Graphene-based semiconductor photocatalysts

Chemical Society Reviews 41, 782-796

DOI: 10.1039/c1cs15172j

Citation Report

#	Article	IF	CITATIONS
1	Microwave-assisted synthesis of CdS–reduced graphene oxide composites for photocatalytic reduction of Cr(vi). Chemical Communications, 2011, 47, 11984.	2.2	307
2	(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO ₂ -Based Nanomaterials. Advances in Physical Chemistry, 2011, 2011, 1-20.	2.0	287
3	Comparison between Solar and Artificial Photocatalytic Decolorization of Textile Industrial Wastewater. International Journal of Photoenergy, 2012, 2012, 1-10.	1.4	12
4	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msup><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow> - xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mrow><mml:mrow>TiO< mathvariant="bold">2</mml:mrow></mml:mrow></mml:msub></mml:mrow> Nanocatalyst, Advances in	kmml:mat	th ₁₇
5	Degradation of Semiconductor Manufacturing Wastewater by Using a Novel Magnetic Composite TiO ₂ /Fe ₃ O ₄ Photoreactor Design. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	1
6	Nanomaterials for Light Management in Electro-Optical Devices. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	4
7	Environmental Photocatalysis. International Journal of Photoenergy, 2012, 2012, 1-4.	1.4	5
8	Photocatalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation. Journal of Nanomaterials, 2012, 2012, 1-14.	1.5	42
9	Photocatalytic Degradation of Rhodamine B with H _{3} PW _{12} O _{40} /SiO _{2} Sensitize by H _{2} O _{2} Note near 1.5 and 1.5 are 1.	e t l4	12
10	Photocatalytical Properties and Theoretical Analysis of N, Cd-Codoped TiO2Synthesized by Thermal Decomposition Method. International Journal of Photoenergy, 2012, 2012, 1-9.	1.4	10
11	Photocatalysts for Solar-Induced Water Disinfection: New Developments and Opportunities. Materials Science Forum, 0, 734, 63-89.	0.3	13
12	Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro and Nano Letters, 2012, 7, 1285-1288.	0.6	48
13	Visible Light-Driven α-Fe ₂ O ₃ Nanorod/Graphene/BiV _{1–<i>x</i>} Mo _{<i>x</i>} O ₄ Core/Shell Heterojunction Array for Efficient Photoelectrochemical Water Splitting. Nano Letters, 2012, 12, 6464-6473.	4.5	424
14	Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. The New Role of Graphene as a Macromolecular Photosensitizer. ACS Nano, 2012, 6, 9777-9789.	7.3	642
15	Constructing Ternary CdS–Graphene–TiO ₂ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation. Journal of Physical Chemistry C, 2012, 116, 18023-18031.	1.5	306
16	Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 263-276.	5.6	264
17	Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS ₂ Cocatalyst Confined on Graphene Sheets―The Role of Graphene. Journal of Physical Chemistry C, 2012, 116, 25415-25424.	1.5	323
18	Design of graphene-based TiO2 photocatalystsâ€"a review. Environmental Science and Pollution Research, 2012, 19, 3676-3687.	2.7	272

#	Article	IF	Citations
19	CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science and Technology, 2012, 2, 969.	2.1	261
20	Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Physical Chemistry Chemical Physics, 2012, 14, 5349.	1.3	203
21	Preparation of Nanoporous Carbon/Graphene Composites and Its Application in Direct Methanol Fuel Cell. Chinese Journal of Chemistry, 2012, 30, 2805-2812.	2.6	7
22	Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	8
23	Degradation of Leather Dye Using CeO2–SnO2 Nanocomposite as Photocatalyst Under Sunlight. Water, Air, and Soil Pollution, 2012, 223, 5773-5779.	1.1	43
24	ZnO–graphene composite for photocatalytic degradation of methylene blue dye. Catalysis Communications, 2012, 29, 29-34.	1.6	161
25	Current Perspective of Semiconductor and its Composites with Unusual Surfaces for the Use of Photocatalysis: Review. Materials Science Forum, 2012, 734, 138-185.	0.3	2
26	Photochemically active reduced graphene oxide with controllable oxidation level. RSC Advances, 2012, 2, 11258.	1.7	22
27	Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale, 2012, 4, 2859.	2.8	65
28	Microwave-assisted synthesis of ZnO–Y3Al5O12:Ce3+ composites with enhanced visible light photocatalysis. Journal of Materials Chemistry, 2012, 22, 16293.	6.7	39
29	Facile synthesis of novel hierarchical graphene–Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Transactions, 2012, 41, 14345.	1.6	172
30	Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Transactions, 2012, 41, 8270.	1.6	65
31	Hydrothermal aggregation induced crystallization: a facial route towards polycrystalline graphite quantum dots with blue photoluminescence. CrystEngComm, 2012, 14, 7149.	1.3	14
32	Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid. Journal of Materials Chemistry, 2012, 22, 23773.	6.7	75
33	Photoreactive Carbon and Nitrogen-Codoped ZnWO ₄ Nanoparticles: Synthesis and Reactivity. Advanced Materials Research, 0, 621, 172-177.	0.3	3
34	Synthesis, Characterization, Properties, and Applications of Nanosized Photocatalytic Materials. Journal of Nanomaterials, 2012, 2012, 1-3.	1.5	12
35	Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Nanoscale, 2012, 4, 2670.	2.8	154
36	Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. Journal of Materials Chemistry, 2012, 22, 21337.	6.7	462

#	ARTICLE	IF	CITATIONS
37	The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method. Nanoscale, 2012, 4, 6597.	2.8	56
38	Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. Journal of Materials Chemistry, 2012, 22, 17759.	6.7	114
39	Microwave-assisted non-aqueous route to deposit well-dispersed ZnO nanocrystals on reduced graphene oxide sheets with improved photoactivity for the decolorization of dyes under visible light. Applied Catalysis B: Environmental, 2012, 125, 425-431.	10.8	161
40	Photoreactive mesoporous carbon/Bi2WO6 composites: Synthesis and reactivity. Applied Surface Science, 2012, 259, 7-12.	3.1	41
41	Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution. International Journal of Hydrogen Energy, 2012, 37, 10564-10574.	3.8	121
42	Radially organized pillars in TiO2 and in TiO2/C microspheres: Synthesis, characterization and photocatalytic tests. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 51-58.	2.0	34
43	Hydrothermal synthesis of nanosized bismuth niobate and enhanced photocatalytic activity by coupling of graphene sheets. Chemical Engineering Journal, 2012, 209, 215-222.	6.6	38
44	A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy and Environmental Science, 2012, 5, 9307.	15.6	138
45	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
46	Composite Metal–Oxide Nanocatalysts. ChemCatChem, 2012, 4, 1462-1484.	1.8	65
47	Synthesis and Applications of Grapheneâ€Based TiO ₂ Photocatalysts. ChemSusChem, 2012, 5, 1868-1882.	3.6	226
48	MoO3-MWCNT nanocomposite photocatalyst with control of light-harvesting under visible light and natural sunlight irradiation. Journal of Materials Chemistry, 2012, 22, 20549.	6.7	22
49	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
50	Graphene/zinc nano-composites by electrochemical co-deposition. Physical Chemistry Chemical Physics, 2012, 14, 14034.	1.3	55
51	Noble Metal-Free Reduced Graphene Oxide-Zn _{<i>x</i>} Cd _{1â€"<i>x</i>} S Nanocomposite with Enhanced Solar Photocatalytic H ₂ -Production Performance. Nano Letters, 2012, 12, 4584-4589.	4.5	845
52	Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4, 5792.	2.8	883
53	Singlet Oxygen Involved Luminol Chemiluminescence Catalyzed by Graphene Oxide. Journal of Physical Chemistry C, 2012, 116, 21622-21628.	1.5	89
54	Effect of MWCNT Inclusion in TiO2 Nanowire Array Film on the Photoelectrochemical Performance. Journal of Materials Science and Technology, 2012, 28, 594-598.	5.6	18

#	ARTICLE	IF	Citations
55	Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. Journal of Hazardous Materials, 2012, 241-242, 323-330.	6.5	115
56	Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catalysis Science and Technology, 2012, 2, 1332.	2.1	253
57	Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 2012, 4, 5814.	2.8	143
58	Highly efficient visible-light-driven plasmonic photocatalysts based on graphene oxide-hybridized one-dimensional Ag/AgCl heteroarchitectures. Journal of Materials Chemistry, 2012, 22, 21487.	6.7	98
59	Ferrocene functionalized graphene: preparation, characterization and efficient electron transfer toward sensors of H2O2. Journal of Materials Chemistry, 2012, 22, 6165.	6.7	84
60	Enhanced visible-light photocatalytic H2-production performance of multi-armed CdS nanorods. RSC Advances, 2012, 2, 11829.	1.7	100
61	Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics, 2012, 14, 15657.	1.3	213
62	Visible light induced photo-hydroxylation of phenol to catechol over RGO–Ag3VO4 nanocomposites without the use of H2O2. RSC Advances, 2012, 2, 7377.	1.7	34
63	Effect of Dimensionality on the Photocatalytic Behavior of Carbon–Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces. Journal of Physical Chemistry Letters, 2012, 3, 1760-1765.	2.1	174
64	A New Approach for Photocorrosion Inhibition of Ag ₂ CO ₃ Photocatalyst with Highly Visible-Light-Responsive Reactivity. Journal of Physical Chemistry C, 2012, 116, 15519-15524.	1.5	253
65	BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry, 2012, 22, 21159.	6.7	365
66	Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. Journal of Materials Chemistry, 2012, 22, 7291.	6.7	157
67	Graphene–SnO ₂ composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology, 2012, 23, 355705.	1.3	233
68	Enhanced Electron Transfer from the Excited Eosin Y to mpg-C ₃ N ₄ for Highly Efficient Hydrogen Evolution under 550 nm Irradiation. Journal of Physical Chemistry C, 2012, 116, 19644-19652.	1.5	284
69	Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics, 2012, 14, 10572.	1.3	129
70	Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. Journal of Materials Chemistry, 2012, 22, 17027.	6.7	200
71	Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide. RSC Advances, 2012, 2, 12122.	1.7	151
72	Ag ₃ PO ₄ Oxygen Evolution Photocatalyst Employing Synergistic Action of Ag/AgBr Nanoparticles and Graphene Sheets. Journal of Physical Chemistry C, 2012, 116, 20132-20139.	1.5	130

#	ARTICLE	IF	Citations
73	WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. Journal of Materials Chemistry, 2012, 22, 8525.	6.7	484
74	Impact of Preparative pH on the Morphology and Photocatalytic Activity of BiVO4. International Journal of Photoenergy, 2012, 2012, 1-7.	1.4	16
75	Graphene/Semiconductor Nanocomposites: Preparation and Application for Photocatalytic Hydrogen Evolution. , 0, , .		6
76	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366
77	A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. Journal of Materials Chemistry, 2012, 22, 11778.	6.7	159
78	Synergetic Effect of MoS ₂ and Graphene as Cocatalysts for Enhanced Photocatalytic H ₂ Production Activity of TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2012, 134, 6575-6578.	6.6	2,245
79	Photocatalytic Performance of a Ag/ZnO/CCG Multidimensional Heterostructure Prepared by a Solution-Based Method. Journal of Physical Chemistry C, 2012, 116, 7180-7184.	1.5	92
80	Unique photocatalytic oxidation reactivity and selectivity of TiO2–graphene nanocomposites. Nanoscale, 2012, 4, 3193.	2.8	176
81	A Photocatalyst–Enzyme Coupled Artificial Photosynthesis System for Solar Energy in Production of Formic Acid from CO ₂ . Journal of the American Chemical Society, 2012, 134, 11455-11461.	6.6	341
82	Ĵμ-Keggin-based coordination networks: Synthesis, structure and application toward green synthesis of polyoxometalate@graphene hybrids. Dalton Transactions, 2012, 41, 9989.	1.6	47
83	Direct Growth of TiO ₂ Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange. Advanced Materials, 2012, 24, 4761-4764.	11.1	246
84	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
85	Visible‣ight Photocatalytic Activity and Deactivation Mechanism of Ag ₃ PO ₄ Spherical Particles. Chemistry - an Asian Journal, 2012, 7, 1902-1908.	1.7	181
87	Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes. Journal of Materials Chemistry, 2012, 22, 9109.	6.7	58
88	Improving the photocatalytic performance of grapheneâ€"TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Physical Chemistry Chemical Physics, 2012, 14, 9167.	1.3	277
89	Molecular recognition: from solution science to nano/materials technology. Chemical Society Reviews, 2012, 41, 5800.	18.7	371
90	Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal, 2012, 193-194, 203-210.	6.6	197
91	Triphenylamine-functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 4880-4888.	3.8	74

#	Article	IF	CITATIONS
92	Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2–graphene composites for photodegradation of acetone in air. Applied Catalysis B: Environmental, 2012, 119-120, 109-116.	10.8	356
93	Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Catalysis B: Environmental, 2012, 123-124, 241-256.	10.8	270
94	TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19, 1761-1769.	2.9	743
95	Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of Colloid and Interface Science, 2013, 401, 70-79.	5.0	358
96	Amine-assisted solvothermal approach for the in situ synthesis of metal telluride/reduced graphene oxide. Carbon, 2013, 63, 157-164.	5.4	8
97	Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO ₂ (001) Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 16022-16027.	1.5	68
98	High-Performance Visible-Light-Driven Plasmonic Photocatalysts Ag/AgCl with Controlled Size and Shape Using Graphene Oxide as Capping Agent and Catalyst Promoter. Langmuir, 2013, 29, 9259-9268.	1.6	95
99	Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spray-dried microsphere. Journal of Colloid and Interface Science, 2013, 407, 17-21.	5.0	43
100	Selective hydrogenation of cinnamaldehyde over reduced graphene oxide supported Pt catalyst. Catalysis Communications, 2013, 41, 101-105.	1.6	75
101	Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale, 2013, 5, 8375.	2.8	159
102	One-step nano-engineering of dispersed Ag–ZnO nanoparticles' hybrid in reduced graphene oxide matrix and its superior photocatalytic property. CrystEngComm, 2013, 15, 7606.	1.3	50
103	Visible-Light Photocatalytic Removal of NO in Air over BiOX (X = Cl, Br, I) Single-Crystal Nanoplates Prepared at Room Temperature. Industrial & Engineering Chemistry Research, 2013, 52, 6740-6746.	1.8	170
104	Ultrasonic Preparation of Hierarchical Grapheneâ€Oxide/TiO 2 Composite Microspheres for Efficient Photocatalytic Hydrogen Production. Chemistry - an Asian Journal, 2013, 8, 2779-2786.	1.7	32
105	Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology, 2013, , .	0.4	102
106	A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances, 2013, 3, 15005.	1.7	39
107	Synthesis of a graphene–tungsten composite with improved dispersibility of graphene in an ethanol solution and its use asÂa counter electrode for dye-sensitised solar cells. Journal of Power Sources, 2013, 230, 207-217.	4.0	50
108	Grapheneâ€"CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochimica Acta, 2013, 94, 245-251.	2.6	128
109	UV light assisted synthesis of ternary reduced graphene oxide hybrid materials and their photocatalytic performance. Dalton Transactions, 2013, 42, 12284.	1.6	15

#	Article	IF	CITATIONS
110	Silver Phosphate/Carbon Nanotube-Stabilized Pickering Emulsion for Highly Efficient Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 15183-15191.	1.5	101
111	A green and facile route for constructing flower-shaped TiO ₂ nanocrystals assembled on graphene oxide sheets for enhanced photocatalytic activity. Nanotechnology, 2013, 24, 275602.	1.3	23
112	Influence of graphene synthesizing techniques on the photocatalytic performance of graphene–TiO ₂ nanocomposites. Physical Chemistry Chemical Physics, 2013, 15, 15528-15537.	1.3	43
113	Nickel chelating functionalization of graphene composite for metal affinity membrane isolation of lysozyme. Journal of Materials Chemistry B, 2013, 1, 810-818.	2.9	44
114	Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors. Journal of Materials Science, 2013, 48, 8463-8470.	1.7	63
115	A novel biomass-based support (Starbon) for TiO ₂ hybrid photocatalysts: a versatile green tool for water purification. RSC Advances, 2013, 3, 20186-20192.	1.7	37
116	Solution-processable conductive micro-hydrogels of nanoparticle/graphene platelets produced by reversible self-assembly and aqueous exfoliation. Journal of Materials Chemistry A, 2013, 1, 12900.	5.2	18
117	Improving the Visible Light Photoactivity of In ₂ S ₃ â€"Graphene Nanocomposite via a Simple Surface Charge Modification Approach. Langmuir, 2013, 29, 10549-10558.	1.6	147
118	Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. Journal of Colloid and Interface Science, 2013, 408, 145-150.	5.0	92
120	Controlled growth of TiO2 and TiO2–RGO composite nanoparticles in ionic liquids for enhanced photocatalytic H2 generation. Journal of Molecular Catalysis A, 2013, 378, 213-220.	4.8	44
121	Synthesis of visible light active graphene-modified BaCrO4 nanocomposite photocatalyst. International Nano Letters, 2013, 3, 1.	2.3	8
122	Visible-light-driven Ag/Ag3PO4-based plasmonic photocatalysts: Enhanced photocatalytic performance by hybridization with graphene oxide. Science Bulletin, 2013, 58, 84-91.	1.7	44
123	Benzoin derived reduced graphene oxide (rGO) and its nanocomposite: application in dye removal and peroxidase-like activity. RSC Advances, 2013, 3, 21475.	1.7	34
124	Enhanced photocatalytic performances of TiO2-graphene hybrids on nitro-aromatics reduction to amino-aromatics. RSC Advances, 2013, 3, 18002.	1.7	57
125	Carbon, silicon, germanium, tin and lead. Annual Reports on the Progress of Chemistry Section A, 2013, 109, 53.	0.8	1
126	Simultaneous N-doping of reduced graphene oxide and TiO2 in the composite for visible light photodegradation of methylene blue with enhanced performance. RSC Advances, 2013, 3, 18474.	1.7	29
127	Enhancement of photocatalytic H2 evolution on Zn0.8Cd0.2S loaded with CuS as cocatalyst and its photogenerated charge transfer properties. Dalton Transactions, 2013, 42, 12998.	1.6	76
128	Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Physical Chemistry Chemical Physics, 2013, 15, 16883.	1.3	1,167

#	Article	IF	CITATIONS
129	Cobalt-bilayer catalyst decorated Ta3N5 nanorod arrays as integrated electrodes for photoelectrochemical water oxidation. Energy and Environmental Science, 2013, 6, 3322.	15.6	94
130	Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. Journal of Hazardous Materials, 2013, 250-251, 106-114.	6.5	198
131	Hydrothermal formation of N-doped (BiO)2CO3 honeycomb-like microspheres photocatalysts with bismuth citrate and dicyandiamide as precursors. Journal of Colloid and Interface Science, 2013, 408, 33-42.	5.0	55
132	Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride. Journal of Rare Earths, 2013, 31, 1085-1091.	2.5	62
133	Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr(VI). Materials Chemistry and Physics, 2013, 141, 686-693.	2.0	51
134	A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. Journal of Colloid and Interface Science, 2013, 406, 231-237.	5.0	120
135	Morphology-controlled synthesis of sunlight-driven plasmonic photocatalysts $Ag@AgX$ (X = Cl, Br) with graphene oxide template. Journal of Materials Chemistry A, 2013, 1, 12536.	5.2	35
136	Synthesis of graphene oxide-BiPO4 composites with enhanced photocatalytic properties. Applied Surface Science, 2013, 284, 308-314.	3.1	38
137	Selective photoredox using graphene-based composite photocatalysts. Physical Chemistry Chemical Physics, 2013, 15, 19102.	1.3	302
138	Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light. Journal of Hazardous Materials, 2013, 262, 826-835.	6.5	109
139	In Situ Construction of g-C ₃ N ₄ /g-C ₃ N ₄ Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis. ACS Applied Materials & Description of the State	4.0	1,102
140	Dramatically enhanced photocatalytic properties of Ag-modified graphene–ZnO quasi-shell–core heterojunction composite material. RSC Advances, 2013, 3, 24118.	1.7	16
141	A novel "gel–sol―strategy to synthesize TiO2 nanorod combining reduced graphene oxide composites. Materials Letters, 2013, 107, 307-310.	1.3	40
142	Ultraviolet-assisted preparation of mesoporous WO3/reduced graphene oxide composites: superior interfacial contacts and enhanced photocatalysis. Journal of Materials Chemistry A, 2013, 1, 15110.	5.2	87
143	The synergetic effect of sulfonated graphene and silver as co-catalysts for highly efficient photocatalytic hydrogen production of ZnO nanorods. Journal of Materials Chemistry A, 2013, 1, 14262.	5.2	59
144	ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue. New Carbon Materials, 2013, 28, 408-413.	2.9	12
145	Basic Principles for Observing the Photosensitizer Role of Graphene in the Graphene–Semiconductor Composite Photocatalyst from a Case Study on Graphene–ZnO. Journal of Physical Chemistry C, 2013, 117, 21724-21734.	1.5	137
146	2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A New Ancillary Ligand for Efficient Thiocyanate-Free Ruthenium Sensitizer in Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Solar Cell Applications. 5, 11623-11630.	4.0	21

#	Article	IF	CITATIONS
147	A novel floating photocatalyst device based on cloth canvas impregnated with iron oxide. New Journal of Chemistry, 2013, 37, 2486.	1.4	14
148	Chemically Modified Graphene Oxide-Wrapped Quasi-Micro Ag Decorated Silver Trimolybdate Nanowires for Photocatalytic Applications. Journal of Physical Chemistry C, 2013, 117, 24023-24032.	1.5	37
149	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	6.6	348
150	Noncovalent nanohybrid of ferrocene with chemically reduced graphene oxide and its application to dual biosensor for hydrogen peroxide and choline. Electrochimica Acta, 2013, 95, 18-23.	2.6	68
151	Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16716-16723.	3.3	127
152	Catalysis-Material Crosstalk at Tailored Nano-Carbon Interfaces. Topics in Current Chemistry, 2013, 348, 139-180.	4.0	11
153	Enhanced photoelectrocatalytic performance of titanium dioxide/carbon cloth based photoelectrodes by graphene modification under visible-light irradiation. Journal of Hazardous Materials, 2013, 263, 291-298.	6.5	47
154	A LDA+U study of the hybrid graphene/anatase TiO2 nanocomposites: Interfacial properties and visible light response. Computational and Theoretical Chemistry, 2013, 1025, 30-34.	1.1	32
155	Modifications induced by silicon and nickel ion beams in the electrical conductivity of zinc nanowires. Journal of Materials Science: Materials in Electronics, 2013, 24, 4302-4310.	1.1	17
156	Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Research Letters, 2013, 8, 465.	3.1	323
157	Fabrication and photocatalysis of TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness. Chemical Engineering Journal, 2013, 229, 569-576.	6.6	34
158	Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy and Environmental Science, 2013, 6, 3483.	15.6	480
159	Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3, 21675.	1.7	62
160	Multifunctional nanostructured membrane for clean water reclamation from wastewater with various pH conditions. RSC Advances, 2013, 3, 15202.	1.7	16
161	Photoelectrochemical Properties of Graphene and Its Derivatives. Nanomaterials, 2013, 3, 325-356.	1.9	104
162	Pâ€Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water–Methanol Mixtures. Angewandte Chemie - International Edition, 2013, 52, 11813-11816.	7.2	245
163	Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. International Journal of Hydrogen Energy, 2013, 38, 12733-12738.	3.8	51
164	N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy and Environmental Science, 2013, 6, 3658.	15.6	134

#	Article	IF	CITATIONS
165	Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2013, 1, 12255.	5.2	220
166	Morphology-controlled synthesis of Ag3PO4 microcubes with enhanced visible-light-driven photocatalytic activity. Ceramics International, 2013, 39, 9715-9720.	2.3	48
167	Assembly of Ag3PO4 nanocrystals on graphene-based nanosheets with enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2013, 405, 1-9.	5.0	59
168	Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 2013, 308, 168-175.	3.1	286
169	A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Dalton Transactions, 2013, 42, 14006.	1.6	119
170	Graphene Oxide Modified Ag ₂ O Nanocomposites with Enhanced Photocatalytic Activity under Visibleâ€Light Irradiation. European Journal of Inorganic Chemistry, 2013, 2013, 6119-6125.	1.0	58
171	Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. Journal of Materials Chemistry A, 2013, 1, 10927.	5.2	193
172	Enhanced photocatalytic H ₂ -production activity of TiO ₂ using Ni(NO ₃) ₂ as an additive. Physical Chemistry Chemical Physics, 2013, 15, 12033-12039.	1.3	79
173	Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. Journal of Materials Chemistry A, 2013, 1, 10727.	5.2	108
174	A critical and benchmark comparison on graphene-, carbon nanotube-, and fullerene-semiconductor nanocomposites as visible light photocatalysts for selective oxidation. Journal of Catalysis, 2013, 299, 210-221.	3.1	166
175	Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. Journal of the American Chemical Society, 2013, 135, 1524-1530.	6.6	591
176	Second generation graphene: Opportunities and challenges for surface science. Surface Science, 2013, 609, 1-5.	0.8	54
177	Knitting the Catalytic Pattern of Artificial Photosynthesis to a Hybrid Graphene Nanotexture. ACS Nano, 2013, 7, 811-817.	7.3	93
178	Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/Znln2S4 nanocomposites. Catalysis Science and Technology, 2013, 3, 1712.	2.1	110
179	Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chemical Engineering Journal, 2013, 214, 298-303.	6.6	181
180	lonicâ€Liquidâ€Assisted Synthesis of Uniform Fluorinated B/Câ€Codoped TiO ₂ Nanocrystals and Their Enhanced Visibleâ€Light Photocatalytic Activity. Chemistry - A European Journal, 2013, 19, 2433-2441.	1.7	147
181	Facile synthesis of water-dispersible Cu2O nanocrystal–reduced graphene oxide hybrid as a promising cancer therapeutic agent. Nanoscale, 2013, 5, 1227.	2.8	53
182	Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5, 4541.	2.8	614

#	Article	IF	CITATIONS
183	Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosensors and Bioelectronics, 2013, 41, 498-504.	5.3	290
184	Graphene oxide as a promising photocatalyst for CO ₂ to methanol conversion. Nanoscale, 2013, 5, 262-268.	2.8	424
185	Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews, 2013, 42, 2568-2580.	18.7	1,255
186	One-step synthesis of Pt nanoparticles/reduced graphene oxide composite with enhanced electrochemical catalytic activity. Science China Chemistry, 2013, 56, 354-361.	4.2	20
187	Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society Reviews, 2013, 42, 794-830.	18.7	1,065
188	Graphene-Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 2013, 4, 753-759.	2.1	501
189	First Examples of Hybrids Based on Graphene and a Ringâ€Shaped Macrocyclic Polyoxometalate: Synthesis, Characterization, and Properties. European Journal of Inorganic Chemistry, 2013, 2013, 1882-1889.	1.0	12
190	Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO ₂ Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study. ACS Applied Materials & Diterfaces, 2013, 5, 1156-1164.	4.0	340
191	Improvement of the Visibleâ€Light Photocatalytic Performance of TiO ₂ by Carbon Mesostructures. Chemistry - A European Journal, 2013, 19, 566-577.	1.7	56
192	Optical Properties and a Simple and General Route for the Rapid Syntheses of Reduced Graphene Oxide–Metal Sulfide Nanocomposites. European Journal of Inorganic Chemistry, 2013, 2013, 256-262.	1.0	21
193	Promoted photoinduced charge separation and directional electron transfer over dispersible xanthene dyes sensitized graphene sheets for efficient solar H2 evolution. International Journal of Hydrogen Energy, 2013, 38, 2106-2116.	3.8	42
194	Synthesis of flower-like, pinon-like and faceted nanoplates (BiO)2CO3 micro/nanostructures with morphology-dependent photocatalytic activity. Materials Chemistry and Physics, 2013, 142, 381-386.	2.0	17
195	(NH4)2CO3 mediated hydrothermal synthesis of N-doped (BiO)2CO3 hollow nanoplates microspheres as high-performance and durable visible light photocatalyst for air cleaning. Chemical Engineering Journal, 2013, 214, 198-207.	6.6	83
196	Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. Journal of Colloid and Interface Science, 2013, 405, 211-217.	5.0	144
197	Enhanced visible light photocatalytic activity of CN-codoped TiO2 films for the degradation of microcystin-LR. Journal of Molecular Catalysis A, 2013, 372, 58-65.	4.8	64
198	Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer. Journal of Solid State Chemistry, 2013, 205, 142-148.	1.4	20
199	The new understanding on photocatalytic mechanism of visible-light response NS codoped anatase TiO2 by first-principles. Applied Catalysis B: Environmental, 2013, 142-143, 45-53.	10.8	151
200	Visible photocatalytic activity enhancement of Zn0.8Cd0.2S by hybridization of reduced graphene oxide. Materials Letters, 2013, 109, 100-103.	1.3	19

#	Article	IF	CITATIONS
201	Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. Journal of Hazardous Materials, 2013, 261, 342-350.	6.5	111
202	What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide?. Polymer, 2013, 54, 3605-3611.	1.8	71
203	An In Situ Simultaneous Reductionâ€Hydrolysis Technique for Fabrication of TiO ₂ â€Graphene 2D Sandwichâ€Like Hybrid Nanosheets: Grapheneâ€Promoted Selectivity of Photocatalyticâ€Driven Hydrogenation and Coupling of CO ₂ into Methane and Ethane. Advanced Functional Materials, 2013, 23, 1743-1749.	7.8	357
204	Surfactant Assistance in Improvement of Photocatalytic Hydrogen Production with the Porphyrin Noncovalently Functionalized Graphene Nanocomposite. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1732-1740.	4.0	184
205	Noble metal-free Ni(OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catalysis Science and Technology, 2013, 3, 1782.	2.1	411
206	Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013, 15, 2632.	1.3	364
207	Inâ€Situ Fabrication of Ag/Ag ₃ PO ₄ /Graphene Triple Heterostructure Visibleâ€Light Photocatalyst through Grapheneâ€Assisted Reduction Strategy. ChemCatChem, 2013, 5, 1359-1367.	1.8	54
208	Fabrication of Ag ₃ PO ₄ -Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance. ACS Catalysis, 2013, 3, 363-369.	5.5	562
209	Advanced visible-light-driven photocatalyst upon the incorporation of sulfonated graphene. Nanoscale, 2013, 5, 1910.	2.8	35
210	Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Accounts of Chemical Research, 2013, 46, 2225-2234.	7.6	156
211	Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy and Environmental Science, 2013, 6, 1362.	15.6	355
212	Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 2013, 5, 3149.	2.8	472
213	Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catalysis Science and Technology, 2013, 3, 1805.	2.1	63
214	Large-scale preparation and morphology-dependent photodegradation performances of monodispersed AgBr crystals. Applied Catalysis A: General, 2013, 455, 199-205.	2.2	11
215	An Efficient Self-Assembly of CdS Nanowires–Reduced Graphene Oxide Nanocomposites for Selective Reduction of Nitro Organics under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 8251-8261.	1.5	186
216	Grapheneâ€Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Advanced Functional Materials, 2013, 23, 1984-1997.	7.8	257
217	CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation. Journal of Catalysis, 2013, 303, 60-69.	3.1	202
218	Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Applied Physics Letters, 2013, 102, .	1.5	46

#	Article	IF	CITATIONS
219	Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 2013, 1, 5996.	5.2	251
220	Bionic radical generation and antioxidant capacity sensing with photocatalytic graphene oxide–titanium dioxide composites under visible light. Analyst, The, 2013, 138, 2335.	1.7	13
221	Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene–TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Nanoscale, 2013, 5, 3481.	2.8	89
222	Facile Fabrication and Enhanced Photocatalytic Performance of Ag/AgCl/rGO Heterostructure Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2161-2168.	4.0	164
223	Roles of graphene oxide in photocatalytic water splitting. Materials Today, 2013, 16, 78-84.	8.3	335
224	Graphene oxide coupled AgBr nanosheets: an efficient dual-functional visible-light-responsive nanophotocatalyst with enhanced performance. Journal of Materials Chemistry A, 2013, 1, 2827.	5.2	33
225	RuO2/TiSi2/graphene composite for enhanced photocatalytic hydrogen generation under visible light irradiation. Physical Chemistry Chemical Physics, 2013, 15, 2793.	1.3	36
226	Thiolated graphene – a new platform for anchoring CdSe quantum dots for hybrid heterostructures. Nanoscale, 2013, 5, 3615.	2.8	25
227	One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133, 452-459.	10.8	396
228	Photoassisted Preparation of Cobalt Phosphate/Graphene Oxide Composites: A Novel Oxygenâ€Evolving Catalyst with High Efficiency. Small, 2013, 9, 2709-2714.	5.2	50
229	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20
230	Zn _{1–<i>x</i>} Cd _{<i>x</i>} S Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H ₂ -Production Activity. ACS Catalysis, 2013, 3, 882-889.	5.5	565
231	Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method. Journal of Alloys and Compounds, 2013, 563, 229-233.	2.8	83
232	Versatile Grapheneâ€Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications. Advanced Functional Materials, 2013, 23, 4996-5008.	7.8	335
233	Preparation of novel hetero-nanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support TiO2 and PbS. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 748-757.	2.7	51
234	Understanding the photoelectrochemical properties of a reduced graphene oxide–WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC Advances, 2013, 3, 9330.	1.7	64
235	Self-assembly of layered double hydroxide 2D nanoplates with graphene nanosheets: an effective way to improve the photocatalytic activity of 2D nanostructured materials for visible light-induced O2 generation. Energy and Environmental Science, 2013, 6, 1008.	15.6	213
236	Facile synthesis of graphene oxide-enwrapped Ag3PO4 composites with highly efficient visible light photocatalytic performance. Materials Letters, 2013, 93, 28-31.	1.3	85

#	Article	IF	CITATIONS
237	TiO2 nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide: Facile synthesis and promising photocatalytic application. Journal of Alloys and Compounds, 2013, 578, 242-248.	2.8	65
238	Crystalline phase-dependent photocatalytic water splitting for hydrogen generation on KNbO3 submicro-crystals. International Journal of Hydrogen Energy, 2013, 38, 3554-3561.	3.8	75
239	Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chinese Journal of Catalysis, 2013, 34, 621-640.	6.9	61
240	Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15, 1773.	4.6	278
241	Graphene supported \hat{l}_{\pm} -MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances, 2013, 3, 7902.	1.7	135
242	One-Dimensional Porphyrin Nanoassemblies Assisted via Graphene Oxide: Sheetlike Functional Surfactant and Enhanced Photocatalytic Behaviors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5336-5345.	4.0	103
243	New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Physical Chemistry Chemical Physics, 2013, 15, 12040.	1.3	148
244	A Graphene Oxide and Copperâ€Centered Metal Organic Framework Composite as a Triâ€Functional Catalyst for HER, OER, and ORR. Advanced Functional Materials, 2013, 23, 5363-5372.	7.8	858
245	Synthesis of Uniform CdS Nanospheres/Graphene Hybrid Nanocomposites and Their Application as Visible Light Photocatalyst for Selective Reduction of Nitro Organics in Water. ACS Applied Materials & Longitudes amp; Interfaces, 2013, 5, 4309-4319.	4.0	227
246	Plasmonic photocatalysis. Reports on Progress in Physics, 2013, 76, 046401.	8.1	1,140
247	Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environmental, 2013, 138-139, 299-303.	10.8	249
248	Synthesis of Graphene-ZnO-Au Nanocomposites for Efficient Photocatalytic Reduction of Nitrobenzene. Environmental Science & En	4.6	204
249	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	23.0	1,163
250	Enhanced visible photocatalytic activity of nanocrystalline α-Fe2O3 by coupling phosphate-functionalized graphene. RSC Advances, 2013, 3, 7438.	1.7	31
251	CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. Journal of Materials Chemistry A, 2013, 1, 5158.	5.2	101
252	Doping nitrogen anion enhanced photocatalytic activity on TiO2 hybridized with graphene composite under solar light. Separation and Purification Technology, 2013, 106, 97-104.	3.9	44
253	Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Research, 2013, 6, 286-292.	5.8	45
254	Novel Preparation of Anatase TiO ₂ @Reduced Graphene Oxide Hybrids for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6635-6642.	4.0	147

#	ARTICLE	IF	CITATIONS
255	A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. Journal of the Chinese Advanced Materials Society, 2013, 1, 21-39.	0.7	135
256	ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism. Applied Catalysis B: Environmental, 2013, 142-143, 80-88.	10.8	159
257	Photocatalytic Degradation of Microcystin-LR and Off-Odor Compounds in Water under UV-A and Solar Light with a Nanostructured Photocatalyst Based on Reduced Graphene Oxide–TiO⟨sub⟩2⟨ sub⟩ Composite. Identification of Intermediate Products Industrial & Engineering Chemistry Research, 2013, 52, 13991-14000.	1.8	64
258	Light down-converting characteristics of ZnO–Y2O2S:Eu3+ for visible light photocatalysis. Journal of Colloid and Interface Science, 2013, 404, 150-154.	5.0	29
259	Solar Hydrogen Generation by Nanoscale ⟨i⟩p–n⟨ i⟩ Junction of ⟨i⟩p⟨ i⟩-type Molybdenum Disulfide ⟨i⟩n⟨ i⟩-type Nitrogen-Doped Reduced Graphene Oxide. Journal of the American Chemical Society, 2013, 135, 10286-10289.	6.6	599
260	Grapheneâ€Based Materials for Hydrogen Generation from Lightâ€Driven Water Splitting. Advanced Materials, 2013, 25, 3820-3839.	11.1	704
261	One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chemical Engineering Journal, 2013, 229, 533-539.	6.6	137
262	Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. Journal of Applied Electrochemistry, 2013, 43, 245-252.	1.5	15
263	Silicon Nanowires/Reduced Graphene Oxide Composites for Enhanced Photoelectrochemical Properties. ACS Applied Materials & Diterfaces, 2013, 5, 1961-1966.	4.0	56
264	Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water. Applied Catalysis B: Environmental, 2013, 140-141, 598-607.	10.8	202
265	Graphene encapsulated hollow TiO2 nanospheres: efficient synthesis and enhanced photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 3752.	5.2	92
266	Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm, 2013, 15, 3022.	1.3	309
267	CulnZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. Journal of Materials Chemistry A, 2013, 1, 6359.	5.2	42
268	Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism, and applications. RSC Advances, 2013, 3, 8104.	1.7	76
269	A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Applied Catalysis B: Environmental, 2013, 140-141, 559-587.	10.8	499
270	One-pot preparation of glucose biosensor based on polydopamine–graphene composite film modified enzyme electrode. Sensors and Actuators B: Chemical, 2013, 177, 826-832.	4.0	78
271	Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. Journal of Hazardous Materials, 2013, 244-245, 86-93.	6.5	200
272	Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption, 2013, 19, 557-561.	1.4	51

#	Article	IF	CITATIONS
273	One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chemical Engineering Journal, 2013, 229, 126-133.	6.6	149
274	Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst. Applied Surface Science, 2013, 282, 400-407.	3.1	80
275	Strongly coupled mesoporous SnO2–graphene hybrid with enhanced electrochemical and photocatalytic activity. RSC Advances, 2013, 3, 11860.	1.7	39
276	The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies. Applied Catalysis B: Environmental, 2013, 142-143, 442-449.	10.8	70
277	A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Applied Catalysis B: Environmental, 2013, 136-137, 94-102.	10.8	159
278	Striking influence of Fe2O3 on the "catalytic carbonization―of chlorinated poly(vinyl chloride) into carbon microspheres with high performance in the photo-degradation of Congo red. Journal of Materials Chemistry A, 2013, 1, 5247.	5.2	69
279	Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 8299.	5.2	107
280	Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale, 2013, 5, 6307.	2.8	121
281	One-pot polylol synthesis of graphene decorated with size- and density-tunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization. Carbon, 2013, 60, 488-497.	5.4	77
282	Preparation of graphene/TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation. Journal of Hazardous Materials, 2013, 250-251, 19-28.	6.5	99
283	Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity. Applied Catalysis B: Environmental, 2013, 129, 182-193.	10.8	595
284	One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2013, 129, 80-88.	10.8	145
285	Highly Efficient Photocatalytic Performance of Graphene–ZnO Quasi-Shell–Core Composite Material. ACS Applied Materials & Interfaces, 2013, 5, 12361-12368.	4.0	172
286	Photocatalytic hydrogen generation from water–methanol mixtures using halogenated reconstituted graphenes. Journal of Materials Chemistry A, 2013, 1, 11728.	5.2	21
287	Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Physical Chemistry Chemical Physics, 2013, 15, 15660.	1.3	117
288	Nanocarbon Hybrids: Interactions with Luminophores to Applications in Energy Harvesting and Solar Fuel Production. Journal of Physical Chemistry Letters, 2013, 4, 842-843.	2.1	3
289	Solvothermal synthesis of graphene–CdS nanocomposites for highly efficient visible-light photocatalyst. Journal of Alloys and Compounds, 2013, 551, 327-332.	2.8	71
290	Removal of Carbamazepine from Water by a Novel TiO ₂ â€"Coconut Shell Powder/UV Process: Composite Preparation and Photocatalytic Activity. Environmental Engineering Science, 2013, 30, 515-526.	0.8	21

#	Article	IF	CITATIONS
291	Fabrication of reduced graphene oxide–BiOCl hybrid material via a novel benzyl alcohol route and its enhanced photocatalytic activity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	35
292	Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013, 42, 2281-2293.	18.7	310
293	Photoorganocatalysis. What for?. Chemical Society Reviews, 2013, 42, 97-113.	18.7	790
294	A Cost-Effective Solid-State Approach to Synthesize g-C ₃ N ₄ Coated TiO ₂ Nanocomposites with Enhanced Visible Light Photocatalytic Activity. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	21
295	Synthesis of Stable Colloidal Suspension of Graphene. Applied Mechanics and Materials, 0, 328, 794-797.	0.2	0
296	Polyelectrolyte-Induced Dispersion of Graphene Sheets in the Hybrid AgCl/PDDA/Graphene Nanocomposites. Advanced Materials Research, 2013, 663, 357-360.	0.3	O
297	Facile Sizeâ€Controllable Synthesis of Colorful Quasiâ€Cubic αâ€Fe ₂ O ₃ Materials from Nanoscale to Microscale and Their Properties Related to the Size Effect. ChemPlusChem, 2013, 78, 875-883.	1.3	10
298	Route to Mesoporous TiO2/Graphitic Carbon Microspheres for Photocatalytic Reduction of CO2 under Simulated Solar Irradiation. ECS Solid State Letters, 2013, 2, M49-M52.	1.4	8
300	A Photoelectrochemical Investigation on the Synergetic Effect between CdS and Reduced Graphene Oxide for Solarâ€Energy Conversion. Chemistry - an Asian Journal, 2013, 8, 2395-2400.	1.7	45
301	Visible-Light-Driven Oxidation of Primary C–H Bonds over CdS with Dual Co-catalysts Graphene and TiO2. Scientific Reports, 2013, 3, 3314.	1.6	116
302	PHOTOCATALYTIC ACTIVITY OF BISMUTH VANADATE FOR THE DEGRADATION OF ORGANIC COMPOUNDS. Nano, 2013, 08, 1350007.	0.5	36
303	A Polyelectrolyte-stabilized Approach for Massive Production of AgCl/Graphene Nanocomposites. Chemistry Letters, 2013, 42, 438-440.	0.7	7
304	Enhancement of photocatalytic H ₂ evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction. Beilstein Journal of Nanotechnology, 2014, 5, 801-811.	1.5	36
305	Applications of Graphene in Catalysis. Journal of Biofertilizers & Biopesticides, 2014, 05, .	0.8	7
306	Enhanced photocatalytic activity of polyaniline through noncovalent functionalization with graphite oxide. Materials Research Express, 2014, 1, 045602.	0.8	9
308	ZnS NANOFLOWERS ON GRAPHENE FOR USE AS A HIGH-PERFORMANCE PHOTOCATALYST. Nano, 2014, 09, 1450097.	0.5	5
309	Highly stable sub-5 nm Sn ₆ O ₄ (OH) ₄ nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange. Nanotechnology, 2014, 25, 135702.	1.3	20
310	Visibleâ€Lightâ€Induced Generation of H ₂ by Nanocomposites of Fewâ€Layer TiS ₂ and TaS ₂ with CdS Nanoparticles. Chemistry - an Asian Journal, 2014, 9, 1311-1315.	1.7	44

#	Article	IF	CITATIONS
311	NOVEL HIERARCHICAL NANORODS OF SILICON-DOPED Bi ₂ O ₂ CO ₃ AND ITS PHOTOCATALYTIC ACTIVITY. Nano, 2014, 09, 1450094.	0.5	7
312	Electrical anisotropies of carbon-nanotube-embedded graphene composite films. Journal of the Korean Physical Society, 2014, 65, 429-435.	0.3	1
313	BiPO4/reduced graphene oxide composites photocatalyst with high photocatalytic activity. Applied Surface Science, 2014, 319, 272-277.	3.1	71
315	Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: An effective binary heterojunction photocatalyst under visible light irradiation. Journal of Colloid and Interface Science, 2014, 431, 42-49.	5.0	74
316	Indium-substituted ZnO /reduced graphene oxide nanocomposites: Solvothermal synthesis and enhanced visible-light-driven photocatalytic activity. Functional Materials Letters, 2014, 07, 1450013.	0.7	1
317	Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.	3.5	446
318	Facile synthesis and photoluminescence mechanism of graphene quantum dots. Journal of Applied Physics, 2014, 116, 244306.	1.1	34
319	Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO2 Modified with OMS-2. Materials, 2014, 7, 8024-8036.	1.3	18
320	Effect of Ce Doping on RGO-TiO _{2} Nanocomposite for High Photoelectrocatalytic Behavior. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	12
321	Ultrasonic-assisted rational design of uniform rhombus-shaped ZnMoO _x on graphene for advanced sunlight-driven photocatalysts, functional supercapacitor electrodes, and antibacterial platforms. RSC Advances, 2014, 4, 64994-65003.	1.7	27
322	Synthesis and characterization of graphene oxide modified AgBr nanocomposites with enhanced photocatalytic activity and stability under visible light. Applied Surface Science, 2014, 319, 306-311.	3.1	57
323	Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting. Journal of Chemical Physics, 2014, 140, 054707.	1.2	99
324	Photo-less catalysis of TiO2-reduced graphene oxides. Chemical Physics Letters, 2014, 608, 229-234.	1.2	7
325	Enhanced Photocatalytic Hydrogenâ€Production Performance of Graphene–Zn _{<i>x</i>xx20, 1176-1185. Composites by Using an Organic S Source. Chemistry - A European Journal, 2014, 20, 1176-1185.}	1.7	149
326	Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. Journal of Materials Chemistry A, 2014, 2, 19156-19166.	5.2	130
327	High Correlation between Oxidation Loci on Graphene Oxide. Angewandte Chemie, 2014, 126, 10354-10358.	1.6	21
328	Improving water splitting performance of Cu ₂ O through a synergistic "two-way transfer―process of Cu and graphene. Physical Chemistry Chemical Physics, 2014, 16, 25531-25536.	1.3	14
329	Preparation of LaMnO3/graphene thin films and their photocatalytic activity. Journal of Rare Earths, 2014, 32, 1126-1134.	2.5	41

#	Article	IF	Citations
330	In situ synthesis of hierarchical In ₂ S ₃ â€"graphene nanocomposite photocatalyst for selective oxidation. RSC Advances, 2014, 4, 64484-64493.	1.7	28
331	Toward improving the photocatalytic activity of BiVO ₄ –graphene 2D–2D composites under visible light by the addition of mediator. RSC Advances, 2014, 4, 58448-58452.	1.7	28
332	Synthesis of g-C3N4/BiOClxBr1â^x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 202-211.	2.3	50
333	Templateâ€Free Preparation of Volvoxâ€like Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S Nanospheres with Cubic Phase for Efficient Photocatalytic Hydrogen Production. Chemistry - an Asian Journal, 2014, 9, 811-818.	1.7	47
334	Photocatalytic performance of TiO ₂ â€"zeolite templated carbon composites in organic contaminant degradation. Physical Chemistry Chemical Physics, 2014, 16, 25004-25007.	1.3	27
335	Synthesis of flower-like Pd/BiOCl composites via reactable ionic liquid and their enhanced photocatalytic properties. Materials Technology, 2014, 29, 245-251.	1.5	9
336	Improved Synthesis of Reduced Graphene Oxide-Titanium Dioxide Composite with Highly Exposed (001) Facets and Its Photoelectrochemical Response. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	19
337	A Facile Synthesis of Graphene-WO3Nanowire Clusters with High Photocatalytic Activity for O2Evolution. International Journal of Photoenergy, 2014, 2014, 1-6.	1.4	1
338	5. Synthesis strategies of nanocarbon hybrids. , 2014, , 125-170.		0
339	Origin of Tunable Photocatalytic Selectivity of Wellâ€Defined αâ€Fe ₂ O ₃ Nanocrystals. Small, 2014, 10, 674-679.	5.2	88
340	Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chemical Engineering Journal, 2014, 249, 102-110.	6.6	165
341	Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon, 2014, 76, 386-400.	5.4	77
342	Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation. Applied Surface Science, 2014, 319, 344-349.	3.1	169
343	A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technology, 2014, 257, 113-119.	2.1	81
344	Graphene oxide–BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes. Journal of Water Process Engineering, 2014, 1, 17-26.	2.6	106
345	Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica Acta, 2014, 129, 40-46.	2.6	38
346	Conductive amorphous hydrocarbon film for bio-sensor formed by low temperature neutral beam enhanced chemical vapor deposition. Carbon, 2014, 67, 635-642.	5.4	7
347	Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode. Biosensors and Bioelectronics, 2014, 51, 164-169.	5.3	60

#	Article	IF	CITATIONS
348	Metals on Graphene and Carbon Nanotube Surfaces: From Mobile Atoms to Atomtronics to Bulk Metals to Clusters and Catalysts. Chemistry of Materials, 2014, 26, 184-195.	3.2	57
349	Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe(III) cocatalyst. Applied Catalysis B: Environmental, 2014, 144, 75-82.	10.8	130
350	Adsorption and photocatalysis removal of fulvic acid by TiO2–graphene composites. Journal of Materials Science, 2014, 49, 1066-1075.	1.7	45
351	Improving Energy Conversion Efficiency of Dye-Sensitized Solar Cells by Modifying TiO ₂ Photoanodes with Nitrogen-Reduced Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1234-1240.	3.2	59
352	One-pot/self-template synthesis of mesostructured vanadium oxide embedded carbon nanofiber as a visible-light photocatalyst. RSC Advances, 2014, 4, 5901.	1.7	5
353	Fabrication of Reduced Graphene Oxide (RGO)/Co ₃ O ₄ Nanohybrid Particles and a RGO/Co ₃ O ₄ /Poly(vinylidene fluoride) Composite with Enhanced Waveâ€Absorption Properties. ChemPlusChem, 2014, 79, 375-381.	1.3	76
354	Mixed Transitionâ€Metal Oxides: Design, Synthesis, and Energyâ€Related Applications. Angewandte Chemie - International Edition, 2014, 53, 1488-1504.	7.2	2,019
355	Reduced graphene oxides loaded-ZnS/CuS heteronanostructures as high-activity visible-light-driven photocatalysts. Journal of Alloys and Compounds, 2014, 582, 774-779.	2.8	46
356	A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide–TiO2 photocatalyst. Chemical Engineering Journal, 2014, 241, 207-215.	6.6	59
357	Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. Journal of Solid State Electrochemistry, 2014, 18, 515-522.	1.2	40
358	Effect of Graphene in Enhancing the Photo Catalytic Activity of Zirconium Oxide. Catalysis Letters, 2014, 144, 301-307.	1.4	21
359	Polyoxometalate-Mediated Green Synthesis of Graphene and Metal Nanohybrids: High-Performance Electrocatalysts. Journal of Cluster Science, 2014, 25, 711-740.	1.7	28
360	Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities. Ceramics International, 2014, 40, 10383-10393.	2.3	65
361	One-pot synthesis of Ag/r-GO/TiO2 nanocomposites with high solar absorption and enhanced anti-recombination in photocatalytic applications. Nanoscale, 2014, 6, 5498.	2.8	102
362	Structures Self-Assembled from Anionic Graphene and Cationic Manganese Porphyrin: Characterization and Application in Artificial Photosynthesis. European Journal of Inorganic Chemistry, 2014, 2014, 2288-2295.	1.0	21
363	Toward Improving the Graphene–Semiconductor Composite Photoactivity ⟨i⟩via⟨ i⟩ the Addition of Metal Ions as Generic Interfacial Mediator. ACS Nano, 2014, 8, 623-633.	7.3	352
364	Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect for photocatalysis. Catalysis Today, 2014, 224, 114-121.	2.2	73
365	Synthesis of Carbon Materials–TiO ₂ Hybrid Nanostructures and Their Visibleâ€Light Photoâ€catalytic Activity. ChemPlusChem, 2014, 79, 454-461.	1.3	16

#	Article	IF	Citations
366	Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy and Environmental Science, 2014, 7, 1902.	15.6	323
367	Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale, 2014, 6, 6335.	2.8	138
368	Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Applied Surface Science, 2014, 299, 12-18.	3.1	144
369	Single step electrochemical fabrication of highly loaded palladium nanoparticles decorated chemically reduced graphene oxide and its electrocatalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452, 39-45.	2.3	17
370	Facetâ€Dependent Photocatalytic Properties of TiO ₂ â€Based Composites for Energy Conversion and Environmental Remediation. ChemSusChem, 2014, 7, 690-719.	3.6	307
371	Facile synthesis of novel ZnO/RGO hybrid nanocomposites with enhanced catalytic performance for visible-light-driven photodegradation of metronidazole. Materials Chemistry and Physics, 2014, 145, 357-365.	2.0	60
372	Microwave-assisted hydrothermal synthesis of graphene based Au–TiO ₂ photocatalysts for efficient visible-light hydrogen production. Journal of Materials Chemistry A, 2014, 2, 3847-3855.	5.2	314
373	Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities. Chemical Reviews, 2014, 114, 9455-9486.	23.0	557
374	Reduced Graphene Oxide/InGaZn Mixed Oxide Nanocomposite Photocatalysts for Hydrogen Production. ChemSusChem, 2014, 7, 585-597.	3 . 6	38
375	Engineering the TiO ₂ –Graphene Interface to Enhance Photocatalytic H ₂ Production. ChemSusChem, 2014, 7, 618-626.	3.6	81
376	Response surface modeling of Carbamazepine (CBZ) removal by Graphene-P25 nanocomposites/UVA process using central composite design. Water Research, 2014, 57, 270-279.	5.3	92
377	Direct synthesis of novel vanadium oxide embedded porous carbon nanofiber decorated with iron nanoparticles as a low-cost and highly efficient visible-light-driven photocatalyst. Journal of Colloid and Interface Science, 2014, 417, 199-205.	5.0	26
378	Nanocomposites of graphene-CdS as photoactive and reusable catalysts for visible-light-induced selective reduction process. Journal of Energy Chemistry, 2014, 23, 145-155.	7.1	23
379	A Review of Grapheneâ€Based Nanostructural Materials for Both Catalyst Supports and Metalâ€Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1301523.	10.2	416
380	A facile one-pot green synthesis of reduced graphene oxide and its composites for non-enzymatic hydrogen peroxide sensor applications. RSC Advances, 2014, 4, 7944.	1.7	107
381	Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 2014, 114, 6179-6212.	23.0	595
382	Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Applied Surface Science, 2014, 319, 8-15.	3.1	102
383	Role of oxygen functionalities on the synthesis of photocatalytically active graphene–TiO2 composites. Applied Catalysis B: Environmental, 2014, 158-159, 329-340.	10.8	117

#	Article	IF	CITATIONS
384	Synthesis of nanotitania decorated few-layer graphene for enhanced visible light driven photocatalysis. Journal of Colloid and Interface Science, 2014, 428, 214-221.	5.0	57
385	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	7.2	384
386	Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst. Applied Surface Science, 2014, 308, 321-327.	3.1	26
387	Noble metal doped graphene nanocomposites and its study of photocatalytic hydrogen evolution. Solid State Sciences, 2014, 31, 91-98.	1.5	30
388	Low temperature synthesis and photocatalytic properties of mesoporous TiO2 nanospheres. Journal of Alloys and Compounds, 2014, 591, 52-57.	2.8	32
389	Reduced graphene oxide on a dumbbell-shaped BiVO4 photocatalyst for an augmented natural sunlight photocatalytic activity. Journal of Molecular Catalysis A, 2014, 387, 138-146.	4.8	35
390	Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi ₂ WO ₆ nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 1111-1120.	1.3	256
391	Pyridyne cycloaddition of graphene: "external―active sites for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 897-901.	5.2	33
392	Enhanced photocatalytic H ₂ evolution on ZnS loaded with graphene and MoS ₂ nanosheets as cocatalysts. Journal of Materials Chemistry A, 2014, 2, 3819-3827.	5.2	171
393	lonic liquid mediated synthesis of graphene–TiO2 hybrid and its photocatalytic activity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 180, 38-45.	1.7	20
394	A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Applied Surface Science, 2014, 288, 51-59.	3.1	183
395	Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of $Cu < sup > 2 + < /sup >$. Nanoscale, 2014, 6, 1406-1415.	2.8	351
396	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews, 2014, 43, 7787-7812.	18.7	2,125
397	Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. Journal of Colloid and Interface Science, 2014, 418, 317-323.	5.0	136
398	Semiconductor photocatalysts for water oxidation: current status and challenges. Physical Chemistry Chemical Physics, 2014, 16, 6810.	1.3	112
399	Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide. ACS Nano, 2014, 8, 1002-1013.	7.3	328
400	Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale, 2014, 6, 978-985.	2.8	84
401	Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Materials Letters, 2014, 120, 177-181.	1.3	50

#	Article	IF	CITATIONS
402	Catalytic activity of gold nanoparticles supported on KNbO3 microcubes. Catalysis Today, 2014, 224, 140-146.	2.2	29
403	MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Advances, 2014, 4, 9647.	1.7	126
404	A dynamic light scattering study of photochemically reduced colloidal graphene oxide. Colloid and Polymer Science, 2014, 292, 539-546.	1.0	34
405	A green approach to the fabrication of titania–graphene nanocomposites: Insights relevant to efficient photodegradation of Acid Orange 7 dye under solar irradiation. Materials Science in Semiconductor Processing, 2014, 25, 219-230.	1.9	18
406	Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 2014, 4, 497-504.	5.5	37
407	Well-Coupled Graphene and Pd-Based Bimetallic Nanocrystals Nanocomposites for Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2086-2094.	4.0	67
408	Synthesis of In ₂ S ₃ –CNT nanocomposites for selective reduction under visible light. Journal of Materials Chemistry A, 2014, 2, 1710-1720.	5.2	99
409	TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation. Carbon, 2014, 68, 319-329.	5.4	30
410	ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 251-255.	1.3	61
411	Cocatalyst modification and nanonization of Ag/AgCl photocatalyst with enhanced photocatalytic performance. Journal of Molecular Catalysis A, 2014, 381, 114-119.	4.8	38
412	Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Advances, 2014, 4, 60253-60259.	1.7	58
413	Synthesis and Visibleâ€Light Photocatalytic Performance of Cadmium Sulfide and Oxide Hexagonal Nanoplates. ChemPlusChem, 2014, 79, 1726-1732.	1.3	7
414	Graphene Oxide/αâ€Bi ₂ O ₃ Composites for Visibleâ€Light Photocatalysis, Chemical Catalysis, and Solar Energy Conversion. ChemSusChem, 2014, 7, 854-865.	3.6	42
415	A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO ₂ –graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Advances, 2014, 4, 59890-59901.	1.7	143
416	Morphological Effect of Graphene Nanosheets on Ultrathin CoS Nanosheets and Their Applications for High-Performance Li-Ion Batteries and Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 25355-25364.	1.5	142
417	Facile preparation of 2D sandwich-like CdS nanoparticles/nitrogen-doped reduced graphene oxide hybrid nanosheets with enhanced photoelectrochemical properties. Journal of Materials Chemistry A, 2014, 2, 19815-19821.	5.2	47
418	Heterostructured composites consisting of In ₂ O ₃ nanorods and reduced graphene oxide with enhanced interfacial electron transfer and photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 20118-20125.	5.2	36
419	Graphene–CdS quantum dots–polyoxometalate composite films for efficient photoelectrochemical water splitting and pollutant degradation. Physical Chemistry Chemical Physics, 2014, 16, 26016-26023.	1.3	27

#	Article	IF	CITATIONS
420	Preparation and characterization of ZnO/graphene nanocomposite for improved photovoltaic performance. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	25
421	Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Applied Surface Science, 2014, 319, 189-196.	3.1	44
422	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	10.2	244
423	Studies on the Photocatalytic Electron Pooling of Graphene Oxide Hybrids Decorated with Electron Donor and Electron Acceptor Molecules. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 128-137.	1.0	6
424	Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst. Applied Catalysis B: Environmental, 2014, 160-161, 658-665.	10.8	110
425	Highly Efficient Visible Light Photocatalytic Reduction of CO ₂ to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 2014, 14, 6097-6103.	4.5	312
426	Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy and Environmental Science, 2014, 7, 3934-3951.	15.6	470
427	Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B. Nanotechnology, 2014, 25, 445404.	1.3	4
428	Immobilization of BiOX (X = Cl, Br) on activated carbon fibers as recycled photocatalysts. Dalton Transactions, 2014, 43, 8170.	1.6	45
429	Sandwich-like titania thin films with one/three-dimensional nanostructures for photocatalytic applications. RSC Advances, 2014, 4, 22260-22265.	1.7	3
430	Ultrafine and well dispersed silver nanocrystals on 2D nanosheets: synthesis and application as a multifunctional material for electrochemical catalysis and biosensing. Nanoscale, 2014, 6, 14828-14835.	2.8	14
431	Humidity sensors based on graphene/SnO _x /CF nanocomposites. Journal of Materials Chemistry C, 2014, 2, 4861-4866.	2.7	31
432	Surface charge promotes the synthesis of large, flat structured graphene–(CdS) Tj ETQq0 0 0 rgBT /Overlock 10 Materials Chemistry A, 2014, 2, 430-440.	Tf 50 267 5.2	' Td (nanowi 112
433	A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. Journal of Materials Chemistry A, 2014, 2, 3407.	5.2	499
434	Highly enhanced photocatalytic properties of ZnS nanowires–graphene nanocomposites. RSC Advances, 2014, 4, 30798-30806.	1.7	36
435	Fabrication of a nano-sized Ag ₂ CO ₃ /reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability. RSC Advances, 2014, 4, 34226-34231.	1.7	26
436	TiO ₂ Nanoparticles-Functionalized N-Doped Graphene with Superior Interfacial Contact and Enhanced Charge Separation for Photocatalytic Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2014, 6, 13798-13806.	4.0	153
437	The synergetic effect of graphene on Cu ₂ O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. Journal of Materials Chemistry A, 2014, 2, 18383-18397.	5.2	259

#	Article	IF	CITATIONS
438	Coupling Zn _x Cd _{1\hat{a}^2xS nanoparticles with graphene-like MoS₂: superior interfacial contact, low overpotential and enhanced photocatalytic activity under visible-light irradiation. Catalysis Science and Technology, 2014, 4, 2650-2657.}	2.1	64
439	Graphene-wrapped Bi ₂ O ₂ CO ₃ coreâ€"shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. Journal of Materials Chemistry A, 2014, 2, 8273-8280.	5.2	96
440	Graphene-analogue boron nitride/Ag ₃ PO ₄ composite for efficient visible-light-driven photocatalysis. RSC Advances, 2014, 4, 56853-56862.	1.7	36
441	Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nanoscale, 2014, 6, 12805-12813.	2.8	41
442	Fullerene modified C ₃ N ₄ composites with enhanced photocatalytic activity under visible light irradiation. Dalton Transactions, 2014, 43, 982-989.	1.6	153
443	Enhanced reactive oxygen species on a phosphate modified C3N4/graphene photocatalyst for pollutant degradation. CrystEngComm, 2014, 16, 1287.	1.3	68
444	Synthesis of three-dimensionally ordered macroporous composite Ag/Bi ₂ O ₃ â€"TiO ₂ by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes. New Journal of Chemistry, 2014, 38, 5293-5302.	1.4	47
445	Effects of crystalline phase and morphology on the visible light photocatalytic H ₂ -production activity of CdS nanocrystals. Dalton Transactions, 2014, 43, 7245-7253.	1.6	99
446	Polymorphic transformations and optical properties of graphene-based Ag-doped titania nanostructures. Physical Chemistry Chemical Physics, 2014, 16, 23874-23883.	1.3	16
447	Synthesis of graphene oxide–Ag ₂ CO ₃ composites with improved photoactivity and anti-photocorrosion. CrystEngComm, 2014, 16, 730-736.	1.3	80
448	In situ growth of Bi ₂ MoO ₆ on reduced graphene oxide nanosheets for improved visible-light photocatalytic activity. CrystEngComm, 2014, 16, 842-849.	1.3	80
449	Ce-/S-codoped TiO ₂ /Sulfonated graphene for photocatalytic degradation of organic dyes. Journal of Materials Chemistry A, 2014, 2, 13565-13570.	5.2	30
450	Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance. Science Bulletin, 2014, 59, 688-698.	1.7	33
451	Pt-induced electrochemical growth of ZnO rods onto reduced graphene oxide for enhanced photodegradation performance. Science Bulletin, 2014, 59, 2208-2213.	1.7	2
452	High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core–Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H ₂ Production from Water. ACS Applied Materials & Samp; Interfaces, 2014, 6, 19905-19913.	4.0	33
453	Porous WO3–carbon nanofibers: high-performance and recyclable visible light photocatalysis. Catalysis Science and Technology, 2014, 4, 3601-3605.	2.1	27
454	A reduced graphene oxide supported Cu3SnS4 composite as an efficient visible-light photocatalyst. Dalton Transactions, 2014, 43, 7491.	1.6	52
455	Graphene oxide capturing surface-fluorinated TiO ₂ nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Transactions, 2014, 43, 2202-2210.	1.6	66

#	Article	IF	CITATIONS
456	Insitu formation of metal CdxZn1â^'xS nanocrystals on graphene surface: a novel method to synthesise sulfideâ€"graphene nanocomposites. RSC Advances, 2014, 4, 29555.	1.7	4
457	Ambient plasma synthesis of TiO2@graphite oxide nanocomposites for efficient photocatalytic hydrogenation. Journal of Materials Chemistry A, 2014, 2, 6939.	5.2	18
458	Facile synthesis of organic–inorganic layered nanojunctions of g-C ₃ N ₄ /(BiO) ₂ CO ₃ as efficient visible light photocatalyst. Dalton Transactions, 2014, 43, 12026-12036.	1.6	92
459	A novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/Au nanoparticles/multiwalled carbon nanotubes nanocomposite film. RSC Advances, 2014, 4, 31573.	1.7	21
460	Graphene–TiO2 nanocomposite photocatalysts for selective organic synthesis in water under simulated solar light irradiation. RSC Advances, 2014, 4, 15264.	1.7	45
461	In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO) ₂ CO ₃ hierarchical microspheres for enhanced visible light photocatalysis. Dalton Transactions, 2014, 43, 9468-9480.	1.6	98
462	Two-dimensional g-C ₃ N ₄ : an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chemical Communications, 2014, 50, 6094-6097.	2.2	225
463	One-pot hydrothermal synthesis of ZnS–reduced graphene oxide composites with enhanced photocatalytic properties. CrystEngComm, 2014, 16, 214-222.	1.3	71
464	Interfacial Interactions of Semiconductor with Graphene and Reduced Graphene Oxide: CeO ₂ as a Case Study. ACS Applied Materials & Interfaces, 2014, 6, 20350-20357.	4.0	71
465	Controlled synthesis of ZnGa ₂ O ₄ nanorod arrays from hexagonal ZnO microdishes and their photocatalytic activity on the degradation of RhB. RSC Advances, 2014, 4, 48590-48595.	1.7	9
466	In situ simultaneous reduction–doping route to synthesize hematite/N-doped graphene nanohybrids with excellent photoactivity. RSC Advances, 2014, 4, 31754-31758.	1.7	17
467	Significant enhancement in photocatalytic activity of high quality SiC/graphene core–shell heterojunction with optimal structural parameters. RSC Advances, 2014, 4, 46771-46779.	1.7	26
468	1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Advances, 2014, 4, 48486-48491.	1.7	64
469	Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO 2 nanoparticles and loading MoS 2 nanosheets as Co-catalyst. International Journal of Hydrogen Energy, 2014, 39, 19502-19512.	3.8	160
470	Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. Journal of Materials Chemistry A, 2014, 2, 9380.	5.2	204
471	Bimetallic Nickel–Rhodium Nanoparticles Supported on ZIFâ€8 as Highly Efficient Catalysts for Hydrogen Generation from Hydrazine in Alkaline Solution. ChemCatChem, 2014, 6, 2549-2552.	1.8	61
472	Single-layer Group-IVB nitride halides as promising photocatalysts. Journal of Materials Chemistry A, 2014, 2, 6755.	5.2	90
473	Effects of Morphology and Crystallinity on the Photocatalytic Activity of (BiO) ₂ CO ₃ Nano/microstructures. Industrial & Engineering Chemistry Research, 2014, 53, 15002-15011.	1.8	66

#	Article	IF	Citations
474	Graphene Oxide–Rare Earth Metal–Organic Framework Composites for the Selective Isolation of Hemoglobin. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10196-10204.	4.0	106
475	TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity. Materials Research Bulletin, 2014, 60, 64-71.	2.7	24
476	Large-Scale Synthesis of TiO ₂ Microspheres with Hierarchical Nanostructure for Highly Efficient Photodriven Reduction of CO ₂ to CH ₄ . ACS Applied Materials & lamp; Interfaces, 2014, 6, 15488-15498.	4.0	146
477	One-pot hydrothermal synthesis of mesoporous ZnxCd1â^'xS/reduced graphene oxide hybrid material and its enhanced photocatalytic activity. Dalton Transactions, 2014, 43, 12894.	1.6	39
478	Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synthetic Metals, 2014, 198, 10-18.	2.1	66
479	Graphene oxide–palladium modified Ag–AgBr: a visible-light-responsive photocatalyst for the Suzuki coupling reaction. RSC Advances, 2014, 4, 39242-39247.	1.7	38
480	Enhanced Visible Activities of α-Fe ₂ O ₃ by Coupling N-Doped Graphene and Mechanism Insight. ACS Catalysis, 2014, 4, 990-998.	5.5	132
481	Nanochemistry-derived Bi ₂ WO ₆ nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chemical Society Reviews, 2014, 43, 5276-5287.	18.7	368
482	Application of graphene oxide as a hydrothermal catalyst support for synthesis of TiO ₂ whiskers. Chemical Communications, 2014, 50, 15010-15013.	2.2	9
483	High Correlation between Oxidation Loci on Graphene Oxide. Angewandte Chemie - International Edition, 2014, 53, 10190-10194.	7.2	86
484	Novel g-C ₃ N ₄ /BilO ₄ heterojunction photocatalysts: synthesis, characterization and enhanced visible-light-responsive photocatalytic activity. RSC Advances, 2014, 4, 42716-42722.	1.7	62
485	Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene. Journal of Colloid and Interface Science, 2014, 436, 29-36.	5.0	92
486	Facile one-step hydrothermal syntheses and supercapacitive performances of reduced graphene oxide/MnO2 composites. Composites Science and Technology, 2014, 103, 113-118.	3.8	18
487	Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide – a unique 2D macromolecular surfactant. Physical Chemistry Chemical Physics, 2014, 16, 5589.	1.3	124
488	Tunable Photodeposition of MoS ₂ onto a Composite of Reduced Graphene Oxide and CdS for Synergic Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2014, 118, 19842-19848.	1.5	199
489	Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. Journal of Hazardous Materials, 2014, 279, 96-104.	6.5	94
490	Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity. Journal of Hazardous Materials, 2014, 280, 156-163.	6. 5	24
491	Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis, 2014, 35, 989-1007.	6.9	481

#	Article	IF	CITATIONS
492	Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction. International Journal of Hydrogen Energy, 2014, 39, 11578-11582.	3.8	31
493	Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 2014, 6, 8473-8488.	2.8	774
494	Tungsten oxide nanowire-reduced graphene oxide aerogel for high-efficiency visible light photocatalysis. Carbon, 2014, 78, 38-48.	5.4	132
495	Low-temperature solvothermal synthesis of graphene–TiO 2 nanocomposite and its photocatalytic activity for dye degradation. Materials Letters, 2014, 134, 115-118.	1.3	15
496	Photoinduced Electron Transfer Pathways in Hydrogen-Evolving Reduced Graphene Oxide-Boosted Hybrid Nano-Bio Catalyst. ACS Nano, 2014, 8, 7995-8002.	7.3	55
497	Novel visible light-induced g-C ₃ N ₄ quantum dot/BiPO ₄ nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Advances, 2014, 4, 35144-35148.	1.7	43
498	Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Applied Surface Science, 2014, 319, 107-112.	3.1	185
499	Allâ€Solidâ€State Zâ€Scheme Photocatalytic Systems. Advanced Materials, 2014, 26, 4920-4935.	11.1	1,989
500	Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi 2 MoO 6 heterojunctions. Powder Technology, 2014, 267, 126-133.	2.1	67
501	Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity. Materials Chemistry and Physics, 2014, 147, 1140-1145.	2.0	7
502	Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114, 9987-10043.	23.0	2,096
503	Acetylene oligomerization on the surface of TiO ₂ : a step forward in the in situ synthesis of nanostructured carbonaceous structures on the surface of photoactive oxides. Journal of Materials Chemistry A, 2014, 2, 12247-12254.	5.2	24
504	Facile, one-pot solvothermal method to synthesize ultrathin Sb ₂ S ₃ nanosheets anchored on graphene. Dalton Transactions, 2014, 43, 13948.	1.6	23
505	New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 20382-20386.	1.3	990
506	Water-phase strategy for synthesis of TiO2–graphene composites with tunable structure for high performance photocatalysts. Applied Surface Science, 2014, 317, 648-656.	3.1	44
507	Artificial photosynthesis over graphene–semiconductor composites. Are we getting better?. Chemical Society Reviews, 2014, 43, 8240-8254.	18.7	534
508	A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. Nanoscale, 2014, 6, 11653-11658.	2.8	46
509	Constructing atomic layer g-C ₃ N ₄ â€"CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 21280-21288.	1.3	147

#	Article	IF	CITATIONS
510	Preparation of Graphene–TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy. Materials Science in Semiconductor Processing, 2014, 27, 695-701.	1.9	28
511	One-pot synthesis of PrPO4 nanorods–reduced graphene oxide composites and their photocatalytic properties. New Journal of Chemistry, 2014, 38, 2305.	1.4	11
512	Two-dimensional layered composite photocatalysts. Chemical Communications, 2014, 50, 10768.	2.2	551
513	A ternary TiO2/WO3/graphene nanocomposite adsorbent: facile preparation and efficient removal of Rhodamine B. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 813-819.	2.4	10
514	Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis, 2014, 4, 3701-3714.	5.5	451
515	Recent advances in BiOX (X = Cl, Br and l) photocatalysts: synthesis, modification, facet effects and mechanisms. Environmental Science: Nano, 2014, 1 , 90 .	2.2	594
516	Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C ₃ N ₄ /CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Transactions, 2014, 43, 12514-12527.	1.6	233
517	Photoelectrochemical performance of graphene-modified TiO2 photoanodes in the presence of glycerol as a hole scavenger. International Journal of Hydrogen Energy, 2014, 39, 18204-18215.	3.8	46
518	Synthesis of reduced graphene oxide/ \hat{l} ±-Bi2Mo3O12 @ \hat{l} 2-Bi2O3 heterojunctions by organic electrolytes assisted UV-excited method. Chemical Engineering Journal, 2014, 257, 309-316.	6.6	24
519	Photothermal Contribution to Enhanced Photocatalytic Performance of Graphene-Based Nanocomposites. ACS Nano, 2014, 8, 9304-9310.	7.3	240
520	Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption, 2014, 20, 713-727.	1.4	124
521	Noncovalently Functionalized Graphene-Directed Synthesis of Ultralarge Graphene-Based TiO ₂ Nanosheet Composites: Tunable Morphology and Photocatalytic Applications. Journal of Physical Chemistry C, 2014, 118, 27325-27335.	1.5	54
522	Photocatalytic reduction of carbon dioxide to methanol and formic acid by graphene-TiO ₂ . Journal of the Air and Waste Management Association, 2014, 64, 578-585.	0.9	39
523	Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity. Journal of Energy Chemistry, 2014, 23, 564-574.	7.1	33
524	Recent progress in graphene-material-based optical sensors. Analytical and Bioanalytical Chemistry, 2014, 406, 6903-6916.	1.9	53
525	Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. Journal of Materials Science: Materials in Electronics, 2014, 25, 3480-3485.	1.1	21
526	Photogenerated Carriers Transfer in Dye–Graphene–SnO ₂ Composites for Highly Efficient Visible-Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 613-621.	4.0	122
527	Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Applied Catalysis B: Environmental, 2014, 156-157, 331-340.	10.8	316

#	Article	IF	CITATIONS
528	Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 2014, 114, 9559-9612.	23.0	922
529	TiO2 wrapped graphene as a high performance photocatalyst for acid orange 7 dye degradation under solar/UV light irradiations. Ceramics International, 2014, 40, 5945-5957.	2.3	78
530	Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catalysis Science and Technology, 2014, 4, 2023-2030.	2.1	268
531	Controlled synthesis of T-shaped BiVO4 and enhanced visible light responsive photocatalytic activity. Journal of Solid State Chemistry, 2014, 211, 176-183.	1.4	34
532	Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 212, 1-6.	1.4	78
533	Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. Journal of Colloid and Interface Science, 2014, 432, 19-25.	5.0	94
534	Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. Journal of Materials Chemistry A, 2014, 2, 5068.	5.2	99
535	Synergistic Metal–Metal Oxide Nanoparticles Supported Electrocatalytic Graphene for Improved Photoelectrochemical Glucose Oxidation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4864-4871.	4.0	100
536	Observing the Role of Graphene in Boosting the Two-Electron Reduction of Oxygen in Graphene–WO ₃ Nanorod Photocatalysts. Langmuir, 2014, 30, 5574-5584.	1.6	192
537	Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Research Letters, 2014, 9, 148.	3.1	33
538	The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light. Nanoscale, 2014, 6, 8311.	2.8	112
539	Molybdenum/graphene – Based catalyst for hydrogen evolution reaction synthesized by a rapid photothermal method. International Journal of Hydrogen Energy, 2014, 39, 11528-11536.	3.8	22
540	Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43, 5234.	18.7	3,257
541	Toward an Understanding of the Growth of Ag Filaments on α-Ag ₂ WO ₄ and Their Photoluminescent Properties: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 1229-1239.	1.5	124
542	Reduced Graphene Oxide Grafted Ag ₃ PO ₄ Composites with Efficient Photocatalytic Activity under Visible-Light Irradiation. Industrial & Engineering Chemistry Research, 2014, 53, 8744-8752.	1.8	109
543	Facile One-Pot Solvothermal Method to Synthesize Sheet-on-Sheet Reduced Graphene Oxide (RGO)/ZnIn ₂ S ₄ Nanocomposites with Superior Photocatalytic Performance. ACS Applied Materials & Date: ACS ACS ACS ACS ACS APPLIED & Date: ACS	4.0	274
544	Facile shape-controllable synthesis of Ag 3 PO 4 photocatalysts. Materials Letters, 2014, 133, 139-142.	1.3	33
545	Review on modified N–TiO ₂ for green energy applications under UV/visible light: selected results and reaction mechanisms. RSC Advances, 2014, 4, 28265-28299.	1.7	136

#	Article	IF	CITATIONS
546	Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Advances, 2014, 4, 53649-53661.	1.7	121
547	One dimensional CdS/ZnO nanocomposites: an efficient photocatalyst for hydrogen generation. RSC Advances, 2014, 4, 47637-47642.	1.7	39
548	Graphene spheres loaded urchin-like CuxO ($x=1$ or 2) for use as a high performance photocatalyst. Ceramics International, 2014, 40, 5055-5059.	2.3	18
549	Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid. Applied Catalysis B: Environmental, 2014, 147, 167-174.	10.8	100
550	Fabrication and photocatalytical enhancement of ZnO-graphene hybrid using a continuous solvothermal technique. Journal of Supercritical Fluids, 2014, 91, 61-67.	1.6	20
551	Fabrication of graphene/Caln2O4 composites with enhanced photocatalytic activity from water under visible light irradiation. International Journal of Hydrogen Energy, 2014, 39, 119-126.	3.8	18
552	Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units. Carbon, 2014, 74, 113-119.	5.4	10
553	Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. Journal of Hazardous Materials, 2014, 266, 75-83.	6.5	92
554	Hydrogen peroxide assisted rapid synthesis of TiO2 hollow microspheres with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2014, 147, 789-795.	10.8	40
555	Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catalysis Communications, 2014, 49, 63-67.	1.6	157
556	Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light. Applied Catalysis B: Environmental, 2014, 158-159, 150-160.	10.8	181
557	High visible-photoactivity of spherical Cd0.5Zn0.5S coupled with graphene composite for decolorizating organic dyes. Journal of Alloys and Compounds, 2014, 609, 46-53.	2.8	21
558	AgBr/Ag/Ag2O/GO composite: Ultrasonic fabrication, characterization and visible-driven photocatalytic property. Materials Letters, 2014, 120, 54-57.	1.3	13
559	Preparation and enhanced photocatalytic activity of CdS@RGO core–shell structural microspheres. Applied Surface Science, 2014, 305, 242-246.	3.1	62
560	Bifunctional TiO ₂ /Ag ₃ PO ₄ /graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Advances, 2014, 4, 18627-18636.	1.7	167
561	Efficient and Durable Visible Light Photocatalytic Performance of Porous Carbon Nitride Nanosheets for Air Purification. Industrial & Engineering Chemistry Research, 2014, 53, 2318-2330.	1.8	159
562	Light irradiation-assisted synthesis of ZnO–CdS/reduced graphene oxide heterostructured sheets for efficient photocatalytic H2 evolution. Chemical Communications, 2014, 50, 3460.	2.2	114
563	Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 2014, 43, 4281-4299.	18.7	214

#	Article	IF	CITATIONS
564	Studying Reaction Intermediates Formed at Graphenic Surfaces. Journal of the American Society for Mass Spectrometry, 2014, 25, 380-387.	1.2	9
565	Superior H ₂ production by hydrophilic ultrafine Ta ₂ O ₅ engineered covalently on graphene. Nanotechnology, 2014, 25, 215401.	1.3	16
566	Photophysics and Photocatalysis of Carbon Nitride Synthesized at Different Temperatures. Journal of Physical Chemistry C, 2014, 118, 11628-11635.	1.5	130
567	g-C ₃ N ₄ -Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 2014, 5, 2101-2107.	2.1	1,107
568	Photodegradation of rhodamine B with MoS2/Bi2O2CO3 composites under UV light irradiation. Applied Surface Science, 2014, 313, 537-544.	3.1	85
569	Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface. Advanced Materials, 2014, 26, 4121-4126.	11.1	691
570	Noble metal-free cobalt oxide (CoO) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water. International Journal of Hydrogen Energy, 2014, 39, 13353-13360.	3.8	66
571	Photocatalytic hydrogen generation of ZnO rod–CdS/reduced graphene oxide heterostructure prepared by Pt-induced oxidation and light irradiation-assisted methods. Carbon, 2014, 77, 667-674.	5.4	34
572	Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation of organic contaminants. Journal of Molecular Catalysis A, 2014, 391, 175-182.	4.8	49
573	A Perspective on Mesoporous TiO ₂ Materials. Chemistry of Materials, 2014, 26, 287-298.	3.2	413
574	Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag ₂ CrO ₄ . Beilstein Journal of Nanotechnology, 2014, 5, 658-666.	1.5	76
575	Preparation of CdO Rhombus-Like Nanostructure and Its Photocatalytic Degradation of Azo Dyes from Aqueous Solution. Nanomaterials and Nanotechnology, 2014, 4, 16.	1.2	33
577	Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 045003.	0.7	13
578	Synergistic Effect of Dual Electron-Cocatalysts for Enhanced Photocatalytic Activity: rGO as Electron-Transfer Mediator and Fe(III) as Oxygen-Reduction Active Site. Scientific Reports, 2015, 5, 13083.	1.6	43
580	Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Advances, 2015, 5, .	0.6	23
582	Electrical level of defects in single-layer two-dimensional TiO2. Scientific Reports, 2015, 5, 15989.	1.6	10
583	Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better. Scientific Reports, 2015, 5, 14643.	1.6	71
584	Direction-Controlled Chemical Doping for Reversible G-Phonon Mixing in ABC Trilayer Graphene. Scientific Reports, 2015, 5, 8707.	1.6	11

#	Article	IF	CITATIONS
585	Evolution of Zinc Oxide Nanostructures Grown on Graphene by Ultrasonic Spray Pyrolysis and Its Statistical Growth Modelling. Nanoscale Research Letters, 2015, 10, 452.	3.1	6
587	Photocatalytically Renewable Microâ€electrochemical Sensor for Realâ€Time Monitoring of Cells. Angewandte Chemie - International Edition, 2015, 54, 14402-14406.	7.2	44
589	Threeâ€Dimensional Bimetalâ€Grapheneâ€Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2015, 54, 8480-8484.	7.2	119
590	Bipolar Carrier Transfer Channels in Epitaxial Graphene/SiC Core–Shell Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7986-7991.	11.1	42
591	An Efficient p–n Heterojunction Photocatalyst Constructed from a Coordination Polymer Nanoplate and a Partically Reduced Graphene Oxide for Visible‣ight Hydrogen Production. Chemistry - A European Journal, 2015, 21, 14638-14647.	1.7	24
593	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	11.1	567
594	Silver Iodide Nanospheres Wrapped in Reduced Graphene Oxide for Enhanced Photocatalysis. ChemCatChem, 2015, 7, 2918-2923.	1.8	13
595	Photocatalyst Interface Engineering: Spatially Confined Growth of ZnFe∢sub>2∢/sub>O∢sub>4∢/sub> within Graphene Networks as Excellent Visibleâ€Lightâ€Driven Photocatalysts. Advanced Functional Materials, 2015, 25, 7080-7087.	7.8	134
596	Grapheneâ€Based Photocatalysts for Solarâ€Fuel Generation. Angewandte Chemie - International Edition, 2015, 54, 11350-11366.	7.2	692
597	Synthesis of BiVO ₄ @C Core–Shell Structure on Reduced Graphene Oxide with Enhanced Visibleâ€Light Photocatalytic Activity. ChemSusChem, 2015, 8, 2719-2726.	3.6	12
598	Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes. Chemistry - A European Journal, 2015, 21, 10940-10959.	1.7	128
600	Synthesis, Analysis, and Testing of BiOBr-Bi ₂ WO ₆ Photocatalytic Heterojunction Semiconductors. International Journal of Photoenergy, 2015, 2015, 1-12.	1.4	27
602	Effects of morphology and exposed facets of \hat{l} ±-Fe ₂ O ₃ nanocrystals on photocatalytic water oxidation. RSC Advances, 2015, 5, 52210-52216.	1.7	35
603	One step to synthesize the nanocomposites of graphene nanosheets and N-doped titania nanoplates with exposed {001} facets for enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
604	Hydrothermally prepared graphene-titania nanocomposite for the solar photocatalytic degradation of methylene blue. Desalination and Water Treatment, 0, , 1-8.	1.0	4
605	Synthesis of TiO2 thin films with highly efficient surfaces using a sol–gel technique. Materials Science in Semiconductor Processing, 2015, 37, 207-214.	1.9	10
606	Microwave-assisted hydrothermal synthesis of Au/TiO2/SBA-15 for enhanced visible-light photoactivity. Materials Letters, 2015, 159, 131-134.	1.3	20
607	Efficient Photoinduced Charge Accumulation in Reduced Graphene Oxide Coupled with Titania Nanosheets To Show Highly Enhanced and Persistent Conductance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11436-11443.	4.0	23

#	Article	IF	CITATIONS
608	Efficient Mesoporous Semiconductor Materials for Environmental Applications. Handbook of Environmental Chemistry, 2015, , 221-266.	0.2	0
609	Reduced graphene oxide-grafted cylindrical like W doped BiVO4 hybrids with enhanced performances for photocatalytic applications. Chemical Engineering Journal, 2015, 266, 48-55.	6.6	26
610	Light converting phosphor-based photocatalytic composites. Catalysis Science and Technology, 2015, 5, 4727-4740.	2.1	38
611	Temperature-controlled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light. RSC Advances, 2015, 5, 49317-49325.	1.7	113
612	2D Hybrid Nanostructure of Reduced Graphene Oxide–CdS Nanosheet for Enhanced Photocatalysis. ACS Applied Materials & Diterfaces, 2015, 7, 13251-13259.	4.0	260
613	Comparative studies on Ag3PO4/BiPO4–metal-organic framework–graphene-based nanocomposites for photocatalysis application. Applied Surface Science, 2015, 351, 216-224.	3.1	63
614	Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Applied Surface Science, 2015, 349, 279-286.	3.1	93
615	Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. Journal of Hazardous Materials, 2015, 298, 28-35.	6.5	151
616	Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catalysis Science and Technology, 2015, 5, 3903-3916.	2.1	125
617	One-step preparation of nitrogen doped titanium oxide/Au/reduced graphene oxide composite thin films for photocatalytic applications. RSC Advances, 2015, 5, 49771-49779.	1.7	21
618	Synergistic effect between eosin Y and rhodamine B on a photoelectrode coated with Pt nanoparticle-decorated graphene. RSC Advances, 2015, 5, 105969-105979.	1.7	5
619	Graphene/3C-SiC Hybrid Nanolaminate. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28508-28517.	4.0	17
620	Hydrothermal synthesis of SnO 2 –Zn 2 SnO 4 –graphene composites with high activity for photodegradation of rhodamine B. Micro and Nano Letters, 2015, 10, 443-446.	0.6	3
621	Spatially resolved optical properties of ZnO sub-microstructures on a graphene monolayer. Journal of the Korean Physical Society, 2015, 67, 1634-1638.	0.3	0
622	Photocatalytic Activity of One-Pot Synthesized Reduced Graphene Oxide – Zinc Oxide Nanocomposites. Journal of Nano Research, 0, 37, 74-84.	0.8	6
623	Synthesis and characterization of Pt/AgVO3 nanowires for degradation of atrazine using visible light irradiation. Journal of Alloys and Compounds, 2015, 649, 394-399.	2.8	21
624	Effect of various amounts of graphene oxide on the degradation characteristics of the ZnSe/graphene nanocomposites. Applied Surface Science, 2015, 358, 63-69.	3.1	30
625	Heterogeneous nucleation and high orientation of ZnO nanorods on graphene. Journal of the Korean Physical Society, 2015, 67, 1819-1823.	0.3	4

#	Article	IF	CITATIONS
626	Strongly Nonlinear Dependence of Energy Transfer Rate on sp ² Carbon Content in Reduced Graphene Oxide-Quantum Dot Hybrid Structures. Journal of Physical Chemistry Letters, 2015, 6, 44-47.	2.1	11
627	Light-Induced Efficient Molecular Oxygen Activation on a Cu(II)-Grafted TiO ₂ /Graphene Photocatalyst for Phenol Degradation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1816-1823.	4.0	106
628	Stateâ€ofâ€theâ€Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 998-1013.	7.8	706
629	Sandwich-like Cr ₂ O ₃ –graphite intercalation composites as high-stability anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1703-1708.	5.2	45
630	Photocatalytic hydrogenation of organic compounds in membrane reactors., 2015,, 605-639.		3
631	Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: Application to methylene blue dye decomposition. Applied Surface Science, 2015, 354, 55-65.	3.1	72
632	Highly efficient visible-light photocatalysts: reduced graphene oxide and C ₃ N ₄ nanosheets loaded with Ag nanoparticles. RSC Advances, 2015, 5, 15993-15999.	1.7	35
633	One-step in-situ hydrothermal synthesis of SnS2/reduced graphene oxide nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Journal of Materials Science, 2015, 50, 3207-3211.	1.7	21
634	Visible-light-driven photocatalytic H ₂ evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO ₂ catalysts. RSC Advances, 2015, 5, 15880-15885.	1.7	51
635	Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy, 2015, 12, 476-485.	8.2	133
636	Construction of reduced graphene oxide-supported Ag–Cu ₂ O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 2015, 3, 5923-5933.	5.2	89
637	One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems. Applied Surface Science, 2015, 332, 682-693.	3.1	59
638	Microwave synthesis of a CoSe ₂ /graphene–TiO ₂ heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents. RSC Advances, 2015, 5, 18841-18849.	1.7	23
639	New insights into how RGO influences the photocatalytic performance of BiOlO3/RGO nanocomposites under visible and UV irradiation. Journal of Colloid and Interface Science, 2015, 447, 16-24.	5.0	71
640	Recent progress in enhancing photocatalytic efficiency of TiO 2 -based materials. Applied Catalysis A: General, 2015, 495, 131-140.	2.2	316
641	Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. Journal of Alloys and Compounds, 2015, 631, 328-334.	2.8	157
642	Visible/Near-Infrared-Light-Induced H ₂ Production over g-C ₃ N ₄ Co-sensitized by Organic Dye and Zinc Phthalocyanine Derivative. ACS Catalysis, 2015, 5, 504-510.	5.5	203
643	Graphene-Templated Bottom-up Fabrication of Ultralarge Binary CdS–TiO ₂ Nanosheets for Photocatalytic Selective Reduction. Journal of Physical Chemistry C, 2015, 119, 7184-7194.	1.5	59

#	Article	IF	CITATIONS
644	Ultra-violet photodetection enhancement based on ZnO–graphene composites fabricated by sonochemical method. Journal of Sol-Gel Science and Technology, 2015, 74, 499-506.	1.1	26
645	1D CdS nanowire–2D BiVO ₄ nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Advances, 2015, 5, 16476-16483.	1.7	60
646	Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Applied Surface Science, 2015, 331, 193-199.	3.1	73
647	Biomolecule-mediated CdS-TiO ₂ -reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis. Dalton Transactions, 2015, 44, 193-201.	1.6	51
648	In-situ preparation of N-TiO ₂ /graphene nanocomposite and its enhanced photocatalytic hydrogen production by H ₂ S splitting under solar light. Nanoscale, 2015, 7, 5023-5034.	2.8	104
649	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy and Environmental Science, 2015, 8, 1329-1338.	15.6	136
650	Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Physical Chemistry Chemical Physics, 2015, 17, 5345-5351.	1.3	138
653	A novel p–n junction Ag ₃ PO ₄ /BiPO ₄ -based stabilized Pickering emulsion for highly efficient photocatalysis. RSC Advances, 2015, 5, 12944-12955.	1.7	42
654	Ultra-thin C ₃ N ₄ nanosheets for rapid charge transfer in the core–shell heterojunction of α-sulfur@C ₃ N ₄ for superior metal-free photocatalysis under visible light. RSC Advances, 2015, 5, 15052-15058.	1.7	39
655	Visible light-driven Bi2Sn2O7/reduced graphene oxide nanocomposite for efficient photocatalytic degradation of organic contaminants. Separation and Purification Technology, 2015, 142, 25-32.	3.9	41
656	Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Advances, 2015, 5, 14610-14630.	1.7	796
657	Sonochemical synthesis of reduced graphene oxide uniformly decorated with hierarchical ZnS nanospheres and its enhanced photocatalytic activities. RSC Advances, 2015, 5, 12726-12735.	1.7	57
658	Visible-light driven heterojunction photocatalysts for water splitting $\hat{a} \in \hat{a}$ a critical review. Energy and Environmental Science, 2015, 8, 731-759.	15.6	1,985
659	Evident improvement of nitrogen-doped graphene on visible light photocatalytic activity of N-TiO2/N-graphene nanocomposites. Materials Research Bulletin, 2015, 65, 27-35.	2.7	19
660	Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO ₃ :Tb ³⁺ phosphors. Dalton Transactions, 2015, 44, 97-103.	1.6	29
661	Facile Synthesis of Zn _{0.5} Cd _{0.5} S Ultrathin Nanorods on Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2015, 7, 609-615.	1.8	42
662	Self-Assembly of Semiconductor Nanoparticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis. ACS Sustainable Chemistry and Engineering, 2015, 3, 277-282.	3.2	117
663	Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7, 8187-8208.	2.8	418

#	Article	IF	CITATIONS
664	Silver Nanoparticle Applications. Engineering Materials, 2015, , .	0.3	43
665	General Strategy to Synthesize Uniform Mesoporous TiO ₂ /Graphene/Mesoporous TiO ₂ Sandwich-Like Nanosheets for Highly Reversible Lithium Storage. Nano Letters, 2015, 15, 2186-2193.	4.5	273
666	Facile Synthesis of ZnO–Reduced Graphene Oxide Nanocomposites for NO ₂ Gas Sensing Applications. European Journal of Inorganic Chemistry, 2015, 2015, 1912-1923.	1.0	103
667	Facile synthesis of BiOF/Bi2O3/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance. Journal of Alloys and Compounds, 2015, 633, 256-264.	2.8	50
668	High yield synthesis of nano-size g-C ₃ N ₄ derivatives by a dissolve-regrowth method with enhanced photocatalytic ability. RSC Advances, 2015, 5, 26281-26290.	1.7	51
669	One-pot synthesis of CoFe ₂ O ₄ /graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. Journal of Materials Chemistry A, 2015, 3, 5535-5546.	5.2	494
670	Facile assembly of two-dimensional functional ZnO quantum dots/reduced graphene oxide nanocomposites. Europhysics Letters, 2015, 109, 18004.	0.7	2
671	Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 2015, 27, 2150-2176.	11.1	3,046
672	A general strategy for the synthesis of reduced graphene oxide-based composites. Ceramics International, 2015, 41, 7661-7668.	2.3	3
673	Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires. Scientific Reports, 2015, 5, 8557.	1.6	12
674	One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Advances, 2015, 5, 21888-21896.	1.7	116
675	Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photodegradation performance. Ceramics International, 2015, 41, 7471-7477.	2.3	26
676	Anchoring H ₃ PW ₁₂ O ₄₀ on 3-aminopropyltriethoxysilane modified graphene oxide: enhanced adsorption capacity and photocatalytic activity toward methyl orange. New Journal of Chemistry, 2015, 39, 3719-3727.	1.4	24
677	A bifunctional catalyst for hydrogen evolution reaction: The interactive influences between CdS and MoS2 on photoelectrochemical activity. International Journal of Hydrogen Energy, 2015, 40, 3813-3821.	3.8	23
678	Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Applied Surface Science, 2015, 340, 9-17.	3.1	75
679	Drastic Layerâ€Numberâ€Dependent Activity Enhancement in Photocatalytic H ₂ Evolution over <i>n</i> MoS ₂ /CdS (<i>n</i> 剥 1) Under Visible Light. Advanced Energy Materials, 2015, 5, 1402279.	10.2	239
680	Behavior of borate complex anion on the stabilities and the hydrogen evolutions of ZnxCo3â^'xO4 decorated graphene. Superlattices and Microstructures, 2015, 82, 599-611.	1.4	20
681	Promoting Visible‣ight Photocatalysis with Palladium Species as Cocatalyst. ChemCatChem, 2015, 7, 2047-2054.	1.8	24

#	Article	IF	CITATIONS
682	Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B. Journal of Materials Engineering and Performance, 2015, 24, 2359-2367.	1.2	5
683	Doped graphenes in catalysis. Journal of Molecular Catalysis A, 2015, 408, 296-309.	4.8	70
684	Synthesis and assessment of a graphene-based composite photocatalyst. Biochemical Engineering Journal, 2015, 104, 20-26.	1.8	11
685	Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. Journal of Alloys and Compounds, 2015, 649, 910-932.	2.8	182
686	RGO/InVO4 hollowed-out nanofibers: Electrospinning synthesis and its application in photocatalysis. Applied Surface Science, 2015, 353, 118-126.	3.1	30
687	Continuous supercritical solvothermal synthesis of TiO2â€"pristine-graphene hybrid as the enhanced photocatalyst. Journal of Supercritical Fluids, 2015, 103, 115-121.	1.6	12
688	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Research, 2015, 8, 2850-2858.	5.8	34
689	The role of structure and surface chemistry of carbon nanomaterials in catalytic conversion of 1,2-dichloroethane. Applied Surface Science, 2015, 355, 74-81.	3.1	10
690	Green synthesis of the reduced graphene oxide–Cul quasi-shell–core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Applied Surface Science, 2015, 358, 159-167.	3.1	48
691	Synthesis of graphene/zirconium oxide nanocomposite photocatalyst for the removal of rhodamineB dye from aqueous environment. Journal of Alloys and Compounds, 2015, 651, 598-607.	2.8	55
692	Enhancement of visible light photocatalytic activity of Ag2O/F-TiO2 composites. Journal of Molecular Catalysis A, 2015, 407, 25-31.	4.8	35
693	NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy, 2015, 16, 207-217.	8.2	136
694	In Situ and Simultaneous Synthesis of a Novel Graphene-Based Catalyst for Deep Hydrodesulfurization of Naphtha. Catalysis Letters, 2015, 145, 1660-1672.	1.4	21
695	Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells. Applied Surface Science, 2015, 358, 175-180.	3.1	35
696	Ag/g-C ₃ N ₄ catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale, 2015, 7, 13723-13733.	2.8	216
697	Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 2015, 7, 13278-13292.	2.8	120
698	Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO ₂ reduction under visible light irradiation. RSC Advances, 2015, 5, 54929-54935.	1.7	47
699	Visible light photocatalytic degradation of wattle extract: effect of mixing CdWO ₄ over a semiconductive ZnO photocatalyst. RSC Advances, 2015, 5, 60926-60937.	1.7	25

#	Article	IF	Citations
700	Nanodiamond–TiO ₂ composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Advances, 2015, 5, 58363-58370.	1.7	39
701	Electrical pulse fabrication of graphene nanopores in electrolyte solution. Applied Physics Letters, 2015, 106, 203109.	1.5	106
702	Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment. Materials Letters, 2015, 156, 205-208.	1.3	34
703	Ag ₃ PO ₄ nanoparticles loaded on 3D flower-like spherical MoS ₂ : a highly efficient hierarchical heterojunction photocatalyst. Dalton Transactions, 2015, 44, 14625-14634.	1.6	77
704	One-pot synthesis of Ag-modified LaMnO ₃ –graphene hybrid photocatalysts and application in the photocatalytic discoloration of an azo-dye. RSC Advances, 2015, 5, 54028-54036.	1.7	22
705	Copper Nanowires: A Substitute for Noble Metals to Enhance Photocatalytic H ₂ Generation. Nano Letters, 2015, 15, 4853-4858.	4.5	111
706	Recyclable and visible light sensitive Ag–AgBr/TiO2: Surface adsorption and photodegradation of MO. Applied Surface Science, 2015, 353, 913-923.	3.1	29
707	Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration. Applied Surface Science, 2015, 358, 356-362.	3.1	101
708	CuS/MoS2 nanocomposite with high solar photocatalytic activity. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	33
709	Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale, 2015, 7, 14254-14263.	2.8	65
710	Single-crystalline Bi ₁₉ Br ₃ S ₂₇ nanorods with an efficiently improved photocatalytic activity. CrystEngComm, 2015, 17, 6120-6126.	1.3	17
711	Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. International Journal of Hydrogen Energy, 2015, 40, 14498-14506.	3.8	73
712	Facile synthesis of AC@TiO ₂ -S with improved visible light photocatalytic activity and recyclability through a controllable sol–gel approach. RSC Advances, 2015, 5, 56808-56814.	1.7	2
713	Environmental Photochemistry Part III. Handbook of Environmental Chemistry, 2015, , .	0.2	2
714	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	10.2	694
715	Ternary mesoporous WO ₃ /Mn ₃ O ₄ /N-doped graphene nanocomposite for enhanced photocatalysis under visible light irradiation. Catalysis Science and Technology, 2015, 5, 3375-3382.	2.1	28
716	Preparation of Ag–AgBr/TiO2–graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide. Journal of Alloys and Compounds, 2015, 639, 153-161.	2.8	35
717	Photochemical Processes Involving Graphene Oxide. Theoretical and Experimental Chemistry, 2015, 51, 1-29.	0.2	9

#	Article	IF	CITATIONS
718	Facile gamma radiolytic methodology for TiO2-rGO synthesis: Effect on photo-catalytic H2 evolution. International Journal of Hydrogen Energy, 2015, 40, 5815-5823.	3.8	36
719	MnOx quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method. Applied Catalysis B: Environmental, 2015, 176-177, 500-512.	10.8	40
720	Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews, 2015, 44, 2893-2939.	18.7	955
721	Improved electrochemical performances of reduced graphene oxide based supercapacitor using redox additive electrolyte. Carbon, 2015, 90, 260-273.	5.4	168
722	Cu ₂ O Nanoparticles Anchored on Amine-Functionalized Graphite Nanosheet: A Potential Reusable Catalyst. Langmuir, 2015, 31, 5210-5219.	1.6	61
723	Carbon-Coated Mesoporous TiO ₂ Nanocrystals Grown on Graphene for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10395-10400.	4.0	51
724	Efficient photoelectrochemical water splitting using three dimensional urchin-like hematite nanostructure modified with reduced graphene oxide. Journal of Power Sources, 2015, 287, 119-128.	4.0	94
725	Preparation and Tribological Properties of Lanthanum Trifluoride Nanoparticles-Decorated Graphene Oxide Nanosheets. Industrial & Engineering Chemistry Research, 2015, 54, 4773-4780.	1.8	36
726	What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag ₃ PO ₄ /g-C ₃ N ₄ , band–band transfer or a direct Z-scheme?. Physical Chemistry Chemical Physics, 2015, 17, 11577-11585.	1.3	155
727	Synthesis of a flower-like CuS/ZnS nanocomposite decorated on reduced graphene oxide and its photocatalytic performance. RSC Advances, 2015, 5, 36185-36191.	1.7	28
728	Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use asÂa catalyst inÂthe aerial oxidation of primary alcohols (GNSÂ=Âgraphene nanosheets). Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 759-772.	0.8	18
729	PAN electrospun nanofibers reinforced with Ag2CO3 nanoparticles: Highly efficient visible light photocatalyst for photodegradation of organic contaminants in waste water. Macromolecular Research, 2015, 23, 149-155.	1.0	20
730	Graphene supported silver@silver chloride & photocatalyst with high performance under visible light irradiation. Applied Surface Science, 2015, 347, 242-249.	3.1	28
731	Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO ₄). CrystEngComm, 2015, 17, 3366-3375.	1.3	101
732	Mesoporous TiO2/Carbon Beads: One-Pot Preparation and Their Application in Visible-Light-Induced Photodegradation. Nano-Micro Letters, 2015, 7, 243-254.	14.4	25
733	Roles of MoS ₂ and Graphene as Cocatalysts in the Enhanced Visibleâ€Light Photocatalytic H ₂ Production Activity of Multiarmed CdS Nanorods. ChemCatChem, 2015, 7, 943-951.	1.8	164
734	Fabrication of chain-like TiO2 hollow microspheres with enhanced photocatalytic activity. Ceramics International, 2015, 41, 7937-7943.	2.3	9
735	Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of Rhodamine B dye. Journal of Industrial and Engineering Chemistry, 2015, 30, 33-43.	2.9	71

#	Article	IF	CITATIONS
736	A novel heterogeneous hybrid by incorporation of Nb $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ microspheres and reduced graphene oxide for photocatalytic H $<$ sub $>$ 2 $<$ /sub $>$ evolution under visible light irradiation. RSC Advances, 2015, 5, 47117-47124.	1.7	31
737	Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chemical Communications, 2015, 51, 10261-10271.	2.2	96
738	Bio-inspired artificial functional photocatalyst: biomimetic enzyme-like TiO ₂ /reduced graphene oxide nanocomposite with excellent molecular recognition ability. Nanotechnology, 2015, 26, 175706.	1.3	4
739	Efficient photocatalytic dechlorination of chlorophenols over a nonlinear optical material Na ₃ VO ₂ B ₆ O ₁₁ under UV-visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 12179-12187.	5. 2	54
740	Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO 2 /reduced graphene oxide films as electron transport layers. Journal of Photonics for Energy, 2015, 5, 057408.	0.8	66
741	Facile Electrospinning of CeO ₂ /Bi ₂ WO ₆ Heterostructured Nanofibers with Excellent Visibleâ€lightâ€driven Photocatalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1710-1716.	1.7	23
742	Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres. Applied Surface Science, 2015, 344, 101-106.	3.1	64
743	Nanostructured Hybrid Shells of r-GO/AuNP/ <i>m</i> -TiO ₂ as Highly Active Photocatalysts. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6909-6918.	4.0	84
744	Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.	18.7	1,236
745	ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light. Applied Surface Science, 2015, 342, 112-119.	3.1	54
746	Silver Nanoparticles in Heterogeneous Plasmon Mediated Catalysis. Engineering Materials, 2015, , 71-92.	0.3	2
747	CTAB-assisted synthesis of S@rGO composite with enhanced photocatalytic activity and photostability. Applied Surface Science, 2015, 335, 92-98.	3.1	14
748	Ultrasensitive room temperature NH ₃ sensor based on a graphene–polyaniline hybrid loaded on PET thin film. Chemical Communications, 2015, 51, 7524-7527.	2.2	109
749	Super-paramagnetic nano-Fe ₃ O ₄ /graphene for visible-light-driven hydrogen evolution. Chemical Communications, 2015, 51, 10158-10161.	2.2	62
750	Heterogeneous Photocatalysts Based on Organic/Inorganic Semiconductor., 2015,, 43-96.		3
751	Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2015, 179, 9-20.	10.8	88
752	Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today, 2015, 18, 447-458.	8.3	416
753	Supported ionic liquid [Bmim]FeCl ₄ /Am TiO ₂ as an efficient catalyst for the catalytic oxidative desulfurization of fuels. RSC Advances, 2015, 5, 43528-43536.	1.7	45

#	ARTICLE	IF	CITATIONS
754	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Diterfaces, 2015, 7, 10293-10307.	4.0	101
755	Graphene for solar energy. Nanotechnologies in Russia, 2015, 10, 181-191.	0.7	4
756	Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358, 393-403.	3.1	378
757	Photocatalytic composites based on titania nanoparticles and carbon nanomaterials. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 033001.	0.7	19
758	Graphene oxide/core–shell structured TiO2@TiO2â~x nanocomposites with highly efficient visible-light photocatalytic performance. RSC Advances, 2015, 5, 40348-40351.	1.7	13
759	Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(<scp>vi</scp>) reduction. Dalton Transactions, 2015, 44, 11155-11164.	1.6	16
760	Multiple roles of graphene in heterogeneous catalysis. Chemical Society Reviews, 2015, 44, 3023-3035.	18.7	313
761	Electrochemical characterization of electrochemically reduced graphene coatings on platinum. Electrochemical study of dye adsorption. Electrochimica Acta, 2015, 166, 54-63.	2.6	22
762	Fabrication and Photocatalytic Properties of TiO ₂ /Reduced Graphene Oxide/Ag Nanocomposites with UV/Vis Response. European Journal of Inorganic Chemistry, 2015, 2015, 2222-2228.	1.0	24
763	Simple preparation of CuFe ₂ O ₄ /C ₃ N ₄ composites: characterisation and enhanced photocatalysis. Materials Research Innovations, 2015, 19, 187-191.	1.0	19
764	Controlling interfacial contact and exposed facets for enhancing photocatalysis via 2D–2D heterostructures. Chemical Communications, 2015, 51, 8249-8252.	2.2	145
765	A general method for type I and type II g-C ₃ N ₄ /g-C ₃ N ₄ metal-free isotype heterostructures with enhanced visible light photocatalysis. New Journal of Chemistry, 2015, 39, 4737-4744.	1.4	95
766	A high efficient graphitic-C ₃ N ₄ /BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton Transactions, 2015, 44, 7903-7910.	1.6	149
767	Hydrothermal synthesis of ternary ZnXCd1ⰒXS–graphene and its photoelectric properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 7200-7204.	1.1	3
768	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O ₂ . ACS Applied Materials & Interfaces, 2015, 7, 22727-22740.	4.0	68
769	Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. , 2015, , 1-28.		29
770	Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes. Applied Surface Science, 2015, 357, 1849-1856.	3.1	63
771	Electronic and Optical Properties of Low-Dimensional TiO2: From Minority Surfaces to Nanocomposites. ACS Symposium Series, 2015, , 47-80.	0.5	1

#	Article	IF	CITATIONS
772	Magnetically separable Fe2O3/g-C3N4 catalyst with enhanced photocatalytic activity. RSC Advances, 2015, 5, 95727-95735.	1.7	57
773	Schottky contact of an artificial polymer semiconductor composed of poly(dimethylsiloxane) and multiwall carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 19539-19544.	5.2	7
774	MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue. Applied Surface Science, 2015, 357, 1606-1612.	3.1	112
775	Preparation and characterization of a novel tetrakis(4-hydroxyphenyl)porphyrin–graphene oxide nanocomposite and application in an optical sensor and determination of mercury ions. RSC Advances, 2015, 5, 93310-93317.	1.7	50
776	Enhanced photocatalysis activity of ferroelectric KNbO ₃ nanofibers compared with antiferroelectric NaNbO ₃ nanofibers synthesized by electrospinning. RSC Advances, 2015, 5, 72410-72415.	1.7	30
777	Density Functional Theory Study of Atomic Layer Deposition of Zinc Oxide on Graphene. Nanoscale Research Letters, 2015, 10, 1008.	3.1	6
778	TiO2–RGO hybrid nanomaterials for enhanced water splitting reaction. International Journal of Hydrogen Energy, 2015, 40, 12209-12216.	3.8	36
779	Direct Growth of Bismuth Oxyhalides Nanosheet Arrays on Carbon Cloth for Recycled Photocatalytic Degradation of Dye and 4-Nitrophenol. Nano, 2015, 10, 1550066.	0.5	4
780	Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation. Ceramics International, 2015, 41, 13135-13146.	2.3	19
781	Controllable in situ synthesis of BiOBrxl1â^'x solid solution on reduced graphene oxide with enhanced visible light photocatalytic performance. RSC Advances, 2015, 5, 68151-68158.	1.7	21
782	Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Materials, 2015, 3, .	2.2	62
783	Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction. Applied Surface Science, 2015, 358, 28-45.	3.1	115
784	Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity. Applied Surface Science, 2015, 358, 130-136.	3.1	105
785	Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Applied Surface Science, 2015, 358, 287-295.	3.1	95
786	Enhanced visible light photocatalytic activity and hydrogen evolution through novel heterostructure Agl–FG–TiO2 nanocomposites. Journal of Molecular Catalysis A, 2015, 410, 242-252.	4.8	11
787	Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride. Nanoscale, 2015, 7, 18887-18890.	2.8	105
788	Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chemical Reviews, 2015, 115, 11967-11998.	23.0	474
789	Graphene quantum dot sensitized leaf-like InVO ₄ /BiVO ₄ nanostructure: a novel ternary heterostructured QD-RGO/InVO ₄ /BiVO ₄ composite with enhanced visible-light photocatalytic activity. Dalton Transactions, 2015, 44, 19185-19193.	1.6	58

#	Article	IF	CITATIONS
790	Electronic structure of porphyrin-based metal–organic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry A, 2015, 3, 23458-23465.	5.2	59
791	Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Advances, 2015, 5, 94029-94039.	1.7	33
792	Graphene-Based Photocatalysts for CO ₂ Reduction to Solar Fuel. Journal of Physical Chemistry Letters, 2015, 6, 4244-4251.	2.1	368
793	Graphdiyne–ZnO Nanohybrids as an Advanced Photocatalytic Material. Journal of Physical Chemistry C, 2015, 119, 22057-22065.	1.5	189
794	Striving Toward Noble-Metal-Free Photocatalytic Water Splitting: The Hydrogenated-Graphene–TiO ₂ Prototype. Chemistry of Materials, 2015, 27, 6282-6296.	3.2	81
795	Swift Heavy Ion Induced Optical and Electronic Modifications of Graphene–TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 21270-21277.	1.5	22
796	Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Applied Surface Science, 2015, 358, 91-99.	3.1	73
797	Enhanced photocatalytic H ₂ -evolution by immobilizing CdS nanocrystals on ultrathin Co _{0.85} Se/RGO–PEI nanosheets. Journal of Materials Chemistry A, 2015, 3, 18711-18717.	5.2	51
798	Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 2015, 358, 2-14.	3.1	298
799	Graphene, charcoal, ZnO, and ZnS/BiOX (X = Cl, Br, and I) hybrid microspheres for photocatalytic simulated real mixed dye treatments. Journal of Industrial and Engineering Chemistry, 2015, 32, 137-152.	2.9	43
800	Polyamine-Mediated Interfacial Assembly of rGO-ZnO Nanostructures: A Bio-inspired Approach and Enhanced Photocatalytic Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19684-19690.	4.0	46
801	Dandelion-like SnO2 microspheres on graphene oxide sheets with excellent photocatalytic properties. Materials Letters, 2015, 159, 489-492.	1.3	10
802	Nanocomposites of AgInZnS and graphene nanosheets as efficient photocatalysts for hydrogen evolution. Nanoscale, 2015, 7, 18498-18503.	2.8	23
803	Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites. Nanoscale, 2015, 7, 18062-18070.	2.8	67
804	One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Applied Surface Science, 2015, 358, 146-151.	3.1	94
805	Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Applied Surface Science, 2015, 358, 425-435.	3.1	115
806	Earth-abundant NiS co-catalyst modified metal-free mpg-C ₃ N ₄ /CNT nanocomposites for highly efficient visible-light photocatalytic H ₂ evolution. Dalton Transactions, 2015, 44, 18260-18269.	1.6	123
807	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017

#	Article	IF	CITATIONS
808	Self-assembly of ultrathin Cu ₂ MoS ₄ nanobelts for highly efficient visible light-driven degradation of methyl orange. Nanoscale, 2015, 7, 17998-18003.	2.8	36
809	Electrostatic self-assembly of CdS nanowires-nitrogen doped graphene nanocomposites for enhanced visible light photocatalysis. Journal of Energy Chemistry, 2015, 24, 145-156.	7.1	35
810	Hierarchical CuO–TiO ₂ Hollow Microspheres for Highly Efficient Photodriven Reduction of CO ₂ to CH ₄ . ACS Sustainable Chemistry and Engineering, 2015, 3, 2381-2388.	3.2	179
811	Ruthenium Dye N749 Covalently Functionalized Reduced Graphene Oxide: A Novel Photocatalyst for Visible Light H ₂ Evolution. Journal of Physical Chemistry C, 2015, 119, 27892-27899.	1.5	14
812	Graphene Oxide Regulated Tin Oxide Nanostructures: Engineering Composition, Morphology, Band Structure, and Photocatalytic Properties. ACS Applied Materials & Structure, and Photocatalytic Properties.	4.0	60
813	Control synthesis and formation mechanism of sphereâ€like titanium dioxide. Micro and Nano Letters, 2015, 10, 23-27.	0.6	1
814	Synthesis of Bi ₂ WO ₆ /Bi ₂ O ₃ Composite with Enhanced Photocatalytic Activity by a Facile Oneâ€step Hydrothermal Synthesis Route. Photochemistry and Photobiology, 2015, 91, 291-297.	1.3	30
815	Synergistic effect of PtSe ₂ and graphene sheets supported by TiO ₂ as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catalysis Science and Technology, 2015, 5, 184-198.	2.1	43
816	p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 2015, 11, 970-975.	5.2	28
817	Three dimensional metal oxides–graphene composites and their applications in lithium ion batteries. RSC Advances, 2015, 5, 8814-8834.	1.7	56
818	Enhanced photocatalytic activity of α-Fe ₂ O ₃ /Bi ₂ WO ₆ heterostructured nanofibers prepared by electrospinning technique. RSC Advances, 2015, 5, 4077-4082.	1.7	32
819	A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 26, 354-363.	2.9	94
820	Facile approaching hierarchical CdS films as electrode toward photoelectrochemical water splitting. Nanotechnology, 2015, 26, 015203.	1.3	9
821	Water-assisted production of honeycomb-like g-C ₃ N ₄ with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale, 2015, 7, 2471-2479.	2.8	328
822	Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 2015, 3, 2485-2534.	5.2	1,609
823	Templateâ€free Fabrication of Hierarchical Macroâ€/mesoporous Nâ€doped TiO ₂ /graphene Oxide Composites with Enhanced Visibleâ€light Photocatalytic Activity. Journal of the Chinese Chemical Society, 2015, 62, 170-176.	0.8	6
824	Facile fabrication of In2O3/Bi2WO6 heterostructured microbelts with enhanced photocatalytic activity. Journal of Sol-Gel Science and Technology, 2015, 73, 358-364.	1.1	6
825	Reduced graphene oxide anchored magnetic ZnFe ₂ O ₄ nanoparticles with enhanced visible-light photocatalytic activity. RSC Advances, 2015, 5, 9069-9074.	1.7	48

#	Article	IF	CITATIONS
826	Controllable Synthesis and Photocatalytic Properties of C -doped BiVO ₄ with Self-Heterostructure Under Different Light Sources. Nano, 2015, 10, 1550008.	0.5	5
827	Synthesis of few-layer MoS ₂ nanosheet-loaded Ag ₃ PO ₄ for enhanced photocatalytic activity. Dalton Transactions, 2015, 44, 3057-3066.	1.6	71
828	Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552.	1.7	23
829	3D BiOl–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light. Ceramics International, 2015, 41, 3511-3517.	2.3	74
830	Green synthesis and characterization of graphene nanosheets. Materials Research Bulletin, 2015, 63, 51-57.	2.7	189
831	Reduced graphene oxide wrapped ZnS–Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Applied Surface Science, 2015, 324, 725-735.	3.1	145
832	Facile synthesis of <scp>ZnO</scp> nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. Journal of Chemical Technology and Biotechnology, 2015, 90, 550-558.	1.6	53
833	Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Applied Catalysis B: Environmental, 2015, 166-167, 231-240.	10.8	269
834	Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41, 4231-4237.	2.3	42
835	Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chemical Engineering Journal, 2015, 261, 17-26.	6.6	75
836	Visible light photocatalysis of Methylene blue by graphene-based ZnO and Ag/AgCl nanocomposites. Desalination and Water Treatment, 2015, 54, 2748-2756.	1.0	18
837	Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Physical Chemistry Chemical Physics, 2015, 17, 1217-1225.	1.3	62
838	Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances, 2015, 5, 3306-3351.	1.7	673
839	Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating. Nano Energy, 2015, 14, 392-400.	8.2	98
840	Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity. Catalysis Communications, 2015, 59, 151-155.	1.6	56
841	Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceramics International, 2015, 41, 2502-2511.	2.3	82
842	Emerging applications of graphene and its derivatives in carbon capture and conversion: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2015, 41, 1515-1545.	8.2	58
843	New insight into the enhanced visible light photocatalytic activity over boron-doped reduced graphene oxide. Nanoscale, 2015, 7, 7030-7034.	2.8	62

#	Article	IF	CITATIONS
844	From UV to Nearâ€Infrared, WS ₂ Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation. Advanced Materials, 2015, 27, 363-369.	11.1	494
845	Enhancement of visible light photocatalytic activity of CdO modified ZnO nanohybrid particles. Journal of Photochemistry and Photobiology B: Biology, 2015, 142, 1-7.	1.7	37
846	Synthesis and characterization of AgCl@graphitic carbon nitride hybrid materials for the photocatalytic degradation of atrazine. Ceramics International, 2015, 41, 1197-1204.	2.3	65
847	Squaraine-sensitized composite of a reduced graphene oxide/TiO ₂ photocatalyst: π–π stacking as a new method of dye anchoring. Journal of Materials Chemistry A, 2015, 3, 232-239.	5.2	25
848	Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science, 2015, 69, 1-60.	16.0	601
849	Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale, 2015, 7, 38-58.	2.8	453
850	Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology, 2015, 5, 1360-1384.	2.1	824
851	Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction. Scientific Reports, 2014, 4, 6341.	1.6	156
852	Graphene-modified nanosized Ag 3 PO 4 photocatalysts for enhanced visible-light photocatalytic activity and stability. Applied Catalysis B: Environmental, 2015, 162, 196-203.	10.8	298
853	Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale, 2015, 7, 861-866.	2.8	81
854	Efficient visible-light-driven photocatalytic degradation of nitrophenol by using graphene-encapsulated TiO2 nanowires. Journal of Hazardous Materials, 2015, 283, 400-409.	6.5	80
855	Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Applied Catalysis B: Environmental, 2015, 163, 611-622.	10.8	180
856	Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Applied Catalysis B: Environmental, 2015, 164, 380-388.	10.8	483
857	Graphene quantum dots mediated charge transfer of CdSe nanocrystals for enhancing photoelectrochemical hydrogen production. Applied Catalysis B: Environmental, 2015, 164, 271-278.	10.8	135
858	Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44, 2713-2731.	18.7	1,405
859	Reduced graphene oxide composites with MWCNTs and single crystalline hematite nanorhombohedra for applications in water purification. International Journal of Hydrogen Energy, 2015, 40, 767-778.	3.8	39
861	Nanocarbons with Different Dimensions as Noble-Metal-Free Co-Catalysts for Photocatalysts. Catalysts, 2016, 6, 111.	1.6	7
862	Enhanced Visible Light Photocatalytic Degradation of Organic Pollutants over Flower-Like Bi2O2CO3 Dotted with Ag@AgBr. Materials, 2016, 9, 882.	1.3	7

#	Article	IF	Citations
863	Advanced Nanomatericals for Solar Photocatalysis. , 0, , .		8
864	Porphyrin-Based Nanostructures for Photocatalytic Applications. Nanomaterials, 2016, 6, 51.	1.9	150
865	Design of TiO ₂ -loaded Porous Siliceous Materials and Application to Photocatalytic Environmental Purification. Journal of the Japan Petroleum Institute, 2016, 59, 165-173.	0.4	6
866	Role of RGO support and irradiation source on the photocatalytic activity of CdS–ZnO semiconductor nanostructures. Beilstein Journal of Nanotechnology, 2016, 7, 1684-1697.	1.5	42
867	Fabrication of Hierarchically Porous Reduced Graphene Oxide/SnIn4S8 Composites by a Low-Temperature Co-Precipitation Strategy and Their Excellent Visible-Light Photocatalytic Mineralization Performance. Catalysts, 2016, 6, 113.	1.6	40
868	BiOX (X = Cl, Br, and I) Photocatalysts., 0,,.		6
870	Recent Advances in Visible-Light Driven Photocatalysis. , 0, , .		2
871	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	2.9	58
872	Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-carbon materials hybrids. Advanced Powder Technology, 2016, 27, 1949-1962.	2.0	74
873	Highly Efficient Hybrid Cobalt–Copper–Aluminum Layered Double Hydroxide/Graphene Nanocomposites as Catalysts for the Oxidation of Alkylaromatics. ChemCatChem, 2016, 8, 363-371.	1.8	19
874	Electron transfer from organic dyes to reduced graphene oxide studied by photoluminescence spectroscopy. Physica Status Solidi (B): Basic Research, 2016, 253, 1138-1143.	0.7	7
875	Fabrication of TiO ₂ nanosheets via Ti ³⁺ doping and Ag ₃ PO ₄ QD sensitization for highly efficient visible-light photocatalysis. RSC Advances, 2016, 6, 63984-63990.	1.7	22
876	Hierarchical Layered WS ₂ /Grapheneâ€Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2016, 9, 996-1002.	3.6	257
877	Charge Carriers Separation at the Graphene/(101) Anatase TiO ₂ Interface. Advanced Materials Interfaces, 2016, 3, 1500624.	1.9	37
878	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
879	Facile one-step in-situ synthesis of type-Il CeO2/CeF3 composite with tunable morphology and photocatalytic activity. Ceramics International, 2016, 42, 16374-16381.	2.3	15
880	Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al 2 O 3 with enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2016, 480, 184-190.	5.0	36
881	Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 2016, 27, 320-329.	8.2	121

#	Article	IF	CITATIONS
882	Construction of a 2D Grapheneâ€Like MoS ₂ /C ₃ N ₄ Heterojunction with Enhanced Visibleâ€Light Photocatalytic Activity and Photoelectrochemical Activity. Chemistry - A European Journal, 2016, 22, 4764-4773.	1.7	149
883	Preparation and catalytic performance of ZrO2 - nanographene platelets composites. Journal of Physics: Conference Series, 2016, 776, 012040.	0.3	7
884	Effect of Various Amounts of Hydrazine and Graphene Oxide on the Photocatalytic Performances of the ZnSe/Graphene Nanocomposites. Materials Science Forum, 2016, 863, 127-131.	0.3	0
885	Facile Fabrication of ZnO/TiO ₂ Heterogeneous Nanofibres and Their Photocatalytic Behaviour and Mechanism towards Rhodamine B. Nanomaterials and Nanotechnology, 2016, 6, 9.	1.2	30
886	Graphene Spheres-CuO Nanoflowers Composites for Use as a High Performance Photocatalyst. Nanomaterials and Nanotechnology, 2016, 6, 21.	1.2	6
887	Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene. Journal of Chemical Physics, 2016, 144, 151102.	1.2	10
888	Heterogene molekulare Systeme für eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	1.6	46
889	MnO2 and carbon nanotube co-modified C3N4 composite catalyst for enhanced water splitting activity under visible light irradiation. International Journal of Hydrogen Energy, 2016, 41, 22743-22750.	3.8	50
891	Light Driven Nanomaterials for Removal of Agricultural Toxins. Sustainable Agriculture Reviews, 2016, , 225-242.	0.6	6
892	Insights into enhanced visible-light photocatalytic activity of C ₆₀ modified g-C ₃ N ₄ hybrids: the role of nitrogen. Physical Chemistry Chemical Physics, 2016, 18, 33094-33102.	1.3	31
893	Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide. ChemPhysChem, 2016, 17, 170-177.	1.0	13
894	Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide forÂenhanced solar H2 production. International Journal of Hydrogen Energy, 2016, 41, 6752-6762.	3.8	30
895	Synthesis and photocatalytic properties of different SnO 2 microspheres on graphene oxide sheets. Applied Surface Science, 2016, 376, 172-179.	3.1	29
896	Enhancement of g-C 3 N 4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Applied Catalysis B: Environmental, 2016, 198, 200-210.	10.8	165
897	Mussel inspired preparation of MoS2 based polymer nanocomposites: The case of polyPEGMA. Applied Surface Science, 2016, 387, 399-405.	3.1	24
898	Synthesis, characterization and photocatalytic activity of visible-light-driven reduced graphene oxide–CeO2 nanocomposite. Indian Journal of Physics, 2016, 90, 1183-1194.	0.9	9
899	Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO 2 and reduced graphene oxide co-modified TiO 2 nanotube arrays in combination with Fenton oxidation. Electrochimica Acta, 2016, 209, 379-388.	2.6	45
900	Sub-20 nm anatase particles uniformly anchored on graphene oxide and reduced graphene oxide nanosheets and their photocatalytic oxidation and Li-ion storage capabilities. Ceramics International, 2016, 42, 3907-3915.	2.3	2

#	Article	IF	CITATIONS
901	Microspheres of graphene oxide coupled to N-doped Bi2O2CO3 for visible light photocatalysis. Chinese Journal of Catalysis, 2016, 37, 760-768.	6.9	27
902	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505
903	Catalysis under Cover: Enhanced Reactivity at the Interface between (Doped) Graphene and Anatase TiO ₂ . Journal of the American Chemical Society, 2016, 138, 7365-7376.	6.6	69
904	Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants. Water Science and Technology, 2016, 73, 1927-1936.	1.2	37
905	Controlled Growth of Palladium Nanoparticles on Graphene Nanoplatelets via Scalable Atmospheric Pressure Atomic Layer Deposition. Journal of Physical Chemistry C, 2016, 120, 8832-8840.	1.5	16
906	Facile synthesis of well-dispersed Bi2S3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity. Applied Surface Science, 2016, 378, 231-238.	3.1	49
907	The effect of GO deposition on the photoelectrochemical properties of TiO2 nanotubes. International Journal of Hydrogen Energy, 2016, 41, 7538-7547.	3.8	9
908	Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Materials Science in Semiconductor Processing, 2016, 48, 106-114.	1.9	20
909	Reduced Graphene Oxide Composite ofÂGallium Zinc Oxynitride Photocatalyst with Improved Activity for Overall Water Splitting. Chemical Engineering and Technology, 2016, 39, 142-148.	0.9	17
910	Electrochemical growth of triazine based metal ion containing polymers on nanostructured nickel electrodeposits and their hydrogen evolution activities in acidic condition. International Journal of Hydrogen Energy, 2016, 41, 8829-8838.	3.8	10
911	BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets. Solid State Sciences, 2016, 56, 10-15.	1.5	21
912	Remedying Defects in Carbon Nitride To Improve both Photooxidation and H ₂ Generation Efficiencies. ACS Catalysis, 2016, 6, 3365-3371.	5.5	148
913	Bimetallic AuPd nanoclusters supported on graphitic carbon nitride: One-pot synthesis and enhanced electrocatalysis for oxygen reduction and hydrogen evolution. International Journal of Hydrogen Energy, 2016, 41, 8839-8846.	3.8	45
914	Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2. Applied Catalysis B: Environmental, 2016, 192, 182-192.	10.8	93
915	Preparation of TiO2-Graphene Composite by a Two-Step Solvothermal Method and its Adsorption-Photocatalysis Property. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	30
916	An effective and environment-friendly system for Cu NPs@RGO-catalyzed C–C homocoupling of aryl halides or arylboronic acids in ionic liquids under microwave irradiation. RSC Advances, 2016, 6, 41108-41113.	1.7	20
917	Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon, 2016, 104, 214-225.	5.4	349
918	Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi ₂ MoO ₆ frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation. Journal of Materials Chemistry A, 2016, 4, 8298-8307.	5. 2	71

#	Article	IF	CITATIONS
919	Carbonaceous layer interfaced TiO2/RGO hybrids with enhanced visible-light photocatalytic performance. RSC Advances, 2016, 6, 40304-40311.	1.7	3
920	Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceramics International, 2016, 42, 12401-12408.	2.3	55
921	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25, 80-90.	8.2	103
922	Facile fabrication of reduced graphene oxide/Cul/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 44851-44858.	1.7	35
923	Use of compositional and combinatorial nanomaterial libraries for biological studies. Science Bulletin, 2016, 61, 755-771.	4.3	12
924	Efficient solar photocatalyst based on Ag3PO4/graphene nanosheets composite for photocatalytic decolorization of dye pollutants. Journal of the Iranian Chemical Society, 2016, 13, 1167-1174.	1.2	4
925	Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Advances, 2016, 6, 38811-38819.	1.7	121
926	A graphene-coupled Bi ₂ WO ₆ nanocomposite with enhanced photocatalytic performance: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 14113-14121.	1.3	27
927	Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO 2 hybrids. Applied Surface Science, 2016, 382, 225-238.	3.1	93
928	Synthesis of BiOBr/WO ₃ p–n heterojunctions with enhanced visible light photocatalytic activity. CrystEngComm, 2016, 18, 3856-3865.	1.3	104
929	Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction. ACS Applied Materials & Interfaces, 2016, 8, 12141-12148.	4.0	33
930	Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO ₂ Photocatalytic Conversion. ACS Applied Materials & Amp; Interfaces, 2016, 8, 17212-17219.	4.0	129
931	Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 72-99.	5.6	252
932	First principles insights into improved catalytic performance of BaTiO3- graphene nanocomposites in conjugation with experimental investigations. Materials Science in Semiconductor Processing, 2016, 51, 33-41.	1.9	17
933	Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activities under visible light irradiation. Applied Catalysis B: Environmental, 2016, 196, 1-15.	10.8	69
934	Graphene-induced spatial charge separation for selective water splitting over TiO2 photocatalyst. Catalysis Communications, 2016, 80, 28-32.	1.6	22
935	Enhancement of photocatalytic H ₂ production activity of CdS nanorods by cobalt-based cocatalyst modification. Catalysis Science and Technology, 2016, 6, 6207-6216.	2.1	165
936	Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023002.	0.7	108

#	Article	IF	CITATIONS
937	Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel, 2016, 181, 531-536.	3.4	78
938	MoS ₂ as a coâ€catalyst for photocatalytic hydrogen production from water. Energy Science and Engineering, 2016, 4, 285-304.	1.9	205
941	Zinc oxide nanorod doped graphene for high efficiency organic photovoltaic devices. RSC Advances, 2016, 6, 87319-87324.	1.7	3
942	Graphitic carbon nitride nanosheets modified multi-walled carbon nanotubes as 3D high efficient sensor for simultaneous determination of dopamine, uric acid and tryptophan. Journal of Electroanalytical Chemistry, 2016, 780, 147-152.	1.9	32
943	Unprecedentedly enhanced solar photocatalytic activity of a layered titanate simply integrated with TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 30920-30925.	1.3	32
944	Heterogeneous Molecular Systems for Photocatalytic CO ₂ Reduction with Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 14924-14950.	7.2	360
945	Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy, 2016, 30, 59-68.	8.2	92
946	Nanostructured hybrid materials based on reduced graphene oxide for solar energy conversion. , 2016, , .		3
947	Modulation of Photochemical Activity of Titania Nanosheets via Heteroassembly with Reduced Graphene Oxide. Enhancement of Photoinduced Hydrophilic Conversion Properties. Journal of Physical Chemistry C, 2016, 120, 23944-23950.	1.5	20
948	Tetrabromobisphenol A photoelectrocatalytic degradation using reduced graphene oxide and cerium dioxide comodified TiO 2 nanotube arrays as electrode under visible light. Chemosphere, 2016, 165, 268-276.	4.2	25
949	Metal–Organic Framework-Templated Synthesis of Bifunctional N-Doped TiO ₂ –Carbon Nanotablets via Solid-State Thermolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 6744-6753.	3.2	35
950	ZnO–graphene composites with high photocatalytic activities under visible light. RSC Advances, 2016, 6, 96778-96784.	1.7	57
951	Sheet-on-sphere structured Ag/AgBr@InVO ₄ heterojunctions and enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 93887-93893.	1.7	17
952	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
953	The Applications of Graphene-based Nanocomposites in the Field of Photocatalytic Selective Organic Transformations. World Scientific Series in Nanoscience and Nanotechnology, 2016, , 81-115.	0.1	0
954	Sulfur-doping synchronously ameliorating band energy structure and charge separation achieving decent visible-light photocatalysis of Bi ₂ O ₂ CO ₃ . RSC Advances, 2016, 6, 94361-94364.	1.7	20
955	Electrocatalytic Sensing with Reduced Graphene Oxide: Electron Shuttling between Redox Couples Anchored on a 2-D Surface. ACS Sensors, 2016, 1, 1203-1207.	4.0	16
956	Hydrothermal Synthesis of a rGO Nanosheet Enwrapped NiFe Nanoalloy for Superior Electrocatalytic Oxygen Evolution Reactions. Chemistry - A European Journal, 2016, 22, 14480-14483.	1.7	29

#	Article	IF	Citations
957	Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 2016, 520, 281-293.	4.1	331
958	Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene. Water Science, 2016, 30, 51-60.	0.5	80
959	Enhanced adsorption and photodegradation of phenol in aqueous suspensions of titania/graphene oxide composite catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 338-345.	2.7	64
960	Oxygen vacancies induced self-assembling synthesis of V $4+$ -BiVO 4 /rGO core-shell nanorods with enhanced water splitting efficiency and superior sewage purification capability. Applied Catalysis A: General, 2016, 526, 105-112.	2.2	12
961	Ternary Reduced Graphene Oxide/gâ€C ₃ N ₄ /Agâ€AgCl Nanocomposites for Controlled Visibleâ€Light Photocatalytic Selectivity. ChemistrySelect, 2016, 1, 1006-1015.	0.7	23
962	Developments of Cavity-Controlled Devices with Graphene and Graphene Nanoribbon for Optoelectronic Applications., 2016,, 395-410.		0
963	Carbon dot and BiVO ₄ quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale, 2016, 8, 17314-17321.	2.8	121
964	Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO ₂ for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Advances, 2016, 6, 83673-83687.	1.7	38
965	Introduction of holes into graphene sheets to further enhance graphene–TiO ₂ photocatalysis activities. RSC Advances, 2016, 6, 84068-84073.	1.7	16
966	Tailored synthesis of SnO2@graphene nanocomposites with enhanced photocatalytic response. Ceramics International, 2016, 42, 17717-17722.	2.3	29
967	CuGaS ₂ –ZnS p–n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 2016, 8, 16670-16676.	2.8	52
968	A series of BiO _x I _y /GO photocatalysts: synthesis, characterization, activity, and mechanism. RSC Advances, 2016, 6, 82743-82758.	1.7	100
969	Construction of a ternary hybrid of CdS nanoparticles loaded on mesoporous-TiO ₂ /RGO for the enhancement of photocatalytic activity. RSC Advances, 2016, 6, 84722-84729.	1.7	22
970	Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles. Journal of Fluorescence, 2016, 26, 2165-2175.	1.3	35
971	High Efficiency Epitaxialâ€Graphene/Siliconâ€Carbide Photocatalyst with Tunable Photocatalytic Activity and Bandgap Narrowing. Advanced Materials Interfaces, 2016, 3, 1600413.	1.9	9
972	A facile route to strontium titanate nanocubes/reduced graphene oxide nanocomposites and their enhanced adsorption and photocatalytic activity. Materials Letters, 2016, 185, 36-39.	1.3	3
973	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	7.8	62
974	Plasmonic ternary Ag–rGO–Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity. Journal of Catalysis, 2016, 344, 616-630.	3.1	98

#	Article	IF	Citations
975	A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals. Scientific Reports, 2016, 5, 18419.	1.6	12
976	Three-Dimensional Graphene–TiO ₂ Nanocomposite Photocatalyst Synthesized by Covalent Attachment. ACS Omega, 2016, 1, 351-356.	1.6	48
977	One-step functionalization of graphene by cycloaddition of diarylcarbene and its application as reinforcement in epoxy composites. Composites Science and Technology, 2016, 135, 21-27.	3.8	23
978	New Organic Semiconducting Scaffolds by Supramolecular Preorganization: Dye Intercalation and Dye Oxidation and Reduction. Small, 2016, 12, 6090-6097.	5.2	17
979	Metal link: A strategy to combine graphene and titanium dioxide for enhanced hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 22034-22042.	3.8	17
980	Well–dispersed assembled porphyrin nanorods on graphene for the enhanced photocatalytic performance. ChemistrySelect, 2016, 1, 4430-4434.	0.7	31
981	2D nanostructures for water purification: graphene and beyond. Nanoscale, 2016, 8, 15115-15131.	2.8	318
982	Titanium oxide – reduced graphene oxide – silver composite layers synthesized by laser technique: Wetting and electrical properties. Ceramics International, 2016, 42, 16191-16197.	2.3	14
983	Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis. International Journal of Hydrogen Energy, 2016, 41, 14692-14703.	3.8	38
984	Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.	5.2	68
985	Reduced Graphene Oxide as a Metalâ€Free Catalyst for the Lightâ€Assisted Fentonâ€Like Reaction. ChemCatChem, 2016, 8, 2642-2648.	1.8	46
986	Plasmon-enhanced strong visible light photocatalysis by defect engineered CVD graphene and graphene oxide physically functionalized with Au nanoparticles. Catalysis Science and Technology, 2016, 6, 7101-7112.	2.1	24
987	Stable visible light photocatalyst based on the graphene protected Ag3PO4nanocomposite. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 588-593.	1.0	4
988	A survey on the present status of sustainable technologies for water pollutant abatement. Desalination and Water Treatment, 2016, 57, 28705-28714.	1.0	3
989	Synthesis and application of ternary photocatalyst with a gradient band structure from two-dimensional nanosheets as precursors. RSC Advances, 2016, 6, 108955-108963.	1.7	18
990	Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Scientific Reports, 2016, 6, 20335.	1.6	83
991	Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69, 156-162.	2.7	14
992	Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2016, 4, 18990-19002.	5.2	99

#	Article	IF	CITATIONS
993	Microwave-Assisted Synthesis of Metallic Nanoparticles Stephany Garc $\ddot{A}\pm\hat{A}$ a, Graham W . Piburn, and Simon M. Humphrey. , 2016, , 279-320.		0
994	Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. Journal of Environmental Chemical Engineering, 2016, 4, 4600-4611.	3.3	61
995	Defect engineering of ZnO nanoparticles by graphene oxide leading to enhanced visible light photocatalysis. Journal of Molecular Catalysis A, 2016, 425, 310-321.	4.8	67
996	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836
997	Electrical and electrochemical properties of titanium dioxide /graphene nano platelets cathode for magnesium battery applications. Ciência & Tecnologia Dos Materiais, 2016, 28, 117-123.	0.5	1
998	Prospects of Supercritical Fluids in Realizing Grapheneâ€Based Functional Materials. Advanced Materials, 2016, 28, 2663-2691.	11.1	66
999	Metallâ€organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	1.6	87
1000	Nanostructured Conjugated Polymers for Energyâ€Related Applications beyond Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1489-1511.	1.7	137
1001	Direct Generation of Fine Bi ₂ WO ₆ Nanocrystals on gâ€C ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. ChemNanoMat, 2016, 2, 732-738.	1.5	25
1002	Theoretical Studies of Oxygen Reactivity of Freeâ€Standing and Supported Boronâ€Doped Graphene. ChemSusChem, 2016, 9, 1061-1077.	3.6	12
1003	Recent advances in experimental basic research on graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 023001.	0.7	6
1004	Facile synthesis of porous Ag ₃ PO ₄ photocatalysts with high self-stability and activity. RSC Advances, 2016, 6, 56166-56169.	1.7	5
1005	Novel carbon-incorporated porous ZnFe ₂ O ₄ nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation. RSC Advances, 2016, 6, 56069-56076.	1.7	33
1006	Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGO nanocomposite as photocatalyst. Applied Surface Science, 2016, 386, 103-114.	3.1	40
1007	The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl,) Tj ETQq0 0 Ω Physical Chemistry Chemical Physics, 2016, 18, 18219-18226.	0 rgBT /Ov 1.3	erlock 10 Tf 65
1008	Fabrication of graphene–TiO2 nanocomposite with improved photocatalytic degradation for acid orange 7 dye under solar light irradiation. Bulletin of Materials Science, 2016, 39, 759-767.	0.8	14
1009	Designing rGO/MoS ₂ hybrid nanostructures for photocatalytic applications. RSC Advances, 2016, 6, 59001-59008.	1.7	40
1010	Efficient Z-scheme photocatalyst from simultaneous decoration of In ₂ S ₃ nanosheets and WO ₃ nanorods on graphene sheets. Nanotechnology, 2016, 27, 285602.	1.3	13

#	Article	IF	CITATIONS
1011	Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Applied Surface Science, 2016, 387, 183-189.	3.1	100
1012	A DFT study on SO3 capture and activation over Si- or Al-doped graphene. Chemical Physics Letters, 2016, 658, 146-151.	1.2	28
1013	Bioinspired Multifunctional Paper-Based rGO Composites for Solar-Driven Clean Water Generation. ACS Applied Materials & Driven Clean Water Generation.	4.0	223
1014	Photocatalytic activity of Cu2O supported on multi layers graphene for CO2 reduction by water under batch and continuous flow. Catalysis Communications, 2016, 84, 30-35.	1.6	33
1015	Synthesis and characterization of Cu–BiVO4/MCM-41 composite catalysts with enhanced visible light photocatalytic activities. Journal of Materials Science: Materials in Electronics, 2016, 27, 8633-8640.	1.1	9
1016	<i>In situ</i> preparation of cubic Cu ₂ O-RGO nanocomposites for enhanced visible-light degradation of methyl orange. Nanotechnology, 2016, 27, 265703.	1.3	46
1017	Thermophysical and Electrophysical Properties of Composite Films Based on Modied Multi-Walled Carbon Nanotubes and Multilayered Graphene., 2016,, 321-326.		2
1018	Photoelectrochemical immunoassay based on chemiluminescence as internal excited light source. Sensors and Actuators B: Chemical, 2016, 234, 324-331.	4.0	23
1019	Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today, 2016, 11, 351-372.	6.2	283
1020	Trilayer CdS/carbon nanofiber (CNF) mat/Pt-TiO2 composite structures for solar hydrogen production: Effects of CNF mat thickness. Applied Catalysis B: Environmental, 2016, 196, 216-222.	10.8	32
1021	Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon, 2016, 107, 711-722.	5.4	56
1022	Selective dual-purpose photocatalysis for simultaneous H ₂ evolution and mineralization of organic compounds enabled by a Cr ₂ O ₃ barrier layer coated on Rh/SrTiO ₃ . Chemical Communications, 2016, 52, 9636-9639.	2.2	39
1023	Improvement of Biological Organisms Using Functional Material Shells. Advanced Functional Materials, 2016, 26, 1862-1880.	7.8	81
1024	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	11.1	1,214
1025	Size-controlled BiOCl–RGO composites having enhanced photodegradative properties. Journal of Experimental Nanoscience, 2016, 11, 259-275.	1.3	70
1026	Unraveling the Hydrogenation of TiO ₂ and Graphene Oxide/TiO ₂ Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis. Journal of Physical Chemistry C, 2016, 120, 3472-3482.	1.5	16
1027	Fabrication of Z-scheme g -C 3 N 4 /RGO/Bi 2 WO 6 photocatalyst with enhanced visible-light photocatalytic activity. Chemical Engineering Journal, 2016, 290, 136-146.	6.6	314
1028	Enhancement of photocatalytic efficiency of ZnO nanopowders through AgÂ+Âgraphene addition. Materials Technology, 2016, 31, 865-871.	1.5	11

#	Article	IF	CITATIONS
1029	Continuously enhanced photoactivity of hierarchical \hat{l}^2 -Bi2O3/Bi2S3 heterostructure derived from novel BiO2CH3 octagonal nanoplates. Applied Catalysis A: General, 2016, 514, 146-153.	2.2	26
1030	Plasmonic photodetectors. , 2016, , 157-193.		8
1031	Fabrication of the carnation-like CCN-CuS p–n heterojunctions with enhanced photocatalytic performance under visible light irradiation. Applied Surface Science, 2016, 367, 109-117.	3.1	19
1032	Harnessing low energy photons (635 nm) for the production of H ₂ O ₂ using upconversion nanohybrid photocatalysts. Energy and Environmental Science, 2016, 9, 1063-1073.	15.6	160
1033	Fabrication, modification and application of (BiO)2CO3-based photocatalysts: A review. Applied Surface Science, 2016, 365, 314-335.	3.1	147
1034	Highly dispersive nano-TiO2 in situ growing on functional graphene with high photocatalytic activity. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	16
1035	Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. Journal of Colloid and Interface Science, 2016, 468, 211-219.	5.0	176
1036	Microbe-derived carbon materials for electrical energy storage and conversion. Journal of Energy Chemistry, 2016, 25, 191-198.	7.1	44
1037	Controlled synthesis of Sn doped ZnO microspheres stringed on carbon fibers with enhanced visible-light photocatalytic activities. Separation and Purification Technology, 2016, 160, 67-72.	3.9	28
1038	Sunlight assisted degradation of dye molecules and reduction of toxic Cr(<scp>vi</scp>) in aqueous medium using magnetically recoverable Fe ₃ O ₄ /reduced graphene oxide nanocomposite. RSC Advances, 2016, 6, 11049-11063.	1.7	106
1039	Enhanced proton and electron reservoir abilities of polyoxometalate grafted on graphene for high-performance hydrogen evolution. Energy and Environmental Science, 2016, 9, 1012-1023.	15.6	138
1040	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	5.2	368
1041	Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates. ACS Nano, 2016, 10, 1411-1416.	7.3	117
1042	The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Applied Surface Science, 2016, 360, 270-275.	3.1	116
1043	Effective photocatalytic dechlorination of 2,4-dichlorophenol by a novel graphene encapsulated ZnO/Co3O4 core–shell hybrid under visible light. Photochemical and Photobiological Sciences, 2016, 15, 86-98.	1.6	42
1044	Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 1078-1086.	5.2	75
1045	Nanocrystalline anatase TiO ₂ /reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 2608-2616.	1.3	83
1046	Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC - Trends in Analytical Chemistry, 2016, 80, 387-415.	5.8	49

#	ARTICLE	IF	CITATIONS
1047	An investigation into the solar light-driven enhanced photocatalytic properties of a graphene oxide–SnO ₂ –TiO ₂ ternary nanocomposite. RSC Advances, 2016, 6, 32074-32088.	1.7	39
1048	Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Applied Catalysis B: Environmental, 2016, 191, 94-105.	10.8	127
1049	Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light. Physical Chemistry Chemical Physics, 2016, 18, 10882-10886.	1.3	13
1050	Reduced TiO < sub > 2 < /sub > -Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts. ACS Applied Materials & amp; Interfaces, 2016, 8, 8536-8545.	4.0	140
1051	Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets. Electronic Materials Letters, 2016, 12, 281-289.	1.0	29
1052	Chemically Immobilized Triazine Based Cu ^{II} S ₃ C ₃ N ₃ Metallopolymer on Copper as a Photocathode for Photoelectrochemical Hydrogen Evolution. Journal of the Electrochemical Society, 2016, 163, H402-H409.	1.3	11
1053	Enhanced magnetic and photocatalytic properties of Bi 2 Fe 4 O 9 semiconductor with large exposed (001) surface. Applied Surface Science, 2016, 377, 253-261.	3.1	51
1054	Enhanced photocatalytic degradation activity over TiO 2 nanotubes co-sensitized by reduced graphene oxide and copper(II) meso -tetra(4-carboxyphenyl)porphyrin. Applied Surface Science, 2016, 377, 149-158.	3.1	62
1055	Energy transfer in plasmonic photocatalytic composites. Light: Science and Applications, 2016, 5, e16017-e16017.	7.7	462
1056	Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 2016, 3, 23-56.	2.3	335
1057	Synthesis, characterization and enhanced photocatalytic CO ₂ reduction activity of graphene supported TiO ₂ nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 2016, 18, 13186-13195.	1.3	84
1058	Preparation and characterization of TilnVO6-nanomaterial using precipitation method and its multi applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 2488-2503.	1.1	7
1059	Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Mikrochimica Acta, 2016, 183, 1145-1152.	2.5	31
1060	3D nanospherical Cd Zn1â^3S/reduced graphene oxide composites with superior photocatalytic activity and photocorrosion resistance. Applied Surface Science, 2016, 365, 227-239.	3.1	45
1061	Flattening sol–gel nanospheres into a carbon sheet-intercalated cobalt/carbon/cobalt sandwich-nanostructure. Inorganic Chemistry Frontiers, 2016, 3, 645-650.	3.0	4
1062	Ultra-deep Desulfurization of Gasoline with CuW/TiO ₂ â€"GO through Photocatalytic Oxidation. Energy & Fuels, 0, , .	2.5	12
1063	Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2. Applied Catalysis A: General, 2016, 521, 19-25.	2.2	50
1064	Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst. Materials Letters, 2016, 169, 250-253.	1.3	36

#	Article	IF	CITATIONS
1065	Mechanisms of the Antimicrobial Activities of Graphene Materials. Journal of the American Chemical Society, 2016, 138, 2064-2077.	6.6	741
1066	Engineering monomer structure of carbon nitride for the effective and mild photooxidation reaction. Carbon, 2016, 100, 450-455.	5.4	65
1067	Preparation of graphene–TiO ₂ nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. Journal of Experimental Nanoscience, 2016, 11, 722-736.	1.3	45
1068	Synthesis of Mo-doped TiO ₂ nanowires/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. RSC Advances, 2016, 6, 23809-23815.	1.7	23
1069	Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale, 2016, 8, 7794-7807.	2.8	393
1070	Preparation of surface–modified lanthanum fluoride–graphene oxide nanohybrids and evaluation of their tribological properties as lubricant additive in liquid paraffin. Applied Surface Science, 2016, 388, 497-502.	3.1	40
1071	Rational Design of α-Fe ₂ O ₃ /Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6431-6438.	4.0	91
1072	Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sensors and Actuators B: Chemical, 2016, 230, 330-336.	4.0	161
1073	MoSe2 visible-light photocatalyst for organic pollutant degradation and Cr(VI) reduction. Journal of Materials Science: Materials in Electronics, 2016, 27, 5483-5489.	1.1	11
1074	Multifunctional photocatalytic performances of recyclable Pd-NiFe 2 O 4 /reduced graphene oxide nanocomposites via different co-catalyst strategy. Applied Catalysis B: Environmental, 2016, 190, 1-11.	10.8	78
1075	Using graphene oxide as a sacrificial support of polyoxotitanium clusters to replicate its two-dimensionality on pure titania photocatalysts. Journal of Materials Chemistry A, 2016, 4, 7200-7206.	5.2	13
1076	Hierarchical photocatalysts. Chemical Society Reviews, 2016, 45, 2603-2636.	18.7	1,517
1077	New Co(OH) ₂ /CdS nanowires for efficient visible light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 5282-5287.	5.2	114
1078	Carbon-based two-dimensional layered materials for photocatalytic CO 2 reduction to solar fuels. Energy Storage Materials, 2016, 3, 24-35.	9.5	178
1079	TiO ₂ @Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis. ACS Applied Materials & Discrete Samp; Interfaces, 2016, 8, 1903-1912.	4.0	108
1080	Ultrasound exfoliation of g-C3N4 with assistance of cadmium ions and synthesis of CdS/g-C3N4 ultrathin nanosheets with efficient photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 643-650.	2.7	47
1081	Sonosynthesis of an Ag/AgBr/Graphene-oxide nanocomposite as a solar photocatalyst for efficient degradation of methyl orange. Journal of Colloid and Interface Science, 2016, 466, 227-237.	5.0	31
1082	Plasmonic silver incorporated silver halides for efficient photocatalysis. Journal of Materials Chemistry A, 2016, 4, 4336-4352.	5.2	121

#	Article	IF	CITATIONS
1083	Intrinsic magnetic characteristics-dependent charge transfer and visible photo-catalytic H ₂ evolution reaction (HER) properties of a Fe ₃ O ₄ @PPy@Pt catalyst. Chemical Communications, 2016, 52, 3038-3041.	2.2	46
1084	Microwave-assisted ionothermal synthesis of SnSe _x nanodots: a facile precursor approach towards SnSe ₂ nanodots/graphene nanocomposites. RSC Advances, 2016, 6, 9835-9842.	1.7	23
1085	CNTs threaded (001) exposed TiO ₂ with high activity in photocatalytic NO oxidation. Nanoscale, 2016, 8, 2899-2907.	2.8	50
1086	Graphene oxide-based nanomaterials for efficient photoenergy conversion. Journal of Materials Chemistry A, 2016, 4, 2014-2048.	5.2	73
1087	ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. Journal of Alloys and Compounds, 2016, 663, 738-749.	2.8	84
1088	Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016, 312, 99-148.	9.5	270
1089	Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chemical Engineering Journal, 2016, 288, 608-617.	6.6	113
1090	Stöber-like method to synthesize ultradispersed Fe 3 O 4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Applied Catalysis B: Environmental, 2016, 183, 216-223.	10.8	125
1091	Insights into enhanced visible-light photocatalytic activity of CeO 2 doped with nonmetal impurity from the first principles. Materials Science in Semiconductor Processing, 2016, 41, 200-208.	1.9	44
1092	Selective photodegradation and enhanced photo electrochemical properties of titanium dioxide–graphene composite with exposed (001) facets made by photochemical method. Solar Energy Materials and Solar Cells, 2016, 144, 748-757.	3.0	23
1093	Facile synthesis of rGO/Ag ₃ PO ₄ by enhanced photocatalytic degradation of an organic dye using a microwave-assisted method. New Journal of Chemistry, 2016, 40, 1330-1335.	1.4	16
1094	Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 2016, 52, 1689-1692.	2.2	45
1095	The endeavour to advance graphene–semiconductor composite-based photocatalysis. CrystEngComm, 2016, 18, 24-37.	1.3	89
1096	Depositing CdS nanoclusters on carbon-modified NaYF ₄ :Yb,Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale, 2016, 8, 553-562.	2.8	86
1097	Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B: Environmental, 2016, 181, 495-503.	10.8	163
1098	Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catalysis Today, 2016, 264, 243-249.	2.2	37
1099	Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods., 2016,, 295-328.		33
1100	More effective use of graphene in photocatalysis by conformal attachment of small sheets to TiO2 spheres. Carbon, 2016, 96, 394-402.	5.4	50

#	Article	IF	CITATIONS
1101	The application of heterogeneous visible light photocatalysts in organic synthesis. Catalysis Science and Technology, 2016, 6, 349-362.	2.1	201
1102	Facile Synthesis of Graphene–Enwrapped Ag ₃ PO ₄ Composites with Highly Efficient Visible Light Photocatalytic Performance. Nano, 2016, 11, 1650001.	0.5	7
1103	Graphite Nanosheets: Thermal Treatment Synthesis and Characterization. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 877-882.	0.6	4
1104	A g-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light. Catalysis Communications, 2016, 73, 74-79.	1.6	63
1105	lodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chemical Communications, 2016, 52, 354-357.	2.2	59
1106	Enhanced Photocatalytic Activity of BiOCl Hybridized with g-C3N4. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 91-99.	1.9	19
1107	A NIR-driven photocatalyst based on α-NaYF 4 :Yb,Tm@TiO 2 core–shell structure supported on reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 182, 184-192.	10.8	126
1108	Electrochemical synthesis of TiO2/Graphene oxide composite films for photocatalytic applications. Journal of Alloys and Compounds, 2016, 654, 514-522.	2.8	30
1109	The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Applied Catalysis B: Environmental, 2016, 181, 810-817.	10.8	287
1110	Graphene–CdS nanocomposite inactivation performance toward Escherichia coli in the presence of humic acid under visible light irradiation. Chemical Engineering Journal, 2016, 284, 41-53.	6.6	68
1111	Preparation of Uniform BiOI Nanoflowers with Visible Light-Induced Photocatalytic Activity. Australian Journal of Chemistry, 2016, 69, 212.	0.5	6
1112	Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosensors and Bioelectronics, 2016, 77, 451-456.	5.3	165
1113	Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Applied Catalysis B: Environmental, 2016, 181, 71-78.	10.8	219
1114	Photo-Fenton degradation of ammonia via a manganese–iron double-active component catalyst of graphene–manganese ferrite under visible light. Chemical Engineering Journal, 2016, 283, 266-275.	6.6	142
1115	Silica nanocrystal/graphene composite with improved photoelectric and photocatalytic performance. Applied Catalysis B: Environmental, 2016, 180, 106-112.	10.8	31
1116	TiO2/graphene composite photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Applied Catalysis B: Environmental, 2016, 180, 637-647.	10.8	199
1117	Ternary P25–graphene–Fe 3 O 4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Materials Research Bulletin, 2016, 73, 77-83.	2.7	35
1118	Bare TiO 2 and graphene oxide TiO 2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science, 2017, 416, 1013-1021.	3.1	161

#	Article	IF	CITATIONS
1119	Graphene modified iron sludge derived from homogeneous Fenton process as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Microporous and Mesoporous Materials, 2017, 238, 62-68.	2.2	114
1120	Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO 2 nanotube photocatalyst. Applied Surface Science, 2017, 391, 267-274.	3.1	38
1121	Influence of interface combination of RGO-photosensitized SnO 2 @RGO core-shell structures on their photocatalytic performance. Applied Surface Science, 2017, 391, 627-634.	3.1	77
1122	Self-propagating solar light reduction of graphite oxide in water. Applied Surface Science, 2017, 391, 601-608.	3.1	25
1123	Fabrication of TiO 2 nanorod assembly grafted rGO (rGO@TiO 2 -NR) hybridized flake-like photocatalyst. Applied Surface Science, 2017, 391, 218-227.	3.1	81
1124	A review on g-C 3 N 4 -based photocatalysts. Applied Surface Science, 2017, 391, 72-123.	3.1	2,318
1125	Low-temperature solid-state preparation of ternary CdS/g-C 3 N 4 /CuS nanocomposites for enhanced visible-light photocatalytic H 2 -production activity. Applied Surface Science, 2017, 391, 432-439.	3.1	200
1126	Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3570-3580.	4.0	20
1127	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	5.5	66
1128	Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten. Angewandte Chemie, 2017, 129, 8164-8185.	1.6	59
1129	Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie - International Edition, 2017, 56, 8052-8072.	7.2	407
1130	Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3 nanohybrids mediated by photo-Fenton reaction and H2O2. Applied Catalysis B: Environmental, 2017, 206, 263-270.	10.8	65
1131	Three-dimensional titanate–Graphene oxide composite gel with enhanced photocatalytic activity synthesized from nanofiber networks. Catalysis Today, 2017, 297, 264-275.	2.2	8
1132	Graphene and its nanocomposites as a platform for environmental applications. Chemical Engineering Journal, 2017, 315, 210-232.	6.6	108
1133	Synthesis and characterization of TiO2/graphene oxide nanocomposite. Journal of Materials Science: Materials in Electronics, 2017, 28, 7892-7898.	1.1	27
1134	Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. Journal of Colloid and Interface Science, 2017, 496, 425-433.	5.0	176
1135	Tuning the near-gap electronic structure of Cu2O by anion–cation co-doping for enhanced solar energy conversion. Modern Physics Letters B, 2017, 31, 1650429.	1.0	4
1136	Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9, 2398-2416.	2.8	121

#	Article	IF	CITATIONS
1137	Fabrication of WO _{2.72} /RGO nano-composites for enhanced photocatalysis. RSC Advances, 2017, 7, 2606-2614.	1.7	30
1138	Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Separation and Purification Technology, 2017, 178, 6-17.	3.9	122
1139	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	1.8	396
1140	Donor–Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO ₂ : π-Stacking Supersedes Covalent Bonding. Journal of the American Chemical Society, 2017, 139, 2619-2629.	6.6	132
1141	Microwave treated sol–gel synthesis and characterization of hybrid ZnS–RGO composites for efficient photodegradation of dyes. New Journal of Chemistry, 2017, 41, 1723-1735.	1.4	49
1142	Environmental applications of titania-graphene photocatalysts. Catalysis Today, 2017, 285, 13-28.	2.2	95
1143	Cu 2 O NPs/Bi 2 O 2 CO 3 flower-like complex photocatalysts with enhanced visible light photocatalytic degradation of organic pollutants. Catalysis Today, 2017, 297, 237-245.	2.2	38
1144	BiVO 4 /Bi 2 O 3 heterojunction deposited on graphene for an enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2017, 706, 7-15.	2.8	32
1145	New green synthesized reduced graphene oxide–ZrO ₂ composite as high performance photocatalyst under sunlight. RSC Advances, 2017, 7, 12690-12703.	1.7	103
1146	Facile preparation of Zn0.5Cd0.5S@RGO nanocomposites as efficient visible light driven photocatalysts. Journal of Alloys and Compounds, 2017, 705, 392-398.	2.8	16
1147	In situ fabrication of graphene-based Ag3PO4@AgBr composite with enhanced photocatalytic activity under simulated sunlight. Journal of Environmental Chemical Engineering, 2017, 5, 1526-1535.	3.3	13
1148	A alkalescent route for synthesis of titanate nanosheets modified with reduced graphene oxide for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 7976-7984.	1.1	2
1149	Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO. Applied Catalysis B: Environmental, 2017, 208, 22-34.	10.8	188
1150	From Ni(OH)2/Graphene composite to Ni@Graphene core-shell: AÂself-catalyzed epitaxial growth and enhanced activity for nitrophenolÂreduction. Carbon, 2017, 117, 192-200.	5.4	18
1151	Integration of functionalized two-dimensional TaS ₂ nanosheets and an electron mediator for more efficient biocatalyzed artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 5511-5522.	5.2	38
1152	Graphene/TiO ₂ hybrid layer for simultaneous detection and degradation by a one-step transfer and integration method. RSC Advances, 2017, 7, 14959-14965.	1.7	6
1153	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGO–CdS–Ni _x S from metal salts and RGO–CdS composites. Journal of Materials Chemistry A, 2017, 5, 9537-9543.	5.2	29
1154	Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 146-156.	2.0	123

#	Article	IF	CITATIONS
1155	Efficient visible light-induced degradation of rhodamine B by $W(NxS1\hat{a}^2x)^2$ nanoflowers. Scientific Reports, 2017, 7, 40784.	1.6	10
1156	MoS 2 quantum dots-interspersed Bi 2 WO 6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental, 2017, 210, 160-172.	10.8	177
1157	Electronic Structure and Charge Transfer in the TiO ₂ Rutile (110)/Graphene Composite Using Hybrid DFT Calculations. Journal of Physical Chemistry C, 2017, 121, 4158-4171.	1.5	29
1158	Three-Dimensional Rebar Graphene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7376-7384.	4.0	46
1159	Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Applied Catalysis B: Environmental, 2017, 207, 93-102.	10.8	213
1160	Charge transfer tuning in TiO2 hybrid nanostructures with acceptor–acceptor systems. Journal of Materials Chemistry C, 2017, 5, 2415-2424.	2.7	4
1161	Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis. Inorganic Chemistry, 2017, 56, 2328-2336.	1.9	24
1162	Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation. Journal of Physical Chemistry Letters, 2017, 8, 844-849.	2.1	61
1163	Bi 2 MoO 6 co-modified by reduced graphene oxide and palladium (Pd 2+ and Pd 0) with enhanced photocatalytic decomposition of phenol. Applied Catalysis B: Environmental, 2017, 209, 383-393.	10.8	110
1164	Enhanced Photoelectrochemical Performance in Reduced Graphene Oxide/BiFeO ₃ Heterostructures. Small, 2017, 13, 1603457.	5.2	46
1165	A Brief Review of the Synthesis and Catalytic Applications of Grapheneâ€Coated Oxides. ChemCatChem, 2017, 9, 2432-2442.	1.8	33
1166	Highly efficient visible-light-driven plasmonic photocatalysts based on graphene oxide mediated hybridization of graphite and Ag/AgBr. RSC Advances, 2017, 7, 9948-9957.	1.7	4
1167	Visible-light-driven photocatalytic performance of nanohybrid incorporating nickel ions into the tetratitanate interlayer. Vacuum, 2017, 138, 64-69.	1.6	2
1168	Enhanced photocatalytic degradation of Rhodamine B by reduced graphene oxides wrapped-Cu2SnS3 flower-like architectures. Journal of Alloys and Compounds, 2017, 704, 469-477.	2.8	43
1169	Anchoring titanium dioxide on carbon spheres for high-performance visible light photocatalysis. Applied Catalysis B: Environmental, 2017, 207, 255-266.	10.8	64
1170	Electrochemiluminescence DNA biosensor based onÂthe use of gold nanoparticle modified graphite-like carbon nitride. Mikrochimica Acta, 2017, 184, 2587-2596.	2.5	17
1171	Significant enhancement of visible light photocatalytic activity of the hybrid B ₁₂ -PIL/rGO in the presence of Ru(bpy) ₃ ²⁺ for DDT dehalogenation. RSC Advances, 2017, 7, 19197-19204.	1.7	11
1172	Enhanced photocatalytic performance of <scp>Bi₂Fe₄O₉</scp> /graphene via modifying graphene composite. Journal of the American Ceramic Society, 2017, 100, 3540-3549.	1.9	22

#	Article	IF	CITATIONS
1173	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.	4.6	955
1174	Fabrication of a Graphene@TiO ₂ @Porphyrin Hybrid Material and Its Photocatalytic Properties under Simulated Sunlight Irradiation. ChemistrySelect, 2017, 2, 3329-3333.	0.7	28
1175	Facile hydrothermal synthesis of Fe 3+ doped Bi 2 Mo 2 O 9 ultrathin nanosheet with improved photocatalytic performance. Ceramics International, 2017, 43, 9214-9219.	2.3	26
1176	Selected hybrid photocatalytic materials for the removal of drugs from water. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 11-17.	3.2	20
1177	Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C C bond formation. Applied Catalysis B: Environmental, 2017, 213, 1-8.	10.8	52
1178	Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. Journal of the American Chemical Society, 2017, 139, 6682-6692.	6.6	120
1179	Peryleneâ€Containing Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Macromolecular Chemistry and Physics, 2017, 218, 1700049.	1.1	71
1180	Hybrid nanoarchitecture of TiO 2 nanotubes and graphene sheet for advanced lithium ion batteries. Materials Research Bulletin, 2017, 96, 425-430.	2.7	19
1181	Ultrathin MoS 2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 212, 7-14.	10.8	167
1182	Titanium-zinc-bismuth oxides-graphene composite nanofibers as high-performance photocatalyst for gas purification. Separation and Purification Technology, 2017, 184, 205-212.	3.9	17
1183	Synergistic effect of zinc selenide–reduced graphene oxide towards enhanced solar light-responsive photocurrent generation and photocatalytic 4-nitrophenol degradation. New Journal of Chemistry, 2017, 41, 4662-4671.	1.4	45
1184	Photocatalytic self-cleaning electrochemical sensor for honokiol based on a glassy carbon electrode modified with reduced graphene oxide and titanium dioxide. Mikrochimica Acta, 2017, 184, 2299-2305.	2.5	3
1185	Wide spectrum responsive CdS/NiTiO ₃ /CoS with superior photocatalytic performance for hydrogen evolution. Catalysis Science and Technology, 2017, 7, 2524-2530.	2.1	45
1186	A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light. Applied Surface Science, 2017, 396, 1775-1782.	3.1	81
1187	Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis. Korean Journal of Chemical Engineering, 2017, 34, 476-483.	1.2	17
1188	Construction of Z-scheme Ag2CO3/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species. Applied Surface Science, 2017, 396, 1368-1374.	3.1	73
1189	Optical constant measurements of solar thermochemical reaction catalysts and optical window. Optik, 2017, 131, 323-334.	1.4	6
1190	Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions. Journal of Physics and Chemistry of Solids, 2017, 102, 168-177.	1.9	83

#	Article	IF	CITATIONS
1191	Electrochemical synthesis of co-doped RGO–Bi–TiO2 nanotube composite: Enhanced activity under visible light. Journal of Industrial and Engineering Chemistry, 2017, 54, 316-323.	2.9	14
1192	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	5.6	54
1193	Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation. Catalysis Science and Technology, 2017, 7, 3210-3219.	2.1	55
1194	Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Applied Catalysis B: Environmental, 2017, 218, 51-59.	10.8	165
1196	Graphene-supported CoS ₂ particles: an efficient photocatalyst for selective hydrogenation of nitroaromatics in visible light. Catalysis Science and Technology, 2017, 7, 2805-2812.	2.1	40
1197	Influence of the Reduction of Graphene Oxide with Hydroiodic Acid on the Structure and Photoactivity of CdS–rGO Hybrids. Topics in Catalysis, 2017, 60, 1183-1195.	1.3	10
1198	Synthesis of a ternary $Ag/RGO/ZnO$ nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light. Environmental Science and Pollution Research, 2017, 24, 15360-15368.	2.7	27
1199	Tuning the IV characteristic of a cruciform diamine molecular device by connected position and B/N doping. Organic Electronics, 2017, 48, 1-6.	1.4	6
1200	Enhanced sunlight photocatalytic activity of silver nanoparticles decorated on reduced graphene oxide sheet. Korean Journal of Chemical Engineering, 2017, 34, 2079-2085.	1.2	13
1201	Preparation and characterization of highly photocatalytic active hierarchical BiOX (X=Cl, Br, I) microflowers for rhodamine B degradation with kinetic modelling studies. Journal of Central South University, 2017, 24, 754-765.	1.2	12
1202	Facile in-situ design strategy to disperse TiO2 nanoparticles on graphene for the enhanced photocatalytic degradation of rhodamine 6G. Applied Catalysis B: Environmental, 2017, 218, 208-219.	10.8	160
1203	Improving Photocatalytic Performance from Bi2WO6@MoS2/graphene Hybrids via Gradual Charge Transferred Pathway. Scientific Reports, 2017, 7, 3637.	1.6	53
1204	New Carbon Nanodotsâ€Silica Hybrid Photocatalyst for Highly Selective Solar Fuel Production from CO ₂ . ChemCatChem, 2017, 9, 3153-3159.	1.8	28
1205	Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4, 800-816.	6.4	155
1206	Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility. Applied Catalysis B: Environmental, 2017, 217, 275-284.	10.8	197
1207	Constructing efficient solar light photocatalytic system with Ag-introduced carbon nitride for organic pollutant elimination. Applied Catalysis B: Environmental, 2017, 217, 232-240.	10.8	59
1208	One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 2017, 218, 758-769.	10.8	138
1209	A quaternary TiO ₂ /ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. New Journal of Chemistry, 2017, 41, 6445-6454.	1.4	53

#	Article	IF	CITATIONS
1210	Synthesis of ZnS/CuS nanospheres loaded on reduced graphene oxide as high-performance photocatalysts under simulated sunlight irradiation. New Journal of Chemistry, 2017, 41, 5732-5744.	1.4	39
1211	Unveiling the mechanism of electron transfer facilitated regeneration of active Fe ²⁺ by nano-dispersed iron/graphene catalyst for phenol removal. RSC Advances, 2017, 7, 26983-26991.	1.7	30
1212	Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Materials. Chemistry - A European Journal, 2017, 23, 15244-15275.	1.7	39
1213	Multi-functional properties of ternary CeO 2 /SnO 2 /rGO nanocomposites: Visible light driven photocatalyst and heavy metal removal. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 32-45.	2.0	109
1214	Room temperature synthesis of reduced graphene oxide nanosheets as anode material for supercapacitors. Materials Letters, 2017, 204, 169-172.	1.3	20
1215	Activation of amorphous bismuth oxide via plasmonic Bi metal for efficient visible-light photocatalysis. Journal of Catalysis, 2017, 352, 102-112.	3.1	135
1216	In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: A pseudo-zero-order rather than a first-order process. Applied Catalysis B: Environmental, 2017, 217, 591-602.	10.8	120
1217	Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Advances, 2017, 7, 29015-29024.	1.7	46
1218	Response surface methodology for optimization of the one-step preparation of RGO-TNTs as visible light catalysts. Chemical Engineering Communications, 2017, 204, 1049-1060.	1.5	3
1219	Enhanced photocatalytic activities of low-bandgap TiO2-reduced graphene oxide nanocomposites. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	22
1220	Three-Dimensional Printed Graphene Foams. ACS Nano, 2017, 11, 6860-6867.	7.3	172
1221	Mesoporous Ag@TiO ₂ nanofibers and their photocatalytic activity for hydrogen evolution. RSC Advances, 2017, 7, 30051-30059.	1.7	27
1222	Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites. Applied Surface Science, 2017, 423, 185-196.	3.1	77
1223	Synthesis and photocatalytic performance of reduced graphene oxide–TiO2 nanocomposites for orange II degradation under UV light irradiation. Environmental Science and Pollution Research, 2017, 24, 12416-12425.	2.7	29
1224	A series of bismuth-oxychloride/bismuth-oxyiodide/graphene-oxide nanocomposites: Synthesis, characterization, and photcatalytic activity and mechanism. Molecular Catalysis, 2017, 432, 196-209.	1.0	103
1225	Graphitic Carbon Nitride Isotype Heterostructures with Enhanced Visible Photocatalytic Properties. Nano, 2017, 12, 1750042.	0.5	6
1226	Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation. Journal of Materials Science, 2017, 52, 8311-8320.	1.7	36
1227	A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochimica Acta, 2017, 235, 720-729.	2.6	22

#	Article	IF	CITATIONS
1228	Benzyl Alcohol Assisted Synthesis and Characterization of Highly Reduced Graphene Oxide (HRG)@ZrO ₂ Nanocomposites. ChemistrySelect, 2017, 2, 3078-3083.	0.7	6
1229	Ultrasonic-induced disorder engineering on ZnO, ZrO ₂ , Fe ₂ O ₃ and SnO ₂ nanocrystals. RSC Advances, 2017, 7, 18785-18792.	1.7	18
1230	Coupling of photodegradation of RhB with photoreduction of CO 2 over rGO/SrTi 0.95 Fe 0.05 O $3\hat{a}^{"}\hat{1}^{"}$ catalyst: A strategy for one-pot conversion of organic pollutants to methanol and ethanol. Journal of Catalysis, 2017, 349, 218-225.	3.1	74
1231	Fabrication of Cu ₂ MoS ₄ hollow nanotubes with rGO sheets for enhanced visible light photocatalytic performance. CrystEngComm, 2017, 19, 2475-2486.	1.3	39
1232	Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation. Industrial & Engineering Chemistry Research, 2017, 56, 4611-4626.	1.8	103
1233	Preparation of titanium dioxide immobilized on carbon fibers annealed in steam ambient and their photocatalytic properties. Textile Reseach Journal, 2017, 87, 2233-2241.	1.1	8
1234	Facile synthesis of mesoporous hematite/carbon nanosheet for superior photodegradation. Journal of Physics and Chemistry of Solids, 2017, 107, 42-49.	1.9	13
1235	Composite hollow nanostructures composed of carbon-coated Ti ³⁺ self-doped TiO ₂ -reduced graphene oxide as an efficient electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 7072-7080.	5. 2	61
1236	Facile Solvothermal Synthesis of Reduced Graphene Oxide-BiPO 4 Nanocomposite with Enhanced Photocatalytic Activity. Chinese Journal of Analytical Chemistry, 2017, 45, 357-362.	0.9	10
1237	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
1238	Photocatalytic Generation of H ₂ O ₂ by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustainable Chemistry and Engineering, 2017, 5, 2994-3001.	3.2	90
1239	Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity. 2D Materials, 2017, 4, 025049.	2.0	34
1240	One-step synthesis and deposition of few-layer graphene via facile, dry ball-free milling. MRS Advances, 2017, 2, 847-856.	0.5	9
1241	Ion-Exchange Synthesis and Enhanced Visible-Light Photoactivity of Graphene/Hexagonal CuS/Ag ₂ S Nanocomposites. Nano, 2017, 12, 1750005.	0.5	4
1242	Synthesis of cobalt-doped ZnO/rGO nanoparticles with visible-light photocatalytic activity through a cobalt-induced electrochemical method. Journal of Energy Chemistry, 2017, 26, 549-555.	7.1	26
1243	Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	17
1244	In-Situ Hydrothermal Synthesis of Bi–Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity. Nano-Micro Letters, 2017, 9, 18.	14.4	38
1245	A novel ternary CuO decorated Ag ₃ AsO ₄ /GO hybrid as a Z-scheme photocatalyst for enhanced degradation of phenol under visible light. New Journal of Chemistry, 2017, 41, 1380-1389.	1.4	25

#	Article	IF	CITATIONS
1246	Band gap opening in stanene induced by patterned B–N doping. Physical Chemistry Chemical Physics, 2017, 19, 3660-3669.	1.3	50
1247	Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. Journal of Fluorine Chemistry, 2017, 194, 40-50.	0.9	87
1248	In situ surface assembly of core-shell TiO2-copper(I) cluster nanocomposites for visible-light photocatalytic reduction of Cr(VI). Applied Catalysis B: Environmental, 2017, 205, 368-375.	10.8	17
1249	Microwave assisted synthesis of rGO/ZnO composites for non-enzymatic glucose sensing and supercapacitor applications. Ceramics International, 2017, 43, 4895-4903.	2.3	61
1250	P–N depleted bulk BiOBr/α-Fe ₂ O ₃ heterojunctions applied for unbiased solar water splitting. Dalton Transactions, 2017, 46, 200-206.	1.6	25
1251	Graphene-family nanomaterials in wastewater treatment plants. Chemical Engineering Journal, 2017, 313, 121-135.	6.6	116
1252	Mechanism of enhancing visible-light photocatalytic activity of BiVO ₄ via hybridization of graphene based on a first-principles study. RSC Advances, 2017, 7, 4395-4401.	1.7	26
1253	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8407-8411.	7.2	421
1254	Influence of the reduction of graphene oxide (rGO) on the structure and photoactivity of CdS-rGO hybrid systems. International Journal of Hydrogen Energy, 2017, 42, 13691-13703.	3.8	24
1255	0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie, 2017, 129, 8527-8531.	1.6	44
1256	Leaf-like hybrid of bismuth subcarbonate nanotubes/graphene sheet with highly efficient photocatalytic activities. Journal of Colloid and Interface Science, 2017, 491, 273-278.	5.0	8
1257	The Role of Interfaces in Heterostructures. ChemPlusChem, 2017, 82, 42-59.	1.3	33
1258	Lower treating temperature leading to higher air purification activity. Chemical Engineering Journal, 2017, 314, 640-649.	6.6	11
1259	Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Applied Catalysis B: Environmental, 2017, 205, 319-326.	10.8	160
1260	A review on graphene–TiO ₂ and doped graphene–TiO ₂ nanocomposite photocatalyst for water and wastewater treatment. Environmental Technology Reviews, 2017, 6, 1-14.	2.1	187
1261	BiOBr/BiOF composites for efficient degradation of rhodamine B and nitrobenzene under visible light irradiation. Journal of Colloid and Interface Science, 2017, 490, 812-818.	5.0	48
1262	Enhanced photocatalytic activity of TiO2/SiO2–CdS nanocomposite under direct sunlight for degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2017, 28, 5063-5069.	1.1	19
1263	Efficient Photocatalytic Activity of TiO2 Nanocrystals Modified with Organic Electron Donor and Barium Doping for Azo Group Decomposition Under UV Irradiation. Catalysis Letters, 2017, 147, 2697-2705.	1.4	0

#	Article	IF	CITATIONS
1264	Green Synthesis of Fe ₃ O ₄ /RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 10551-10562.	3.2	235
1265	Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water. Scientific Reports, 2017, 7, 12296.	1.6	14
1266	A facile solvothermal approach for the synthesis of novel W-doped TiO ₂ nanoparticles/reduced graphene oxide composites with enhanced photodegradation performance under visible light irradiation. New Journal of Chemistry, 2017, 41, 13382-13390.	1.4	22
1267	Recent Progress in Semiconductorâ€Based Nanocomposite Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700529.	10.2	189
1268	Nanosheet Array-Like Palladium-Catalysts Pd _{<i>x</i>} /rGO@CoAl-LDH via Lattice Atomic-Confined in Situ Reduction for Highly Efficient Heck Coupling Reaction. ACS Applied Materials & Lateral & Later	4.0	67
1269	Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceramics International, 2017, 43, 14552-14571.	2.3	288
1270	Design and engineering of high-performance photocatalytic systems based on metal oxide–graphene–noble metal nanocomposites. Molecular Systems Design and Engineering, 2017, 2, 422-439.	1.7	92
1271	One-pot synthesis of a reduced graphene oxide–ZnO nanorod composite and dye decolorization modeling. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 439-451.	2.7	16
1272	Conductive FeSe nanorods: A novel and efficient co-catalyst deposited on BiVO4 for enhanced photocatalytic activity under visible light. Journal of Environmental Chemical Engineering, 2017, 5, 4206-4211.	3.3	10
1273	Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication. ACS Nano, 2017, 11, 9467-9480.	7.3	248
1274	Two-dimensional nanomaterials for photocatalytic CO ₂ reduction to solar fuels. Sustainable Energy and Fuels, 2017, 1, 1875-1898.	2.5	156
1275	Decorating mechanism of Mn3O4 nanoparticles on reduced graphene oxide surface through reflux condensation method to improve photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2017, 28, 17860-17870.	1.1	19
1276	Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification. Catalysis Science and Technology, 2017, 7, 4478-4488.	2.1	68
1277	Oneâ€Pot Synthesis of Sizeâ€Controllable Core–Shell CdS and Derived CdS@Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Structures for Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2017, 23, 16653-16659.	1.7	34
1278	Tailoring the Electronic Band Gap and Band Edge Positions in the C ₂ N Monolayer by P and As Substitution for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2017, 121, 22216-22224.	1.5	80
1279	Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 2017, 202, 266-276.	2.0	244
1280	An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb ₃ O ₈ nanosheets for efficient thermo/photo-catalytic reduction. Nanoscale, 2017, 9, 14654-14663.	2.8	30
1281	2Dâ€Layered Carbon/TiO ₂ Hybrids Derived from Ti ₃ C ₂ <i>MXenes</i> for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Advanced Materials Interfaces, 2017, 4, 1700577.	1.9	120

#	Article	IF	CITATIONS
1282	Nanocomposites and Its Importance in Photocatalysis. Springer Series on Polymer and Composite Materials, 2017, , 41-67.	0.5	3
1283	The Synthesis and the Catalytic Properties of Graphene-Based Composite Materials. , 2017, , 3-26.		O
1284	Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Design and PtCo Particles Supported On Graphene PtCo Particles Supported On Graphe	4.0	10
1285	Multiphase TiO ₂ nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Advances, 2017, 7, 44199-44224.	1.7	142
1286	CuO/Cu ₂ O nanowire arrays grafted by reduced graphene oxide: synthesis, characterization, and application in photocatalytic reduction of CO ₂ . RSC Advances, 2017, 7, 43642-43647.	1.7	89
1287	Tetranitrophthalocyanine Zinc/TiO2 Nanofibers Organic–Inorganic Heterostructures with Enhanced Visible Photocatalytic Activity. Nano, 2017, 12, 1750117.	0.5	5
1288	Self-assembly and enhanced visible-light-driven photocatalytic activity of reduced graphene oxide-Bi2WO6 photocatalysts. Nanotechnology Reviews, 2017, 6, 505-516.	2.6	11
1289	Enhanced photo-electrochemical, photo-degradation and charge separation ability of graphitic carbon nitride (g-C3N4) by self-type metal free heterojunction formation for antibiotic degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 118-124.	2.0	31
1290	Bi-functional reduced graphene oxide/AgCo composite nanosheets: an efficient catalyst and SERS substrate for monitoring the catalytic reactions. RSC Advances, 2017, 7, 41962-41969.	1.7	11
1291	Recyclable, bifunctional composites of perovskite type N-CaTiO ₃ and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Materials Chemistry Frontiers, 2017, 1, 2391-2404.	3.2	124
1292	Elemental Bismuthâ€"Graphene Heterostructures for Photocatalysis from Ultraviolet to Infrared Light. ACS Catalysis, 2017, 7, 7043-7050.	5.5	65
1293	The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO ₃ /graphene nanoplatelet (GNP) nanohybrids. RSC Advances, 2017, 7, 35928-35937.	1.7	76
1294	Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. International Journal of Hydrogen Energy, 2017, 42, 23578-23586.	3.8	56
1295	Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Applied Surface Science, 2017, 426, 206-216.	3.1	95
1296	Fabrication of AgBr/boron-doped reduced graphene oxide aerogels for photocatalytic removal of Cr(<scp>vi</scp>) in water. RSC Advances, 2017, 7, 36000-36006.	1.7	15
1297	display="inline" overflow="scroll" altimg="si2.gif"> <mml:msub><mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:msub><mml:mrow><mml:< td=""><td>mrow><m< td=""><td>ımk:mo>(</td></m<></td></mml:<></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub>	mrow> <m< td=""><td>ımk:mo>(</td></m<>	ım k :mo>(
1298	Nano Structures Nano Objects, 2017, 11, 76-81. 3D heterostructure of graphene@Fe 3 O 4 @WO 3 @PANI: Preparation and excellent microwave absorption performance. Synthetic Metals, 2017, 231, 7-14.	2.1	59
1299	Optimization of Active Sites of MoS ₂ Nanosheets Using Nonmetal Doping and Exfoliation into Few Layers on CdS Nanorods for Enhanced Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7651-7658.	3.2	73

#	Article	IF	CITATIONS
1300	Photoelectrochemical aptasensing of thrombin based on multilayered gold nanoparticle/graphene-TiO 2 and enzyme functionalized graphene oxide nanocomposites. Electrochimica Acta, 2017, 249, 243-252.	2.6	17
1301	Graphene Oxide Sheets Combine into Conductive Coatings by Direct Oxidative Electropolymerization. Scientific Reports, 2017, 7, 4987.	1.6	9
1302	Controlled growth and DNA sensing property of HKUST-1@GrO nanocomposites. Materials Letters, 2017, 209, 142-145.	1.3	2
1303	Scalable synthesis of CdS–Graphene nanocomposite spectroscopic characterizations. Journal of Materials Science: Materials in Electronics, 2017, 28, 17193-17201.	1.1	18
1304	Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 2017, 727, 792-820.	2.8	884
1305	A Novel Enzymatic Glucose Biosensor and Nonenzymatic Hydrogen Peroxide Sensor Based on (3â€Aminopropyl) Triethoxysilane Functionalized Reduced Graphene Oxide. Electroanalysis, 2017, 29, 2507-2515.	1.5	17
1306	Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution. Small, 2017, 13, 1701607.	5.2	47
1307	Synergistic effect of Ag plasmon- and reduced graphene oxide-embedded ZnO nanorod-based photoanodes for enhanced photoelectrochemical activity. Journal of Materials Science, 2017, 52, 13572-13585.	1.7	18
1308	Combining Heterojunction Engineering with Surface Cocatalyst Modification To Synergistically Enhance the Photocatalytic Hydrogen Evolution Performance of Cadmium Sulfide Nanorods. ACS Sustainable Chemistry and Engineering, 2017, 5, 7670-7677.	3.2	123
1309	Modulating the properties of monolayer C ₂ N: A promising metal-free photocatalyst for water splitting. Chinese Physics B, 2017, 26, 087301.	0.7	12
1310	Graphitized nanocarbon-supported metal catalysts: synthesis, properties, and applications in heterogeneous catalysis. Science China Materials, 2017, 60, 1149-1167.	3.5	13
1311	Size separation of mechanically exfoliated graphene sheets by electrophoresis. Electrochimica Acta, 2017, 258, 793-799.	2.6	18
1312	Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. Journal of Electroanalytical Chemistry, 2017, 807, 253-260.	1.9	76
1313	Fabrication of αâ€Fe ₂ O ₃ @rGO/PAN Nanofiber Composite Membrane for Photocatalytic Degradation of Organic Dyes. Advanced Materials Interfaces, 2017, 4, 1700845.	1.9	39
1314	Two-dimensional multilayer $M < sub > 2 < / sub > CO < sub > 2 < / sub > (M = Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. Journal of Materials Chemistry A, 2017, 5, 24972-24980.$	5.2	90
1315	Specific ion effect on the surface properties of Ag/reduced graphene oxide nanocomposite and its influence on photocatalytic efficiency towards azo dye degradation. Applied Surface Science, 2017, 423, 752-761.	3.1	52
1316	Investigation of the appropriate content of graphene in Ag TiO2-graphene ternary nanocomposites applied as photocatalysts. International Journal of Hydrogen Energy, 2017, 42, 17020-17029.	3.8	18
1317	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309

#	Article	IF	CITATIONS
1318	Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO ₄ : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.	5 . 2	364
1319	Reduced graphene oxide@TiO ₂ nanorod@reduced graphene oxide hybrid nanostructures for photoelectrochemical hydrogen production. Micro and Nano Letters, 2017, 12, 494-496.	0.6	10
1320	The impacts of graphene concentration and thickness on the photocatalytic performance of Bi12TiO20/graphene composite thin films. Materials Research Express, 2017, 4, 085003.	0.8	2
1321	Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Applied Catalysis B: Environmental, 2017, 219, 53-62.	10.8	219
1322	Nanomaterials for photocatalytic hydrogen production: from theoretical perspectives. RSC Advances, 2017, 7, 34875-34885.	1.7	51
1323	Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem, 2017, 4, 68-80.	2.8	24
1324	One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chemical Engineering Journal, 2017, 327, 694-704.	6.6	79
1325	Enhanced Photocarrier Separation in Hierarchical Graphitic-C ₃ N ₄ -Supported CuInS ₂ for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24577-24583.	4.0	99
1326	Near-infrared driven photocatalytic performance of lanthanide-doped NaYF4@CdS core-shell nanostructures with enhanced upconversion properties. Journal of Alloys and Compounds, 2017, 724, 481-491.	2.8	49
1327	Opportunities and Challenges in the Synthesis, Characterization, and Catalytic Properties of Controlled Nanostructures. Studies in Surface Science and Catalysis, 2017, 177, 1-56.	1.5	1
1328	A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2017, 42, 18977-18984.	3.8	56
1329	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chemical Science, 2017, 8, 5261-5274.	3.7	299
1330	The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 2017, 47, 1042-1105.	6.6	190
1331	Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2017, 204, 21-32.	10.8	181
1332	Ammonia-modified graphene sheets decorated with magnetic Fe 3 O 4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. Journal of Hazardous Materials, 2017, 325, 90-100.	6.5	171
1333	Preparation of electrospun Ag/TiO 2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 103-110.	1.3	68
1334	Construction of leaf-like g 3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible-light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 117-124.	2.3	110
1336	Acid-free co-operative self-assembly of graphene-ZnO nanocomposites and its defect mediated visible light photocatalytic activities. Physica B: Condensed Matter, 2017, 506, 32-41.	1.3	7

#	Article	IF	CITATIONS
1337	In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catalysis Communications, 2017, 89, 129-132.	1.6	34
1338	BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Applied Catalysis B: Environmental, 2017, 201, 77-83.	10.8	269
1339	Photo-assisted electrocatalysis of CdS MoS2 hybrid for hydrogen evolution reaction: Morphology-dependent photoelectroactivity of p–n junction photocathode under bias potential. International Journal of Hydrogen Energy, 2017, 42, 5549-5559.	3.8	26
1340	Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect. Applied Surface Science, 2017, 391, 654-661.	3.1	85
1341	Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 543-552.	1.1	26
1342	Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating. Journal of Alloys and Compounds, 2017, 690, 741-748.	2.8	52
1343	Noble-metal-free cobalt phosphide modified carbon nitride: An efficient photocatalyst for hydrogen generation. Applied Catalysis B: Environmental, 2017, 200, 477-483.	10.8	364
1344	Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide. Ultrasonics Sonochemistry, 2017, 38, 693-703.	3.8	43
1345	Probing the light harvesting and charge rectification of bismuth nanoparticles behind the promoted photoreactivity onto Bi/BiOCl catalyst by (in-situ) electron microscopy. Applied Catalysis B: Environmental, 2017, 201, 495-502.	10.8	34
1346	Facile synthesis of GO/ZnO–Ag nanocomposite and evaluation of rhodamine B dye under sun light. Journal of Materials Science: Materials in Electronics, 2017, 28, 354-362.	1.1	12
1347	Preparation and characterization of graphitic C3N4/Ag3VO4 with excellent photocatalytic performance under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2017, 28, 641-651.	1.1	14
1348	Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 202, 33-41.	10.8	155
1349	Reduced graphene oxide wrapped Bi2WO6 hybrid with ultrafast charge separation and improved photoelectrocatalytic performance. Applied Surface Science, 2017, 392, 51-60.	3.1	62
1350	Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Applied Catalysis B: Environmental, 2017, 203, 416-427.	10.8	204
1351	Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 200, 330-342.	10.8	752
1352	Synthesis and characterisation of neodymium doped-zinc oxide–graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light. Research on Chemical Intermediates, 2017, 43, 481-501.	1.3	28
1353	Improved photocatalytic efficiency and stability of CdS/ZnO shell/core nanoarrays with high coverage and enhanced interface combination. International Journal of Hydrogen Energy, 2017, 42, 848-857.	3.8	25
1354	Fabrication of the electrochemically reduced graphene oxide-bismuth nanoparticles composite and its analytical application for an anticancer drug gemcitabine. Chinese Chemical Letters, 2017, 28, 1429-1437.	4.8	16

#	Article	IF	CITATIONS
1355	Photocatalytic Disinfection by Metal-Free Materials. Green Chemistry and Sustainable Technology, 2017, , 155-175.	0.4	1
1356	Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye. Research on Chemical Intermediates, 2017, 43, 2669-2690.	1.3	89
1357	Enhanced adsorbability and photocatalytic activity of TiO 2 -graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase. Colloids and Surfaces B: Biointerfaces, 2017, 150, 68-77.	2.5	75
1358	Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Applied Surface Science, 2017, 396, 1375-1382.	3.1	134
1359	Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes. Journal of Alloys and Compounds, 2017, 695, 799-809.	2.8	46
1360	Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392, 658-686.	3.1	989
1361	Photocatalytic activity of modified g-C 3 N 4 /TiO 2 nanocomposites for NOx removal. Catalysis Today, 2017, 280, 37-44.	2.2	94
1362	Strong UV Emission from Colloidal Eu ²⁺ â€Doped BaSO ₄ Nanoparticles: A Material for Enhancing the Photocatalytic Activity of Carbon Dots. ChemistrySelect, 2017, 2, 5970-5977.	0.7	8
1363	Synthesis and luminescence of ceria decorated graphene quantum dots (GQDs): Evolution of band gap. Integrated Ferroelectrics, 2017, 184, 114-123.	0.3	18
1364	Photocatalytic degradation of Brilliant Green dye using CdSe quantum dots hybridized with graphene oxide under sunlight irradiation. Chinese Journal of Catalysis, 2017, 38, 2150-2159.	6.9	75
1365	Enhancement of photocatalytic activities of perovskite LaFeO3composite by incorporating nanographene platelets. IOP Conference Series: Materials Science and Engineering, 2017, 188, 012054.	0.3	4
1366	Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu_2O/rGO) nanocomposites. Optics Letters, 2017, 42, 911.	1.7	551
1367	Laser-induced convenient synthesis of porous Cu_2O@CuO nanocomposites with excellent adsorption of methyl blue solution. Optical Materials Express, 2017, 7, 924.	1.6	9
1368	One-step electrochemical synthesis of graphene oxide-TiO_2 nanotubes for improved visible light activity. Optical Materials Express, 2017, 7, 1535.	1.6	12
1369	Metal/semiconductor core/shell nanostructures for environmental remediation., 2017,, 79-98.		2
1370	Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein Journal of Nanotechnology, 2017, 8, 688-714.	1.5	93
1371	A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity. Nanomaterials, 2017, 7, 22.	1.9	45
1372	The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation. Frontiers in Chemistry, 2017, 5, 84.	1.8	52

#	Article	IF	CITATIONS
1373	Arginine-Mediated Self-Assembly of Porphyrin on Graphene: A Photocatalyst for Degradation of Dyes. Applied Sciences (Switzerland), 2017, 7, 643.	1.3	38
1374	Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light. Catalysts, 2017, 7, 156.	1.6	67
1375	Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes. Catalysts, 2017, 7, 305.	1.6	124
1376	Effects of carbon defects on ZnO nanorods directly grown on graphene. Japanese Journal of Applied Physics, 2017, 56, 110306.	0.8	3
1377	Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications. Beilstein Journal of Nanotechnology, 2017, 8, 1571-1600.	1.5	119
1378	Porphyrinâ€Based Organophotocatalysts. , 0, , .		4
1380	Enhanced photocatalytic activity of Bi12O17Cl2 nano-sheets via surface modification of carbon nanotubes as electron carriers. Journal of Colloid and Interface Science, 2018, 519, 1-10.	5.0	90
1381	Photodeposited metal-semiconductor nanocomposites and their applications. Journal of Materiomics, 2018, 4, 83-94.	2.8	32
1382	Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Applied Catalysis B: Environmental, 2018, 231, 224-233.	10.8	131
1383	Versatile Graphene oxide decorated by star shaped Zinc oxide nanocomposites with superior adsorption capacity and antimicrobial activity. Journal of Science: Advanced Materials and Devices, 2018, 3, 167-174.	1.5	32
1384	WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catalysis Today, 2018, 315, 155-161.	2.2	38
1385	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
1386	Structural and photocatalytic performance of (Ba,Ca)TiO 3 $\hat{a} \in \text{``Ba}(Sn,Ti)O 3$ ferroelectric ceramics. Materials Science in Semiconductor Processing, 2018, 79, 153-160.	1.9	10
1387	TiO2 nanosheets decorated with B4C nanoparticles as photocatalysts for solar fuel production under visible light irradiation. Applied Surface Science, 2018, 443, 558-566.	3.1	15
1388	Solar energy conversion on g-C3N4 photocatalyst: Light harvesting, charge separation, and surface kinetics. Journal of Energy Chemistry, 2018, 27, 1111-1123.	7.1	144
1389	Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol. Applied Surface Science, 2018, 442, 224-231.	3.1	27
1390	Enhanced energy recovery by manganese oxide/reduced graphene oxide nanocomposite as an air-cathode electrode in the single-chambered microbial fuel cell. Journal of Electroanalytical Chemistry, 2018, 815, 1-7.	1.9	33
1391	Fabricating 3D porous PANI/TiO2–graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Applied Surface Science, 2018, 427, 123-132.	3.1	131

#	ARTICLE	IF	CITATIONS
1393	Monodispersed PtPdNi Trimetallic Nanoparticles-Integrated Reduced Graphene Oxide Hybrid Platform for Direct Alcohol Fuel Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 7769-7778.	3.2	81
1394	Reducing the barrier effect of graphene sheets on a Ag cocatalyst to further improve the photocatalytic performance of TiO ₂ . RSC Advances, 2018, 8, 14056-14063.	1.7	7
1395	Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties. Applied Surface Science, 2018, 451, 67-75.	3.1	72
1396	Revealing the Doubleâ€Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO ₂ Nanotube Arrays@RGO/MoS ₂ Heterostructure. Small, 2018, 14, e1704531.	5.2	49
1397	Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2018, 233, 202-212.	10.8	93
1398	Bisphenol A electrochemiluminescence sensor based on reduced graphene oxide-Bi2ZnS4 nanocomposite. Journal of Electroanalytical Chemistry, 2018, 817, 118-127.	1.9	13
1399	Laminated Hybrid Junction of Sulfurâ€Doped TiO ₂ and a Carbon Substrate Derived from Ti ₃ C ₂ MXenes: Toward Highly Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Science, 2018, 5, 1700870.	5.6	163
1400	Adsorption of formamide over pristine and Al-doped boron nitride nanosheets: A dispersion-corrected DFT study. Journal of Molecular Graphics and Modelling, 2018, 82, 101-107.	1.3	16
1401	Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Applied Catalysis B: Environmental, 2018, 233, 260-271.	10.8	106
1402	Synthesis of BiVO 4-GO-PVDF nanocomposite: An excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies. Solid State Sciences, 2018, 80, 22-30.	1.5	31
1403	Graphene oxide–metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye. RSC Advances, 2018, 8, 13323-13332.	1.7	89
1404	Graphene-Sb2Se3 thin films photoelectrode synthesized by in situ electrodeposition. Materials Letters, 2018, 224, 109-112.	1.3	20
1405	How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. Small, 2018, 14, e1703305.	5.2	59
1406	Probing reaction pathways for oxidation of CO by O2 molecule over P-doped divacancy graphene: A DFT study. Applied Surface Science, 2018, 440, 580-585.	3.1	25
1407	WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 4845-4855.	3.8	96
1408	Electrochemical Analysis of Carbon Nanosheet Catalyst on Silicon Photocathode for Hydrogen Generation. Bulletin of the Korean Chemical Society, 2018, 39, 356-362.	1.0	4
1409	Rational design of donor-Ï€-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 228, 1-9.	10.8	215
1410	Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: Hydrothermal synthesis and photocatalytic properties. Applied Surface Science, 2018, 440, 1172-1180.	3.1	23

#	Article	IF	CITATIONS
1411	Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. Journal of Physics and Chemistry of Solids, 2018, 116, 137-147.	1.9	119
1412	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
1413	Surfactant-assisted hydrothermal synthesis of rGO/SnIn ₄ S ₈ nanosheets and their application in complete removal of Cr(<scp>vi</scp>). RSC Advances, 2018, 8, 5749-5759.	1.7	30
1414	Graphene oxide incorporated functional materials: A review. Composites Part B: Engineering, 2018, 145, 270-280.	5.9	198
1415	Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide. Physical Chemistry Chemical Physics, 2018, 20, 6959-6969.	1.3	53
1416	Enhanced Visible-Light-Driven Photocatalytic Activity by 0D/2D Phase Heterojunction of Quantum Dots/Nanosheets on Bismuth Molybdates. Journal of Physical Chemistry C, 2018, 122, 3738-3747.	1.5	53
1417	Nanoscale p-n heterojunctions of BiOI/nitrogen-doped reduced graphene oxide as a high performance photocatalyst. Carbon, 2018, 132, 191-198.	5.4	56
1418	Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity. Chemosphere, 2018, 198, 1-12.	4.2	45
1419	Ultrahigh-capacity and fast-rate removal of graphene oxide by calcined MgAl layered double hydroxide. Applied Clay Science, 2018, 156, 61-68.	2.6	7
1420	Nitrogen Graphene: A New and Exciting Generation of Visible Light Driven Photocatalyst and Energy Storage Application. ACS Omega, 2018, 3, 1801-1814.	1.6	28
1421	High performance heterojunction photocatalytic membranes formed by embedding Cu ₂ O and TiO ₂ nanowires in reduced graphene oxide. Catalysis Science and Technology, 2018, 8, 1704-1711.	2.1	23
1422	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	5.5	773
1423	Phase-controllable synthesis of MOF-templated maghemite–carbonaceous composites for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 3571-3582.	5.2	42
1424	Enhanced Photocatalytic Degradation of Synthetic Dyes and Industrial Dye Wastewater by Hydrothermally Synthesized G–CuO–Co3O4 Hybrid Nanocomposites Under Visible Light Irradiation. Journal of Cluster Science, 2018, 29, 235-250.	1.7	17
1425	Oxygen vacancy induced superior visible-light-driven photodegradation pollutant performance in BiOCl microflowers. New Journal of Chemistry, 2018, 42, 3614-3618.	1.4	35
1426	Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47, 2165-2216.	18.7	412
1427	Preparation and Characterization of Visible-Light Sensitive Nano Ag/Ag3VO4/AgVO3 Modified by Graphene Oxide for Photodegradation of Reactive Orange 16 Dye. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1149-1157.	1.9	22
1428	Polydopamineâ€Grafted Graphene Oxide Composite Membranes with Adjustable Nanochannels and Separation Performance. Advanced Materials Interfaces, 2018, 5, 1701386.	1.9	21

#	Article	IF	CITATIONS
1429	A one-pot consecutive photocatalytic reduction and oxidation system for complete debromination of tetrabromodiphenyl ether. Chemical Engineering Journal, 2018, 345, 586-593.	6.6	25
1430	Multiaspect insight into synergetic modification of carbon nitride with halide salt and water vapor. Applied Catalysis B: Environmental, 2018, 229, 204-210.	10.8	18
1431	Synthesis of cadmium sulfide-reduced graphene oxide nanocomposites by pulsed laser ablation in liquid for the enhanced photocatalytic reactions in the visible light. International Journal of Energy Research, 2018, 42, 1487-1495.	2.2	30
1432	Graphene Oxide and Polyelectrolyte Composed One-Way Expressway for Guiding Electron Transfer of Integrated Artificial Photosynthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 3060-3069.	3.2	15
1433	Water on Graphene-Coated TiO2: Role of Atomic Vacancies. ACS Applied Materials & Distriction of States of	4.0	14
1434	display="inline" overflow="scroll" altimg="si27.gif"> <mml:mi>i=</mml:mi> <mml:mtext>-</mml:mtext> <mml:msub><mml:mrow><mml:mi mathvariant="normal">Fe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>O<mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow>Oi=i=i=i=i=i=i=i=i=i=i=i=i=i=i=i=i=i=i</mml:msub>	m:lmm @ &c n:lmml><	าร ป ร <mml: nath>/graph</mml:
1435	Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity. Journal of Hazardous Materials, 2018, 347, 378-389.	6.5	36
1436	Enhanced photocatalytic degradation of Rhodamine B by reduced graphene oxides modified Bi12TiO20 under visible light. Journal of Materials Science: Materials in Electronics, 2018, 29, 4668-4674.	1.1	7
1437	Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 349-358.	1.5	108
1438	Vertically-heterostructured TiO2-Ag-rGO ternary nanocomposite constructed with {001} facetted TiO2 nanosheets for enhanced Pt-free hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 1508-1515.	3.8	25
1439	Three-dimensional porous graphene networks expand graphene-based electronic device applications. Physical Chemistry Chemical Physics, 2018, 20, 6024-6033.	1.3	43
1440	Self-assembled MoS ₂ /rGO nanocomposites with tunable UV-IR absorption. RSC Advances, 2018, 8, 2410-2417.	1.7	19
1441	Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light. Journal of Solid State Chemistry, 2018, 260, 23-30.	1.4	27
1442	Zinc Oxide Based Composite Materials for Advanced Supercapacitors. ChemistrySelect, 2018, 3, 550-565.	0.7	48
1443	Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst. Molecular Diversity, 2018, 22, 561-573.	2.1	13
1444	Metal–Organic Frameworkâ€Derived ZnO/ZnS Heteronanostructures for Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1700590.	5.6	169
1445	Highly Active Black TiO ₂ /Nâ€doped Graphene Quantum Dots Nanocomposites For Sunlight Driven Photocatalytic Sewage Treatment. ChemistrySelect, 2018, 3, 201-206.	0.7	12
1446	Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H2 evolution over CdS nanospheres. Journal of Colloid and Interface Science, 2018, 514, 634-641.	5.0	37

#	Article	IF	CITATIONS
1447	Photocatalytic Hydrogen Evolution by Flexible Graphene Composites Decorated with Ni(OH) ₂ Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 1477-1485.	1.5	30
1448	Easy Synthesis of Ordered Mesoporous Carbon–Carbon Nanotube Nanocomposite as a Promising Support for CO ₂ Photoreduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2529-2534.	3.2	31
1449	Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst. Applied Catalysis B: Environmental, 2018, 226, 451-462.	10.8	52
1450	Rapid and efficient green reduction of graphene oxide for outstanding supercapacitors and dye adsorption applications. Journal of Environmental Chemical Engineering, 2018, 6, 3223-3232.	3.3	17
1451	Treatment of saline produced water through photocatalysis using rGO-TiO2 nanocomposites. Catalysis Today, 2018, 315, 194-204.	2.2	44
1452	Hybridizing MoS2 and C60 via a van der Waals heterostructure toward synergistically enhanced visible light photocatalytic hydrogen production activity. International Journal of Hydrogen Energy, 2018, 43, 8698-8706.	3.8	27
1453	Graphene oxide nanosheets synthesized by ultrasound: Experiment versus MD simulation. Applied Surface Science, 2018, 451, 112-120.	3.1	7
1454	Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory. Journal of Molecular Liquids, 2018, 260, 423-435.	2.3	18
1455	High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalysts. Environmental Science and Pollution Research, 2018, 25, 14486-14498.	2.7	25
1456	Promoting Charge Separation in <i>g</i> -C ₃ N ₄ /Graphene/MoS ₂ Photocatalysts by Two-Dimensional Nanojunction for Enhanced Photocatalytic H ₂ Production. ACS Applied Energy Materials, 2018, 1, 1400-1407.	2.5	171
1457	Postillumination Activity in a Single-Phase Photocatalyst of Mo-Doped TiO ₂ Nanotube Array from Its Photocatalytic "Memory― ACS Sustainable Chemistry and Engineering, 2018, 6, 6166-6174.	3.2	47
1458	A novel hollow-hierarchical structured Bi2WO6 with enhanced photocatalytic activity for CO2 photoreduction. Journal of Colloid and Interface Science, 2018, 523, 151-158.	5.0	90
1459	Bubble-wrap carbon: an integration of graphene and fullerenes. Nanoscale, 2018, 10, 11328-11334.	2.8	15
1460	Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochimica Acta, 2018, 271, 41-48.	2.6	71
1461	Heterogeneous liquid phase oxidation of ethylbenzene to acetophenone with graphene carbon-based catalyst. Chemical Papers, 2018, 72, 2203-2214.	1.0	3
1462	BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Advances in Colloid and Interface Science, 2018, 254, 76-93.	7.0	422
1463	Enhanced photocatalytic performance of RGO/Ag nanocomposites produced via a facile microwave irradiation for the degradation of Rhodamine B in aqueous solution. Applied Surface Science, 2018, 444, 811-818.	3.1	48
1464	Enhanced solar light photocatalytic properties of ZnO nanocrystals by Mg-doping via polyacrylamide polymer method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 681-688.	2.0	31

#	Article	IF	CITATIONS
1465	NO removal efficiency of high-yield carbon nitride irradiated under various light sources. Materials Science in Semiconductor Processing, 2018, 73, 83-91.	1.9	4
1466	A review on corrosion protection with single-layer, multilayer, and composites of graphene. Corrosion Reviews, 2018, 36, 155-225.	1.0	31
1467	Fabrication of modified g-C 3 N 4 nanorod/Ag 3 PO 4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. Applied Surface Science, 2018, 430, 301-308.	3.1	92
1468	Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Applied Surface Science, 2018, 430, 293-300.	3.1	185
1469	Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosensors and Bioelectronics, 2018, 101, 146-152.	5.3	246
1470	TiO2-Graphene-Based Composites: Synthesis, Characterization, and Application in Photocatalysis of Organic Pollutants., 2018,, 95-122.		3
1471	Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 2018, 224, 563-571.	10.8	114
1472	Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future. Applied Surface Science, 2018, 434, 643-668.	3.1	42
1473	In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B. Applied Surface Science, 2018, 433, 502-512.	3.1	102
1474	Promoting the oxidative removal rate of 2,4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 69-77.	2.0	55
1475	Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere, 2018, 191, 503-513.	4.2	70
1476	Metal-free heterojunction of graphitic carbon nitride composite with superior and stable visible-light active photocatalysis. Materials Chemistry and Physics, 2018, 204, 243-250.	2.0	26
1477	Efficacious separation of electron–hole pairs in CeO2-Al2O3 nanoparticles embedded GO heterojunction for robust visible-light driven dye degradation. Journal of Colloid and Interface Science, 2018, 512, 219-230.	5.0	42
1478	Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites. Journal of Materials Science, 2018, 53, 774-786.	1.7	57
1479	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 53-107.	3.1	386
1480	A facile and mild route to synthesize ultralight and flexible 3D functionalized graphene. Journal of Porous Materials, 2018, 25, 905-911.	1.3	4
1481	Graphene and g-C 3 N 4 based photocatalysts for NO x removal: A review. Applied Surface Science, 2018, 430, 18-52.	3.1	153
1482	Graphene "bridge―in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 182-190.	10.8	105

#	Article	IF	Citations
1483	Preparation and photocatalytic properties of visible light driven Ag-AgBr-RGO composite. Separation and Purification Technology, 2018, 190, 278-287.	3.9	51
1484	Thermal analysis of the improved Hummers' synthesis of graphene oxide. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2267-2272.	2.0	60
1485	Dielectric and dye adsorption properties of luminescent-superparamagnetic MFe2O4 (M = Mn,) Tj ETQq0 0 0 rgB1	Oyerlock	10 Tf 50 6
1486	Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation. Journal of Power Sources, 2018, 376, 11-17.	4.0	41
1487	Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2018, 225, 468-476.	10.8	208
1488	Monolithic aerogel photocatalysts: a review. Journal of Materials Chemistry A, 2018, 6, 754-775.	5.2	152
1489	Nitrogen-doped carbon dot-modified Ag ₃ PO ₄ /GO photocatalyst with excellent visible-light-driven photocatalytic performance and mechanism insight. Catalysis Science and Technology, 2018, 8, 632-641.	2.1	41
1490	Calcined layered double hydroxides/reduced graphene oxide composites with improved photocatalytic degradation of paracetamol and efficient oxidation-adsorption of As(III). Applied Catalysis B: Environmental, 2018, 225, 550-562.	10.8	103
1491	Decoration of Pt on the metal free RGO-TiO 2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant \hat{l}^2 blocker. International Journal of Hydrogen Energy, 2018, 43, 4015-4027.	3.8	42
1492	Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 224, 230-238.	10.8	93
1493	An investigation of the dye-sensitized solar cell performance using graphene-titania (TrGO) photoanode with conventional dye and natural green chlorophyll dye. Materials Science in Semiconductor Processing, 2018, 74, 267-276.	1.9	40
1494	One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with meshâ^'shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction. Applied Surface Science, 2018, 435, 822-831.	3.1	24
1495	Simultaneous photocatalytic degradation of p -cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Molecular Catalysis, 2018, 451, 87-95.	1.0	75
1496	One-pot electrodeposition synthesis of Bi2WO6/graphene composites for photocatalytic applications under visible light irradiation. Ceramics International, 2018, 44, 3511-3516.	2.3	25
1497	Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight. Journal of Physics and Chemistry of Solids, 2018, 114, 71-82.	1.9	64
1498	Probing with Lightâ€"Optical Methods in Studies of Nanocrystalline Semiconductors. Lecture Notes in Quantum Chemistry II, 2018, , 319-371.	0.3	O
1499	Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters. Applied Catalysis B: Environmental, 2018, 224, 810-824.	10.8	263
1500	Graphene-induced formation of visible-light-responsive SnO2-Zn2SnO4 Z-scheme photocatalyst with surface vacancy for the enhanced photoreactivity towards NO and acetone oxidation. Chemical Engineering Journal, 2018, 336, 200-210.	6.6	79

#	Article	IF	CITATIONS
1501	Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity. Applied Surface Science, 2018, 434, 756-762.	3.1	19
1502	Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications. Materials Research Bulletin, 2018, 98, 314-321.	2.7	57
1503	Carbon quantum dots/KNbO3 hybrid composites with enhanced visible-light driven photocatalytic activity toward dye waste-water degradation and hydrogen production. Molecular Catalysis, 2018, 445, 1-11.	1.0	74
1504	Synthesis Characterization, Antimicrobial, Antioxidant, and Cytotoxic Activities of ZnO Nanorods on Reduced Graphene Oxide. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 679-693.	1.9	42
1505	Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production. Nano Research, 2018, 11, 2295-2309.	5.8	94
1506	Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups. Environmental Pollution, 2018, 236, 962-970.	3.7	33
1507	Sunlight-Induced Selective Photocatalytic Degradation of Methylene Blue in Bacterial Culture by Pollutant Soot Derived Nontoxic Graphene Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 579-589.	3.2	96
1508	Microwave-assisted solvothermal synthesis of novel hierarchical BiOI/rGO composites for efficient photocatalytic degardation of organic pollutants. Applied Surface Science, 2018, 430, 165-175.	3.1	67
1509	Plasmonic metamaterial-based chemical converted graphene/TiO 2 /Ag thin films by a simple spray pyrolysis technique. Physica B: Condensed Matter, 2018, 535, 299-303.	1.3	1
1510	Study on the bactericidal performance of graphene/TiO2 composite photocatalyst in the coating of PEVE. Applied Surface Science, 2018, 430, 116-124.	3.1	46
1511	Synthesis of titanium dioxide/nanographene platelets (TiO2/NGP) composites for degradation of methylene blue. AIP Conference Proceedings, 2018, , .	0.3	0
1512	TiO ₂ -Intercalated Graphene Oxides with Highly Efficient Photocatalytic Degradation for Methylene Blue. Journal of Nanomaterials, 2018, 2018, 1-10.	1.5	9
1513	Recent Progress in Constructing Plasmonic Metal/Semiconductor Hetero-Nanostructures for Improved Photocatalysis. Catalysts, 2018, 8, 634.	1.6	15
1514	Preparation of TiO ₂ -Reduced Graphene Oxide Nanocomposites for Sunlight Degradation of Methylene Blue. Materials Science Forum, 2018, 937, 17-23.	0.3	1
1515	The novel and efficient reduction of graphene oxide using <i>Ocimum sanctum</i> L. leaf extract as an alternative renewable bio-resource. New Journal of Chemistry, 2018, 42, 19945-19952.	1.4	49
1516	Electrocatalytic and Photoelectrochemical Reduction of Carbon Dioxide in Aqueous Media: Toward Generation of Fuels and Utility Chemicals., 2018,, 521-530.		4
1517	Role of Graphene in Photocatalytic Solar Fuel Generation. , 0, , .		3
1518	A Novel Ag3PO4/Ag/Ag2Mo2O7 Nanowire Photocatalyst: Ternary Nanocomposite for Enhanced Photocatalytic Activity. Chinese Journal of Chemical Physics, 2018, 31, 92-98.	0.6	17

#	Article	IF	CITATIONS
1520	Highly Improved Solar Energy Harvesting for Fuel Production from CO2 by a Newly Designed Graphene Film Photocatalyst. Scientific Reports, 2018, 8, 16741.	1.6	21
1521	A simple ultrasonic-synthetic route of Cu ₂ Se-graphene-TiO ₂ ternary composites for carbon dioxide conversion processes. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 827-836.	1.0	17
1522	Bioâ€Inspired Plasmonic Photocatalysts. Small Methods, 2019, 3, 1800295.	4.6	13
1523	Catalytic mechanism of graphene-nickel interface dipole layer for binder free electrochemical sensor applications. Communications Chemistry, 2018, 1, .	2.0	12
1524	Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Physical Chemistry Chemical Physics, 2018, 20, 28777-28785.	1.3	15
1525	Compositing Two-Dimensional Materials with TiO2 for Photocatalysis. Catalysts, 2018, 8, 590.	1.6	31
1526	Ultraviolet photodetector based on nanostructured ZnO-reduced graphene oxide composite. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	12
1527	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
1528	In situ preparation of N doped orthorhombic Nb2O5 nanoplates /rGO composites for photocatalytic hydrogen generation under sunlight. International Journal of Hydrogen Energy, 2018, 43, 19873-19884.	3.8	36
1529	Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	170
1530	One-pot hydrothermal synthesis of TiO2/graphene nanocomposite with simultaneous nitrogen-doping for energy storage application. Journal of Electroanalytical Chemistry, 2018, 829, 208-216.	1.9	34
1531	An adaptive geometry regulation strategy for 3D graphene materials: towards advanced hybrid photocatalysts. Chemical Science, 2018, 9, 8876-8882.	3.7	29
1532	Engineering Surface Wettability of Reduced Graphene Oxide To Realize Efficient Interfacial Photocatalytic Benzene Hydroxylation in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 15682-15687.	3.2	14
1533	AgInS ₂ -Coated Upconversion Nanoparticle as a Photocatalyst for Near-Infrared Light-Activated Photodynamic Therapy of Cancer Cells. ACS Applied Bio Materials, 2018, 1, 1628-1638.	2.3	15
1534	Facile synthesis of recyclable Co3O4/Co(OH)2/RGO ternary heterostructures with synergistic effect for photocatalysis. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	12
1535	Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy, 2018, 43, 18925-18945.	3.8	83
1536	MoS ₂ /CQDs obtained by photoreduction for assembly of a ternary MoS ₂ /CQDs/Znln ₂ S ₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 19735-19742.	5. 2	77
1537	Recent advances of low-dimensional materials in lasing applications. FlatChem, 2018, 10, 22-38.	2.8	14

#	Article	IF	CITATIONS
1538	Graphene-Enhanced Raman Spectroscopy Reveals the Controlled Photoreduction of Nitroaromatic Compound on Oxidized Graphene Surface. ACS Omega, 2018, 3, 11084-11087.	1.6	6
1539	Selective photocatalytic benzene hydroxylation to phenol using surface-modified Cu ₂ O supported on graphene. Journal of Materials Chemistry A, 2018, 6, 19782-19787.	5.2	29
1540	Efficient Noble-Metal-Free Co-NG/TiO ₂ Photocatalyst for H ₂ Evolution: Synergistic Effect between Single-Atom Co and N-Doped Graphene for Enhanced Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 12766-12775.	3.2	63
1541	Facile Fabrication of Dumbbell-Like \hat{l}^2 -Bi2O3/Graphene Nanocomposites and Their Highly Efficient Photocatalytic Activity. Materials, 2018, 11, 1359.	1.3	45
1542	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
1543	Growth of ZnO Nanorods on Graphitic Carbon Nitride gCN Sheets for the Preparation of Photocatalysts with High Visibleâ€Light Activity. ChemCatChem, 2018, 10, 4973-4983.	1.8	76
1544	Nanocarbons as platforms for developing novel catalytic composites: overview and prospects. Applied Catalysis A: General, 2018, 562, 94-105.	2.2	40
1545	Facile synthesis of bimodal porous graphitic carbon nitride nanosheets as efficient photocatalysts for hydrogen evolution. Nano Energy, 2018, 50, 376-382.	8.2	58
1546	Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environmental Chemistry Letters, 2018, 16, 1301-1323.	8.3	84
1547	Efficient photocatalytic degradation of methylene blue by using GO/hemin/TiO ₂ nanocomposite under visible irradiation. Micro and Nano Letters, 2018, 13, 646-651.	0.6	7
1548	Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 2018, 29, 342001.	1.3	383
1549	Synthesis and behaviors of g-C 3 N 4 coupled with La \times Co 3- \times O 4 nanocomposite for improved photocatalytic activeity and stability under visible light. Materials Research Bulletin, 2018, 105, 342-348.	2.7	41
1550	Structural Engineering of 3D Carbon Materials from Transition Metal Ion-Exchanged Y Zeolite Templates. Chemistry of Materials, 2018, 30, 3779-3788.	3.2	28
1551	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	5.2	215
1552	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
1553	Coupling plasmonic noble metal with TiO2 for efficient photocatalytic transfer hydrogenation: M/TiO2 (M†= †Au and Pt) for chemoselective transformation of cinnamaldehyde to cinnamyl alcohol under visible and 365†nm UV light. Applied Surface Science, 2018, 452, 279-285.	3.1	49
1554	Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Metals, 2018, 37, 919-928.	3.6	12
1555	Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Advances, 2018, 8, 19659-19667.	1.7	67

#	Article	IF	Citations
1556	Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21035-21055.	4.0	266
1557	Preparation of graphene oxide/semiconductor oxide composites by using atomic layer deposition. Applied Surface Science, 2018, 453, 245-251.	3.1	32
1558	Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 11606-11630.	5.2	379
1559	Atomicâ€Scale Mott–Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metalâ€Free Photocatalysts for Artificial Photosynthesis. Advanced Science, 2018, 5, 1800062.	5. 6	54
1560	DFT study for combined influence of C-doping and external electric field on electronic structure and optical properties of TiO2 (001) surface. Journal of Materiomics, 2018, 4, 247-255.	2.8	9
1561	BiOmFn/BiOxly/GO Nanocomposites: Synthesis, characterization, and photocatalytic activity. Molecular Catalysis, 2018, 455, 214-223.	1.0	42
1562	A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering, 2018, 6, 7411-7425.	3.3	196
1563	Hierarchical carbon–silicon nanowire heterostructures for the hydrogen evolution reaction. Nanoscale, 2018, 10, 13936-13941.	2.8	20
1564	Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Applied Surface Science, 2018, 457, 846-855.	3.1	151
1565	Nanoporous Pt/TiO ₂ nanocomposites with greatly enhanced photocatalytic performance. Journal of the Chinese Chemical Society, 2018, 65, 1286-1292.	0.8	8
1566	In-situ synthesis of rGO-ZnO nanocomposite for demonstration of sunlight driven enhanced photocatalytic and self-cleaning of organic dyes and tea stains of cotton fabrics. Journal of Hazardous Materials, 2018, 360, 193-203.	6.5	100
1567	Current Progress in Aptasensors for Heavy Metal Ions Based on Photoelectrochemical Method: A Review. Current Analytical Chemistry, 2018, 14, .	0.6	32
1568	Nitrogen Defects-Rich 0D/2D \hat{i} +-Fe ₂ O ₃ /g-C ₃ N ₄ Z-Scheme Photocatalyst for Enhanced Photooxidation and H ₂ Evolution Efficiencies. Nano, 2018, 13, 1850086.	0.5	19
1569	Enhanced Visible Light Driven Photocatalytic Behavior of BiFeO3/Reduced Graphene Oxide Composites. Nanomaterials, 2018, 8, 526.	1.9	57
1570	Structural and optical properties of electrochemically deposited ZnO nanorods by using graphene oxide and ITO as substrate material: a comparative study. Materials Research Express, 2018, 5, 095024.	0.8	7
1571	Graphene Oxide/BiOCl Nanocomposite Films as Efficient Visible Light Photocatalysts. Frontiers in Chemistry, 2018, 6, 274.	1.8	33
1572	The triple-component Ag3PO4-CoFe2O4-GO synthesis and visible light photocatalytic performance. Applied Surface Science, 2018, 458, 880-892.	3.1	25
1573	Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Scientific Reports, 2018, 8, 11090.	1.6	84

#	Article	IF	CITATIONS
1574	Effect of Sn doping in ZnO on the photocatalytic activity of ZnO-Graphene nanocomposite with improved activity. Journal of Environmental Chemical Engineering, 2018, 6, 5087-5100.	3.3	43
1575	Phosphorus-doped cerium vanadate nanorods with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 531, 618-627.	5.0	27
1576	Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics, 2018, 8, 3317-3330.	4.6	86
1577	Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2018, 239, 178-186.	10.8	112
1578	Visible Light-Driven Membraneless Photocatalytic Fuel Cell toward Self-Powered Aptasensing of PCB77. Analytical Chemistry, 2018, 90, 9662-9666.	3.2	55
1579	Strongly Coupled gâ€C ₃ N ₄ Nanosheetsâ€Co ₃ O ₄ Quantum Dots as 2D/0D Heterostructure Composite for Peroxymonosulfate Activation. Small, 2018, 14, e1801353.	5.2	284
1580	Continuous-Flow Photocatalytic Degradation of Organics Using Modified TiO2 Nanocomposites. Catalysts, 2018, 8, 43.	1.6	23
1581	Ag3PO4-TiO2-Graphene Oxide Ternary Composites with Efficient Photodegradation, Hydrogen Evolution, and Antibacterial Properties. Catalysts, 2018, 8, 57.	1.6	40
1582	Removal of Methylene Blue from Water by BiFeO3/Carbon Fibre Nanocomposite and Its Photocatalytic Regeneration. Catalysts, 2018, 8, 267.	1.6	11
1583	Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Applied Catalysis B: Environmental, 2018, 238, 6-18.	10.8	289
1584	Influence of TiO2 morphology on adsorption-photocatalytic efficiency of TiO2-graphene composites for methylene blue degradation. Journal of Environmental Chemical Engineering, 2018, 6, 4899-4907.	3.3	25
1585	Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction. Materials, 2018, 11, 147.	1.3	52
1586	Multifunctional Reduced Graphene Oxide Wrapped Circular Au Nanoplatelets: Enhanced Photoluminescence, Excellent Surface-Enhanced Raman Scattering, Photocatalytic Water Splitting, and Non-Enzymatic Biosensor. ACS Applied Nano Materials, 2018, 1, 3945-3955.	2.4	27
1587	Titanium dioxide nanostructures for photoelectrochemical applications. Progress in Materials Science, 2018, 98, 299-385.	16.0	205
1588	Fabrication and characterization of amino-grafted graphene oxide modified ZnO with high photocatalytic activity. Applied Surface Science, 2018, 458, 638-647.	3.1	38
1589	Construction of Sn/oxide g-C3N4 nanostructure by electrostatic self-assembly strategy with enhanced photocatalytic degradation performance. Applied Surface Science, 2018, 457, 1035-1043.	3.1	17
1590	2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting. Advanced Materials, 2018, 30, e1801955.	11.1	211
1591	Synthesis of nitrogen and sulfur co-doped reduced graphene oxide as efficient metal-free cocatalyst for the photo-activity enhancement of CdS. Applied Catalysis B: Environmental, 2018, 236, 212-221.	10.8	68

#	Article	IF	CITATIONS
1592	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
1593	Revealing hidden endotherm of Hummers' graphene oxide during low-temperature thermal reduction. Carbon, 2018, 138, 337-347.	5.4	33
1594	Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. Journal of Materials Research, 2018, 33, 1506-1514.	1.2	22
1595	Carbon quantum dots (CQDs) and Co(dmgH)2PyCl synergistically promote photocatalytic hydrogen evolution over hexagonal ZnIn2S4. Applied Surface Science, 2018, 462, 255-262.	3.1	39
1596	Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 2018, 462, 549-564.	3.1	292
1597	Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer. Enzyme and Microbial Technology, 2018, 119, 17-23.	1.6	8
1598	Reducedâ€Grapheneâ€Oxide Zincâ€Telluride Composite: Towards Largeâ€Area Optoelectronic and Photocatalytic Applications. ChemistrySelect, 2018, 3, 8637-8643.	0.7	13
1599	Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure. Journal of Materials Science: Materials in Electronics, 2018, 29, 17022-17037.	1.1	14
1600	Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chemical Society Reviews, 2018, 47, 8203-8237.	18.7	258
1601	Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst. Applied Catalysis B: Environmental, 2018, 239, 204-213.	10.8	165
1602	Easy and green preparation of a graphene–TiO ₂ nanohybrid using a supramolecular biomaterial consisting of artificially bifunctionalized proteins and its application for a perovskite solar cell. Nanoscale, 2018, 10, 19249-19253.	2.8	6
1603	Effect of synthesis parameters on visible light photocatalytic activity of graphene-TiO2 nanocomposites for industrial wastewater treatment. Journal of Industrial and Engineering Chemistry, 2018, 66, 370-380.	2.9	8
1604	A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. Journal of Solid State Chemistry, 2018, 266, 196-204.	1.4	17
1605	Fabrication of indium sulfide/graphene oxide photodegradation of rhodamine B-containing wastewater under visible light irradiation. Materials Research Express, 2018, 5, 065906.	0.8	6
1606	Interfacial Engineering of a Carbon Nitride–Graphene Oxide–Molecular Ni Catalyst Hybrid for Enhanced Photocatalytic Activity. ACS Catalysis, 2018, 8, 6914-6926.	5.5	52
1607	Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chemical Society Reviews, 2018, 47, 8072-8096.	18.7	176
1608	Synthesis of N-Doped Graphene Oxide Quantum Dots with the Internal P-N Heterojunction and Its Photocatalytic Performance under Visible Light Illumination. Journal of Advanced Oxidation Technologies, 2018, 21, 44-53.	0.5	0
1609	Twoâ€dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. Journal of Chemical Technology and Biotechnology, 2019, 94, 22-37.	1.6	76

#	Article	IF	CITATIONS
1610	Polypyrrole- and polyaniline-supported TiO ₂ for removal of pollutants from water. Journal of Environmental Engineering and Science, 2019, 14, 67-89.	0.3	9
1611	Recent Developments in Adsorption of Dyes Using Graphene Based Nanomaterials. , 2019, , 439-471.		13
1613	Bromate Formation in Drinking Water and Its Control Using Graphene Based Materials., 2019,, 239-260.		1
1614	Oneâ€pot selfâ€assembled TiO ₂ /graphene/poly(acrylamide) superporous hybrid for photocatalytic degradation of organic pollutants. Journal of Applied Polymer Science, 2019, 136, 47033.	1.3	7
1615	Recent Progress in Twoâ€Dimensional Antimicrobial Nanomaterials. Chemistry - A European Journal, 2019, 25, 929-944.	1.7	59
1616	Origin of Charge Trapping in TiO ₂ /Reduced Graphene Oxide Photocatalytic Composites: Insights from Theory. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31909-31922.	4.0	43
1617	Improved photoelectrocatalytic degradation of tetrabromobisphenol A with silver and reduced graphene oxide-modified TiO2 nanotube arrays under simulated sunlight. Ecotoxicology and Environmental Safety, 2019, 182, 109472.	2.9	20
1618	Graphene/metal oxide–based nanocomposite as photocatalyst for degradation of water pollutants. , 2019, , 221-240.		5
1619	Experimental and density functional theory investigations of catechol sensing properties of ZnO/RGO nanocomposites. Applied Surface Science, 2019, 495, 143588.	3.1	20
1620	Nitrogen-doped fluorescent graphene nanosheets as visible-light-driven photocatalysts for dye degradation and selective sensing of ascorbic acid. New Journal of Chemistry, 2019, 43, 14575-14583.	1.4	41
1621	Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere, 2019, 237, 124479.	4.2	60
1622	Qualitative and Quantitative Analysis of Graphene-Based Adsorbents in Wastewater Treatment. International Journal of Chemical Engineering, 2019, 2019, 1-17.	1.4	53
1623	Synchronous synthesis of Cu2O/Cu/rGO@carbon nanomaterials photocatalysts via the sodium alginate hydrogel template method for visible light photocatalytic degradation. Science of the Total Environment, 2019, 693, 133657.	3.9	39
1624	Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO ₂ composites. Journal of Chemical Technology and Biotechnology, 2019, 94, 3905-3914.	1.6	16
1625	High-throughput Production of ZnO-MoS2-Graphene Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution. Materials, 2019, 12, 2233.	1.3	30
1626	Novel visible-light-responsive rGO-ZnO@Bi2MoO6 nanocomposite with enhanced light harvesting and Z-scheme charge transfer for photodegradation and detoxification of RhB. Solid State Sciences, 2019, 95, 105934.	1.5	40
1627	Understanding the Surface of g-C3N4, an Experimental Investigation of the Catalytic Active Site on the Interface. Catalysis Letters, 2019, 149, 3296-3303.	1.4	7
1628	Supporting Ultrathin ZnIn ₂ S ₄ Nanosheets on Co/Nâ€Doped Graphitic Carbon Nanocages for Efficient Photocatalytic H ₂ Generation. Advanced Materials, 2019, 31, e1903404.	11.1	300

#	Article	IF	CITATIONS
1629	Polymer-Brush-Decorated Graphene Oxide: Precision Synthesis and Liquid-Crystal Formation. Langmuir, 2019, 35, 10900-10909.	1.6	15
1630	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
1631	Self-assembly of porphyrin on graphene oxide in aqueous medium: fabrication, characterization, and photocatalytic studies. Photochemical and Photobiological Sciences, 2019, 18, 2071-2079.	1.6	35
1632	rGO/β–Bi2O3/SrFe12O19 magnetic photocatalyst: facile synthesis and its photocatalytic activity. Materials Research Express, 2019, 6, 115912.	0.8	1
1633	Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 2019, 24, 3702.	1.7	92
1634	Indium Tin-Oxide Wrapped 3D rGO and TiO2 Composites: Development, Characterization, and Enhancing Photocatalytic Activity for Methylene Blue. Catalysts, 2019, 9, 848.	1.6	4
1636	Facile Synthesis of NaYF 4 :Yb,Tm@TiO 2 Coreâ€Shell Structured Composite with Enhanced Photocatalytic Activity for Degradation of RhB Dye. ChemistrySelect, 2019, 4, 11346-11353.	0.7	3
1637	Layered Hg3AsE4X as photo catalyst for water splitting under visible light. IOP Conference Series: Earth and Environmental Science, 2019, 252, 042041.	0.2	0
1638	Graphene Dispersed Bi ₂ WO ₆ Nanosheets with Promoted Interfacial Charge Separation for Visible Light Photocatalysis. ChemCatChem, 2019, 11, 5487-5494.	1.8	10
1639	Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chinese Journal of Catalysis, 2019, 40, 1668-1672.	6.9	21
1644	Fabrication of a biocompatible and continuous glucose biosensor with the poly(3,4-ethylenedioxythiophene) modified electrode. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 1-7.	2.7	14
1645	Formation of TiO ₂ @Carbon Core/Shell Nanocomposites from a Single Molecular Layer of Aromatic Compounds for Photocatalytic Hydrogen Peroxide Generation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41196-41203.	4.0	24
1646	Development of Nanostructured Titania-based Photocatalysts and Their Applications. Journal of the Japan Petroleum Institute, 2019, 62, 97-105.	0.4	3
1647	Environmentally Sustainable Synthesis of a CoFe ₂ O ₄ –TiO ₂ /rGO Ternary Photocatalyst: A Highly Efficient and Stable Photocatalyst for High Production of Hydrogen (Solar Fuel). ACS Omega, 2019, 4, 880-891.	1.6	104
1648	ZnO/ZnFe2O4/Ag hollow nanofibers with multicomponent heterojunctions for highly efficient photocatalytic water pollutants removal. Ceramics International, 2019, 45, 23522-23527.	2.3	13
1649	Facile direct synthesis of graphene-wrapped ZnO nanospheres from cyanobacterial cells. Chemical Communications, 2019, 55, 11410-11413.	2.2	9
1650	Mechanistic insights into <i>N</i> -hydroxyphthalimide modified graphitic carbon nitride boosted photocatalytic hydrogen production. Catalysis Science and Technology, 2019, 9, 5441-5446.	2.1	5
1651	Growth and photocatalytic behavior of transparent reduced GO–ZnO nanocomposite sheets. Nanotechnology, 2019, 30, 485601.	1.3	23

#	Article	IF	CITATIONS
1652	Synthesis of ultrathin g-C3N4/graphene nanocomposites with excellent visible-light photocatalytic performances. Functional Materials Letters, 2019, 12, 1950025.	0.7	3
1653	Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide. Egyptian Journal of Aquatic Research, 2019, 45, 321-328.	1.0	27
1654	Facet-dependent photocatalytic performances of BiOCl under simulated sunlight irradiation. Ferroelectrics, 2019, 546, 33-40.	0.3	1
1655	Palladium decorated on a new dendritic complex with nitrogen ligation grafted to graphene oxide: fabrication, characterization, and catalytic application. RSC Advances, 2019, 9, 27560-27573.	1.7	12
1656	Immobilized rGO/TiO2 Photocatalyst for Decontamination of Water. Catalysts, 2019, 9, 708.	1.6	25
1657	Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite. Journal of Electronic Materials, 2019, 48, 7836-7845.	1.0	14
1658	BiOI nanosheets with dominated (001) facet and its photocatalytic performances. Ferroelectrics, 2019, 547, 164-171.	0.3	2
1659	Enhanced photo-induced catalytic activity of Cu ion doped ZnO - Graphene ternary nanocomposite for degrading organic dyes. Journal of Water Process Engineering, 2019, 32, 100966.	2.6	27
1660	Recent advances in nanoporous materials as sample preparation techniques for peptidome research. TrAC - Trends in Analytical Chemistry, 2019, 120, 115658.	5.8	32
1661	Photocatalytic Hydrogen Evolution Performance and Photogenerated Charge Transfer Properties of p-Type Copper Sulfide. Russian Journal of Physical Chemistry A, 2019, 93, 2003-2008.	0.1	1
1662	Graphene-Based Catalysts for Ozone Processes to Decontaminate Water. Molecules, 2019, 24, 3438.	1.7	20
1663	Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content. Journal of Catalysis, 2019, 377, 652-661.	3.1	74
1664	Tuning the surface plasmon resonance in gold nanocrystals with single layer carbon nitride. RSC Advances, 2019, 9, 444-449.	1.7	7
1665	Semiconductor-Based Nanocomposites for Photodegradation of Organic Pollutants., 2019,, 25-58.		3
1666	Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight. Catalysis Science and Technology, 2019, 9, 12-46.	2.1	74
1667	2D/2D Heterojunctions for Catalysis. Advanced Science, 2019, 6, 1801702.	5.6	224
1668	Environmental impact of the production of graphene oxide and reduced graphene oxide. SN Applied Sciences, 2019, 1, 1.	1.5	55
1669	Photocatalytic and adsorption property of ZnS–TiO ₂ /RGO ternary composites for methylene blue degradation. Adsorption Science and Technology, 2019, 37, 764-776.	1.5	23

#	Article	IF	CITATIONS
1670	CdS Photocatalysts Modified with Ag: Effect of the Solvothermal Temperature on the Structure and Photoactivity for Hydrogen Production. Catalysts, 2019, 9, 110.	1.6	14
1671	Graphene composite nanofibers as a high-performance photocatalyst for environmental remediation. Separation and Purification Technology, 2019, 215, 602-611.	3.9	24
1672	Metal Oxide–Graphene and Metal–Graphene Nanocomposites for Energy and Environment. , 2019, , 285-294.		1
1673	Graphene promoted triphasic N/Ti3+-TiO2 heterostructures: In-situ hydrothermal synthesis and enhanced photocatalytic performance. Journal of Alloys and Compounds, 2019, 785, 732-741.	2.8	27
1674	Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy and Environmental Science, 2019, 12, 59-95.	15.6	373
1675	How does graphene enhance the photoelectric conversion efficiency of dye sensitized solar cells? An insight from a theoretical perspective. Journal of Materials Chemistry A, 2019, 7, 2730-2740.	5.2	26
1676	Sunlight induced photo-thermal synergistic catalytic CO ₂ conversion <i>via</i> localized surface plasmon resonance of MoO _{3â^'x} . Journal of Materials Chemistry A, 2019, 7, 2821-2830.	5.2	161
1677	Facile prepared ball-like TiO2 at GO composites for oxytetracycline removal under solar and visible lights. Water Research, 2019, 160, 197-205.	5.3	77
1678	Enhanced solar light photoreduction of innovative TiO2 nanospherical shell by reduced graphene oxide for removal silver ions from aqueous media. Journal of Environmental Chemical Engineering, 2019, 7, 103168.	3.3	13
1679	A novel Ag-BiOBr-rGO photocatalyst for enhanced ketoprofen degradation: Kinetics and mechanisms. Science of the Total Environment, 2019, 678, 173-180.	3.9	46
1680	Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. Journal of Materials Chemistry A, 2019, 7, 23904-23913.	5.2	67
1681	Facile synthesis of highly efficient Pt/N-rGO/N-NaNbO3 nanorods toward photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 257, 117901.	10.8	60
1682	Titanium dioxide-molybdenum disulfide for photocatalytic degradation of methylene blue. Chemical Physics, 2019, 525, 110419.	0.9	26
1683	Insights into the role of graphene in hybrid photocatalytic system by in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Carbon, 2019, 152, 305-315.	5.4	4
1684	Hierarchical metal–semiconductor–graphene ternary heteronanostructures for plasmon-enhanced wide-range visible-light photocatalysis. Journal of Materials Chemistry A, 2019, 7, 15831-15840.	5.2	25
1685	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23125-23134.	4.0	34
1686	A Cocrystal Precursor Strategy for Carbon-Rich Graphitic Carbon Nitride toward High-Efficiency Photocatalytic Overall Water Splitting. IScience, 2019, 16, 22-30.	1.9	54
1687	One-step synthesis of oxygen vacancy-rich SnO2 quantum dots with ultrahigh visible-light photocatalytic activity. Materials Research Bulletin, 2019, 118, 110486.	2.7	16

#	Article	IF	CITATIONS
1688	In-situ solid-state synthesis and regulation of Ag2O/Ag2CO3 heterojunctions with promoted visible-light driven photocatalytic decomposition for organic pollutant. Separation and Purification Technology, 2019, 226, 95-108.	3.9	20
1689	Observation of Different Charge Transport Processes and Origin of Magnetism in rGO and rGO-ZnSe Composite. Journal of Physical Chemistry C, 2019, 123, 15441-15450.	1.5	13
1690	Cooperation in Cu-MOF-74-Derived Cu–Cu2O–C Nanocomposites To Enable Efficient Visible-Light-Initiated Phenylacetylene Coupling. Inorganic Chemistry, 2019, 58, 7997-8002.	1.9	40
1691	Nanostructures of graphene oxide modified with ZnO: synthesis and photocatalyst evaluation under sunlight. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 632-639.	1.0	3
1692	Heterostructured Ag/g ₃ N ₄ /TiO ₂ with enhanced visible light photocatalytic performances. Journal of Chemical Technology and Biotechnology, 2019, 94, 3806-3814.	1.6	38
1693	Toward large-scale water treatment using nanomaterials. Nano Today, 2019, 27, 11-27.	6.2	94
1694	Functionalization and Defect-Driven Water Splitting Mechanism on a Quasi-Two-Dimensional TiO2 Hexagonal Nanosheet. ACS Applied Energy Materials, 2019, 2, 5074-5082.	2.5	8
1695	Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordination Chemistry Reviews, 2019, 395, 63-85.	9.5	141
1696	Efficient etching of oxygen-incorporated molybdenum disulfide nanosheet arrays for excellent electrocatalytic hydrogen evolution. Applied Surface Science, 2019, 491, 245-255.	3.1	22
1697	Polarity on adsorption and photocatalytic performances of N-GR/TiO2 towards gaseous acetaldehyde and ethylene. Applied Surface Science, 2019, 485, 255-265.	3.1	26
1698	Insight into efficient photocatalytic elimination of tetracycline over SrTiO3(La,Cr) under visible-light irradiation: The relationship of doping and performance. Applied Surface Science, 2019, 486, 93-101.	3.1	42
1699	Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. Journal of Environmental Chemical Engineering, 2019, 7, 103132.	3.3	103
1700	A facile microwave stimulated g-C3N4/α-Fe2O3 hybrid photocatalyst with superior photocatalytic activity and attractive cycling stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 10985-10993.	1.1	15
1701	Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlightâ€Driven Photocatalytic Reduction of CO ₂ into Fuels. Advanced Functional Materials, 2019, 29, 1901825.	7.8	315
1702	Revealing interfacial charge transfer in TiO2/reduced graphene oxide nanocomposite by surface-enhanced Raman scattering (SERS): Simultaneous a superior SERS-active substrate. Applied Surface Science, 2019, 487, 938-944.	3.1	36
1703	Photocatalytic Performance of ZnSe-rGO Nanocomposites: Synthesis, Characterization and Composition Dependence. Journal of Nanoscience and Nanotechnology, 2019, 19, 5256-5263.	0.9	0
1704	Continuous Photocatalytic Reduction of CO ₂ Using Nanoporous Reduced Graphene Oxide (RGO)/Cadmium Sulfide (CdS) as Catalyst on Porous Anodic Alumina (PAA)/Aluminum Support. Journal of Nanoscience and Nanotechnology, 2019, 19, 5323-5331.	0.9	14
1705	Preparation and Characterization of Mesoporous TiO ₂ Sphere/g-C ₃ N ₄ Nanosheets for Photocatalytic Behaviors. Journal of Nanoscience and Nanotechnology, 2019, 19, 6247-6255.	0.9	8

#	Article	IF	CITATIONS
1706	Synthesis of layered perovskite Ag,F-Bi2MoO6/rGO: A surface plasmon resonance and oxygen vacancy promoted nanocomposite as a visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 130-143.	2.0	36
1707	Structure and Properties of Double-Sandwich Complexes at the Graphene Surface: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 14712-14724.	1.5	4
1708	Fabrication of ZnFe-layered double hydroxides with graphene oxide for efficient visible light photocatalytic performance. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 186-203.	2.7	72
1709	Single-crystalline melem (C ₆ N ₁₀ H ₆) nanorods: a novel stable molecular crystal photocatalyst with modulated charge potentials and dynamics. Journal of Materials Chemistry A, 2019, 7, 13234-13241.	5.2	22
1710	Chemical Bonding and Electronic Structure in CdS/GO and CdSSe/GO Multilayer Films. Journal of Physical Chemistry C, 2019, 123, 13918-13924.	1.5	8
1711	0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 15-25.	10.8	243
1712	Hydrogen Photosynthesis through Schottky Junction of RGO-NiPO and the Perspective of the Mechanism. ACS Sustainable Chemistry and Engineering, 2019, 7, 10052-10063.	3.2	15
1713	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	15.6	481
1714	Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale, 2019, 11, 9819-9839.	2.8	35
1715	Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update. Topics in Current Chemistry, 2019, 377, 13.	3.0	12
1716	Preparation, characterization and photocatalytic activity of Dawson type phosphotungstate/graphene oxide composites. Advanced Powder Technology, 2019, 30, 1400-1408.	2.0	13
1717	Response surface methodology to optimize the performance of reduced graphene oxide-mesoporous carbon nitride photocatalysts. Materials Research Express, 2019, 6, 074004.	0.8	0
1718	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
1719	A study on divergent functional properties of sphere-like CuWO4 anchored on 2D graphene oxide sheets towards the photocatalysis of ciprofloxacin and electrocatalysis of methanol. Journal of Materials Science: Materials in Electronics, 2019, 30, 10172-10182.	1.1	18
1720	Ni-based photocatalytic H2-production cocatalysts2. Chinese Journal of Catalysis, 2019, 40, 240-288.	6.9	239
1721	Evaluating the efficiency of the GOâ€Fe ₃ O ₄ /TiO ₂ mesoporous photocatalyst for degradation of chlorpyrifos pesticide under visible light irradiation. Applied Organometallic Chemistry, 2019, 33, e4813.	1.7	34
1722	Rational design of ternary NiS/CQDs/Znln2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chinese Journal of Catalysis, 2019, 40, 335-342.	6.9	92
1723	Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chinese Journal of Catalysis, 2019, 40, 446-457.	6.9	66

#	Article	IF	CITATIONS
1724	Photoresponsive nanostructure assisted green synthesis of organics and polymers. Applied Catalysis B: Environmental, 2019, 249, 172-210.	10.8	43
1725	Impacts of graphene sheets on photoelectric and photocatalytic activities of SnS2 nanoparticles. Materials Chemistry and Physics, 2019, 229, 92-97.	2.0	12
1726	Recent advances in synthetic methods and applications of Ag ₂ S-based heterostructure photocatalysts. Journal of Materials Chemistry C, 2019, 7, 3988-4003.	2.7	42
1727	CdS supported on electrochemically reduced rGO for photo reduction of water to hydrogen. International Journal of Hydrogen Energy, 2019, 44, 10573-10584.	3.8	18
1728	Layered Thiazolo[5,4- <i>d</i>] Thiazole-Linked Conjugated Microporous Polymers with Heteroatom Adoption for Efficient Photocatalysis Application. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15861-15868.	4.0	57
1729	Advantaging Synergy Photocatalysis with Grapheneâ€Related Carbon as a Counterpart Player of Titania. Chemical Record, 2019, 19, 1393-1406.	2.9	10
1730	Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. Applied Catalysis B: Environmental, 2019, 250, 273-279.	10.8	92
1731	Nanocarbon composites for poisonous gas degradation. , 2019, , 383-399.		1
1732	Ag-doped ZnO nanorods embedded reduced graphene oxide nanocomposite for photo-electrochemical applications. Royal Society Open Science, 2019, 6, 181764.	1.1	103
1733	In situ growth of orthorhombic Sb2WO6 hierarchical structures on reduced graphene oxide (RGO) sheets via solvothermal approach for superior and substantially improved visible-light driven photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2019, 30, 5965-5977.	1.1	12
1734	BiOxCly/BiOmBrn/BiOpIq/GO quaternary composites: Syntheses and application of visible-light-driven photocatalytic activities. Journal of Colloid and Interface Science, 2019, 544, 25-36.	5.0	102
1735	Photocatalytic dye degradation and biological activities of the Fe ₂ O ₃ /Cu ₂ O nanocomposite. RSC Advances, 2019, 9, 8557-8568.	1.7	119
1736	Orderly designed functional phosphide nanoparticles modified g-C3N4 for efficient photocatalytic hydrogen evolution. Journal of Sol-Gel Science and Technology, 2019, 90, 565-577.	1.1	7
1737	Ultrathin noble metal nanoplates decorated metal-organic framework nanosheets as 2D/2D heterojunction nanobionic catalysts for explosive residues monitoring. 2D Materials, 2019, 6, 035008.	2.0	16
1738	Reduced graphene oxide-loaded-magnetite: A Fenton-like heterogeneous catalyst for photocatalytic degradation of 2-methylisoborneol. Chemical Engineering Journal, 2019, 370, 855-865.	6.6	44
1739	Field electron emission from protruded GO and rGO sheets on CuO and Cu nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 10-18.	1.3	10
1740	Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives. Environmental Chemistry for A Sustainable World, 2019, , 67-102.	0.3	3
1741	One-pot solvothermal synthesis of magnetically separable rGO/MnFe2O4 hybrids as efficient photocatalysts for degradation of MB under visible light. Materials Chemistry and Physics, 2019, 231, 68-74.	2.0	36

#	Article	IF	CITATIONS
1742	Visible light photocatalytic performance of laser-modified TiO2/SnO2 powders decorated with SiC nanocrystals. Ceramics International, 2019, 45, 12449-12454.	2.3	13
1743	Fabrication of Fe3O4@graphene/TiO2 nanohybrid with enhanced photocatalytic activity for isopropanol degradation. Journal of Alloys and Compounds, 2019, 792, 918-927.	2.8	30
1744	Two-dimensional blue-phosphorene-phase germanium monochalcogenide photocatalysts for water splitting: From ultraviolet to visible absorption. Journal of Catalysis, 2019, 373, 67-74.	3.1	26
1745	Cu _{3–<i>x</i>} Ni _{<i>x</i>} Al-Layered Double Hydroxide-Reduced Graphene Oxide Nanosheet Array for the Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2019, 2, 2383-2396.	2.4	38
1746	Enhanced antibacterial and photocatalytic activities of silver nanoparticles anchored reduced graphene oxide nanostructure. Materials Research Express, 2019, 6, 074003.	0.8	26
1747	Efficient removal of methylene blue dye by a hybrid adsorption–photocatalysis process using reduced graphene oxide/titanate nanotube composites for water reuse. Journal of Industrial and Engineering Chemistry, 2019, 76, 296-309.	2.9	86
1748	Preparation of RGO/TiO ₂ photocatalyst and the mechanism of its hydrothermal process. Journal of the Chinese Chemical Society, 2019, 66, 734-739.	0.8	13
1749	Soluble Graphene Nanosheets for the Sunlight-Induced Photodegradation of the Mixture of Dyes and its Environmental Assessment. Scientific Reports, 2019, 9, 2522.	1.6	74
1750	Graphene oxide and graphitic carbon nitride nanocomposites assembled by electrostatic attraction forces: Synthesis and characterization. Materials Chemistry and Physics, 2019, 228, 228-236.	2.0	18
1751	Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation. Applied Surface Science, 2019, 480, 105-114.	3.1	56
1752	Synergistic effects and kinetics of rGO-modified TiO2 nanocomposite on adsorption and photocatalytic degradation of humic acid. Journal of Environmental Management, 2019, 235, 293-302.	3.8	27
1753	Graphene oxide/titania photocatalytic ozonation of primidone in a visible LED photoreactor. Journal of Hazardous Materials, 2019, 369, 70-78.	6.5	41
1754	Enhanced Lewis acid-base adducts in doped stanene: Sensing and photocatalysis. Applied Surface Science, 2019, 478, 946-958.	3.1	10
1755	2D Triphosphides: SbP3 and GaP3 monolayer as promising photocatalysts for water splitting. International Journal of Hydrogen Energy, 2019, 44, 5948-5954.	3.8	52
1756	Fabrication of a three-dimensional visible-light-driven Ag–AgBr/TiO2/graphene aerogel composite for enhanced photocatalytic destruction of organic dyes and bacteria. New Journal of Chemistry, 2019, 43, 5088-5098.	1.4	23
1757	Photocatalytic properties of TiO2@polymer and TiO2@carbon aerogel composites prepared by atomic layer deposition. Carbon, 2019, 147, 476-482.	5.4	51
1758	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
1759	A reduced graphene oxide-titanium dioxide nanocomposite based electrochemical aptasensor for rapid and sensitive detection of Salmonella enterica. Bioelectrochemistry, 2019, 127, 136-144.	2.4	78

#	ARTICLE	IF	CITATIONS
1760	Removal of malachite green dye from contaminated aqueous solutions using WO $<$ sub $>3<$ sub $> Eu<$ sub $>2<$ sub $>O<$ sub $>3<$ sub $>-visible-light-assisted photocatalysis. International Journal of Environmental Analytical Chemistry, 0, , 1-11.$	1.8	5
1761	Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications. Catalysis Science and Technology, 2019, 9, 5882-5905.	2.1	70
1762	Synthesis of a novel 2D zinc(<scp>ii</scp>) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalton Transactions, 2019, 48, 17626-17632.	1.6	84
1763	Fabrication of a novel ZnIn2S4/g-C3N4/graphene ternary nanocomposite with enhanced charge separation for efficient photocatalytic H2 evolution under solar light illumination. Photochemical and Photobiological Sciences, 2019, 18, 2952-2964.	1.6	36
1764	Attaching titania clusters of various size to reduced graphene oxide and its impact on the conceivable photocatalytic behavior of the junctionsâ€"a DFT/D  +  U and TD DFTB modeling. Journal of Phy Condensed Matter, 2019, 31, 404001.	si@ <i>s</i> 7	11
1765	Rapid Synthesis of Porous Graphene Microspheres through a Three-Dimensionally Printed Inkjet Nozzle for Selective Pollutant Removal from Water. ACS Omega, 2019, 4, 20509-20518.	1.6	6
1766	Facile high-yield synthesis of MoS ₂ nanosheets with enhanced photocatalytic performance using ultrasound driven exfoliation technique. Materials Research Express, 2019, 6, 125079.	0.8	10
1767	Rational Ionothermal Copolymerization of TCNQ with PCN Semiconductor for Enhanced Photocatalytic Full Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 46756-46766.	4.0	56
1768	Recent advances in graphene based nano-composites for automotive and off-highway vehicle applications. Current Graphene Science, 2019, 03, .	0.5	7
1769	Facile fabrication and photocatalytic activity of Ag/AgI/rGO films. Korean Journal of Chemical Engineering, 2019, 36, 2104-2109.	1.2	2
1770	Hydrothermal Synthesis of rGO/PbTiO ₃ Photocatalyst and Its Photocatalytic H ₂ Evolution Activity. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	15
1771	Water Remediation by G-/GO-Based Photocatalysts. , 2019, , .		0
1772	Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities. RSC Advances, 2019, 9, 30585-30598.	1.7	17
1773	Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chemical Engineering Journal, 2019, 361, 329-341.	6.6	152
1774	Graphene nanohybrids for enhanced catalytic activity and large surface area. MRS Communications, 2019, 9, 27-36.	0.8	29
1775	Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 246-255.	10.8	120
1776	Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study. Carbon, 2019, 141, 50-58.	5.4	54
1777	Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Applied Catalysis B: Environmental, 2019, 241, 149-158.	10.8	216

#	Article	IF	CITATIONS
1778	Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. Science of the Total Environment, 2019, 658, 219-233.	3.9	72
1779	Enhanced detoxification of p-bromophenol by novel Zr/Ag-TiO2@rGO ternary composite: Degradation kinetics and phytotoxicity evolution studies. Ecotoxicology and Environmental Safety, 2019, 170, 355-362.	2.9	32
1780	Graphene oxide enwrapped polyimide composites with efficient photocatalytic activity for 2,4-dichlorophenol degradation under visible light irradiation. Materials Research Bulletin, 2019, 112, 115-123.	2.7	18
1781	Preparation and characterization of Pt, N-TiO2-graphene nanocomposites for hydrogen production. Ceramics International, 2019, 45, 6058-6065.	2.3	13
1782	ZrO2/Fe2O3/RGO nanocomposite: Good photocatalyst for dyes degradation. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 105-111.	1.3	33
1783	Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 430-454.	5.2	125
1784	Titanium based composite-graphene nanofibers as high-performance photocatalyst for formaldehyde gas purification. Ceramics International, 2019, 45, 5617-5626.	2.3	18
1785	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	6.2	138
1786	Transparent Conductive Electrodes Based on Graphene-Related Materials. Micromachines, 2019, 10, 13.	1.4	49
1787	Synthesis, characterization and electrochemical properties of cadmium sulfide – Reduced graphene oxide nanocomposites. Results in Physics, 2019, 12, 878-885.	2.0	16
1788	Insights into unidirectional migration of photo-excited electrons at ZnFe2O4/graphene van der Waals interface. Computational Materials Science, 2019, 157, 60-66.	1.4	7
1789	Magnetic Metal/Metal Oxide Nanoparticles and Nanocomposite Materials for Water Purification. , 2019, , 473-503.		7
1790	Fabrication of sliver/graphitic carbon nitride photocatalyst with enhanced visible-light photocatalytic efficiency through ultrasonic spray atomization. Journal of Colloid and Interface Science, 2019, 538, 15-24.	5.0	30
1791	Synthesis of mesoporous Fe-Mn bimetal oxide nanocomposite by aeration co-precipitation method: Physicochemical, structural, and optical properties. Materials Chemistry and Physics, 2019, 224, 65-72.	2.0	22
1792	Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation. Chemical Engineering Journal, 2019, 359, 1352-1359.	6.6	46
1793	Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Materials Today Energy, 2019, 11, 1-23.	2.5	189
1794	Enhanced visibleâ€ightâ€driven photocatalytic activity of F doped reduced graphene oxide ― Bi ₂ WO ₆ photocatalyst. Applied Organometallic Chemistry, 2019, 33, e4682.	1.7	13
1795	BiVO4(010)/rGO Nanocomposite and Its Photocatalysis Application. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1000-1009.	1.9	7

#	Article	IF	CITATIONS
1796	Nanotechnology Based Solutions for Wastewater Treatment., 2019,, 337-368.		38
1797	Design of visible-light photocatalysts by coupling of inorganic semiconductors. Catalysis Today, 2019, 335, 3-19.	2.2	46
1798	Graphene films decorated with TiO2 grown by atomic layer deposition: Characterization and photocatalytic activity study under UV–visible light. Applied Surface Science, 2019, 470, 484-495.	3.1	13
1799	Recent Development of Photocatalysts Containing Carbon Species: A Review. Catalysts, 2019, 9, 20.	1.6	10
1800	Monolithic g-C3N4/reduced graphene oxide aerogel with in situ embedding of Pd nanoparticles for hydrogenation of CO2 to CH4. Applied Surface Science, 2019, 475, 953-960.	3.1	69
1801	Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism. Catalysis Today, 2019, 328, 172-177.	2.2	15
1802	Photocatalytic performance of few-layer Graphene/WO3 thin films prepared by a nano-particle deposition system. Materials Chemistry and Physics, 2019, 226, 141-150.	2.0	25
1803	Recent advances in TiO2 nanoarrays/graphene for water treatment and energy conversion/storage. Science China Materials, 2019, 62, 325-340.	3.5	15
1804	Preparation and visible-light-driven photocatalytic property of AgX (X = Cl, Br, I) nanomaterials. Journal of Alloys and Compounds, 2019, 776, 948-953.	2.8	19
1805	Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials, 2019, 189, 11-22.	5.7	132
1806	Heterogeneous Photocatalyzed Câ^'C Crossâ€coupling Reactions Under Visibleâ€light and Nearâ€infrared Light Irradiation. ChemCatChem, 2019, 11, 669-683.	1.8	41
1807	Composited micropores constructed by amorphous TiO2 and graphene for degrading volatile organic compounds. Applied Surface Science, 2019, 471, 1-7.	3.1	17
1808	One-step bacterial assisted synthesis of CdS/rGO nanocomposite as Hydrogen production catalyst. Materials Research Bulletin, 2019, 110, 82-89.	2.7	16
1809	Alteration of the electronic structure and the optical properties of graphitic carbon nitride by metal ion doping. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 207, 301-306.	2.0	13
1810	Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel, 2019, 237, 227-235.	3.4	51
1811	Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. Journal of Energy Chemistry, 2019, 37, 43-57.	7.1	143
1812	Facile fabrication of Ag2O/Bi12GeO20 heterostructure with enhanced visible-light photocatalytic activity for the degradation of various antibiotics. Journal of Alloys and Compounds, 2019, 773, 1089-1098.	2.8	56
1813	Building an electron push–pull system of linear conjugated polymers for improving photocatalytic hydrogen evolution efficiency. Polymer Bulletin, 2019, 76, 3195-3206.	1.7	20

#	Article	IF	CITATIONS
1814	Efficient visible light driven hydrogen generation using 9-(3,3-dimethyl-1,2-oxazetidine-N-yl)perylene-3,4-dicarboximide functionalized amino graphene. Applied Catalysis B: Environmental, 2019, 242, 293-301.	10.8	3
1815	Phenol degradation using an anodized graphene-doped TiO2 nanotube composite under visible light. Applied Surface Science, 2019, 477, 71-78.	3.1	40
1816	TiO2/GRAPHENE OXIDE HETEROSTRUCTURES FOR GAS-SENSING: INTERACTION OF NITROGEN DIOXIDE WITH THE PRISTINE AND NITROGEN MODIFIED NANOSTRUCTURES INVESTIGATED BY DFT. Surface Review and Letters, 2019, 26, 1850170.	0.5	4
1817	2D inorganic nanosheet-based hybrid photocatalysts: Design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 150-190.	5. 6	89
1818	Durable visible light self-cleaning surfaces imparted by TiO ₂ /SiO ₂ /GO photocatalyst. Textile Reseach Journal, 2019, 89, 517-527.	1.1	17
1819	Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity. Environmental Science and Pollution Research, 2019, 26, 1072-1081.	2.7	7
1820	An unusual dependency on the hole-scavengers in photocatalytic reductions mediated by a titanium-based metal-organic framework. Catalysis Today, 2020, 340, 86-91.	2.2	27
1821	Controllable synthesis of TiO2 chemically bonded graphene for photocatalytic hydrogen evolution and dye degradation. Catalysis Today, 2020, 340, 170-177.	2.2	45
1822	Controlling the surface chemistry of graphene oxide: Key towards efficient ZnO-GO photocatalysts. Catalysis Today, 2020, 357, 350-360.	2.2	50
1823	Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet. Catalysis Today, 2020, 350, 171-183.	2.2	17
1824	Biomass-Based Photocatalysts for Environmental Applications. Environmental Chemistry for A Sustainable World, 2020, , 55-86.	0.3	6
1825	Synthesis, characterization and photocatalytic properties of WO3/hexagonal platelet graphite nanocomposites. Catalysis Today, 2020, 357, 655-663.	2.2	4
1826	Bio-inspired multilayered graphene-directed assembly of monolithic photo-membrane for full-visible light response and efficient charge separation. Applied Catalysis B: Environmental, 2020, 263, 117587.	10.8	24
1827	Use of Novel Nanostructured Photocatalysts for the Environmental Sustainability of Wastewater Treatments. , 2020, , 949-964.		17
1828	Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology, 2020, 31, 11-28.	2.0	64
1829	Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 7584-7615.	3.8	44
1830	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	5.4	25
1831	Interfacial two-dimensional oxide enhances photocatalytic activity of graphene/titania via electronic structure modification. Carbon, 2020, 157, 350-357.	5.4	7

#	Article	IF	CITATIONS
1832	Unique Cd1â^'xZnxS@WO3â^'x and Cd1â^'xZnxS@WO3â^'x/CoOx/NiOx Z-scheme photocatalysts for efficient visible-light-induced H2 evolution. Science China Materials, 2020, 63, 75-90.	3.5	16
1834	Synthesis of ZnO/ZnFe2O4/ Pt nanoparticles heterojunction photocatalysts with superior photocatalytic activity. Ceramics International, 2020, 46, 3558-3564.	2.3	32
1835	Activation of peroxymonosulfate by Fe doped g-C3N4 /graphene under visible light irradiation for Trimethoprim degradation. Journal of Hazardous Materials, 2020, 384, 121435.	6.5	88
1836	Combustion of aluminum particles in a high-temperature furnace under various O2/CO2/H2O atmospheres. Journal of Thermal Analysis and Calorimetry, 2020, 139, 251-260.	2.0	12
1837	Hydrothermal synthesis of Ag2CO3-TiO2 loaded reduced graphene oxide nanocomposites with highly efficient photocatalytic activity. Chemical Engineering Communications, 2020, 207, 688-695.	1.5	12
1838	Preparation of In2S3 nanosheets decorated KNbO3 nanocubes composite photocatalysts with significantly enhanced activity under visible light irradiation. Separation and Purification Technology, 2020, 230, 115861.	3.9	39
1839	Free chlorine induced phototransformation of graphene oxide in water: Reaction kinetics and product characterization. Chemical Engineering Journal, 2020, 381, 122609.	6.6	21
1840	Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Separation and Purification Technology, 2020, 232, 115962.	3.9	182
1841	Enhanced photocatalytic H2-production and photocatalytic degradation activity of cadmium oxide–graphene nanocomposite grown on mesoporous silica under visible light irradiation. Journal of Porous Materials, 2020, 27, 151-163.	1.3	2
1842	Facile microwave approach towards high performance MoS2/graphene nanocomposite for hydrogen evolution reaction. Science China Materials, 2020, 63, 62-74.	3.5	38
1843	Two-dimensional ultrathin BiOCl nanosheet/graphene heterojunction with enhanced photocatalytic activity. Nanotechnology, 2020, 31, 085706.	1.3	15
1844	Structured photocatalysts for the removal of emerging contaminants under visible or solar light., 2020, , 41-98.		6
1845	Constructing efficient polyimide(PI)/Ag aerogel photocatalyst by ethanol supercritical drying technique for hydrogen evolution. Applied Surface Science, 2020, 502, 144187.	3.1	36
1846	A Distributed Compressive Data Gathering Framework For Mobile Crowdsensing. IEEE Internet of Things Journal, 2020, , 1-1.	5. 5	7
1847	Study of the risks of the graphene oxide preparation process by reaction calorimetry. Journal of Thermal Analysis and Calorimetry, 2020, 139, 101-112.	2.0	3
1848	Enhanced visible-light-induced photocatalytic disinfection of Escherichia coli by ternary Bi2WO6/TiO2/reduced graphene oxide composite materials: Insight into the underlying mechanism. Advanced Powder Technology, 2020, 31, 128-138.	2.0	41
1849	Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews - Science and Engineering, 2020, 62, 346-405.	5.7	90
1850	Removal of aspirin from aqueous solutions using graphitic carbon nitride nanosheet: Theoretical and experimental studies. Diamond and Related Materials, 2020, 101, 107621.	1.8	16

#	Article	IF	CITATIONS
1851	Seashore dune rehabilitation using an inland legume species. Land Degradation and Development, 2020, 31, 215-221.	1.8	1
1852	Tailored graphenic structures directly grown on titanium oxide boost the interfacial charge transfer. Applied Surface Science, 2020, 504, 144439.	3.1	4
1853	Physical properties and device applications of graphene oxide. Frontiers of Physics, 2020, 15, 1.	2.4	108
1854	Mechanistic insight into high response of carbon monoxide gas sensor developed by nickel manganate nanorod decorated reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124449.	2.3	9
1855	Peony-like magnetic graphene oxide/Fe3O4/BiOI nanoflower as a novel photocatalyst for enhanced photocatalytic degradation of Rhodamine B and Methylene blue dyes. Journal of Materials Science: Materials in Electronics, 2020, 31, 1996-2009.	1.1	16
1856	An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 2020, 27, 2522-2565.	2.7	514
1857	Decoration of MoO3 nanoparticles by MWCNTs driven visible light for the reduction of Cr(VI). Ceramics International, 2020, 46, 6914-6919.	2.3	9
1858	Fabrication of graphene/Bi12O17Cl2 as an effective visible-light photocatalyst. Materials Research Bulletin, 2020, 122, 110690.	2.7	26
1859	Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal. Chemosphere, 2020, 242, 125201.	4.2	64
1860	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
1861	Disintegration of Flower-Like MoS ₂ to Limply Allied Layers on Spherical Nanoporous TiO ₂ : Enhanced Visible-Light Photocatalytic Degradation of Methylene Blue. Journal of Nanoscience and Nanotechnology, 2020, 20, 1118-1129.	0.9	8
1862	Novel band gap engineered Bi5Nb3O15/N-rGOcomposite catalyst for photo degradation of reactive dyes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 252, 114472.	1.7	10
1863	Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chemical Engineering Journal, 2020, 392, 123746.	6.6	91
1864	Nanocrystalline hematite α-Fe2O3 synthesis with different precursors and their composites with graphene oxide. Ceramics International, 2020, 46, 8227-8237.	2.3	18
1865	Photo catalytic reduction of Cr6+ by ZnO decorated on reduced graphene oxide (rGO) Nanocomposites. Materials Research Bulletin, 2020, 122, 110705.	2.7	22
1866	Catalytic conversion of CO2 to biofuel (methanol) and downstream separation in membrane-integrated photoreactor system under suitable conditions. International Journal of Hydrogen Energy, 2020, 45, 675-690.	3.8	16
1867	Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chemical Engineering Journal, 2020, 391, 123519.	6.6	142
1868	AuPd alloy nanoparticles decorated graphitic carbon nitride as an excellent photocatalyst for the visible-light-enhanced Suzuki–Miyaura cross-coupling reaction. Journal of Alloys and Compounds, 2020, 819, 152994.	2.8	26

#	Article	IF	CITATIONS
1869	Enhanced photocatalytic efficiency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles. Solar Energy, 2020, 195, 271-277.	2.9	30
1870	Carbon nanotube exfoliated porous reduced graphene oxide/CdS- diethylenetriamine heterojunction for efficient photocatalytic H2 production. Applied Surface Science, 2020, 512, 144783.	3.1	26
1871	Synthesis of Manganese Carbonate Templates with Different Morphologies and Their Application in Preparing Hollow MoS ₂ Micro/Nanostructures for Photocatalysis. Journal of Nanoscience and Nanotechnology, 2020, 20, 2239-2246.	0.9	6
1872	MOF derived C/Co@C with a "one-way-valveâ€like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes. Carbon, 2020, 160, 64-70.	5.4	21
1873	Photothermal conversion of graphene/layered manganese oxide 2D/2D composites for room-temperature catalytic purification of gaseous formaldehyde. Journal of the Taiwan Institute of Chemical Engineers, 2020, 107, 119-128.	2.7	25
1874	Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: a mechanistic study. New Journal of Chemistry, 2020, 44, 19570-19580.	1.4	25
1875	Photosensitive Hyper-Cross-Linked Polymers Derived from Three-Dimensional Ringlike Arenes: Promising Catalysts for Singlet-Oxygen Generation. ACS Sustainable Chemistry and Engineering, 2020, 8, 16320-16326.	3.2	9
1876	Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arabian Journal of Chemistry, 2020, 13, 8458-8480.	2.3	60
1877	Heterostructured Nitrogen and Sulfur co-doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity. Chemical Research in Chinese Universities, 2020, 36, 1045-1052.	1.3	17
1878	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. Journal of Materials Chemistry A, 2020, 8, 23202-23230.	5.2	81
1879	Single-precursor synthesis of sub-10 nm CdS nanoparticles embedded on graphene sheets nanocatalyst for active photodegradation under visible light. Applied Surface Science, 2020, 534, 147614.	3.1	19
1880	Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synthetic Metals, 2020, 269, 116526.	2.1	115
1881	Holey Graphene for Electrochemical Energy Storage. Cell Reports Physical Science, 2020, 1, 100215.	2.8	58
1882	Two-dimensional van der Waals heterostructure CdO/PtSe ₂ : promising visible light photocatalyst for overall water splitting. Physical Chemistry Chemical Physics, 2020, 22, 24662-24668.	1.3	10
1883	Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO ₂ hybrid matrix: optoelectronics and biotechnological aspects. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 385-449.	6.8	117
1884	A novel hydrothermal induced BiVO4/g-C3N4 heterojunctions visible-light photocatalyst for effective elimination of aqueous organic pollutants. Vacuum, 2020, 180, 109458.	1.6	23
1885	Preparation of Ag-cellulose nanocomposite for the selective detection and quantification of mercury at nanomolar level and the evaluation of its photocatalytic performance. International Journal of Biological Macromolecules, 2020, 164, 911-919.	3.6	17
1886	Photocatalytic performances of stand-alone graphene oxide (GO) and reduced graphene oxide (rGO) nanostructures. Optical and Quantum Electronics, 2020, 52, 1.	1.5	15

#	Article	IF	CITATIONS
1887	Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A, 2020, 8, 14863-14894.	5.2	115
1888	Fabrication of CdS/Pt/MIL-125 with Effective Spatial Separation for Improved Visible-Light Catalytic H ₂ Evolution Using γ-Ray Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18196-18205.	3.2	19
1889	Electric and Photocatalytic Properties of Graphene Oxide Depending on the Degree of Its Reduction. Nanomaterials, 2020, 10, 2313.	1.9	5
1890	Surface Modification of Catalysts via Atomic Layer Deposition for Pollutants Elimination. Catalysts, 2020, 10, 1298.	1.6	8
1891	Carbonaceous nanomaterials as photocatalysts. , 2020, , 97-117.		1
1892	Comparison of Photoâ€Esterification Capability of Bismuth Vanadate with Reduced Graphene Oxide Bismuth Vanadate (RGO/BiVO ₄) Composite for Biodiesel Production from High Free Fatty Acid Containing Nonâ€Edible Oil. ChemistrySelect, 2020, 5, 9245-9253.	0.7	14
1893	Graphene Oxide Concentration Effect on the Optoelectronic Properties of ZnO/GO Nanocomposites. Nanomaterials, 2020, 10, 1532.	1.9	33
1894	Carbon-dot-loaded CoxNi1â^'xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic a antimicrobial potential: An engineered nanocomposite for wastewater treatment. Scientific Reports, 2020, 10, 11534.	nd 1.6	48
1895	Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light. Diamond and Related Materials, 2020, 109, 108008.	1.8	84
1896	Recent Advances of Spatial Selfâ€Phase Modulation in 2D Materials and Passive Photonic Device Applications. Small, 2020, 16, e2002252.	5.2	35
1897	Surface chemistry of graphene and graphene oxide: A versatile route for their dispersion and tribological applications. Advances in Colloid and Interface Science, 2020, 283, 102215.	7.0	76
1898	Catalysis on Pristine 2D Materials via Dispersion and Electrostatic Interactions. Journal of Physical Chemistry A, 2020, 124, 6977-6985.	1.1	17
1899	Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples. Scientific Reports, 2020, 10, 12860.	1.6	28
1900	Biocide mechanism of highly efficient and stable antimicrobial surfaces based on zinc oxide–reduced graphene oxide photocatalytic coatings. Journal of Materials Chemistry B, 2020, 8, 8294-8304.	2.9	25
1901	Graphene quantum dots/ZnO nanocomposite: Synthesis, characterization, mechanistic investigations of photocatalytic and antibacterial activities. Chemical Physics Letters, 2020, 761, 138009.	1.2	21
1902	Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. Journal of CO2 Utilization, 2020, 42, 101345.	3.3	33
1904	The structural properties of silicon-doped DBrTBT/ZnSe solar cell materials: a theoretical study. New Journal of Chemistry, 2020, 44, 15289-15296.	1.4	0
1905	A Comparasion of Photocatalytic Activity Between FeS2, Ni-Doped FeS2 Nanoparticles and Un-Doped FeS2/rGO Composite. Journal of Electronic Materials, 2020, 49, 6474-6482.	1.0	6

#	Article	IF	CITATIONS
1906	Carbon-based nanomaterials: in the quest of alternative metal-free photocatalysts for solar water splitting. Nanoscale Advances, 2020, 2, 5130-5151.	2.2	50
1907	Recent Progress of Photocatalytic Fenton-Like Process for Environmental Remediation. Frontiers in Environmental Chemistry, 2020, 1 , .	0.7	22
1908	Synthesis of Graphene-Based Biopolymer TiO2 Electrodes Using Pyrolytic Direct Deposition Method and its Catalytic Performance. Catalysts, 2020, 10, 1050.	1.6	3
1909	Concurrent and dual N-doping of graphene/ZnO nanocomposites for enhanced Cr(<scp>vi</scp>) photoreduction activity under visible-light irradiation. RSC Advances, 2020, 10, 30832-30839.	1.7	9
1910	Two-Dimensional CdX/C $<$ sub $>$ 2 $<$ /sub $>$ N (X = S, Se) Heterostructures as Potential Photocatalysts for Water Splitting: A DFT Study. ACS Omega, 2020, 5, 23762-23768.	1.6	45
1911	A CeO2 Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. Catalysts, 2020, 10, 1435.	1.6	132
1912	Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production. Hydrogen, 2020, 1, 64-89.	1.7	6
1913	Enhanced Photocatalytic Hydrogen Production of the Polyoxoniobate Modified with RGO and PPy. Nanomaterials, 2020, 10, 2449.	1.9	18
1914	Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment. Molecules, 2020, 25, 4934.	1.7	32
1915	On the Role of Î ³ -Fe2O3 Nanoparticles and Reduced Graphene Oxide Nanosheets in Enhancing Self-Cleaning Properties of Composite TiO2 for Cultural Heritage Protection. Coatings, 2020, 10, 933.	1.2	4
1916	Solvothermal synthesis and characterizations of graphene-ZnBi12O2O nanocomposites for visible-light driven photocatalytic applications. Ceramics International, 2020, 46, 18534-18543.	2.3	12
1917	Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified Hummer's method. Journal of Molecular Structure, 2020, 1216, 128304.	1.8	25
1918	One-step functionalization of graphene via Dielsâ€"Alder reaction for improvement of dispersibility. Frontiers of Materials Science, 2020, 14, 198-210.	1.1	3
1919	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
1920	Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production Using Robust Nobleâ€Metalâ€Free Zn 0.5 Cd 0.5 S@Graphene Composites Decorated with MoS 2 Nanosheets. Advanced Materials Interfaces, 2020, 7, 2000010.	1.9	21
1921	Defected graphene as effective co-catalyst of CdS for enhanced photocatalytic activities. Environmental Science and Pollution Research, 2020, 27, 26810-26816.	2.7	15
1922	Synthesis of Magnetic Fe3O4/ZnWO4 and Fe3O4/ZnWO4/CeVO4 Nanoparticles: The Photocatalytic Effects on Organic Pollutants upon Irradiation with UV-Vis Light. Catalysts, 2020, 10, 494.	1.6	32
1923	Fabrication of spherical-graphitic carbon nitride via hydrothermal method for enhanced photo-degradation ability towards antibiotic. Chemical Physics Letters, 2020, 753, 137604.	1.2	28

#	Article	IF	CITATIONS
1924	Kinetic modeling of ZnOâ€rGO catalyzed degradation of methylene blue. International Journal of Chemical Kinetics, 2020, 52, 645-654.	1.0	21
1925	Synthesis and Characterization of Efficient ZnO/g-C3N4 Nanocomposites Photocatalyst for Photocatalytic Degradation of Methylene Blue. Coatings, 2020, 10, 500.	1.2	71
1926	Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement. Sensors and Actuators B: Chemical, 2020, 320, 128445.	4.0	31
1927	Enhanced photocatalytic degradation of metronidazole by TiO2 decorated on magnetic reduced graphene oxide: Characterization, optimization and reaction mechanism studies. Journal of Molecular Liquids, 2020, 314, 113608.	2.3	45
1928	Mitigating the charge recombination by the targeted synthesis of Ag2WO4/Bi2Fe4O9 composite: The facile union of orthorhombic semiconductors towards efficient photocatalysis. Journal of Alloys and Compounds, 2020, 842, 155876.	2.8	32
1929	Low-Dimensional Semiconductors in Artificial Photosynthesis: An Outlook for the Interactions between Particles/Quasiparticles. ACS Central Science, 2020, 6, 1058-1069.	5.3	16
1930	Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. Environmental Pollution, 2020, 265, 114908.	3.7	65
1931	Graphitic carbon nitride/Na2Ti3O7/V2O5 nanocomposite as a visible light active photocatalyst. Ceramics International, 2020, 46, 18287-18296.	2.3	59
1932	Graphene-Templated Cobalt Nanoparticle Embedded Nitrogen-Doped Carbon Nanotubes for Efficient Visible-Light Photocatalysis. Crystal Growth and Design, 2020, 20, 4627-4639.	1.4	30
1933	Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: a review. Journal of Environmental Chemical Engineering, 2020, 8, 104175.	3.3	64
1934	Enhanced photocatalytic degradation of antimicrobial triclosan using rGO–TiO2 composite under natural solar illumination. Journal of Materials Science: Materials in Electronics, 2020, 31, 6045-6058.	1.1	18
1935	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020, 4, 2000050.	3.1	29
1936	Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chemical Engineering Journal, 2020, 390, 124642.	6.6	186
1937	3D graphene aerogel based photocatalysts: Synthesized, properties, and applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124666.	2.3	24
1938	Ceramic nanocomposite membranes and membrane fouling: A review. Water Research, 2020, 175, 115674.	5.3	241
1939	N-Doped cotton-based porous carbon/ZnO NR arrays: highly efficient hybrid photo-catalysts. CrystEngComm, 2020, 22, 2472-2482.	1.3	9
1940	Advanced materials for photocatalytic applications: the challenge ahead., 2020,, 3-8.		6
1941	Graphene-based hybrid photocatalysts: a promising route toward high-efficiency photocatalytic water remediation., 2020,, 325-359.		0

#	Article	IF	CITATIONS
1942	Perylene diimide anchored graphene 3D structure via π-π interaction for enhanced photoelectrochemical degradation performances. Applied Catalysis B: Environmental, 2020, 272, 118897.	10.8	58
1943	MXene-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 18-44.	5.6	269
1944	Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. International Journal of Hydrogen Energy, 2020, 45, 11976-11994.	3.8	50
1945	Nanoscale materials for the treatment of water contaminated by bacteria and viruses., 2020,, 261-305.		3
1946	Graphene oxide coated flower-shaped ZnO nanorods: Optoelectronic properties. Journal of Alloys and Compounds, 2020, 831, 154874.	2.8	21
1947	Synergistic effect of Bi-doped exfoliated MoS ₂ nanosheets on their bactericidal and dye degradation potential. Dalton Transactions, 2020, 49, 5362-5377.	1.6	52
1948	Pyrolytic Formation of TiO2/Carbon Nanocomposite from Kraft Lignin: Characterization and Photoactivities. Catalysts, 2020, 10, 270.	1.6	7
1949	Emerging energy and environmental application of graphene and their composites: a review. Journal of Materials Science, 2020, 55, 7156-7183.	1.7	24
1950	Surface/Interface Engineering of Carbonâ€Based Materials for Constructing Multidimensional Functional Hybrids. Solar Rrl, 2020, 4, 1900577.	3.1	52
1951	Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo6 Iodide Clusters Supported on Graphene Oxide. Nanomaterials, 2020, 10, 1259.	1.9	17
1952	Recyclable label-free SERS-based immunoassay of PSA in human serum mediated by enhanced photocatalysis arising from Ag nanoparticles and external magnetic field. Applied Surface Science, 2020, 528, 146953.	3.1	50
1953	Facile fabrication of ZnO nanorods modified with RGO for enhanced photodecomposition of dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125247.	2.3	21
1954	Photocatalytic reduction of Cr(<scp>vi</scp>) by graphene oxide materials under sunlight or visible light: the effects of low-molecular-weight chemicals. Environmental Science: Nano, 2020, 7, 2399-2409.	2.2	14
1955	Two-dimensional materials for photocatalytic water splitting and CO2 reduction., 2020, , 173-227.		7
1956	Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Applied Materials Today, 2020, 20, 100741.	2.3	28
1957	Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation. Journal of Environmental Chemical Engineering, 2020, 8, 104191.	3.3	27
1958	14. Heterogeneous semiconductor photocatalysis. , 2020, , 327-362.		0
1959	Facile fabrication of graphene@Fe-Ti binary oxide nanocomposite from ilmenite ore: An effective photocatalyst for dye degradation under visible light irradiation. Journal of Water Process Engineering, 2020, 37, 101474.	2.6	12

#	Article	IF	Citations
1960	Simultaneous Detection and Photocatalysis Performed on a 3D Graphene/ZnO Hybrid Platform. Langmuir, 2020, 36, 2231-2239.	1.6	15
1961	Synthesis and Characterization of a BiNbO ₄ /Bi ₂ S ₃ Nanocomposite with Improved Visibleâ€Light Photocatalytic Activity. ChemistrySelect, 2020, 5, 7170-7176.	0.7	4
1962	Effect of preparation on opto-electrical properties of CdS /N, S-rGO photocatalyst for splitting of water by visible light. Materials Chemistry and Physics, 2020, 249, 123212.	2.0	5
1963	Positioning MXenes in the Photocatalysis Landscape: Competitiveness, Challenges, and Future Perspectives. Advanced Functional Materials, 2020, 30, 2002528.	7.8	162
1964	Nano-Zn2SnO4/Reduced Graphene Oxide Composites for enhanced photocatalytic performance. Materials Chemistry and Physics, 2020, 254, 123505.	2.0	11
1965	Simultaneous removal of harmful algal cells and toxins by a Ag2CO3-N:GO photocatalyst coating under visible light. Science of the Total Environment, 2020, 741, 140341.	3.9	38
1966	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
1967	Three-dimensional hierarchical porous carbon structure derived from pinecone as a potential catalyst support in catalytic remediation of antibiotics. RSC Advances, 2020, 10, 8717-8728.	1.7	9
1968	Fabrication of WO3 nanorod/graphene/BiV1â^'xMoxO4 heterojunction photoelectrode for efficient photoelectrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2020, 31, 3323-3331.	1.1	3
1969	Tailored fabrication of triple-surface-features in well-crystalline BiOCl photocatalyst and their synergistic role in catalytic processes. Catalysis Science and Technology, 2020, 10, 2242-2253.	2.1	17
1970	Bridge engineering in photocatalysis and photoelectrocatalysis. Nanoscale, 2020, 12, 5764-5791.	2.8	77
1971	Synthesis, characterization, and photocatalytic performance of a ternary composite catalyst α-SiW ₁₁ Cr/PANI/ZnO. Journal of Coordination Chemistry, 2020, 73, 229-242.	0.8	5
1972	3D Grapheneâ€Based H ₂ â€Production Photocatalyst and Electrocatalyst. Advanced Energy Materials, 2020, 10, 1903802.	10.2	199
1973	Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts, 2020, 10, 227.	1.6	94
1974	Graphene-based nanocomposites: Synthesis, characterizations, and their agri-food applications. , 2020, , 33-57.		1
1975	Construction of well-crystalline ultrathin bismuth oxybromide nanoplates via one-pot room-temperature synthesis for enhanced decontamination of aqueous pollutants under visible light irradiation. Advanced Powder Technology, 2020, 31, 1708-1719.	2.0	4
1976	Hybrid photocatalysts of ZnO obtained by waste valorization combined with reduced graphene oxide. Materials Today: Proceedings, 2020, 20, 356-364.	0.9	5
1977	Simultaneous enhanced electrochemical and photoelectrochemical properties of α-Fe ₂ O ₃ /graphene by hydrogen annealing. Materials Research Express, 2020, 7, 025032.	0.8	4

#	Article	IF	CITATIONS
1978	Novel mesoporous bismuth oxyiodide single-crystal nanosheets with enhanced catalytic activity. RSC Advances, 2020, 10, 5913-5918.	1.7	13
1979	Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 2020, 828, 154281.	2.8	345
1980	Improved bioelectricity generation of air-cathode microbial fuel cell using sodium hexahydroxostannate as cathode catalyst. Journal of Power Sources, 2020, 450, 227679.	4.0	12
1981	TiO ₂ –rGO nanocomposite as an efficient catalyst to photodegrade formalin in aquaculture's waters, under solar light. Environmental Science: Water Research and Technology, 2020, 6, 1018-1027.	1.2	23
1982	Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustainable environment. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	1.8	12
1983	Ternary chalcogenides XGaS ₂ (X = Ag or Cu) for photocatalytic hydrogen generation from water splitting under irradiation of visible light. International Journal of Quantum Chemistry, 2020, 120, e26166.	1.0	6
1984	Efficient hydrogen generation by ZnAl2O4 nanoparticles embedded on a flexible graphene composite. Renewable Energy, 2020, 152, 634-643.	4.3	15
1985	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	18.7	261
1986	Photocatalytic Reduction of CO ₂ by Metalâ€Freeâ€Based Materials: Recent Advances and Future Perspective. Solar Rrl, 2020, 4, 1900546.	3.1	177
1987	Minimizing electron-hole pair recombination through band-gap engineering in novel ZnO-CeO2-rGO ternary nanocomposite for photoelectrochemical and photocatalytic applications. Environmental Science and Pollution Research, 2020, 27, 25042-25056.	2.7	54
1988	Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications. Progress in Materials Science, 2020, 114, 100683.	16.0	61
1989	Effects of fluorine on photocatalysis. Chinese Journal of Catalysis, 2020, 41, 1451-1467.	6.9	96
1990	Synthesis of carbon-doped SnO2 nanostructures for visible-light-driven photocatalytic hydrogen production from water splitting. International Journal of Hydrogen Energy, 2020, 45, 32789-32796.	3.8	61
1991	Free-standing composite films of multiple 2D nanosheets: Synergetic photothermocatalysis/photocatalysis for efficient removal of formaldehyde under ambient condition. Chemical Engineering Journal, 2020, 394, 125014.	6.6	58
1992	Hierarchical Architectured Ternary Nanostructures Photocatalysts with In(OH) ₃ Nanocube on Znln ₂ S ₄ /NiS Nanosheets for Photocatalytic Hydrogen Evolution. Solar Rrl, 2020, 4, 2000027.	3.1	37
1993	Graphene nanofl akes and hybrid nanocomposites with gold and silver nanoparticles: optical and thermal properties. Russian Chemical Bulletin, 2020, 69, 32-42.	0.4	3
1994	Effect of Ag Content on Photocatalytic Activity of Ag@TiO2/rGO Hybrid Photocatalysts. Journal of Electronic Materials, 2020, 49, 3849-3859.	1.0	20
1995	Silver-based visible light–responsive photocatalysts. Interface Science and Technology, 2020, , 415-452.	1.6	5

#	ARTICLE	IF	CITATIONS
1996	Carbon-supported semiconductor nanoparticles as effective photocatalysts for water and wastewater treatment., 2020,, 245-278.		14
1997	Nanocrystalline transition metal oxides and their composites with reduced graphene oxide and carbon nanotubes for photocatalytic applications. Ceramics International, 2020, 46, 16480-16492.	2.3	30
1998	A two-dimensional CdO/CdS heterostructure used for visible light photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 9587-9592.	1.3	63
1999	Graphene-based SiC nanowires with nanosheets: synthesis, growth mechanism and photoluminescence properties. CrystEngComm, 2020, 22, 4074-4078.	1.3	21
2000	Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives. Small, 2020, 16, e1907087.	5.2	73
2001	Nonlinear resonant behavior of thick multilayered nanoplates via nonlocal strain gradient elasticity theory. Acta Mechanica, 2020, 231, 2651-2667.	1.1	7
2002	Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@RGO nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	24
2003	Design and fabrication of direct Z-scheme photocatalysts. Interface Science and Technology, 2020, 31, 193-229.	1.6	12
2004	Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials. Advances in Colloid and Interface Science, 2020, 280, 102160.	7.0	87
2005	Recent progress in two-dimensional nanomaterials for photocatalytic carbon dioxide transformation into solar fuels. Materials Today Sustainability, 2020, 9, 100037.	1.9	29
2006	Degradation of acetamiprid using graphene-oxide-based metal (Mn and Ni) ferrites as Fenton-like photocatalysts. Water Science and Technology, 2020, 81, 178-189.	1.2	39
2007	The preparation and characterization of TiO ₂ /r-GO/Ag nanocomposites and its photocatalytic activity in formaldehyde degradation. Environmental Technology (United Kingdom), 2021, 42, 193-205.	1.2	18
2008	Bandgap-tuned ultra-small SnO2-nanoparticle-decorated 2D-Bi2WO6 nanoplates for visible-light-driven photocatalytic applications. Chemosphere, 2021, 263, 128185.	4.2	18
2009	Insight into the effect of oxidation degree of graphene oxides on their removal from wastewater via froth flotation. Chemosphere, 2021, 262, 127837.	4.2	14
2010	Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light. Chemical Engineering Journal, 2021, 404, 126455.	6.6	32
2011	Mechano-adaptive thin film of graphene-based polymeric nanocomposite for enhancement of lubrication properties. Applied Surface Science, 2021, 538, 148041.	3.1	16
2012	Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Journal, 2021, 407, 127191.	6.6	212
2013	Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations. Chemosphere, 2021, 263, 128104.	4.2	51

#	Article	IF	CITATIONS
2014	Ultrathin MXene "bridge―to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2021, 584, 474-483.	5.0	69
2015	Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment. Chemical Engineering Journal, 2021, 405, 126651.	6.6	90
2016	Simultaneous removal of colorless micropollutants and hexavalent chromium by pristine TiO2 under visible light: An electron transfer mechanism. Chemical Engineering Journal, 2021, 405, 126968.	6.6	31
2017	CuxNi1-xO nanostructures and their nanocomposites with reduced graphene oxide: Synthesis, characterization, and photocatalytic applications. Ceramics International, 2021, 47, 3603-3613.	2.3	92
2018	Improved photocatalytic H2 evolution over composites based on niobium pentoxide, metal sulfides and graphene. Materials Science in Semiconductor Processing, 2021, 122, 105492.	1.9	5
2019	Si-doped graphene nanosheets for NOx gas sensing. Sensors and Actuators B: Chemical, 2021, 328, 129005.	4.0	42
2020	A novel route to porous N-doping carbon grafted carbon nitride for enhanced photocatalytic activity on CO2 reduction. Applied Surface Science, 2021, 540, 148411.	3.1	28
2021	A graphene oxide Cookbook: Exploring chemical and colloidal properties as a function of synthesis parameters. Journal of Colloid and Interface Science, 2021, 588, 725-736.	5.0	11
2022	Graphene/graphene oxide–based nanomaterials for hydrogen production and storage applications. , 2021, , 97-116.		1
2023	Composition tuning in copper - oxide decorated reduced graphene oxide yields efficient photo- and reduction catalysts. Surfaces and Interfaces, 2021, 22, 100792.	1.5	8
2024	Reduced graphene oxide/Bi4O5Br2 nanocomposite with synergetic effects on improving adsorption and photocatalytic activity for the degradation of antibiotics. Chemosphere, 2021, 265, 129013.	4.2	31
2025	Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. Journal of Alloys and Compounds, 2021, 861, 157956.	2.8	14
2026	Solvothermal decoration of <scp>Cu₃SnS₄</scp> on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction. Environmental Progress and Sustainable Energy, 2021, 40, e13558.	1.3	12
2027	A simple synthesis route of sodium-doped g-C3N4 nanotubes with enhanced photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 112999.	2.0	17
2028	Role of graphene nanocomposite photocatalysts in photo-reduction of Cr (VI) for wastewater treatment. Materials Today: Proceedings, 2021, 41, 324-328.	0.9	4
2029	Progress on the nanoscale spherical TiO ₂ photocatalysts: Mechanisms, synthesis and degradation applications. Nano Select, 2021, 2, 447-467.	1.9	8
2030	Harvesting urbach tail energy of ultrathin amorphous nickel oxide for solar-driven overall water splitting up to 680 nm. Applied Catalysis B: Environmental, 2021, 285, 119798.	10.8	30
2031	Electronic structure of graphene/TiO2 interface: Design and functional perspectives. Applied Surface Science, 2021, 542, 148709.	3.1	10

#	Article	IF	CITATIONS
2032	Critical review of photocatalytic disinfection of bacteria: from noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Science of the Total Environment, 2021, 758, 143953.	3.9	85
2033	Langmuir-Blodgett based growth of rGO wrapped TiO2 nanostructures and their photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125652.	2.3	4
2034	Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. Chemosphere, 2021, 269, 129325.	4.2	63
2035	Altering molecular polarity via assembly induced charge transfer for high selectivity detection of Cu2+. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125658.	2.3	3
2036	Double-sided modification of TiO2 spherical shell by graphene sheets with enhanced photocatalytic activity for CO2 reduction. Applied Surface Science, 2021, 537, 147991.	3.1	20
2037	Graphene oxide photochemical transformations induced by UV irradiation during photocatalytic processes. Materials Science in Semiconductor Processing, 2021, 123, 105525.	1.9	10
2038	Fabrication of Highly Efficient Bi2Sn2O7/C3N4 Composite with Enhanced Photocatalytic Activity for Degradation of Organic Pollutants. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 172-179.	1.9	7
2039	Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production. , 2021, , 217-247.		0
2040	Artificial Photosynthesis by 3D Graphene-based Composite Photocatalysts. Chemistry in the Environment, 2021, , 396-431.	0.2	0
2041	Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals. Journal of Materials Chemistry A, 2021, 9, 13402-13441.	5.2	118
2042	Nanomaterials for water splitting and hydrogen generation. , 2021, , 277-312.		2
2043	Chemical Sensors: Photoelectrochemical Sensors. , 2023, , 243-259.		1
2044	Electrochemical fabrication of lead oxide-electrochemically reduced graphene oxide nanocomposites (PbO-ERGO) and their photoelectrochemical properties. Materials Today: Proceedings, 2021, 46, 6895-6898.	0.9	2
2045	State-of-the-art developments in carbon-based metal nanocomposites as a catalyst: photocatalysis. Nanoscale Advances, 2021, 3, 1887-1900.	2.2	51
2046	Efficient photoelectrocatalytic performance of beta-cyclodextrin/graphene composite and effect of Cl ^{â^'} in water: degradation for bromophenol blue as a case study. RSC Advances, 2021, 11, 29896-29905.	1.7	2
2047	Design of photocatalysts for the decontamination of emerging pharmaceutical pollutants in water. , 2021, , 475-502.		O
2048	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1
2049	Recent Progress in Plasmonic Hybrid Photocatalysis for CO2 Photoreduction and C–C Coupling Reactions. Catalysts, 2021, 11, 155.	1.6	6

#	ARTICLE	IF	CITATIONS
2050	Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chemical Communications, 2021, 57, 1550-1567.	2.2	22
2051	The van der Waals CdO/PtS2 heterostructures for photocatalytic water splitting with excellent carrier separation and light absorption. New Journal of Chemistry, 2021, 45, 17699-17708.	1.4	9
2052	Design, Fabrication, and Mechanism of Nitrogenâ€Doped Grapheneâ€Based Photocatalyst. Advanced Materials, 2021, 33, e2003521.	11.1	324
2053	Carbon Nanomaterials for Air and Water Remediation. , 2021, , 331-365.		1
2054	Catalyst Materials for Oxygen Reduction Reaction. , 2021, , 85-182.		0
2055	Graphene-Based Photocatalytic Materials: An Overview. , 2021, , 433-454.		1
2056	Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 729-751.	1.4	8
2057	Recent progress in bismuth oxyhalides-based heterojunctions for CO2 photoreduction. , 2021, , 363-387.		3
2058	Reduction-Induced Synthesis of Reduced Graphene Oxide-Wrapped Cu ₂ O/Cu Nanoparticles for Photodegradation of Methylene Blue. ACS Applied Nano Materials, 2021, 4, 2673-2681.	2.4	14
2059	Visibleâ€Lightâ€Induced Câ€Pâ€Bond Formation Using Reduced Graphene Oxide Decorated with Copper Oxide/Zinc Oxide (rGO/CuO/ZnO) as Ternary Recyclable Nanophotocatalyst. ChemistrySelect, 2021, 6, 1764-1771.	0.7	5
2060	Enhanced photocatalytic performance of Z-scheme N-doped Ag2CO3/GO (AGON) for microcystin-LR remediation under visible light. Journal of Water Process Engineering, 2021, 39, 101882.	2.6	8
2061	Insights into the complementary behaviour of Gd doping in GO/Gd/ZnO composites as an efficient candidate towards photocatalytic degradation of indigo carmine dye. Journal of Materials Science, 2021, 56, 8511-8527.	1.7	16
2062	Facile Synthesis of Ag Nanowire/TiO2 and Ag Nanowire/TiO2/GO Nanocomposites for Photocatalytic Degradation of Rhodamine B. Materials, 2021, 14, 763.	1.3	17
2063	Accelerated Photodegradation of Solid Phase Polystyrene by Nano TiO2-Graphene Oxide Composite under Ultraviolet radiation. Polymer Degradation and Stability, 2021, 184, 109476.	2.7	9
2064	Novel synthesis and enhanced photocatalytic effect of RGO supported Ho2WO6-ZnO. Materials Today: Proceedings, 2021, , .	0.9	0
2065	Preparation and photocatalytic property of onion-like carbon/Bi12O17Cl2 photocatalyst. Journal of Materials Science: Materials in Electronics, 2021, 32, 7647-7656.	1.1	2
2066	Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties. Applied Sciences (Switzerland), 2021, 11, 1982.	1.3	14
2067	2D materials and their heterostructures for photocatalytic water splitting and conversion of CO ₂ to value chemicals and fuels. JPhys Energy, 2021, 3, 022003.	2.3	33

#	Article	IF	CITATIONS
2068	Few Layer Graphene/TiO ₂ Composites for Enhanced Solar-Driven H ₂ Production from Methanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 3633-3646.	3.2	10
2070	Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope. ACS Omega, 2021, 6, 8734-8743.	1.6	83
2071	Transition Metal Oxides and Their Composites for Photocatalytic Dye Degradation. Journal of Composites Science, 2021, 5, 82.	1.4	29
2072	Photocatalytic Conversion of Nitrogen Oxides: Current State and Perspectives: a Review. Theoretical and Experimental Chemistry, 2021, 57, 30-63.	0.2	3
2073	MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 2021, 432, 213743.	9.5	231
2074	3D Porous Bi 2â€x Gd x WO 6 /rGO Composite for Efficient Adsorptionâ€Enrichment and Photocatalytic Degradation of Organic Dyes. ChemistrySelect, 2021, 6, 3802-3812.	0.7	2
2075	A novel H2O2photoelectrochemical sensor based on ternary RGO/Ag-TiO2 nanotube arrays nanocomposite. Electrochimica Acta, 2021, 374, 137851.	2.6	22
2076	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	3.2	54
2077	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
2078	Silver decorated 2D nanosheets of GO and MoS ₂ serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. Nanotechnology, 2021, 32, 255704.	1.3	30
2079	Two dimensional MoSSe/BSe vdW heterostructures as potential photocatalysts for water splitting with high carrier mobilities. International Journal of Hydrogen Energy, 2021, 46, 14247-14258.	3.8	27
2080	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	2.3	78
2081	One-pot sulfurized synthesis of Znln2S4/S,N-codoped carbon composites for solar light driven water splitting. International Journal of Hydrogen Energy, 2021, 46, 17697-17707.	3.8	24
2082	Activation of Carbonyl Oxygen Sites in βâ€Ketoenamineâ€Linked Covalent Organic Frameworks via Cyano Conjugation for Efficient Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101017.	5.2	34
2083	Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 285, 119863.	10.8	49
2084	Different anticipated criteria to achieve novel and efficient photocatalysis via green ZnO: scope and challenges. International Journal of Environmental Science and Technology, 2022, 19, 9209-9242.	1.8	6
2086	Enhancement on the Tribological Properties of the Multilayer RGO/Al Matrix Composites by Cu-Coating Method. Materials, 2021, 14, 3163.	1.3	1
2087	Visible-light-driven zirconium oxide/cadmium sulfide nanocomposite for degradation of textile dyes. International Journal of Environmental Science and Technology, 2022, 19, 4037-4046.	1.8	6

#	Article	IF	CITATIONS
2088	Photoelectrochemical Waterâ€Splitting Using CuOâ€Based Electrodes for Hydrogen Production: A Review. Advanced Materials, 2021, 33, e2007285.	11.1	127
2089	Design and synthesis of amine grafted graphene oxide encapsulated chitosan hybrid beads for defluoridation of water. International Journal of Biological Macromolecules, 2021, 182, 1843-1851.	3.6	14
2090	Construction of 2D polyoxoniobate/RGO heterojunction photocatalysts for the enhanced photodegradation of tetracycline. Applied Surface Science, 2021, 553, 149505.	3.1	24
2091	Black Phosphorus/Polymers: Status and Challenges. Advanced Materials, 2021, 33, e2100113.	11.1	53
2092	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	5.0	11
2093	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
2094	Preparation of CeO2/Cu-MOF/GO composite for efficient electrocatalytic oxygen evolution reaction. lonics, 2021, 27, 4347-4360.	1.2	24
2095	Hydrogel photocatalysts for efficient energy conversion and environmental treatment. Frontiers in Energy, 2021, 15, 577-595.	1.2	14
2096	AgCl/Au/g-C3N4 ternary composites: Efficient photocatalysts for degradation of anionic dyes. Journal of Alloys and Compounds, 2021, 868, 159266.	2.8	26
2097	Novel OD/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal. International Journal of Hydrogen Energy, 2021, 46, 24094-24106.	3.8	56
2098	Visible light induced photocatalytic performance of Mn-SnO2@ZnO nanocomposite for high efficient cationic dye degradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 22168-22186.	1.1	7
2099	Insight into the Real Efficacy of Graphene for Enhancing Photocatalytic Efficiency: A Case Study on CVD Graphene-TiO ₂ Composites. ACS Applied Energy Materials, 2021, 4, 8755-8764.	2.5	10
2100	Hetero-structured Znln2S4-NiO@MOF photo-catalysts for efficient hydrogen evolution. Chinese Chemical Letters, 2022, 33, 1042-1046.	4.8	16
2101	Chemical Vapor Transport Route toward Black Phosphorus Nanobelts and Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8347-8354.	2.1	10
2102	Graphene/ \hat{l}^2 $\hat{a} \in \mathcal{E}$ yclodextrin Membrane: Synthesis and Photoelectrocatalytic Degradation of Brominated Flame Retardants. ChemistrySelect, 2021, 6, 8435-8445.	0.7	3
2103	Antibacterial activity and mechanism of the graphene oxide (rGO)- modified TiO2 catalyst against Enterobacter hormaechei. International Biodeterioration and Biodegradation, 2021, 162, 105260.	1.9	19
2104	Structural and Optical Properties Investigation of Graphene Oxide coated ZnO nanorods for Enhanced Photocatalytic Effect., 2021,,.		3
2105	Fabrication of reduced Graphene Oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities. Ceramics International, 2021, 47, 32521-32533.	2.3	53

#	ARTICLE	IF	CITATIONS
2106	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	2.6	56
2107	Investigation of surface interaction in rGO-CdS photocatalyst for hydrogen production: An insight from XPS studies. International Journal of Hydrogen Energy, 2021, 46, 26757-26769.	3.8	43
2108	Layered graphitic carbon nitride: nano-heterostructures, photo/electro-chemical performance and trends. Journal of Nanostructure in Chemistry, 2022, 12, 669-691.	5.3	34
2109	Photocatalyst Composites from Bi-based and Carbon Materials for Visible Light Photodegradation. Green Chemistry and Sustainable Technology, 2022, , 145-178.	0.4	3
2110	Fabricating highly efficient Ag3PO4-Fe3O4-GO ternary nanocomposite photocatalyst: Effect of Fe3O4-GO preparation methods on photocatalytic activity. Materials Research Bulletin, 2021, 141, 111337.	2.7	13
2111	Solar chimney power plant integrated with a photocatalytic reactor to remove atmospheric methane: A numerical analysis. Solar Energy, 2021, 226, 101-111.	2.9	18
2112	Novel Ni2P-microporous nickel phosphite supported on nitrogen-doped graphene composite electrocatalyst for efficient hydrogen evolution reaction. Nanotechnology, 2021, 32, 505703.	1.3	1
2113	Hydrogen photoproduction on TiO2-reduced graphene oxide hybrid materials from water-ethanol mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113406.	2.0	8
2114	Effect of operational parameters on photocatalytic degradation of ethylparaben using rGO/TiO2 composite under UV radiation. Environmental Research, 2021, 200, 111750.	3.7	12
2115	Superior tunable photocatalytic properties for water splitting in two dimensional GeC/SiC van der Waals heterobilayers. Scientific Reports, 2021, 11, 17739.	1.6	20
2116	Influence of Nano Silicon Carbide (SiC) Embedded in Poly(Vinyl Alcohol)(PVA) Lattice on the Optical Properties. Silicon, 2022, 14, 5719-5732.	1.8	6
2117	Photocatalysis: an effective tool for photodegradation of dyesâ€"a review. Environmental Science and Pollution Research, 2022, 29, 293-311.	2.7	139
2118	Atomically Dispersed Catalytic Sites: A New Frontier for Cocatalyst/Photocatalyst Composites toward Sustainable Fuel and Chemical Production. Catalysts, 2021, 11, 1168.	1.6	7
2119	NH2-MIL-125(Ti) doped CdS/Graphene composite as electro and photo catalyst in basic medium under light irradiation. Environmental Research, 2021, 200, 111719.	3.7	10
2120	Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: Development status and tendency. Coordination Chemistry Reviews, 2021, 443, 214033.	9.5	90
2121	Amphiphilic Z907 dye grafted ZnS/rGO and Zn1â^'XCdXS/rGO decorated nano-hybrid structures: Synthesis, characterization andÂapplications in solid state dye sensitized solar cells. Optik, 2021, 244, 167609.	1.4	2
2122	Synthesis and characterization of composite catalysts comprised of ZnO/MoS2/rGO for photocatalytic decolorization of BR 18 dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126945.	2.3	8
2123	Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal, 2021, 421, 128766.	6.6	7 3

#	Article	IF	CITATIONS
2124	Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. International Journal of Hydrogen Energy, 2021, 46, 33696-33717.	3.8	113
2125	The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115363.	1.7	62
2126	Direct evidence of Z-scheme effect and charge transfer mechanism in titanium oxide and cadmium sulfide heterostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127086.	2.3	3
2127	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
2128	Signal amplification strategy of label-free ultrasenstive electrochemical immunosensor based ternary Ag/TiO2/rGO nanocomposites for detecting breast cancer biomarker CA 15-3. Materials Chemistry and Physics, 2021, 272, 124983.	2.0	24
2129	Hierarchical porous spinel nickel cobaltite nanoflakes anchored reduced graphene oxide nano-photocatalyst for efficient degradation of organic pollutants under natural sunlight. Journal of Materials Research and Technology, 2021, 15, 623-632.	2.6	7
2130	2D CoGeSe3 monolayer as a visible-light photocatalyst with high carrier mobility: Theoretical prediction. Applied Surface Science, 2021, 565, 150588.	3.1	6
2131	Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. TrAC - Trends in Analytical Chemistry, 2021, 144, 116426.	5.8	15
2132	High-response dual-purpose NO2 sensor with layered-Bi2WO6 sensing electrode. Sensors and Actuators A: Physical, 2021, 331, 112937.	2.0	5
2133	Synergetic performance of systematically designed g-C3N4/rGO/SnO2 nanocomposite for photodegradation of Rhodamine-B dye. Applied Surface Science, 2021, 570, 151140.	3.1	40
2134	Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100453.	5.6	26
2135	Photocatalytic activation of peroxydisulfate by magnetic Fe3O4@SiO2@TiO2/rGO core–shell towards degradation and mineralization of metronidazole. Applied Surface Science, 2021, 570, 151145.	3.1	62
2136	Natural reed-derived nanostructure SiC/CNOs for photocatalytic hydrogen evolution from water. Applied Surface Science, 2021, 570, 151191.	3.1	8
2137	Polymer-graphene composite in hydrogen production. , 2022, , 639-682.		1
2138	Noble metal free few-layered perovskite-based Ba2NbFeO6 nanostructures on exfoliated g-C3N4 layers as highly efficient catalysts for enhanced solar fuel production. Applied Surface Science, 2022, 572, 151406.	3.1	4
2139	A novel visible light active rare earth doped CdS nanoparticles decorated reduced graphene oxide sheets for the degradation of cationic dye from wastewater. Chemosphere, 2022, 287, 132091.	4.2	35
2140	One-pot hydrothermal approach towards 2D/2D heterostructure based on 1ÂT MoS2 chemically bonding with GO for extremely high electrocatalytic performance. Chemical Engineering Journal, 2022, 428, 132072.	6.6	22
2141	A facile solvothermal syntheses of NiFe layered double hydroxide-Bi2MoO6 heterostructure/reduced graphene oxide with efficient photodegradation for tetracycline. Environmental Research, 2022, 204, 112037.	3.7	18

#	Article	IF	CITATIONS
2142	A first-principles study of two-dimensional NbSe ₂ H/g-ZnO van der Waals heterostructures as a water splitting photocatalyst. Physical Chemistry Chemical Physics, 2021, 23, 24222-24232.	1.3	10
2143	An efficient electrostatic self-assembly of reduced graphene oxide-BiOI/Bi2O2CO3 p–n junction nanocomposites for enhanced visible-light photocatalytic activity. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 581-597.	0.8	7
2144	BiOCl/group-IV Xene bilayer heterojunctions: stability and electronic and photocatalytic properties. Physical Chemistry Chemical Physics, 2021, 23, 13323-13330.	1.3	3
2145	Photocatalytic membranes: Synthesis, properties, and applications. , 2021, , 385-406.		0
2146	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environmental Chemistry Letters, 2021, 19, 643-668.	8.3	32
2147	Construction of a mixed ligand MOF as "green catalyst―for the photocatalytic degradation of organic dye in aqueous media. RSC Advances, 2021, 11, 23838-23845.	1.7	28
2148	Chapter 5. 2D Nanomaterial-based Polymer Composite Electrolytes for Lithium-based Batteries. Inorganic Materials Series, 2021, , 204-274.	0.5	2
2149	All-solid-state Z-scheme systems for photocatalytic CO2 reduction. , 2021, , 219-255.		0
2150	W ₁₈ O ₄₉ /N-doped reduced graphene oxide hybrid architectures for full-spectrum photocatalytic degradation of organic contaminants in water. Journal of Materials Chemistry C, 2021, 9, 829-835.	2.7	13
2151	Transition metal sulfides meet electrospinning: versatile synthesis, distinct properties and prospective applications. Nanoscale, 2021, 13, 9112-9146.	2.8	35
2152	Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation., 2021,, 167-206.		0
2153	A review on bismuth oxyhalide based materials for photocatalysis. Nanoscale Advances, 2021, 3, 3353-3372.	2.2	82
2154	Electrochemical recovery of metal copper in microbial fuel cell using graphene oxide/polypyrrole cathode catalyst. International Journal of Energy Research, 2021, 45, 6863-6875.	2.2	9
2155	Heterojunctions: Joining Different Semiconductors. Green Energy and Technology, 2013, , 311-327.	0.4	4
2158	Chitosan/Nanographiteplatlets (NGP)/Tungsten Trioxide (WO3) Nanocomposites for Visible Light Driven Photocatalytic Applications. Springer Proceedings in Physics, 2020, , 23-34.	0.1	4
2159	Ultrasound-Assisted Synthesis, Exfoliation and Functionalisation of Graphene Derivatives. Carbon Nanostructures, 2019, , 63-103.	0.1	3
2160	Graphene oxide–ZnO nanocomposite: an efficient visible light photocatalyst for degradation of rhodamine B. Applied Nanoscience (Switzerland), 2021, 11, 1291-1302.	1.6	40
2161	A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy and Environment, 2022, 7, 176-204.	4.7	86

#	Article	IF	CITATIONS
2162	Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel. Journal of Hazardous Materials, 2020, 397, 122822.	6.5	35
2163	The role of redox states and junctions in photocatalytic hydrogen generation of MoS2-TiO2-rGO and CeO2-Ce2Ti3O8.7-TiO2-rGO composites. Materials Science in Semiconductor Processing, 2020, 118, 105185.	1.9	16
2164	Recent advances in mesoporous materials for sample preparation in proteomics research. TrAC - Trends in Analytical Chemistry, 2018, 99, 88-100.	5.8	50
2165	Synthesis of LaFeO ₃ /Ag ₂ CO ₃ Nanocomposites for Photocatalytic Degradation of Rhodamine B and <i>p</i> -Chlorophenol under Natural Sunlight. ACS Omega, 2019, 4, 2618-2629.	1.6	72
2166	Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution. Journal of Semiconductors, 2020, 41, 091706.	2.0	8
2167	Composite structure and enhanced photocatalytic activity in Mn–Co–Ni–O/LaMnO3 microparticles. Materials Research Express, 2020, 7, 055014.	0.8	3
2168	Graphene-diamond junction photoemission microscopy and electronic interactions. Nano Express, 2020, 1, 020011.	1.2	8
2169	Graphene-oxide/TiO2 nanocomposite films with electron-donors for multicolor holography. Optics Express, 2019, 27, 1740.	1.7	3
2170	Performance and Characterization of Two-Dimensional Material Graphene Conductivity—A Review. Materials Performance and Characterization, 2019, 8, 183-196.	0.2	1
2171	Cation-containing active carbons as photocatalysts for dyes degradation. Himia, Fizika Ta Tehnologia Poverhni, 2017, 8, 422-431.	0.2	1
2172	Determination of Optical Parameters of Films of PVA/TiO2/SiC and PVA/MgO/SiC Nanocomposites for Optoelectronics and UV-Detectors. Ukrainian Journal of Physics, 2020, 65, 533.	0.1	63
2173	Enhanced Photocatalytic Performance of ZnO through Coupling with Carbon Materials. General Chemistry, 2017, 3, 113.	0.6	6
2174	An Overview: Recent Development of Titanium Dioxide Loaded Graphene Nanocomposite Film for Solar Application. Current Organic Chemistry, 2015, 19, 1882-1895.	0.9	16
2175	Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. Current Organic Chemistry, 2019, 23, 1284-1306.	0.9	2
2176	Titanyum Dioksit/İndirgenmiş Grafen Oksit Kompozitlerin Üretimi ve Fotokatalitik Özelliklerinin İncelenmesi. Journal of Polytechnic, 0, , .	0.4	5
2177	Thermo-resonance analysis of an excited graphene sheet using a new approach. International Journal of Engineering and Applied Sciences, 2018, 10, 190-206.	0.1	1
2178	Photocatalytic Properties of Activated Carbon-NiFe ₂ O ₄ Magnetic Catalyst. Chinese Journal of Catalysis, 2013, 33, 1417-1422.	6.9	1
2179	Novel ZnWO ₄ /RGO nanocomposite as high performance photocatalyst. AIMS Materials Science, 2017, 4, 158-171.	0.7	21

#	Article	IF	CITATIONS
2180	Quantitative Photocatalytic Activity under Visible Light with Mn-ACF/TiO2. Journal of the Korean Ceramic Society, 2016, 53, 343-348.	1.1	5
2181	Enhanced Photocatalytic Remediation Using Graphene (G)-Titanium Oxide (TiO& lt; sub& gt; 2& lt; /sub& gt;) Nanocomposite Material in Visible Light Radiation. American Journal of Analytical Chemistry, 2016, 07, 576-587.	0.3	9
2182	Reduced Graphene Oxide-TiO ₂ Nanocomposite Facilitated Visible Light Photodegradation of Gaseous Toluene. Journal of Environmental Protection, 2017, 08, 591-602.	0.3	12
2183	Photocatalytic Degradation of Organic Contaminants by BiVO4/Graphene Oxide Nanocomposite. Walailak Journal of Science and Technology, 2018, 15, 787-792.	0.5	7
2184	The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60Modified TiO2Nanocomposite Photocatalysts. Bulletin of the Korean Chemical Society, 2013, 34, 3671-3676.	1.0	9
2185	Fabrication And Characterization Of Efficient Hybrid Photocatalysts Based On Titania And Graphene For Acid Orange Seven Dye Degradation Under UV Irradiation. Advanced Materials Letters, 2014, 5, 163-171.	0.3	18
2186	One-pot synthesis of Ag–Cu–Cu ₂ O/C nanocomposites derived from a metal–organic framework as a photocatalyst for borylation of aryl halide. RSC Advances, 2021, 11, 32965-32972.	1.7	5
2187	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 0 , 1 .	5. 8	9
2188	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
2189	MoO ₃ @ZnO Nanocomposite as an Efficient Anode Material for Supercapacitors: A Cost Effective Synthesis Approach. Energy & Samp; Fuels, 2021, 35, 16850-16859.	2.5	19
2190	Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48753-48763.	4.0	10
2191	Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2021, 11, 13266-13279.	5. 5	149
2192	Is Graphene Brand New in Carbon-Based Semiconductor Photocatalysts for Organic Pollutants Degradation?. Journal of Thermodynamics & Catalysis, 2011, 03, .	0.2	0
2193	Synthesis of Porphyrin- Graphene Oxide Nanocomposite for an Optical Chemical Sensor Application. , 0, , .		0
2194	Solar Fuel Photocatalysts. , 2015, , .		0
2195	Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation. Journal of the Korean Ceramic Society, 2015, 52, 502-507.	1.1	0
2196	Lycium Ruthenicum Murray and Graphene Nanoplates for Dye Sensitized Solar Cell. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2016, 31, 1117.	0.6	0
2197	Reduced graphene oxide: A promising solid-state electron mediator for solar oxygen evolution. , 2016, , .		2

#	Article	IF	CITATIONS
2198	Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application. KEPCO Journal on Electric Power and Energy, 2016, 2, 97-101.	0.1	0
2201	Efficient Photocatalytic Systems Integrated with Layered Materials Promoters. Nanostructure Science and Technology, 2017, , 395-407.	0.1	0
2202	Latest and Future Prospects of Bismith Oxyhalides. Advanced Structured Materials, 2017, , 109-123.	0.3	0
2203	ZnO-Grafen Nanokompozitinin Sol-Jel Yöntemiyle Üretimi ve Fotokatalizör Olarak Kullanılması. Çukurova Üniversitesi Mühendislik-MimarlÁ±k Fakültesi Dergisi, 2018, 33, 1-216.	0.1	0
2204	Fabrication of Graphene–CuO Nanocomposite with Improved Photocatalytic Degradation for Palladium Solution under Solar Light Irradiation. Journal of Nanoscience and Technology, 2018, 4, 497-499.	0.2	3
2205	Graphene-Based Nanomaterials for Hydrogen Storage. Carbon Nanostructures, 2019, , 229-245.	0.1	0
2206	Study on Mechanism of Photocatalytic Performance Enhancement for RGO Loaded Nano-ZnO Composites. Material Sciences, 2019, 09, 428-435.	0.0	1
2207	Effect of Copper Oxide on Structural, Optical and Photocatalytic Activity of Reduced Graphene Oxide for Eosin B. Asian Journal of Materials Chemistry, 2019, , 34-42.	0.2	0
2209	Characterization Studies of Reduced Graphene Oxide/Zinc Oxide Nanocomposites Synthesized by Hydrothermal Method. Journal of Materials and Applications, 2019, 8, 80-90.	0.2	1
2210	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2
2212	The role of graphene oxide and its reduced form in the in situ photocatalytic growth of silver nanoparticles on graphene-TiO2 nanocomposites. Applied Surface Science, 2022, 576, 151759.	3.1	11
2213	Molecular docking and DFT analyses of magnetic cobalt doped MoS2 and BN nanocomposites for catalytic and antimicrobial explorations. Surfaces and Interfaces, 2021, 27, 101571.	1.5	19
2215	Zn-doped Bi2MoO6 supported on reduced graphene oxide with increased surface active sites for degradation of ciprofloxacin. Environmental Science and Pollution Research, 2022, 29, 19835-19846.	2.7	2
2216	Nanotechnology for Water and Wastewater Treatment Using Graphene Semiconductor Composite Materials. Environmental Chemistry for A Sustainable World, 2020, , 1-34.	0.3	3
2217	Synthesis of g-C3N4/BiVO4 and Its Photocatalytic Performance for Hydrogen Production. Arabian Journal for Science and Engineering, 2020, 45, 4659-4667.	1.7	3
2218	High-Efficiency Photocatalytic Degradation of Tannic Acid Using TiO ₂ Heterojunction Catalysts. ACS Omega, 2021, 6, 28538-28547.	1.6	5
2219	Significantly enhanced charge transport in polysilicon by alleviating grain boundary scattering through interface control using reduced graphene oxide. Journal of the Korean Ceramic Society, 2022, 59, 263-269.	1.1	0
2220	Graphene decorated long single crystalline Mn2O3 nanorods: Facile Synthesis and visible light photocatalyst. Diamond and Related Materials, 2021, 120, 108703.	1.8	15

#	Article	IF	CITATIONS
2221	Enhanced photoelectrocatalytical activity and stability of Z-scheme heterojunction Black Ti3+ self-doping TNT/Ag/WO3 nanosheet under visible light. Optical Materials, 2022, 123, 111841.	1.7	3
2222	Solution combustion synthesis of rGO-Fe2O3 hybrid nanofiller for linseed oil based eco-friendly anticorrosion coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127863.	2.3	6
2223	Capillarity assisted interfacial reaction fabrication of spatially separated site-specific AgI/Fe3O4/Ag3PO4@GF for efficient photocatalytic reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128032.	2.3	4
2225	Disordered photonics behavior from terahertz to ultraviolet of a three-dimensional graphene network. NPG Asia Materials, 2021, 13, .	3.8	10
2226	Electrospun Ceramic Nanofibers for Photocatalysis. Nanomaterials, 2021, 11, 3221.	1.9	8
2227	Silver-doped ZnO embedded reduced graphene oxide hybrid nanostructured composites for superior photocatalytic hydrogen generation, dye degradation, nitrite sensing and antioxidant activities. Inorganic Chemistry Communication, 2021, 134, 109051.	1.8	26
2228	Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. Environmental Science and Pollution Research, 2022, 29, 4930-4957.	2.7	19
2229	Laser-Induced Graphene Heater Pad for De-Icing. Nanomaterials, 2021, 11, 3093.	1.9	10
2230	RGO/Cu2O-CuO nanocomposite as a visible-light assisted photocatalyst for reduction of organic nitro groups to amines. Molecular Catalysis, 2021, 516, 111997.	1.0	10
2231	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
2232	Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A: General, 2022, 630, 118460.	2.2	26
2233	Facile thermal synthesis of g–C ₃ N ₄ /ZnO nanocomposite with antibacterial properties for photodegradation of Methylene blue. Materials Research Express, 2021, 8, 125002.	0.8	16
2234	Synergistic degradation of organic pollutants on CoFe2O4/rGO nanocomposites by peroxymonosulfate activation under LED irradiation. Applied Surface Science, 2022, 579, 152151.	3.1	16
2235	Green synthesis of multilayer Graphene/ZnO nanocomposite for photocatalytic applications. Journal of Alloys and Compounds, 2022, 900, 163526.	2.8	17
2236	In-depth understanding of the photoreduction of graphene oxide to reduced-graphene oxide on TiO2 surface: Statistical analysis of X-ray photoelectron and Raman spectroscopy data. Applied Surface Science, 2022, 581, 152325.	3.1	8
2237	A short review of titania-graphene oxide based composites as a photocatalysts. Advanced Technologies, 2021, 10, 51-60.	0.2	4
2238	Novel Visible-Light Driven BFO/ZnO/BiOCl and BFO/SnO ₂ /BiOCl Ternary Photocatalysts for the Degradation of Congo Red Dye. SSRN Electronic Journal, 0, , .	0.4	0
2239	C ₃ N ₄ /Cu/ZnFe ₂ O ₄ Ternary Nanocomposites: Removal of Environmental Pollutants by the Synergy of Physical Adsorption and Photocatalysis. ChemistrySelect, 2022, 7, .	0.7	2

#	Article	IF	CITATIONS
2240	Hydroxylation-induced defect states and formation of a bidentate acetate adstructure of TiO ₂ catalysts with acetic acid variation for catalytic application. Semiconductor Science and Technology, 2022, 37, 045008.	1.0	0
2241	Applications of graphene-based tungsten oxide nanocomposites: a review. Journal of Nanostructure in Chemistry, 2023, 13, 167-196.	5.3	8
2242	ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environmental Chemistry Letters, 2022, 20, 1047-1081.	8.3	68
2243	Photocatalytic degradation of methylene blue (MB) with Cu ₁ –ZnO single atom catalysts on graphene-coated flexible substrates. Journal of Materials Chemistry A, 2022, 10, 6231-6241.	5. 2	32
2244	Tuning the properties of ZnS semiconductor by the addition of graphene., 2022,, 351-381.		4
2245	Plasmonic Au–rGO–TiO2 ternary photocatalyst for photocatalytic hydrogen production and dye degradation. Nanotechnology for Environmental Engineering, 2022, 7, 119-137.	2.0	5
2246	Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chinese Journal of Catalysis, 2022, 43, 708-730.	6.9	65
2247	Efficient pollutant degradation under ultraviolet to near-infrared light irradiation and dark condition using CuSe nanosheets: Mechanistic insight into degradation. Journal of Colloid and Interface Science, 2022, 613, 103-116.	5.0	16
2248	Chapter 5. 2D Photocatalytic Materials for Environmental Applications. Inorganic Materials Series, 2022, , 217-293.	0.5	0
2249	Chapter 4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting. Inorganic Materials Series, 2022, , 170-216.	0.5	0
2250	Chapter 3. Photocatalysis by Graphenes. Inorganic Materials Series, 2022, , 150-169.	0.5	0
2251	Survey of Tetragonal Transition Metal Chalcogenide Heteroâ€Bilayers for Promising Photocatalysts. Advanced Materials Interfaces, 2022, 9, .	1.9	4
2252	Znln2S4 and Znln2S4 based advanced hybrid materials: Structure, morphology and applications in environment and energy. Inorganic Chemistry Communication, 2022, 138, 109288.	1.8	37
2253	Hydrothermal Synthesis and Photocatalytic Properties of Graphene@Ag/AgSb2O5.8 Composites: Reaction Laws of the Composites in Sintering Process. Advances in Materials Science and Engineering, 2022, 2022, 1-11.	1.0	0
2254	On the Endocircular Li@C16 System. Frontiers in Chemistry, 2022, 10, 813563.	1.8	0
2255	Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods, 2022, 6, e2101395.	4.6	69
2256	Facile in-situ synthesis of reduced graphene oxide/TiO ₂ nanocomposite: a promising material for the degradation of methyl orange. Inorganic and Nano-Metal Chemistry, 2023, 53, 167-177.	0.9	5
2257	Exceptional removal of methylene blue and p-aminophenol dye over novel TiO2/RGO nanocomposites by tandem adsorption-photocatalytic processes. Materials Science for Energy Technologies, 2022, 5, 217-231.	1.0	18

#	Article	IF	CITATIONS
2258	Metal oxide–carbon composite: synthesis and properties by using conventional enabling technologies. , 2022, , 25-60.		2
2259	Boosting the photocatalytic H ₂ evolution activity of type-II g-GaN/Sc ₂ CO ₂ van der Waals heterostructure using applied biaxial strain and external electric field. RSC Advances, 2022, 12, 7391-7402.	1.7	15
2260	One-Dimensional Rod-Shaped Ag2mo2o7/Bioi N-N Junctions for Efficient Photodegradation of TetracyclineÂUnder Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
2261	Photocatalytic Aspect of Rgo/Mnfe2o4 as an Efficient Magnetically Retrievable Catalyst for Reduction of Nitroaromatic Compounds Under Visible-Light Irradiation. SSRN Electronic Journal, 0, , .	0.4	0
2262	Shining light on <scp>Znln₂S₄</scp> photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat, 2022, 4, .	6.8	45
2263	Synergistic Excited State Involved Catalytic Reduction of (NH3-trz) [Fe(dipic)2] Complex by SnO2/TiO2 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2712-2728.	1.9	6
2264	Boosting photocharge separation in Z-schemed g-C3N4/RGO/ln2S3 photocatalyst for H2 evolution and antibiotic degradation. Journal of Industrial and Engineering Chemistry, 2022, 110, 217-224.	2.9	14
2265	Influence of Fermiâ€Level Engineering in Multiâ€Interface CuO/Cu ₂ 0 rGO <i>h</i> ê€WO ₃ rGO Photoelectrodes on Photoelectrochemical CO ₂ Reduction. Energy Technology, 2022, 10, .	1.8	2
2266	Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Crystals, 2022, 12, 389.	1.0	13
2267	Oneâ€Pot Synthesis of Agâ€TiO ₂ â€rGO Nanocomposites for Visibleâ€Light Photodegradation. ChemistrySelect, 2022, 7, .	0.7	2
2268	Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring. Frontiers in Environmental Science, 2022, 10, .	1.5	16
2269	Graphene modified "black {0 0 1}TiO2―nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism. Separation and Purification Technology, 2022, 292, 121008.	3.9	8
2270	Boosting electron kinetics of anatase TiO2 with carbon nanosheet for efficient photo-reforming of xylose into biomass-derived organic acids. Journal of Alloys and Compounds, 2022, 906, 164276.	2.8	16
2271	Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments. Sustainable Materials and Technologies, 2022, 32, e00406.	1.7	27
2272	Interface engineering of organic-inorganic heterojunctions with enhanced charge transfer. Applied Catalysis B: Environmental, 2022, 309, 121261.	10.8	21
2273	Advances and prospects of porphyrin-based nanomaterials via self-assembly for photocatalytic applications in environmental treatment. Coordination Chemistry Reviews, 2022, 463, 214543.	9.5	22
2274	Immobilised rGO/TiO2 Nanocomposite for Multi-Cycle Removal of Methylene Blue Dye from an Aqueous Medium. Applied Sciences (Switzerland), 2022, 12, 385.	1.3	13
2275	GO-induced effective interconnection layer for all solution-processed tandem quantum dot light-emitting diodes. Journal of Central South University, 2021, 28, 3737-3746.	1.2	5

#	Article	IF	CITATIONS
2276	Hierarchical ZnO Nanosheet-Reduced Graphene Oxide Composites for Photocatalytic Ethylene Oxidation. ACS Applied Nano Materials, 2022, 5, 1828-1835.	2.4	14
2277	Insight into the role of reduced graphene oxide in enhancing photocatalytic hydrogen evolution in disordered carbon nitride. Physical Chemistry Chemical Physics, 2022, 24, 11213-11221.	1.3	9
2278	Annealed Polycarbazole/Tin Oxide/Graphene Oxide Ternary Nano Composite: A Highly Efficient Photocatalyst for the Photodegradation of Congo Red Dye under UV and Natural Daylight Irradiations. Fibers and Polymers, 2022, 23, 1641-1656.	1.1	2
2279	Graphene Related Materials and Composites: Strategies and Their Photocatalytic Applications in Environmental Remediation. , 0, , .		0
2280	Exploration of CdO properties favoring superior photocatalytic degradation of methylene blue dye by Al3+ doping. Optical and Quantum Electronics, 2022, 54, 1.	1.5	3
2281	Grapheneâ€Based Nanomaterials for Solarâ€Driven Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	4
2282	Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews, 2022, 122, 10484-10537.	23.0	268
2283	In situ preparation of BiOCl0.75I0.25/g-C3N4-Cl in reduced graphene hydrogel photoanode for simultaneous removal of tetracycline hydrochloride and hexavalent chromium with efficient electricity generation. Environmental Research, 2022, 212, 113247.	3.7	8
2285	Robust photocatalytic activity of two-dimensional h-BN/Bi ₂ O ₃ heterostructure quantum sheets. RSC Advances, 2022, 12, 13535-13547.	1.7	9
2286	Two-Dimensional Cds/Sii2ÂHeterostructure with Low Carrier Recombination as a Promising Photocatalyst for Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
2287	Fabrication and optimization of CdS photocatalyst using nature leaf as biological template for enhanced visible-light photocatalytic hydrogen evolution. Catalysis Today, 2022, 402, 241-247.	2.2	6
2288	Ternary metal oxide WO3.NiO.ZnO nanoparticles and their composite with CNTs for organic dye photocatalytic degradation. Ceramics International, 2022, 48, 22228-22236.	2.3	25
2289	Graphene-based nanocomposites for automotive and off-highway vehicle applications- A review. Current Mechanics and Advanced Materials, 2022, 02, .	0.1	0
2290	Preparation of nano-TiO ₂ sensitized by new ruthenium complex for photocatalytic degradation of methylene blue under visible light irradiation. Journal of Coordination Chemistry, 2022, 75, 808-821.	0.8	0
2291	Hydrothermally synthesized Gd-doped BiSbO4 nanoparticles and their graphene-based composite: A novel photocatalytic material. Journal of Solid State Chemistry, 2022, 312, 123217.	1.4	15
2292	Newly Developed Nano Sensitive Carbon Paste Electrode Modified with Silver Sulphadiazine and Zinc Oxide for Voltammetric Determination of Loperamide Hydrochloride in Pharmaceutical Formulation and in Human Plasma. Journal of the Electrochemical Society, 2022, 169, 056507.	1.3	2
2293	Design and fabrication of zinc oxide-graphene nanocomposite for gas sensing applications. Applied Surface Science, 2022, 595, 153510.	3.1	9
2294	Chemical fabrication, structural characterization and photocatalytic water splitting application of Sr-doped SnO ₂ nanoparticles. Nanotechnology, 2022, 33, 355706.	1.3	15

#	Article	IF	CITATIONS
2295	Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. Journal of Alloys and Compounds, 2022, 916, 165459.	2.8	35
2296	Carbon-based metal-free catalysts for photocatalytic reactions. , 2022, , 151-194.		1
2297	Inâ€Depth Understanding of the Effect of Halogenâ€Induced Stable 2D Bismuthâ€Based Perovskites for Photocatalytic Hydrogen Evolution Activity. Advanced Functional Materials, 2022, 32, .	7.8	31
2298	CdS/Sil2: A promising two-dimensional materials for photocatalytic water splitting. Results in Physics, 2022, 38, 105636.	2.0	3
2299	Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1719-1748.	6.9	32
2300	Principles, synthesis and applications of dual Z-scheme photocatalysts. Coordination Chemistry Reviews, 2022, 467, 214596.	9.5	54
2302	Simple synthesis of BiOI/ZnO/rGO for efficient photocatalytic degradation of antibiotic chloramphenicol under visible light. Journal of Environmental Sciences, 2023, 134, 65-76.	3.2	4
2303	Heteropoly acid nanocomposite for disinfection and dye removal of licorice wastewater: fabrication of a novel fixed-bed photocatalytic reactor. Journal of Materials Science: Materials in Electronics, 0, ,	1.1	0
2304	Graphene/polymer composite application on supercapacitors. , 2022, , 583-610.		0
2305	Necklaceâ€Like Nanostructures: From Fabrication, Properties to Applications. Advanced Materials, 2022, 34, .	11.1	8
2306	Selective adsorption of epigallocatechin gallate onto highly reusable gallium doped mesoporous TiO2 nanoparticles adsorbent. Journal of the Indian Chemical Society, 2022, , 100576.	1.3	0
2307	Graphene-Integrated Nonwoven Polypropylene Fabric for Simultaneous Filtering of Particulate Matter and Volatile Organic Compounds. Waste and Biomass Valorization, 2023, 14, 479-486.	1.8	5
2308	Preparation and characterization of aluminum oxide/iron oxide/graphene oxide nanocomposite by co-precipitation method. AIP Conference Proceedings, 2022, , .	0.3	0
2309	Graphene oxide-based photocatalysts for environmental purification., 2022,, 135-172.		0
2310	Reduced graphene oxide–zinc sulfide (RGO–ZnS) nanocomposite: a new photocatalyst for oxidative cyclization of benzylamines to benzazoles under visible-light irradiation. Reaction Chemistry and Engineering, 2022, 7, 2202-2210.	1.9	6
2311	Promising performance of polyvinylpyrrolidone-doped bismuth oxyiodide quantum dots for antibacterial and catalytic applications. Applied Nanoscience (Switzerland), 2022, 12, 2621-2633.	1.6	26
2312	Photoreduction of CO2 into CH4 Using Novel Composite of Triangular Silver Nanoplates on Graphene-BiVO4. Catalysts, 2022, 12, 750.	1.6	0
2313	Facile synthesis of ternary heterojunction Bi2O3/reduced graphene oxide/TiO2 composite with boosted visible-light photocatalytic activity. Separation and Purification Technology, 2022, 299, 121712.	3.9	14

#	Article	IF	CITATIONS
2314	Nanoarchitecture of graphene nanosheets decorated with NiCr layered double hydroxide for sonophotocatalytic degradation of refractory antibiotics. Environmental Research, 2022, 214, 113788.	3.7	11
2315	Interfacial microenvironment-regulated cascade charge transport in Co6Mo6C2-MoO2-CoNC@ZnIn2S4 photocatalyst for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138130.	6.6	24
2316	Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds. Environmental Pollution, 2022, 309, 119805.	3.7	24
2317	Sonication-assisted synthesis of Ag@AgCl and Ag@AgCl-GO and their photocatalytic performances. Journal of Molecular Structure, 2022, 1269, 133756.	1.8	11
2318	Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environmental Science: Nano, 2022, 9, 3659-3683.	2.2	7
2319	Engineering Noble Metal-like Bi onto Hierarchical SrWO4 for the Enhancement of Photocatalytic Activity. Catalysts, 2022, 12, 787.	1.6	2
2320	Tailoring the hydrogen storage performance of the Cr-, Mn-, and Fe-doped circumcoronenes by the presence of N and B co-dopants: Computational study. International Journal of Hydrogen Energy, 2022, 47, 34570-34582.	3.8	3
2321	Photocatalytic nanocomposite membranes for environmental remediation. Nanotechnology, 2022, 33, 465701.	1.3	5
2323	Progress of <scp> g ₃ N ₄ </scp> and carbonâ€based material composite in fuel cell application. International Journal of Energy Research, 2022, 46, 16281-16315.	2.2	10
2324	The Effect of Oxygen Functional Groups on TiO2/RGO Composites for the Degradation of Unsymmetrical Dimethylhydrazine. Journal of Materials Research and Technology, 2022, , .	2.6	1
2325	Reduced graphene oxide wrapped ZnFe2O4 nanospheres as selective magnetically recyclable Photocatalysts under visible light irradiation. Carbon Letters, 2022, 32, 1703-1714.	3.3	5
2326	Recent Advances in the Heterogeneous Photocatalytic Hydroxylation of Benzene to Phenol. Molecules, 2022, 27, 5457.	1.7	9
2327	Enhanced visible-light photocatalytic activity of rGO-ZnO composite thin films prepared by SILAR method. Advances in Materials and Processing Technologies, 0, , 1-16.	0.8	2
2328	Simple synthesis of Ni-doped MoS2 nanoparticles and their application as efficient photocatalyst: experiment and COMSOL simulation. Chemical Papers, 2022, 76, 7493-7506.	1.0	3
2329	Carbon Nanomaterials Based Supercapacitors: Recent Trends. , 0, , .		0
2330	TiB2 derived nanosheets co-immobilized with triangular gold nanoparticles elicit fast and stable photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2024, 52, 20-32.	3.8	9
2331	Enhanced photocatalytic hydrogen evolution from reduced graphene oxide-defect rich TiO2-x nanocomposites. International Journal of Hydrogen Energy, 2022, 47, 40242-40253.	3.8	6
2332	2D hybrid photocatalysts for solar energy harvesting. Sustainable Materials and Technologies, 2022, 33, e00469.	1.7	7

#	Article	IF	CITATIONS
2333	The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64, 102175.	3.3	11
2334	Photocatalytic aspect of rGO/MnFe2O4 as an efficient magnetically retrievable catalyst for reduction of nitroaromatic compounds under visible-light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 108368.	3.3	9
2335	Regulating of MnO2 photocatalytic activity in degradation of organic dyes by polymorphic engineering. Solid State Sciences, 2022, 132, 106997.	1.5	16
2336	Effect of activating agents on the photocatalytic activity of chromium oxide based porous carbon photocatalysts derived from chrome-tanned leather buffing dust waste for the degradation of 2-chlorophenol. Chemical Engineering Journal, 2023, 451, 138553.	6.6	6
2337	Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society, 2022, 26, 101544.	2.4	27
2338	Metal oxide/2D layered TMDs composites for H2 evolution reaction via photocatalytic water splitting – A mini review. Inorganic Chemistry Communication, 2022, 145, 109971.	1.8	13
2339	rGO-wrapped Ag-doped TiO2 nanofibers for photocatalytic CO2 reduction under visible light. Journal of Cleaner Production, 2022, 374, 134022.	4.6	15
2340	ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. Chemosphere, 2022, 308, 136483.	4.2	32
2341	Fe-g-C3N4/reduced graphene oxide lightless application for efficient peroxymonosulfate activation and pollutant mineralization: Comprehensive exploration of reactive sites. Science of the Total Environment, 2023, 855, 158799.	3.9	10
2342	Regulation of functional groups enable the metal-free PDINH/GO advisable antibacterial photocatalytic therapy. Chemical Engineering Journal, 2023, 451, 139007.	6.6	17
2343	The synergetic effect of PdCr based bimetallic catalysts supported on RGO-TiO2 for organic transformations. Results in Chemistry, 2022, 4, 100524.	0.9	1
2344	CHAPTER 9. Photocatalytic Conversion of CO2 Into Energy-rich Chemicals by Two-dimensional Nanomaterials., 2022,, 244-269.		0
2345	CHAPTER 10. Two-dimensional Based Hybrid Materials for Photocatalytic Conversion of CO2 Into Hydrocarbon Fuels., 2022,, 270-300.		2
2346	Development of heterogeneous photocatalysts <i>via < /i>the covalent grafting of metal complexes on various solid supports. Chemical Communications, 2022, 58, 11354-11377.</i>	2.2	12
2347	Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry. Chemical Engineering Journal, 2023, 452, 139509.	6.6	18
2348	Synthesis and applications of graphene and graphene-based nanocomposites: Conventional to artificial intelligence approaches. Frontiers in Environmental Chemistry, 0, 3, .	0.7	8
2349	A Review on the Progress and Future of TiO2/Graphene Photocatalysts. Energies, 2022, 15, 6248.	1.6	18
2350	ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts, 2022, 12, 952.	1.6	8

#	Article	IF	CITATIONS
2351	Investigation on the role of graphene-based composites for in photocatalytic degradation of phenol-based compounds in wastewater: a review. Environmental Science and Pollution Research, O, , .	2.7	2
2352	Chemical vapor deposited graphene-based quasi-solid-state ultrathin and flexible sodium-ion supercapacitor. Journal of Electrochemical Science and Engineering, 0, , .	1.6	1
2353	Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 34323-34375.	3.8	13
2354	A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Frontiers in Chemistry, 0, 10 , .	1.8	4
2355	Effluent degradation followed hydrogen production using near-infrared sensitized nanocomposite of reduced nanographene oxide under visible light. Environmental Science and Pollution Research, O, , .	2.7	0
2356	Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynthesis Research, 2022, 154, 329-352.	1.6	3
2357	Few layer graphene nanosheets from kinnow peel waste for high-performance supercapacitors: A comparative study with three different electrolytes. Journal of Energy Storage, 2022, 55, 105729.	3.9	10
2358	Construction of CuS/ZnS heterostructures with enhanced photocatalytic activities on dye degradation and Cr (VI) reduction. Ferroelectrics, 2022, 597, 140-148.	0.3	0
2359	The Potential of rGO@TiO2 Photocatalyst for the Degradation of Organic Pollutants in Water. Sustainability, 2022, 14, 12703.	1.6	8
2361	Synthesis of novel LaCoO3/graphene catalysts as highly efficient peroxymonosulfate activator for the degradation of organic pollutants. Chemical Engineering Journal, 2023, 454, 139900.	6.6	13
2362	Recent Development in Non-Metal-Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts, 2022, 12, 1331.	1.6	48
2363	Atomically engineered molybdenum di-sulfide by dual heteroatom doping for accelerating hydrogen evolution reaction on cadmium sulfide nanorods. Solid State Sciences, 2022, 134, 107047.	1.5	1
2364	Application of graphdiyne oxide in photoelectrochemical-type photodetectors and ultrafast fiber lasers. Nano Today, 2022, 47, 101653.	6.2	10
2365	Insights into photoinduced carrier dynamics and hydrogen evolution reaction of organic PM6/PCBM heterojunctions. Journal of Materials Chemistry A, 2022, 10, 24529-24537.	5.2	3
2366	Synchronized wet-chemical development of 2-dimensional MoS2 and g-C3N4/MoS2 QDs nanocomposite as efficient photocatalysts for detoxification of aqueous dye solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130581.	2.3	9
2367	Promising Supercapacitive and Photocatalytic Performances of TiO ₂ Nanotubes Loaded with Graphene: Insight on the Quantitative Chatacterisation by EIS. Journal of the Electrochemical Society, 2022, 169, 113503.	1.3	1
2368	Facile Synthesis of Hafnium Oxide Nanoparticle Decorated on Graphene Nanosheet and Its Photocatalytic Degradation of Organic Pollutants under UV-Light Irradiation. Applied Sciences (Switzerland), 2022, 12, 11222.	1.3	4
2369	Mesoporous graphene-based hybrid nanostructures for capacitive energy storage and photocatalytic applications. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 266-276.	1.0	2

#	Article	IF	CITATIONS
2370	Aerogels-Inspired based Photo and Electrocatalyst for Water Splitting to Produce Hydrogen. Applied Materials Today, 2022, 29, 101670.	2.3	4
2371	Band Edges Engineering of 2D/2D Heterostructures: The C ₃ N ₄ /Phosphorene Interface. ChemPhysChem, 2023, 24, .	1.0	2
2372	Wet chemical synthesis of $C@Nd2O3/rGO$ nanocomposite: A visible light trigger photocatalyst for efficient water remediation. Optical Materials, 2023, 135, 113255.	1.7	5
2373	A deep learning model for predicting mechanical properties of polycrystalline graphene. Computational Materials Science, 2023, 218, 111924.	1.4	1
2374	Reduced graphene oxide grafted on p-Si photocathode as a multifunctional interlayer for enhanced solar hydrogen production. Applied Physics Letters, 2022, 121, .	1.5	3
2375	Novel amoxicillin degradation via photocatalysis of WO3/AgI heterojunction decorated on rGO. Ceramics International, 2023, 49, 10881-10888.	2.3	9
2376	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3
2377	Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers, 2022, 14, 5244.	2.0	6
2378	Effects of Hydrothermal Reaction Time on the Structure and Optical Properties of ZnO/Graphene Oxide Nanocomposites. Crystals, 2022, 12, 1825.	1.0	3
2379	Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287.	3.8	16
2380	VIS-active TiO ₂ films decorated by expanded graphite: impact of the exfoliation time on the photocatalytic behaviour. Environmental Technology (United Kingdom), 0, , 1-12.	1.2	1
2381	Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight. Frontiers of Chemical Science and Engineering, 0, , .	2.3	0
2382	Effective CO ₂ Capture and Selective Photocatalytic Conversion into CH ₃ OH by Hierarchical Nanostructured GO–TiO ₂ –Ag ₂ O and GO–TiO ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag ₂ 3€"Ag _{3981-3991.}	1.6	10
2383	Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts, 2023, 13, 109.	1.6	11
2384	Nanoarchitecture of a Two-Dimensional Few-Layer Graphene Oxide/i∈-Conjugated Polyimide Composite for Enhanced Photocatalytic Performance. ACS Omega, 2023, 8, 4072-4080.	1.6	1
2385	Excellent photocatalytic properties in 2D ZnO/SiC van der Waals hetero-bilayers: water-splitting H ₂ -fuel production. RSC Advances, 2023, 13, 1943-1954.	1.7	4
2386	Spinel-Ferrite-Decorated Graphene-Based Nanocomposites for Enhanced Photocatalytic Detoxification of Organic Dyes in Aqueous Medium: A Review. Water (Switzerland), 2023, 15, 81.	1.2	26
2387	First-Principles Calculations of 2D Janus WSSiN ₂ Monolayer for Photocatalytic Water Splitting. ACS Applied Nano Materials, 2023, 6, 1956-1964.	2.4	18

#	Article	IF	Citations
2388	Liquid-phase photo-induced covalent modification (PICM) of single-layer graphene by short-chain fatty acids. Nanoscale, 2023, 15, 4932-4939.	2.8	1
2389	Current prospects of carbon-based nanodots in photocatalytic CO2 conversion. , 2023, , 295-340.		O
2390	Preparation of MnO2-Carbon Materials and Their Applications in Photocatalytic Water Treatment. Nanomaterials, 2023, 13, 541.	1.9	6
2391	Graphene Catalysis Made Easy. , 2024, , 580-593.		0
2392	Plasmonic photodetectors., 2023,, 353-389.		0
2393	Preparation of CNT used surfactant for activity CNT-TiO2 composites. AIP Conference Proceedings, 2023, , .	0.3	0
2394	Characterization and photocatalytic application of SrGd2O4 doped with rare earth Sm3+ and Dy3+ ions. Surfaces and Interfaces, 2023, 37, 102755.	1.5	2
2395	TiO2-CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: A comprehensive study on band gap engineering and mechanistic aspects. Inorganic Chemistry Communication, 2023, 151, 110564.	1.8	9
2396	Visible-light-driven photocatalytic activity of NiFe2O4@Ti-doped ZnO magnetically separable nanoparticles anchored on N-doped rGO nanosheets. Diamond and Related Materials, 2023, 135, 109839.	1.8	9
2397	Photoluminescence and lifetime studies of C-dot decorated CdS/ZnFe2O4 composite designed for photoelectrochemical applications. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114612.	2.0	6
2398	Fabrication of CNT encapsulated CuS/Ni3S4 nanohybrid for enhanced productions of solar fuels. Diamond and Related Materials, 2023, 135, 109784.	1.8	0
2399	Graphene based NiMnO3/NiMn2O4 ternary nanocomposite for superior photodegradation performance of methylene blue under visible-light exposure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131434.	2.3	8
2400	Boosted photocatalytic performance on molecule/semiconductor hybrid materials: conversion of sunlight energy into hydrogen fuel. New Journal of Chemistry, 2023, 47, 4636-4643.	1.4	1
2401	Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials. Results in Engineering, 2023, 17, 100920.	2.2	40
2402	Nanomaterials of Carbon and Metal Sulfides in Photocatalysis. , 0, , .		0
2403	Polypyridine Iridium(III) and Ruthenium(II) Complexes for Homogeneous and Grapheneâ€Supported Photoredox Catalysis. ChemCatChem, 2023, 15, .	1.8	3
2404	Indirect Z-scheme hydrogen production photocatalyst based on two-dimensional GeC/MoSi2N4 van der Waals heterostructures. International Journal of Hydrogen Energy, 2023, 48, 18301-18314.	3.8	9
2405	Biomass Mediated Synthesis of ZnO and ZnO/GO for the Decolorization of Methylene Blue under Visible Light Source. Catalysts, 2023, 13, 409.	1.6	1

#	Article	IF	CITATIONS
2406	Exceptional Photocatalytic Hydrogen Peroxide Production from Sandwichâ€Structured Graphene Interlayered Phenolic Resins Nanosheets with Mesoporous Channels. Advanced Functional Materials, 2023, 33, .	7.8	20
2407	Aggregation Triggers Red/Near-Infrared Light Hydrogen Production of Organic Dyes with High Efficiency. ACS Catalysis, 2023, 13, 3723-3734.	5 . 5	10
2408	Nhá»⁻ng tiến bá»™ vổváºŧ liệu xúc tác tách nước khÃ′ng chứa kim loại quý. , 0, 85, 3-17.		0
2409	Carbonaceous Nanostructures-Based Photocatalysts for Sustainable H2 Production. Materials Horizons, 2023, , 257-283.	0.3	0
2410	Hierarchical Waterweed-like Photoanodes for Sustainable Photoelectrochemical Hydrogen Production. ACS Applied Energy Materials, 2023, 6, 3460-3467.	2.5	0
2411	2D Nanomaterials-based Heterostructures for H2O Splitting and CO2 Reduction. , 2023, , 193-230.		0
2412	Study on the Fabrication of Ag Doped ZnO-TiO2 Hybrid Photocatalyst with Excellent Photocatalytic Activity and Its Photocatalytic Decarboxylation Performance. Journal of Ocean University of China, 2023, 22, 469-478.	0.6	1
2413	Fabrication of Antibacterial Ag/Graphene-Integrated Non-woven Polypropylene Textile for Air Pollutant Filtering. Waste and Biomass Valorization, 2023, 14, 3275-3284.	1.8	2
2414	Fabrication of magnetic heterocomposite of graphene supported CoFe2O4/BiVO4 and exploration of photocatalytic and antibacterial activities. Materials Today: Proceedings, 2023, , .	0.9	1
2422	Advanced carbon-based nanomaterials for photoelectrochemical water splitting., 2023,, 103-128.		0
2424	Domino and Multicomponent Reactions by Graphene-Based Carbocatalysts – A Boon for Organic Transformations. , 2023, , 297-336.		0
2428	Progress of research on the sustainable preparation of graphene and its derivatives. , 2023, , 239-304.		0
2433	Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. Energy & Energy & 2023, 37, 7577-7602.	2.5	11
2443	Research Trends in Photocatalytic Water Purification: Current Perspectives and Future Prospects – A Review. , 2023, , 197-221.		0
2466	Revisiting the Underlying Chemistry Enhancing the Activity of Photoelectro- and Photo-Catalysts Concerning H2 Production. Engineering Materials, 2024, , 119-150.	0.3	0
2477	Using Solar Energy in Methanol Production: Efficiency, Environmental Impact and Economical Performance. , 2024, , .		0
2485	Introduction of full spectrum responsive photocatalytic materials. , 2024, , 25-57.		0
2486	Graphene-based Materials for Water Remediation: Recent Advances on Pollutant Sorption, Photodegradation and Filtration., 2024, , 126-154.		0

Article IF Citations