The Stomatopod Dactyl Club: A Formidable Damage-To

Science 336, 1275-1280

DOI: 10.1126/science.1218764

Citation Report

#	Article	IF	CITATIONS
1	Strike mechanics of an ambush predator: the spearing mantis shrimp. Journal of Experimental Biology, 2012, 215, 4374-4384.	0.8	88
2	Comparative spring mechanics in mantis shrimp. Journal of Experimental Biology, 2013, 216, 1317-29.	0.8	51
3	Small But Extremely Tough. Science, 2012, 336, 1237-1238.	6.0	17
5	Impact tolerance in mussel thread networks by heterogeneous material distribution. Nature Communications, 2013, 4, 2187.	5.8	71
6	Arch and beam: deployment of microstructural fabrics in relation to loads exerted on the shells of bivalved molluscs in different functional regimes. Historical Biology, 2013, 25, 193-199.	0.7	3
7	Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. Journal of Materials Chemistry B, 2013, 1, 251-264.	2.9	32
8	Broadband wave filtering of bioinspired hierarchical phononic crystal. Applied Physics Letters, 2013, 102, .	1.5	84
9	Sustainable Infrastructure Materials: Challenges and Opportunities. International Journal of Applied Ceramic Technology, 2013, 10, 584-592.	1.1	10
10	The architecture of the joint head cuticle and its transition to the arthrodial membrane in the terrestrial crustacean Porcellio scaber. Journal of Structural Biology, 2013, 182, 22-35.	1.3	20
11	A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix. Advanced Materials, 2013, 25, 4482-4487.	11.1	110
12	Wear and abrasion resistance selection maps of biological materials. Acta Biomaterialia, 2013, 9, 7895-7907.	4.1	80
13	In Situ Monitoring of the Nucleation of Polyaniline Nanoparticles from Sodium Dodecyl Sulfate Micelles: A Nuclear Magnetic Resonance Study. Journal of Physical Chemistry C, 2013, 117, 9477-9484.	1.5	9
14	The quest for stiff, strong and tough hybrid materials: an exhaustive exploration. Journal of the Royal Society Interface, 2013, 10, 20130711.	1.5	42
15	Biomimetic Hard Materials. , 2013, , 59-79.		10
16	X-Ray Microdiffraction of Biominerals. Methods in Enzymology, 2013, 532, 501-531.	0.4	15
17	From DNA to genetically evolved technology. MRS Bulletin, 2013, 38, 509-518.	1.7	5
18	Toughening of Low-Carbon Steel by Ultrafine-Grained Structure. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1226-1238.	0.2	9
19	Simple Model for the Toughness of a Helical Structure Inspired by the Exoskeleton of Lobsters. Journal of the Physical Society of Japan, 2013, 82, 124802.	0.7	7

#	ARTICLE	IF	CITATIONS
21	Polyhedral Oligomeric Silsesquioxane Poly (Carbonate-Urea) Urethane (POSS-PCU): Applications in Nanotechnology and Regenerative Medicine. Critical Reviews in Biomedical Engineering, 2014, , .	0.5	9
23	A physical model of the extreme mantis shrimp strike: kinematics and cavitation of Ninjabot. Bioinspiration and Biomimetics, 2014, 9, 016014.	1.5	38
24	An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Materials Science and Engineering C, 2014, 44, 371-379.	3.8	27
25	MUSCLE TRADE-OFFS IN A POWER-AMPLIFIED PREY CAPTURE SYSTEM. Evolution; International Journal of Organic Evolution, 2014, 68, 1399-1414.	1.1	27
26	Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure. Journal of Applied Physics, 2014, 116 , .	1.1	37
27	Deformation of cementite in cold drawn pearlitic steel wire. Materials Science & Deformation of cementite in cold drawn pearlitic steel wire. Materials Science & Deformation of Color of the Color of Co	2.6	66
28	Bioâ€Inspired Band Gap Engineering of Zinc Oxide by Intracrystalline Incorporation of Amino Acids. Advanced Materials, 2014, 26, 477-481.	11.1	82
29	Bio-inspired impact-resistant composites. Acta Biomaterialia, 2014, 10, 3997-4008.	4.1	342
30	Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Materials, 2014, 13, 501-507.	13.3	139
31	Microstructure and Mechanical Anisotropy of Crab Cancer Magister Exoskeletons. Experimental Mechanics, 2014, 54, 229-239.	1.1	16
32	Macroscopic Control of Helix Orientation in Films Dried from Cholesteric Liquidâ€Crystalline Cellulose Nanocrystal Suspensions. ChemPhysChem, 2014, 15, 1477-1484.	1.0	136
33	Crustaceanâ€Derived Biomimetic Components and Nanostructured Composites. Small, 2014, 10, 3207-3232.	5.2	80
34	Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nature Communications, 2014, 5, 3187.	5.8	103
35	Stress and Damage Mitigation from Oriented Nanostructures within the Radular Teeth of <i>Cryptochiton stelleri</i> Advanced Functional Materials, 2014, 24, 6093-6104.	7.8	51
36	Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials, 2014, 6, e80-e80.	3.8	679
37	Bio-inspired engineering of a zinc oxide/amino acid composite: synchrotron microstructure study. CrystEngComm, 2014, 16, 3268-3273.	1.3	25
38	Biomimetic Chiral Nematic Mesoporous Materials from Crab Cuticles. Advanced Optical Materials, 2014, 2, 1031-1037.	3.6	62
39	Regenerative nanotechnology in oral and maxillofacial surgery. British Journal of Oral and Maxillofacial Surgery, 2014, 52, 884-893.	0.4	10

#	Article	IF	CITATIONS
40	Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. Journal of Structural Biology, 2014, 188, 1-15.	1.3	30
41	Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature. Journal of Bionic Engineering, 2014, 11, 360-370.	2.7	16
42	In situ phosphorus K-edge X-ray absorption spectroscopy studies of calcium–phosphate formation and transformation on the surface of bacterial cellulose nanofibers. Cellulose, 2014, 21, 3303-3309.	2.4	4
43	Biological materials by design. Journal of Physics Condensed Matter, 2014, 26, 073101.	0.7	22
45	Biomineralization: A confluence of materials science, biophysics, proteomics, and evolutionary biology. MRS Bulletin, 2015, 40, 473-477.	1.7	16
46	Printing mesoscale architectures. MRS Bulletin, 2015, 40, 943-950.	1.7	99
47	Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bulletin, 2015, 40, 480-489.	1.7	16
48	Elemental and Phase Analysis of the Stomatopod Dactyl Club by X-Ray Mapping. Microscopy and Microanalysis, 2015, 21, 2007-2008.	0.2	1
49	The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility. Advanced Functional Materials, 2015, 25, 6437-6447.	7.8	61
50	Twoâ€Dimensional Hybrid Materials: Transferring Technology from Biology to Society. European Journal of Inorganic Chemistry, 2015, 2015, 1089-1095.	1.0	7
51	Formation of Helically Structured Chitin/CaCO ₃ Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. Small, 2015, 11, 5127-5133.	5.2	69
52	Spear and Shield: Survival War between Mantis Shrimps and Abalones. Advanced Materials Interfaces, 2015, 2, 1500250.	1.9	17
54	The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 2015, 14, 943-950.	13.3	128
55	Scaling Crossover in Crack-Tip Stresses and a Robust Scaling Law for Fracture Strength. Journal of the Physical Society of Japan, 2015, 84, 114602.	0.7	1
56	Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 2015, 27, 5455-5476.	11.1	472
57	Magneto-electro deposition of tin dendrites. Surface and Coatings Technology, 2015, 264, 66-71.	2.2	10
58	An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris) Tj ETQq0 0 0 0 Science and Engineering C, 2015, 49, 243-250.	rgBT /Over 3.8	rlock 10 Tf 50 33
59	Hierarchical structural design for fracture resistance in the shell of the pteropod Clio pyramidata. Nature Communications, 2015, 6, 6216.	5.8	55

#	Article	IF	CITATIONS
60	Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Scientific Reports, 2014, 4, 4239.	1.6	7
61	The role of mechanics in biological and bio-inspired systems. Nature Communications, 2015, 6, 7418.	5 . 8	170
62	Fabrication of nanocellulose–hydroxyapatite composites and their application as water-resistant transparent coatings. Journal of Materials Chemistry B, 2015, 3, 5858-5863.	2.9	39
63	Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. Langmuir, 2015, 31, 6507-6513.	1.6	177
64	Shear wave filtering in naturally-occurring Bouligand structures. Acta Biomaterialia, 2015, 23, 11-20.	4.1	87
65	Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 70-85.	1.5	55
66	From Bacteria to Mollusks: The Principles Underlying the Biomineralization of Iron Oxide Materials. Angewandte Chemie - International Edition, 2015, 54, 4728-4747.	7.2	95
67	Strength and toughness of biocomposites consisting of soft and hard elements: A few fundamental models. MRS Bulletin, 2015, 40, 333-339.	1.7	14
68	Universal composition–structure–property maps for natural and biomimetic platelet–matrix composites and stacked heterostructures. Nature Communications, 2015, 6, 6523.	5.8	84
69	A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix c properties. Journal of Experimental Biology, 2015, 218, 3487-98.	0.8	14
70	Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, 2015, 14, 1172-1179.	13.3	291
71	Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. ACS Nano, 2015, 9, 10637-10646.	7.3	166
72	Narrowly Distributed Crystal Orientation in Biomineral Vaterite. Chemistry of Materials, 2015, 27, 6516-6523.	3.2	27
73	Contests with deadly weapons: telson sparring in mantis shrimp (Stomatopoda). Biology Letters, 2015, 11, 20150558.	1.0	49
74	Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 2015, 6, 8641.	5.8	382
75	Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite. Chemical Science, 2015, 6, 6230-6234.	3.7	36
76	Teleost fish scales amongst the toughest collagenous materials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 95-107.	1.5	67
77	Organic/inorganic fusion materials: cyclodextrin-based polymer/CaCO3 hybrids incorporating dye molecules through host–guest interactions. Polymer Journal, 2015, 47, 122-127.	1.3	8

#	Article	IF	Citations
78	Strength and toughness of bio-fusion materials. Polymer Journal, 2015, 47, 99-105.	1.3	0
79	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	13.3	3,284
80	Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Organic and Biomolecular Chemistry, 2015, 13, 974-989.	1.5	139
81	Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 2015, 119, 174-184.	3.1	48
83	Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions. Frontiers in Materials, $2016, 3, \ldots$	1.2	89
84	Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System. Materials, 2016, 9, 708.	1.3	18
85	A Sinusoidally Architected Helicoidal Biocomposite. Advanced Materials, 2016, 28, 6835-6844.	11.1	158
86	Biogenic Crystallographically Continuous Aragonite Helices: The Microstructure of the Planktonic Gastropod <i>Cuvierina</i> . Advanced Functional Materials, 2016, 26, 553-561.	7.8	22
87	Direct Observation of the Distribution of Gelatin in Calcium Carbonate Crystals by Superâ€Resolution Fluorescence Microscopy. Angewandte Chemie, 2016, 128, 920-923.	1.6	9
88	Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization. Scientific Reports, 2016, 6, 35670.	1.6	20
89	Calcium phosphate mineralization is widely applied in crustacean mandibles. Scientific Reports, 2016, 6, 22118.	1.6	65
90	Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions. Scientific Reports, 2016, 6, 23245.	1.6	46
91	X-Ray Mapping of an Impact-Resistant Crustacean-Derived Biocomposite. Microscopy and Microanalysis, 2016, 22, 98-99.	0.2	1
92	Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour. Scientific Reports, 2016, 6, 26249.	1.6	30
93	Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Scientific Reports, 2016, 6, 38637.	1.6	23
94	Bubble-filled silica microfibers from multiphasic flows for lightweight composite fabrication. Chemical Engineering Journal, 2016, 288, 539-545.	6.6	21
95	Structural analysis of the tongue and hyoid apparatus in a woodpecker. Acta Biomaterialia, 2016, 37, 1-13.	4.1	41
96	On the biophysical regulation of mineral growth: Standing out from the crowd. Journal of Structural Biology, 2016, 196, 232-243.	1.3	14

#	Article	IF	CITATIONS
97	Bioinspired twisted composites based on Bouligand structures. Proceedings of SPIE, 2016, , .	0.8	8
98	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	0.8	7
99	Multiple deformation mechanisms in the stone of a sea urchin tooth. CrystEngComm, 2016, 18, 5718-5723.	1.3	2
100	Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): a new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm, 2016, 18, 8388-8395.	1.3	21
101	Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspiration and Biomimetics, 2016, 11, 055006.	1.5	35
104	Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). Journal of Structural Biology, 2016, 195, 227-237.	1.3	18
105	Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties. Journal of Molecular and Engineering Materials, 2016, 04, 1640003.	0.9	13
106	Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate. Chemistry - A European Journal, 2016, 22, 12347-12357.	1.7	51
107	Unique structure and mechanical property of Dabryanus scale. Journal of Bionic Engineering, 2016, 13, 641-649.	2.7	6
108	The Mineralized Exoskeletons of Crustaceans. , 2016, , 137-163.		19
109	High-resolution structural and elemental analyses of calcium storage structures synthesized by the noble crayfish Astacus astacus. Journal of Structural Biology, 2016, 196, 206-222.	1.3	2
110	Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression. Scientific Reports, 2016, 6, 29785.	1.6	28
111	The comparative hydrodynamics of rapid rotation by predatory appendages. Journal of Experimental Biology, 2016, 219, 3399-3411.	0.8	31
112	Direct Observation of the Distribution of Gelatin in Calcium Carbonate Crystals by Superâ€Resolution Fluorescence Microscopy. Angewandte Chemie - International Edition, 2016, 55, 908-911.	7.2	33
113	Damage-tolerance strategies for nacre tablets. Journal of Structural Biology, 2016, 194, 199-204.	1.3	21
114	Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans. Oecologia, 2016, 182, 429-442.	0.9	27
115	Nano/Microâ€Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Advanced Materials, 2016, 28, 6292-6321.	11.1	332
116	Additive manufacturing of biologically-inspired materials. Chemical Society Reviews, 2016, 45, 359-376.	18.7	344

#	Article	IF	CITATIONS
117	Squid beak inspired water processable chitosan composites with tunable mechanical properties. Journal of Materials Chemistry B, 2016, 4, 2273-2279.	2.9	18
118	Aortic valve calcification: a bone of contention. European Heart Journal, 2016, 38, ehw071.	1.0	20
119	Knotted synthetic polymer or carbon nanotube microfibres with enhanced toughness, up to 1400 J/g. Carbon, 2016, 102, 116-125.	5.4	12
120	A question of time: tissue adaptation to mechanical forces. Current Opinion in Cell Biology, 2016, 38, 68-73.	2.6	61
121	Hierarchical organization of the cuticle of the subsocial desert isopod, Hemilepistus reaumurii. Journal of Structural Biology, 2016, 193, 115-123.	1.3	25
122	Three-Dimensional-Printing of Bio-Inspired Composites. Journal of Biomechanical Engineering, 2016, 138, 021006.	0.6	89
123	A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 57-67.	1.5	57
124	Structure and mechanical properties of selected protective systems in marine organisms. Materials Science and Engineering C, 2016, 59, 1143-1167.	3.8	83
125	Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2016, 69, 1-13.	0.5	21
126	Recent progress of abrasion-resistant materials: learning from nature. Chemical Society Reviews, 2016, 45, 237-251.	18.7	42
127	Oriented Crystallization of Barium Sulfate Confined in Hierarchical Cellular Structures. Crystal Growth and Design, 2017, 17, 677-684.	1.4	10
128	Engineering strategies for chitin nanofibers. Journal of Materials Chemistry B, 2017, 5, 2547-2559.	2.9	78
129	Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties. Advanced Functional Materials, 2017, 27, 1605665.	7.8	46
130	A General Bioinspired, Metals-Based Synergic Cross-Linking Strategy toward Mechanically Enhanced Materials. ACS Nano, 2017, 11, 2835-2845.	7.3	39
131	Lessons from tooth enamel. Nature, 2017, 543, 42-43.	13.7	11
132	Abiotic tooth enamel. Nature, 2017, 543, 95-98.	13.7	184
133	Uncovering Nature's Design Strategies through Parametric Modeling, Multiâ€Material 3D Printing, and Mechanical Testing. Advanced Engineering Materials, 2017, 19, e201600848.	1.6	24
134	Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing. Advanced Materials, 2017, 29, 1605750.	11.1	212

#	Article	IF	CITATIONS
135	Crack driving force in twisted plywood structures. Acta Biomaterialia, 2017, 55, 349-359.	4.1	58
136	Lamellar Ceramic Semicrystallineâ€Polymer Composite Fabricated by Freeze Casting. Advanced Engineering Materials, 2017, 19, 1700214.	1.6	8
137	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	16.0	554
138	Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure. Interface Focus, 2017, 7, 20160129.	1.5	19
139	Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations. Cellulose, 2017, 24, 3289-3299.	2.4	25
140	Mechanical energy dissipation in natural ceramic composites. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 21-29.	1.5	14
141	Universal structure motifs in biominerals: a lesson from nature for the efficient design of bioinspired functional materials. Interface Focus, 2017, 7, 20160120.	1.5	10
142	Cholesteric liquid crystals in living matter. Soft Matter, 2017, 13, 4176-4209.	1.2	232
143	Hydroxyapatite crystallization in shrimp cephalothorax wastes during subcritical water treatment for chitin extraction. Carbohydrate Polymers, 2017, 172, 332-341.	5.1	23
144	Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 69-75.	1.5	15
145	Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 38-57.	1.5	181
146	Magnetically actuated functional gradient nanocomposites for strong and ultra-durable biomimetic interfaces/surfaces. Materials Horizons, 2017, 4, 869-877.	6.4	28
147	Bending Characteristics of Helicoidal Laminated CFRP. Procedia Engineering, 2017, 171, 1325-1331.	1.2	6
148	AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties. Advanced Functional Materials, 2017, 27, 1603993.	7.8	50
149	Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angewandte Chemie - International Edition, 2017, 56, 15575-15579.	7.2	43
150	Large Continuous Mechanical Gradient Formation via Metal–Ligand Interactions. Angewandte Chemie, 2017, 129, 15781-15785.	1.6	11
151	Biomimetic, Strong, Tough, and Self-Healing Composites Using Universal Sealant-Loaded, Porous Building Blocks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37055-37063.	4.0	21
152	A bioinspired study on the compressive resistance of helicoidal fibre structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170538.	1.0	25

#	Article	IF	CITATIONS
153	Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals. ACS Nano, 2017, 11, 11856-11865.	7.3	37
154	3D Printing Bioinspired Ceramic Composites. Scientific Reports, 2017, 7, 13759.	1.6	141
155	Additive Speciation and Phase Behavior Modulating Mineralization. Journal of Physical Chemistry C, 2017, 121, 21641-21649.	1.5	8
156	Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 2017, 8, 287.	5.8	293
157	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322
158	Towards in situ determination of 3D strain and reorientation in the interpenetrating nanofibre networks of cuticle. Nanoscale, 2017, 9, 11249-11260.	2.8	8
159	Phonon filtering for reduced thermal conductance in unconventional superlattices. Applied Physics Express, 2017, 10, 085801.	1.1	3
160	Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358, 1294-1298.	6.0	97
161	Torsion of a Twoâ€Phased Composite Bar With Helical Distribution of Constituents. Physica Status Solidi (B): Basic Research, 2017, 254, 1700050.	0.7	28
162	Bioinspired Multifunctional Ceramic Plateletâ€Reinforced Piezoelectric Polymer Composite. Advanced Engineering Materials, 2017, 19, 1600570.	1.6	11
163	Damage tolerance of bio-inspired helicoidal composites under low velocity impact. Composite Structures, 2017, 161, 187-203.	3.1	114
164	Hydrothermal Synthesis of Advanced Chitin-Based Materials. , 2017, , 223-249.		0
165	Extreme Biomimetics., 2017,,.		16
166	Desiccator Volume: A Vital Yet Ignored Parameter in CaCO3 Crystallization by the Ammonium Carbonate Diffusion Method. Minerals (Basel, Switzerland), 2017, 7, 122.	0.8	7
168	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
169	Biotemplated Lightweight \hat{I}^3 -Alumina Aerogels. Chemistry of Materials, 2018, 30, 1602-1609.	3.2	37
170	Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness. Advanced Science, 2018, 5, 1700635.	5.6	28
171	Mechanics of bioinspired lamellar structured ceramic/polymer composites: Experiments and models. International Journal of Plasticity, 2018, 107, 122-149.	4.1	57

#	Article	IF	CITATIONS
172	Multi-scale structural design and biomechanics of the pistol shrimp snapper claw. Acta Biomaterialia, 2018, 73, 449-457.	4.1	15
173	Armours for soft bodies: how far can bioinspiration take us?. Bioinspiration and Biomimetics, 2018, 13, 041004.	1.5	27
174	Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3, .	23.3	455
175	Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles. Advanced Materials, 2018, 30, 1705295.	11.1	47
176	Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1198-1203.	3.3	205
177	Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170050.	1.6	66
178	Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomaterialia, 2018, 74, 270-279.	4.1	28
179	Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression. Composites Science and Technology, 2018, 162, 188-197.	3.8	6
180	Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films. Advanced Functional Materials, 2018, 28, 1800032.	7.8	63
181	Helical flow-driven alignment of off-axial silver-functionalized titanium dioxide fibers in polypropylene tube suitable for medical applications. Composites Science and Technology, 2018, 158, 121-127.	3.8	18
182	Functional Liquid Crystals towards the Next Generation of Materials. Angewandte Chemie - International Edition, 2018, 57, 4355-4371.	7.2	363
183	The three-dimensional arrangement of the mineralized collagen fibers in elephant ivory and its relation to mechanical and optical properties. Acta Biomaterialia, 2018, 72, 342-351.	4.1	24
184	The snapping shrimp dactyl plunger: a thermomechanical damage-tolerant sandwich composite. Zoology, 2018, 126, 1-10.	0.6	9
185	Biomimetic Structural Materials: Inspiration from Design and Assembly. Annual Review of Physical Chemistry, 2018, 69, 23-57.	4.8	96
186	Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules, 2018, 19, 364-373.	2.6	46
187	A self-assembled smart architecture against drilling predation in a Pinctada maxima shell: protective mechanisms. Journal of Materials Science, 2018, 53, 3417-3426.	1.7	12
188	Stimuliâ€Driven Control of the Helical Axis of Selfâ€Organized Soft Helical Superstructures. Advanced Materials, 2018, 30, e1706512.	11.1	205
189	Von funktionellen Flýssigkristallen zur nähsten Generation von Materialien. Angewandte Chemie, 2018, 130, 4438-4455.	1.6	31

#	Article	IF	CITATIONS
190	Additive Manufacturing Enabled by Electrospinning for Tougher Bio-Inspired Materials. Advances in Materials Science and Engineering, 2018, 2018, 1-9.	1.0	12
191	Field responsive mechanical metamaterials. Science Advances, 2018, 4, eaau6419.	4.7	154
192	Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale, 2018, 10, 18113-18118.	2.8	23
193	Tailored disorder in calcite organization in tergite cuticle of the supralittoral isopod Tylos europaeus Arcangeli, 1938. Journal of Structural Biology, 2018, 204, 464-480.	1.3	8
194	AFM-based Dynamic Scanning Indentation (DSI) Method for Fast, High-resolution Spatial Mapping of Local Viscoelastic Properties in Soft Materials. Macromolecules, 2018, 51, 8964-8978.	2.2	16
195	X-ray Linear Dichroism in Apatite. Journal of the American Chemical Society, 2018, 140, 11698-11704.	6.6	19
196	Additive Manufacturing and Performance of Architectured Cementâ∈Based Materials. Advanced Materials, 2018, 30, e1802123.	11.1	65
197	Enzymatically-controlled biomimetic synthesis of titania/protein hybrid thin films. Journal of Materials Chemistry B, 2018, 6, 3979-3988.	2.9	4
198	Biomimetic twisted plywood structural materials. National Science Review, 2018, 5, 703-714.	4.6	79
199	Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates. Composites Science and Technology, 2018, 165, 282-289.	3.8	50
200	3D magnetic printing of bio-inspired composites with tunable mechanical properties. Journal of Materials Science, 2018, 53, 14274-14286.	1.7	28
201	Conduction in the Heart Wall: Helicoidal Fibers Minimize Diffusion Bias. Scientific Reports, 2018, 8, 7165.	1.6	7
202	Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors. Biomacromolecules, 2018, 19, 2931-2943.	2.6	61
203	Structure, mechanical properties and surface morphology of the snapping shrimp claw. Journal of Materials Science, 2018, 53, 10666-10678.	1.7	13
204	Structure design, fabrication, properties of laminated ceramics: A review. International Journal of Lightweight Materials and Manufacture, 2018, 1, 126-141.	1.3	15
205	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	11.1	63
206	Tough and deformable glasses with bioinspired cross-ply architectures. Acta Biomaterialia, 2018, 75, 439-450.	4.1	33
207	Functional Nanofibers with Multiscale Structure by Electrospinning. Nanofabrication, 2018, 4, 17-31.	1.1	14

#	Article	IF	Citations
208	Smashing mantis shrimp strategically impact shells. Journal of Experimental Biology, 2018, 221, .	0.8	21
209	Crack twisting and toughening strategies in Bouligand architectures. International Journal of Solids and Structures, 2018, 150, 83-106.	1.3	138
210	Structural characterization of the buccal mass of Ariolimax californicus (Gastropoda;) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 6	562 Td (Styl
211	Crashworthiness analysis and bionic design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures, 2019, 144, 106333.	2.7	70
212	Experimental Study on a "Snake-Type―Vibration Cutting Method for Cutting Force and Cutting Heat Reductions. Biomimetics, 2019, 4, 57.	1.5	2
213	The Power of Mantis Shrimp Strikes: Interdisciplinary Impacts of an Extreme Cascade of Energy Release. Integrative and Comparative Biology, 2019, 59, 1573-1585.	0.9	28
214	Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. Materials, 2019, 12, 2117.	1.3	14
215	Stimuli-Responsive Anisotropic Materials Based on Unidirectional Organization of Cellulose Nanocrystals in an Elastomer. Macromolecules, 2019, 52, 5317-5324.	2.2	60
216	Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage. Composites Science and Technology, 2019, 182, 107684.	3.8	67
217	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	11.1	342
218	Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators. Nature Materials, 2019, 18, 820-826.	13.3	132
219	Bandgap tuning in bioinspired helicoidal composites. Journal of the Mechanics and Physics of Solids, 2019, 131, 344-357.	2.3	8
220	Biological design of materials. , 2019, , 27-97.		7
221	Liquidâ€Crystalâ€Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Advanced Materials, 2020, 32, e1903665.	11.1	124
222	Amorphous calcium phosphate in the pupal cuticle of Bactrocera dorsalis Hendel (Diptera:) Tj ETQq0 0 0 rgBT /Ove Insect Physiology, 2019, 119, 103964.		Tf 50 187 Tc 4
223	Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle <i>Semibalanus balanoides</i> : correlative imaging, biological form and function, and bioinspiration. Journal of the Royal Society Interface, 2019, 16, 20190218.	1.5	11
224	Improving laminates through non-uniform inter-ply angles. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105625.	3.8	25
225	Additive manufacturing and processing of architected materials. MRS Bulletin, 2019, 44, 782-788.	1.7	17

#	Article	IF	CITATIONS
226	Investigation on the Preparation and Properties of CMC/magadiite Nacre-Like Nanocomposite Films. Polymers, 2019, 11, 1378.	2.0	6
227	Evolution of mantis shrimp telson armour and its role in ritualized fighting. Journal of the Royal Society Interface, 2019, 16, 20190203.	1.5	15
228	Biomimetic tough helicoidally structured material through novel electrospinning based additive manufacturing. MRS Advances, 2019, 4, 2345-2354.	0.5	7
229	Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces. Geology, 2019, 47, 1049-1053.	2.0	20
230	Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour. Acta Biomaterialia, 2019, 100, 18-28.	4.1	5
231	Impact resistance of nanocellulose films with bioinspired Bouligand microstructures. Nanoscale Advances, 2019, 1, 1351-1361.	2.2	25
232	Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton. ACS Applied Nano Materials, 2019, 2, 1111-1119.	2.4	22
233	3D Printing of Bioinspired Structural Materials with Fibers Induced by Doctor Blading Process. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 89-99.	2.7	6
234	Natural hydrogel in American lobster: A soft armor with high toughness and strength. Acta Biomaterialia, 2019, 88, 102-110.	4.1	42
235	Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nature Communications, 2019, 10, 510.	5.8	199
236	Mesostructured Nonwovens with Penguin Downy Featherâ€Like Morphologyâ€"Topâ€Down Combined with Bottomâ€Up. Advanced Functional Materials, 2019, 29, 1903166.	7.8	24
237	The exoskeleton of scorpions' pincers: Structure and micro-mechanical properties. Acta Biomaterialia, 2019, 94, 565-573.	4.1	26
238	Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23616-23622.	4.0	39
239	The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield. Advanced Functional Materials, 2019, 29, 1902238.	7.8	23
240	Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. Journal of Materials Chemistry A, 2019, 7, 15309-15319.	5.2	35
241	Modeling the effect of microstructure on elastic wave propagation in platelet-reinforced composites and ceramics. Composite Structures, 2019, 224, 111105.	3.1	6
242	Biomimetic Materials with Multiple Protective Functionalities. Advanced Functional Materials, 2019, 29, 1901058.	7.8	85
243	The Renewable and Sustainable Conversion of Chitin into a Chiral Nitrogenâ€Doped Carbonâ€Sheath Nanofiber for Enantioselective Adsorption. ChemSusChem, 2019, 12, 3236-3242.	3.6	9

#	Article	IF	CITATIONS
244	Mechanical properties of a novel dactyl-inspired green-composite sandwich structures with basalt fiber. Journal of Sandwich Structures and Materials, 2021, 23, 803-813.	2.0	6
245	3D printing of biomimetic composites with improved fracture toughness. Acta Materialia, 2019, 173, 61-73.	3.8	113
246	Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure. Acta Biomaterialia, 2019, 91, 284-293.	4.1	40
247	A diecast mineralization process forms the tough mantis shrimp dactyl club. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8685-8692.	3.3	33
248	Î ² -Chitin Nanofibril Self-Assembly in Aqueous Environments. Biomacromolecules, 2019, 20, 2421-2429.	2.6	19
249	On the improved ballistic performance of bio-inspired composites. Composites Part A: Applied Science and Manufacturing, 2019, 123, 59-70.	3.8	42
250	3D Printed Templating of Extrinsic Freeze-Casting for Macro–Microporous Biomaterials. ACS Biomaterials Science and Engineering, 2019, 5, 2122-2133.	2.6	24
251	Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation. Springer Series in Materials Science, 2019, , 287-327.	0.4	14
252	Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose Dispersions. Langmuir, 2019, 35, 3600-3606.	1.6	25
253	Learning from nature: Use material architecture to break the performance tradeoffs. Materials and Design, 2019, 168, 107650.	3.3	55
254	"Stiff–Soft―Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance. Advanced Functional Materials, 2019, 29, 1806407.	7.8	111
255	Calcium Valence-to-Core X-ray Emission Spectroscopy: A Sensitive Probe of Oxo Protonation in Structural Models of the Oxygen-Evolving Complex. Inorganic Chemistry, 2019, 58, 16292-16301.	1.9	15
256	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121
257	Biomimetic architected materials with improved dynamic performance. Journal of the Mechanics and Physics of Solids, 2019, 125, 178-197.	2.3	108
258	Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure. Materials and Design, 2019, 163, 107532.	3.3	43
259	Selective laser melting additive manufacturing of cancer pagurus's claw inspired bionic structures with high strength and toughness. Applied Surface Science, 2019, 469, 647-656.	3.1	25
260	Woodâ€Inspired 3Dâ€Printed Helical Composites with Tunable and Enhanced Mechanical Performance. Advanced Functional Materials, 2019, 29, 1805888.	7.8	54
261	Energy absorption of a bio-inspired honeycomb sandwich panel. Journal of Materials Science, 2019, 54, 6286-6300.	1.7	149

#	Article	IF	CITATIONS
262	Double Twisted Photonic Honeycomb Frameworks with Mesoporous Structures. Advanced Optical Materials, 2019, 7, 1801275.	3.6	12
263	Long distance chemical gradient induced by surface nanocrystallization. Applied Materials Today, 2019, 14, 137-142.	2.3	17
264	Multiscale designs of the chitinous nanocomposite of beetle horn towards an enhanced biomechanical functionality. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 278-286.	1.5	6
266	External fields for the fabrication of highly mineralized hierarchical architectures. Journal of Materials Research, 2019, 34, 169-193.	1.2	21
267	Effects of interface properties on the mechanical properties of bio-inspired cellulose nanocrystal (CNC)-based materials. Journal of the Mechanics and Physics of Solids, 2019, 124, 871-896.	2.3	41
268	Transient self-templating assembly of M13 bacteriophage for enhanced biopiezoelectric devices. Nano Energy, 2019, 56, 716-723.	8.2	29
269	Buckling of stomatopod-dactyl-club-inspired functional gradient plates: A numerical study. Composite Structures, 2019, 207, 801-815.	3.1	9
270	Natureâ€Inspired Emerging Chiral Liquid Crystal Nanostructures: From Molecular Selfâ€Assembly to DNA Mesophase and Nanocolloids. Advanced Materials, 2020, 32, e1801335.	11.1	263
271	Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105655.	3.8	50
272	A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 2020, 181, 107496.	5.9	481
273	Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Materials and Design, 2020, 185, 108243.	3.3	29
274	Compact fiber optical interferometer technique to measure picometer displacements in biological piezoelectric materials. Measurement Science and Technology, 2020, 31, 025207.	1.4	2
275	Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B: Engineering, 2020, 180, 107562.	5.9	113
276	Spatial programming of defect distributions to enhance material failure characteristics. Extreme Mechanics Letters, 2020, 34, 100598.	2.0	11
277	Effect of hydration on mechanical characteristics of pangolin scales. Journal of Materials Science, 2020, 55, 4420-4436.	1.7	3
278	Advanced functional surfaces through controlled damage and instabilities. Materials Horizons, 2020, 7, 366-396.	6.4	20
279	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
280	Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing. Polymers, 2020, 12, 2376.	2.0	15

#	Article	IF	CITATIONS
281	Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104078.	1.5	37
282	Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions. Communications Materials, 2020, 1 , .	2.9	32
283	Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials. Engineering, 2020, 6, 1232-1243.	3.2	41
284	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
285	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
286	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
287	Molecular to Macroscale Energy Absorption Mechanisms in Biological Body Armour Illuminated by Scanning X-ray Diffraction with In Situ Compression. ACS Nano, 2020, 14, 16535-16546.	7.3	8
288	Global sensitivity analysis of low-velocity impact response of bio-inspired helicoidal laminates. International Journal of Mechanical Sciences, 2020, 187, 106110.	3.6	21
289	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
290	Healable bio-inspired helicoidal laminates. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106024.	3.8	12
291	Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids. Cell Reports Physical Science, 2020, 1, 100109.	2.8	27
292	Biomineral armor in leaf-cutter ants. Nature Communications, 2020, 11, 5792.	5.8	34
293	Modulation of impact energy dissipation in biomimetic helicoidal composites. Journal of Materials Research and Technology, 2020, 9, 14619-14629.	2.6	9
294	Strategies for simultaneous strengthening and toughening via nanoscopic intracrystalline defects in a biogenic ceramic. Nature Communications, 2020, 11, 5678.	5.8	20
295	Comparison of Tensile and Impact Absorption properties of Bio-Inspired Helicoidal stacked with Cross-Ply Stacked Carbon Fiber Laminate. IOP Conference Series: Materials Science and Engineering, 2020, 744, 012018.	0.3	0
296	Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103991.	1.5	14
297	Advanced bio-inspired structural materials: Local properties determine overall performance. Materials Today, 2020, 41, 177-199.	8.3	52
298	Is the Bouligand architecture tougher than regular cross-ply laminates? A discrete element method study. Extreme Mechanics Letters, 2020, 41, 101042.	2.0	18

#	Article	IF	CITATIONS
299	Hyperspectral topography of the twisted, cholesteric patterns of an insect cuticle under various conditions of helix obliquity. APL Photonics, 2020, 5, 096102.	3.0	5
301	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
302	Bionic Organs. , 2020, , 167-192.		1
303	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
304	Flying of Insects. , 2020, , 271-299.		5
305	Bioinspired Building Envelopes. , 2020, , 343-354.		0
307	A review of impact resistant biological and bioinspired materials and structures. Journal of Materials Research and Technology, 2020, 9, 15705-15738.	2.6	96
308	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
309	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
310	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
311	Acidic Monosaccharides become Incorporated into Calcite Single Crystals**. Chemistry - A European Journal, 2020, 26, 16860-16868.	1.7	17
312	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
313	Pushing and Pulling on Ropes: Hierarchical Woven Materials. Advanced Science, 2020, 7, 2001271.	5.6	20
314	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
315	Alternating Stacking of Nanocrystals and Nanofibers into Ultrastrong Chiral Biocomposite Laminates. ACS Nano, 2020, 14, 14675-14685.	7.3	41
316	Engineering materials with light: recent progress in digital light processing based 3D printing. Journal of Materials Chemistry C, 2020, 8, 13896-13917.	2.7	87
317	Progress in Bio-inspired Anti-solid Particle Erosion Materials: Learning from Nature but Going beyond Nature. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	1.9	16
318	A natural impact-resistant bicontinuous composite nanoparticle coating. Nature Materials, 2020, 19, 1236-1243.	13.3	115

#	Article	IF	CITATIONS
319	Microstructures of crab chela: A biological composite for pinching. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104071.	1.5	5
320	Ply-drop design of non-conventional laminated composites using Bayesian optimization. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106136.	3.8	7
321	Magnesium-rich nanoprecipitates in calcite: atomistic mechanisms responsible for toughening in <i>Ophiocoma wendtii</i> . Physical Chemistry Chemical Physics, 2020, 22, 10056-10062.	1.3	4
322	Bioinspired hierarchical impact tolerant materials. Bioinspiration and Biomimetics, 2020, 15, 046009.	1.5	10
323	FEM simulation on impact resistance of surface gradient and periodic layered bionic composites. Composite Structures, 2020, 247, 112428.	3.1	10
324	Hierarchical phononic crystals for filtering multiple target frequencies of ultrasound. Scientific Reports, 2020, 10, 8070.	1.6	8
325	The Passive Contact Stability of Blue Sheep Hoof Based on Structure, Mechanical Properties, and Surface Morphology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 363.	2.0	4
326	Mechanical properties and thermal stability of intermolecular-fitted poly(vinyl alcohol)/α-chitin nanofibrous mat. Carbohydrate Polymers, 2020, 244, 116476.	5.1	21
327	Microstructural evolution and failure in short fiber soft composites: Experiments and modeling. Journal of the Mechanics and Physics of Solids, 2020, 141, 103973.	2.3	16
328	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
329	Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures. Journal of the American Chemical Society, 2020, 142, 12811-12825.	6.6	26
330	Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15465-15472.	3.3	96
331	Ultrasound freeze-casting of a biomimetic layered microstructure in epoxy-ceramic composite materials to increase strength and hardness. Materialia, 2020, 12, 100754.	1.3	12
332	Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp. Composites Part B: Engineering, 2020, 191, 107976.	5.9	36
333	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
334	Distinctive Viewpoint on the Rapid Dissolution Mechanism of α-Chitin in Aqueous Potassium Hydroxide–Urea Solution at Low Temperatures. Macromolecules, 2020, 53, 5588-5598.	2.2	26
335	Smart polymers and nanocomposites for 3D and 4D printing. Materials Today, 2020, 40, 215-245.	8.3	144
336	Impact-Resistant and Tough Helicoidally Aligned Ribbon Reinforced Composites with Tunable Mechanical Properties via Integrated Additive Manufacturing Methodologies. ACS Applied Polymer Materials, 2020, 2, 3491-3504.	2.0	12

#	Article	IF	CITATIONS
337	Bioinspired Multifunctional Cellular Plastics with a Negative Poisson's Ratio for High Energy Dissipation. Advanced Materials, 2020, 32, e2001222.	11.1	64
338	Herringbone-Bouligand CFRP structures: A new tailorable damage-tolerant solution for damage containment and reduced delaminations. Composites Science and Technology, 2020, 190, 108047.	3.8	34
339	The red deer antler: Bioinspired design of an Al Si composite with a fenestrated network-particle structure. Journal of Materiomics, 2020, 6, 545-556.	2.8	8
340	Fiber reorientation in hybrid helicoidal composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103914.	1.5	12
341	Co-assembling Polysaccharide Nanocrystals and Nanofibers for Robust Chiral Iridescent Films. ACS Applied Materials & District Samp; Interfaces, 2020, 12, 35345-35353.	4.0	17
342	Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103940.	1.5	19
343	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	18.7	138
344	Nested helicoids in biological microstructures. Nature Communications, 2020, 11, 224.	5.8	27
345	Helical and Bouligand Porous Scaffolds Fabricated by Dynamic Low Strength Magnetic Field Freeze Casting. Jom, 2020, 72, 1498-1508.	0.9	12
346	Study on the Mechanical Properties of Bionic Protection and Self-Recovery Structures. Materials, 2020, 13, 389.	1.3	8
347	Bioinspired Cementitious Materials: Main Strategies, Progress, and Applications. Frontiers in Materials, 2020, 7, .	1.2	8
348	On Simulating the Formation of Structured, Crystalline Systems via Non-classical Pathways. Frontiers in Materials, 2020, 7, .	1.2	1
349	Natureâ€Inspired Protectoâ€Flexible Impactâ€Tolerant Materials. Advanced Engineering Materials, 2020, 22, 2000006.	1.6	6
350	The response of bio-inspired helicoidal laminates to small projectile impact. International Journal of Impact Engineering, 2020, 142, 103608.	2.4	34
351	Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber. Construction and Building Materials, 2020, 253, 119161.	3.2	16
352	Thermal degradation and lifetime of \hat{l}^2 -chitin from Dosidicus gigas squid pen: Effect of impact at 9.7 GPa and a comparative study with \hat{l}_2 -chitin. Carbohydrate Polymers, 2021, 251, 116987.	5.1	3
353	Microstructure and inâ€situ tensile strength of propodus of mantis shrimp. Microscopy Research and Technique, 2021, 84, 415-421.	1.2	4
354	Hierarchical chitinous matrices byssus-inspired with mechanical properties tunable by Fe(III) and oxidation. Carbohydrate Polymers, 2021, 251, 116984.	5.1	5

#	Article	IF	CITATIONS
355	Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures. International Journal of Solids and Structures, 2021, 208-209, 107-118.	1.3	14
356	Improving the mechanical properties of natural fibre reinforced laminates composites through Biomimicry. Composite Structures, 2021, 258, 113208.	3.1	20
357	Promoting hidden natural design templates in wasted shells of the mantis shrimp into valuable biogenic composite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119223.	2.0	1
358	Supramolecular Association and Nanostructure Formation of Liquid Crystals and Polymers for New Functional Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 357-376.	2.0	60
359	Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites. Biomacromolecules, 2021, 22, 201-212.	2.6	6
360	Development of strong and tough electrospun fiber-reinforced composites. , 2021, , 287-313.		1
361	Structural analysis across length scales of the scorpion pincer cuticle. Bioinspiration and Biomimetics, 2021, 16, 026013.	1.5	6
362	Study on the heterogeneous material coupling connection characteristics and mechanical strength of Oratosquilla oratoria mantis shrimp saddle. Microscopy (Oxford, England), 2021, 70, 361-367.	0.7	1
363	Bioinorganic and bioinspired solid-state chemistry: from classical crystallization to nonclassical synthesis concepts., 2021,, 433-490.		2
364	Growing Living Composites with Ordered Microstructures and Exceptional Mechanical Properties. Advanced Materials, 2021, 33, e2006946.	11.1	37
365	A review of factors that influence the fracture toughness of extrusion-based additively manufactured polymer and polymer composites. Additive Manufacturing, 2021, 38, 101830.	1.7	17
366	Stiff, strong and tough laminated glasses with bio-inspired designs. Bioinspiration and Biomimetics, 2021, 16, 026020.	1.5	5
367	Digital strategies for structured and architected materials design. APL Materials, 2021, 9, .	2.2	15
368	Biopolymer Nanoscale Assemblies as Building Blocks for New Materials: A Review. Advanced Functional Materials, 2021, 31, 2008552.	7.8	62
369	Identifying optimal rotating pitch angles in composites with Bouligand structure. Composites Communications, 2021, 23, 100602.	3.3	25
370	Sex, camouflage, marvelous adaptations: A writing assignment that inspires. Invertebrate Biology, 2021, 140, .	0.3	1
371	Analysis and verification of a biomimetic design model based on fish skin. Materials Research Express, 2021, 8, 035014.	0.8	1
372	Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual and Physical Prototyping, 2021, 16, S19-S38.	5.3	27

#	Article	IF	CITATIONS
373	A matter of size? Material, structural and mechanical strategies for size adaptation in the elytra of Cetoniinae beetles. Acta Biomaterialia, 2021, 122, 236-248.	4.1	14
374	Recent advances in structural color display of cellulose nanocrystal materials. Applied Materials Today, 2021, 22, 100912.	2.3	28
375	Microstructure and nanomechanical properties of the exoskeleton of an ironclad beetle (Zopherus) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
376	Natural cuticle-inspired chitin/silk fibroin/cellulose nanocrystal biocomposite films: fabrication and characterization. Materials Research Express, 2021, 8, 036402.	0.8	3
377	Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites. Composites Science and Technology, 2021, 205, 108650.	3.8	39
378	Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17380-17391.	4.0	8
379	Strong and Tough Bioinspired Additive-Manufactured Dual-Phase Mechanical Metamaterial Composites. Journal of the Mechanics and Physics of Solids, 2021, 149, 104341.	2.3	72
380	Optimal and continuous multilattice embedding. Science Advances, 2021, 7, .	4.7	49
381	Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules, 2021, 22, 2067-2080.	2.6	19
382	Hyperspectral interference tomography of nacre. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,\ldots$	3.3	5
383	From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests. Integrative and Comparative Biology, 2021, 61, 643-654.	0.9	6
384	Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Composites Science and Technology, 2021, 208, 108669.	3.8	45
385	Bio-inspired composite laminate design with improved out-of-plane strength and ductility. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106362.	3.8	26
386	Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study. Acta Biomaterialia, 2021, 126, 339-349.	4.1	10
387	Molecular insights into the complex mechanics of plant epidermal cell walls. Science, 2021, 372, 706-711.	6.0	148
388	Investigation of microstructure and dissimilar materials connection patterns of mantis shrimp saddle. Microscopy Research and Technique, 2021, 84, 2075-2081.	1.2	1
389	Multi-scale design of the chela of the hermit crab Coenobita brevimanus. Acta Biomaterialia, 2021, 127, 229-241.	4.1	5
390	Bioinspired, Cholesteric Liquid-Crystal Reflectors with Time-Controlled Coexisting Chiral and Achiral Structures. ACS Applied Materials & Diterfaces, 2021, 13, 30118-30126.	4.0	12

#	Article	IF	CITATIONS
391	Microstructural design for mechanical–optical multifunctionality in the exoskeleton of the flower beetle <i>Torynorrhina flammea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
392	3D Printing of Functional Magnetic Materials: From Design to Applications. Advanced Functional Materials, 2021, 31, 2102777.	7.8	91
393	Gradient design of bio-inspired nacre-like composites for improved impact resistance. Composites Part B: Engineering, 2021, 215, 108830.	5.9	48
394	Bio-inspired short peptide self-assembly: From particles to functional materials. Particuology, 2022, 64, 14-34.	2.0	11
395	Damage tolerance and notch sensitivity of bio-inspired thin-ply Bouligand structures. Composites Part C: Open Access, 2021, 5, 100146.	1.5	5
396	Structure Evolution and Hoop-Reinforcing Mechanism of Bionic-Inspired Off-Axial Glass Fiber-Reinforced High-Density Polyethylene Pipes Fabricated via Rotating Co-extrusion. Industrial & Engineering Chemistry Research, 2021, 60, 10407-10418.	1.8	2
397	A New Class of Chiral Nematic Phase with Helical Polar Order. Advanced Materials, 2021, 33, e2101305.	11.1	33
398	Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities. Nature Reviews Physics, 2021, 3, 685-697.	11.9	44
399	Bioinspired energy absorbing material designs using additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104518.	1.5	45
400	Structural and chemical variations in Mg-calcite skeletal segments of coralline red algae lead to improved crack resistance. Acta Biomaterialia, 2021, 130, 362-373.	4.1	6
401	Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano, 2021, 15, 13653-13661.	7.3	20
402	Three-dimensional microstructure of robust claw of coconut crab, one of the largest terrestrial crustaceans. Materials and Design, 2021, 206, 109765.	3.3	10
403	My Laboratory for Materials Science. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 719.	0.1	0
404	Postprogrammable Network Topology with Broad Gradients of Mechanical Properties for Reliable Polymer Material Engineering. Chemistry of Materials, 2021, 33, 6876-6884.	3.2	4
405	Impact-resistant materials inspired by the mantis shrimp's dactyl club. Matter, 2021, 4, 2831-2849.	5.0	40
406	Bioinspired Helicoidal Composite Structure Featuring Functionally Graded Variable Ply Pitch. Materials, 2021, 14, 5133.	1.3	3
407	Superior mechanical resistance in the exoskeleton of the coconut crab, Birgus latro. Materials Today Bio, 2021, 12, 100132.	2.6	9
408	Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 2021, 214, 108970.	3.8	72

#	Article	IF	CITATIONS
409	Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. Advanced Materials, 2021, 33, e2102658.	11.1	22
410	Mammalian enamel: A universal tissue and diverse source of inspiration. Acta Biomaterialia, 2021, 136, 402-411.	4.1	5
411	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	2.7	8
412	Morphology and organization of the internal shell of Ariolimax californicus (Gastropoda;) Tj ETQq1 1 0.784314 rg 2021, 213, 107764.	gBT /Overl 1.3	ock 10 Tf 50 4
413	Analysis and simulation of fracture behavior in naturally occurring Bouligand structures. Acta Biomaterialia, 2021, 135, 473-482.	4.1	15
414	Bioprocess-inspired synthesis of printable, self-healing mineral hydrogels for rapidly responsive, wearable ionic skin. Chemical Engineering Journal, 2021, 424, 130549.	6.6	33
415	Insights into the high-velocity impact behaviour of bio-inspired composite laminates with helicoidal lay-ups. Polymer Testing, 2021, 103, 107348.	2.3	24
416	Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure. Composite Structures, 2021, 276, 114575.	3.1	12
417	Dynamic mechanical behaviors of nacre-inspired graphene-polymer nanocomposites depending on internal nanostructures. Extreme Mechanics Letters, 2021, 49, 101451.	2.0	7
418	Biomimetic photonic materials derived from chitin and chitosan. Journal of Materials Chemistry C, 2021, 9, 796-817.	2.7	44
419	Helical Microstructures of the Mineralized Coralline Red Algae Determine Their Mechanical Properties. Advanced Science, 2020, 7, 2000108.	5.6	11
420	Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition. Acta Biomaterialia, 2020, 110, 196-207.	4.1	17
421	Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon, 2020, 6, e03765.	1.4	76
423	Bio-mimetic Structural Colour using Biopolymers. RSC Polymer Chemistry Series, 2016, , 555-585.	0.1	4
424	Influences of Printing Pattern on Mechanical Performance of Three-Dimensional-Printed Fiber-Reinforced Concrete. 3D Printing and Additive Manufacturing, 2022, 9, 46-63.	1.4	23
425	Structure–behaviour correlations between two genetically closely related snail species. Royal Society Open Science, 2020, 7, 191471.	1.1	4
426	Transmission X-ray scattering as a probe for complex liquid-surface structures. Journal of Synchrotron Radiation, 2016, 23, 519-531.	1.0	4
427	Detailed description of some mantis shrimp larvae and their implication for the character evolution within Stomatopoda. Nauplius, 0, 28, .	0.3	4

#	Article	IF	CITATIONS
428	Light Reflection by Cuticles of Chrysina Jewel Scarabs: Optical Measurements, Morphology Characterization, and Theoretical Modeling. Optics and Photonics Journal, 2016, 06, 146-163.	0.3	8
429	Impact wave dispersion characteristics in Bouligand-type structures. Applied Physics Letters, 2021, 119, 153701.	1.5	0
430	Simple Shape Learning of the Two Stomatopod Species: Haptosquilla trispinosa and Pseudosquilla ciliata. California Agriculture, 2014, 19, .	0.0	0
431	INVESTIGATION ON FLEXURAL BEHAVIORS AND FAILURE MODES OF HELICOIDALLY LAMINATED CFRP. Journal of Japan Society of Civil Engineers Ser A2 (Applied Mechanics (AM)), 2018, 74, I_639-I_647.	0.1	1
432	Dynamic impact strength of diamond-SiC superhard composite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158101.	0.2	0
435	Toughening in a nacre-like soft-hard layered structure due to weak nonlinearity in the soft layer. Physical Review Materials, 2019, 3, .	0.9	0
438	Structural characterization and regulation of the mechanical properties of the carapace cuticle in tri-spine horseshoe crab (Tachypleus tridentatus). Journal of the Mechanical Behavior of Biomedical Materials, 2021, 125, 104954.	1.5	5
439	Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review. Coatings, 2021, 11, 1297.	1.2	6
440	Biomimetic Materials for Engineering Applications. , 2022, , 25-34.		2
441	Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. International Journal of Mechanical Sciences, 2022, 213, 106857.	3.6	38
442	Exaptation in Physics and Materials Science. The Frontiers Collection, 2020, , 35-45.	0.1	1
443	Pressure-Less Processing of Ceramics with Deliberate Elongated Grain Orientation and Size. Minerals, Metals and Materials Series, 2020, , 45-56.	0.3	0
444	Fracture Toughness of the Stomatopod Dactyl Club is Enhanced by Plastic Dissipation: A Fracture Micromechanics Study. SSRN Electronic Journal, 0, , .	0.4	0
445	Extraction of high-value compounds from marine biomass via ionic liquid-based techniques. , 2022, , 417-439.		1
446	Three-dimensional crack bridging model of biological materials with twisted Bouligand structures. Journal of the Mechanics and Physics of Solids, 2022, 159, 104729.	2.3	18
447	Assessment of nacre-like ceramics in replacement to Ni superalloys in aircraft's engines. Sustainable Materials and Technologies, 2022, 31, e00363.	1.7	2
448	Advances in Fieldâ€Assisted 3D Printing of Bioâ€Inspired Composites: From Bioprototyping to Manufacturing. Macromolecular Bioscience, 2022, 22, e2100332.	2.1	19
449	Mechanical properties of biomimetic ceramic with Bouligand architecture. Journal of the American Ceramic Society, 2022, 105, 2385-2391.	1.9	10

#	Article	IF	CITATIONS
450	Enhanced high-strain-rate impact resistance of helicoidal composites by fused deposition modelling. Mechanics of Advanced Materials and Structures, 2022, 29, 7796-7808.	1.5	8
451	Emerging Trends in Additively Manufactured Materials and Novel Flexible/Stretchable Conductor Technologies. Engineering Materials, 2022, , 201-243.	0.3	0
452	Structure and mineralization of the spearing mantis shrimp (Stomatopoda; Lysiosquillina maculata) body and spike cuticles. Journal of Structural Biology, 2021, 213, 107810.	1.3	3
453	3D concrete printing of bioinspired Bouligand structure: A study on impact resistance. Additive Manufacturing, 2022, 50, 102544.	1.7	7
454	From biology to biomimicry: Using nature to build better structures – A review. Construction and Building Materials, 2022, 320, 126195.	3.2	51
455	Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials, 2022, 34, e2106259.	11.1	24
456	Lightweight, Fiber-Damage-Resistant, and Healable Bio-Inspired Glass-Fiber Reinforced Polymer Laminate. Polymers, 2022, 14, 475.	2.0	8
457	Progressive changes in crystallographic textures of biominerals generate functionally graded ceramics. Materials Advances, 2022, 3, 1527-1538.	2.6	4
458	Natureâ€Mimic Tough Helicoidal Composites with Aligned Short Carbon Fibers by 3D Printing. Macromolecular Materials and Engineering, 2022, 307, .	1.7	2
459	Numerical study on impact resistance of novel multilevel bionic thin-walled structures. Journal of Materials Research and Technology, 2022, 16, 1770-1780.	2.6	11
460	A Prestressing Strategy Enabled Synergistic Energyâ€Dissipation in Impactâ€Resistant Nacre‣ike Structures. Advanced Science, 2022, 9, e2104867.	5.6	16
461	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
462	Uniformly assembly of filamentous phage/SiO2 composite films with tunable chiral nematic structures in capillary confinement. Applied Surface Science, 2022, 584, 152629.	3.1	2
463	Controlling failure regimes in Brick-and-Mortar structures. Extreme Mechanics Letters, 2022, 51, 101596.	2.0	6
464	Field-assisted additive manufacturing of polymeric composites. Additive Manufacturing, 2022, 51, 102642.	1.7	11
465	Biomimetic confined self-assembly of chitin nanocrystals. Nano Today, 2022, 43, 101420.	6.2	7
466	Biomimetic Confined Self-Assembly of Chitin Nanocrystals. SSRN Electronic Journal, 0, , .	0.4	0
467	Invertebrate-derived bioceramics: An effective alternative source for biomedical applications., 2022,, 279-311.		0

#	Article	IF	CITATIONS
468	Damage and Failure Mechanisms of Biological Materials. , 2022, , .		1
469	Bending Resistance and Anisotropy of Basalt Fibers Laminate Composite with Bionic Helical Structure. Journal of Bionic Engineering, 2022, 19, 799-815.	2.7	10
470	Bioinspired toughening of soft elastomer via embedded threeâ€dimensional printing. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
471	Inorganic phosphate in growing calcium carbonate abalone shell suggests a shared mineral ancestral precursor. Nature Communications, 2022, 13, 1496.	5.8	14
472	Laser Additive Manufacturing of Bio-inspired Metallic Structures. , 2022, 1, 100013.		11
473	Damage-tolerant material design motif derived from asymmetrical rotation. Nature Communications, 2022, 13, 1289.	5.8	3
474	Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. Advanced Science, 2022, 9, e2103524.	5.6	23
475	Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites. Matter, 2022, 5, 1563-1577.	5.0	27
476	Mechanical properties and energy absorption performance of bio-inspired dual architecture phase lattice structures. Mechanics of Advanced Materials and Structures, 0, , 1-11.	1.5	10
477	<i>In situ</i> determination of the extreme damage resistance behavior in stomatopod dactyl club. Journal of Synchrotron Radiation, 2022, 29, 775-786.	1.0	3
478	Enhanced Low-Velocity Impact Resistance of Helicoidal Composites by Fused Filament Fabrication (FFF). Polymers, 2022, 14, 1440.	2.0	5
479	Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp. Composite Structures, 2022, 291, 115551.	3.1	6
480	Damage tolerance mechanism of bioinspired hybridization helical composite in lobster homarus americanus. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106936.	3.8	9
481	Cellulose Nanocrystal/TiO ₂ Nanotube Composites for Circularly Polarized Light Detection. ACS Applied Nano Materials, 2022, 5, 899-907.	2.4	6
482	Structural Changes and Mechanical Resistance of Claws and Denticles in Coconut Crabs of Different Sizes. Biology, 2021, 10, 1304.	1.3	5
484	Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chemical Reviews, 2022, 122, 4887-4926.	23.0	288
485	The Mechanical Consequences of the Interplay of Mineral Distribution and Organic Matrix Orientation in the Claws of the Sea Slater Ligia pallasii. Minerals (Basel, Switzerland), 2021, 11, 1373.	0.8	5
486	3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds. Biofabrication, 2022, 14, 035009.	3.7	12

#	Article	IF	Citations
487	A novel nature inspired 3D open lattice structure for specific energy absorption. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236, 2434-2440.	1.4	28
489	Nanoarchitected Tough Biological Composites from Assembled Chitinous Scaffolds. Accounts of Chemical Research, 2022, 55, 1360-1371.	7.6	10
490	Bioinspired design: lessons from hierarchical structures and local properties of natural ceramics and their composites., 2022,, 145-162.		0
491	Bioinspired Robust Mechanical Properties for Advanced Materials. Small Structures, 2022, 3, .	6.9	17
492	Bioinspired Construction of Micronano Lignocellulose into an Impact Resistance "Wooden Armor― With Bouligand Structure. ACS Nano, 2022, 16, 7525-7534.	7.3	15
493	Complex Nanowrinkling in Chiral Liquid Crystal Surfaces: From Shaping Mechanisms to Geometric Statistics. Nanomaterials, 2022, 12, 1555.	1.9	0
494	Multi-morphology cellular structure design with smooth transition of geometry and homogenized mechanical properties between adjacent cells. Materials and Design, 2022, 218, 110727.	3.3	4
495	Adsorption of Biomineralization Protein Mms6 on Magnetite (Fe3O4) Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 5554.	1.8	4
496	Bioinspired Strategies for Excellent Mechanical Properties of Composites. Journal of Bionic Engineering, 2022, 19, 1203-1228.	2.7	16
497	Defense Mechanism of Bioinspired Composites with Sinusoidally Periodic Helicoidal Fiber Architectures. Journal of Aerospace Engineering, 2022, 35, .	0.8	2
498	Revealing the Structural Coloration of Selfâ€Assembled Chitin Nanocrystal Films. Advanced Materials, 2022, 34, .	11.1	19
499	Ontogeny of a tessellated surface: Carapace growth of the longhorn cowfish <i>Lactoria cornuta</i>). Journal of Anatomy, 0, , .	0.9	2
500	Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Advanced Materials, 2023, 35, .	11.1	33
501	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
502	Microstructure, mechanical properties and elemental composition of the terrestrial isopod Armadillidium vulgare cuticle. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105299.	1.5	2
503	Crystallization of Chiral Natural and Biomimetic Biominerals. ACS Symposium Series, 0, , 105-126.	0.5	1
504	On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nature Communications, 2022, 13, .	5.8	58
505	Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer. Advanced Materials Technologies, 2022, 7, .	3.0	12

#	Article	IF	CITATIONS
506	Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications. Journal of Functional Biomaterials, 2022, 13, 83.	1.8	4
507	Graded biological materials and additive manufacturing technologies for producing bioinspired graded materials: An overview. Composites Part B: Engineering, 2022, 242, 110086.	5.9	42
508	Dynamic behaviors of bio-inspired structures: Design, mechanisms, and models. Engineering Structures, 2022, 265, 114490.	2.6	65
509	Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. Light: Science and Applications, 2022, 11 , .	7.7	87
510	Tough, aorta-inspired soft composites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
511	Improving strength and impact resistance of 3D printed components with helicoidal printing direction. International Journal of Impact Engineering, 2022, 169, 104320.	2.4	10
512	Caring for Daughters with Anorexia Nervosa: A Qualitative Study on Parents' Representation of the Problem and Management of the Disorder. Healthcare (Switzerland), 2022, 10, 1353.	1.0	3
513	Liquid Crystalline Systems from Nature and Interaction of Living Organisms with Liquid Crystals. Advanced Materials, 2023, 35, .	11.1	6
514	Hollow mandibles: Structural adaptation to high-speed and powerful strike in the trap-jaw ant Odontomachus monticola. Journal of Insect Physiology, 2022, 141, 104426.	0.9	4
515	Programmable Anisotropic Hydrogels with Localized Photothermal/Magnetic Responsive Properties. Advanced Science, 2022, 9, .	5.6	13
516	Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions. Frontiers in Marine Science, 0, 9, .	1.2	1
517	Micro-cracks and micro-fractures reveal radular tooth architecture and its functional significance in the paludomid gastropod <i>Lavigeria grandis</i> . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	10
518	Growing designability in structural materials. Nature Materials, 2022, 21, 968-970.	13.3	8
519	Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS Omega, 2022, 7, 30673-30699.	1.6	24
520	Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp. International Journal of Mechanical Sciences, 2022, 231, 107573.	3.6	10
521	Bio-inspired, helically oriented tubular structures with tunable deformability and energy absorption performance under compression. Materials and Design, 2022, 222, 111076.	3.3	12
522	Bio-inspired self-stitching discontinuous fiber reinforced composites with enhanced ductility and energy absorption. Composites Communications, 2022, 34, 101261.	3.3	1
523	Deciphering structural biological materials: Viewing from the mechanics perspective and their prospects. Composites Part B: Engineering, 2022, 245, 110213.	5.9	16

#	Article	IF	CITATIONS
524	Thermal buckling behavior of Bouligand inspired laminated composite plates. Journal of Composite Materials, 2022, 56, 3939-3947.	1.2	5
525	Elastocapillary assembly of high-aspect-ratio walls at the sub-10-nm scale: Experiment and numerical simulation. Materials Today Communications, 2022, 33, 104375.	0.9	O
526	Reinforcing hydrogels with <i>in situ</i> formed amorphous CaCO ₃ . Biomaterials Science, 2022, 10, 4949-4958.	2.6	6
527	Deformation and Toughening Mechanisms in Nacreous Structures. , 2022, , .		0
528	A forgotten element of the blue economy: marine biomimetics and inspiration from the deep sea. , 2022, 1, .		5
529	Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules, 2022, 27, 5633.	1.7	1
530	Bio-Inspired Avenues for Advancing Brain Injury Prevention. Journal of Mechanical Design, Transactions of the ASME, 2022, 144, .	1.7	2
531	lce-Templated Fabrication of Porous Materials with Bioinspired Architecture and Functionality. Accounts of Materials Research, 2022, 3, 1173-1185.	5.9	18
532	Optimized structures for vibration attenuation and sound control in nature: A review. Matter, 2022, 5, 3311-3340.	5.0	19
533	Trans-scale dynamic shear-lag model for wave attenuation in staggered composites. International Journal of Mechanical Sciences, 2023, 238, 107841.	3.6	6
534	Double-interpenetrating nanostructured networks of marine polysaccharides possessing properties comparable to synthetic polymers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
535	Low-Velocity Impact, Free-Fall Drop Test of Prototype, and Failure Analysis of Hybrid Palm / Kenaf Reinforced MWCNT Phenolic Composites. Journal of Natural Fibers, 2022, 19, 15863-15881.	1.7	1
536	Fabrication method and mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures. Journal of the European Ceramic Society, 2023, 43, 283-290.	2.8	7
537	Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials. Advanced Materials, 2022, 34, .	11.1	18
538	Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics, 2022, 7, 176.	1.5	5
539	Role of Inorganic Amorphous Constituents in Highly Mineralized Biomaterials and Their Imitations. ACS Nano, 2022, 16, 17486-17496.	7. 3	10
540	Gel-mediated chemo-mechanical control of calcium carbonate crystal formation. Journal of Crystal Growth, 2023, 602, 126943.	0.7	1
541	Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chemical Reviews, 2022, 122, 17397-17478.	23.0	23

#	Article	IF	CITATIONS
542	Mechanical properties, degree of sclerotisation and elemental composition of the gastric mill in the red swamp crayfish Procambarus clarkii (Decapoda, Crustacea). Scientific Reports, 2022, 12, .	1.6	5
543	Toughening of high-strength scalable laminated nanocomposites with discontinuous Bouligand-type architecture through soft flow-shear-induced alignment. Industrial Crops and Products, 2022, 189, 115780.	2.5	3
544	Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility. Composites Science and Technology, 2023, 231, 109836.	3.8	8
545	Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237, 503-542.	0.7	6
546	Compressive properties of silicone Bouligand structures. MRS Bulletin, 0, , .	1.7	1
547	Optimal Design of Three-Dimensional Voxel Printed Multimaterial Lattice Metamaterials via Machine Learning and Evolutionary Algorithm. Physical Review Applied, 2022, 18, .	1.5	5
548	Fiber arrangement endow compression resistance of the mantis shrimp hammer-like appendage. Journal of Materials Research and Technology, 2022, 21, 3169-3180.	2.6	4
549	Bioinspired Impactâ€Resistant and Selfâ€Monitoring Nanofibrous Composites. Small, 2023, 19, .	5.2	2
550	Failure mechanism and heat treatment effect of 3D-printed bio-inspired helicoidal CF/PEEK composites. Composites Communications, 2023, 37, 101464.	3.3	6
551	Evaluating the performance of a unique design of biomimetic armor. AIP Conference Proceedings, 2022, , .	0.3	1
552	Hierarchically structured bioinspired nanocomposites. Nature Materials, 2023, 22, 18-35.	13.3	119
553	Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp. International Journal of Mechanical Sciences, 2023, 244, 108073.	3.6	11
554	Investigation on crashworthiness and mechanism of a bionic antler-like gradient thin-walled structure. Bioinspiration and Biomimetics, 2023, 18, 026001.	1.5	2
555	Tuning chitosan's chemical structure for enhanced biological functions. Trends in Biotechnology, 2023, 41, 785-797.	4.9	10
556	An insight from nature: honeycomb pattern in advanced structural design for impact energy absorption. Journal of Materials Research and Technology, 2023, 22, 2862-2887.	2.6	23
557	Bioinspired Basalt Fiber Composites with Higher Impact Resistance Through Coupling Sinusoidal and Helical Structures Inspired by Mantis Shrimp. SSRN Electronic Journal, 0, , .	0.4	0
558	Protein-Based Biological Materials: Molecular Design and Artificial Production. Chemical Reviews, 2023, 123, 2049-2111.	23.0	31
559	Chiral nematic liquid crystal organization of natural polymer nanocrystals. Liquid Crystals, 2023, 50, 121-129.	0.9	3

#	ARTICLE	IF	CITATIONS
560	Multi-hit damage and perforation of plates inspired by the attacks of the mantis shrimp. Mechanics of Materials, 2023, 181, 104587.	1.7	1
561	Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramicâ€Polymer Composites. Advanced Materials, 2023, 35, .	11.1	19
562	Experimental and numerical investigation on the failure behavior of Bouligand laminates under off-axis open-hole tensile loading. Composite Structures, 2023, 313, 116932.	3.1	1
563	Low-velocity impact resistance behaviors of bionic double-helicoidal composite laminates. International Journal of Mechanical Sciences, 2023, 248, 108248.	3.6	8
564	Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 866, 144678.	2.6	20
565	Structure and Composition of the Cuticle of the Goose Barnacle Pollicipes pollicipes: A Flexible Composite Biomaterial. Marine Drugs, 2023, 21, 96.	2.2	0
566	A review of the material and mechanical properties of select Ganoderma fungi structures as a source for bioinspiration. Journal of Materials Science, 2023, 58, 3401-3420.	1.7	3
567	Pattern formation, structure and functionalities of wrinkled liquid crystal surfaces: A soft matter biomimicry platform., 0, 3, .		3
568	3D printing of living structural biocomposites. Materials Today, 2023, 62, 21-32.	8.3	14
569	Organized mineralized cellulose nanostructures for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5321-5349.	2.9	2
570	A Molecularâ€Scale Understanding of Misorientation Toughening in Corals and Seashells. Advanced Materials, 2023, 35, .	11.1	8
571	Design strategies of the mantis shrimp spike: How the crustacean cuticle became a remarkable biological harpoon. Natural Sciences, 2023, 3, .	1.0	0
572	Flexible design in the stomatopod dactyl club. IUCrJ, 2023, 10, 288-296.	1.0	2
573	Toughness Amplification via Controlled Nanostructure in Lightweight Nanoâ€Bouligand Materials. Small, 2023, 19, .	5.2	1
574	Advanced Composites Inspired by Biological Structures and Functions in Nature: Architecture Design, Strengthening Mechanisms, and Mechanicalâ€Functional Responses. Advanced Science, 2023, 10, .	5.6	10
575	Biomimetic high toughness Si3N4 ceramics with inverse-bouligand structure. Ceramics International, 2023, 49, 21745-21754.	2.3	0
576	Materials Informatics Tools in the Context of Bio-Inspired Material Mechanics. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	7
577	Design and Characterization of 2.5D Nature-Inspired Infill Structures under Out-Plane Quasi-Static Loading Condition. Advances in Materials Science and Engineering, 2023, 2023, 1-11.	1.0	6

#	Article	IF	CITATIONS
578	Crack modes and toughening strategies of bioinspired 3D printed double-helicoidal architectures. International Journal of Mechanical Sciences, 2023, 253, 108388.	3.6	7
596	Response of Thin-Walled Composite Polymer Structures Fabricated via Additive Manufacturing Technologies. SpringerBriefs in Materials, 2023, , 41-58.	0.1	0
632	Biomimetic Design Approaches for Impact Applications: A Review. Springer Proceedings in Materials, 2024, , 219-232.	0.1	0