for Neurological Diseases. BioMed Research International, 2014, 2014, 1-12.	0.9	13
66	Are Clinical Trials With Mesenchymal Stem/Progenitor Cells too Far Ahead of the Science? Lessons From Experimental Hematology. Stem Cells, 2014, 32, 3055-3061.	1.4	53
67	Mitochondrion: A Missing Link in Asthma Pathogenesis. Respiratory Medicine, 2014, , 51-70.	0.1	0
68	Correction of defective <scp>CFTR</scp> / <scp>EN</scp> aC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells. Journal of Cellular and Molecular Medicine, 2014, 18, 1631-1643.	1.6	32
69	Anti-inflammatory and Protective Properties of Daphnetin in Endotoxin-Induced Lung Injury. Journal of Agricultural and Food Chemistry, 2014, 62, 12315-12325.	2.4	49
70	Intranasal versus Intraperitoneal Delivery of Human Umbilical Cord Tissue–Derived Cultured Mesenchymal Stromal Cells in a Murine Model of Neonatal Lung Injury. American Journal of Pathology, 2014, 184, 3344-3358.	1.9	53
71	Hypercapnia attenuates ventilatorâ€induced lung injury via a disintegrin and metalloproteaseâ€17. Journal of Physiology, 2014, 592, 4507-4521.	1.3	24
72	Should Publications on Mesenchymal Stem/Progenitor Cells Include In-Process Data on the Preparation of the Cells?. Stem Cells Translational Medicine, 2014, 3, 632-635.	1.6	16
73	Mitochondrial Transfer of Induced Pluripotent Stem Cell–Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke–Induced Damage. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 455-465.	1.4	241
74	Advances in Intravital Microscopy. , 2014, , .		4

#	Article	IF	CITATIONS
75	Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer's Disease Therapeutics. Methods in Molecular Biology, 2014, 1212, 171-181.	0.4	47
76	Miro1: New wheels for transferring mitochondria. EMBO Journal, 2014, 33, 939-941.	3.5	41
77	Tissue Engineering for the Respiratory Epithelium. , 2014, , 1543-1560.		2
78	Measurement of Intercellular Transfer to Signaling Endosomes. Methods in Enzymology, 2014, 534, 207-221.	0.4	2
79	Cell-based therapies for the acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 122-131.	1.6	31
80	Bioenergetic Shifts during Transitions between Stem Cell States (2013 Grover Conference Series). Pulmonary Circulation, 2014, 4, 387-394.	0.8	24
81	Pathobiology of the Acute Respiratory Distress Syndrome. , 2014, , 2665-2676.		1
83	Bone Marrow Mesenchymal Stem Cells Ameliorates Seawater-Exposure-Induced Acute Lung Injury by Inhibiting Autophagy in Lung Tissue. Pathology Research International, 2014, 2014, 1-7.	1.4	13
84	Mechanisms Regulating Endothelial Permeability. Pulmonary Circulation, 2014, 4, 535-551.	0.8	218
85	Transplantation in Endâ€Stage Pulmonary Hypertension (Third International Right Heart Failure Summit,) Tj ETQo	1 1 0.784 0.8	314 rgBT /O
86	A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 2014, 12, 260.	1.8	454
87	Therapeutic Strategies for Clinical Trials Targeting Renal Recovery. Nephron Clinical Practice, 2014, 127, 113-116.	2.3	4
88	Direct Human Mitochondrial Transfer: A Novel Concept Based on the Endosymbiotic Theory. Transplantation Proceedings, 2014, 46, 1233-1236.	0.3	28
89	Two sides of the same coin: stem cells in cancer and regenerative medicine. FASEB Journal, 2014, 28, 2748-2761.	0.2	38
91	Biological therapies in the acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2014, 14, 969-981.	1.4	28
92	Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli–induced acute lung injury in mice. Cytotherapy, 2014, 16, 764-775.	0.3	56
93	Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochemical and Biophysical Research Communications, 2014, 446, 1102-1107.	1.0	46
94	Adult stem cells: potential implications for perioperative medicine. Canadian Journal of Anaesthesia, 2014, 61, 299-305.	0.7	0

#	Article	IF	Citations
95	Stem Cell-Based Therapy for Newborn Lung and Brain Injury: Feasible, Safe, and the Next Therapeutic Breakthrough?. Journal of Pediatrics, 2014, 164, 954-956.	0.9	19
96	Concise Review: Current Status of Stem Cells and Regenerative Medicine in Lung Biology and Diseases. Stem Cells, 2014, 32, 16-25.	1.4	139
97	Mesenchymal Stem Cell Trials for Pulmonary Diseases. Journal of Cellular Biochemistry, 2014, 115, 1023-1032.	1.2	73
98	Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature, 2014, 506, 503-506.	13.7	349
99	Inheritance of the fittest mitochondria in yeast. Trends in Cell Biology, 2014, 24, 53-60.	3.6	52
100	Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO Journal, 2014, 33, n/a-n/a.	3.5	393
101	Stem cell–based therapy for neonatal lung disease: it is in the juice. Pediatric Research, 2014, 75, 2-7.	1.1	82
102	Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. , 2014, 141, 250-260.		48
103	Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease. Current Topics in Developmental Biology, 2014, 107, 207-233.	1.0	68
104	A phase 1b study of placentaâ€derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology, 2014, 19, 1013-1018.	1.3	216
105	Mitochondria in lung biology and pathology: more than just a powerhouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L962-L974.	1.3	158
106	Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L395-L406.	1.3	84
107	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	0.8	7
108	Reflection of stem cell therapy: An epilogue to the  Stem cells and the lung' review series. Respirology, 2014, 19, 5-8.	1.3	1
109	Internalization of isolated functional mitochondria: involvement of macropinocytosis. Journal of Cellular and Molecular Medicine, 2014, 18, 1694-1703.	1.6	148
110	Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury. Stem Cells, 2014, 32, 1855-1864.	1.4	33
111	Mesenchymal stem cells and hypoxia: Where are we?. Mitochondrion, 2014, 19, 105-112.	1.6	110
112	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine, the, 2014, 2, 1016-1026.	5.2	222

#	Article	IF	CITATIONS
113	Vibrio cholerae T3SS Effector VopE Modulates Mitochondrial Dynamics and Innate Immune Signaling by Targeting Miro GTPases. Cell Host and Microbe, 2014, 16, 581-591.	5.1	91
114	Mitochondria in Cancer. Progress in Molecular Biology and Translational Science, 2014, 127, 211-227.	0.9	31
115	Human Mesenchymal Stem Cell Microvesicles for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells, 2014, 32, 116-125.	1.4	550
116	Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy, 2014, 16, 1486-1500.	0.3	50
117	Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Annals of Intensive Care, 2014, 4, 22.	2.2	53
118	Obesity, Metabolic Syndrome, and Airway Disease. Immunology and Allergy Clinics of North America, 2014, 34, 785-796.	0.7	25
119	Atorvastatin treatment improves the effects of mesenchymal stem cell transplantation on acute myocardial infarction: The role of the RhoA/ROCK/ERK pathway. International Journal of Cardiology, 2014, 176, 670-679.	0.8	36
120	Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathologica, 2014, 128, 629-638.	3.9	37
121	Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. Stem Cell Research and Therapy, 2014, 5, 42.	2.4	40
122	Stem Cell Therapy for Neonatal Brain Injury. Clinics in Perinatology, 2014, 41, 133-148.	0.8	45
123	Endothelial Progenitor Cells for Acute Respiratory Distress Syndrome Treatment: Support Your Local Sheriff!. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1452-1455.	2.5	3
124	Strategies for Whole Lung Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2014, 61, 1482-1496.	2.5	49
125	Mesenchymal stromal cell therapy in conditions of renal ischaemia/reperfusion. Nephrology Dialysis Transplantation, 2014, 29, 1487-1493.	0.4	55
126	Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respiratory Medicine, the, 2014, 2, 108-122.	5.2	115
127	Resolution of Pulmonary Edema. Thirty Years of Progress. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1301-1308.	2.5	134
128	Cell-based Therapy for Acute Organ Injury. Anesthesiology, 2014, 121, 1099-1121.	1.3	127
129	Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplantation, 2014, 23, 1045-1059.	1.2	698
130	Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biology Open, 2015, 4, 622-626.	0.6	125

#	Article	IF	CITATIONS
131	Cell memoryâ€based therapy. Journal of Cellular and Molecular Medicine, 2015, 19, 2682-2689.	1.6	4
132	Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Research and Therapy, 2015, 6, 230.	2.4	24
133	Inhibition of bleomycinâ€induced pulmonary fibrosis by bone marrowâ€derived mesenchymal stem cells might be mediated by decreasing MMP9, TIMPâ€1, INFâ€ <i>γ</i> and TGFâ€ <i>β</i> Cell Biochemistry and Function, 2015, 33, 356-365.	1.4	30
134	Therapeutic Efficacy of Human Mesenchymal Stromal Cells in the Repair of Established Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2015, 122, 363-373.	1.3	57
135	Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. Journal of the Intensive Care Society, 2015, 16, 320-329.	1.1	4
136	Interactions between rat alveolar epithelial cells and bone marrow-derived mesenchymal stem cells: an in vitro co-culture model. Intensive Care Medicine Experimental, 2015, 3, 53.	0.9	5
137	Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 29.	0.9	64
138	Microvesicles Derived From Human Mesenchymal Stem Cells Restore Alveolar Fluid Clearance in Human Lungs Rejected for Transplantation. American Journal of Transplantation, 2015, 15, 2404-2412.	2.6	132
139	Immunoregulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles on T Lymphocytes. Cell Transplantation, 2015, 24, 2615-2627.	1.2	228
140	Stem Cells and Their Mediators ââ,¬â€œ Next Generation Therapy for Bronchopulmonary Dysplasia. Frontiers in Medicine, 2015, 2, 50.	1.2	25
141	Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells and Cloning: Advances and Applications, 2015, 8, 61.	2.3	27
142	Mesenchymal Stromal Cell Therapy in Ischemia/Reperfusion Injury. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	95
143	Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death and Differentiation, 2015, 22, 1181-1191.	5.0	341
144	Mechanisms and Clinical Consequences of Acute Lung Injury. Annals of the American Thoracic Society, 2015, 12, S3-S8.	1.5	115
145	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	2.5	392
146	Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Research and Therapy, 2015, 6, 212.	2.4	89
147	Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism, 2015, 21, 81-94.	7.2	582
148	Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine, the, 2015, 3, 24-32.	5.2	614

#	Article	IF	CITATIONS
149	Systemic combined melatonin–mitochondria treatment improves acute respiratory distress syndrome in the rat. Journal of Pineal Research, 2015, 58, 137-150.	3.4	81
150	Pulmonary epithelial barrier function: some new players and mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L731-L745.	1.3	123
151	Sequential Actions of SIRT1-RELB-SIRT3 Coordinate Nuclear-Mitochondrial Communication during Immunometabolic Adaptation to Acute Inflammation and Sepsis. Journal of Biological Chemistry, 2015, 290, 396-408.	1.6	134
152	Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 2015, 17, 123-136.	4.6	120
153	Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis. Scientific Reports, 2014, 4, 5336.	1.6	35
154	Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion, 2015, 22, 31-44.	1.6	94
155	Safranal of <scp><i>Crocus sativus</i></scp> L. Inhibits Inducible Nitric Oxide Synthase and Attenuates Asthma in a Mouse Model of Asthma. Phytotherapy Research, 2015, 29, 617-627.	2.8	42
156	Mitochondrial DNA in Tumor Initiation, Progression, and Metastasis: Role of Horizontal mtDNA Transfer. Cancer Research, 2015, 75, 3203-3208.	0.4	56
159	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
160	The human urinary exosome as a potential metabolic effector cargo. Expert Review of Proteomics, 2015, 12, 425-432.	1.3	41
161	Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 2015, 12, S54-S57.	1.5	37
162	Stem Cell Renewal and Cell-Cell Communication. Methods in Molecular Biology, 2015, 1212, v.	0.4	0
163	Mesenchymal stem cells for therapeutic applications in pulmonary medicine. British Medical Bulletin, 2015, 115, 45-56.	2.7	31
164	Emerging physiological and pathological implications of tunneling nanotubes formation between cells. European Journal of Cell Biology, 2015, 94, 429-443.	1.6	84
165	Intercellular transfer of mitochondria. Biochemistry (Moscow), 2015, 80, 542-548.	0.7	24
166	Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis. Stem Cell Reviews and Reports, 2015, 11, 598-620.	5.6	35
167	Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Scientific Reports, 2015, 5, 8733.	1.6	117
168	Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. Journal of Translational Medicine, 2015, 13, 67.	1.8	24

#	Article	IF	CITATIONS
169	MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Scientific Reports, 2015, 5, 9073.	1.6	208
170	Emerging aspects of treatment in mitochondrial disorders. Journal of Inherited Metabolic Disease, 2015, 38, 641-653.	1.7	32
171	Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2775-2783.	1.9	256
172	The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. Journal of Cellular Physiology, 2015, 230, 2606-2617.	2.0	81
173	Advances in Understanding of the Pathogenesis of Acute Respiratory Distress Syndrome. Respiration, 2015, 89, 420-434.	1.2	66
174	Cellular therapy in Tuberculosis. International Journal of Infectious Diseases, 2015, 32, 32-38.	1.5	26
175	Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta, 2015, 36, 1329-1332.	0.7	44
176	Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 2015, 6, 8472.	5.8	693
177	MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell Metabolism, 2015, 22, 606-618.	7.2	195
178	The lung communication network. Cellular and Molecular Life Sciences, 2015, 72, 2793-2808.	2.4	19
179	Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Research, 2015, 43, 2177-2187.	6. 5	62
180	Connexins. International Review of Cell and Molecular Biology, 2015, 318, 27-62.	1.6	7
181	Bronchopulmonary Dysplasia and Chronic Lung Disease. Clinics in Perinatology, 2015, 42, 889-910.	0.8	16
182	LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1. Journal of Cell Science, 2016, 129, 51-64.	1.2	19
183	Therapeutic strategies in pneumonia: going beyond antibiotics. European Respiratory Review, 2015, 24, 516-524.	3.0	19
184	Mesenchymal Stem Cells Correct Inappropriate Epithelial–mesenchyme Relation in Pulmonary Fibrosis Using Stanniocalcin-1. Molecular Therapy, 2015, 23, 549-560.	3.7	85
185	Brief Reports: Lysosomal Cross-Correction by Hematopoietic Stem Cell-Derived Macrophages Via Tunneling Nanotubes. Stem Cells, 2015, 33, 301-309.	1.4	93
186	Mesenchymal Stem Cells and Regenerative Medicine. , 2016, , 275-280.		1

#	ARTICLE	IF	CITATIONS
188	Neue Erkenntnisse zur Pathogenese des akuten Atemnotsyndroms. Karger Kompass Pneumologie, 2016, 4, 190-208.	0.0	0
189	Possibility of Cytoplasmic Transportation Between Donor–Host Cell Following Photoreceptor Transplantation. , 2016, 57, 5335.		1
190	Mitochondria in lung disease. Journal of Clinical Investigation, 2016, 126, 809-820.	3.9	198
191	Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. Frontiers in Cell and Developmental Biology, 2016, 4, 107.	1.8	296
192	Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches. International Journal of Molecular Sciences, 2016, 17, 128.	1.8	65
193	Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS ONE, 2016, 11, e0158746.	1.1	36
194	Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS ONE, 2016, 11, e0163735.	1.1	9
195	Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research, 2016, 5, 1532.	0.8	22
196	Extracellular Vesicles Facilitate the Intercellular Communications in the Pathogenesis of Lung Injury. Cell & Developmental Biology, 2016, 5, .	0.3	6
197	Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander?. , 2016, 166, 96-105.		35
203	Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax, 2016, 71, 1020-1029.	2.7	148
204	The missing link: does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases?. Open Biology, 2016, 6, 160057.	1.5	71
205	Characteristics of Mitochondrial Transformation into Human Cells. Scientific Reports, 2016, 6, 26057.	1.6	90
206	Pulmonary Retention of Adipose Stromal Cells following Intravenous Delivery is Markedly Altered in the Presence of ARDS. Cell Transplantation, 2016, 25, 1635-1643.	1.2	21
207	Signaling by Cellular Protrusions: Keeping the Conversation Private. Trends in Cell Biology, 2016, 26, 526-534.	3.6	59
208	Mitochondria and mtDNA integrity in stem cell function and differentiation. Current Opinion in Genetics and Development, 2016, 38, 83-89.	1.5	9
209	Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Current Opinion in Genetics and Development, 2016, 38, 97-101.	1.5	70
210	Mesenchymal stem cell treatment is associated with decreased perfusate concentration of interleukin-8 during ex vivo perfusion of donor lungs after 18-hour preservation. Journal of Heart and Lung Transplantation, 2016, 35, 1245-1254.	0.3	85

#	Article	IF	Citations
211	Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Current Opinion in Genetics and Development, 2016, 38, 75-82.	1.5	68
212	Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury. Stem Cell Research, 2016, 17, 25-31.	0.3	29
213	Actuating critical care therapeutics. Journal of Critical Care, 2016, 35, 90-95.	1.0	3
214	Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L439-L451.	1.3	29
215	Mitochondrial transplantation for therapeutic use. Clinical and Translational Medicine, 2016, 5, 16.	1.7	134
217	Modifying the Mitochondrial Genome. Cell Metabolism, 2016, 23, 785-796.	7.2	101
218	Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells. Cell Metabolism, 2016, 23, 921-929.	7.2	84
219	Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Research and Therapy, 2016, 7, 125.	2.4	602
220	Mesenchymal Stromal Cell-Based Therapies for Chronic Lung Disease of Prematurity. American Journal of Perinatology, 2016, 33, 1043-1049.	0.6	7
221	iPSC-MSCs with High Intrinsic MIRO1 and Sensitivity to TNF-α Yield Efficacious Mitochondrial Transfer to Rescue Anthracycline-Induced Cardiomyopathy. Stem Cell Reports, 2016, 7, 749-763.	2.3	177
222	Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Experimental Hematology, 2016, 44, 1092-1112.e2.	0.2	36
223	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30
224	Paradoxical effect of methimazole on liver mitochondria: In vitro and in vivo. Toxicology Letters, 2016, 259, 108-115.	0.4	44
225	Concise Review: The Bystander Effect: Mesenchymal Stem Cell-Mediated Lung Repair. Stem Cells, 2016, 34, 1437-1444.	1.4	49
226	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
227	The rise of mitochondria in medicine. Mitochondrion, 2016, 30, 105-116.	1.6	349
228	Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theoretical Biology and Medical Modelling, 2016, 13, 16.	2.1	25
229	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18

#	Article	IF	CITATIONS
230	Stromal Progenitor Cells in Mitigation of Non-hematopoietic Radiation Injuries. Current Pathobiology Reports, 2016, 4, 221-230.	1.6	5
231	Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 2016, 128, 253-264.	0.6	320
232	Mitochondrial Transfer from Astrocytes to Neurons following Ischemic Insult: Guilt by Association?. Cell Metabolism, 2016, 24, 376-378.	7.2	43
233	Transfer of mitochondria from astrocytes to neurons after stroke. Nature, 2016, 535, 551-555.	13.7	872
234	Mesenchymal Stromal Cells are Readily Recoverable from Lung Tissue, but not the Alveolar Space, in Healthy Humans. Stem Cells, 2016, 34, 2548-2558.	1.4	25
235	Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Research and Therapy, 2016, 7, 91.	2.4	94
236	Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatric Respiratory Reviews, 2016, 20, 33-41.	1.2	20
237	Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Scientific Reports, 2016, 6, 30263.	1.6	24
238	Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death and Disease, 2016, 7, e2467-e2467.	2.7	179
239	Mesenchymal stem cell-conditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/PGC-1α pathway. Clinical Science, 2016, 130, 2181-2198.	1.8	59
240	Role of Microvesicles From Bone Marrow Mesenchymal Stem Cells in Acute Pancreatitis. Pancreas, 2016, 45, 1282-1293.	0.5	22
241	Transferring Xenogenic Mitochondria Provides Neural Protection against Ischemic Stress in Ischemic Rat Brains. Cell Transplantation, 2016, 25, 913-927.	1.2	96
242	Antifibrotic, Antioxidant, and Immunomodulatory Effects of Mesenchymal Stem Cells in HOClâ€Induced Systemic Sclerosis. Arthritis and Rheumatology, 2016, 68, 1013-1025.	2.9	70
243	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
244	Effects of bone marrow-derived mesenchymal stem cells on the autophagic activity of alveolar macrophages in a rat model of silicosis. Experimental and Therapeutic Medicine, 2016, 11, 2577-2582.	0.8	14
245	Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. Journal of Translational Medicine, 2016, 14, 47.	1.8	15
246	Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) improves brain ischemia-induced pulmonary injury in rats associated to TNF- $\hat{l}\pm$ expression. Behavioral and Brain Functions, 2016, 12, 9.	1.4	16
247	Muscle regeneration after sepsis. Critical Care, 2016, 20, 131.	2.5	13

#	Article	IF	CITATIONS
248	Mesenchymal stromal cells in the development and therapy of bronchopulmonary dysplasia. Molecular and Cellular Pediatrics, 2016, 3, 18.	1.0	23
249	Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. British Journal of Pharmacology, 2016, 173, 2305-2318.	2.7	94
250	Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biology, 2016, 51, 7-13.	1.5	79
251	Chromatographically isolated CD63 ⁺ CD81 ⁺ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 170-175.	3.3	366
252	Cell-based strategies to reconstitute vital functions in preterm infants with organ failure. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 99-111.	1.4	2
253	Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L103-L113.	1.3	59
254	Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB Journal, 2016, 30, 1416-1424.	0.2	63
255	Stem cell–based therapies for the newborn lung and brain: Possibilities and challenges. Seminars in Perinatology, 2016, 40, 138-151.	1.1	64
256	Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Seminars in Cell and Developmental Biology, 2016, 52, 119-131.	2.3	136
257	Human urinary exosome proteome unveils its aerobic respiratory ability. Journal of Proteomics, 2016, 136, 25-34.	1.2	27
258	Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication, 2016, 8, 015012.	3.7	43
259	Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E15-E23.	1.8	29
260	Mitochondrial metabolic failure in telomere attrition-provoked aging of bone marrow mesenchymal stem cells. Biogerontology, 2016, 17, 267-279.	2.0	37
261	Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Translational Research, 2016, 167, 183-191.	2.2	148
262	Mitochondrial function in hypoxic ischemic injury and influence of aging. Progress in Neurobiology, 2017, 157, 92-116.	2.8	259
263	Regenerative therapy for hippocampal degenerative diseases: lessons from preclinical studies. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 321-333.	1.3	10
264	Stem cells and Bronchopulmonary Dysplasia - The five questions: Which cells, when, in which dose, to which patients via which route?. Paediatric Respiratory Reviews, 2017, 24, 54-59.	1.2	14
265	Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung and Circulation, 2017, 26, 648-659.	0.2	24

#	Article	IF	CITATIONS
266	Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion, 2017, 34, 91-100.	1.6	120
267	Intersecting Worlds of Transfusion and Transplantation Medicine: An International Symposium Organized by the Canadian Blood Services Centre for Innovation. Transfusion Medicine Reviews, 2017, 31, 183-192.	0.9	4
268	Mitochondrial Function in Allergic Disease. Current Allergy and Asthma Reports, 2017, 17, 29.	2.4	41
269	The mobility of mitochondria: Intercellular trafficking in health and disease. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 15-20.	0.9	27
270	Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments. Experimental Cell Research, 2017, 355, 182-193.	1.2	28
271	Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Seminars in Cancer Biology, 2017, 47, 1-17.	4.3	40
272	Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of "Neo-Islets,―Three-Dimensional Aggregates of Allogeneic Islet and "Mesenchymal Stem Cells― Stem Cells Translational Medicine, 2017, 6, 1631-1643.	1.6	18
273	Stem Cells and Their Immunomodulatory Potential for the Treatment of ARDS. , 2017, , 273-290.		O
275	Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death and Differentiation, 2017, 24, 1224-1238.	5.0	202
276	The surgical outcomes of lung cancer combined with interstitial pneumonia: a single-institution report. Surgery Today, 2017, 47, 1397-1404.	0.7	8
277	Prospects for therapeutic mitochondrial transplantation. Mitochondrion, 2017, 35, 70-79.	1.6	85
278	Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. Journal of Neuroscience Methods, 2017, 287, 1-12.	1.3	33
279	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
280	Mesenchymal Stem/Stromal Cells for Sepsis. Annual Update in Intensive Care and Emergency Medicine, 2017, , 41-51.	0.1	O
281	Mitochondrial Dysfunction in Airway Disease. Chest, 2017, 152, 618-626.	0.4	168
282	Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis. Cytotherapy, 2017, 19, 586-602.	0.3	31
283	Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion, 2017, 34, 127-134.	1.6	124
284	Annual Update in Intensive Care and Emergency Medicine 2017. Annual Update in Intensive Care and Emergency Medicine, 2017, , .	0.1	0

#	Article	IF	CITATIONS
285	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS.Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 266-273.	2.5	179
286	Multifunctional Roles of Tumor-Associated Mesenchymal Stem Cells in Cancer Progression. , 2017, , 335-368.		2
287	Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration, 2017, 93, 212-225.	1.2	213
288	Human lung ex vivo infection models. Cell and Tissue Research, 2017, 367, 511-524.	1.5	29
290	Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. Stem Cells in Clinical Applications, 2017, , 77-117.	0.4	1
291	Mitochondrial Dysfunction in Lung Pathogenesis. Annual Review of Physiology, 2017, 79, 495-515.	5.6	79
292	Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich's ataxia. Science Translational Medicine, 2017, 9, .	5 . 8	50
293	Cell communication modes and bidirectional mitochondrial exchange in direct and indirect macrophage/hMSC co-culture models. BioNanoMaterials, 2017, 18, .	1.4	1
294	Macropinocytic entry of isolated mitochondria in epidermal growth factor-activated human osteosarcoma cells. Scientific Reports, 2017, 7, 12886.	1.6	30
295	Controlled delivery and minimally invasive imaging of stem cells in the lung. Scientific Reports, 2017, 7, 13082.	1.6	34
296	Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nature Communications, 2017, 8, 983.	5 . 8	124
297	Therapeutic Applications of Extracellular Vesicles: Perspectives from Newborn Medicine. Methods in Molecular Biology, 2017, 1660, 409-432.	0.4	26
298	Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Science Translational Medicine, 2017, 9, .	5.8	91
299	Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Scientific Reports, 2017, 7, 10710.	1.6	49
300	Stem Cell–based Therapies for Sepsis. Anesthesiology, 2017, 127, 1017-1034.	1.3	49
301	NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood, 2017, 130, 1649-1660.	0.6	242
302	Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication. Journal of Virology, 2017, 91, .	1.5	45
303	MitoCeption: Transferring Isolated Human MSC Mitochondria to Glioblastoma Stem Cells. Journal of Visualized Experiments, 2017, , .	0.2	22

#	Article	IF	CITATIONS
304	Transit and integration of extracellular mitochondria in human heart cells. Scientific Reports, 2017, 7, 17450.	1.6	98
305	BMSCs ameliorate septic coagulopathy through suppressing inflammation in cecal ligation and puncture induced sepsis. Journal of Cell Science, 2018, 131, .	1.2	10
306	Mesenchymal Stem Cells for Frailty?. Rejuvenation Research, 2017, 20, 525-529.	0.9	7
307	Mitochondrial Transfer in the Leukemia Microenvironment. Trends in Cancer, 2017, 3, 828-839.	3.8	71
308	Reprogramming of cellular metabolism: driver for airway remodelling in COPD?. European Respiratory Journal, 2017, 50, 1702197.	3.1	6
309	Safety study of autologous adult bone marrow derived mesenchymal stromal cells in idiopathic pulmonary fibrosis - Pilot data. New Horizons in Translational Medicine, 2017, 4, 15-22.	1.0	1
310	Extracellular Vesicle Transfer from Mesenchymal Stromal Cells Modulates Macrophage Function in Acute Lung Injury. Basic Science and Clinical Implications. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1234-1236.	2.5	17
311	Transfer of mitochondria after stroke: a new hope for cardioprotection coming from the brain?. Cardiovascular Research, 2017, 113, e10-e11.	1.8	O
312	Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats. Molecular Medicine Reports, 2017, 16, 654-660.	1.1	22
313	Differential reduction of reactive oxygen species by human tissue-specific mesenchymal stem cells from different donors under oxidative stress. Journal of Biosciences, 2017, 42, 373-382.	0.5	9
314	Mitochondrial cytopathies: Their causes and correction pathways. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2017, 11, 87-102.	0.3	1
315	Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage. Stroke, 2017, 48, 2231-2237.	1.0	95
316	Rationale for Determining the Functional Potency of Mesenchymal Stem Cells in Preventing Regulated Cell Death for Therapeutic Use. Stem Cells Translational Medicine, 2017, 6, 713-719.	1.6	22
317	Function of Cryopreserved Mesenchymal Stromal Cells With and Without Interferon-Î ³ Prelicensing is Context Dependent. Stem Cells, 2017, 35, 1437-1439.	1.4	23
318	Cell-based therapies for neonatal lung disease. Cell and Tissue Research, 2017, 367, 737-745.	1.5	17
319	The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy, 2017, 19, 1-8.	0.3	112
320	Acute Lung Injury and Repair. Respiratory Medicine, 2017, , .	0.1	1
321	Mesenchymal stem cells attenuate ischemia–reperfusion injury after prolonged cold ischemia in a mouse model of lung transplantation: a preliminary study. Surgery Today, 2017, 47, 425-431.	0.7	15

#	Article	IF	CITATIONS
322	G-CSF-mobilized Bone Marrow Mesenchymal Stem Cells Replenish Neural Lineages in Alzheimer's Disease Mice via CXCR4/SDF-1 Chemotaxis. Molecular Neurobiology, 2017, 54, 6198-6212.	1.9	39
323	Lost in translation: applying 2D intercellular communication via tunneling nanotubes in cell culture to physiologically relevant 3D microenvironments. FEBS Journal, 2017, 284, 699-707.	2.2	18
324	Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells, 2017, 35, 316-324.	1.4	130
325	Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neuroscience Letters, 2017, 636, 282-289.	1.0	27
326	Bacterial therapy and mitochondrial therapy. Biochemistry (Moscow), 2017, 82, 1549-1556.	0.7	5
327	Prevention of Axonal Degeneration by Perineurium Injection of Mitochondria in a Sciatic Nerve Crush Injury Model. Neurosurgery, 2017, 80, 475-488.	0.6	26
328	Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Research, 2017, 6, 169.	0.8	127
329	Mitochondria on the move: BMSCs fuel AML energy. Blood, 2017, 130, 1603-1604.	0.6	1
330	Mitotherapy for Fatty Liver by Intravenous Administration of Exogenous Mitochondria in Male Mice. Frontiers in Pharmacology, 2017, 8, 241.	1.6	93
331	Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury. International Journal of Molecular Sciences, 2017, 18, 689.	1.8	103
333	Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. International Journal of Molecular Sciences, 2017, 18, 2755.	1.8	120
334	Junctional Interplay in Lung Epithelial Barrier Function. , 2017, , 1-20.		4
335	Natural Killer Cells: Angels and Devils for Immunotherapy. International Journal of Molecular Sciences, 2017, 18, 1868.	1.8	59
336	Trauma and Stem Cells: Biology and Potential Therapeutic Implications. International Journal of Molecular Sciences, 2017, 18, 577.	1.8	19
337	Mitochondrial Transfer from Wharton's Jelly Mesenchymal Stem Cell to MERRF Cybrid Reduces Oxidative Stress and Improves Mitochondrial Bioenergetics. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-22.	1.9	41
338	Functional Mitochondria in Health and Disease. Frontiers in Endocrinology, 2017, 8, 296.	1.5	219
339	Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2017, 8, 371.	2.2	55
340	The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Frontiers in Medicine, 2017, 4, 61.	1.2	79

#	ARTICLE	IF	CITATIONS
341	Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Frontiers in Molecular Biosciences, 2017, 4, 50.	1.6	99
342	Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley?. Stem Cells International, 2017, 2017, 1-10.	1.2	23
343	Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells International, 2017, 2017, 1-14.	1.2	127
344	Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells International, 2017, 2017, 1-23.	1.2	95
345	Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget, 2017, 8, 38008-38021.	0.8	69
346	Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation. PLoS ONE, 2017, 12, e0185937.	1.1	18
347	Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells. , 2017, 58, 5298.		39
348	SPLUNC1 knockout enhances LPS-induced lung injury by increasing recruitment of CD11b+Gr-1+ cells to the spleen of mice. Oncology Reports, 2018, 39, 358-366.	1.2	6
349	Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC). Bio-protocol, 2017, 7, .	0.2	47
350	Mitochondrial Mechanisms During Ischemia and Reperfusion. , 2017, , 230-234.		1
351	Tunneling Nanotubes (TNTs): Intratumoral Cell-to-Cell Communication and Mitochondria Trafficking Through Connections by Tunneling Nanotubes—Effects on Cell Metabolism and Response to Therapy. , 2017, , 513-513.		0
352	Mitochondrial Genome Transfer to Tumor Cells Breaks The Rules and Establishes a New Precedent in Cancer Biology. Molecular and Cellular Oncology, 2018, 5, e1023929.	0.3	20
353	Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury. Stem Cells Translational Medicine, 2018, 7, 394-403.	1.6	28
354	Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Scientific Reports, 2018, 8, 3330.	1.6	80
355	Acute Respiratory Distress Syndrome: Benchâ€toâ€Bedside Approaches to Improve Drug Development. Clinical Pharmacology and Therapeutics, 2018, 104, 484-494.	2.3	21
356	Innate immune responses to trauma. Nature Immunology, 2018, 19, 327-341.	7.0	377
357	Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 1800-1818.	1.7	115
358	Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Research and Therapy, 2018, 9, 106.	2.4	58

#	Article	IF	CITATIONS
359	Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death and Disease, 2018, 9, 81.	2.7	82
360	Polymer Functionalization of Isolated Mitochondria for Cellular Transplantation and Metabolic Phenotype Alteration. Advanced Science, 2018, 5, 1700530.	5.6	33
361	Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology, 2018, 517, 122-134.	1.1	33
362	Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. Journal of Biomedical Science, 2018, 25, 31.	2.6	224
363	Mesenchymal stromal cells and macrophages in sepsis: new insights. European Respiratory Journal, 2018, 51, 1800510.	3.1	15
364	Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle, 2018, 17, 712-721.	1.3	76
365	Cellular and Site-Specific Mitochondrial Characterization of Vital Human Amniotic Membrane. Cell Transplantation, 2018, 27, 3-11.	1.2	20
366	Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration?. Stem Cell Reviews and Reports, 2018, 14, 346-369.	5.6	53
367	Bone marrow mesenchymal stromal cells protect allograft lung transplants from acute rejection via the PD-L1/IL-17A axis. Surgery Today, 2018, 48, 726-734.	0.7	5
368	Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. European Respiratory Journal, 2018, 51, 1700745.	3.1	136
369	Insights into cellâ€free therapeutic approach: Role of stem cell "soupâ€ernatant― Biotechnology and Applied Biochemistry, 2018, 65, 104-118.	1.4	24
370	Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophrenia Bulletin, 2018, 44, 432-442.	2.3	81
371	Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxidants and Redox Signaling, 2018, 29, 149-168.	2.5	109
372	Cell-based Therapy in Sepsis. A Step Closer. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 280-281.	2.5	9
373	Fracture Healing and the Underexposed Role of Extracellular Vesicle-Based Cross Talk. Shock, 2018, 49, 486-496.	1.0	19
374	Exosome-based Therapy for Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 10-12.	2.5	12
375	Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatric Research, 2018, 83, 214-222.	1.1	90
376	Localization of Exogenous Mesenchymal Stem Cells in a Pig Model of Lung Transplantation. Thoracic and Cardiovascular Surgeon, 2018, 66, 063-070.	0.4	2

#	Article	IF	Citations
377	Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 104-116.	2.5	450
378	Mesenchymal stem cells alleviate oxidative stress–induced mitochondrial dysfunction in the airways. Journal of Allergy and Clinical Immunology, 2018, 141, 1634-1645.e5.	1.5	103
379	Enhancement of glycolysis by inhibition of oxygenâ€sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB Journal, 2018, 32, 2258-2268.	0.2	36
380	The long and winding road: stem cells for cystic fibrosis. Expert Opinion on Biological Therapy, 2018, 18, 281-292.	1.4	16
381	Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia, 2018, 66, 1213-1234.	2.5	103
382	DIY: "Do Imaging Yourself―– Conventional microscopes as powerful tools for in vivo investigation. International Journal of Biochemistry and Cell Biology, 2018, 94, 1-5.	1.2	6
383	Extracellular Mitochondria for Therapy and Diagnosis in Acute Central Nervous System Injury. JAMA Neurology, 2018, 75, 119.	4.5	61
384	Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80.	1.1	25
385	Mitochondrial Targeted Therapies: Where Do We Stand in Mental Disorders?. Biological Psychiatry, 2018, 83, 770-779.	0.7	16
386	Adult Pulmonary Mesenchymal Progenitors. , 2018, , 337-337.		0
387	Cell therapy in acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, 5607-5620.	0.6	46
388	Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. The Cochrane Library, 2018, , .	1.5	3
389	Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Medicine Experimental, 2018, 6, 24.	0.9	25
390	Basic and clinical research progress in acute lung injury/acute respiratory distress syndrome. Infection International, 2018, 7, 38-43.	0.1	7
391	Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Research and Therapy, 2018, 9, 298.	2.4	58
392	Stem Cells for Cancer and Genetic Disease Treatment. Stem Cells in Clinical Applications, 2018, , .	0.4	2
393	Mitochondrial targeting as a novel therapy for stroke. Brain Circulation, 2018, 4, 84.	0.7	50
394	Mesenchymal Stem Cells Shift Mitochondrial Dynamics and Enhance Oxidative Phosphorylation in Recipient Cells. Frontiers in Physiology, 2018, 9, 1572.	1.3	35

#	Article	IF	CITATIONS
395	The role of stem cells in cystic fibrosis disease modeling and drug discovery. Expert Opinion on Orphan Drugs, 2018, 6, 707-717.	0.5	1
396	Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome. Mediators of Inflammation, 2018, 2018, 1-16.	1.4	6
397	Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathologica Communications, 2018, 6, 139.	2.4	93
398	Cell-based Therapy for Chronic Obstructive Pulmonary Disease. Rebuilding the Lung. Annals of the American Thoracic Society, 2018, 15, S253-S259.	1.5	13
399	Muse Cells. Advances in Experimental Medicine and Biology, 2018, , .	0.8	3
400	Muse Cells and Ischemia-Reperfusion Lung Injury. Advances in Experimental Medicine and Biology, 2018, 1103, 293-303.	0.8	7
401	Stem Cells for Nerve and Muscle Repair: Harnessing Developmental Dynamics in Therapeutics. Stem Cells in Clinical Applications, 2018, , 149-186.	0.4	0
402	Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplantation, 2018, 27, 1825-1834.	1.2	71
403	Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2018, 7, 857-866.	1.6	99
404	Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats. International Journal of Molecular Sciences, 2018, 19, 2782.	1.8	42
405	Mitochondria in Ischemic Stroke: New Insight and Implications. , 2018, 9, 924.		198
406	Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem Cell Reports, 2018, 11, 1120-1135.	2.3	136
407	Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Frontiers in Immunology, 2018, 9, 2217.	2.2	45
408	Mesenchymal Stem Cell-Derived Exosomes Reduce A1 Astrocytes via Downregulation of Phosphorylated NFÎB P65 Subunit in Spinal Cord Injury. Cellular Physiology and Biochemistry, 2018, 50, 1535-1559.	1.1	136
409	TGF-Î ² 1 induces epithelial-to-mesenchymal transition via inhibiting mitochondrial functions in A549 cells. Free Radical Research, 2018, 52, 1432-1444.	1.5	24
410	Adult Stem Cell-Based Strategies for Peripheral Nerve Regeneration. Advances in Experimental Medicine and Biology, 2018, 1119, 41-71.	0.8	26
411	Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension?. International Journal of Molecular Sciences, 2018, 19, 2534.	1.8	49
412	Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium. Stem Cells, 2018, 36, 1404-1410.	1.4	106

#	ARTICLE	IF	Citations
413	Gap Junctions Are Involved in the Rescue of CFTR-Dependent Chloride Efflux by Amniotic Mesenchymal Stem Cells in Coculture with Cystic Fibrosis CFBE410- Cells. Stem Cells International, 2018, 2018, 1-14.	1.2	15
414	The mitochondria in lung fibrosis: friend or foe?. Translational Research, 2018, 202, 1-23.	2.2	38
415	The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochemical Journal, 2018, 475, 2305-2328.	1.7	73
416	<i>Akap1</i> genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L860-L870.	1.3	35
417	Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment. International Journal of Molecular Sciences, 2018, 19, 2127.	1.8	18
418	Specialized Intercellular Communications via Cytonemes and Nanotubes. Annual Review of Cell and Developmental Biology, 2018, 34, 59-84.	4.0	70
419	Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Frontiers in Immunology, 2018, 9, 832.	2.2	263
420	Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Frontiers in Medicine, 2018, 5, 179.	1.2	45
421	Intra- and Intercellular Quality Control Mechanisms of Mitochondria. Cells, 2018, 7, 1.	1.8	101
422	Lung Innate Immunity and Inflammation. Methods in Molecular Biology, 2018, , .	0.4	2
423	Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nature Communications, 2018, 9, 2658.	5.8	242
424	Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 2018, 23, 687.	1.7	130
425	Intravital Microscopy in the Mouse Lung. Methods in Molecular Biology, 2018, 1809, 331-339.	0.4	5
426	Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. Journal of Hematology and Oncology, 2018, 11, 11.	6.9	172
427	Genetic Modification of Mesenchymal Stem Cells Overexpressing Angiotensin II Type 2 Receptor Increases Cell Migration to Injured Lung in LPS-Induced Acute Lung Injury Mice. Stem Cells Translational Medicine, 2018, 7, 721-730.	1.6	24
428	Effects of bone marrow-derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF- $\langle i \rangle$ 1± $\langle i \rangle$, IL-1 $\langle i \rangle$ 12 $\langle i \rangle$, and IFN- $\langle i \rangle$ 13 $\langle i \rangle$ 2. Physiological Reports, 2018, 6, e13831.	0.7	7
429	Novel imaging approaches for small animal models of lung disease (2017 Grover Conference series). Pulmonary Circulation, 2018, 8, 1-9.	0.8	9
430	Development of an In Vitro Cardiac Ischemic Model Using Primary Human Cardiomyocytes. Cardiovascular Engineering and Technology, 2018, 9, 529-538.	0.7	17

#	ARTICLE	IF	CITATIONS
431	Chemotherapy-Induced Tunneling Nanotubes Mediate Intercellular Drug Efflux in Pancreatic Cancer. Scientific Reports, 2018, 8, 9484.	1.6	79
432	Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe <i>E. coli </i> pneumonia. Thorax, 2019, 74, 43-50.	2.7	166
433	Potential use of stem cells as a therapy for cystinosis. Pediatric Nephrology, 2019, 34, 965-973.	0.9	18
434	Scientific Basis for Stem Cell Therapy. , 2019, , 715-726.		0
435	Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine, 2019, 46, 305-316.	2.7	46
436	Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: knowns and unknowns. Intensive Care Medicine Experimental, 2019, 7, 41.	0.9	35
437	Induced pluripotent stem cell-derived endothelial cells attenuate lipopolysaccharide-induced acute lung injury. Journal of Applied Physiology, 2019, 127, 444-456.	1.2	7
438	Sepsis-Induced Lung Injury: The Mechanism and Treatment. , 2019, , 253-275.		0
439	Mitochondrial Involvement in Cisplatin Resistance. International Journal of Molecular Sciences, 2019, 20, 3384.	1.8	88
440	Mitochondria Are Dynamically Transferring Between Human Neural Cells and Alexander Disease-Associated GFAP Mutations Impair the Astrocytic Transfer. Frontiers in Cellular Neuroscience, 2019, 13, 316.	1.8	57
441	The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. Journal of Clinical Medicine, 2019, 8, 1025.	1.0	203
442	Eye Opener in Stroke. Stroke, 2019, 50, 2197-2206.	1.0	25
443	Primary allogeneic mitochondrial mix (PAMM) transfer/transplant by MitoCeption to address damage in PBMCs caused by ultraviolet radiation. BMC Biotechnology, 2019, 19, 42.	1.7	23
444	Intracellular and Intercellular Mitochondrial Dynamics in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 930.	1.4	55
445	Mitochondrial Function in Peripheral Blood Mononuclear Cells (PBMC) Is Enhanced, Together with Increased Reactive Oxygen Species, in Severe Asthmatic Patients in Exacerbation. Journal of Clinical Medicine, 2019, 8, 1613.	1.0	16
446	Mesenchymal stem cell–derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. Journal of Heart and Lung Transplantation, 2019, 38, 1306-1316.	0.3	52
447	Mitochondrial dysfunction is associated with Miro1 reduction in lung epithelial cells by cigarette smoke. Toxicology Letters, 2019, 317, 92-101.	0.4	38
448	The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer. Experimental Biology and Medicine, 2019, 244, 1485-1492.	1.1	16

#	Article	IF	CITATIONS
449	The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology, 2019, 19, 119.	1.6	33
450	Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells. , 2019, 60, 4583.		13
451	Targeting the Immune System With Mesenchymal Stromal Cell-Derived Extracellular Vesicles: What Is the Cargo's Mechanism of Action?. Frontiers in Bioengineering and Biotechnology, 2019, 7, 308.	2.0	33
452	Mesenchymal stem cellsâ€derived extracellular vesicles in acute respiratory distress syndrome: a review of current literature and potential future treatment options. Clinical and Translational Medicine, 2019, 8, 25.	1.7	66
453	Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. , 2019, 9, 1431-1441.		2
454	Mitochondrial dysfunction increases pro-inflammatory cytokine production and impairs repair and corticosteroid responsiveness in lung epithelium. Scientific Reports, 2019, 9, 15047.	1.6	40
455	Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. Journal of Extracellular Vesicles, 2019, 8, 1635420.	5.5	104
456	Neuroprotection by mesenchymal stem cell (MSC) administration is enhanced by local cooling infusion (LCI) in ischemia. Brain Research, 2019, 1724, 146406.	1.1	16
457	Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood, 2019, 134, 1415-1429.	0.6	148
458	Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nature Neuroscience, 2019, 22, 1635-1648.	7.1	346
459	Early Mechanistic Events Induced by Low Molecular Weight Polycyclic Aromatic Hydrocarbons in Mouse Lung Epithelial Cells: A Role for Eicosanoid Signaling. Toxicological Sciences, 2019, 169, 180-193.	1.4	17
460	Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. Journal of Cell Science, 2019, 132, .	1.2	74
461	Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics, 2019, 9, 2395-2410.	4.6	87
463	Overexpression of IL-10 Enhances the Efficacy of Human Umbilical-Cord-Derived Mesenchymal Stromal Cells in E. coli Pneumosepsis. Journal of Clinical Medicine, 2019, 8, 847.	1.0	33
464	Current progress of mitochondrial transplantation that promotes neuronal regeneration. Translational Neurodegeneration, 2019, 8, 17.	3.6	78
465	Mitophagy in Cancer: A Tale of Adaptation. Cells, 2019, 8, 493.	1.8	149
466	Mitochondrial Transfer of Wharton's Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	1.9	27
467	Mesenchymal Stem Cellsâ€"Potential Applications in Kidney Diseases. International Journal of Molecular Sciences, 2019, 20, 2462.	1.8	59

#	ARTICLE	IF	CITATIONS
468	Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe?. Biology, 2019, 8, 33.	1.3	28
469	Mesenchymal Stromal Cell Therapies for Neurodegenerative Diseases. Mayo Clinic Proceedings, 2019, 94, 892-905.	1.4	112
470	Mitochondrial interaction with the endosomal compartment in endocytosis and mitochondrial transfer. Mitochondrion, 2019, 49, 284-288.	1.6	22
471	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	0.8	276
472	Mesenchymal stem cell therapy targeting mitochondrial dysfunction in acute kidney injury. Journal of Translational Medicine, 2019, 17, 142.	1.8	20
473	Current Status and Perspectives of Human Mesenchymal Stem Cell Therapy. Stem Cells International, 2019, 2019, 1-3.	1.2	14
475	Life and death of circulating cell-free DNA. Cancer Biology and Therapy, 2019, 20, 1057-1067.	1.5	327
476	Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 240-249.	2.5	60
477	Extracellular vesicles in lung health, disease, and therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L977-L989.	1.3	48
478	Exosomes in Allergic Airway Diseases. Current Allergy and Asthma Reports, 2019, 19, 26.	2.4	28
479	Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases. Annals of the American Thoracic Society, 2019, 16, 657-668.	1.5	23
480	Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Scientific Reports, 2019, 9, 5184.	1.6	110
481	Characteristics of Intestinal Microecology during Mesenchymal Stem Cell-Based Therapy for Mouse Acute Liver Injury. Stem Cells International, 2019, 2019, 1-14.	1.2	24
482	The therapeutic effects of bone marrow-derived mesenchymal stromal cells in the acute lung injury induced by sulfur mustard. Stem Cell Research and Therapy, 2019, 10, 90.	2.4	21
483	Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Bioscience Reports, 2019, 39, .	1.1	69
484	Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, 2019, , .	0.1	4
485	Precision medicine for cell therapy in acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2019, 7, e13.	5.2	8
486	Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Scientific Reports, 2019, 9, 5500.	1.6	32

#	Article	IF	Citations
487	Mitochondrial Transfer from Bone Marrow Mesenchymal Stem Cells to Motor Neurons in Spinal Cord Injury Rats via Gap Junction. Theranostics, 2019, 9, 2017-2035.	4.6	140
488	Mitochondrial Heterogeneity. Frontiers in Genetics, 2018, 9, 718.	1.1	89
489	Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Research and Therapy, 2019, 10, 56.	2.4	34
490	A Robotic Surgery Approach to Mitochondrial Transfer Amongst Single Cells. , 2019, , .		2
491	Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. The Cochrane Library, 2019, 2019, CD013201.	1.5	7
492	Acute Respiratory Distress Syndrome Novel Therapies. Critical Care Nursing Quarterly, 2019, 42, 411-416.	0.4	3
494	Therapeutic Application of Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation. Frontiers in Immunology, 2019, 10, 2663.	2.2	87
495	Strategies to Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome. Stem Cells International, 2019, 2019, 1-12.	1.2	29
496	Critical Impact of Human Amniotic Membrane Tension on Mitochondrial Function and Cell Viability In Vitro. Cells, 2019, 8, 1641.	1.8	7
497	Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects. Radiation Oncology, 2019, 14, 218.	1.2	40
498	ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24610-24619.	3.3	82
499	Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Research and Therapy, 2019, 10, 386.	2.4	31
500	Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system. Acta Pharmaceutica Sinica B, 2019, 9, 167-176.	5.7	94
501	Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications. Journal of Cellular Physiology, 2019, 234, 1130-1146.	2.0	72
502	Remembering the Host in Tuberculosis Drug Development. Journal of Infectious Diseases, 2019, 219, 1518-1524.	1.9	33
503	Mitochondrial Dysfunction: Metabolic Drivers of Pulmonary Hypertension. Antioxidants and Redox Signaling, 2019, 31, 843-857.	2.5	17
504	Induced pluripotent stem cellâ€derived extracellular vesicles: A novel approach for cellâ€free regenerative medicine. Journal of Cellular Physiology, 2019, 234, 8455-8464.	2.0	38
505	Stem Cell Therapy in Neonates—the Time Has (Almost) Come. , 2019, , 1-18.		0

#	Article	IF	CITATIONS
506	Cell replacement in human lung bioengineering. Journal of Heart and Lung Transplantation, 2019, 38, 215-224.	0.3	28
507	Where next for cell-based therapy in ARDS. Thorax, 2019, 74, 13-15.	2.7	6
508	Building and Regenerating the Lung Cell by Cell. Physiological Reviews, 2019, 99, 513-554.	13.1	152
509	CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Research, 2019, 79, 2285-2297.	0.4	156
510	Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB Journal, 2019, 33, 5585-5598.	0.2	34
511	Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Bioscience Reports, 2019, 39, .	1.1	29
512	Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvascular Research, 2019, 123, 74-80.	1.1	97
513	Oncostatin M-induced upregulation of SDF-1 improves Bone marrow stromal cell migration in a rat middle cerebral artery occlusion stroke model. Experimental Neurology, 2019, 313, 49-59.	2.0	12
514	Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells, 2019, 37, 14-25.	1.4	97
515	Transient Cell-to-Cell Signaling Before Mitosis in Cultures of Human Bone Marrow-Derived Mesenchymal Stem/Stromal Cells. Stem Cells and Development, 2019, 28, 120-128.	1.1	2
516	Therapeutic use of mesenchymal stem cell–derived extracellular vesicles in acute lung injury. Transfusion, 2019, 59, 876-883.	0.8	53
517	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	0.8	16
518	Multiple Organ Dysfunction. , 2019, , 205-208.e2.		2
519	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	2.3	37
520	Obesity, mitochondrial dysfunction, and obstructive lung disease., 2019, , 143-167.		2
521	Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy, 2019, 21, 289-306.	0.3	107
522	Sulforaphane enriched transcriptome of lung mitochondrial energy metabolism and provided pulmonary injury protection via Nrf2 in mice. Toxicology and Applied Pharmacology, 2019, 364, 29-44.	1.3	35
523	Identification and Modulation of Microenvironment Is Crucial for Effective Mesenchymal Stromal Cell Therapy in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1214-1224.	2.5	92

#	Article	IF	CITATIONS
524	Regenerative Medicine., 2019,, 527-531.		0
525	Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1351-1358.	1.7	6
526	Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions. Paediatric Respiratory Reviews, 2020, 34, 37-45.	1.2	22
527	Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity. Haematologica, 2020, 105, 209-217.	1.7	32
528	Mitochondria and Critical Illness. Chest, 2020, 157, 310-322.	0.4	108
529	The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14, 31-39.	1.0	106
530	Mitochondrial heteroplasmy beyond the oocyte bottleneck. Seminars in Cell and Developmental Biology, 2020, 97, 156-166.	2.3	57
531	Mitochondrial biology in airway pathogenesis and the role of NRF2. Archives of Pharmacal Research, 2020, 43, 297-320.	2.7	22
532	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	2.4	56
533	Mitochondria as a therapeutic target for ischemic stroke. Free Radical Biology and Medicine, 2020, 146, 45-58.	1.3	144
534	Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells, 2020, 38, 574-584.	1.4	37
535	Emerging Therapies in BPD. , 2020, , 307-316.		0
536	Extracellular Mitochondria in Traumatic Brain Injury Induced Coagulopathy. Seminars in Thrombosis and Hemostasis, 2020, 46, 167-175.	1.5	11
537	Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+ scattered tubular cells eliminate hypoxic tubular cell injury. Biochemical and Biophysical Research Communications, 2020, 522, 205-212.	1.0	19
538	Effects of Brain-Derived Mitochondria on the Function of Neuron and Vascular Endothelial Cell After Traumatic Brain Injury. World Neurosurgery, 2020, 138, e1-e9.	0.7	11
539	Mitochondrial transplantation: respiration rescue in respiratory failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L76-L77.	1.3	0
540	Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 576176.	1.8	68
541	Cell-Free Therapies: Novel Approaches for COVID-19. Frontiers in Immunology, 2020, 11, 583017.	2.2	6

#	Article	IF	Citations
542	Mesenchymal stem cells: a new front emerges in coronavirus disease 2019 treatment. Cytotherapy, 2022, 24, 755-766.	0.3	22
543	Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. IScience, 2020, 23, 101631.	1.9	81
544	Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Research and Therapy, 2020, 11, 437.	2.4	54
545	Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 565970.	1.8	24
546	Mitochondrial donation in translational medicine; from imagination to reality. Journal of Translational Medicine, 2020, 18, 367.	1.8	11
547	Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants, 2020, 9, 983.	2.2	9
548	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
549	Mitochondrial dysfunction in lung ageing and disease. European Respiratory Review, 2020, 29, 200165.	3.0	56
550	Platelet Extracellular Vesicles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 87-96.	1,1	83
551	Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells, 2020, 9, 1660.	1.8	28
552	Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Frontiers in Cell and Developmental Biology, 2020, 8, 598112.	1.8	6
553	Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages. Shock, 2020, 54, 828-843.	1.0	77
554	Alternative mitochondrial quality control mediated by extracellular release. Autophagy, 2021, 17, 2962-2974.	4.3	53
555	Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Frontiers in Cell and Developmental Biology, 2020, 8, 603292.	1.8	81
556	The rationale of using mesenchymal stem cells in patients with COVID-19-related acute respiratory distress syndrome: What to expect. Stem Cells Translational Medicine, 2020, 9, 1287-1302.	1.6	45
557	Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Research Reviews, 2020, 62, 101128.	5.0	71
558	Mesenchymal Stem/Stromal Cell-Mediated Mitochondrial Transfer and the Therapeutic Potential in Treatment of Neurological Diseases. Stem Cells International, 2020, 2020, 1-16.	1.2	24
559	Bone marrowâ€derived mitochondrial DNA has limited capacity for interâ€tissue transfer in vivo. FASEB Journal, 2020, 34, 9297-9306.	0.2	5

#	Article	IF	Citations
560	Mitochondrial movement between mammalian cells: an emerging physiological phenomenon. , 2020, , 515-546.		4
561	Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion, 2020, 54, 102-112.	1.6	35
562	Autologous transplantation of adipose-derived stromal cells combined with sevoflurane ameliorates acute lung injury induced by cecal ligation and puncture in rats. Scientific Reports, 2020, 10, 13760.	1.6	3
563	Clinical trials in mitochondrial disorders, an update. Molecular Genetics and Metabolism, 2020, 131, 1-13.	0.5	44
564	The Emerging Role of RHOT1/Miro1 in the Pathogenesis of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 587.	1.1	30
565	Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood, 2020, 136, 2607-2619.	0.6	47
566	The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opinion on Drug Delivery, 2020, 17, 1689-1702.	2.4	8
567	Mesenchymal Stem Cells Adaptively Respond to Environmental Cues Thereby Improving Granulation Tissue Formation and Wound Healing. Frontiers in Cell and Developmental Biology, 2020, 8, 697.	1.8	54
568	Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients?. Journal of Clinical Medicine, 2020, 9, 2762.	1.0	20
569	Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Research and Therapy, 2020, 11, 400.	2.4	24
570	Cell Therapy for Idiopathic Pulmonary Fibrosis: Rationale and Progress to Date. BioDrugs, 2020, 34, 543-556.	2.2	8
571	Reply to Zhang and Hei: Mesenchymal Stem Cell–derived Exosomes: Are They Another Therapeutic Method for Extracorporeal Membrane Oxygenation–supported Acute Respiratory Distress Syndrome?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1603-1604.	2.5	0
572	Stem cell-based interventions for the prevention of morbidity and mortality following hypoxic-ischaemic encephalopathy in newborn infants. The Cochrane Library, 2020, 2020, CD013202.	1.5	16
573	Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Scientific Reports, 2020, 10, 14328.	1.6	8
574	Bases for Treating Skin Aging With Artificial Mitochondrial Transfer/Transplant (AMT/T). Frontiers in Bioengineering and Biotechnology, 2020, 8, 919.	2.0	16
575	A Ticket to Ride: The Implications of Direct Intercellular Communication via Tunneling Nanotubes in Peritoneal and Other Invasive Malignancies. Frontiers in Oncology, 2020, 10, 559548.	1.3	18
576	Mitochondrial DNA Affects the Expression of Nuclear Genes Involved in Immune and Stress Responses in a Breast Cancer Model. Frontiers in Physiology, 2020, 11, 543962.	1.3	6
577	Combined Cell Therapy in the Treatment of Neurological Disorders. Biomedicines, 2020, 8, 613.	1.4	9

#	Article	IF	Citations
578	Mitochondrial Dysfunction in Pancreatic Alpha and Beta Cells Associated with Type 2 Diabetes Mellitus. Life, 2020, 10, 348.	1.1	14
579	The Role of Connexin 43 in Lung Disease. Life, 2020, 10, 363.	1.1	8
580	Mitophagy and the Brain. International Journal of Molecular Sciences, 2020, 21, 9661.	1.8	32
581	Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes and Diseases, 2022, 9, 610-637.	1.5	15
582	BMSC-derived exosomes from congenital polydactyly tissue alleviate osteoarthritis by promoting chondrocyte proliferation. Cell Death Discovery, 2020, 6, 142.	2.0	24
583	Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. Npj Regenerative Medicine, 2020, 5, 22.	2.5	136
584	Extracellular Vesicles and Damage-Associated Molecular Patterns: A Pandora's Box in Health and Disease. Frontiers in Immunology, 2020, 11, 601740.	2.2	32
585	Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. Npj Regenerative Medicine, 2020, 5, 24.	2.5	38
586	Mesenchymal Stem Cells: The Past Present and Future. Advances in Experimental Medicine and Biology, 2020, 1312, 107-129.	0.8	16
587	Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes. Journal of Cerebral Blood Flow and Metabolism, 2020, 41, 0271678X2096958.	2.4	19
588	Mesenchymal Stromal Cells in Solid Organ Transplantation. Transplantation, 2020, 104, 923-936.	0.5	23
589	Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Research and Therapy, 2020, 11, 169.	2.4	63
590	Mesenchymal stem cell use in acute respiratory distress syndrome: a potential therapeutic application. Future Science OA, 2020, 6, FSO584.	0.9	3
591	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
592	Tunneling Nanotubes-Mediated Protection of Mesenchymal Stem Cells: An Update from Preclinical Studies. International Journal of Molecular Sciences, 2020, 21, 3481.	1.8	18
593	Tunneling Nanotubes and the Eye: Intercellular Communication and Implications for Ocular Health and Disease. BioMed Research International, 2020, 2020, 1-15.	0.9	19
594	Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Frontiers in Bioengineering and Biotechnology, 2020, 8, 269.	2.0	6
595	Generation and Release of Mitochondrial-Derived Vesicles in Health, Aging and Disease. Journal of Clinical Medicine, 2020, 9, 1440.	1.0	54

#	Article	IF	Citations
596	Extracellular Vesicles, Apoptotic Bodies and Mitochondria: Stem Cell Bioproducts for Organ Regeneration. Current Transplantation Reports, 2020, 7, 105-113.	0.9	21
597	Cardiac tissue remodeling in healthy aging: the road to pathology. American Journal of Physiology - Cell Physiology, 2020, 319, C166-C182.	2.1	24
598	Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 2020, 54, 1-7.	1.6	245
599	The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Translational Medicine, 2020, 9, 985-1006.	1.6	117
600	Mesenchymal Stem and Stromal Cells Harness Macrophage-Derived Amphiregulin to Maintain Tissue Homeostasis. Cell Reports, 2020, 30, 3806-3820.e6.	2.9	73
601	Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS ONE, 2020, 15, e0229521.	1.1	5
602	MSC Based Therapiesâ€"New Perspectives for the Injured Lung. Journal of Clinical Medicine, 2020, 9, 682.	1.0	118
603	TATâ€dextran–mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes. Journal of Cellular and Molecular Medicine, 2020, 24, 5007-5020.	1.6	37
604	Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 2020, 6, eaay7608.	4.7	44
605	Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells International, 2020, 2020, 1-16.	1.2	84
606	Acute Myocardial Infarction Reduces Respiration in Rat Cardiac Fibers, despite Adipose Tissue Mesenchymal Stromal Cell Transplant. Stem Cells International, 2020, 2020, 1-19.	1.2	6
607	Extracellular vesicles in the therapy of BPD. , 2020, , 129-148.		1
608	Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells. Scientific Reports, 2020, 10, 10740.	1.6	34
609	Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers, 2020, 12, 1787.	1.7	25
610	Multifaceted Roles of Mitochondrial Components and Metabolites in Metabolic Diseases and Cancer. International Journal of Molecular Sciences, 2020, 21, 4405.	1.8	24
611	Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell and Tissue Banking, 2020, 21, 405-425.	0.5	22
612	Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke. Translational Stroke Research, 2020, 11, 1214-1228.	2.3	36
613	Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Research and Therapy, 2020, 11, 245.	2.4	55

#	Article	IF	CITATIONS
614	Therapeutic targeting of metabolic alterations in acute respiratory distress syndrome. European Respiratory Review, 2020, 29, 200114.	3.0	14
615	The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia, 2020, 68, 1910-1924.	2.5	67
616	Bone Marrow-Derived Mesenchymal Stromal Cells (MSCs) Modulate the Inflammatory Character of Alveolar Macrophages from Sarcoidosis Patients. Journal of Clinical Medicine, 2020, 9, 278.	1.0	12
617	Stem Cell Therapy in Brain Ischemia: The Role of Mitochondrial Transfer. Stem Cells and Development, 2020, 29, 555-561.	1.1	15
618	Mitochondrial characteristics contribute to proliferation and migration potency of MDA-MB-231 cancer cells and their response to cisplatin treatment. Life Sciences, 2020, 244, 117339.	2.0	20
619	Deregulated Mitochondrial DNA in Diseases. DNA and Cell Biology, 2020, 39, 1385-1400.	0.9	19
620	Mitochondrial DNA: A Key Regulator of Anti-Microbial Innate Immunity. Genes, 2020, 11, 86.	1.0	21
621	Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and Molecular Life Sciences, 2020, 77, 2771-2794.	2.4	316
622	The Mitochondria-Derived Peptide Humanin Improves Recovery from Intracerebral Hemorrhage: Implication of Mitochondria Transfer and Microglia Phenotype Change. Journal of Neuroscience, 2020, 40, 2154-2165.	1.7	43
623	Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria. Translational Neurodegeneration, 2020, 9, 13.	3.6	44
624	Medicinal signaling cells: A potential antimicrobial drug store. Journal of Cellular Physiology, 2020, 235, 7731-7746.	2.0	18
625	A preview of selected articles. Stem Cells, 2020, 38, 465-468.	1.4	0
626	Chemical individuality in T cells: A Garrodian view of immunometabolism. Immunological Reviews, 2020, 295, 82-100.	2.8	8
627	Cell therapy for the preterm infant: promise and practicalities. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 563-568.	1.4	8
628	<p>Mitochondria-Modulating Porous Se@SiO₂ Nanoparticles Provide Resistance to Oxidative Injury in Airway Epithelial Cells: Implications for Acute Lung Injury</p> . International Journal of Nanomedicine, 2020, Volume 15, 2287-2302.	3.3	21
629	Regenerative abilities of mesenchymal stem cells via acting as an ideal vehicle for subcellular component delivery in acute kidney injury. Journal of Cellular and Molecular Medicine, 2020, 24, 4882-4891.	1.6	11
630	Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. European Respiratory Journal, 2020, 55, 2000858.	3.1	193
631	Mitochondrial <scp>DNA</scp> in inflammation and immunity. EMBO Reports, 2020, 21, e49799.	2.0	446

#	Article	IF	CITATIONS
632	Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 761-770.	2.4	67
633	Characterization of an elastase-induced emphysema model in immune-deficient rats. European Journal of Cardio-thoracic Surgery, 2021, 59, 309-315.	0.6	1
634	Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 020-039.	0.8	20
635	Enhanced protection against lipopolysaccharideâ€induced acute lung injury by autologous transplantation of adiposeâ€derived stromal cells combined with low tidal volume ventilation in rats. Journal of Cellular Physiology, 2021, 236, 1295-1308.	2.0	1
636	Mesenchymal Stem Cell-Mediated Mitochondrial Transfer: a Therapeutic Approach for Ischemic Stroke. Translational Stroke Research, 2021, 12, 212-229.	2.3	21
637	Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sciences, 2021, 265, 118766.	2.0	5
638	Biological role and clinical relevance of extracellular vesicles as key mediators of cell communication in cancer. Advances in Biomembranes and Lipid Self-Assembly, 2021, 33, 37-117.	0.3	4
639	Cellular and molecular features of senescence in acute lung injury. Mechanisms of Ageing and Development, 2021, 193, 111410.	2.2	5
640	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	7.2	160
641	Mitochondrial oxidative phosphorylation in cutaneous melanoma. British Journal of Cancer, 2021, 124, 115-123.	2.9	39
642	Stem cell therapy in coronavirus disease 2019: current evidence and future potential. Cytotherapy, 2021, 23, 471-482.	0.3	11
643	Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases?. Progress in Molecular Biology and Translational Science, 2021, 177, 49-63.	0.9	5
644	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
645	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	2.1	38
646	Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine and Growth Factor Reviews, 2021, 58, 114-133.	3.2	17
647	Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome?. Blood Reviews, 2021, 46, 100742.	2.8	11
648	Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Reviews and Reports, 2021, 17, 44-55.	1.7	11
649	The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicinâ€mediated nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22612.	1.4	29

#	Article	IF	CITATIONS
652	Mitochondria Transfer in Bone Marrow Hematopoietic Activity. Current Stem Cell Reports, 2021, 7, 1-12.	0.7	4
653	Effectiveness and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
654	Mitochondrial Transplantation for Ischemia Reperfusion Injury. Methods in Molecular Biology, 2021, 2277, 15-37.	0.4	11
655	Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases. Frontiers in Aging Neuroscience, 2020, 12, 614650.	1.7	71
657	Recent developments in mitochondrial medicine (Part 1). 4open, 2021, 4, 2.	0.1	2
658	Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines, 2021, 9, 107.	1.4	7
659	Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a proâ€osteogenic paracrine response: TERCELOI clinical trial. Clinical and Translational Medicine, 2021, 11, e265.	1.7	23
660	Impaired Hematopoiesis after Allogeneic Hematopoietic Stem Cell Transplantation: Its Pathogenesis and Potential Treatments. Hemato, 2021, 2, 43-63.	0.2	3
661	Mitochondria transplantation in organ damage and repair., 2021,, 263-272.		0
662	Impaired mitochondrial dynamics in disease. , 2021, , 57-90.		0
663	Mitochondrial Organelle Transplantation Is a Potential Therapeutic for Mitochondria Dysfunction in Severe Acute Respiratory Syndrome (SARS) Coronavirus Diseases. Advances in Infectious Diseases, 2021, 11, 298-309.	0.0	1
664	Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines, 2021, 9, 169.	1.4	43
665	Mesenchymal Stem Cell-Derived Extracellular Vesicles: Promising Treatment for COVID-19 Pandemic. Experimental and Clinical Transplantation, 2021, , .	0.2	0
666	Is There an Effect of Fetal Mesenchymal Stem Cells in the Mother–Fetus Dyad in COVID-19 Pregnancies and Vertical Transmission?. Frontiers in Physiology, 2020, 11, 624625.	1.3	1
667	The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 140.	2.4	53
668	Non-muscle myosin II knockdown improves survival and therapeutic effects of implanted bone marrow-derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury. Annals of Translational Medicine, 2021, 9, 262-262.	0.7	2
669	Opportunities and Challenges in Tunneling Nanotubes Research: How Far from Clinical Application?. International Journal of Molecular Sciences, 2021, 22, 2306.	1.8	18
670	Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduction and Targeted Therapy, 2021, 6, 65.	7.1	137

#	Article	IF	CITATIONS
671	Stem cellâ€derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neuroscience and Therapeutics, 2021, 27, 733-742.	1.9	19
672	Protecting islet functional viability using mesenchymal stromal cells. Stem Cells Translational Medicine, 2021, 10, 674-680.	1.6	22
673	Targeting mesenchymal stem cell therapy for severe pneumonia patients. World Journal of Stem Cells, 2021, 13, 139-154.	1.3	4
674	Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metabolism, 2021, 33, 283-299.e9.	7.2	102
675	Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases. Histochemistry and Cell Biology, 2021, 155, 291-300.	0.8	8
676	Mesenchymal Stem Cell-Based Therapy for Stroke: Current Understanding and Challenges. Frontiers in Cellular Neuroscience, 2021, 15, 628940.	1.8	38
677	Mesenchymal Stem Cell-Based Therapy for COVID-19: Possibility and Potential. Current Stem Cell Research and Therapy, 2021, 16, 105-108.	0.6	6
678	Immunoregulatory Effects of Mitochondria Transferred by Extracellular Vesicles. Frontiers in Immunology, 2020, 11, 628576.	2.2	16
679	"Empowering―Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter?. International Journal of Molecular Sciences, 2021, 22, 1824.	1.8	3
680	Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells, 2021, 10, 588.	1.8	39
681	Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Research and Therapy, 2021, 12, 192.	2.4	145
682	Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. Journal of Experimental Medicine, 2021, 218, .	4.2	25
683	One step forward: extracellular mitochondria transplantation. Cell and Tissue Research, 2021, 384, 607-612.	1.5	10
684	Actin fence therapy with exogenous V12Rac1 protects against acute lung injury. JCI Insight, 2021, 6, .	2.3	7
685	Cellular Therapy as Promising Choice of Treatment for COVID-19. , 0, , .		0
686	The Role of Mitochondria in Immune-Cell-Mediated Tissue Regeneration and Ageing. International Journal of Molecular Sciences, 2021, 22, 2668.	1.8	22
687	Extracellular Mitochondria Signals in CNS Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 642853.	1.8	16
688	Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nature Communications, 2021, 12, 1971.	5.8	142

#	Article	IF	Citations
689	Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells, 2021, 10, 537.	1.8	86
690	Cardiac Mitochondrial Transplantation. Journal of the American College of Cardiology, 2021, 77, 1089-1092.	1.2	9
691	Extracellular Vesicles for the Treatment of Radiation-Induced Normal Tissue Toxicity in the Lung. Frontiers in Oncology, 2020, 10, 602763.	1.3	7
692	Musculoskeletal Progenitor/Stromal Cell-Derived Mitochondria Modulate Cell Differentiation and Therapeutical Function. Frontiers in Immunology, 2021, 12, 606781.	2.2	24
693	Mitochondrial Transfer in Cancer: A Comprehensive Review. International Journal of Molecular Sciences, 2021, 22, 3245.	1.8	65
694	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome., 2021,, 353-372.		1
695	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.4	15
696	Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. Journal of Biomedical Science, 2021, 28, 28.	2.6	100
697	MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Frontiers in Immunology, 2021, 12, 626755.	2.2	63
698	Birbirinden uzak endotel hýcreleri arasında nanotüp tünellemenin görüntülenmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 0, , .	0.2	0
699	Transfer of mitochondria and endosomes between cells by gap junction internalization. Traffic, 2021, 22, 174-179.	1.3	32
700	Targeting the blood-brain barrier for the delivery of stroke therapies. Advanced Drug Delivery Reviews, 2021, 171, 332-351.	6.6	63
701	Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes?. Frontiers in Immunology, 2021, 12, 663203.	2.2	33
702	Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases. Frontiers in Pharmacology, 2021, 12, 645558.	1.6	12
703	Dual Regeneration of Muscle and Nerve by Intramuscular Infusion of Mitochondria in a Nerve Crush Injury Model. Neurosurgery, 2021, 89, E49-E59.	0.6	4
705	Intercellular mitochondria transfer: a new perspective for the treatment of metabolic diseases. Acta Biochimica Et Biophysica Sinica, 2021, 53, 958-960.	0.9	4
706	Elevated Mitochondrial Reactive Oxygen Species within Cerebrospinal Fluid as New Index in the Early Detection of Lumbar Spinal Stenosis. Diagnostics, 2021, 11, 748.	1.3	4
707	Mesenchymal Stem Cell Transplantation for the Treatment of Cognitive Frailty. Journal of Nutrition, Health and Aging, 2021, 25, 795-801.	1.5	0

#	Article	IF	CITATIONS
708	Platelets fuel mesenchymal stem cells by providing live mitochondria. Journal of Thrombosis and Haemostasis, 2021, 19, 1603-1606.	1.9	1
709	Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biology, 2021, 19, e3001166.	2.6	95
710	Mitochondria Donation by Mesenchymal Stem Cells: Current Understanding and Mitochondria Transplantation Strategies. Frontiers in Cell and Developmental Biology, 2021, 9, 653322.	1.8	54
711	Microvesicles released from pneumolysin-stimulated lung epithelial cells carry mitochondrial cargo and suppress neutrophil oxidative burst. Scientific Reports, 2021, 11, 9529.	1.6	11
712	Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Research and Therapy, 2021, 12, 299.	2.4	11
713	Generation of somatic mitochondrial DNA-replaced cells for mitochondrial dysfunction treatment. Scientific Reports, 2021, 11, 10897.	1.6	7
714	Umbilical mesenchymal stem cell-derived extracellular vesicles as enzyme delivery vehicle to treat Morquio A fibroblasts. Stem Cell Research and Therapy, 2021, 12, 276.	2.4	5
715	The Role of Gap Junctions in Endothelial–Stromal Cell Interactions. Human Physiology, 2021, 47, 352-362.	0.1	2
716	Selective inhibition of JNK mitochondrial location is protective against seawater inhalationâ€induced ALI/ARDS. Molecular Medicine Reports, 2021, 24, .	1.1	3
717	The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion, 2021, 58, 270-284.	1.6	26
718	Mitochondria transfer from early stages of erythroblasts to their macrophage niche via tunnelling nanotubes. British Journal of Haematology, 2021, 193, 1260-1274.	1.2	13
719	The Functions, Methods, and Mobility of Mitochondrial Transfer Between Cells. Frontiers in Oncology, 2021, 11, 672781.	1.3	43
720	MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biology, 2021, 41, 101936.	3.9	59
721	Effects of mesenchymal stromal cellâ€derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. Journal of Leukocyte Biology, 2021, 110, 27-38.	1.5	10
722	Unraveling the Underlying Interaction Mechanism Between Dabie bandavirus and Innate Immune Response. Frontiers in Immunology, 2021, 12, 676861.	2.2	13
723	Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and Developmental Biology, 2021, 9, 661385.	1.8	14
725	Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2021, 17, 1905-1916.	1.7	10
726	Miro proteins connect mitochondrial function and intercellular transport. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-25.	2.3	11

#	ARTICLE	IF	CITATIONS
727	Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation. Neuroscience Letters, 2021, 756, 135940.	1.0	10
728	Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World Journal of Stem Cells, 2021, 13, 568-593.	1.3	13
729	Targeting of Deciduous Tooth Pulp Stem Cell–Derived Extracellular Vesicles on Telomerase-Mediated Stem Cell Niche and Immune Regulation in Systemic Lupus Erythematosus. Journal of Immunology, 2021, 206, 3053-3063.	0.4	14
730	The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Research and Therapy, 2021, 12, 316.	2.4	12
731	The Scientific and Cultural Journey to Ovarian Rejuvenation: Background, Barriers, and Beyond the Biological Clock. Medicines (Basel, Switzerland), 2021, 8, 29.	0.7	9
732	Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. Npj Regenerative Medicine, 2021, 6, 37.	2.5	31
733	Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemicâ€kike injury in hippocampal HT22 cells. Journal of Pineal Research, 2021, 71, e12747.	3.4	56
734	Effects of mesenchymal stem cell-derived exosomes on oxidative stress responses in skin cells. Molecular Biology Reports, 2021, 48, 4527-4535.	1.0	7
735	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	48
736	Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke. Bioactive Materials, 2021, 6, 1988-1999.	8.6	31
737	Melatonin rescues cerebral ischemic events through upregulated tunneling nanotube-mediated mitochondrial transfer and downregulated mitochondrial oxidative stress in rat brain. Biomedicine and Pharmacotherapy, 2021, 139, 111593.	2.5	22
738	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	2.4	15
739	Oxidative-Signaling in Neural Stem Cell-Mediated Plasticity: Implications for Neurodegenerative Diseases. Antioxidants, 2021, 10, 1088.	2.2	7
740	Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Scientific Reports, 2021, 11, 14556.	1.6	42
741	Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion, 2021, 59, 225-245.	1.6	78
742	The central role of mitochondrial fitness on antiviral defenses: An advocacy for physical activity during the COVID-19 pandemic. Redox Biology, 2021, 43, 101976.	3.9	36
743	Pulmonary mesenchymal stem cells are engaged in distinct steps of host response to respiratory syncytial virus infection. PLoS Pathogens, 2021, 17, e1009789.	2.1	6
744	Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sciences, 2021, 278, 119510.	2.0	8

#	Article	IF	Citations
745	Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. International Immunopharmacology, 2021, 97, 107694.	1.7	24
746	Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World Journal of Stem Cells, 2021, 13, 1058-1071.	1.3	14
747	Exosomal IncRNA TCONS_00064356 derived from injured alveolar epithelial type II cells affects the biological characteristics of mesenchymal stem cells. Life Sciences, 2021, 278, 119568.	2.0	6
748	Automated Optical Tweezers Manipulation to Transfer Mitochondria from Fetal to Adult MSCs to Improve Antiaging Gene Expressions. Small, 2021, 17, e2103086.	5.2	13
749	Mesenchymal stem cell transfusion: Possible beneficial effects in COVID-19 patients. Transfusion and Apheresis Science, 2021, 60, 103237.	0.5	1
750	Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. International Journal of Molecular Sciences, 2021, 22, 8312.	1.8	61
751	Clinical Trials Based on Mesenchymal Stromal Cells are Exponentially Increasing: Where are We in Recent Years?. Stem Cell Reviews and Reports, 2022, 18, 23-36.	1.7	88
752	Extracellular Mitochondrial Components and Effects on Cardiovascular Disease. DNA and Cell Biology, 2021, 40, 1131-1143.	0.9	9
753	Mesenchymal Stem Cell Transplantation for the Treatment of Age-Related Musculoskeletal Frailty. International Journal of Molecular Sciences, 2021, 22, 10542.	1.8	6
754	Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell, 2021, 184, 5089-5106.e21.	13.5	158
755	Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Frontiers in Cell and Developmental Biology, 2021, 9, 734720.	1.8	75
756	Mitochondrial quality control in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3157-3170.	2.4	38
757	Mesenchymal Stem/Stromal Cell Therapy in Blood–Brain Barrier Preservation Following Ischemia: Molecular Mechanisms and Prospects. International Journal of Molecular Sciences, 2021, 22, 10045.	1.8	31
758	Pushing the boundaries of organs before it's too late: preâ€emptive regeneration. Transplant International, 2021, 34, 1761-1769.	0.8	0
759	Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm, 2021, 2, 351-380.	3.1	15
760	Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. American Journal of Physiology - Cell Physiology, 2021, 321, C489-C503.	2.1	21
761	Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Advances, 2021, 5, 4233-4255.	2.5	36
762	Mitochondria–plasma membrane interactions and communication. Journal of Biological Chemistry, 2021, 297, 101164.	1.6	20

#	ARTICLE	IF	Citations
763	Iron oxide nanoparticles augment the intercellular mitochondrial transfer–mediated therapy. Science Advances, 2021, 7, eabj0534.	4.7	44
764	Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. Journal of Controlled Release, 2021, 338, 505-526.	4.8	65
765	Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Frontiers in Immunology, 2021, 12, 738697.	2.2	14
766	Mitochondrial dynamics and mitophagy in lung disorders. Life Sciences, 2021, 284, 119876.	2.0	46
767	Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regenerative Therapy, 2021, 18, 152-160.	1.4	11
768	Mitochondria as the target for disease related hormonal dysregulation. Brain, Behavior, & Immunity - Health, 2021, 18, 100350.	1.3	8
769	Connexins. , 2022, , 606-611.		0
770	Altered autophagy on the path to Parkinson's disease. , 2022, , 271-286.		0
771	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
772	Nanomedicine to advance the treatment of bacteria-induced acute lung injury. Journal of Materials Chemistry B, 2021, 9, 9100-9115.	2.9	6
773	Investigation of the MSC Paracrine Effects on Alveolar–Capillary Barrier Integrity in the In Vitro Models of ARDS. Methods in Molecular Biology, 2021, 2269, 63-81.	0.4	2
774	Stem Cell Therapy Potency in Personalizing Severe COVID-19 Treatment. Stem Cell Reviews and Reports, 2021, 17, 193-213.	1.7	32
775	COVID-19 and Gut Microbiota: A Potential Connection. Indian Journal of Clinical Biochemistry, 2021, 36, 266-277.	0.9	31
776	Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. Stem Cells, 2021, 39, 707-722.	1.4	42
777	Alcohol and the Alveolar Epithelium. Respiratory Medicine, 2014, , 83-101.	0.1	1
778	Preclinical Evidence for the Role of Stem/Stromal Cells in Targeting ARDS. , 2019, , 199-217.		3
779	The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. , 2019, , 219-238.		4
780	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1

#	Article	IF	CITATIONS
781	Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2019, 1201, 275-353.	0.8	8
782	Peeking into a Hidden Syndicate: Mitochondria of the Human Amniotic Membrane. , 2020, , 467-481.		1
783	Mesenchymal Stromal Cell-Based Therapies for Lung Disease. Pancreatic Islet Biology, 2015, , 225-242.	0.1	1
784	Lung Imaging in Animal Models. Respiratory Medicine, 2017, , 107-132.	0.1	2
785	Mesenchymal Stem Cells in Wound Repair, Tissue Homeostasis, and Aging., 2015, , 287-318.		4
786	Dioscin alleviates lipopolysaccharide-induced acute lung injury through suppression of TLR4 signaling pathways. Experimental Lung Research, 2020, 46, 11-22.	0.5	9
787	Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 189-198.	1.3	145
792	Acute Respiratory Distress Syndrome: The Role of Mesenchymal Stem Cells and Arising Complications Due to an Aging Lung., 2016,, 181-196.		1
793	Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight, 2019, 4, .	2.3	35
794	Fatty acid synthase downregulation contributes to acute lung injury in murine diet-induced obesity. JCI Insight, 2019, 4, .	2.3	20
795	Alveolar injury and regeneration following deletion of ABCA3. JCI Insight, 2017, 2, .	2.3	37
796	Disruption of staphylococcal aggregation protects against lethal lung injury. Journal of Clinical Investigation, 2018, 128, 1074-1086.	3.9	39
797	Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. European Respiratory Journal, 2021, 58, 2002978.	3.1	94
798	Stem cell therapy: a potential approach for treatment of influenza virus and coronavirus-induced acute lung injury. Stem Cell Research and Therapy, 2020, 11, 192.	2.4	34
799	Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization. Stem Cell Research and Therapy, 2020, 11, 424.	2.4	63
800	Lipopolysaccharide Induces Endoplasmic Store Ca2+-Dependent Inflammatory Responses in Lung Microvessels. PLoS ONE, 2013, 8, e63465.	1.1	33
801	An Obligatory Role of NF-κB in Mediating Bone Marrow Derived Endothelial Progenitor Cell Recruitment and Proliferation Following Endotoxemic Multiple Organ Injury in Mice. PLoS ONE, 2014, 9, e111087.	1.1	5
802	Connexin 43 Upregulation in Mouse Lungs during Ovalbumin-Induced Asthma. PLoS ONE, 2015, 10, e0144106.	1.1	13

#	Article	IF	CITATIONS
803	Reciprocal interactions between mesenchymal stem cells and macrophages. International Journal of Developmental Biology, 2020, 64, 465-469.	0.3	9
804	The role of mitochondrial fusion and fission in the process of cardiac oxidative stress. Histology and Histopathology, 2020, 35, 541-552.	0.5	6
805	Mitochondrial Dysfunction Linking Obesity and Asthma. Annals of the American Thoracic Society, 2017, 14, S368-S373.	1.5	28
806	The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Reviews in the Neurosciences, 2021, 32, 203-217.	1.4	18
807	Mitochondrial transplantationâ€"a possible therapeutic for mitochondrial dysfunction?. EMBO Reports, 2020, 21, e50964.	2.0	59
808	Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget, 2016, 7, 48925-48940.	0.8	40
809	Potential application of mesenchymal stem cell-derived exosomes as a novel therapeutic drug. Drug Delivery System, 2014, 29, 140-151.	0.0	1
810	FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Frontiers in Immunology, 2020, 11, 1278.	2.2	19
811	Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. International Journal of Molecular Sciences, 2020, 21, 796.	1.8	25
812	Tunneling Nanotube-Mediated Mitochondrial Transfer: A New Approach to Cell Protection. American Journal of Biomedical Science & Research, 2020, 7, 88-91.	0.2	1
813	Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regeneration Research, 2015, 10, 982.	1.6	49
814	Stem Cell Ophthalmology Treatment Study (SCOTS): improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment. Neural Regeneration Research, 2016, 11, 1512.	1.6	22
815	Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber′s hereditary optic neuropathy. Neural Regeneration Research, 2016, 11, 1685.	1.6	52
816	Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regeneration Research, 2018, 13, 194.	1.6	39
817	Stem cell therapy for neonatal diseases associated with preterm birth. Journal of Clinical Neonatology, 2013, 2, 1.	0.1	27
818	Healthy mitochondria for stroke cells. Brain Circulation, 2018, 4, 95.	0.7	24
819	Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. Journal of Molecular Biomarkers & Diagnosis, 2013, 05, .	0.4	5
820	Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World Journal of Stem Cells, 2020, 12, 471-480.	1.3	15

#	ARTICLE	IF	CITATIONS
821	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	2.8	205
822	Mitochondria and the Tumour Microenvironment in Blood Cancer. Advances in Experimental Medicine and Biology, 2021, 1329, 181-203.	0.8	1
823	Mitochondrial augmentation of CD34+ cells from healthy donors and patients with mitochondrial DNA disorders confers functional benefit. Npj Regenerative Medicine, 2021, 6, 58.	2.5	15
824	Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	5.7	13
827	Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nature Cell Biology, 2021, 23, 1060-1072.	4.6	42
828	Mechanisms of stem cells action: reality and hypotheses. Russian Journal of Pediatric Hematology and Oncology, 2021, 8, 71-78.	0.1	0
829	Macrophages as Emerging Key Players in Mitochondrial Transfers. Frontiers in Cell and Developmental Biology, 2021, 9, 747377.	1.8	17
830	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
831	MSCs: Changing Hypotheses, Paradigms, and Controversies on Mechanisms of Action in Repairing Tissues., 2013,, 17-42.		0
832	Mesenchymal Stem/Stromal Cells: Opportunities and Obstacles in ARDS., 2013,, 467-480.		0
834	Role of Mitochondrial Reactive Oxygen and Nitrogen Species in Respiratory Diseases. Respiratory Medicine, 2014, , 1-25.	0.1	1
835	Intravital Microscopy of the Lung. , 2014, , 221-232.		0
837	Challenges of Cell Therapy for Lung Diseases and Critical Illnesses. Pancreatic Islet Biology, 2015, , 93-112.	0.1	0
838	Bone Marrow Stromal Cell (BMSC) Transplantation for Spinal Cord Injury. Spinal Surgery, 2015, 29, 147-152.	0.0	0
839	Stem Cell Therapy for Neonatal Lung Diseases. , 2016, , 319-357.		0
840	The Role of Mesenchymal Stromal Cells in Idiopathic Pulmonary Fibrosis. International Journal of Stem Cell Research and Therapy, 2016, 3, .	1.0	1
843	Effects of inhalation and intravenous administration of allogeneic mesenchymal bone marrow stromal cells in a bleomycin-induced model of pulmonary fibrosis in rabbits. Vestnik Transplantologii I Iskusstvennykh Organov, 2018, 19, 88-96.	0.1	0
844	Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. The Cochrane Library, 0, , .	1.5	1

#	Article	IF	CITATIONS
845	Comparative study of the effects of mesenchymal stem cells with different delivery methods in an experimental model of lung fibrosis. Journal of Clinical Practice, 2018, 9, 4-14.	0.2	1
846	Role of MMPs and Oxidants in Lung Diseases. , 2019, , 149-169.		1
847	Clinical Application of Stem/Stromal Cells in COPD. , 2019, , 97-118.		0
848	Mesenchymal Stem (Stromal) Cell Communications in Their Niche and Beyond: The Role of Extra Cellular Vesicles and Organelle Transfer in Lung Regeneration. , 2019, , 229-229.		0
849	Peeking into a Hidden Syndicate: Mitochondria of the Human Amniotic Membrane. , 2019, , 1-15.		0
850	THE EFFECT OF ALLOGENEIC MESENCHYMAL STEM CELL TRANSPLANTATION ON THE ACTIVITY OF MITOCHONDRIAL SUCCINATE DEHYDROGENASE IN THE LIVER OF RECIPIENT ANIMALS. Ukrainian Journal of Veterinary Sciences, 2019, 10, 1-2.	0.1	0
851	Potential of Mesenchymal Stem Cells in Modulating Oxidative Stress in Management of Lung Diseases. , 2020, , 59-73.		0
853	Autophagy Driven Extracellular Vesicles in the Leukaemic Microenvironment. Current Cancer Drug Targets, 2020, 20, 501-512.	0.8	3
854	Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chinese Medical Journal, 2021, 134, 212-218.	0.9	14
855	Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells, 2021, 10, 2898.	1.8	75
857	BIOLUMINESCENCE SYSTEMS. Biological & Clinical Sciences Research Journal, 2020, 2020, .	0.4	1
858	Sepsis Related Lung Injury (SRLI). , 2020, , 51-76.		0
860	A membrán nanocsövek szerepe az intercelluláris mitokondrium átadásában és a tumorsejtek kemorezisztenciájában. Transfusio, 2020, 53, 23-35.	0.0	0
861	Mesenchymal Stem Cell Induced Foxp3(+) Tregs Suppress Effector T Cells and Protect against Retinal Ischemic Injury. Cells, 2021, 10, 3006.	1.8	8
862	BMSC-Derived Exosomes Ameliorate Osteoarthritis by Inhibiting Pyroptosis of Cartilage via Delivering miR-326 Targeting HDAC3 and STAT1//NF-κB p65 to Chondrocytes. Mediators of Inflammation, 2021, 2021, 1-26.	1.4	42
863	Current Clinical Application of Mesenchymal Stem Cells in the Treatment of Severe COVID-19 Patients: Review. Stem Cells and Cloning: Advances and Applications, 2021, Volume 14, 71-80.	2.3	1
865	Intercellular Mitochondrial Transfer via Tunneling Nanotubes. Journal of the Nihon University Medical Association, 2020, 79, 313-315.	0.0	0
866	Effect of early administration of lower dose versus high dose of fresh mitochondria on reducing monocrotaline-induced pulmonary artery hypertension in rat. American Journal of Translational Research (discontinued), 2016, 8, 5151-5168.	0.0	9

#	Article	IF	CITATIONS
867	Metabolic changes induced by TGF- \hat{l}^21 via reduced expression of phosphatidylserine decarboxylase during myofibroblast transition. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 108-116.	0.6	2
868	Hematopoietic Stem Cell-Derived Functional Osteoblasts Exhibit Therapeutic Efficacy in a Murine Model of Osteogenesis Imperfecta. Stem Cells, 2021, 39, 1457-1477.	1.4	6
869	Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Frontiers in Physiology, 2021, 12, 752287.	1.3	8
870	Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. Journal of Extracellular Vesicles, 2021, 10, e12164.	5.5	40
871	Role of Macrophage Polarization in Acute Respiratory Distress Syndrome. Journal of Respiration, 2021, 1, 260-272.	0.4	4
872	Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Frontiers in Immunology, 2021, 12, 782074.	2.2	22
873	Ageâ€related changes in the energy of human mesenchymal stem cells. Journal of Cellular Physiology, 2022, 237, 1753-1767.	2.0	10
874	Mitochondrial regulation and white adipose tissue homeostasis. Trends in Cell Biology, 2022, 32, 351-364.	3.6	29
875	Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Frontiers in Immunology, 2021, 12, 766275.	2.2	13
877	Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Frontiers in Microbiology, 2021, 12, 804813.	1.5	7
878	A new murine model of Barth syndrome neutropenia links TAFAZZIN deficiency to increased ER stress-induced apoptosis. Blood Advances, 2022, 6, 2557-2577.	2.5	10
879	Extracellular vesicle-mediated cellular crosstalk in lung repair, remodelling and regeneration. European Respiratory Review, 2022, 31, 210106.	3.0	11
880	Intercellular transfer of mitochondria via tunneling nanotubes protects against cobalt nanoparticle-induced neurotoxicity and mitochondrial damage. Nanotoxicology, 2021, 15, 1358-1379.	1.6	16
881	Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Frontiers in Immunology, 2021, 12, 792098.	2.2	2
882	Drp1/Fis1-Dependent Pathologic Fission and Associated Damaged Extracellular Mitochondria Contribute to Macrophage Dysfunction in Endotoxin Tolerance. Critical Care Medicine, 2022, 50, e504-e515.	0.4	8
883	Stem cells from human exfoliated deciduous teeth (SHED) have mitochondrial transfer ability in stromal-derived inducing activity (SDIA) co-culture system. Neuroscience Letters, 2022, 769, 136392.	1.0	0
884	Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells, 2022, 11, 369.	1.8	22
885	Protective roles of mesenchymal stem cells on skin photoaging: A narrative review. Tissue and Cell, 2022, 76, 101746.	1.0	9

#	Article	IF	CITATIONS
886	Obesity-Related Adipose Tissue Remodeling in the Light of Extracellular Mitochondria Transfer. International Journal of Molecular Sciences, 2022, 23, 632.	1.8	3
887	Secretory Autophagosomes from Alveolar Macrophages Exacerbate Acute Respiratory Distress Syndrome by Releasing IL- $1\hat{l}^2$. Journal of Inflammation Research, 2022, Volume 15, 127-140.	1.6	10
888	Targeting the Meningeal Compartment to Resolve Chemobrain and Neuropathy via Nasal Delivery of Functionalized Mitochondria. Advanced Healthcare Materials, 2022, 11, e2102153.	3.9	8
889	CXCL12/CXCR4 axis supports mitochondrial trafficking in tumor myeloma microenvironment. Oncogenesis, 2022, 11, 6.	2.1	19
890	Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. Journal of Clinical Investigation, 2022, 132, .	3.9	8
891	Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Frontiers in Molecular Biosciences, 2022, 9, 814240.	1.6	7
892	Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Letters, 2022, 596, 1095-1110.	1.3	60
893	Targeted mitochondrial delivery: A therapeutic new era for disease treatment. Journal of Controlled Release, 2022, 343, 89-106.	4.8	12
894	Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. Biology, 2022, 11, 283.	1.3	10
895	Current Status and Perspectives of Human Mesenchymal Stem Cell Therapy 2020. Stem Cells International, 2022, 2022, 1-3.	1.2	1
896	Horizontal mtDNA transfer between cells is common during mouse development. IScience, 2022, 25, 103901.	1.9	7
897	Delivery of mitochondria via extracellular vesicles – A new horizon in drug delivery. Journal of Controlled Release, 2022, 343, 400-407.	4.8	18
898	Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Research and Therapy, 2021, 12, 602.	2.4	28
899	AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics, 2022, 12, 2928-2947.	4.6	71
900	Intercellular Communication in the Brain through Tunneling Nanotubes. Cancers, 2022, 14, 1207.	1.7	20
901	Mitochondrial Transplantation. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	0.8	1
902	Mitochondria Signaling Pathways in Allergic Asthma. Journal of Investigative Medicine, 2022, 70, 863-882.	0.7	21
903	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13

#	Article	IF	CITATIONS
904	Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Research and Therapy, 2022, 13, 124.	2.4	17
905	Development and Functions of Mitochondria in Early Life. , 2022, 1, 131-141.		3
906	PGC-1α induced mitochondrial biogenesis in stromal cells underpins mitochondrial transfer to melanoma. British Journal of Cancer, 2022, 127, 69-78.	2.9	11
907	Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells. Scientific Reports, 2022, 12, 5122.	1.6	6
908	Neurons Release Injured Mitochondria as "Help-Me―Signaling After Ischemic Stroke. Frontiers in Aging Neuroscience, 2022, 14, 785761.	1.7	13
909	The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells?. Cell Communication and Signaling, 2022, 20, 21.	2.7	8
910	BMI1 Silencing Induces Mitochondrial Dysfunction in Lung Epithelial Cells Exposed to Hyperoxia. Frontiers in Physiology, 2022, 13, 814510.	1.3	1
911	Tunneling Nanotube-Mediated Mitochondrial Transfer Rescues Nucleus Pulposus Cells from Mitochondrial Dysfunction and Apoptosis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	8
912	Artificial Mitochondrial Transfer (AMT) for the Management of Age-related Musculoskeletal Degenerative Disorders: An Emerging Avenue for Bone and Cartilage Metabolism Regulation. Stem Cell Reviews and Reports, 2022, , 1.	1.7	2
913	Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cellular and Molecular Life Sciences, 2022, 79, 177.	2.4	23
914	Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radical Biology and Medicine, 2022, 182, 34-58.	1.3	14
915	Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers, 2022, 14, 1865.	1.7	6
916	MSC in Tendon and Joint Disease: The Context-Sensitive Link Between Targets and Therapeutic Mechanisms. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855095.	2.0	2
917	Heteroplasmy of Wild-Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation, 2022, 145, 1084-1101.	1.6	10
918	Erodible thermogelling hydrogels for localized mitochondrial transplantation to the spinal cord. Mitochondrion, 2022, 64, 145-155.	1.6	8
919	Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Engineering and Regenerative Medicine, 2022, 19, 659-673.	1.6	11
920	Extracellular vesicles derived from mesenchymal stromal cells as nanotherapeutics for liver ischaemiaâ€"reperfusion injury by transferring mitochondria to modulate the formation of neutrophil extracellular traps. Biomaterials, 2022, 284, 121486.	5.7	32
921	State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H647-H680.	1.5	13

#	Article	IF	CITATIONS
922	Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Medicine Experimental, 2021, 9, 61.	0.9	9
923	Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells, 2022, 11, 91.	1.8	9
924	Oxidative stress and Rho GTPases in the biogenesis of tunnelling nanotubes: implications in disease and therapy. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	10
925	Adverse Mechanical Ventilation and Pneumococcal Pneumonia Induce Immune and Mitochondrial Dysfunctions Mitigated by Mesenchymal Stem Cells in Rabbits. Anesthesiology, 2022, 136, 293-313.	1.3	3
926	RalGPS2 Interacts with Akt and PDK1 Promoting Tunneling Nanotubes Formation in Bladder Cancer and Kidney Cells Microenvironment. Cancers, 2021, 13, 6330.	1.7	14
928	MSC Transplantation Attenuates Inflammation, Prevents Endothelial Damage and Enhances the Angiogenic Potency of Endogenous MSCs in a Model of Pulmonary Arterial Hypertension. Journal of Inflammation Research, 2022, Volume 15, 2087-2101.	1.6	6
929	CDP-choline Corrects Alveolar Type II Cell Mitochondrial Dysfunction in Influenza-infected Mice. American Journal of Respiratory Cell and Molecular Biology, 2022, , .	1.4	4
930	Intercellular Transport of Mitochondria: Molecular Mechanisms and Role in Maintaining Energy Homeostasis in Tissues. Cell and Tissue Biology, 2022, 16, 97-113.	0.2	1
931	Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. Journal of Pineal Research, 2022, 73, .	3.4	13
949	Novel Pharmacological Targets for Pulmonary Arterial Hypertension. , 2021, 11, 2297-2349.		5
950	Recent research on the mechanism of mesenchymal stem cells in the treatment of bronchopulmonary dysplasia Chinese Journal of Contemporary Pediatrics, 2022, 24, 108-114.	0.2	0
951	Immunomodulatory properties of mesenchymal stem cells and hematopoietic stem cellsâ€"Potential therapeutic target for COVID-19. , 2022, , 95-109.		1
952	Efficacy and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2022, 11, 688-703.	1.6	13
953	An insight into the molecular mechanisms of mesenchymal stem cells and their translational approaches to combat COVID-19., 2022, , 23-46.		0
954	Dexmedetomidine Activates Akt, STAT6 and IRF4 Modulating Cytoprotection and Macrophage Anti-Inflammatory Phenotype Against Acute Lung Injury in vivo and in vitro. Journal of Inflammation Research, 2022, Volume 15, 2707-2720.	1.6	6
955	Microvesicle-Mediated Communication Within the Alveolar Space: Mechanisms of Uptake by Epithelial Cells and Alveolar Macrophages. Frontiers in Immunology, 2022, 13, 853769.	2.2	2
956	New Insights into Adipose Tissue Macrophages in Obesity and Insulin Resistance. Cells, 2022, 11, 1424.	1.8	25
957	The Mighty Mitochondria Are Unifying Organelles and Metabolic Hubs in Multiple Organs of Obesity, Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes: An Observational Ultrastructure Study. International Journal of Molecular Sciences, 2022, 23, 4820.	1.8	13

#	Article	IF	CITATIONS
958	Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chemico-Biological Interactions, 2022, 361, 109961.	1.7	30
959	Use of mesenchymal stem cells in therapy of tuberculosis. Tuberculosis and Lung Diseases, 2022, 100, 62-66.	0.2	0
960	Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell and Bioscience, 2022, 12, 66.	2.1	60
961	Making Connections: Mesenchymal Stem Cells Manifold Ways to Interact with Neurons. International Journal of Molecular Sciences, 2022, 23, 5791.	1.8	3
962	Early evidence of the artificial transfer/transplant of mitochondria to oocytes and zygotes by MitoCeption. Mitochondrion, 2022, , .	1.6	3
963	Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Military Medical Research, 2022, 9, .	1.9	27
964	Exosome Mimetics-Loaded Hydrogel Accelerates Wound Repair by Transferring Functional Mitochondrial Proteins. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	16
965	Direct Cell-Cell Communication via Membrane Pores, Gap Junction Channels, and Tunneling Nanotubes: Medical Relevance of Mitochondrial Exchange. International Journal of Molecular Sciences, 2022, 23, 6133.	1.8	8
967	Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Frontiers in Oncology, 0, 12, .	1.3	8
968	Secondary Mechanisms of Neurotrauma: A Closer Look at the Evidence. Diseases (Basel, Switzerland), 2022, 10, 30.	1.0	6
969	Mitochondria and their potential role in acute lung injury (Review). Experimental and Therapeutic Medicine, 2022, 24, .	0.8	5
970	Bioenergetic Failure Drives Functional Exhaustion of Monocytes in Acute-on-Chronic Liver Failure. Frontiers in Immunology, 2022, 13, .	2.2	9
971	Mitochondria transfer and transplantation in human health and diseases. Mitochondrion, 2022, 65, 80-87.	1.6	21
974	Mesenchymal stem cells improve redox homeostasis and mitochondrial respiration in fibroblast cell lines with pathogenic MT-ND3 and MT-ND6 variants. Stem Cell Research and Therapy, 2022, 13, .	2.4	0
975	Secondary Lymphoid Organs in Mesenchymal Stromal Cell Therapy: More Than Just a Filter. Frontiers in Immunology, $0,13,.$	2.2	3
976	Athletes' Mesenchymal Stem Cells Could Be the Best Choice for Cell Therapy in Omicron-Infected Patients. Cells, 2022, 11, 1926.	1.8	4
977	Locally Delivered Metabolite Derivative Promotes Bone Regeneration in Aged Mice. ACS Applied Bio Materials, 2022, 5, 3281-3289.	2.3	1
978	Protective effect of oxyberberine against acute lung injury in mice via inhibiting RhoA/ROCK signaling pathway. Biomedicine and Pharmacotherapy, 2022, 153, 113307.	2.5	2

#	Article	IF	CITATIONS
979	Extracellular Vesicles in Bone Homeostasis: Emerging Mediators of Osteoimmune Interactions and Promising Therapeutic Targets. International Journal of Biological Sciences, 2022, 18, 4088-4100.	2.6	10
980	Organelle biopsy and gene editing of single cells. , 2022, , 467-510.		0
981	Mitochondrial Transfer Regulates Bioenergetics in Healthy and Chronic Obstructive Pulmonary Disease Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 471-481.	1.4	8
982	Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Frontiers in Immunology, 0, 13, .	2.2	16
983	Direct administration of mesenchymal stem cellâ€derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
984	Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells, 2022, 11, 2175.	1.8	7
985	Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?. International Journal of Molecular Sciences, 2022, 23, 7408.	1.8	19
986	Mesenchymal Stem Cell–Derived Extracellular Vesicles as an Advanced Therapy for Chronic Wounds. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041227.	2.3	9
987	Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. Journal of Hematology and Oncology, 2022, 15, .	6.9	53
988	Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. ELife, 0, 11 , .	2.8	7
989	Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacological Research, 2022, 182, 106334.	3.1	2
990	Dynamic behavior of cell-free mitochondrial DNA in human saliva. Psychoneuroendocrinology, 2022, 143, 105852.	1.3	10
991	Miro proteins and their role in mitochondrial transfer in cancer and beyond. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	5
992	Mitochondrial Transfer between Airway Cells: Helping the Neighbors, or Sending Them Trash?. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 417-418.	1.4	1
993	Mesenchymal Stromal Cell Mitochondrial Transfer as a Cell Rescue Strategy in Regenerative Medicine: A Review of Evidence in Preclinical Models. Stem Cells Translational Medicine, 2022, 11, 814-827.	1.6	17
994	Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers, 2022, 14, 3908.	1.7	17
995	Hunting for the cause: Evidence for prion-like mechanisms in Huntingtonâ \in TM s disease. Frontiers in Neuroscience, 0, 16, .	1.4	6
996	High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Science Advances, 2022, 8, .	4.7	13

#	Article	IF	CITATIONS
997	Promises and Challenges of Cell-Based Therapies to Promote Lung Regeneration in Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 2595.	1.8	6
998	Transplantation of Astrocytic Mitochondria Modulates Neuronal Antioxidant Defense and Neuroplasticity and Promotes Functional Recovery after Intracerebral Hemorrhage. Journal of Neuroscience, 2022, 42, 7001-7014.	1.7	13
999	Role of released mitochondrial DNA in acute lung injury. Frontiers in Immunology, 0, 13, .	2.2	8
1000	Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	26
1001	Progress in mesenchymal stem cell mitochondria transfer for the repair of tissue injury and treatment of disease. Biomedicine and Pharmacotherapy, 2022, 153, 113482.	2.5	11
1002	Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs, 2022, 36, 701-715.	2.2	9
1003	The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacological Research, 2022, 184, 106452.	3.1	5
1004	Peripheral Transplantation of Mesenchymal Stem Cells at Sepsis Convalescence Improves Cognitive Function of Sepsis Surviving Mice. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	1.9	2
1005	NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles. Cells, 2022, 11, 2969.	1.8	18
1006	Engineering Extracellular Vesicles to Modulate Their Innate Mitochondrial Load. Cellular and Molecular Bioengineering, 2022, 15, 367-389.	1.0	5
1007	Mechanical properties of tunneling nanotube and its mechanical stability in human embryonic kidney cells. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
1008	The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Current Neuropharmacology, 2023, 21, 1100-1116.	1.4	5
1010	Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer ^{â€} . Photochemistry and Photobiology, 2023, 99, 448-468.	1.3	4
1011	Headway and the remaining hurdles of mesenchymal stem cells therapy for bronchopulmonary dysplasia. Clinical Respiratory Journal, 2022, 16, 629-645.	0.6	4
1012	Intercellular mitochondrial transfer as a means of revitalizing injured glomerular endothelial cells. World Journal of Stem Cells, 0, 14, 729-743.	1.3	6
1013	Understanding the Role of Mesenchymal Stromal Cells in Treating COVID-19 Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 231-233.	2.5	3
1014	The mitochondrial calcium uniporter of pulmonary type 2 cells determines severity of acute lung injury. Nature Communications, 2022, 13 , .	5.8	7
1015	Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metabolism, 2022, 34, 1499-1513.e8.	7.2	42

#	Article	IF	CITATIONS
1016	Effect of human umbilical cord mesenchymal stem cell exosomes on aerobic metabolism of human retinal pigment epithelial cells. International Ophthalmology, 0 , , .	0.6	0
1017	Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Journal of Translational Medicine, 2022, 20, .	1.8	11
1018	TNTdetect.Al: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images. Cancers, 2022, 14, 4958.	1.7	3
1019	Mesenchymal stem cell bioenergetics and apoptosis are associated with risk for bronchopulmonary dysplasia in extremely low birth weight infants. Scientific Reports, 2022, 12, .	1.6	5
1020	Mitochondrial Transport from Mesenchymal Stromal Cells to Chondrocytes Increases DNA Content and Proteoglycan Deposition <i>In Vitro</i>	1.4	6
1021	Extracellular Vesicles Derived from Mesenchymal Stem Cells. , 2022, , 1071-1096.		0
1022	Delivery of mitoceuticals or respiratory competent mitochondria to sites of neurotrauma. Mitochondrion, 2023, 68, 10-14.	1.6	9
1023	Mitochondria Transfer in Brain Injury and Disease. Cells, 2022, 11, 3603.	1.8	11
1024	Mitochondrial Transplantation Therapy against Ifosfamide Induced Toxicity on Rat Renal Proximal Tubular Cells. Drug Research, 2023, 73, 113-120.	0.7	3
1025	Imaging drug delivery to the lungs: Methods and applications in oncology. Advanced Drug Delivery Reviews, 2023, 192, 114641.	6.6	7
1026	Autophagyâ€independent mitochondrial quality control: Mechanisms and disease associations. , 2022, 1, .		1
1027	The Pathophysiological Significance of "Mitochondrial Ejection―from Cells. Biomolecules, 2022, 12, 1770.	1.8	2
1028	MiR-199a-3p-regulated alveolar macrophage-derived secretory autophagosomes exacerbate lipopolysaccharide-induced acute respiratory distress syndrome. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
1029	Effectiveness of Mesenchymal Stem Cell Therapy for COVID-19-Induced ARDS Patients: A Case Report. Medicina (Lithuania), 2022, 58, 1698.	0.8	5
1030	Cell volume restriction by mercury chloride reduces M1-like inflammatory response of bone marrow-derived macrophages. Frontiers in Pharmacology, 0, 13 , .	1.6	1
1031	Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Science Translational Medicine, 2022, 14, .	5.8	12
1032	Mesenchymal stromal cells donate mitochondria to articular chondrocytes exposed to mitochondrial, environmental, and mechanical stress. Scientific Reports, 2022, 12, .	1.6	8
1033	Mitochondrial Transfer Regulates Cell Fate Through Metabolic Remodeling in Osteoporosis. Advanced Science, 2023, 10, .	5.6	15

#	Article	IF	CITATIONS
1034	Mitolysosome exocytosis: a novel mitochondrial quality control pathway linked with parkinsonism-like symptoms. Biochemical Society Transactions, 2022, 50, 1773-1783.	1.6	1
1035	Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Proliferation, 2023, 56, .	2.4	5
1036	Lineageâ€Mismatched Mitochondrial Replacement in an Inducible Mitochondrial Depletion Model Effectively Restores the Original Proteomic Landscape of Recipient Cells. Advanced Biology, 2023, 7, .	1.4	1
1037	An Updated Review of Mitochondrial Transplantation as a Potential Therapeutic Strategy Against Cerebral Ischemia and Cerebral Ischemia/Reperfusion Injury. Molecular Neurobiology, 2023, 60, 1865-1883.	1.9	2
1038	Barriers and opportunities: Intercellular mitochondrial transfer for cardiac protection—Delivery by extracellular vesicles. Frontiers in Cardiovascular Medicine, 0, 9, .	1,1	0
1039	Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures. Journal of Controlled Release, 2023, 354, 368-393.	4.8	12
1040	iPSCs-derived mesenchymal stromal cells mitigate anxiety and neuroinflammation in aging female mice. International Journal of Biochemistry and Cell Biology, 2023, 155, 106347.	1.2	2
1041	Global Research Trends and Hotspots on Mitochondria in Acute Lung Injury from 2012–2021: A Bibliometric Analysis. International Journal of Environmental Research and Public Health, 2023, 20, 585.	1.2	5
1042	The safety and efficacy of mesenchymal stromal cells in ARDS: a meta-analysis of randomized controlled trials. Critical Care, 2023, 27, .	2.5	13
1044	Mitochondrial Transfer Induced by Adipose-Derived Mesenchymal Stem Cell Transplantation Improves Cardiac Function in Rat Models of Ischemic Cardiomyopathy. Cell Transplantation, 2023, 32, 096368972211484.	1.2	6
1045	Mechanisms of impaired alveolar fluid clearance. Anatomical Record, 0, , .	0.8	2
1046	Targeting Mitochondria to Control Ageing and Senescence. Pharmaceutics, 2023, 15, 352.	2.0	7
1047	Mitochondrial-Derived Vesiclesâ€"Link to Extracellular Vesicles and Implications in Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 2637.	1.8	13
1048	Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. International Journal of Molecular Sciences, 2023, 24, 1969.	1.8	10
1049	The Role of Lung Resident Mesenchymal Stromal Cells in the Pathogenesis and Repair of Chronic Lung Disease. Stem Cells, 2023, 41, 431-443.	1.4	7
1050	Mitochondria transfer reverses the inhibitory effects of low stiffness on osteogenic differentiation of human mesenchymal stem cells. European Journal of Cell Biology, 2023, 102, 151297.	1.6	4
1051	Mitochondria as biological targets for stem cell and organismal senescence. European Journal of Cell Biology, 2023, 102, 151289.	1.6	1
1052	Adopted neoplastic cells and the consequences of their existence. Oncotarget, 2023, 14, 321-341.	0.8	O

#	Article	IF	CITATIONS
1053	Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomedicine and Pharmacotherapy, 2023, 159, 114268.	2.5	15
1054	Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. Journal of Controlled Release, 2023, 354, 755-769.	4.8	13
1055	Platelet-Derived Mitochondria Attenuate 5-FU-Induced Injury to Bone-Associated Mesenchymal Stem Cells. Stem Cells International, 2023, 2023, 1-20.	1.2	1
1056	Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. International Journal of Molecular Sciences, 2023, 24, 2738.	1.8	11
1057	Transfer of Cardiac Mitochondria Improves the Therapeutic Efficacy of Mesenchymal Stem Cells in a Preclinical Model of Ischemic Heart Disease. Cells, 2023, 12, 582.	1.8	4
1058	Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. The Cochrane Library, 2023, 2023, .	1.5	1
1059	Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. Journal of Cell Biology, 2023, 222, .	2.3	19
1060	Peiminine regulates boneâ€fat balance by canonical Wnt∫βâ€catenin pathway in an ovariectomized rat model. Phytotherapy Research, 0, , .	2.8	1
1061	AlEgens/Mitochondria Nanohybrids as Bioactive Microwave Sensitizers for Nonâ€Thermal Microwave Cancer Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	4
1062	Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-23.	1.9	3
1063	Airway Epithelium: A Neglected but Crucial Cell Type in Asthma Pathobiology. Diagnostics, 2023, 13, 808.	1.3	8
1064	Role of the regulation of mesenchymal stem cells on macrophages in sepsis. International Journal of Immunopathology and Pharmacology, 2023, 37, 039463202211507.	1.0	1
1065	Extracellular vesicles derived from mesenchymal stem cells $\hat{a}\in$ " a novel therapeutic tool in infectious diseases. Inflammation and Regeneration, 2023, 43, .	1.5	14
1066	Rescuers from the Other Shore: Intercellular Mitochondrial Transfer and Its Implications in Central Nervous System Injury and Diseases. Cellular and Molecular Neurobiology, 0, , .	1.7	2
1067	Thyroid hormone modulates hyperoxic neonatal lung injury and mitochondrial function. JCI Insight, 2023, 8, .	2.3	3
1068	Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (Lithuania), 2023, 59, 561.	0.8	8
1069	Highly-purified rapidly expanding clones, RECs, are superior for functional-mitochondrial transfer. Stem Cell Research and Therapy, 2023, 14, .	2.4	3
1070	Mitokondri Nakli ve Transferi, geçmişten gelecek beklentilere. Turkish Journal of Clinics and Laboratory, 0, , .	0.2	0

#	Article	IF	CITATIONS
1071	Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Medicine, 2023, 21, .	2.3	5
1072	Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. , 2023, 14, 1700.		1
1073	Mitochondrial transfer in PC-3 cells fingerprinted in ferroptosis sensitivity: a brand new approach targeting cancer metabolism. Human Cell, 2023, 36, 1441-1450.	1.2	1
1074	MitoEVs: A new player in multiple disease pathology and treatment. Journal of Extracellular Vesicles, 2023, 12, .	5.5	13
1075	Progress of Bone Marrow Mesenchymal Stem Cell Mitochondrial Transfer in Organ Injury Repair. Stem Cells and Development, 2023, 32, 379-386.	1.1	1
1076	The Potential Use of Mitochondrial Extracellular Vesicles as Biomarkers or Therapeutical Tools. International Journal of Molecular Sciences, 2023, 24, 7005.	1.8	4
1094	Mind the GAP(43) for mitochondria transfer to glioblastomas. Nature Cancer, 2023, 4, 588-589.	5.7	0
1096	Mitochondria in cell senescence: A Friend or Foe?. Advances in Protein Chemistry and Structural Biology, 2023, , 35-91.	1.0	2
1105	RUNX1 promotes mitophagy and alleviates pulmonary inflammation during acute lung injury. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	1
1132	The power and potential of mitochondria transfer. Nature, 2023, 623, 283-291.	13.7	13
1138	Applications and Future Trends of Extracellular Vesicles in Biomaterials Science and Engineering. Physiology, 0, , .	4.0	0
1142	Immunomodulation of Antiviral Response by Mesenchymal Stromal Cells (MSCs)., 0,,.		0
1151	Mitochondria as secretory organelles and therapeutic cargos. Experimental and Molecular Medicine, 2024, 56, 66-85.	3.2	1
1152	Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Frontiers of Medicine, $0, , .$	1.5	1
1159	Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Molecular Neurobiology, 0, , .	1.9	0