Titanium Dioxide Nanoparticles in Food and Personal C

Environmental Science & amp; Technology 46, 2242-2250 DOI: 10.1021/es204168d

Citation Report

#	Article	IF	CITATIONS
2	Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2012, 100, .	1.5	11
3	Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide. Inhalation Toxicology, 2012, 24, 839-849.	0.8	63
5	Mesoporous Hollow Sphere Titanium Dioxide Photocatalysts through Hydrothermal Silica Etching. ACS Applied Materials & Interfaces, 2012, 4, 6062-6070.	4.0	67
6	Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples. Analytical and Bioanalytical Chemistry, 2012, 404, 2583-2595.	1.9	31
7	Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chemical Reviews, 2012, 112, 5919-5948.	23.0	710
8	Release of Titanium Dioxide from Textiles during Washing. Environmental Science & Technology, 2012, 46, 8181-8188.	4.6	201
9	Titanium Dioxide Nanoparticles Disturb the Fibronectin-Mediated Adhesion and Spreading of Pre-osteoblastic Cells. Langmuir, 2012, 28, 13660-13667.	1.6	10
10	Detection of nanomaterials in food and consumer products: bridging the gap from legislation to enforcement. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1175-1182.	1.1	40
11	Nanomaterials in analytical atomic spectrometry. TrAC - Trends in Analytical Chemistry, 2012, 39, 38-59.	5.8	79
12	Introduction to the Analysis and Risk of Nanomaterials in Environmental and Food Samples. Comprehensive Analytical Chemistry, 2012, , 1-32.	0.7	33
13	Rapid analysis of gold nanoparticles in liver and river water samples. Analyst, The, 2012, 137, 3528.	1.7	42
14	TiO ₂ Nanostructures: Recent Physical Chemistry Advances. Journal of Physical Chemistry C, 2012, 116, 11849-11851.	1.5	212
15	Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1093.	1.6	95
16	Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates. RSC Advances, 2013, 3, 18202.	1.7	32
17	Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nature Communications, 2013, 4, 2249.	5.8	107
18	Behavior of Engineered Nanoparticles in Landfill Leachate. Environmental Science & Technology, 2013, 47, 130710152553007.	4.6	33
19	Efficient hydrophobization and solvent microextraction for determination of trace nano-sized silver and titanium dioxide in natural waters. Analytica Chimica Acta, 2013, 789, 47-57.	2.6	31
20	Hydrogenation processing of TiO ₂ nanoparticles. Canadian Journal of Chemical Engineering, 2013, 91, 799-807.	0.9	33

#	Article	IF	CITATIONS
21	Assessing interactions of hydrophilic nanoscale TiO2 with soil water. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	25
22	Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally-relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss. Environmental Pollution, 2013, 182, 70-79.	3.7	40
23	TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Research, 2013, 47, 6052-6063.	5.3	192
24	Migration of Ag- and TiO ₂ -(Nano)particles from Textiles into Artificial Sweat under Physical Stress: Experiments and Exposure Modeling. Environmental Science & Technology, 2013, 47, 9979-9987.	4.6	137
25	Microwave-Assisted Synthesis of Porous Carbon–Titania and Highly Crystalline Titania Nanostructures. ACS Applied Materials & Interfaces, 2013, 5, 1948-1954.	4.0	20
26	Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Sciences: Processes and Impacts, 2013, 15, 2186.	1.7	103
27	Effects of nanosized titanium dioxide on the physicochemical stability of activated sludge flocs using the thermodynamic approach and Kelvin probe force microscopy. Water Research, 2013, 47, 3947-3958.	5.3	29
28	Differential Growth of and Nanoscale TiO ₂ Accumulation in Tetrahymena thermophila by Direct Feeding versus Trophic Transfer from Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2013, 79, 5616-5624.	1.4	45
29	Catalytic degradation of a plasticizer, di-ethylhexyl phthalate, using Nx–TiO2â^'x nanoparticles synthesized via co-precipitation. Chemical Engineering Journal, 2013, 231, 182-189.	6.6	26
30	Uptake of titanium from TiO ₂ nanoparticle exposure in the isolated perfused intestine of rainbow trout: nystatin, vanadate and novel CO ₂ -sensitive components. Nanotoxicology, 2013, 7, 1282-1301.	1.6	44
31	Biological Response to Nano-Scale Titanium Dioxide (TiO ₂): Role of Particle Dose, Shape, and Retention. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 953-972.	1.1	64
32	Titanium distribution in swimming pool water is dominated by dissolved species. Environmental Pollution, 2013, 181, 68-74.	3.7	44
33	Trace elements can influence the physical properties of tooth enamel. SpringerPlus, 2013, 2, 499.	1.2	55
34	Toward Tunable Adsorption Properties, Structure, and Crystallinity of Titania Obtained by Block Copolymer and Scaffold-Assisted Templating. Langmuir, 2013, 29, 12549-12559.	1.6	20
35	Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration and Biodegradation, 2013, 85, 217-222.	1.9	134
36	Minimal Intestinal Epithelial Cell Toxicity in Response to Short- and Long-Term Food-Relevant Inorganic Nanoparticle Exposure. Chemical Research in Toxicology, 2013, 26, 1514-1525.	1.7	88
37	Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 2013, 181, 287-300.	3.7	960
38	Nanoparticle accumulation and transcytosis in brain endothelial cell layers. Nanoscale, 2013, 5, 11153.	2.8	104

#	Article	IF	CITATIONS
39	Considerations on the EU definition of a nanomaterial: Science to support policy making. Regulatory Toxicology and Pharmacology, 2013, 65, 119-125.	1.3	164
40	Investigation of <scp>T</scp> i <scp>O</scp> ₂ nanoparticle efficiency on decolourisation of industrial date syrup. International Journal of Food Science and Technology, 2013, 48, 316-323.	1.3	7
41	Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse. Science of the Total Environment, 2013, 456-457, 154-160.	3.9	25
42	Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour. Acta Materialia, 2013, 61, 5571-5585.	3.8	53
43	Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications. Advanced Functional Materials, 2013, 23, 1356-1374.	7.8	195
44	Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Research, 2013, 47, 2352-2362.	5.3	104
46	Modified TiO ₂ For Environmental Photocatalytic Applications: A Review. Industrial & Engineering Chemistry Research, 2013, 52, 3581-3599.	1.8	1,296
47	Nanohybridization of Low-Dimensional Nanomaterials: Synthesis, Classification, and Application. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 1-56.	6.8	20
48	Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 2013, 3, 189-218.	1.6	995
49	Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology, 2013, 10, 15.	2.8	1,114
50	Toxicological Mechanisms of Nanosized Titanium Dioxide-Induced Spleen Injury in Mice after Repeated Peroral Application. Journal of Agricultural and Food Chemistry, 2013, 61, 5590-5599.	2.4	41
51	Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and Technology of Advanced Materials, 2013, 14, 023001.	2.8	252
52	Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death and Disease, 2013, 4, e549-e549.	2.7	134
53	A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals. Nanoscale, 2013, 5, 7368.	2.8	22
54	A simplified method for determining titanium from TiO2 nanoparticles in fish tissue with a concomitant multi-element analysis. Chemosphere, 2013, 92, 1136-1144.	4.2	26
55	Impact of TiO ₂ Nanoparticles on Growth, Biofilm Formation, and Flavin Secretion in <i>Shewanella oneidensis</i> . Analytical Chemistry, 2013, 85, 5810-5818.	3.2	83
56	Room temperature synthesis of highly crystalline TiO2 nanoparticles. Materials Letters, 2013, 92, 287-290.	1.3	22
57	Renal Injury and Nrf2 Modulation in Mouse Kidney Following Chronic Exposure to TiO ₂ Nanoparticles. Journal of Agricultural and Food Chemistry, 2013, 61, 8959-8968.	2.4	58

#	Article	IF	CITATIONS
58	Nanomaterial Removal and Transformation During Biological Wastewater Treatment. Environmental Engineering Science, 2013, 30, 109-117.	0.8	104
59	Characterization and Preliminary Toxicity Assay of Nanoâ€Titanium Dioxide Additive in Sugar oated Chewing Gum. Small, 2013, 9, 1765-1774.	5.2	209
60	Susceptibility of Young and Adult Rats to the Oral Toxicity of Titanium Dioxide Nanoparticles. Small, 2013, 9, 1742-1752.	5.2	183
61	Emerging Pollutants – Part I: Occurrence, Fate and Transport. Water Environment Research, 2013, 85, 1978-2021.	1.3	21
62	Behavior of ZnO Nanoparticles in Aqueous Environments: Influence of pH and Adsorption of Humic Acid. Advanced Materials Research, 2013, 832, 728-733.	0.3	2
63	Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L152-L161.	1.3	39
64	Transcutaneous delivery of micro- and nanoparticles with laser microporation. Journal of Biomedical Optics, 2013, 18, 111406.	1.4	30
65	Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 163.	0.1	286
66	Heterogeneous Photocatalysis for Pharmaceutical Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2013, , 69-133.	0.3	9
67	Interaction of magnetic nanoparticles with U87MG cells studied by synchrotron radiation Xâ€ray fluorescence techniques. X-Ray Spectrometry, 2013, 42, 316-320.	0.9	22
68	Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Nanomedicine, 2013, 8, 2007-2025.	1.7	85
70	Health Effects Associated with Wastewater Treatment, Reuse, and Disposal. Water Environment Research, 2013, 85, 1954-1977.	1.3	5
71	Use Patterns of Leave-on Personal Care Products among Swiss-German Children, Adolescents, and Adults. International Journal of Environmental Research and Public Health, 2013, 10, 2778-2798.	1.2	61
72	Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles. International Journal of Molecular Sciences, 2013, 14, 13154-13170.	1.8	43
73	Influence of surface treatments on enamel susceptibility to staining by cigarette smoke. Journal of Clinical and Experimental Dentistry, 2013, 5, e163-8.	0.5	13
74	Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. International Journal of Nanomedicine, 2014, 9, 379.	3.3	168
75	AgCu Bimetallic Nanoparticles under Effect of Low Intensity Ultrasound: The Cell Viability Study In Vitro. Journal of Cancer Research, 2014, 2014, 1-6.	0.7	14
76	Effects of Silica and Titanium Oxide Particles on a Human Neural Stem Cell Line: Morphology, Mitochondrial Activity, and Gene Expression of Differentiation Markers. International Journal of Molecular Sciences, 2014, 15, 11742-11759.	1.8	27

#	Article	IF	CITATIONS
79	Common freshwater bacteria vary in their responses to shortâ€ŧerm exposure to nanoâ€∓iO ₂ . Environmental Toxicology and Chemistry, 2014, 33, 317-327.	2.2	31
82	Comparison of the Aggregation Behavior of TiO2 Nanoparticles Exposed to Fulvic Acid and Bacillus subtilis Exudates. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	9
84	Engineered Nanomaterials Impact Biological Carbon Conversion in Soils. Environmental Engineering Science, 2014, 31, 381-392.	0.8	9
86	Production of ¹⁸ F‣abeled Titanium Dioxide Nanoparticles by Proton Irradiation for Biodistribution and Biological Fate Studies in Rats. Particle and Particle Systems Characterization, 2014, 31, 134-142.	1.2	18
87	Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: impact of solar UV radiation and material surface coatings on toxicity. Science of the Total Environment, 2014, 499, 356-362.	3.9	17
89	A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Particle and Fibre Toxicology, 2014, 11, 17.	2.8	159
90	Interaction of Nanoparticles with Lipid Monolayers and Lung Surfactant Films. Bioanalytical Reviews, 2014, , 109-133.	0.1	2
91	Acute exposure to titanium dioxide (TiO ₂) induces oxidative stress in zebrafish gill tissues. Toxicological and Environmental Chemistry, 2014, 96, 890-905.	0.6	19
92	Nano-sized titanium dioxide-induced splenic toxicity: A biological pathway explored using microarray technology. Journal of Hazardous Materials, 2014, 278, 180-188.	6.5	37
93	In situ titanium dioxide nanoparticles quantitative microscopy in cells and in C. elegans using nuclear microprobe analysis. Nuclear Instruments & Methods in Physics Research B, 2014, 341, 58-64.	0.6	13
94	Simultaneous Direct Voltammetric Determination of Metalâ€Oxide Nanoparticles from Their Mixture (CuO/NiO). ChemElectroChem, 2014, 1, 249-253.	1.7	4
95	FD&C Yellow No. 5 (Tartrazine) Degradation via Reactive Oxygen Species Triggered by TiO ₂ and Au/TiO ₂ Nanoparticles Exposed to Simulated Sunlight. Journal of Agricultural and Food Chemistry, 2014, 62, 12052-12060.	2.4	28
96	Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea – the role of TiO2 nanoparticles. Ecotoxicology and Environmental Safety, 2014, 109, 161-168.	2.9	56
97	Presence in, and Release of, Nanomaterials from Consumer Products. Advances in Experimental Medicine and Biology, 2014, 811, 1-17.	0.8	39
98	Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology, 2014, 11, 30.	2.8	229
99	Nanoapplications $\hat{a} \in $ From geckos to human health. Medical Writing, 2014, 23, 198-203.	0.0	0
100	5. Nanoparticles: Properties and applications. , 2014, , 101-120.		0
101	Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicology Letters, 2014, 226, 264-276.	0.4	63

#	Article	IF	CITATIONS
102	The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 89-98.	1.7	73
103	Enhanced toxicity of â€~bulk' titanium dioxide compared to â€~fresh' and â€~aged' nano-TiO ₂ in marine mussels (<i>Mytilus galloprovincialis</i>). Nanotoxicology, 2014, 8, 549-558.	1.6	115
104	Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology, 2014, 8, 654-662.	1.6	162
105	Histomorphological evaluation of maternal and neonatal distal airspaces after maternal intake of nanoparticulate titanium dioxide: an experimental study in Wistar rats. Journal of Molecular Histology, 2014, 45, 91-102.	1.0	14
106	Investigation on Likely Effects of Ag, TiO2, and ZnO Nanoparticles on Sewage Treatment. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 109-114.	1.3	10
107	Cellular interactions and biological responses to titanium dioxide nanoparticles in HepC2 and BEASâ€2B cells: Role of cell culture media. Environmental and Molecular Mutagenesis, 2014, 55, 336-342.	0.9	27
108	Integrated approach to the in vivo genotoxic effects of a titanium dioxide nanomaterial using <i>LacZ</i> plasmidâ€based transgenic mice. Environmental and Molecular Mutagenesis, 2014, 55, 500-509.	0.9	22
109	Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles. Environmental Pollution, 2014, 186, 36-42.	3.7	66
110	Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology, 2014, 30, 89-100.	2.4	136
111	Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicology Letters, 2014, 226, 314-319.	0.4	118
112	Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	21
113	Safe recycling of materials containing persistent inorganic and carbon nanoparticles. , 2014, , 222-250.		4
114	Assessment of titanium dioxide nanoparticle effects in bacteria: Association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 768, 14-22.	0.9	27
115	Effects and Implications of Trophic Transfer and Accumulation of CeO ₂ Nanoparticles in a Marine Mussel. Environmental Science & Samp; Technology, 2014, 48, 1517-1524.	4.6	62
116	Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry, 2014, 406, 3875-85.	1.9	126
117	Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsorption of Suwannee River humic acid. Science of the Total Environment, 2014, 468-469, 195-201.	3.9	236
118	Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution, 2014, 185, 69-76.	3.7	660
119	A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale, 2014, 6, 15333-15342.	2.8	99

#	Article	IF	CITATIONS
120	Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm. Journal of Analytical Atomic Spectrometry, 2014, 29, 1630.	1.6	41
121	Influence of different sized nanoparticles combined with ultrasound on the optical properties of <i>in vitro</i> normal and cancerous human lung tissue studied with OCT and diffuse reflectance spectra. Laser Physics, 2014, 24, 115606.	0.6	2
122	Localized fluorescent complexation enables rapid monitoring of airborne nanoparticles. Environmental Science: Nano, 2014, 1, 358.	2.2	12
123	Spot the Difference: Engineered and Natural Nanoparticles in the Environment—Release, Behavior, and Fate. Angewandte Chemie - International Edition, 2014, 53, 12398-12419.	7.2	210
124	Physical and Chemical Characterization of Fly Ashes from Swiss Waste Incineration Plants and Determination of the Ash Fraction in the Nanometer Range. Environmental Science & Technology, 2014, 48, 4765-4773.	4.6	33
125	Histidine Adsorption on TiO ₂ Nanoparticles: An Integrated Spectroscopic, Thermodynamic, and Molecular-Based Approach toward Understanding Nano–Bio Interactions. Langmuir, 2014, 30, 8751-8760.	1.6	64
126	Evaluation of Exposure Concentrations Used in Assessing Manufactured Nanomaterial Environmental Hazards: Are They Relevant?. Environmental Science & Technology, 2014, 48, 10541-10551.	4.6	169
127	Titanium catalyst with the molecular imprinting of substrate for selective photocatalysis. Journal of the Chinese Advanced Materials Society, 2014, 2, 71-81.	0.7	7
128	Single Cell <i>In Situ</i> Detection and Quantification of Metal Oxide Nanoparticles Using Multimodal Correlative Microscopy. Analytical Chemistry, 2014, 86, 7311-7319.	3.2	28
129	Aged TiO ₂ -Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and Sensitizes <i>Escherichia coli</i> to Cadmium. Environmental Science & Technology, 2014, 48, 5245-5253.	4.6	40
130	Biocatalytic Synthesis Pathways, Transformation, and Toxicity of Nanoparticles in the Environment. Critical Reviews in Environmental Science and Technology, 2014, 44, 1679-1739.	6.6	34
131	State of the safety assessment and current use of nanomaterials in food and food production. Trends in Food Science and Technology, 2014, 40, 200-210.	7.8	105
132	ACS Select on Nanotechnology in Food and Agriculture: A Perspective on Implications and Applications. Journal of Agricultural and Food Chemistry, 2014, 62, 1209-1212.	2.4	127
133	Nano-hydroxyapatite and Nano-titanium Dioxide Exhibit Different Subcellular Distribution and Apoptotic Profile in Human Oral Epithelium. ACS Applied Materials & Interfaces, 2014, 6, 6248-6256.	4.0	87
134	Interactions between phospholipids and titanium dioxide particles. Colloids and Surfaces B: Biointerfaces, 2014, 123, 150-157.	2.5	30
135	Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chemico-Biological Interactions, 2014, 220, 214-221.	1.7	70
136	Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environmental Science & Technology, 2014, 48, 10291-10300.	4.6	366
137	Release of TiO ₂ Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environmental Science & Technology, 2014, 48, 5415-5422.	4.6	344

#	Article	IF	CITATIONS
138	Where Is the Nano in Our Foods?. Journal of Agricultural and Food Chemistry, 2014, 62, 9953-9956.	2.4	21
139	Removal of TiO ₂ Nanoparticles During Primary Water Treatment: Role of Coagulant Type, Dose, and Nanoparticle Concentration. Environmental Engineering Science, 2014, 31, 127-134.	0.8	56
140	Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microbial Cell Factories, 2014, 13, 90.	1.9	50
141	Measurement and characterization of engineered titanium dioxide nanoparticles in the environment. Journal of Zhejiang University: Science A, 2014, 15, 593-605.	1.3	18
142	Two-Dimensional Correlation Spectroscopic Analysis on the Interaction between Humic Acids and TiO ₂ Nanoparticles. Environmental Science & Technology, 2014, 48, 11119-11126.	4.6	166
143	Using ICP-qMS to trace the uptake of nanoscale titanium dioxide by microalgae–potential disadvantages of vegetable reference material. Analytical and Bioanalytical Chemistry, 2014, 406, 2495-2502.	1.9	3
144	The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Analytical and Bioanalytical Chemistry, 2014, 406, 3919-3927.	1.9	72
145	A biocompatible block glycopolymeric dispersant: synthesis, characterization, and dispersing properties for nano-TiO2. Colloid and Polymer Science, 2014, 292, 2369-2374.	1.0	2
146	Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation. Cell Biology and Toxicology, 2014, 30, 169-188.	2.4	96
147	Composite Titanium Dioxide Nanomaterials. Chemical Reviews, 2014, 114, 9853-9889.	23.0	580
148	The Release of Carotenoids from a Light-Protected Antioxidant Active Packaging Designed to Improve the Stability of Soybean Oil. Food and Bioprocess Technology, 2014, 7, 3504-3515.	2.6	26
149	Simple synthesis of water-dispersible and photoactive titanium dioxide nanoparticles using functionalized poly(ethylene oxide)s. Macromolecular Research, 2014, 22, 445-456.	1.0	4
150	Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Particle and Fibre Toxicology, 2014, 11, 13.	2.8	225
151	DNA Damaging Potential of Photoactivated P25 Titanium Dioxide Nanoparticles. Chemical Research in Toxicology, 2014, 27, 1877-1884.	1.7	40
152	Route-dependent systemic and local immune effects following exposure to solutions prepared from titanium dioxide nanoparticles. Journal of Immunotoxicology, 2014, 11, 273-282.	0.9	38
153	Soil ingestion rate determination in a rural population of Alberta, Canada practicing a wilderness lifestyle. Science of the Total Environment, 2014, 470-471, 138-146.	3.9	26
154	Using a holistic approach to assess the impact ofÂengineered nanomaterials inducing toxicity in aquatic systems. Journal of Food and Drug Analysis, 2014, 22, 128-146.	0.9	53
155	Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. Journal of Agricultural and Food Chemistry, 2014, 62, 6285-6293.	2.4	328

D

#	Article	IF	CITATIONS
156	Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles. Environmental Science & Technology, 2014, 48, 6391-6400.	4.6	238
157	Cluster Approach To Model Titanium Dioxide as Isolated or Organic Dye Sensitized Nanoobjects. Journal of Physical Chemistry C, 2014, 118, 6009-6018.	1.5	17
158	Characterization of Nanomaterials in Metal Colloid-Containing Dietary Supplement Drinks and Assessment of Their Potential Interactions after Ingestion. ACS Sustainable Chemistry and Engineering, 2014, 2, 1616-1624.	3.2	41
159	Measurement Methods for the Oral Uptake of Engineered Nanomaterials from Human Dietary Sources: Summary and Outlook. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 669-678.	5.9	24
160	Measurement Methods to Detect, Characterize, and Quantify Engineered Nanomaterials in Foods. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 693-704.	5.9	82
161	Engineered Nanoscale Food Ingredients: Evaluation of Current Knowledge on Material Characteristics Relevant to Uptake from the Gastrointestinal Tract. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 730-744.	5.9	85
163	Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations. Environmental Pollution, 2014, 186, 180-186.	3.7	60
164	Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health. International Journal of Environmental Research and Public Health, 2014, 11, 5720-5750.	1.2	206
165	Inventory of Nanotechnology applications in the agricultural, feed and food sector. EFSA Supporting Publications, 2014, 11, 621E.	0.3	57
167	Risk Assessment of Engineered Nanomaterials. , 2014, , 459-478.		3
167 168	Risk Assessment of Engineered Nanomaterials. , 2014, , 459-478. Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279.	1.8	3
	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of	1.8	
168	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279. Eating Small: Applications and Implications for Nanotechnology in Agriculture and the Food Industry.		2
168 169	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279. Eating Small: Applications and Implications for Nanotechnology in Agriculture and the Food Industry. Science Progress, 2014, 97, 173-182. Alternative assessment of nano-TiO2 sedimentation under different conditions based on	1.0	2 7
168 169 170	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279. Eating Small: Applications and Implications for Nanotechnology in Agriculture and the Food Industry. Science Progress, 2014, 97, 173-182. Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. Journal of Nanoparticle Research, 2015, 17, 1. Biological effect of food additive titanium dioxide nanoparticles on intestine: an <i>in vitro</i>	1.0 0.8	2 7 1
168 169 170 171	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279. Eating Small: Applications and Implications for Nanotechnology in Agriculture and the Food Industry. Science Progress, 2014, 97, 173-182. Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. Journal of Nanoparticle Research, 2015, 17, 1. Biological effect of food additive titanium dioxide nanoparticles on intestine: an <i>in vitro</i> study. Journal of Applied Toxicology, 2015, 35, 1169-1178. The Importance of Exposure Dose in Communicating the Ecotoxicology of Engineered Nanomaterials.	1.0 0.8 1.4	2 7 1 65
168 169 170 171 172	Safety assessment of engineered metallic nanoparticles in foodstuff. Quality Assurance and Safety of Crops and Foods, 2014, 6, 263-279. Eating Small: Applications and Implications for Nanotechnology in Agriculture and the Food Industry. Science Progress, 2014, 97, 173-182. Alternative assessment of nano-TiO2 sedimentation under different conditions based on sedimentation efficiency at quasi-stable state. Journal of Nanoparticle Research, 2015, 17, 1. Biological effect of food additive titanium dioxide nanoparticles on intestine: an <i>in vitro</i> study. Journal of Applied Toxicology, 2015, 35, 1169-1178. The Importance of Exposure Dose in Communicating the Ecotoxicology of Engineered Nanomaterials. ACS Symposium Series, 2015, 1, 123-152. In vivo and in vitro toxicological effects of titanium dioxide nanoparticles on small intestine. AIP	1.0 0.8 1.4 0.5	2 7 1 65 0

#	Article	IF	CITATIONS
177	Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Particle and Fibre Toxicology, 2015, 12, 27.	2.8	78
178	Early Detection of Autism (ASD) by a Non-invasive Quick Measurement of Markedly Reduced Acetylcholine & DHEA and Increased <i>î²</i> -Amyloid (1-42), Asbestos (Chrysotile), Titanium Dioxide, Al, Hg & often Coexisting Virus Infections (CMV, HPV 16 and 18), Bacterial Infections etc. in the Brain and Corresponding 5 and Individualized Effective Treatment. Acupuncture and Electro-Therapeutics	0.0	13
179	Research, 2015, 40, 157-187. Exposure Assessment Based Recommendations to Improve Nanosafety at Nanoliposome Production Sites. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	16
180	Determination of Ti from TiO2 Nanoparticles in Biological Materials by Different ICP-MS Instruments: Method Validation and Applications. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	2
181	A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Advanced Pharmaceutical Bulletin, 2015, 5, 447-454.	0.6	230
182	Nanomaterials in consumer products: a challenging analytical problem. Frontiers in Chemistry, 2015, 3, 48.	1.8	181
183	Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment. International Journal of Environmental Research and Public Health, 2015, 12, 8717-8743.	1.2	70
184	Comparing Acute Effects of a Nano-TiO2 Pigment on Cosmopolitan Freshwater Phototrophic Microbes Using High-Throughput Screening. PLoS ONE, 2015, 10, e0125613.	1.1	13
185	Decreased Phototoxic Effects of TiOâ,, Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water. PLoS ONE, 2015, 10, e0141301.	1.1	10
186	Application of dental nanomaterials: potential toxicity to the central nervous system. International Journal of Nanomedicine, 2015, 10, 3547.	3.3	40
187	Uptake of bright fluorophore core-silica shell nanoparticles by biological systems. International Journal of Nanomedicine, 2015, 10, 1547.	3.3	17
188	Dominating Role of Ionic Strength in the Sedimentation of Nano-TiO ₂ in Aquatic Environments. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	5
189	Applications and Safety of Nanomaterials Used in the Food Industry. Food Safety (Tokyo, Japan), 2015, 3, 39-47.	1.0	22
190	Synthesis and electrochemical analysis of a nanostructured spindle shaped TiO2. Materials Letters, 2015, 156, 209-213.	1.3	9
191	Case Study – Characterization of Nanomaterials in Food Products. Frontiers of Nanoscience, 2015, , 267-292.	0.3	4
192	Potential role of engineered nanoparticles as contaminant carriers in aquatic ecosystems: Estimating sorption processes of the cyanobacterial toxin microcystin-LR by TiO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 460-467.	2.3	21
193	Safety Studies of Metal Oxide Nanoparticles Used in Food Industry. Food Engineering Series, 2015, , 243-265.	0.3	3
194	Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environmental Science & Technology, 2015, 49, 7109-7122.	4.6	327

#	Article	IF	CITATIONS
195	Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ. Scientific Reports, 2015, 5, 9830.	1.6	22
196	Public's Understanding, Perceptions, and Acceptance of Nanotechnology through the Lens of Consumer Products. , 2015, , 151-171.		Ο
197	Reprint of: Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles inÂvitro. Food and Chemical Toxicology, 2015, 85, 20-30.	1.8	25
198	Isothermal titration calorimetry as a powerful tool to quantify and better understand agglomeration mechanisms during interaction processes between TiO ₂ nanoparticles and humic acids. Environmental Science: Nano, 2015, 2, 541-550.	2.2	25
199	A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Research Letters, 2015, 10, 1042.	3.1	98
200	Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro. Toxicology in Vitro, 2015, 30, 402-411.	1.1	6
201	Foam Stabilized by Fly Ash Nanoparticles for Enhancing Oil Recovery. Industrial & Engineering Chemistry Research, 2015, 54, 12482-12491.	1.8	86
202	Effects of Titanium Dioxide Nanoparticles Isolated from Confectionery Products on the Metabolic Stress Pathway in Human Lung Fibroblast Cells. Archives of Environmental Contamination and Toxicology, 2015, 68, 521-533.	2.1	27
203	The impact of TiO2 nanoparticles on uptake and toxicity of benzo(a)pyrene in the blue mussel (Mytilus) Tj ETQq	0 0 ₃ .9rgBT	/Overlock 10
204	Spectroscopic Characterization of TiO ₂ Polymorphs in Wastewater Treatment and Sediment Samples. Environmental Science and Technology Letters, 2015, 2, 12-18.	3.9	33
205	In situ measurements of magnetic nanoparticles after placenta perfusion. Journal of Magnetism and Magnetic Materials, 2015, 380, 66-71.	1.0	2
206	Evaluation of charge and agglomeration behavior of TiO2 nanoparticles in ecotoxicological media. Science of the Total Environment, 2015, 535, 45-53.	3.9	55
207	Colorimetric Detection of Catalytic Reactivity of Nanoparticles in Complex Matrices. Environmental Science & Technology, 2015, 49, 3611-3618.	4.6	41
208	Effects of Titanium Dioxide Nanoparticles on the Synthesis of Fibroin in Silkworm (Bombyx mori). Biological Trace Element Research, 2015, 166, 225-235.	1.9	9
209	Understanding nanoparticle cellular entry: A physicochemical perspective. Advances in Colloid and Interface Science, 2015, 218, 48-68.	7.0	289
210	Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. Journal of Food Composition and Analysis, 2015, 40, 19-23.	1.9	26
211	Lost by Design. Environmental Science & Technology, 2015, 49, 9443-9451.	4.6	159
212	Review of Nanomaterials in Dentistry: Interactions with the Oral Microenvironment, Clinical	7.3	194

#	Article	IF	CITATIONS
213	Atomic Layer Deposition of Undoped TiO ₂ Exhibiting <i>p</i> -Type Conductivity. ACS Applied Materials & Interfaces, 2015, 7, 5134-5140.	4.0	33
214	Nanoparticulate anatase TiO2 (TiO2 NPs) upregulates the expression of silkworm (Bombyx mori) neuropeptide receptor and promotes silkworm feeding, growth, and silking. Peptides, 2015, 68, 64-71.	1.2	19
215	A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	66
216	Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Cellulose, 2015, 22, 1365-1378.	2.4	18
217	Chronic Exposure to Nanoparticulate TiO ₂ Causes Renal Fibrosis Involving Activation of the Wnt Pathway in Mouse Kidney. Journal of Agricultural and Food Chemistry, 2015, 63, 1639-1647.	2.4	39
218	Identification of Nanoscale Ingredients in Commercial Food Products and their Induction of Mitochondrially Mediated Cytotoxic Effects on Human Mesenchymal Stem Cells. Journal of Food Science, 2015, 80, N459-64.	1.5	51
219	Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. Journal of Hazardous Materials, 2015, 286, 298-305.	6.5	43
220	Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 778, 12-21.	0.9	62
221	Review of titanium dioxide nanoparticle phototoxicity: Developing a phototoxicity ratio to correct the endpoint values of toxicity tests. Environmental Toxicology and Chemistry, 2015, 34, 1070-1077.	2.2	48
222	A simple low-cost method to enhance luminescence and fluorescence signals in PDMS-based microfluidic devices. RSC Advances, 2015, 5, 12511-12516.	1.7	17
223	Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide. Environmental Science & Technology, 2015, 49, 9479-9488.	4.6	199
224	Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution. Science of the Total Environment, 2015, 535, 28-34.	3.9	66
225	Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO ₂) nanoparticles. Nanotoxicology, 2015, 9, 373-380.	1.6	130
226	Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science and Technology, 2015, 43, 43-62.	7.8	118
227	Thin Film Structures in Energy Applications. , 2015, , .		15
228	Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers: avoiding an unbalance between benefits and risks. Journal of Applied Toxicology, 2015, 35, 1073-1085.	1.4	18
229	Nitrite ion sensing properties of ZnTiO ₃ –TiO ₂ composite thin films deposited from a zinc–titanium molecular complex. New Journal of Chemistry, 2015, 39, 7442-7452.	1.4	30
230	Scaffold-assisted synthesis of crystalline mesoporous titania materials. RSC Advances, 2015, 5, 61960-61972.	1.7	6

#	Article	IF	Citations
231	Surface interactions and degradation of a fluoroquinolone antibiotic in the dark in aqueous TiO2 suspensions. Science of the Total Environment, 2015, 532, 398-403.	3.9	29
232	Nanomaterials Release from Nano-Enabled Products. Handbook of Environmental Chemistry, 2015, , 127-158.	0.2	4
233	Long-term exposure of bacterial and protozoan communities to TiO2nanoparticles in an aerobic-sequencing batch reactor. Science and Technology of Advanced Materials, 2015, 16, 034609.	2.8	12
234	Systematic Optimization of a Force Field for Classical Simulations of TiO ₂ –Water Interfaces. Journal of Physical Chemistry C, 2015, 119, 18110-18125.	1.5	53
235	In situ characterisation of a concentrated colloidal titanium dioxide settling suspension and associated bed development: Application of an acoustic backscatter system. Powder Technology, 2015, 284, 530-540.	2.1	14
236	Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1633-1642.	1.7	46
237	Engineered Nanomaterials in the Food Sector. Comprehensive Analytical Chemistry, 2015, , 579-616.	0.7	1
238	Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science, 2015, 457, 329-338.	5.0	179
239	Quantification of titanium from TiO2 particles in biological tissue. Journal of Trace Elements in Medicine and Biology, 2015, 32, 40-44.	1.5	8
240	TiO ₂ Nanoparticle Exposure Decreases Spermatogenesis via Biochemical Dysfunctions in the Testis of Male Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 7084-7092.	2.4	62
241	Molecular Dynamics Simulations of Adsorption of Amino Acid Side Chain Analogues and a Titanium Binding Peptide on the TiO ₂ (100) Surface. Journal of Physical Chemistry C, 2015, 119, 18126-18139.	1.5	77
242	Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum, 2015, 120, 162-169.	1.6	46
243	Strategies for radiolabeling of commercial TiO2 nanopowder as a tool for sensitive nanoparticle detection in complex matrices. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	18
244	ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	70
245	Functionalized Multiwalled Carbon Nanotubes as Carriers of Ruthenium Complexes to Antagonize Cancer Multidrug Resistance and Radioresistance. ACS Applied Materials & Interfaces, 2015, 7, 14933-14945.	4.0	77
246	TiO <inf>2</inf> nanoparticle ingestion alters glucose absorption in an in vitro model of the intestinal epithelium. , 2015, , .		0
247	Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environmental Pollution, 2015, 203, 153-164.	3.7	65
248	Impact of TiO2 nanoparticles on freshwater bacteria from three Swedish lakes. Science of the Total Environment, 2015, 535, 85-93.	3.9	37

#	Article	IF	CITATIONS
249	Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environmental Pollution, 2015, 202, 196-204.	3.7	33
250	Effect of TiO2 on UV stability of polymeric binder films used in waterborne facade paints. Progress in Organic Coatings, 2015, 85, 123-130.	1.9	31
251	Impact of alginate concentration on the stability of agglomerates made of TiO2 engineered nanoparticles: Water hardness and pH effects. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	23
252	A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology, 2016, 10, 1-10.	1.6	80
253	Oral absorption of PEG-coated versus uncoated gold nanospheres: does agglomeration matter?. Particle and Fibre Toxicology, 2015, 12, 9.	2.8	40
254	Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity. Advances in Nutrition, 2015, 6, 338S-352S.	2.9	74
255	Detection and Characterization of SiO ₂ and TiO ₂ Nanostructures in Dietary Supplements. Journal of Agricultural and Food Chemistry, 2015, 63, 3144-3152.	2.4	56
256	Food Nanoscience and Nanotechnology. Food Engineering Series, 2015, , .	0.3	14
257	Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO2 nanoparticles interacting with natural organic matter. Water Research, 2015, 80, 139-148.	5.3	87
258	Carbon-TiO2 Nanostructures: Flame Synthesis and Characterization. Materials Research Society Symposia Proceedings, 2015, 1747, 1.	0.1	1
259	Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells. Nanoscale, 2015, 7, 7352-7360.	2.8	64
260	A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection. Molecules, 2015, 20, 5574-5615.	1.7	186
261	Mechanistic Investigation of the Biological Effects of SiO ₂ , TiO ₂ , and ZnO Nanoparticles on Intestinal Cells. Small, 2015, 11, 3458-3468.	5.2	125
262	Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 2015, 77, 132-147.	4.8	342
263	Limited Crystallite Growth upon Isothermal Annealing of Nanocrystalline Anatase. Crystal Growth and Design, 2015, 15, 2282-2290.	1.4	17
264	Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and silver nanoparticles in vitro. Food and Chemical Toxicology, 2015, 82, 106-115.	1.8	51
265	Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 794, 25-31.	0.9	37
266	Fluorescent Nanoparticles from Several Commercial Beverages: Their Properties and Potential Application for Bioimaging. Journal of Agricultural and Food Chemistry, 2015, 63, 8527-8533.	2.4	64

#	Article	IF	CITATIONS
267	Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicology Letters, 2015, 239, 123-130.	0.4	91
268	Oxidative Stress and Nanomaterial-Cellular Interactions. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 347-367.	0.4	8
269	Effects of titanium dioxide nanoparticles coupled with diode laser on optical properties of <i>in vitro</i> normal and cancerous human lung tissues studied with optical coherence tomography and diffuse reflectance spectra. Journal of Biomedical Optics, 2015, 20, 046003.	1.4	6
270	Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents. Environmental Science: Water Research and Technology, 2015, 1, 823-831.	1.2	19
271	Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. Nanoscale, 2015, 7, 18477-18488.	2.8	60
272	Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology, 2015, 73, 463-476.	1.3	291
273	Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , .	0.4	7
274	Adsorption of Cadmium on Titanium Dioxide Nanoparticles in Freshwater Conditions – A Chemodynamic Study. Electroanalysis, 2015, 27, 2439-2447.	1.5	9
275	Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2015, 2, 421-428.	2.2	110
276	Health implications of engineered nanoparticles in infants and children. World Journal of Pediatrics, 2015, 11, 197-206.	0.8	35
277	Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure. Journal of Hazardous Materials, 2015, 300, 718-728.	6.5	52
278	Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. NeuroToxicology, 2015, 51, 27-37.	1.4	37
279	Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food and Chemical Toxicology, 2015, 84, 208-224.	1.8	73
280	Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Microbiota. Environmental Engineering Science, 2015, 32, 602-612.	0.8	72
281	An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Marine Environmental Research, 2015, 110, 45-52.	1.1	37
282	Development and characterization of antibody reagents for detecting nanoparticles. Nanoscale, 2015, 7, 20042-20054.	2.8	3
283	Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice. Food and Chemical Toxicology, 2015, 86, 124-131.	1.8	21
284	Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes – a Monte Carlo approach. Physical Chemistry Chemical Physics, 2015, 17, 4346-4353	1.3	25

#	Article	IF	Citations
285	Iron Nanoparticle-Induced Activation of Plasma Membrane H ⁺ -ATPase Promotes Stomatal Opening in <i>Arabidopsis thaliana</i> . Environmental Science & Technology, 2015, 49, 1113-1119.	4.6	135
286	Identification of titanium dioxide nanoparticles in food products: Induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environmental Toxicology and Pharmacology, 2015, 39, 176-186.	2.0	52
287	Oxidative and pro-inflammatory effects of cobalt and titanium oxide nanoparticles on aortic and venous endothelial cells. Toxicology in Vitro, 2015, 29, 426-437.	1.1	64
288	Reaction of human macrophages on protein corona covered TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 275-282.	1.7	34
289	High-Speed Discrimination and Sorting of Submicron Particles Using a Microfluidic Device. Nano Letters, 2015, 15, 469-475.	4.5	12
290	Characterization of materials released into water from paint containing nano-SiO2. Chemosphere, 2015, 119, 1314-1321.	4.2	74
291	Toxicology of ZnO and TiO ₂ nanoparticles on hepatocytes: Impact on metabolism and bioenergetics. Nanotoxicology, 2015, 9, 126-134.	1.6	50
292	The buccal mucosa as a route for TiO ₂ nanoparticle uptake. Nanotoxicology, 2015, 9, 253-261.	1.6	45
293	Silica Nanoparticles Induced Metabolic Stress through EGR1, CCND, and E2F1 Genes in Human Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 2015, 175, 1181-1192.	1.4	10
294	Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 2015, 11, 10-20.	1.6	172
295	Photocatalytic properties of titanium dioxide nanoparticles affect habitat selection of and food quality for a key species in the leaf litter decomposition process. Environmental Pollution, 2015, 196, 276-283.	3.7	12
296	Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT - Food Science and Technology, 2015, 60, 162-170.	2.5	61
297	Estrogen-mediated impairment of macrophageal uptake of environmental TiO2particles to explain inflammatory effect of TiO2on airways during pregnancy. Journal of Immunotoxicology, 2015, 12, 81-91.	0.9	14
298	Effect of titanium dioxide nanoparticle on proliferation, drug-sensitivity, inflammation, and metabolomic profiling of human oral cells. , 2016, , 49-77.		1
299	Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption. Nanomaterials, 2016, 6, 225.	1.9	33
300	Visualization of Colloid Transport Pathways in Mineral Soils Using Titanium(IV) Oxide as a Tracer. Journal of Environmental Quality, 2016, 45, 2053-2059.	1.0	14
301	Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells. International Journal of Nanomedicine, 2016, 11, 1959.	3.3	8
302	NanotecnologÃa en la industria alimentaria I: aplicaciones. Revista Complutense De Ciencias Veterinarias, 2016, 10, .	0.1	3

#	Article	IF	CITATIONS
303	Inorganic Substances in Biochemical Applications. , 2016, , 395-409.		1
305	Ecofriendly Synthesis of Silver Nanoparticles from Garden Rhubarb (<i>Rheum rhabarbarum</i>). Journal of Nanotechnology, 2016, 2016, 1-9.	1.5	16
306	Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media. Journal of Nanomaterials, 2016, 2016, 1-19.	1.5	11
307	Genotoxicity Studies of Titanium Dioxide Nanoparticles (TiO ₂ NPs) in the Brain of Mice. Scientifica, 2016, 2016, 1-7.	0.6	23
308	Imaging Nanoparticle Skin Penetration in Humans. , 2016, , 353-366.		0
309	Current status and future prospects of nanobiomaterials in drug delivery. , 2016, , 147-170.		10
310	Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota. International Journal of Molecular Sciences, 2016, 17, 509.	1.8	167
311	Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells. International Journal of Molecular Sciences, 2016, 17, 576.	1.8	42
312	Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont. PLoS ONE, 2016, 11, e0155111.	1.1	25
313	Projected Dietary Intake of Zinc, Copper, and Cerium from Consumption of Carrot (Daucus carota) Exposed to Metal Oxide Nanoparticles or Metal Ions. Frontiers in Plant Science, 2016, 7, 188.	1.7	32
314	Novel Materials of Construction in the Food Industry. , 2016, , 395-444.		5
315	Shape engineered TiO ₂ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	1.7	14
316	Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Human Reproduction Update, 2016, 22, 588-619.	5.2	42
317	Antimicrobial Treatment of Different Metal Oxide Nanoparticles: A Critical Review. Journal of the Chinese Chemical Society, 2016, 63, 385-393.	0.8	111
318	Investigation on the mechanism of nonâ€photocatalytically TiO ₂ â€induced reactive oxygen species and its significance on cell cycle and morphology. Journal of Applied Toxicology, 2016, 36, 1355-1363.	1.4	25
319	Theoretical investigation of electron structure and surface morphology of titanium dioxide anatase nano-particles. Computational and Theoretical Chemistry, 2016, 1091, 122-136.	1.1	18
320	Bioâ€effect of nanoparticles in the cardiovascular system. Journal of Biomedical Materials Research - Part A, 2016, 104, 2881-2897.	2.1	49
321	Review of key factors controlling engineered nanoparticle transport in porous media. Journal of Hazardous Materials, 2016, 318, 233-246.	6.5	129

#	Article	IF	CITATIONS
322	Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. Journal of Physiology, 2016, 594, 2161-2173.	1.3	26
323	Pro-oxidant effects of nano-TiO ₂ on Chlamydomonas reinhardtii during short-term exposure. RSC Advances, 2016, 6, 115271-115283.	1.7	8
324	Maternal administration of nanomaterials elicits hemoglobin upregulation in the neonatal brain of non-human primates. Journal of Toxicological Sciences, 2016, 41, 265-271.	0.7	6
325	Preparation and formation mechanism of phase-controlled titanium dioxide microspheres by selective laser heating in liquid medium. RSC Advances, 2016, 6, 110911-110915.	1.7	5
326	Rapid detection of TiO ₂ (E171) in table sugar using Raman spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1-9.	1.1	5
327	Antimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen. Dental Materials Journal, 2016, 35, 511-516.	0.8	18
328	A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health—ENPRA Project—The Highlights, Limitations, and Current and Future Challenges. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2016, 19, 1-28.	2.9	112
329	International Implications of Labeling Foods Containing Engineered Nanomaterials. Journal of Food Protection, 2016, 79, 830-842.	0.8	12
330	Consumer acceptance of food nanotechnology in Italy. British Food Journal, 2016, 118, 714-733.	1.6	50
331	Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids and Surfaces B: Biointerfaces, 2016, 146, 70-83.	2.5	177
332	Environmental aging alters Al(OH) ₃ coating of TiO ₂ nanoparticles enhancing their photocatalytic and phototoxic activities. Environmental Science: Nano, 2016, 3, 593-601.	2.2	17
333	Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiology and Biochemistry, 2016, 107, 147-163.	2.8	197
334	Photolithographically Patterned TiO ₂ Films for Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2016, 8, 14855-14862.	4.0	15
335	Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Advances, 2016, 6, 48109-48119.	1.7	64
336	Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biology Open, 2016, 5, 764-769.	0.6	25
337	Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 2016, 313, 68-77.	6.5	25
338	Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. Science of the Total Environment, 2016, 557-558, 740-753.	3.9	90
339	Chronic addition of a common engineered nanomaterial alters biomass, activity and composition of stream biofilm communities. Environmental Science: Nano, 2016, 3, 619-630.	2.2	20

#	Article	IF	CITATIONS
340	Methods for the Detection and Characterization of Silica Colloids by Microsecond spICP-MS. Analytical Chemistry, 2016, 88, 4733-4741.	3.2	37
342	Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 447-452.	1.1	28
343	Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food and Chemical Toxicology, 2016, 93, 20-31.	1.8	100
344	Indoor and Outdoor Nanoparticles. Handbook of Environmental Chemistry, 2016, , .	0.2	2
345	Using Mung Beans as a Simple, Informative Means To Evaluate the Phytotoxicity of Engineered Nanomaterials and Introduce the Concept of Nanophytotoxicity to Undergraduate Students. Journal of Chemical Education, 2016, 93, 1428-1433.	1,1	6
346	A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology, 2016, 10, 1144-1151.	1.6	47
347	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	4.6	191
348	Human and Environmental Risk Characterization of Nanoparticles. , 2016, , 451-514.		2
349	High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture. Nanoscale, 2016, 8, 16650-16661.	2.8	25
350	Effects of titanium dioxide nanoparticles derived from consumer products on the marine diatom Thalassiosira pseudonana. Environmental Science and Pollution Research, 2016, 23, 21113-21122.	2.7	29
351	Brief exposure to nanosized and bulk titanium dioxide forms induces subtle changes in human D384 astrocytes. Toxicology Letters, 2016, 254, 8-21.	0.4	5
352	End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 2016, 3, 1293-1305.	2.2	31
353	Optical Properties of Nanomaterials. , 2016, , 81-103.		0
354	Re-evaluation of titanium dioxide (EÂ171) as a food additive. EFSA Journal, 2016, 14, e04545.	0.9	103
355	Detection and Quantification of Single Engineered Nanoparticles in Complex Samples Using Template Matching in Wide-Field Surface Plasmon Microscopy. Analytical Chemistry, 2016, 88, 10206-10214.	3.2	31
358	Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology, 2016, 10, 1515-1525.	1.6	119
359	Synthesis of Porous Crystalline Doped Titania Photocatalysts Using Modified Precursor Strategy. Chemistry of Materials, 2016, 28, 7878-7888.	3.2	23
360	Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams. NanoImpact, 2016, 3-4, 96-103.	2.4	77

#	Article	IF	CITATIONS
361	Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 125, 66-96.	1.5	76
362	Investigating the Interaction Between Streptomyces sp. and Titania/Silica Nanospheres. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	16
363	A comparison of techniques for size measurement of nanoparticles in cell culture medium. Analytical Methods, 2016, 8, 5272-5282.	1.3	52
364	Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquatic Toxicology, 2016, 178, 209-221.	1.9	29
366	Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis, 2016, 74, 323-345.	0.8	163
367	<scp>T</scp> i <scp>O</scp> ₂ nanoparticlesâ€induced apoptosis of primary cultured Sertoli cells of mice. Journal of Biomedical Materials Research - Part A, 2016, 104, 124-135.	2.1	45
368	Nano-TiO2 affects Cu speciation, extracellular enzyme activity, and bacterial communities in sediments. Environmental Pollution, 2016, 218, 77-85.	3.7	17
369	Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Research, 2016, 104, 381-388.	5.3	77
370	Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food and Chemical Toxicology, 2016, 96, 309-319.	1.8	31
371	High-throughput exposure modeling to support prioritization of chemicals in personal care products. Chemosphere, 2016, 163, 490-498.	4.2	26
372	Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Cacoâ $\in 2$ Cells. Journal of Food Science, 2016, 81, T2107-13.	1.5	13
373	Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. Sustainable Agriculture Reviews, 2016, , 59-128.	0.6	15
374	Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance. Journal of Colloid and Interface Science, 2016, 483, 249-260.	5.0	25
375	Release and toxicity comparison between industrial- and sunscreen-derived nano-ZnO particles. International Journal of Environmental Science and Technology, 2016, 13, 2485-2494.	1.8	15
376	Oxygen Deficient TiO ₂ Photoanode for Photoelectrochemical Water Oxidation. Solid State Phenomena, 0, 253, 11-40.	0.3	3
377	Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products. Journal of Toxicological Sciences, 2016, 41, 533-542.	0.7	16
378	Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology, 2016, 14, 40.	4.2	64
379	Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 9436-9441.	2.4	47

#	Article	IF	CITATIONS
380	XANES studies of titanium dioxide nanoparticles synthesized by using Peltophorum pterocarpum plant extract. Physica B: Condensed Matter, 2016, 503, 86-92.	1.3	18
381	Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 6679-6691.	1.9	29
382	Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology, 2016, 10, 1404-1414.	1.6	158
383	Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiology and Behavior, 2016, 167, 76-85.	1.0	60
384	Nanocarriers in cosmetology. , 2016, , 363-393.		7
385	Toxicological aspects of soluble titanium – a review of in vitro and in vivo studies. Metallomics, 2016, 8, 1227-1242.	1.0	21
386	Effect of Surface and Salt Properties on the Ion Distribution around Spherical Nanoparticles: Monte Carlo Simulations. Journal of Physical Chemistry B, 2016, 120, 7988-7997.	1.2	17
388	Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology, 2016, 371, 29-40.	2.0	39
389	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	2.4	103
390	Contribution of oxidative stress to TiO 2 nanoparticle-induced toxicity. Environmental Toxicology and Pharmacology, 2016, 48, 130-140.	2.0	54
391	Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement. Risk Analysis, 2016, 36, 1520-1537.	1.5	16
392	Assessment of agglomeration, co-sedimentation and trophic transfer of titanium dioxide nanoparticles in a laboratory-scale predator-prey model system. Scientific Reports, 2016, 6, 31422.	1.6	26
393	Association between titanium and silver concentrations in maternal hair and risk of neural tube defects in offspring: A case-control study in north China. Reproductive Toxicology, 2016, 66, 115-121.	1.3	19
394	Metallic Nanoparticles in the Food Industry. Nutraceuticals, 2016, , 57-86.	0.0	0
395	Principles for the Oversight of Nanotechnologies and Nanomaterials in Nutraceuticals and Functional Foods. Nutraceuticals, 2016, , 39-56.	0.0	0
396	Implications of Engineered Nanomaterials in Drinking Water Sources. Journal - American Water Works Association, 2016, 108, E1.	0.2	20
397	Oxidative stress response of the aquatic macrophyte <i>Hydrilla verticillata</i> exposed to TiO ₂ nanoparticles. Environmental Toxicology and Chemistry, 2016, 35, 2859-2866.	2.2	45
398	Poly(<scp>l</scp> â€lactide)/zno nanocomposites as efficient UVâ€shielding coatings for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	57

ARTICLE IF CITATIONS Cytotoxicity and autophagy dysfunction induced by different sizes of silica particles in human 399 0.9 30 bronchial epithelial BEAS-28 cells. Toxicology Research, 2016, 5, 1216-1228. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. Journal of 4.2 Nanobiotechnology, 2016, 14, 34. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and 401 7.8 294 Technology, 2016, 54, 155-164. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation. Envíronmental Pollution, 2016, 216, 166-172. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on 403 5.3 31 soil pH and nutrient release. Water Research, 2016, 98, 250-260. Removal of airborne sub-3Ânm particles using fibrous filters and granular activated carbons. Carbon, 404 5.4 2016, 104, 125-132. Regulating food nanotechnologies in the European Union: Open issues and political challenges. 405 7.8 22 Trends in Food Science and Technology, 2016, 54, 216-226. Initial results on the coupling of sedimentation field-flow fractionation (SdFFF) to inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) for the detection and characterization of TiO₂ nanoparticles. Journal of Analytical Atomic Spectrometry, 2016, 31, 1549-1555. 406 1.6 19 Potential risks of TiO2 and ZnO nanoparticles released from sunscreens into outdoor swimming 407 52 6.5 pools. Journal of Hazardous Materials, 2016, 317, 312-318. Comparative evaluation of immunohistochemistry and real-time PCR for measuring proinflammatory 408 cytokines gene expression in livers of rats treated with gold nanoparticles. Experimental and 2.1 Toxicologic Pathology, 2016, 68, 381-390. Review of Research Trends and Methods in Nano Environmental, Health, and Safety Risk Analysis. Risk 409 31 1.5 Analysis, 2016, 36, 1644-1665. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Archives of Toxicology, 2016, 90, 2297-2314. Cosmetic Nanomaterials in Wastewater: Titanium Dioxide and Fullerenes. Journal of Hazardous, Toxic, 411 1.2 12 and Radioactive Waste, 2016, 20, . Environmental risk induced by TiO2 dispersions in waters and sediments: a case study. Environmental 1.8 Geochemistry and Health, 2016, 38, 73-84. Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment. 413 30 1.6 Nanotoxicology, 2016, 10, 902-912. Critical assessment of toxicological effects of ingested nanoparticles. Environmental Science: Nano, 414 2.2 63 2016, 3, 256-282. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes 415 1.6 91 cells towards genotoxic agents. Nanotoxicology, 2016, 10, 913-923. Optimization of the procedure for efficient dispersion of titanium dioxide nanoparticles in aqueous 1.3 samples. Analytical Methods, 2016, 8, 1194-1201.

#	Article	IF	CITATIONS
417	Influence of a polymer sunscreen additive on the transport and retention of titanium dioxide nanoparticles in water-saturated porous media. Environmental Science: Nano, 2016, 3, 157-168.	2.2	13
418	<i>In vitro</i> screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays. Nanotoxicology, 2016, 10, 619-628.	1.6	26
419	Environmentally-safe and transparent superhydrophobic coatings. Green Chemistry, 2016, 18, 2185-2192.	4.6	58
420	Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biological Trace Element Research, 2016, 172, 1-36.	1.9	235
421	A novel polymeric membrane sensor for determining titanium (III) in real samples: Experimental, molecular and regression modeling. Sensors and Actuators B: Chemical, 2016, 224, 805-813.	4.0	12
422	Roles of temperature and flow velocity on the mobility of nano-sized titanium dioxide in natural waters. Science of the Total Environment, 2016, 565, 849-856.	3.9	18
423	Long-term monitoring for nanomedicine implants and drugs. Nature Nanotechnology, 2016, 11, 206-210.	15.6	52
424	Pure anatase and rutileÂ+Âanatase nanoparticles differently affect wheat seedlings. Chemosphere, 2016, 151, 68-75.	4.2	30
425	SBA-15:TiO2 nanocomposites. I. Synthesis with ionic liquids and properties. Microporous and Mesoporous Materials, 2016, 228, 37-44.	2.2	13
426	Toxicokinetics and tissue distribution of titanium in ionic form after intravenous and oral administration. Toxicology Letters, 2016, 247, 56-61.	0.4	17
427	Prioritizing research needs for analytical techniques suited for engineered nanomaterials in food. Trends in Food Science and Technology, 2016, 50, 219-229.	7.8	23
428	Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, 2016, , .	0.1	4
429	Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. Journal of Biological Inorganic Chemistry, 2016, 21, 295-303.	1.1	39
430	Biomolecule–nanoparticle interactions: Elucidation of the thermodynamics by isothermal titration calorimetry. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 945-956.	1.1	92
431	Exposure to TiO ₂ Nanoparticles Induces Immunological Dysfunction in Mouse Testitis. Journal of Agricultural and Food Chemistry, 2016, 64, 346-355.	2.4	46
432	Size matters – The phototoxicity of TiO2 nanomaterials. Environmental Pollution, 2016, 208, 859-867.	3.7	30
433	Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents. Journal of Chromatography A, 2016, 1440, 31-36.	1.8	16
434	Aqueous Hg2+ associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish. Aquatic Toxicology, 2016, 174, 242-246.	1.9	23

#	Article	IF	CITATIONS
435	Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste. Chemosphere, 2016, 144, 1567-1572.	4.2	20
436	Determination of TiO2 nanoparticles in sunscreen using N-doped graphene quantum dots as a fluorescent probe. Mikrochimica Acta, 2016, 183, 781-789.	2.5	28
437	Probabilistic modeling of the flows and environmental risks of nano-silica. Science of the Total Environment, 2016, 545-546, 67-76.	3.9	77
438	Inflammatory MAPK and NF-κB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles. Journal of Hazardous Materials, 2016, 304, 370-378.	6.5	19
439	The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression. Environmental Toxicology and Pharmacology, 2016, 41, 103-112.	2.0	34
440	New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicology and Applied Pharmacology, 2016, 299, 90-95.	1.3	120
441	Photodegradation of organic dyes based on anatase and rutile TiO ₂ nanoparticles. RSC Advances, 2016, 6, 2746-2759.	1.7	117
442	Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Science of the Total Environment, 2016, 563-564, 933-943.	3.9	110
443	Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicology in Vitro, 2016, 31, 137-145.	1.1	90
444	Comparative modeling of exposure to airborne nanoparticles released by consumer spray products. Nanotoxicology, 2016, 10, 343-351.	1.6	15
445	Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine, 2016, , .	0.1	0
446	Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophila melanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere, 2016, 144, 43-49.	4.2	47
447	A weight-of-evidence approach to identify nanomaterials in consumer products: a case study of nanoparticles in commercial sunscreens. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 26-34.	1.8	13
448	Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere, 2016, 144, 148-153.	4.2	137
449	Potential Hazards of Skin Exposure to Nanoparticles. Current Topics in Environmental Health and Preventive Medicine, 2016, , 123-135.	0.1	3
450	Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomaterials Science, 2016, 4, 40-54.	2.6	117
451	A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 2016, 42, 2-14.	1.9	484
452	Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 2016, 42, 15-23.	1.9	152

#	Article	IF	CITATIONS
453	One-Time Addition of Nano-TiO2 Triggers Short-Term Responses in Benthic Bacterial Communities in Artificial Streams. Microbial Ecology, 2016, 71, 266-275.	1.4	14
454	Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Critical Reviews in Food Science and Nutrition, 2016, 56, 650-685.	5.4	61
455	Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut, 2017, 66, 1216-1224.	6.1	223
456	Effects of titanium dioxide nanoparticles on human keratinocytes. Drug and Chemical Toxicology, 2017, 40, 90-100.	1.2	33
457	Soil ingestion rates for children under 3 years old in Taiwan. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 33-40.	1.8	16
458	Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption. Plant Physiology and Biochemistry, 2017, 110, 128-137.	2.8	88
459	Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in <i>Arabidopsis</i> . Environmental Toxicology and Chemistry, 2017, 36, 71-82.	2.2	58
460	Natural Colorants: Food Colorants from Natural Sources. Annual Review of Food Science and Technology, 2017, 8, 261-280.	5.1	361
461	Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 2017, 7, 40373.	1.6	309
462	Size and metal composition characterization of nano- and microparticles in tattoo inks by a combination of analytical techniques. Journal of Analytical Atomic Spectrometry, 2017, 32, 616-628.	1.6	45
463	Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1-13.	1.1	36
464	Detection and dissolution of needle-like hydroxyapatite nanomaterials in infant formula. NanoImpact, 2017, 5, 22-28.	2.4	32
465	Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicology Research, 2017, 6, 115-133.	0.9	61
466	Prospecting nanomaterials in aqueous environments by cloud-point extraction coupled with transmission electron microscopy. Science of the Total Environment, 2017, 584-585, 515-522.	3.9	15
467	Exposure to metal oxide nanoparticles in physiological fluid induced synergistic biological effects in a keratinocyte model. Toxicology Letters, 2017, 268, 1-7.	0.4	14
468	Poly(acrylic acid)-coated titanium dioxide nanoparticle and ultraviolet light co-exposure has minimal effect on developing zebrafish (Danio rerio). Environmental Science: Nano, 2017, 4, 658-669.	2.2	14
469	Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environmental Science and Pollution Research, 2017, 24, 5595-5606.	2.7	44
470	The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 2017, 28, 072001.	1.3	49

#	Article	IF	CITATIONS
471	Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. Environmental Science & Technology, 2017, 51, 2499-2507.	4.6	146
472	Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annual Review of Food Science and Technology, 2017, 8, 467-492.	5.1	69
473	Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin, 2017, 62, 431-441.	4.3	134
474	Ensuring Food Safety: General Principles for Safeguarding What You Eat Including the Role of Food Labels. , 2017, , 175-193.		1
475	Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects. Science of the Total Environment, 2017, 590-591, 809-817.	3.9	36
476	Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO ₂ Photocatalysis. Langmuir, 2017, 33, 2770-2779.	1.6	86
477	Titanium Dioxide Nanoparticles Alleviate Tetracycline Toxicity to <i>Arabidopsis thaliana</i> (L.). ACS Sustainable Chemistry and Engineering, 2017, 5, 3204-3213.	3.2	54
478	Short-term oral exposure to low doses of nano-sized TiO 2 and potential modulatory effects on intestinal cells. Food and Chemical Toxicology, 2017, 102, 63-75.	1.8	60
479	Assessment of the shortâ€ŧerm toxicity of TiO ₂ nanofiber in Sprague Dawley rats. Environmental Toxicology, 2017, 32, 1775-1783.	2.1	7
481	Genotoxicity of Nanomaterials in Food. Sustainable Agriculture Reviews, 2017, , 141-180.	0.6	2
482	The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species. Biologia Plantarum, 2017, 61, 717-725.	1.9	25
484	Spectroscopic interactions of titanium dioxide nanoparticles with pharmacologically active 3(2H) Tj ETQq1 1 0.7	784314 rgl 2.3	3T/Overlock 14
485	Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environmental Engineering Science, 2017, 34, 537-550.	0.8	41
486	Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact, 2017, 5, 70-82.	2.4	136
487	Plant Response to Engineered Metal Oxide Nanoparticles. Nanoscale Research Letters, 2017, 12, 92.	3.1	195
488	Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms—Current knowledge and suggestions for future research. Aquatic Toxicology, 2017, 185, 138-148.	1.9	64
489	Toxic effects of <scp>T</scp> i <scp>O</scp> ₂ nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated <scp>C</scp> a ²⁺ / <scp>PKC</scp> /p38 <scp>MAPK</scp> / <scp>NF</scp> â€₽ <scp>B</scp> cascade. Journal of Biomedical Materials Research - Part A, 2017, 105, 1374-1382.	2.1	28
490	Interaction between bacterial cell membranes and nano-TiO2 revealed by two-dimensional FTIR correlation spectroscopy using bacterial ghost as a model cell envelope. Water Research, 2017, 118, 104-113.	5.3	48

#	Article	IF	CITATIONS
491	Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	11
492	Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces. Scientific Reports, 2017, 7, 46637.	1.6	52
493	Cytotoxicity of TiO2nanoparticles toward Escherichia coli in an aquatic environment: effects of nanoparticle structural oxygen deficiency and aqueous salinity. Environmental Science: Nano, 2017, 4, 1178-1188.	2.2	24
494	Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 2017, 246, 165-180.	7.0	100
495	Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RSC Advances, 2017, 7, 23560-23572.	1.7	38
496	Interaction of TiO2 nanoparticles with proteins from aquatic organisms: the case of gill mucus from blue mussel. Environmental Science and Pollution Research, 2017, 24, 13474-13483.	2.7	10
497	Trophic transfer of TiO ₂ nanoparticles from marine microalga (Nitzschia closterium) to scallop (Chlamys farreri) and related toxicity. Environmental Science: Nano, 2017, 4, 415-424.	2.2	24
498	Genomeâ€Wide DNA Methylation Variations upon Exposure to Engineered Nanomaterials and Their Implications in Nanosafety Assessment. Advanced Materials, 2017, 29, 1604580.	11.1	41
499	Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat. Journal of Food Science, 2017, 82, 1985-1993.	1.5	21
500	Black Titanium Dioxide for Photocatalysis. Semiconductors and Semimetals, 2017, , 393-428.	0.4	9
501	Dietary TiO ₂ particles modulate expression of hormoneâ€related genes in <i>Bombyx mori</i> . Archives of Insect Biochemistry and Physiology, 2017, 95, e21397.	0.6	4
502	Biokinetics of engineered nano-TiO ₂ in rats administered by different exposure routes: implications for human health. Nanotoxicology, 2017, 11, 431-433.	1.6	22
503	A green, facile, and rapid method for microextraction and Raman detection of titanium dioxide nanoparticles from milk powder. RSC Advances, 2017, 7, 21380-21388.	1.7	22
504	Impact of food grade and nano-TiO2 particles on a human intestinal community. Food and Chemical Toxicology, 2017, 106, 242-249.	1.8	133
505	Optimisation of an extraction/leaching procedure for the characterisation and quantification of titanium dioxide (TiO ₂) nanoparticles in aquatic environments using SdFFF-ICP-MS and SEM-EDX analyses. Analytical Methods, 2017, 9, 3626-3635.	1.3	13
506	Influence of Surface Functional Groups on Deposition and Release of TiO ₂ Nanoparticles. Environmental Science & Technology, 2017, 51, 7467-7475.	4.6	19
507	Photocatalysis effect of a novel green synthesis gadolinium doped titanium dioxide nanoparticles on their biological activities. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 159-167.	2.0	21
508	Cytotoxicity and immunomodulatory effects of sol-gel combustion based titanium dioxide (TiO 2) particles of large surface area on RAW 264.7 macrophages. Toxicology in Vitro, 2017, 43, 92-103.	1.1	7

#	Article	IF	CITATIONS
510	Rosmarinus officinalis L. ameliorates titanium dioxide nanoparticles and induced some toxic effects in rats' blood. Environmental Science and Pollution Research, 2017, 24, 12474-12483.	2.7	14
511	Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner. Biomaterials Science, 2017, 5, 1014-1021.	2.6	24
512	Visualization of transport and fate of nano and micro-scale particles in porous media: modeling coupled effects of ionic strength and size. Environmental Science: Nano, 2017, 4, 1025-1036.	2.2	10
513	Antimicrobial activity of flame-synthesized nano-TiO ₂ coatings. Environmental Science: Nano, 2017, 4, 1095-1107.	2.2	35
514	Fate and Transformation of CuO Nanoparticles in the Soil–Rice System during the Life Cycle of Rice Plants. Environmental Science & Technology, 2017, 51, 4907-4917.	4.6	147
515	Enhanced Photocatalytic Degradation of Environmental Pollutants under Visible Irradiation by a Composite Coating. Environmental Science & amp; Technology, 2017, 51, 5137-5145.	4.6	63
516	The role of titanium dioxide in the gut. Nutrition and Food Science, 2017, 47, 432-442.	0.4	1
518	Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. Food and Bioprocess Technology, 2017, 10, 982-1001.	2.6	75
519	Synthesis and characterization of some abundant nanoparticles, their antimicrobial and enzyme inhibition activity. Acta Microbiologica Et Immunologica Hungarica, 2017, 64, 203-216.	0.4	13
520	Gastric toxicity involving alterations of gastritis-related protein expression in mice following long-term exposure to nano TiO 2. Food Research International, 2017, 95, 38-45.	2.9	26
521	Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchemical Journal, 2017, 132, 391-400.	2.3	39
522	Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology, 2017, 11, 434-442.	1.6	68
523	Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology, 2017, 11, 443-453.	1.6	115
524	Pine-branch-like TiO ₂ nanofibrous membrane for high efficiency strong corrosive emulsion separation. Journal of Materials Chemistry A, 2017, 5, 16134-16138.	5.2	75
525	Effect of natural organic matter on the photoâ€induced toxicity of titanium dioxide nanoparticles. Environmental Toxicology and Chemistry, 2017, 36, 1661-1666.	2.2	27
526	Molecular genetic and biochemical responses in human airway epithelial cell cultures exposed to titanium nanoparticles <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 2056-2064.	2.1	5
527	Influence of wastewater type on the impact generated by TiO2 nanoparticles on the oxygen uptake rate in activated sludge process. Journal of Environmental Management, 2017, 190, 35-44.	3.8	26
528	Contribution of M-cells and other experimental variables in the translocation of TiO2 nanoparticles across in vitro intestinal models. NanoImpact, 2017, 5, 51-60.	2.4	22

#	Article	IF	CITATIONS
529	Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues. Environmental Science: Nano, 2017, 4, 480-492.	2.2	35
530	Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology, 2017, 69, 245-263.	0.7	39
531	Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines. Ecotoxicology and Environmental Safety, 2017, 138, 309-319.	2.9	30
532	Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis. Analytical and Bioanalytical Chemistry, 2017, 409, 1857-1868.	1.9	6
533	Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. Environmental Toxicology and Pharmacology, 2017, 49, 112-118.	2.0	40
534	Effects of P25 TiO ₂ Nanoparticles on the Free Radical-Scavenging Ability of Antioxidants upon Their Exposure to Simulated Sunlight. Journal of Agricultural and Food Chemistry, 2017, 65, 9893-9901.	2.4	9
535	Construction of molecular rectangles with titanium–oxo clusters and rigid aromatic carboxylate ligands. Dalton Transactions, 2017, 46, 16000-16003.	1.6	14
536	Evaluating the toxicity of silicon dioxide nanoparticles on neural stem cells using RNA-Seq. RSC Advances, 2017, 7, 47552-47564.	1.7	14
537	Central neurotoxicity induced by the instillation of ZnO and TiO ₂ nanoparticles through the taste nerve pathway. Nanomedicine, 2017, 12, 2453-2470.	1.7	31
538	Nanoparticles-Induced Oxidative Stress. Nanomedicine and Nanotoxicology, 2017, , 63-79.	0.1	2
539	Release of TiO 2 – (Nano) particles from construction and demolition landfills. NanoImpact, 2017, 8, 73-79.	2.4	39
540	The efficacy and environmental implications of engineered TiO ₂ nanoparticles in a commercial floor coating. Environmental Science: Nano, 2017, 4, 2030-2042.	2.2	6
541	Metals and Metal Oxides: Important Nanomaterials With Antimicrobial Activity. , 2017, , 195-222.		7
542	Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. Journal of Materials Science: Materials in Electronics, 2017, 28, 19017-19024.	1.1	12
543	Bovine Serum Albumin Adsorption on TiO ₂ Nanoparticle Surfaces: Effects of pH and Coadsorption of Phosphate on Protein–Surface Interactions and Protein Structure. Journal of Physical Chemistry C, 2017, 121, 21763-21771.	1.5	63
544	Multiphase TiO ₂ nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Advances, 2017, 7, 44199-44224.	1.7	142
545	Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 2017, 46, 6855-6871.	18.7	502
546	Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicology Research, 2017, 6, 889-901.	0.9	25

# 547	ARTICLE Synergistic action of TiO2 particles and surfactants on the foamability and stabilization of aqueous foams. RSC Advances, 2017, 7, 44972-44978.	IF 1.7	CITATIONS
549	The effect of nanohydroxyapatite on the behavior of metals in a microcosm simulating a lentic environment. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 219-227.	1.7	4
550	Biological fate of food nanoemulsions and the nutrients they carry – internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells. RSC Advances, 2017, 7, 40053-40066.	1.7	30
551	TiO2 particles in seafood and surimi products: Attention should be paid to their exposure and uptake through foods. Chemosphere, 2017, 188, 541-547.	4.2	26
552	Environmental impact and potential health risks of 2D nanomaterials. Environmental Science: Nano, 2017, 4, 1617-1633.	2.2	68
553	Assessment of the potential hazard of nano-scale TiO2 in photocatalytic cement: application of a tiered assessment framework. NanoImpact, 2017, 8, 11-19.	2.4	21
554	Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome. Food and Chemical Toxicology, 2017, 109, 771-779.	1.8	16
555	Lithium Insertion into Mixed Phase Titania Nanotubes. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1407-1421.	1.4	2
556	Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact, 2017, 8, 59-72.	2.4	55
557	Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomedicine and Pharmacotherapy, 2017, 93, 779-787.	2.5	29
558	Scale-dependent rotational diffusion of nanoparticles in polymer solutions. Nanoscale, 2017, 9, 12039-12050.	2.8	17
559	Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. LWT - Food Science and Technology, 2017, 86, 116-122.	2.5	35
560	Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2017, 147, 024704.	1.2	55
561	Interactions and effects of metal oxide nanoparticles on microorganisms involved in biological wastewater treatment. Microscopy Research and Technique, 2017, 80, 1103-1112.	1.2	13
562	Rheology of concentrated bimodal suspensions of nanosilica in PEG. Journal of Rheology, 2017, 61, 955-966.	1.3	11
563	Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environmental Pollution, 2017, 231, 311-318.	3.7	22
564	Nonactivated titanium-dioxide nanoparticles promote the growth ofChlamydia trachomatisand decrease the antimicrobial activity of silver nanoparticles. Journal of Applied Microbiology, 2017, 123, 1335-1345.	1.4	6
565	Antimicrobial Activity of TiO2 Coatings Prepared by Direct Thermophoretic Deposition of Flame-Synthesized Nanoparticles. MRS Advances, 2017, 2, 1493-1498.	0.5	4

# 566	ARTICLE The effects of orally administered Ag, TiO 2 and SiO 2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 2017, 8, 80-88.	IF 2.4	Citations
567	The effect of nano-TiO 2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 251-260.	1.7	5
568	Multiple Method Analysis of TiO ₂ Nanoparticle Uptake in Rice (<i>Oryza sativa</i> L.) Plants. Environmental Science & Technology, 2017, 51, 10615-10623.	4.6	84
569	Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Nanotoxicology, 2017, 11, 1237-1256.	1.6	24
570	Antimicrobial Activities of Metal Nanoparticles. , 2017, , 337-363.		31
571	Biological Synthesis, Pharmacokinetics, and Toxicity of Different Metal Nanoparticles. , 2017, , 451-468.		5
572	Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Npj Science of Food, 2017, 1, 6.	2.5	325
573	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	1.6	29
574	Structural characterization and dielectric properties of ceria–titania nanocomposites in low ceria region. Materials Research Express, 2017, 4, 125016.	0.8	7
575	Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 035012.	0.7	2
577	Aggregation behavior of TiO2 nanoparticles in municipal effluent: Influence of ionic strengthen and organic compounds. Water Research, 2017, 123, 678-686.	5.3	53
578	Continuous <i>in vitro</i> exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress. Nanotoxicology, 2017, 11, 1-11.	1.6	93
579	Are the TiO2 NPs a "Trojan horse―for personal care products (PCPs) in the clam Ruditapes philippinarum?. Chemosphere, 2017, 185, 192-204.	4.2	33
580	Effects of titanium dioxide nanoparticles on horseradish peroxidase-mediated peroxidation reactions. Journal of Molecular Liquids, 2017, 241, 852-860.	2.3	3
581	Phytotoxicity of Silver Nanoparticles to Peanut (<i>Arachis hypogaea</i> L.): Physiological Responses and Food Safety. ACS Sustainable Chemistry and Engineering, 2017, 5, 6557-6567.	3.2	97
582	In vivo assessment of impact of titanium oxide nanoparticle on zebrafish embryo. AIP Conference Proceedings, 2017, , .	0.3	7
583	MyD88-dependent pro-interleukin-1Î ² induction in dendritic cells exposed to food-grade synthetic amorphous silica. Particle and Fibre Toxicology, 2017, 14, 21.	2.8	36
584	Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology, 2017, 11, 1-14.	1.6	29

#	Article	IF	CITATIONS
585	Nano- and microparticles at fluid and biological interfaces. Journal of Physics Condensed Matter, 2017, 29, 373003.	0.7	64
586	SBA-15:TiO2 nanocomposites: II. Direct and post-synthesis using acetylacetone. Microporous and Mesoporous Materials, 2017, 239, 235-243.	2.2	20
587	Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions. Mutagenesis, 2017, 32, 139-149.	1.0	146
588	Nanoâ€īiO ₂ penetration of oral mucosa: <i>in vitro</i> analysis using 3D organotypic human buccal mucosa models. Journal of Oral Pathology and Medicine, 2017, 46, 214-222.	1.4	14
589	Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO ₂ production workers. Nanotoxicology, 2017, 11, 52-63.	1.6	51
590	Electron microscopic investigation and elemental analysis of titanium dioxide in sun lotion. International Journal of Cosmetic Science, 2017, 39, 292-300.	1.2	6
591	Lung inflammation caused by longâ€ŧerm exposure to titanium dioxide in mice involving in NFâ€₽̂B signaling pathway. Journal of Biomedical Materials Research - Part A, 2017, 105, 720-727.	2.1	7
592	Is there evidence for man-made nanoparticles in the Dutch environment?. Science of the Total Environment, 2017, 576, 273-283.	3.9	67
593	Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO ₂ nanoparticles. Environmental Science: Nano, 2017, 4, 203-211.	2.2	45
594	Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiology and Biochemistry, 2017, 110, 33-49.	2.8	79
595	Exacerbation of innate immune response in mouse primary cultured sertoli cells caused by nanoparticulate TiO ₂ involves the <scp>TAM/TLR</scp> 3 signal pathway. Journal of Biomedical Materials Research - Part A, 2017, 105, 198-208.	2.1	7
596	Particle tracking analysis in food and hydrocolloids investigations. Food Hydrocolloids, 2017, 68, 90-101.	5.6	32
597	Analytical approaches for the characterization and quantification of nanoparticles in food and beverages. Analytical and Bioanalytical Chemistry, 2017, 409, 63-80.	1.9	57
598	Design and mechanism of core–shell TiO ₂ nanoparticles as a high-performance photothermal agent. Nanoscale, 2017, 9, 16183-16192.	2.8	61
600	Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice. International Journal of Nanomedicine, 2017, Volume 12, 6197-6204.	3.3	68
601	Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics, 2017, 5, 29.	1.6	217
602	Nanoparticles and their potential application as antimicrobials in the food industry. , 2017, , 567-601.		10
603	Titanium Dioxide as Food Additive. , 0, , .		22

#	Article	IF	CITATIONS
604	Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by ECFR. Nanomaterials, 2017, 7, 79.	1.9	18
605	Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere, 2017, 8, 84.	1.0	46
606	Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Frontiers in Cardiovascular Medicine, 2017, 4, 33.	1.1	15
607	A Study of Photocatalysis of Methylene Blue of TiO ₂ Fabricated by Electric Spark Discharge Method. Journal of Nanomaterials, 2017, 2017, 1-8.	1.5	4
608	The Potential Liver, Brain, and Embryo Toxicity of Titanium Dioxide Nanoparticles on Mice. Nanoscale Research Letters, 2017, 12, 478.	3.1	125
609	Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles. Journal of Nanobiotechnology, 2017, 15, 50.	4.2	15
610	Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 2017, 15, 65.	4.2	1,487
611	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	2.8	112
612	Antibacterial Activity Comparison of Three Metal Oxide Nanoparticles and their Dissolved Metal Ions. Water Environment Research, 2017, 89, 378-383.	1.3	12
613	TiO ₂ (Nano)Particles Extracted from Sugar-Coated Confectionery. Journal of Nanomaterials, 2017, 2017, 1-14.	1.5	10
614	Scientometric overview regarding water nanopurification. , 2017, , 693-716.		3
615	Morphometric and stereological assessment of the effects of titanium dioxide nanoparticles on the mouse testicular tissue. Bratislava Medical Journal, 2017, 117, 659-664.	0.4	11
616	Assessment of Crystal Morphology on Uptake, Particle Dissolution, and Toxicity of Nanoscale Titanium Dioxide on Artemia Salina. Journal of Nanotoxicology and Nanomedicine, 2017, 2, 11-27.	0.7	14
617	Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms. Science of the Total Environment, 2018, 626, 357-365.	3.9	25
618	Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta, 2018, 182, 156-163.	2.9	35
619	Titanium dioxide (TiO 2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends in Food Science and Technology, 2018, 75, 23-35.	7.8	105
620	RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology, 2018, 12, 341-356.	1.6	39
621	Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food and Chemical Toxicology, 2018, 115, 42-48.	1.8	28

ARTICLE IF CITATIONS # A review of the fate of engineered nanomaterials in municipal solid waste streams. Waste 622 3.7 70 Management, 2018, 75, 427-449. Engineered nanomaterial applications in perinatal therapeutics. Pharmacological Research, 2018, 130, 624 3.1 36-43. Gold core-labeled TiO₂ nanoparticles for tracking behavior in complex matrices: 625 2.2 6 synthesis, characterization, and demonstration. Environmental Science: Nano, 2018, 5, 956-968. Progress in TiO₂ nanotube coatings for biomedical applications: a review. Journal of 121 Materials Chemistry B, 2018, 6, 1862-1886. Endothelial barrier dysfunction induced by nanoparticle exposure through actin remodeling via 627 2.4 22 caveolae/raft-regulated calcium signalling. Nanolmpact, 2018, 11, 82-91. Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem. Science of the Total Environment, 2018, 630, 609-617. Manufacturing Nanoparticles with Orthogonally Adjustable Dispersibility in Hydrocarbons, 629 0.9 18 Fluorocarbons, and Water. ChemistryOpen, 2018, 7, 282-287. Solar light induced antibacterial performance of TiO₂ crystallized glass ceramics. 1.0 International Journal of Applied Class Science, 2018, 9, 480-486. PEGylated TiO₂nanoparticles mediated inhibition of cell migration via integrin beta 1. 631 2.8 12 Science and Technology of Advanced Materials, 2018, 19, 271-281. Validation of a Sulfuric Acid Digestion Method for Inductively Coupled Plasma Mass Spectrometry Quantification of TiO2 Nanoparticles. Bulletin of Environmental Contamination and Toxicology, 2018, 1.3 100, 809-814. Steady state and time resolved laser-induced fluorescence of garlic plants treated with titanium 633 0.5 8 dioxide nanoparticles. Spectroscopy Letters, 2018, 51, 45-54. Investigation of the in vitro genotoxicity of two rutile TiO2 nanomaterials in human intestinal and 2.4 hepatic cells and evaluation of their interference with toxicity assays. NanoImpact, 2018, 11, 69-81. Bioaccumulation and physiological effects of copepods sp. (Eucyclop sp.) fed Chlorella ellipsoides 636 1.9 11 exposed to titanium dioxide (TiO 2) nanoparticles and lead (Pb 2+). Aquatic Toxicology, 2018, 198, 30-39. Analysis of nanoparticle biomolecule complexes. Nanoscale, 2018, 10, 4246-4257. 2.8 44 Induction of oxidative stress and sensitization of cancer cells to paclitaxel by gold nanoparticles 638 with different charge densities and hydrophobicities. Journal of Materials Chemistry B, 2018, 6, 2.9 45 1633-1639. A cross-species and model comparison of the acute toxicity of nanoparticles used in the pigment and 2.4 ink industries. NanoImpact, 2018, 11, 20-32. Mechanistic Insight into Size-Dependent Enhanced Cytotoxicity of Industrial Antibacterial Titanium 640 Oxide Nanoparticles on Colon Cells Because of Reactive Oxygen Species Quenching and Neutral Lipid 1.6 46 Alteration. ACS Omega, 2018, 3, 1244-1262. A Triple Functional Approach To Simultaneously Determine the Type, Concentration, and Size of 641 Titanium Dioxide Particles. Environmental Science & amp; Technology, 2018, 52, 2863-2869.

#	Article	IF	CITATIONS
642	Contaminant-Activated Visible Light Photocatalysis. Scientific Reports, 2018, 8, 1894.	1.6	30
643	A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO. Science of the Total Environment, 2018, 625, 1321-1329.	3.9	61
644	Synergistic Bacterial Stress Results from Exposure to Nano-Ag and Nano-TiO ₂ Mixtures under Light in Environmental Media. Environmental Science & Technology, 2018, 52, 3185-3194.	4.6	40
645	Microwave Chemical and Materials Processing. , 2018, , .		57
646	Mechanistic insight into ROS and neutral lipid alteration induced toxicity in the human model with fins (Danio rerio) by industrially synthesized titanium dioxide nanoparticles. Toxicology Research, 2018, 7, 244-257.	0.9	47
647	Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration. Journal of Applied Toxicology, 2018, 38, 810-823.	1.4	33
648	Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: Biochemical and histological evidences. Environmental Toxicology and Pharmacology, 2018, 58, 29-36.	2.0	39
649	Time course gene expression data in colon of mice after exposure to food-grade E171. Data in Brief, 2018, 16, 531-600.	0.5	3
650	Acute exposure to TiO2 nanoparticles produces minimal apparent effects on oyster, Crassostrea virginica (Gmelin), hemocytes. Marine Pollution Bulletin, 2018, 127, 512-523.	2.3	10
651	Nanomaterials: certain aspects of application, risk assessment and risk communication. Archives of Toxicology, 2018, 92, 121-141.	1.9	109
652	Consumer use effects on nanoparticle release from commercially available ceramic cookware. Food Control, 2018, 87, 31-39.	2.8	15
653	Synchrotron analysis of human organ tissue exposed to implant material. Journal of Trace Elements in Medicine and Biology, 2018, 46, 128-137.	1.5	27
654	Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 2018, 112, 273-281.	1.8	17
655	Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs – a critical review. Environmental Science: Nano, 2018, 5, 257-278.	2.2	134
656	A novel paper based colorimetric assay for the detection of TiO ₂ nanoparticles. Analytical Methods, 2018, 10, 275-280.	1.3	6
657	Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO ₂ nanoparticles. Environmental Science: Nano, 2018, 5, 720-729.	2.2	39
658	The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. Ecotoxicology and Environmental Safety, 2018, 148, 160-168.	2.9	16
659	Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2 production, and genotoxicity. Agriculture, Ecosystems and Environment, 2018, 255, 95-101.	2.5	84

#	Article	IF	CITATIONS
660	A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition. Chemical Research in Chinese Universities, 2018, 34, 44-50.	1.3	3
661	Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymerâ€Based Nanoparticles. Advanced Materials, 2018, 30, 1703704.	11.1	67
662	Quantitative characterization of TiO2 nanoparticle release from textiles by conventional and single particle ICP-MS. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	26
663	TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biology, 2018, 15, 266-276.	3.9	94
664	Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 21-42.	2.9	59
665	Detection of titanium particles in human liver and spleen and possible health implications. Particle and Fibre Toxicology, 2018, 15, 15.	2.8	115
666	Novel anti fouling mixed matrix CeO2/Ce7O12 nanofiltration membranes for heavy metal uptake. Journal of Environmental Chemical Engineering, 2018, 6, 3273-3282.	3.3	35
667	Human macrophage responses to metal-oxide nanoparticles: a review. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 694-703.	1.9	37
668	Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants. Water Research, 2018, 141, 19-31.	5.3	46
669	Titanium dioxide nanoparticles translocate through differentiated Cacoâ€2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. Journal of Applied Toxicology, 2018, 38, 1195-1205.	1.4	14
670	UVÎ [°] pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environmental Science and Pollution Research, 2018, 25, 16729-16742.	2.7	35
671	Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations. Science of the Total Environment, 2018, 636, 240-248.	3.9	38
672	Chemical Cross-Linking of Anatase Nanoparticle Thin Films for Enhanced Mechanical Properties. Langmuir, 2018, 34, 6109-6116.	1.6	8
673	Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomedicine and Pharmacotherapy, 2018, 103, 553-561.	2.5	29
674	Assessing the release of copper from nanocopperâ€treated and conventional copperâ€treated lumber into marine waters I: Concentrations and rates. Environmental Toxicology and Chemistry, 2018, 37, 1956-1968.	2.2	16
675	Low-energy ion irradiation in HiPIMS to enable anatase TiO ₂ selective growth. Journal Physics D: Applied Physics, 2018, 51, 235301.	1.3	24
676	Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and <i>Drosophila melanogaster</i> . Nanotoxicology, 2018, 12, 390-406.	1.6	46
677	Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Current Pollution Reports, 2018, 4, 128-142.	3.1	20

#	Article	IF	CITATIONS
678	Novel mesoporous TiO2@g-C3N4 hollow core@shell heterojunction with enhanced photocatalytic activity for water treatment and H2 production under simulated sunlight. Journal of Hazardous Materials, 2018, 353, 80-88.	6.5	102
679	White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions. Soft Matter, 2018, 14, 2870-2878.	1.2	17
680	Oral administration of rutile and anatase TiO ₂ nanoparticles shifts mouse gut microbiota structure. Nanoscale, 2018, 10, 7736-7745.	2.8	105
681	Preliminary evidence of nanoparticle occurrence in water from different regions of Delhi (India). Environmental Monitoring and Assessment, 2018, 190, 240.	1.3	2
682	Insights on ligand interactions with titanium dioxide nanoparticles via dynamic light scattering and electrophoretic light scattering. Microchemical Journal, 2018, 139, 333-338.	2.3	0
683	Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM. Science of the Total Environment, 2018, 631-632, 485-495.	3.9	44
684	Comparative differences in the behavior of TiO2 and SiO2 food additives in food ingredient solutions. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	27
685	Anomalousâ€Diffusionâ€Assisted Brightness in White Cellulose Nanofibril Membranes. Advanced Materials, 2018, 30, e1704050.	11.1	83
686	Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Critical Reviews in Food Science and Nutrition, 2018, 58, 1023-1032.	5.4	66
687	Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments, 2018, 18, 2179-2187.	1.5	142
688	A rapid tool for determination of titanium dioxide content in white chickpea samples. Food Chemistry, 2018, 240, 84-89.	4.2	17
689	Evaluation of the content of TiO ₂ nanoparticles in the coatings of chewing gums. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 211-221.	1.1	32
690	Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. International Materials Reviews, 2018, 63, 257-282.	9.4	36
691	Synthesis and characterization of Sm3+-doped ZnO nanoparticles via a sol–gel method and their photocatalytic application. Journal of Sol-Gel Science and Technology, 2018, 85, 178-190.	1.1	32
692	Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: a new model based on zeta potential and spectroscopy measurements. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2908-2916.	2.0	15
693	Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 2018, 66, 6487-6503.	2.4	416
694	Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. Innovative Food Science and Emerging Technologies, 2018, 46, 107-121.	2.7	52
695	Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 2018, 177, 104-121.	2.9	56

# 696	ARTICLE Detection of nanoparticles in Dutch surface waters. Science of the Total Environment, 2018, 621, 210-218.	IF 3.9	CITATIONS
697	Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science and Technology, 2018, 72, 62-73.	7.8	108
698	Microwave-Assisted Chemistry. , 2018, , 243-319.		1
699	A guide to nanosafety testing: Considerations on cytotoxicity testing in different cell models. NanoImpact, 2018, 10, 1-10.	2.4	25
700	Where is the nano? Analytical approaches for the detection and quantification of TiO ₂ engineered nanoparticles in surface waters. Environmental Science: Nano, 2018, 5, 313-326.	2.2	101
701	Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS. Talanta, 2018, 180, 309-315.	2.9	53
702	A priming dose protects against gold nanoparticles-induced proinflammatory cytokines mRNA expression in mice. Nanomedicine, 2018, 13, 313-323.	1.7	14
703	Nano- and neurotoxicology: An emerging discipline. Progress in Neurobiology, 2018, 160, 45-63.	2.8	74
704	Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171). Food and Chemical Toxicology, 2018, 111, 153-165.	1.8	42
705	Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 120-126.	1.3	44
706	Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines. Archives of Toxicology, 2018, 92, 633-649.	1.9	41
707	Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review. BioNanoScience, 2018, 8, 36-42.	1.5	119
708	The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction. Sustainability, 2018, 10, 4031.	1.6	4
709	Titanium dioxide in dental enamel as a trace element and its variation with bleaching. Journal of Clinical and Experimental Dentistry, 2018, 10, 0-0.	0.5	1
710	Nanoparticles based sunscreens provoke adverse effects on marine microalgae <i>Dunaliella tertiolecta</i> . Environmental Science: Nano, 2018, 5, 3011-3022.	2.2	17
711	Searching for relevant criteria to distinguish natural <i>vs.</i> anthropogenic TiO ₂ nanoparticles in soils. Environmental Science: Nano, 2018, 5, 2853-2863.	2.2	30
712	An easy preparation of photo-response TiO ₂ @copper wire mesh with quick on/off switchable superwetting for high efficiency oil–water separation. New Journal of Chemistry, 2018, 42, 17563-17573.	1.4	25
713	Long-term antimicrobial assessment of orthodontic brackets coated with nitrogen-doped titanium dioxide against Streptococcus mutans. Progress in Orthodontics, 2018, 19, 35.	1.3	44

#	Article	IF	CITATIONS
714	Effect of feeding of cyclopoid copepods (Eucyclop sp.) exposed to engineered titanium dioxide nanoparticles (nTiO2) and Lead (Pb2+) on Clarias gariepinus growth and metabolism. Journal of Basic and Applied Zoology, 2018, 79, .	0.4	5
715	5. Nanotechnology and food. , 2018, , 75-87.		0
716	Characterization and workplace exposure assessment of nanomaterial released from a carbon nanotube-enabled anti-corrosive coating. NanoImpact, 2018, 12, 58-68.	2.4	9
717	Particle Toxicities. , 2018, , 263-301.		2
718	Modification and Characterization of Nano-TiO2 for Efficient Fixation on Cotton Fibers. Fibers and Polymers, 2018, 19, 2278-2283.	1.1	4
719	The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment. Scientific Reports, 2018, 8, 17922.	1.6	36
720	The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 2018, 13, 233.	3.1	45
721	Effect of dietary additives on intestinal permeability in both <i>Drosophila</i> and a human cell co-culture. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	34
722	Biomolecular interaction and kinematics differences between P25 and E171 TiO2 nanoparticles. NanoImpact, 2018, 12, 51-57.	2.4	16
723	Characterization of the Natural Colloidal TiO2 Background in Soil. Separations, 2018, 5, 50.	1.1	20
724	Assessment of information availability for environmental impact assessment of engineered nanomaterials. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	1
725	Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Translational Psychiatry, 2018, 8, 193.	2.4	39
726	Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends in Food Science and Technology, 2018, 82, 21-31.	7.8	192
727	Recent Status of Nanomaterial Fabrication and Their Potential Applications in Neurological Disease Management. Nanoscale Research Letters, 2018, 13, 231.	3.1	75
728	Titanium dioxide nanoparticles induce proteostasis disruption and autophagy in human trophoblast cells. Chemico-Biological Interactions, 2018, 296, 124-133.	1.7	26
729	Synthesis and nonlinear optical properties of Zn doped TiO2 nano-colloids. Optical Materials, 2018, 86, 185-190.	1.7	14
730	Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews, 2018, 118, 11118-11193.	23.0	167
731	What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clinical Oral Implants Research, 2018, 29, 37-53.	1.9	131

#	Article	IF	CITATIONS
732	Nanoparticules et alimentationÂ: un risque émergent en santé humaineÂ?. Cahiers De Nutrition Et De Dietetique, 2018, 53, 312-321.	0.2	3
733	Suppression of testosterone production by nanoparticulate TiO ₂ is associated with ERK1/2-PKA-PKC signaling pathways in rat primary cultured Leydig cells. International Journal of Nanomedicine, 2018, Volume 13, 5909-5924.	3.3	24
734	Transfer and Ecotoxicity of Titanium Dioxide Nanoparticles in Terrestrial and Aquatic Ecosystems: A Microcosm Study. Environmental Science & Technology, 2018, 52, 12757-12764.	4.6	29
735	Maternal Exposure to Nano Titanium Dioxide Induces Neurotoxic Effects in Offspring Mice. Journal of Biomedical Sciencies, 2018, 07, .	0.3	6
736	Depletion of double-layer coated nano-TiO2 and generation of reactive oxygen species in the presence of ethanol under simulated solar irradiation. NanoImpact, 2018, 11, 164-169.	2.4	1
737	Influence of Algae Age and Population on the Response to TiO2 Nanoparticles. International Journal of Environmental Research and Public Health, 2018, 15, 585.	1.2	11
738	TiO2 Assisted Photodegradation for Low Substrate Concentrations and Transition Metal Electron Scavengers. ChemEngineering, 2018, 2, 33.	1.0	1
739	Whole Transcriptome Sequencing Analysis of the Synergistic Antimicrobial Effect of Metal Oxide Nanoparticles and Ajoene on Campylobacter jejuni. Frontiers in Microbiology, 2018, 9, 2074.	1.5	10
740	Modeling of solid–liquid interfaces using scaled charges: rutile (110) surfaces. Physical Chemistry Chemical Physics, 2018, 20, 23954-23966.	1.3	29
741	Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Particle and Fibre Toxicology, 2018, 15, 33.	2.8	56
742	Nanomedical Applications of Nanoparticles for Blood Coagulation Disorders. Environmental Chemistry for A Sustainable World, 2018, , 243-277.	0.3	47
743	Comparison of filtration mechanisms of food and industrial grade TiO2 nanoparticles. Analytical and Bioanalytical Chemistry, 2018, 410, 6133-6140.	1.9	7
744	Salt enhanced solvent relaxation and particle surface area determination via rapid spin-lattice NMR. Powder Technology, 2018, 333, 458-467.	2.1	28
745	Towards routine analysis of TiO 2 (nano-)particle size in consumer products: Evaluation of potential techniques. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 147, 28-42.	1.5	44
746	Determination and identification of titanium dioxide nanoparticles in confectionery foods, marketed in South Korea, using inductively coupled plasma optical emission spectrometry and transmission electron microscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1238-1246.	1.1	16
747	Effects of coating materials on antibacterial properties of industrial and sunscreen-derived titanium-dioxide nanoparticles on Escherichia coli. Chemosphere, 2018, 208, 196-206.	4.2	22
748	Interplay Between Engineered Nanomaterials (ENMs) and Edible Plants: A Current Perspective. , 2018, , 63-102.		12
749	Foliar exposure of grapevine (Vitis vinifera L.) to TiO ₂ nanoparticles under field conditions: Photosynthetic response and flavonol profile. Photosynthetica, 2018, 56, 1378-1386.	0.9	21

#	Article	IF	CITATIONS
750	Nanoâ€TiO ₂ Drives Epithelial–Mesenchymal Transition in Intestinal Epithelial Cancer Cells. Small, 2018, 14, e1800922.	5.2	53
751	Toward a better extraction of titanium dioxide engineered nanomaterials from complex environmental matrices. NanoImpact, 2018, 11, 119-127.	2.4	18
752	Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Particle and Fibre Toxicology, 2018, 15, 29.	2.8	128
753	Low risk posed by engineered and incidental nanoparticles in drinking water. Nature Nanotechnology, 2018, 13, 661-669.	15.6	118
754	Metal oxide nanoparticles alter peanut (<i>Arachis hypogaea</i> L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano, 2018, 5, 2088-2102.	2.2	82
755	Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. International Journal of Nanomedicine, 2018, Volume 13, 777-789.	3.3	56
756	Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 2018, 9, 1050-1074.	1.5	2,222
757	Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection. Journal of Nanobiotechnology, 2018, 16, 53.	4.2	47
758	Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules, 2018, 23, 1848.	1.7	120
759	Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials, 2018, 8, 561.	1.9	126
760	Ecotoxicological Effects of Transformed Silver and Titanium Dioxide Nanoparticles in the Effluent from a Lab-Scale Wastewater Treatment System. Environmental Science & Technology, 2018, 52, 9431-9441.	4.6	39
761	Safety Assessment of Nanotechnology Products. , 2018, , 34-43.		1
762	Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents. Frontiers in Microbiology, 2018, 9, 422.	1.5	167
763	Toxicity of Food-Grade TiO2 to Commensal Intestinal and Transient Food-Borne Bacteria: New Insights Using Nano-SIMS and Synchrotron UV Fluorescence Imaging. Frontiers in Microbiology, 2018, 9, 794.	1.5	52
764	Understanding and optimization of the flocculation process in biological wastewater treatment processes: A review. Chemosphere, 2018, 210, 401-416.	4.2	49
765	Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms, 2018, 6, 53.	1.6	61
766	Inorganic nanoparticles and the microbiome. Nano Research, 2018, 11, 4936-4954.	5.8	46
767	Titanium Dioxide Nanoparticle Circulation in an Aquatic Ecosystem. Water, Air, and Soil Pollution, 2018, 229, 208.	1.1	39

#	Article	IF	CITATIONS
768	Surface Characterization of TiO ₂ Polymorphic Nanocrystals through ¹ H-TD-NMR. Langmuir, 2018, 34, 9460-9469.	1.6	19
769	Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano, 2018, 12, 8115-8128.	7.3	81
770	Critical review of the safety assessment of titanium dioxide additives in food. Journal of Nanobiotechnology, 2018, 16, 51.	4.2	158
771	Dispersion and sedimentation of titanium dioxide nanoparticles in freshwater algae and daphnia aquatic culture media in the presence of arsenate. Journal of Experimental Nanoscience, 2018, 13, 119-129.	1.3	5
772	Influence of Food and Industrial Grade Titanium Dioxide Nanoparticles on Microbial Diversity and Phenotypic Response in Model Septic System. Environmental Engineering Science, 2018, 35, 1049-1061.	0.8	1
773	The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 2018, 37, 2758-2775.	2.2	100
774	Room-temperature single-photon emitters in titanium dioxide optical defects. Beilstein Journal of Nanotechnology, 2018, 9, 1085-1094.	1.5	5
775	Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomaterialia, 2018, 79, 354-363.	4.1	32
776	Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere, 2018, 212, 662-677.	4.2	58
777	Nano-enabled personal care products: Current developments in consumer safety. NanoImpact, 2018, 11, 170-179.	2.4	28
778	Impact of Titanium Dioxide on the Bioaccessibility of β-Carotene in Emulsions with Different Particle Sizes. Journal of Agricultural and Food Chemistry, 2018, 66, 9318-9325.	2.4	14
779	Regulatory Concerns for Nanomaterials in Sunscreen Formulations. Applied Clinical Research Clinical Trials and Regulatory Affairs, 2018, 5, 99-111.	0.4	3
780	Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum. Journal of Agricultural and Food Chemistry, 2018, 66, 6860-6868.	2.4	32
781	Antimicrobial Activity of Metal and Metalâ€Oxide Based Nanoparticles. Advanced Therapeutics, 2018, 1, 1700033.	1.6	380
782	Dendrimers as alternative templates and pore-directing agents for the synthesis of micro- and mesoporous materials. Journal of Materials Science, 2018, 53, 12663-12678.	1.7	12
783	Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms. Analytical and Bioanalytical Chemistry, 2018, 410, 6125-6132.	1.9	4
784	Ageing effects on electrical resistivity of Nb-doped TiO2 thin films deposited at a high rate by reactive DC magnetron sputtering. Applied Surface Science, 2018, 455, 267-275.	3.1	12
785	Protein affinity for TiO2 and CeO2 manufactured nanoparticles. From ultra-pure water to biological media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 425-431.	2.3	18

#	Article	IF	CITATIONS
786	Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. , 2018, , 1-27.		10
787	Nanotechnology Trends in the Food Industry: Recent Developments, Risks, and Regulation. , 2018, , 113-141.		5
788	Toxicity assessment of nanopharmaceuticals. , 2018, , 565-603.		4
789	Shelterin differentially respond to oxidative stress induced by TiO2-NPs and regulate telomere length in human hepatocytes andÂhepatocarcinoma cells inÂvitro. Biochemical and Biophysical Research Communications, 2018, 503, 697-702.	1.0	11
790	Aging Influences on the Biokinetics of Functional TiO ₂ Nanoparticles with Different Surface Chemistries in <i>Daphnia magna</i> . Environmental Science & Technology, 2018, 52, 7901-7909.	4.6	14
791	Effects of mechanical activation on the digestion of ilmenite in dilute H2SO4. Chinese Journal of Chemical Engineering, 2019, 27, 575-586.	1.7	18
792	Short-term evaluation of hepatic toxicity of titanium dioxide nanofiber (TDNF). Drug and Chemical Toxicology, 2019, 42, 35-42.	1.2	5
793	The UCD nanosafety workshop (03 December 2018): towards developing a consensus on safe handling of nanomaterials within the Irish university labs and beyond – a report. Nanotoxicology, 2019, 13, 717-732.	1.6	6
794	Amelioration of titanium dioxide nanoparticle reprotoxicity by the antioxidants morin and rutin. Environmental Science and Pollution Research, 2019, 26, 29074-29084.	2.7	36
795	Food additives can act as triggering factors in celiac disease: Current knowledge based on a critical review of the literature. World Journal of Clinical Cases, 2019, 7, 917-927.	0.3	11
796	Foodâ€grade titanium dioxide (E171) by solid or liquid matrix administration induces inflammation, germ cells sloughing in seminiferous tubules and bloodâ€ŧestis barrier disruption in mice. Journal of Applied Toxicology, 2019, 39, 1586-1605.	1.4	15
797	TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides. Environmental Science and Pollution Research, 2019, 26, 29872-29882.	2.7	16
798	Co-exposure to the food additives SiO ₂ (E551) or TiO ₂ (E171) and the pesticide boscalid increases cytotoxicity and bioavailability of the pesticide in a tri-culture small intestinal epithelium model: potential health implications. Environmental Science: Nano, 2019, 6, 2786-2800.	2.2	29
799	Safety Issue of Changed Nanotoxicity of Zinc Oxide Nanoparticles in the Multicomponent System. Particle and Particle Systems Characterization, 2019, 36, 1900214.	1.2	5
800	Anatase TiO ₂ Nanoparticles Induce Autophagy and Chloroplast Degradation in Thale Cress (<i>Arabidopsis thaliana</i>). Environmental Science & Technology, 2019, 53, 9522-9532.	4.6	21
801	Prevalent anatase crystalline phase increases the cytotoxicity of biphasic titanium dioxide nanoparticles in mammalian cells. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110391.	2.5	10
802	Synthesis and characterization of novel antibacterial Sol-gel derived TiO2/Zn2TiO4/Ag nanocomposite as an active agent in Sunscreens. Ceramics International, 2019, 45, 24413-24418.	2.3	19
803	The Low Toxicity of Graphene Quantum Dots is Reflected by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem Cells. Scientific Reports, 2019, 9, 12028.	1.6	56

#	Article	IF	CITATIONS
804	New routes for the fabrication of TiO2 inverse opal films and their application in photocatalysis and intelligent devices. , 2019, , 209-231.		0
805	Interactive Toxicity of Triclosan and Nano-TiO ₂ to Green Alga <i>Eremosphaera viridis</i> in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectromicroscopy and Synchrotron-Based X-ray Fluorescence Imaging. Environmental Science & Technology, 2019, 53, 9884-9894.	4.6	54
806	Mechanisms of titanium dioxide nanoparticleâ€induced oxidative stress and modulation of plasma glucose in mice. Environmental Toxicology, 2019, 34, 1221-1235.	2.1	24
807	Effect of TiO2-ZnO-MgO Mixed Oxide on Microbial Growth and Toxicity against Artemia salina. Nanomaterials, 2019, 9, 992.	1.9	27
808	Preparation of Fe3O4/TiO2-N-GO sonocatalyst and using for humic acid removal with the assist of ultrasound. Materials Science in Semiconductor Processing, 2019, 102, 104593.	1.9	26
809	Structure and enhanced antimicrobial activity of mechanically activated nano TiO ₂ . Journal of the American Ceramic Society, 2019, 102, 7735-7745.	1.9	10
810	Optical and Electrical Properties of Transparent Conductive NTTO/Cu/NTTO Multilayer Films Deposited by Magnetron Sputtering. Jom, 2019, 71, 3720-3726.	0.9	4
811	Plasma protein adsorption on TiO2 nanoparticles: Impact of surface adsorption on temperature-dependent structural changes. Polyhedron, 2019, 171, 147-154.	1.0	18
812	The mechanism-based toxicity screening of particles with use in the food and nutrition sector via the ToxTracker reporter system. Toxicology in Vitro, 2019, 61, 104594.	1.1	16
813	Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 488-497.	2.0	31
814	Fueling a Hot Debate on the Application of TiO2 Nanoparticles in Sunscreen. Materials, 2019, 12, 2317.	1.3	37
815	Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO2 and prevented by Fe incorporation. Toxicology Research, 2019, 8, 711-722.	0.9	16
816	Effect of Long-Term Intake of Dietary Titanium Dioxide Nanoparticles on Intestine Inflammation in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 9382-9389.	2.4	83
817	Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology, 2019, 13, 1087-1101.	1.6	56
818	Nanostructured Colloids in Food Science. , 2019, , .		2
819	Polyaniline/metal oxides nanocomposites. , 2019, , 131-141.		9
820	Musa AAA and Jatropha curcas L. sap mediated TiO2 nanoparticles: Synthesis and characterization. Scientific African, 2019, 6, e00203.	0.7	2
821	Free energy of adhesion of lipid bilayers on titania surfaces. Journal of Chemical Physics, 2019, 151, 134707.	1.2	6

#	Article	IF	CITATIONS
822	Biphasic adverse effect of titanium nanoparticles on testicular function in mice. Scientific Reports, 2019, 9, 14373.	1.6	13
823	Role of Anisotropy and Refractive Index in Scattering and Whiteness Optimization. Advanced Optical Materials, 2019, 7, 1900980.	3.6	37
824	Photogeneration of reactive oxygen species over ultrafine TiO2 particles functionalized with rutin–ligand induced sensitization and crystallization effects. Research on Chemical Intermediates, 2019, 45, 5781-5800.	1.3	9
825	Adsorption of extracellular polymeric substances from two microbes by TiO2 nanoparticles. Science of the Total Environment, 2019, 694, 133778.	3.9	27
826	NPs-TiO2 and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells. Nanomaterials, 2019, 9, 1511.	1.9	24
827	Therapeutic assessment of Idebenone versus Titanium dioxide nanoparticles induced pulmonary injury in adult albino Rats: Experimental study. Journal of Toxicology and Environmental Health Sciences, 2019, 11, 62-74.	0.6	1
828	Improving Powder Characteristics by Surface Modification Using Atomic Layer Deposition. Organic Process Research and Development, 2019, 23, 2362-2368.	1.3	15
829	Nanomaterials in Food $\hat{a} \in$ Prioritisation & amp; Assessment. EFSA Journal, 2019, 17, e170909.	0.9	7
830	Tailoring Cell Morphomechanical Perturbations Through Metal Oxide Nanoparticles. Nanoscale Research Letters, 2019, 14, 109.	3.1	11
831	A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines, 2019, 7, 65.	1.4	7
832	Reproductive Toxicity of Pomegranate Peel Extract Synthesized Gold Nanoparticles: A Multigeneration Study in <i>C. elegans</i> . Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	17
833	Food Additive Titanium Dioxide and Its Fate in Commercial Foods. Nanomaterials, 2019, 9, 1175.	1.9	43
834	Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-Biological Interactions, 2019, 312, 108814.	1.7	98
835	Letter by Ross Regarding Article, "Circulating Multiple Metals and Incident Stroke in Chinese Adults: The Dongfeng-Tongji Cohort― Stroke, 2019, 50, e309.	1.0	1
836	Modeling the transport of titanium dioxide nanomaterials from combined sewer overflows in an urban river. Science of the Total Environment, 2019, 696, 133904.	3.9	17
837	Titanium Dioxide Nanoparticles Elicit Lower Direct Inhibitory Effect on Human Gut Microbiota Than Silver Nanoparticles. Toxicological Sciences, 2019, 172, 411-416.	1.4	40
838	Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food and Chemical Toxicology, 2019, 134, 110814.	1.8	104
839	Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms, 2019, 7, 356.	1.6	69

#	Article	IF	CITATIONS
840	Simulating graphene oxide nanomaterial phototransformation and transport in surface water. Environmental Science: Nano, 2019, 6, 180-194.	2.2	24
841	Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environmental Science: Nano, 2019, 6, 763-777.	2.2	92
842	Retardation of Axonal and Dendritic Outgrowth Is Associated with the MAPK Signaling Pathway in Offspring Mice Following Maternal Exposure to Nanosized Titanium Dioxide. Journal of Agricultural and Food Chemistry, 2019, 67, 2709-2715.	2.4	19
843	Ultrasmall gold nanorods: synthesis and glycocalyx-related permeability in human endothelial cells. International Journal of Nanomedicine, 2019, Volume 14, 319-333.	3.3	11
844	Can low concentrations of metal oxide and Ag loaded metal oxide nanoparticles pose a risk to stream plant litter microbial decomposers?. Science of the Total Environment, 2019, 653, 930-937.	3.9	16
845	Behavior of TiO2 and CeO2 Nanoparticles and Polystyrene Nanoplastics in Bottled Mineral, Drinking and Lake Geneva Waters. Impact of Water Hardness and Natural Organic Matter on Nanoparticle Surface Properties and Aggregation. Water (Switzerland), 2019, 11, 721.	1.2	56
846	Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart? A histopathological, immunohistochemical, and genotoxic study. Environmental Science and Pollution Research, 2019, 26, 21556-21564.	2.7	10
847	Effects of titanium dioxide nanoparticles on Microcystis aeruginosa and microcystins production and release. Journal of Hazardous Materials, 2019, 377, 1-7.	6.5	43
848	Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. Journal of Immunotoxicology, 2019, 16, 87-124.	0.9	55
849	Up regulation of miR-96-5p is responsible for TiO2 NPs induced invasion dysfunction of human trophoblastic cells via disturbing Ezrin mediated cytoskeletons arrangement. Biomedicine and Pharmacotherapy, 2019, 117, 109125.	2.5	8
850	The Impact of Nanotechnology on Food. , 2019, , 369-379.		8
851	Subcellular metal distributions and metallothionein associations in rough-toothed dolphins (Steno) Tj ETQq1 1 C).784314 r 2.3	gBT /Overlo
852	Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria. Journal of Environmental Management, 2019, 247, 214-223.	3.8	42
853	Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 49-67.	5.6	93
854	Nanoâ€bio interface study betweenFecontentTiO2nanoparticles and adenosine triphosphate biomolecules. Surface and Interface Analysis, 2019, 51, 894-905.	0.8	5
855	Effect of foamability on pool boiling critical heat flux with nanofluids. Soft Matter, 2019, 15, 5308-5318.	1.2	12
856	Prospects and application of nanobiotechnology in food preservation: molecular perspectives. Critical Reviews in Biotechnology, 2019, 39, 759-778.	5.1	18
857	Obesity-Dependent Accumulation of Titanium in the Pancreas of Type 2 Diabetic Donors. Chemical Research in Toxicology, 2019, 32, 1351-1356.	1.7	2

#	Article	IF	CITATIONS
858	Characterization of TiO2 Nanoparticles in Food Additives by Asymmetric-Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry—a Pilot Study. Food Analytical Methods, 2019, 12, 1973-1987.	1.3	8
859	Engineered nanostructured materials: benefits and risks. Environmental Chemistry Letters, 2019, 17, 1523-1527.	8.3	9
860	Fate of engineered nanomaterials in natural environments and impacts on ecosystems. , 2019, , 61-103.		11
861	An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnology and Biotechnological Equipment, 2019, 33, 779-797.	0.5	171
862	Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: an in vitro and in vivo study. Applied Microbiology and Biotechnology, 2019, 103, 6689-6700.	1.7	21
863	Effect of chronic toxicity of the crystalline forms of TiO2 nanoparticles on the physiological parameters of Daphnia magna with a focus on index correlation analysis. Ecotoxicology and Environmental Safety, 2019, 181, 292-300.	2.9	17
864	Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00350.	2.1	31
865	Anchoring of Aminophosphonates on Titanium Oxide for Biomolecular Coupling. Journal of Physical Chemistry C, 2019, 123, 16843-16850.	1.5	35
866	Inflammatory Bowel Diseases and Food Additives: To Add Fuel on the Flames!. Nutrients, 2019, 11, 1111.	1.7	46
867	Combination of ⁴⁷ Ti and ⁴⁸ Ti for the determination of highly polydisperse TiO ₂ particle size distributions by spICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34, 1380-1386.	1.6	28
868	Food Nanotechnology: Harnessing the Power of the Miniature World Inside Our Foods. , 2019, , 287-321.		2
869	Unraveling the real pigment composition of tattoo inks: the case of bi-components phthalocyanine based greens. Dyes and Pigments, 2019, 167, 225-235.	2.0	15
870	Prebiotic protects against anatase titanium dioxide nanoparticles-induced microbiota-mediated colonic barrier defects. NanoImpact, 2019, 14, 100164.	2.4	22
871	Titanium dioxide nanoparticles induce apoptosis by interfering with EGFR signaling in human breast cancer cells. Environmental Research, 2019, 175, 117-123.	3.7	28
872	Synthesis of a MnO ₂ /multiwalled carbon nanotube nanocomposite and its application as a sorbent for removing Cu ²⁺ ions from aqueous media. Journal of the Chinese Chemical Society, 2019, 66, 1436-1442.	0.8	3
873	Simultaneous spectrophotometric determination of titanium oxide and iron oxide nanoparticles in water by using PLS algorithm. SN Applied Sciences, 2019, 1, 1.	1.5	2
874	Tribological Capabilities of Graphene and Titanium Dioxide Nano Additives in Solid and Liquid Base Lubricants. Applied Sciences (Switzerland), 2019, 9, 1629.	1.3	14
875	Nano-enabled products in South Africa and the assessment of environmental exposure potential for engineered nanomaterials. SN Applied Sciences, 2019, 1, 1.	1.5	11

#	Article	IF	Citations
876	Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. Nanoscience and Technology, 2019, , 281-327.	1.5	4
877	Applications of nanotechnology in food microbiology. Methods in Microbiology, 2019, 46, 43-60.	0.4	21
878	Biological Responses to Nanoscale Particles. Nanoscience and Technology, 2019, , .	1.5	9
879	Fabrication of Hybrid Materials from Titanium Dioxide and Natural Phenols for Efficient Radical Scavenging against Oxidative Stress. ACS Biomaterials Science and Engineering, 2019, 5, 2778-2785.	2.6	12
880	Role of Mucin in Behavior of Food-Grade TiO ₂ Nanoparticles under Simulated Oral Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 5882-5890.	2.4	32
881	Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environmental Science: Nano, 2019, 6, 1716-1727.	2.2	92
882	Future Foods. , 2019, , .		45
883	Titanium dioxide nanoparticles applied as ultraviolet radiation blocker in the polylactic acid bidegradable polymer. Polymer Testing, 2019, 77, 105867.	2.3	38
884	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.4	106
885	Tribological testing of leather surface coated with sputter-deposited Ti-Ag-O films. Tribology International, 2019, 137, 59-65.	3.0	2
886	Parental exposure to TiO ₂ NPs promotes the multigenerational reproductive toxicity of Cd in <i>Caenorhabditis elegans via</i> bioaccumulation of Cd in germ cells. Environmental Science: Nano, 2019, 6, 1332-1342.	2.2	16
887	Different modelling approaches for predicting titanium dioxide nanoparticles mobility in intact soil media. Science of the Total Environment, 2019, 665, 1168-1181.	3.9	15
888	Nanophotocatalysis and Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	7
889	Spinning Disk Reactor Technology in Photocatalysis: Nanostructured Catalysts Intensified Production and Applications. Environmental Chemistry for A Sustainable World, 2019, , 303-333.	0.3	3
890	Simultaneous Quantification and Visualization of Titanium Dioxide Nanomaterial Uptake at the Single Cell Level in an In Vitro Model of the Human Small Intestine. Small Methods, 2019, 3, 1800540.	4.6	8
891	Effects of vitamin A and vitamin E on attenuation of titanium dioxide nanoparticles-induced toxicity in the liver of male Wistar rats. Molecular Biology Reports, 2019, 46, 2919-2932.	1.0	26
892	Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis. Ecotoxicology and Environmental Safety, 2019, 176, 1-10.	2.9	35
893	Blood titanium level as a biomarker of orthopaedic implant wear. Journal of Trace Elements in Medicine and Biology, 2019, 53, 120-128.	1.5	51

#	Article	IF	CITATIONS
894	Exposure to Titanium Dioxide Nanoparticles During Pregnancy Changed Maternal Gut Microbiota and Increased Blood Glucose of Rat. Nanoscale Research Letters, 2019, 14, 26.	3.1	43
895	Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food and Chemical Toxicology, 2019, 127, 89-100.	1.8	59
896	Effect of Size, Shape, and Composition on the Interaction of Different Nanomaterials with HeLa Cells. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	19
897	Influence of pretreatment on surface interaction between Cu and anatase-TiO2 in the simultaneous photoremediation of nitrate and oxalic acid. Journal of Environmental Chemical Engineering, 2019, 7, 103029.	3.3	10
898	Regulation of the Stability of Titania Nanosheet Dispersions with Oppositely and Like-Charged Polyelectrolytes. Langmuir, 2019, 35, 4986-4994.	1.6	26
899	Encapsulation of colorants by natural polymers for food applications. Coloration Technology, 2019, 135, 183-194.	0.7	42
900	Characterisation of titanium oxide nanomaterials in sunscreens obtained by extraction and release exposure scenarios. SN Applied Sciences, 2019, 1, 1.	1.5	10
901	Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Applied Sciences, 2019, 1, 1.	1.5	105
903	Effects of phosphate on the dispersion stability and coagulation/flocculation/sedimentation removal efficiency of anatase nanoparticles. Chemosphere, 2019, 224, 580-587.	4.2	18
004			
904	Nanomaterials and Plant Potential: An Overview. , 2019, , 3-29.		45
904 905	Nanomaterials and Plant Potential: An Overview. , 2019, , 3-29. Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254.		45 3
		2.4	
905	Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254. Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food	2.4	3
905 906	Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254. Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2019, 67, 4931-4939. Structure-property relationships of sheared carbon black suspensions determined by simultaneous		3 7
905 906 907	 Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254. Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2019, 67, 4931-4939. Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements. Journal of Rheology, 2019, 63, 423-436. Hierarchy of Hybrid Materialsâ€"The Place of Inorganics-in-Organics in it, Their Composition and 	1.3	3 7 42
905 906 907 908	 Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254. Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2019, 67, 4931-4939. Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements. Journal of Rheology, 2019, 63, 423-436. Hierarchy of Hybrid Materialsâ€"The Place of Inorganics-in-Organics in it, Their Composition and Applications. Frontiers in Chemistry, 2019, 7, 179. Number Concentration of Gold Nanoparticles in Suspension: SAXS and spICPMS as Traceable Methods 	1.3 1.8	3 7 42 172
905 906 907 908 909	 Nanomanipulation of Consumer Goods: Effects on Human Health and Environment. , 2019, , 221-254. Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2019, 67, 4931-4939. Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements. Journal of Rheology, 2019, 63, 423-436. Hierarchy of Hybrid Materialsâ€"The Place of Inorganics-in-Organics in it, Their Composition and Applications. Frontiers in Chemistry, 2019, 7, 179. Number Concentration of Gold Nanoparticles in Suspension: SAXS and spICPMS as Traceable Methods Compared to Laboratory Methods. Nanomaterials, 2019, 9, 502. Hepatic and Renal Toxicity Induced by TiO₂ 	1.3 1.8 1.9	3 7 42 172 28

#	Article	IF	CITATIONS
913	<p>NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study</p> . International Journal of Nanomedicine, 2019, Volume 14, 1919-1936.	3.3	68
914	Steady‣tate and Timeâ€Resolved Optical Properties of Multilayer Film of Titanium Dioxide Sandwiched by Gold Nanoparticles and Gold Thin Film. ChemNanoMat, 2019, 5, 1015-1020.	1.5	3

Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1â^'xFe2O4;) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 6

917	A comprehensive perspective of food nanomaterials. Advances in Food and Nutrition Research, 2019, 88, 1-45.	1.5	8
918	Magnetic sedimentation of nonmagnetic TiO2 nanoparticles in water by heteroaggregation with Fe-based nanoparticles. Separation and Purification Technology, 2019, 218, 156-163.	3.9	11
919	Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicology in Vitro, 2019, 57, 18-27.	1.1	53
920	Nanoparticles from construction wastes: A problem to health and the environment. Journal of Cleaner Production, 2019, 219, 236-243.	4.6	93
921	Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study. Journal of Hazardous Materials, 2019, 369, 191-198.	6.5	41
922	Evaluation of labeling methods used for investigating the environmental behavior and toxicity of metal oxide nanoparticles. Environmental Science: Nano, 2019, 6, 1043-1066.	2.2	16
923	Nanoparticles as Biosensors for Food Quality and Safety Assessment. , 2019, , 147-202.		17
924	Bio-interactions and risks of engineered nanoparticles. Environmental Research, 2019, 172, 98-108.	3.7	101
925	Photocatalytic degradation of metamifop using TiO2/Al2O3/G nanocomposite. AlP Conference Proceedings, 2019, , .	0.3	6
926	Removal of Cr(VI) from wastewater through glycine assisted synthesis of TiO2. Turkish Journal of Chemistry, 2019, 43, 492-500.	0.5	1
927	Evaluation of Antibacterial Potential of Biosynthesized Plant Leave Extract Mediated Titanium Oxide Nanoparticles using <i>Hypheae Thiebeace</i> and <i>Anannos Seneglensis</i> . Journal of Applied Sciences and Environmental Management, 2019, 23, 1795-1804.	0.1	1
928	The Effects of Oxyanion Adsorption on Reactive Oxygen Species Generation by Titanium Dioxide. Clays and Clay Minerals, 2019, 67, 410-418.	0.6	0
929	Engineered nanomaterials uptake, bioaccumulation and toxicity mechanisms in plants. Comprehensive Analytical Chemistry, 2019, 87, 111-131.	0.7	6
930	Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism <i>in vivo</i> . Nanoscale, 2019, 11, 22398-22412.	2.8	93
931	Quantification of TiO ₂ and ZnO nanoparticles in wastewater using inductively coupled plasma optical emission spectrometry. Toxicological and Environmental Chemistry, 2019, 101, 204-214.	0.6	2

#	Article	IF	CITATIONS
932	Transcriptome changes in undifferentiated Caco-2 cells exposed to food-grade titanium dioxide (E171): contribution of the nano- and micro- sized particles. Scientific Reports, 2019, 9, 18287.	1.6	19
933	Transport of food- and catalytic-grade titanium dioxide nanoparticles in controlled field streams with varying streambed and biofilm conditions. Environmental Science: Nano, 2019, 6, 3454-3466.	2.2	2
934	Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles. Particle and Fibre Toxicology, 2019, 16, 48.	2.8	77
935	Thermal Conductivity of Rutile and Anatase TiO2 from First-Principles. Journal of Physical Chemistry C, 2019, 123, 30851-30855.	1.5	11
936	The mTOR/GCLc/GSH Pathway Mediates the Dose-Dependent Bidirectional Regulation of ROS Induced by TiO ₂ NPs in Neurogenic Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	1.9	93
937	The Sustainability Challenge of Food and Environmental Nanotechnology: Current Status and Imminent Perceptions. International Journal of Environmental Research and Public Health, 2019, 16, 4848.	1.2	19
938	A study of TiO ₂ nanocrystal growth and environmental remediation capability of TiO ₂ /CNC nanocomposites. RSC Advances, 2019, 9, 40565-40576.	1.7	29
939	Size and shape effect on the photocatalytic efficiency of TiO2 brookite. Journal of Materials Science, 2019, 54, 1213-1225.	1.7	24
940	Fate of the nanoparticles in environmental cycles. International Journal of Environmental Science and Technology, 2019, 16, 583-600.	1.8	53
941	Parental co-exposure to bisphenol A and nano-TiO2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. Science of the Total Environment, 2019, 650, 557-565.	3.9	64
942	Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling. Science of the Total Environment, 2019, 650, 530-540.	3.9	30
943	On the Operational Aspects of Measuring Nanoparticle Sizes. Nanomaterials, 2019, 9, 18.	1.9	41
944	Determination and elimination of hazardous pollutants by exploitation of a Prussian blue nanoparticles-graphene oxide composite. Analytica Chimica Acta, 2019, 1054, 17-25.	2.6	14
945	Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology, 2019, 13, 258-284.	1.6	29
946	Comparative toxicity of a food additive TiO2, a bulk TiO2, and a nano-sized P25 to a model organism the nematode C. elegans. Environmental Science and Pollution Research, 2019, 26, 3556-3568.	2.7	24
947	Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects. NanoImpact, 2019, 13, 37-43.	2.4	53
948	Improved functional performances of traditional artistic pottery by sol-gel nanoparticles deposition. Materials Research Express, 2019, 6, 025032.	0.8	0
949	A review of inorganic <scp>UV</scp> filters zinc oxide and titanium dioxide. Photodermatology Photoimmunology and Photomedicine, 2019, 35, 442-446.	0.7	182

#	ARTICLE	IF	Citations
950	Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. Journal of Applied Toxicology, 2019, 39, 590-602.	1.4	10
951	Enzymatic hydrolysis as a sample pre-treatment for titanium dioxide nanoparticles assessment in surimi (crab sticks) by single particle ICP-MS. Talanta, 2019, 195, 23-32.	2.9	28
952	Environmental Nanotechnology. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
953	Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 845, 402980.	0.9	45
954	Multiple metals exposure and chromosome damage: Exploring the mediation effects of microRNAs and their potentials in lung carcinogenesis. Environment International, 2019, 122, 291-300.	4.8	28
955	Suppression of ovarian follicle development by nano TiO ₂ is associated with TGFâ€Î²â€mediated signaling pathways. Journal of Biomedical Materials Research - Part A, 2019, 107, 414-422.	2.1	14
956	The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 2019, 27, 1-21.	0.9	578
957	Wet-spun nanoTiO2/chitosan nanocomposite fibers as efficient and retrievable absorbent for the removal of free fatty acids from edible oil. Carbohydrate Polymers, 2019, 210, 119-126.	5.1	20
958	Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Spragueâ€Dawley rats. Journal of Applied Toxicology, 2019, 39, 807-819.	1.4	40
959	Dermal exposure to nano-TiO ₂ induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis. Journal of Toxicological Sciences, 2019, 44, 35-45.	0.7	20
960	Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Applied Catalysis B: Environmental, 2019, 243, 106-120.	10.8	60
961	An integrated approach to highlight biological responses of Pisum sativum root to nano-TiO2 exposure in a biosolid-amended agricultural soil. Science of the Total Environment, 2019, 650, 2705-2716.	3.9	36
962	Analytical nanometrological approach for screening and confirmation of titanium dioxide nano/micro-particles in sugary samples based on Raman spectroscopy – Capillary electrophoresis. Analytica Chimica Acta, 2019, 1050, 169-175.	2.6	20
963	In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Food Research International, 2019, 119, 634-642.	2.9	41
964	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact, 2019, 13, 13-25.	2.4	77
965	ZnO nanoparticles affect nutrient transport in an in vitro model of the small intestine. Food and Chemical Toxicology, 2019, 124, 112-127.	1.8	26
966	Synthesis of cosmetic grade TiO2-SiO2 core-shell powder from mechanically milled TiO2 nanopowder for commercial mass production. Materials Science and Engineering C, 2019, 95, 95-103.	3.8	11
967	Physicochemical Perturbation of Plants on Exposure to Metal Oxide Nanoparticle. , 2019, , 323-352.		3

#	Article	IF	CITATIONS
968	Real-time monitoring of nanoscale TiO2 concentration by spectrophotometry: implications of agglomeration due to natural organic matter and multivalent ions. Environmental Technology (United Kingdom), 2019, 40, 1821-1830.	1.2	0
969	Cytotoxicity and histopathological analysis of titanium nanoparticles via Artemia salina. Environmental Science and Pollution Research, 2019, 26, 14706-14711.	2.7	7
970	Investigating the rheological and self-healing capability of toner-modified asphalt binder. Proceedings of Institution of Civil Engineers: Construction Materials, 2020, 173, 123-131.	0.7	14
971	Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Critical Reviews in Environmental Science and Technology, 2020, 50, 135-215.	6.6	36
972	Biosynthesis of TiO2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Research on Chemical Intermediates, 2020, 46, 1077-1089.	1.3	22
973	Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28Âdays of repeated oral administration. Nucleus (India), 2020, 63, 17-24.	0.9	9
974	Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review. Biological Trace Element Research, 2020, 193, 118-129.	1.9	303
975	Blood and plasma titanium levels associated with well-functioning hip implants. Journal of Trace Elements in Medicine and Biology, 2020, 57, 9-17.	1.5	26
976	Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Materials Science and Engineering C, 2020, 107, 110303.	3.8	47
977	Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population. Exposure and Health, 2020, 12, 641-655.	2.8	49
978	A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Separation and Purification Technology, 2020, 231, 115901.	3.9	118
979	Dependence of Fe Doping and Milling on TiO2 Phase Transformation: Optical and Magnetic Studies. Journal of Superconductivity and Novel Magnetism, 2020, 33, 427-440.	0.8	6
980	TiO2 Nanostructures (TiO2-NSs): Synthesis, Characterization and Evaluation of Their Toxicity in the Swiss albino Mouse. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1049-1064.	1.9	0
981	Estimating human exposure to titanium dioxide from personal care products through a social survey approach. Integrated Environmental Assessment and Management, 2020, 16, 10-16.	1.6	26
982	Oxidative Damage Induced by Nano-titanium Dioxide in Rats and Mice: a Systematic Review and Meta-analysis. Biological Trace Element Research, 2020, 194, 184-202.	1.9	23
983	Combination of humic acid and clay reduce the ecotoxic effect of TiO2 NPs: A combined physico-chemical and genetic study using zebrafish embryo. Science of the Total Environment, 2020, 698, 134133.	3.9	24
984	Sustainability and environmental ethics for the application of engineered nanoparticles. Environmental Science and Policy, 2020, 103, 85-98.	2.4	44
985	Intra-amniotic administration (Gallus gallus) of TiO2, SiO2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations. Food and Chemical Toxicology, 2020, 135, 110896.	1.8	16

#	Article	IF	CITATIONS
986	Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 239-253.	1.1	52
987	Release of TiO ₂ nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS. Environmental Science: Nano, 2020, 7, 139-148.	2.2	26
988	Distribution profile of titanium dioxide nanoparticles in South African aquatic systems. Water Science and Technology: Water Supply, 2020, 20, 516-528.	1.0	5
989	Bioavailability and cytotoxicity of Cerium- (IV), Copper- (II), and Zinc oxide nanoparticles to human intestinal and liver cells through food. Science of the Total Environment, 2020, 702, 134700.	3.9	47
990	Examining the in vivo pulmonary toxicity of engineered metal oxide nanomaterials using a genetic algorithm-based dose-response-recovery clustering model. Computational Toxicology, 2020, 13, 100113.	1.8	7
991	Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chemistry, 2020, 310, 125915.	4.2	294
992	Metal-based engineered nanoparticles in the drinking water treatment systems: A critical review. Science of the Total Environment, 2020, 707, 136077.	3.9	60
993	Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model. NanoImpact, 2020, 17, 100202.	2.4	30
994	Interaction of particles with mucosae and cell membranes. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110657.	2.5	9
995	Organic Electrochemical Transistors for Realâ€Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biology, 2020, 4, e1900204.	3.0	22
996	The toxic effects of titanium dioxide nanoparticles on plasma glucose metabolism are more severe in developing mice than in adult mice. Environmental Toxicology, 2020, 35, 443-456.	2.1	13
997	Spinach-based photo-catalyst for selective plating on polyimide-based substrates for micro-patterning circuitry. Chemical Engineering Research and Design, 2020, 153, 839-848.	2.7	7
998	Protective effects of orally administered thymol against titanium dioxide nanoparticle–induced testicular damage. Environmental Science and Pollution Research, 2020, 27, 2353-2360.	2.7	18
999	The effects of titanium nanoparticles on enzymatic and non-enzymatic biomarkers in female Wistar rats. Drug and Chemical Toxicology, 2020, , 1-9.	1.2	5
1000	Distribution and Chemical Speciation of Exogenous Micro- and Nanoparticles in Inflamed Soft Tissue Adjacent to Titanium and Ceramic Dental Implants. Analytical Chemistry, 2020, 92, 14432-14443.	3.2	29
1001	Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. Environmental Toxicology and Pharmacology, 2020, 80, 103485.	2.0	44
1002	Combined toxicity of nano-CuO/nano-TiO2 and CuSO4/nano-TiO2 on Escherichia coli in aquatic environments under dark and light conditions. NanoImpact, 2020, 19, 100250.	2.4	7
1003	Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food and Chemical Toxicology, 2020, 146, 111814.	1.8	60

#	Article	IF	CITATIONS
1004	Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 7545.	1.8	5
1005	Cataluminescence strategy for rapid identification of sunscreen cosmetics based on its characteristic composition served as catalyst. Sensors and Actuators B: Chemical, 2020, 323, 128697.	4.0	6
1006	Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO2 nanoparticles in an ex vivo placental perfusion model. Particle and Fibre Toxicology, 2020, 17, 51.	2.8	49
1007	Restraining the TiO2 nanoparticles-induced intestinal inflammation mediated by gut microbiota in juvenile rats via ingestion of Lactobacillus rhamnosus GG. Ecotoxicology and Environmental Safety, 2020, 206, 111393.	2.9	22
1008	Food-grade titanium dioxide (E171) induces anxiety, adenomas in colon and goblet cells hyperplasia in a regular diet model and microvesicular steatosis in a high fat diet model. Food and Chemical Toxicology, 2020, 146, 111786.	1.8	22
1009	Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose. Nanotoxicology, 2020, 14, 1301-1323.	1.6	15
1010	Natural TiO ₂ -Nanoparticles in Soils: A Review on Current and Potential Extraction Methods. Critical Reviews in Analytical Chemistry, 2022, 52, 735-755.	1.8	3
1011	Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L481-L496.	1.3	24
1012	Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Particle and Fibre Toxicology, 2020, 17, 31.	2.8	61
1013	Toxicity of TiO2 Nanoparticles: Validation of Alternative Models. International Journal of Molecular Sciences, 2020, 21, 4855.	1.8	10
1014	Effects of ingested food-grade titanium dioxide, silicon dioxide, iron (III) oxide and zinc oxide nanoparticles on an in vitro model of intestinal epithelium: Comparison between monoculture vs. a mucus-secreting coculture model. NanoImpact, 2020, 17, 100209.	2.4	24
1015	A new nanometrological strategy for titanium dioxide nanoparticles screening and confirmation in personal care products by CE-spICP-MS. Talanta, 2020, 219, 121385.	2.9	8
1016	Electrophoretic Deposition of Nanoporous Oxide Coatings from Concentrated CuO Nanoparticle Dispersions. Langmuir, 2020, 36, 8075-8085.	1.6	11
1017	Titanium salts tested in reconstructed human skin with integrated <scp>MUTZ</scp> â€3â€derived Langerhans cells show an irritant rather than a sensitizing potential. Contact Dermatitis, 2020, 83, 337-346.	0.8	9
1018	Photochemical deposition of palladium nanoparticles on TiO2 nanoparticles and their application for electrocatalytic measurement of nitrate ions in potato, onion and cabbage using bipolar electrochemical method. Measurement: Journal of the International Measurement Confederation, 2020, 166, 108222.	2.5	7
1019	Oral toxicity of titanium dioxide P25 at repeated dose 28-day and 90-day in rats. Particle and Fibre Toxicology, 2020, 17, 34.	2.8	21
1020	Evaluation of the specific migration according to EU standards of titanium from Chitosan/Metal complexes films containing TiO2 particles into different food simulants. A comparative study of the nano-sized vs micro-sized particles. Food Packaging and Shelf Life, 2020, 26, 100579.	3.3	22
1021	The role of metal oxide nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on small intestinal enzyme activity. Environmental Science: Nano, 2020, 7, 3940-3964.	2.2	11

			2
#	ARTICLE	IF	CITATIONS
1022	An Embryonic Zebrafish Model to Screen Disruption of Gut-Vascular Barrier upon Exposure to Ambient Ultrafine Particles. Toxics, 2020, 8, 107.	1.6	2
1023	The Protective Effects of Vitamins A and E on Titanium Dioxide Nanoparticles (nTiO2)-Induced Oxidative Stress in the Spleen Tissues of Male Wistar Rats. Biological Trace Element Research, 2021, 199, 3677-3687.	1.9	13
1024	Contribution of Ex-Situ and In-Situ X-ray Grazing Incidence Scattering Techniques to the Understanding of Quantum Dot Self-Assembly: A Review. Nanomaterials, 2020, 10, 2240.	1.9	8
1025	Titanium dioxide nanoparticle-induced cytotoxicity and genotoxicity—Generation of reactive oxygen species and cell damage. , 2020, , 535-559.		0
1026	Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 2020, 7, 2454-2485.	2.2	21
1027	A citizen science approach estimating titanium dioxide released from personal care products. PLoS ONE, 2020, 15, e0235988.	1.1	11
1028	Total Reflection X-ray Fluorescence spectrometry determination of titanium dioxide released from UV-protective textiles during wash. Applied Radiation and Isotopes, 2020, 165, 109345.	0.7	3
1029	Effects of titanium dioxide nanoparticles on the intestine, liver, and kidney of Danio rerio. Ecotoxicology and Environmental Safety, 2020, 203, 111032.	2.9	15
1030	Changes in the wing shape and size in Drosophila melanogaster treated with food grade titanium dioxide nanoparticles (E171) – A multigenerational study. Chemosphere, 2020, 261, 127787.	4.2	12
1031	Characterization of the in Vitro Osteogenic Response to Submicron TiO ₂ Particles of Varying Structure and Crystallinity. ACS Omega, 2020, 5, 16491-16501.	1.6	5
1032	Comparative effects of TiO2 and ZnO nanoparticles on growth and ultrastructure of ovarian antral follicles. Reproductive Toxicology, 2020, 96, 399-412.	1.3	9
1033	The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Small, 2020, 16, e2003691.	5.2	66
1034	Impact of the Physicochemical Features of TiO ₂ Nanoparticles on Their <i>In Vitro</i> Toxicity. Chemical Research in Toxicology, 2020, 33, 2324-2337.	1.7	33
1035	Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials, 2020, 10, 2132.	1.9	17
1036	Molecular dynamics simulations of BSA absorptions on pure and formate-contaminated rutile (1 1 0) surface. Applied Surface Science, 2020, 533, 147574.	3.1	7
1037	Wastewater-Aged Silver Nanoparticles in Single and Combined Exposures with Titanium Dioxide Affect the Early Development of the Marine Copepod <i>Tisbe battagliai</i> . Environmental Science & Copepod - Technology, 2020, 54, 12316-12325.	4.6	12
1038	Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. Catalysis Reviews - Science and Engineering, 2022, 64, 229-285.	5.7	52
1039	Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale, 2020, 12, 20033-20046.	2.8	19

#	Article	IF	CITATIONS
1040	Chronic Exposure to Titanium Dioxide Nanoparticles Induces Commensal-to-Pathogen Transition in <i>Escherichia coli</i> . Environmental Science & Technology, 2020, 54, 13186-13196.	4.6	21
1041	Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Biointerphases, 2020, 15, 051003.	0.6	6
1042	Occurrence and Origins of Cerium Dioxide and Titanium Dioxide Nanoparticles in the Loire River (France) by Single Particle ICP-MS and FEG-SEM Imaging. Frontiers in Environmental Science, 2020, 8, .	1.5	17
1043	Exploring Flow Cytometry-Based Micronucleus Scoring for Reliable Nanomaterial Genotoxicity Assessment. Chemical Research in Toxicology, 2020, 33, 2538-2549.	1.7	16
1044	Exposure to ZnO/TiO2 Nanoparticles Affects Health Outcomes in Cosmetics Salesclerks. International Journal of Environmental Research and Public Health, 2020, 17, 6088.	1.2	27
1045	Bacteria Remediate the Effects of Food Additives on Intestinal Function in an in vitro Model of the Gastrointestinal Tract. Frontiers in Nutrition, 2020, 7, 131.	1.6	10
1046	The interactive effects of titanium dioxide nanoparticles and light on heterotrophic bacteria and microalgae associated with marine aggregates in nearshore waters. Marine Environmental Research, 2020, 161, 105146.	1.1	5
1047	Effects of Titanium Dioxide Nanoparticles on Photosynthetic and Antioxidative Processes of Scenedesmus obliquus. Plants, 2020, 9, 1748.	1.6	19
1048	Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health, 2020, 17, 9547.	1.2	16
1049	Nanomedicine: Risk, Safety, Regulation, and Public Health. , 2020, , 561-578.		2
1050	Influence of the physicochemical features of TiO ₂ nanoparticles on the formation of a protein corona and impact on cytotoxicity. RSC Advances, 2020, 10, 43950-43959.	1.7	8
1051	Titanium Dioxide in Chromogenic Devices: Synthesis, Toxicological Issues, and Fabrication Methods. Applied Sciences (Switzerland), 2020, 10, 8896.	1.3	1
1053	Lipid and protein corona of food-grade TiO2 nanoparticles in simulated gastrointestinal digestion. NanoImpact, 2020, 20, 100272.	2.4	32
1054	Food-Grade TiO ₂ Particles Generate Intracellular Superoxide and Alter Epigenetic Modifiers in Human Lung Cells. Chemical Research in Toxicology, 2020, 33, 2872-2879.	1.7	5
1055	Exposure to TiO2 Nanoparticles Increases Listeria monocytogenes Infection of Intestinal Epithelial Cells. Nanomaterials, 2020, 10, 2196.	1.9	4
1056	Acute highâ€dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice. Journal of Applied Toxicology, 2020, 40, 1384-1395.	1.4	11
1057	MicroRNA Response and Toxicity of Potential Pathways in Human Colon Cancer Cells Exposed to Titanium Dioxide Nanoparticles. Cancers, 2020, 12, 1236.	1.7	12
1058	Combined effect of titanium dioxide nanoparticles and glucose on the blood glucose homeostasis in young rats after oral administration. Journal of Applied Toxicology, 2020, 40, 1284-1296.	1.4	8

#	Article	IF	Citations
1059	Nanoemulsion in cosmetic: from laboratory to market. , 2020, , 327-347.		5
1060	Inactivation Kinetics and Membrane Potential of Pathogens in Soybean Curd Subjected to Pulsed Ohmic Heating Depending on Applied Voltage and Duty Ratio. Applied and Environmental Microbiology, 2020, 86, .	1.4	11
1061	Growth and metabolism of <i>Clarias gariepinus</i> (Burchell, 1822) fed with copepods (<i>Eucyclops</i> sp.) exposed to lead and titanium dioxide nanoparticles. African Journal of Aquatic Science, 2020, 45, 310-316.	0.5	0
1062	TiO2 genotoxicity: An update of the results published over the last six years. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 854-855, 503198.	0.9	12
1063	Dietary bioaccumulation potential of silver nanomaterials compared to silver nitrate in wistar rats using an ex vivo gut sac technique. Ecotoxicology and Environmental Safety, 2020, 200, 110745.	2.9	5
1064	Environmental transformation of n-TiO2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. Ecotoxicology and Environmental Safety, 2020, 200, 110776.	2.9	31
1065	Association of twenty-three plasma elements with fasting serum glucose among Chinese population from four areas with different pollution level. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126510.	1.5	7
1066	Size characterization and quantification of titanium dioxide nano- and microparticles-based products by Asymmetrical Flow Field-Flow Fractionation coupled to Dynamic Light Scattering and Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 2020, 1122, 20-30.	2.6	15
1067	Highly Defective Dark Nano Titanium Dioxide: Preparation via Pulsed Laser Ablation and Application. Materials, 2020, 13, 2054.	1.3	27
1068	Determination of titanium dioxide nanoparticles used in various foods. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 260-267.	1.3	24
1069	Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice. Particle and Fibre Toxicology, 2020, 17, 26.	2.8	37
1070	Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Nonâ€Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. Small, 2020, 16, e2001858.	5.2	60
1071	Acute and Subacute Toxicity Study of Graphene-Based Tumor Cell Nucleus-Targeting Fluorescent Nanoprobes. Molecular Pharmaceutics, 2020, 17, 2682-2690.	2.3	7
1072	Ion-gated transistors based on porous and compact TiO2 films: Effect of Li ions in the gating medium. AIP Advances, 2020, 10, .	0.6	10
1073	Size Fractionation of Titania Nanoparticles in Wild <i>Dittrichia viscosa</i> Grown in a Native Environment. Environmental Science & Technology, 2020, 54, 8649-8657.	4.6	8
1074	Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters, 2020, 18, 1659-1683.	8.3	289
1075	Derivation of whole blood biomonitoring equivalents for titanium for the interpretation of biomonitoring data. Regulatory Toxicology and Pharmacology, 2020, 114, 104671.	1.3	4
1076	Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Particle and Fibre Toxicology, 2020, 17, 19.	2.8	93

#	Article	IF	CITATIONS
1077	Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. Small, 2020, 16, e2001246.	5.2	28
1078	Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Science of the Total Environment, 2020, 739, 139756.	3.9	54
1079	Raman spectra and surface changes of microplastics weathered under natural environments. Science of the Total Environment, 2020, 739, 139990.	3.9	155
1080	Investigation of the Fate of Silver and Titanium Dioxide Nanoparticles in Model Wastewater Effluents via Selected Area Electron Diffraction. Environmental Science & Technology, 2020, 54, 8681-8689.	4.6	7
1081	Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicological Sciences, 2020, 177, 248-262.	1.4	3
1082	Titanium Dioxide Nanoparticles in Food and Personal Care Products—What Do We Know about Their Safety?. Nanomaterials, 2020, 10, 1110.	1.9	126
1084	Probing solid-state reaction through microstrain: A case study on synthesis of LiCoO2. Journal of Power Sources, 2020, 469, 228422.	4.0	17
1085	Mineral-TiO2 composites:Preparation and application in papermaking, paints and plastics. Journal of Alloys and Compounds, 2020, 844, 156139.	2.8	27
1086	Polyacrylic acid coated nanoparticles elicit endothelial cell apoptosis and diminish vascular relaxation in <i>ex vivo</i> perfused iliac arteries of the cane toad (<i>Rhinella marina</i>). Environmental Science: Nano, 2020, 7, 1912-1926.	2.2	6
1087	Effects of Titanium Dioxide Nanoparticles on the Hprt Gene Mutations in V79 Hamster Cells. Nanomaterials, 2020, 10, 465.	1.9	18
1088	Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21, 1731.	1.8	14
1089	Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besòs and Ebro Rivers. Environmental Science & Technology, 2020, 54, 3969-3978.	4.6	39
1090	Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 2020, 99, 295-310.	7.8	94
1091	Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials, 2020, 10, 545.	1.9	55
1092	Environmental Hazard Potential of Nanoâ€Photocatalysts Determined by Nanoâ€Bio Interactions and Exposure Conditions. Small, 2020, 16, e1907690.	5.2	20
1093	Use of Nanomaterials in Food Science. , 2020, , 457-488.		44
1095	Titanium dioxide nanoparticles via oral exposure leads to adverse disturbance of gut microecology and locomotor activity in adult mice. Archives of Toxicology, 2020, 94, 1173-1190.	1.9	31
1096	Fast and Robust Proteome Screening Platform Identifies Neutrophil Extracellular Trap Formation in the Lung in Response to Cobalt Ferrite Nanoparticles. ACS Nano, 2020, 14, 4096-4110.	7.3	20

#	Article	IF	CITATIONS
1097	Genotoxicity of TiO2 Nanoparticles in Four Different Human Cell Lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials, 2020, 10, 412.	1.9	31
1098	Nanoparticles: Pathways into the Environment and Effect on Biological Systems. , 2020, , .		Ο
1099	The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: a case-control study. Environmental Science and Pollution Research, 2020, 27, 35738-35749.	2.7	15
1100	Safety and regulatory issues of nanomaterials in foods. , 2020, , 655-703.		6
1101	A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 2020, 202, 110911.	2.9	27
1102	Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine. Archives of Microbiology, 2020, 202, 1873-1880.	1.0	4
1103	Serum metabolomic signatures of Sprague-Dawley rats after oral administration of titanium dioxide nanoparticles. NanoImpact, 2020, 19, 100236.	2.4	5
1104	Food science application. , 2020, , 347-368.		1
1105	Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology, 2020, 14, 985-1007.	1.6	44
1106	Food additives and the future of health: An analysis of the ongoing controversy on titanium dioxide. Futures, 2020, 122, 102598.	1.4	25
1107	Assessment of strategies for the formation of stable suspensions of titanium dioxide nanoparticles in aqueous media suitable for the analysis of biological fluids. Analytical and Bioanalytical Chemistry, 2020, 412, 1469-1481.	1.9	20
1108	Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Particle and Fibre Toxicology, 2020, 17, 10.	2.8	66
1109	Coagulation of TiO ₂ , CeO ₂ nanoparticles, and polystyrene nanoplastics in bottled mineral and surface waters. Effect of water properties, coagulant type, and dosage. Water Environment Research, 2020, 92, 1184-1194.	1.3	31
1110	Sustainable Agriculture Reviews 41. Sustainable Agriculture Reviews, 2020, , .	0.6	7
1111	In vitro pulmonary toxicity of thermally processed titania nanotubes. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	0
1112	Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerging Contaminants, 2020, 6, 87-92.	2.2	45
1113	Autophagy Modulated by Inorganic Nanomaterials. Theranostics, 2020, 10, 3206-3222.	4.6	121
1116	Investigation of twenty metal, metal oxide, and metal sulfide nanoparticles' impact on differentiated Caco-2 monolayer integrity. NanoImpact, 2020, 17, 100212.	2.4	13

#	Article	IF	CITATIONS
1117	Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues. Journal of Nanobiotechnology, 2020, 18, 28.	4.2	20
1118	Total and subcellular Ti distribution and detoxification processes in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil. Marine Pollution Bulletin, 2020, 153, 110975.	2.3	6
1119	Early-onset colorectal cancer: initial clues and current views. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 352-364.	8.2	220
1120	The long-term oral exposure to titanium dioxide impaired immune functions and triggered cytotoxic and genotoxic impacts in rats. Journal of Trace Elements in Medicine and Biology, 2020, 60, 126473.	1.5	17
1121	Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats. Nanoscale, 2020, 12, 5973-5986.	2.8	45
1123	Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure. Environment International, 2020, 138, 105611.	4.8	35
1124	Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles. Nano Letters, 2020, 20, 1662-1668.	4.5	14
1125	An Atomistic Molecular Dynamics Study of Titanium Dioxide Adhesion to Lipid Bilayers. Langmuir, 2020, 36, 1043-1052.	1.6	10
1126	Identification of inhalable rutile and polycyclic aromatic hydrocarbons (PAHs) nanoparticles in the atmospheric dust. Environmental Pollution, 2020, 260, 114006.	3.7	9
1127	150 years of the periodic table: New medicines and diagnostic agents. Advances in Inorganic Chemistry, 2020, 75, 3-56.	0.4	16
1128	TiO2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. Environmental Science and Pollution Research, 2020, 27, 10425-10435.	2.7	29
1129	Bacteria-nanoparticle interactions in the context of nanofouling. Advances in Colloid and Interface Science, 2020, 277, 102106.	7.0	19
1130	Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 849, 503142.	0.9	17
1131	TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. Science of the Total Environment, 2020, 713, 136602.	3.9	20
1132	Analysis of the Exposure of Organisms to the Action of Nanomaterials. Materials, 2020, 13, 349.	1.3	40
1133	Effect of TiO ₂ -nanoparticles on copper toxicity to bacteria: role of bacterial surface. RSC Advances, 2020, 10, 5058-5065.	1.7	14
1134	Atomic-Scale Investigation on the Evolution of Tio2-Anatase Prepared by a Sonochemical Route and Treated with NaOH. Materials, 2020, 13, 685.	1.3	9
1135	Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact, 2020, 18, 100224.	2.4	60

		CITATION RE	PORT	
#	Article		IF	Citations
1136	Titanium dioxide nanoparticles induced the apoptosis of RAW264.7 macrophages throu miR-29b-3p/NFAT5 pathway. Environmental Science and Pollution Research, 2020, 27, 2		2.7	7
1137	Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomater Consumer Care Products and in Skin Following Dermal Exposure. Chemical Research in 2020, 33, 1266-1278.	ial Detection in Toxicology,	1.7	7
1138	Impact of different crystalline forms of nTiO2 on metabolism and arsenic toxicity in Lim fortunei. Science of the Total Environment, 2020, 728, 138318.	noperna	3.9	13
1139	Cytotoxicity of NiO and Ni(OH)2 Nanoparticles Is Mediated by Oxidative Stress-Induced Suppression of Cell Proliferation. International Journal of Molecular Sciences, 2020, 21,	Cell Death and 2355.	1.8	16
1140	Physicochemical Characterization of the Pristine E171 Food Additive by Standardized ar Methods. Nanomaterials, 2020, 10, 592.	nd Validated	1.9	47
1141	TiO ₂ Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness in a Gastrointestinal Tract Model. Small, 2020, 16, e2000601.	and Composition	5.2	29
1142	The effect of nanomaterials on properties of geopolymers derived from industrial by-prostate-of-the-art review. Construction and Building Materials, 2020, 252, 119028.	ducts: A	3.2	79
1143	Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant trans through activating the CXCR2/NF-I®B/STAT3/ERK and AKT pathways in colonic mucosal o Environmental Pollution, 2020, 263, 114578.	sformation cells.	3.7	8
1144	Toxic impacts of rutile titanium dioxide in Mytilus galloprovincialis exposed to warming Chemosphere, 2020, 252, 126563.	conditions.	4.2	30
1145	Charge-switchable magnetic separation and characterization of food additive titanium on nanoparticles from commercial food. Journal of Hazardous Materials, 2020, 393, 12248	lioxide 3.	6.5	20
1146	Recent Trends in Nanocomposite Packaging Materials. , 2021, , 731-755.			4
1147	The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified pla milks. Food Hydrocolloids, 2021, 112, 106310.	ant-based	5.6	27
1148	Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Archives of 2021, 95, 27-52.	Toxicology,	1.9	23
1149	Assessing the effectiveness of colloidal microcrystalline cellulose as a suspending agent and white liquid dyes. International Journal of Food Science and Technology, 2021, 56, 2		1.3	5
1150	Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemi 127750.	stry, 2021, 337,	4.2	110
1151	Concentrations and size distribution of TiO2 and Ag engineered particles in five wastew treatment plants in the United States. Science of the Total Environment, 2021, 753, 14	ater 2017.	3.9	26
1152	Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal gr zebrafish (Danio rerio) larvae. Science of the Total Environment, 2021, 754, 142315.	owth in	3.9	50
1153	Fast Multielement Quantification of Nanoparticles in Wastewater and Sludge Using Sin ICP-MS. ACS ES&T Water, 2021, 1, 205-213.	gle-Particle	2.3	32

#	Article	IF	CITATIONS
1154	Toxicity of orally administered foodâ€grade titanium dioxide nanoparticles. Journal of Applied Toxicology, 2021, 41, 1127-1147.	1.4	21
1155	Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis. Nano Research, 2021, 14, 1512-1522.	5.8	28
1156	Effects of ingested nanomaterials on tissue distribution of co-ingested zinc and iron in normal and zinc-deficient mice. NanoImpact, 2021, 21, 100279.	2.4	2
1157	Simultaneous extraction of Ti(IV) and Fe(III) in HCl solution containing multiple metals and the mechanism research. Separation and Purification Technology, 2021, 257, 117897.	3.9	12
1158	Effect of food on orally-ingested titanium dioxide and zinc oxide nanoparticle behaviors in simulated digestive tract. Chemosphere, 2021, 268, 128843.	4.2	18
1159	Particle size analysis of pristine food-grade titanium dioxide and E 171 in confectionery products: Interlaboratory testing of a single-particle inductively coupled plasma mass spectrometry screening method and confirmation with transmission electron microscopy. Food Control, 2021, 120, 107550.	2.8	48
1160	Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environmental Chemistry Letters, 2021, 19, 1715-1735.	8.3	93
1161	Optimisation and application of an analytical approach for the characterisation of TiO2 nanoparticles in food additives and pharmaceuticals by single particle inductively coupled plasma-mass spectrometry. Talanta, 2021, 224, 121873.	2.9	20
1162	An innovative filtration based Raman mapping technique for the size characterization of anatase titanium dioxide nanoparticles. Talanta, 2021, 224, 121836.	2.9	4
1163	Environmental titanium exposure and reproductive health: Risk of low birth weight associated with maternal titanium exposure from a nested case-control study in northern China. Ecotoxicology and Environmental Safety, 2021, 208, 111632.	2.9	9
1164	Effect of air particle interfusion on radiative transfer in a cosmetic layer. Powder Technology, 2021, 379, 596-601.	2.1	1
1165	Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends in Food Science and Technology, 2021, 107, 240-251.	7.8	20
1166	Toxicology Aspects of Nanomaterials. , 2021, , 756-774.		0
1167	Factors Conditioning the Potential Effects TiO2 NPs Exposure on Human Microbiota: a Mini-Review. Biological Trace Element Research, 2021, 199, 4458-4465.	1.9	16
1168	Impact of nanoparticles on soil resource. , 2021, , 65-85.		11
1169	Effect of nanoparticles on crop growth. , 2021, , 183-201.		1
1170	Application of Titanium Dioxide Nanoparticles in Consumer Products Raises Human Health Concerns: Lessons from Murine Models of Toxicity. Nanotechnology in the Life Sciences, 2021, , 3-51.	0.4	1
1171	Food-grade titanium dioxide particles decrease the bioaccessibility of iron released from spinach leaves in simulated human gastrointestinal tract. Environmental Science: Nano, 2021, 8, 1269-1282.	2.2	2

#	Article	IF	CITATIONS
1172	In vitro assays for predicting the safety of food-based nanomaterials. , 2021, , 119-142.		0
1173	Regulatory principles on food nano-particles legislated by international organizations. , 2021, , 251-290.		0
1174	Cytotoxicity and biocompatibility of advanced green materials. , 2021, , 705-722.		1
1175	Molecular mechanism of mice gastric oxidative damage induced by nanoparticulate titanium dioxide. Toxicology Research, 2021, 10, 60-67.	0.9	0
1176	Interaction of Food-Grade Nanotitania with Human and Mammalian Cell Lines Derived from GI Tract, Liver, Kidney, Lung, Brain, and Heart. Nanotechnology in the Life Sciences, 2021, , 295-331.	0.4	0
1177	Nanoparticles: Sources and Toxicity. Nanotechnology in the Life Sciences, 2021, , 217-232.	0.4	2
1178	Nanomaterials and Human Health: An Overview. Environmental Chemistry for A Sustainable World, 2021, , 165-180.	0.3	2
1179	Types and Classification of Nanomaterials. , 2021, , 15-38.		8
1180	Impact of titanium dioxide nanoparticles on intestinal community in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis mice and the intervention effect of vitamin E. Nanoscale, 2021, 13, 1842-1862.	2.8	12
1181	Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environmental Science: Nano, 2021, 8, 1500-1518.	2.2	15
1182	Nanomaterials in agricultural and food applications. , 2021, , 383-404.		1
1183	Iron content titanium dioxide nanoparticles as exogenous contrast agent for tissue imaging using swept-source optical coherence tomography. AIP Advances, 2021, 11, .	0.6	4
1184	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. Environmental Chemistry for A Sustainable World, 2021, , 1-111.	0.3	3
1185	An overview of geological originated materials as a trend for adsorption in wastewater treatment. Geoscience Frontiers, 2022, 13, 101150.	4.3	21
1186	<i>In vitro</i> digestion of food grade TiO ₂ (E171) and TiO ₂ nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes. Food and Function, 2021, 12, 5975-5988.	2.1	13
1187	Assessment of the Influence of Crystalline Form on Cyto-Genotoxic and Inflammatory Effects Induced by TiO2 Nanoparticles on Human Bronchial and Alveolar Cells. Nanomaterials, 2021, 11, 253.	1.9	14
1188	The Impact of TiO ₂ Nanoparticle Exposure on Transmembrane Cholesterol Transport and Enhanced Bacterial Infectivity. SSRN Electronic Journal, 0, , .	0.4	0
1189	Antimicrobial activities of biosynthesized nanomaterials. Comprehensive Analytical Chemistry, 2021, 94, 81-172.	0.7	2

#	Article	IF	CITATIONS
1190	Geopolymer composites modified with nanomaterials. , 2021, , 25-51.		1
1191	Recycling of materials containing inorganic and carbonaceous nanomaterials. , 2021, , 459-495.		0
1192	Metal and metal oxide nanoparticles in cosmetics and skin care products. Comprehensive Analytical Chemistry, 2021, , 381-427.	0.7	8
1193	Nanomaterials Causing Cellular Toxicity and Genotoxicity. Environmental Chemistry for A Sustainable World, 2021, , 245-266.	0.3	1
1194	Impacts of Titanium Dioxide Nanoparticles on Serum Parameters and Enzyme Activities of Clarias gariepinus. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 629-636.	1.3	11
1195	TiO2 as white pigment and valorization of the waste coming from its production. , 2021, , 311-335.		6
1196	Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. International Journal of Environmental Research and Public Health, 2021, 18, 2008.	1.2	17
1197	Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. International Journal of Molecular Sciences, 2021, 22, 1942.	1.8	38
1198	Sunscreens and their usefulness: have we made any progress in the last two decades?. Photochemical and Photobiological Sciences, 2021, 20, 189-244.	1.6	31
1199	Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D ₃ in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2021, 69, 2855-2863.	2.4	6
1200	Unmodified Titanium Dioxide Nanoparticles as a Potential Contrast Agent in Photon Emission Computed Tomography. Crystals, 2021, 11, 171.	1.0	18
1201	Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. Environmental Science & amp; Technology, 2021, 55, 2392-2402.	4.6	31
1202	The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs. Particle and Fibre Toxicology, 2021, 18, 8.	2.8	23
1203	Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions. Journal of Rheology, 2021, 65, 145.	1.3	18
1204	Evaluation of metal concentrations in hair and nails after dental implant placement. Journal of Prosthetic Dentistry, 2022, 128, 625-631.	1.1	5
1205	Non-toxic doses of modified titanium dioxide nanoparticles (m-TiO2NPs) in albino CFW mice. Heliyon, 2021, 7, e06514.	1.4	6
1206	Protective Effect of Lactobacillus rhamnosus GG on TiO2 Nanoparticles-Induced Oxidative Stress Damage in the Liver of Young Rats. Nanomaterials, 2021, 11, 803.	1.9	12
1207	The influence of fucoidan on stability, adsorption and electrokinetic properties of ZnO and TiO2 suspensions. Applied Nanoscience (Switzerland), 2022, 12, 919-927.	1.6	5

#	Article	IF	CITATIONS
1208	Examining Particle Size of Inorganic Active Ingredients within Sunscreens Using Dynamic Light Scattering. Journal of Chemical Education, 2021, 98, 1371-1380.	1.1	3
1209	A Protein and Membrane Integrity Study of TiO2 Nanoparticles-Induced Mitochondrial Dysfunction and Prevention by Iron Incorporation. Journal of Membrane Biology, 2021, 254, 217-237.	1.0	6
1210	Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish (<i>Danio rerio</i>). Nanotoxicology, 2021, 15, 527-541.	1.6	2
1211	Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity,Âand reproductive disturbances in male mice. Environmental Science and Pollution Research, 2021, 28, 39035-39051.	2.7	10
1212	Toxic Effect of Metal-Based Nanomaterials on Representatives of Marine Ecosystems: A Review. Nanobiotechnology Reports, 2021, 16, 138-154.	0.2	8
1213	Tuning the Dispersion of Hydrophilic and Hydrophobic Nanoparticles by Proteins. Chemistry Letters, 2021, 50, 1378-1381.	0.7	2
1214	Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry. Journal of Chromatography A, 2021, 1643, 462059.	1.8	8
1215	Effects of TiO2 Nanoparticles Incorporation into Cells of Tomato Roots. Nanomaterials, 2021, 11, 1127.	1.9	5
1216	Reactive oxygen species: the root cause of nanoparticle-induced toxicity in <i>Drosophila melanogaster</i> . Free Radical Research, 2021, 55, 919-935.	1.5	21
1217	Anatase Titanium Dioxide Imparts Photoluminescent Properties to PA2200 Commercial 3D Printing Material to Generate Complex Optical Imaging Phantoms. Materials, 2021, 14, 1813.	1.3	3
1218	Co-exposure to boscalid and TiO2 (E171) or SiO2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NanoImpact, 2021, 22, 100306.	2.4	12
1219	Analysis of global and <scp>Latinâ€American</scp> trends in nanotoxicology with a focus on carbon nanomaterials: a scientometric approach. Journal of Chemical Technology and Biotechnology, 2021, 96, 2141-2151.	1.6	1
1220	Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiology and Biochemistry, 2021, 161, 12-24.	2.8	97
1221	Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods, 2021, 10, 939.	1.9	8
1222	Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of the Total Environment, 2021, 768, 144990.	3.9	106
1223	Remediation of noxious pollutants using nano-titania-based photocatalytic construction materials: a review. Environmental Science and Pollution Research, 2021, 28, 34087-34107.	2.7	10
1224	Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal, 2021, 19, e06585.	0.9	93
1225	Polysaccharide-Based Packaging Functionalized with Inorganic Nanoparticles for Food Preservation. Polysaccharides, 2021, 2, 400-428.	2.1	12

ARTICLE IF CITATIONS Interactions between peracetic acid and TiO2 nanoparticle in wastewater disinfection: Mechanisms 1226 14 6.6 and implications. Chemical Engineering Journal, 2021, 412, 128703. Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs?. Science of 1227 9 the Total Environment, 2021, 769, 144576. Inkjetâ⁻'Printable Nanoporous Ag Disk Arrays Enabling Coffeeâ⁻'Ring Effectâ⁻'Driven Analyte Enrichment Towards Practical SERS Applications. International Journal of Precision Engineering and 1228 2.7 14 Manufacturing - Green Technology, 2022, 9, 421-429. Physico-Chemical Properties of Inorganic NPs Influence the Absorption Rate of Aquatic Mosses Reducing Cytotoxicity on Intestinal Epithelial Barrier Model. Molecules, 2021, 26, 2885. A review on TiO2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives. 1230 2.9 18 Food Research International, 2021, 144, 110378. Photocatalytic and Antibacterial Potency of Titanium Dioxide Nanoparticles: A Cost-Effective and 1.6 Environmentally Friendly Media for Treatment of Air and Wastewater. Catalysts, 2021, 11, 709. Damaging effects of TiO2 nanoparticles on the ovarian cells of Bombyx mori. Biological Trace Element 1232 1.9 3 Research, 2021, , 1. Protein corona formation around inorganic nanoparticles: Food plant proteins-TiO2 nanoparticle 1233 5.6 37 interactions. Food Hydrocolloids, 2021, 115, 106594. Evaluation of the permeability and in vitro cytotoxicity of functionalized titanate nanotubes on 1234 0.2 2 Caco-2 cell line. Acta Pharmaceutica Hungarica, 2021, 91, 31-39. Environmental Aspects of Oxide Nanoparticles: Probing Oxide Nanoparticle Surface Processes Under 2.8 Different Environmental Conditions. Annual Review of Analytical Chemistry, 2021, 14, 489-514. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles 1236 7 1.9 and TiO2 E171 in Male and Female Rat Pups. Nanomaterials, 2021, 11, 1487. Surfaceâ€Enhanced Raman Spectroscopic Analysis of Anatase Titanium Dioxide Nanoparticles: Investigation of the Key Factors. ChemistrySelect, 2021, 6, 5987-5993. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. 1238 1.7 9 Applied Microbiology and Biotechnology, 2021, 105, 5357-5366. Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil. Environmental Science and Pollution Research, 2021, 28, 57640-57656. 2.7 Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent., 1240 32 2021, 222, 107795. Review of gut nanotoxicology in mammals: Exposure, transformation, distribution and toxicity. 1241 3.9 Science of the Total Environment, 2021, 773, 145078. Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis 1242 1.9 8 Tissue. Biological Trace Element Research, 2022, 200, 1650-1658. Active antibacterial coating of cotton fabrics with antimicrobial proteins. Cellulose, 2021, 28, 1243 2.4 8077-8094.

#	Article	IF	CITATIONS
1244	Metal concentrations and metallothionein metal detoxification in blue sharks, Prionace glauca L. from the Western North Atlantic Ocean. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126813.	1.5	19
1245	Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system. Food Packaging and Shelf Life, 2021, 28, 100651.	3.3	24
1246	Monitoring the Structure Evolution of Titanium Oxide Photocatalysts: From the Molecular Form via the Amorphous State to the Crystalline Phase. Chemistry - A European Journal, 2021, 27, 11600-11608.	1.7	5
1247	The Biolog EcoPlateâ,,¢ Technique for Assessing the Effect of Metal Oxide Nanoparticles on Freshwater Microbial Communities. Nanomaterials, 2021, 11, 1777.	1.9	15
1248	Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 2021, 11, 902.	1.6	237
1249	Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Particle and Fibre Toxicology, 2021, 18, 26.	2.8	24
1251	Atomistic Molecular Dynamics Simulations of Lipids Near TiO ₂ Nanosurfaces. Journal of Physical Chemistry B, 2021, 125, 8048-8059.	1.2	4
1252	Toxicity of titanium nano-oxide nanoparticles (TiO ₂) on the pacific oyster, <i>Crassostrea gigas</i> : immunity and antioxidant defence. Toxin Reviews, 2022, 41, 237-246.	1.5	8
1253	Microplasma synthesis of titanium dioxide nanowires. Materials Letters, 2021, 295, 129855.	1.3	3
1254	Ovarian toxicity of nanoparticles. Reproductive Toxicology, 2021, 103, 79-95.	1.3	11
1254 1255	Ovarian toxicity of nanoparticles. Reproductive Toxicology, 2021, 103, 79-95. Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910.	1.3 1.9	11
	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. <i>Lactobacillus rhamnosus</i> GG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused Metabolic Abnormality in Metabolism Syndrome Mice. Journal of Agricultural and Food Chemistry,		
1255	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. <i>Lactobacillus rhamnosus</i> GG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused	1.9	15
1255 1256	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. <i>Lactobacillus rhamnosus</i> CG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused Metabolic Abnormality in Metabolism Syndrome Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 9788-9799. A novel approach for 3D morphological characterization of silica nanoparticle population through	1.9 2.4	15 23
1255 1256 1257	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. <i>Lactobacillus rhamnosus</i> GG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused Metabolic Abnormality in Metabolism Syndrome Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 9788-9799. A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109521.	1.9 2.4 2.5	15 23 2
1255 1256 1257 1258	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. <i>Lactobacillus rhamnosus</i> GG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused Metabolic Abnormality in Metabolism Syndrome Mice. Journal of Agricultural and Food Chemistry, 2021. 69. 9788-9799. A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109521. Inhibition of testosterone synthesis induced by oral TiO2 NPs is associated with ROS-MAPK(ERK1/2)-StAR signaling pathway in SD rat. Toxicology Research, 2021, 10, 937-946. Use of nanoparticles in food industry: current legislation, health risk discussions and public perception with a focus on Switzerland. Toxicological and Environmental Chemistry, 2021, 103,	1.9 2.4 2.5 0.9	15 23 2 10
1255 1256 1257 1258 1259	Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity. Foods, 2021, 10, 1910. (i) Lactobacillus rhamnosus (ii) CG Ameliorated Long-Term Exposure to TiO ₂ Nanoparticles Induced Microbiota-Mediated Liver and Colon Inflammation and Fructose-Caused Metabolic Abnormality in Metabolism Syndrome Mice. Journal of Agricultural and Food Chemistry, 2021. 69, 9788-9799. A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109521. Inhibition of testosterone synthesis induced by oral TiO2 NPs is associated with ROS-MAPK(ERK1/2)-StAR signaling pathway in SD rat. Toxicology Research, 2021, 10, 937-946. Use of nanoparticles in food industry: current legislation, health risk discussions and public perception with a focus on Switzerland. Toxicological and Environmental Chemistry, 2021, 103, 423-437. Sustainable Lignin-Based Coatings Doped with Titanium Dioxide Nanocomposites Exhibit Synergistic Microbicidal and UV-Blocking Performance toward Personal Protective Equipment. ACS Sustainable	1.9 2.4 2.5 0.9 0.6	15 23 2 10 1

#	Article	IF	CITATIONS
1264	Safety assessment of nanoparticles in food: Current status and prospective. Nano Today, 2021, 39, 101169.	6.2	21
1265	Environment and food safety: a novel integrative review. Environmental Science and Pollution Research, 2021, 28, 54511-54530.	2.7	14
1266	Distinct interactions of pig and cow manure-derived colloids with TiO2 nanoparticles and their impact on stability and transport. Journal of Hazardous Materials, 2021, 416, 125910.	6.5	10
1267	Dietary nanoparticles alter the composition and function of the gut microbiota in mice at dose levels relevant for human exposure. Food and Chemical Toxicology, 2021, 154, 112352.	1.8	16
1268	The impact of TiO2 nanoparticle exposure on transmembrane cholesterol transport and enhanced bacterial infectivity in HeLa cells. Acta Biomaterialia, 2021, 135, 606-616.	4.1	5
1269	Photocatalytic Degradation of Rhodamine B and Methylene Orange Using TiO2-ZrO2 as Nanocomposite. Catalysts, 2021, 11, 1035.	1.6	17
1270	Impact of Polyphenol Interactions with Titanium Dioxide Nanoparticles on Their Bioavailability and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 9661-9670.	2.4	21
1271	Evidence that nano-TiO ₂ induces acute cytotoxicity to the agronomically beneficial nitrogen-fixing bacteria <i>Sinorhizobium meliloti</i> . Canadian Journal of Microbiology, 2022, 68, 67-72.	0.8	1
1272	Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota?. Frontiers in Immunology, 2021, 12, 684605.	2.2	10
1273	Forgotten but not gone: Particulate matter as contaminations of mucosal systems. Biophysics Reviews, 2021, 2, .	1.0	3
1274	Influence of wastewater type in the effects caused by titanium dioxide nanoparticles in the removal of macronutrients by activated sludge. Environmental Science and Pollution Research, 2022, 29, 8746-8757.	2.7	2
1275	Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing—A Review. International Journal of Molecular Sciences, 2021, 22, 9932.	1.8	14
1276	Differential response of immobile (pneumocytes) and mobile (monocytes) barriers against 2 types of metal oxide nanoparticles. Chemico-Biological Interactions, 2021, 347, 109596.	1.7	2
1277	Adsorption of proteins on TiO2 particles influences their aggregation and cell penetration. Food Chemistry, 2021, 360, 130003.	4.2	5
1278	Chemical-recognition-driven selectivity of SnO2-nanowire-based gas sensors. Nano Today, 2021, 40, 101265.	6.2	25
1279	The Influence of Long-Term Dietary Intake of Titanium Dioxide Particles on Elemental Homeostasis and Tissue Structure of Mouse Organs. Journal of Nanoscience and Nanotechnology, 2021, 21, 5014-5025.	0.9	7
1280	Biopersistence rate of metallic nanoparticles in the gastro-intestinal human tract (stage 0 of the EFSA) Tj ETQq0 (0 0 rgBT /0 4.2	Dverlock 10 T

1281	Lignin-based metal oxide nanocomposites for UV protection applications: A review. Journal of Cleaner Production, 2021, 317, 128300.	4.6	30
------	---	-----	----

#	Article	IF	CITATIONS
1282	Dimensional measurement of TiO2 (Nano) particles by SAXS and SEM in powder form. Talanta, 2021, 234, 122619.	2.9	15
1283	Morphological, structural and antibacterial behavior of eco-friendly of ZnO/TiO2 nanocomposite synthesized via Hibiscus rosa-sinensis extract. Journal of Materials Research and Technology, 2021, 15, 2213-2220.	2.6	29
1284	Reconnaissance Study on Adsorption of Pharmaceuticals and Personal Care Products to Managed Turf Soils and Associated Oxide Nanoparticles. Journal of Environmental Engineering, ASCE, 2021, 147, 04021046.	0.7	0
1285	Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. Science of the Total Environment, 2021, 801, 149809.	3.9	35
1286	Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Applied Surface Science Advances, 2021, 6, 100173.	2.9	15
1287	How does biological sex affect the physiological response to nanomaterials?. Nano Today, 2021, 41, 101292.	6.2	6
1288	Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. Journal of Molecular Structure, 2022, 1249, 131556.	1.8	13
1289	Titanium nanoparticles fate in small-sized watersheds under different land-uses. Journal of Hazardous Materials, 2022, 422, 126695.	6.5	1
1290	TiO2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chemistry, 2022, 371, 131045.	4.2	14
1292	Identifying nanodescriptors to predict the toxicity of nanomaterials: a case study on titanium dioxide. Environmental Science: Nano, 2021, 8, 580-590.	2.2	4
1293	Plant-Mediated Green Synthesis of Nanoparticles. Advances in Science, Technology and Innovation, 2021, , 75-89.	0.2	11
1294	TiO2 – do we have to worry about it? One of the important aetiological factors in inflammatory bowel disease. Przeglad Gastroenterologiczny, 2021, 16, 106-110.	0.3	0
1295	Triblock Glycosyl Polymer for the Dis-person Properties of Nano-TiO ₂ . Hans Journal of Nanotechnology, 2021, 11, 208-217.	0.1	0
1296	Anisotropic silica colloids for light scattering. Journal of Materials Chemistry C, 2021, 9, 2695-2700.	2.7	16
1297	Nanoparticle-Induced Oxidative Stress in Plant. Nanotechnology in the Life Sciences, 2021, , 269-313.	0.4	2
1298	The multifaceted dimensions of potent nanostructures: a comprehensive review. Materials Chemistry Frontiers, 2021, 5, 2967-2995.	3.2	6
1300	Rapid and continuous fabrication of TiO2 nanoparticles encapsulated by polyimide fine particles using a multistep flow-system and their application. RSC Advances, 2021, 11, 2083-2087.	1.7	1
1301	The toxicological effects of titanium dioxide nanoparticles on marine microalgae. , 2021, , 479-493.		0

#	Article	IF	CITATIONS
1302	Fourier transform infrared spectroscopy contribution to disentangle nanomaterial (DWCNT, TiO2) impacts on tomato plants. Environmental Science: Nano, 0, , .	2.2	1
1303	Nanotechnology: Current applications and future scope in food. Food Frontiers, 2021, 2, 3-22.	3.7	112
1304	LC/ICPâ€MS AND COMPLEMENTARY TECHNIQUES IN BESPOKE AND NONTARGETED SPECIATION ANALYSIS OF ELEMENTS IN FOOD SAMPLES. Mass Spectrometry Reviews, 2022, 41, 32-50.	2.8	17
1305	Effects of foodâ€borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1481.	3.3	76
1306	The Keys of Success: TiO2 as a Benchmark Photocatalyst. Green Energy and Technology, 2013, , 85-101.	0.4	6
1307	Response of Titanium Nanoparticles to Plant Growth: Agricultural Perspectives. Sustainable Agriculture Reviews, 2020, , 101-110.	0.6	6
1308	Biosynthesis of Nanoparticles and Their Potential Application in Food and Agricultural Sector. Nanotechnology in the Life Sciences, 2020, , 213-225.	0.4	17
1309	Peri-implant Disease. , 2020, , 113-138.		2
1310	Politics of Nanotechnologies in Food and Agriculture. Sustainable Agriculture Reviews, 2017, , 21-40.	0.6	2
1311	Engineered Nanoparticles for Increasing Micronutrient Use Efficiency. , 2019, , 25-49.		4
1312	Nanotechnology Applications in Food: A Scientometric Overview. , 2019, , 683-711.		2
1313	Health Benefits and Potential Risks of Nanostructured Materials. Environmental Chemistry for A Sustainable World, 2019, , 109-142.	0.3	1
1314	Engineered Nanoparticles Induced Brush Border Disruption in a Human Model of the Intestinal Epithelium. Advances in Experimental Medicine and Biology, 2014, 811, 55-72.	0.8	17
1315	Nanomaterials: Types, Classifications, and Sources. , 2020, , 1-13.		13
1316	Polymer nanocomposites and related legal issues: An overview. , 2018, , 679-698.		2
1317	Nano-TiO2 enhanced bioaccumulation and developmental neurotoxicity of bisphenol a in zebrafish larvae. Environmental Research, 2020, 187, 109682.	3.7	29
1318	Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer. Scientific Reports, 2018, 8, 9738.	1.6	16
1319	CHAPTER 8. Nanomaterials in Food Products: A New Analytical Challenge. RSC Nanoscience and Nanotechnology, 2017, , 143-177.	0.2	2

#	Article	IF	CITATIONS
1320	Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology, 2020, 14, 420-432.	1.6	64
1322	Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef University Journal of Basic and Applied Sciences, 2020, 9, .	0.8	48
1323	Listeria monocytogenes Behaviour in Presence of Non-UV-Irradiated Titanium Dioxide Nanoparticles. PLoS ONE, 2014, 9, e84986.	1.1	36
1324	A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products. PLoS ONE, 2016, 11, e0164712.	1.1	19
1325	Titanium Dioxide (Tio2) Nanoparticles Induced ROS Generation and its Effect on Cellular Antioxidant Defense in WRL-68 Cell. MOJ Bioequivalence & Bioavailability, 2017, 3, .	0.1	3
1326	Đ¢iĐž(2) hepatotoxicity under long-term administration to rats. Ukrainian Biochemical Journal, 2020, 92, 45-54.	0.1	2
1327	DYES IN FOOD AND DRUGS ARE POTENTIAL IMMUNOMODULATORS. Medical Immunology (Russia), 2019, 21, 313-322.	0.1	1
1328	AN OVERVIEW ON THE SOME PHENOTIAZINE DERIVATIVE MOLECULES USED IN ORGANIC DYE-SENSITIZED SOLAR CELLS. EJOVOC Electronic Journal of Vocational Colleges, 2015, 5, 89.	0.1	3
1330	Nanotechnology: Nanomedicine, Nanotoxicity and Future Challenges. Nanoscience and Nanotechnology - Asia, 2018, 9, 64-78.	0.3	24
1331	<i>In vitro</i> evaluation of anticancer activity of sodium hyaluronate-titanium dioxide bionanocomposite. Current Issues in Pharmacy and Medical Sciences, 2019, 32, 99-103.	0.1	5
1332	The use of <i>ex vivo</i> ovary culture for assessment of alterations in steroidogenesis following neonatal exposure to poly(ethylene glycol)- <i>block-</i> polylactide methyl ether or titanium dioxide nanoparticles in Wistar rats. Endocrine Regulations, 2020, 54, 53-63.	0.5	2
1333	Titanium Dioxide Nanoparticles Evoke Proinflammatory Response during Murine Norovirus Infection Despite Having Minimal Effects on Virus Replication. International Journal of Nanotechnology in Medicine & Engineering, 2016, 1, 63-73.	0.1	6
1334	Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. International Journal of Molecular Sciences, 2021, 22, 207.	1.8	47
1335	Inactivation of Human Coronavirus by Titania Nanoparticle Coatings and UVC Radiation: Throwing Light on SARS-CoV-2. Viruses, 2021, 13, 19.	1.5	83
1336	Nanotechnology As A Food Perspective. Journal of Nanomaterials & Molecular Nanotechnology, 2013, 02, .	0.1	17
1337	Trace Elements in Gluten-free Pastas and Flours from Markets Located in the Las Vegas, Nevada Area. Journal of Food Research, 2019, 8, 59.	0.1	4
1338	Nanometrology and its perspectives in environmental research. Environmental Health and Toxicology, 2014, 29, e2014016.	1.8	8
1339	Role and adverse effects of nanomaterials in food technology. Journal of Toxicology and Health, 2015, 2, 2.	0.4	22

		CITATION REPOR	εT	
#	Article	IF	C	CITATIONS
1340	Ultrasonication and Food-Grade Nano-Materials. Sustainable Agriculture Reviews, 2021, , 33-	70. 0.6	6 1	
1341	Pre-Exposure to TiO2-NPs Aggravates Alcohol-Related Liver Injury by Inducing Intestinal Barrie Damage in Mice. Toxicological Sciences, 2021, 185, 28-37.	er 1.4	i 7	
1342	Effects of Prenatal Exposure to Titanium Dioxide Nanoparticles on DNA Methylation and Gen Expression Profile in the Mouse Brain. Frontiers in Toxicology, 2021, 3, 705910.	e 1.6	5 8	
1343	Analysis of cytotoxicity and genotoxicity in a short-term dependent manner induced by a new dioxide nanoparticle in murine fibroblast cells. Toxicology Mechanisms and Methods, 2022, 3		3 4	
1344	In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickerin emulsions and derived fortified foods. LWT - Food Science and Technology, 2022, 154, 1127		5 1	1
1345	Anatase and Rutile TiO2 Nanoparticles Lead Effective Bone Damage in Young Rat Model via t Signaling Pathway. International Journal of Nanomedicine, 2021, Volume 16, 7233-7247.	he IGF-1 3.3	3 2	
1346	Nanoparticle Food Applications and Their Toxicity: Current Trends and Needs in Risk Assessm Strategies. Journal of Food Protection, 2022, 85, 355-372.	ent 0.8	89	
1347	Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomateri Following Oral Ingestion. Nanomaterials, 2021, 11, 2623.	als 1.9) 19	9
1349	Use of titanium dioxide nanoparticles biosynthesized by. Microbial Cell Factories, 2014, 13, 9	90. 1.9) 19	9
1351	Titania Nano-architectures for Energy. , 2015, , 129-165.		1	
1352	Chapter 5. Electrochemical Detection of Nanoparticles. RSC Detection Science, 2015, , 170-2	204. 0.0	0 0)
1355	Efecto de la Ingesta de Nanoestructuras en el Organismo. , 2015, , 255-287.		1	
1356	Effect of ZnO and TiO ₂ Nanopaticles (NPs) on Microorganisms Growth in Activa Sludge. Daehan Hwan'gyeong Gonghag Hoeji, 2016, 38, 177-183.	ted 0.4	4 2	
1357	Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials. Daehan Hwan Gonghag Hoeji, 2016, 38, 395-401.	'gyeong 0.4	4 0	
1360	CHAPTER 10. Engineered Nanoparticles and Food: Exposure, Toxicokinetics, Hazards and Risl Nanoscience and Nanotechnology, 2017, , 200-227.	es. RSC 0.2	2 0)
1361	Nanotoxicity. , 2017, , 67-80.		0	
1362	Effect of Fe3O4 and TiO2 Nanoparticles on Catalase Activity and β-Carotene Content at Pigr Strain Rhodotorula gracilis. Acta Universitatis Cibiniensis Series E: Food Technology, 2017, 2	nented Yeast 0.6 1, 35-40. 0.6	6 0)
1363	Environmental Toxicity of Nanomaterials. , 0, , .		3	

#	Article	IF	CITATIONS
1364	Nanoparticles in Biosolids: Effect on Soil Health and Crop Growth. Annals of Environmental Science and Toxicology, 2017, 2, 059-067.	0.6	3
1365	Exposure to Substances via Food Consumption. , 2019, , 167-359.		1
1366	Quercetin Effects on Hepatotoxicity Induced by Titanium Dioxide Nanoparticles in Rats. Jundishapur Journal of Natural Pharmaceutical Products, 2019, 15, .	0.3	1
1367	Determination of Hair and Serum Metal Levels in Petrol Station Workers. Hacettepe Journal of Biology and Chemistry, 0, , 171-176.	0.3	0
1368	Morphology-Dependent Titanium Dioxide Nanoparticle-Induced Keratinocyte Toxicity And Exacerbation Of Allergic Contact Dermatitis. Toxicology Current Research, 2020, 4, 1-7.	0.2	3
1369	An effect of food additives on microbiome. Teoriâ I Praktika Pererabotki Mâsa, 2021, 6, 259-268.	0.2	1
1370	Interactions between TiO2 nanoparticles and plant proteins: Role of hydrogen bonding. Food Hydrocolloids, 2022, 124, 107302.	5.6	16
1371	Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats. Biomarkers, 2021, 26, 760-769.	0.9	3
1372	Impact of Product Formulation on Spray-Dried Microencapsulated Zinc for Food Fortification. Food and Bioprocess Technology, 2021, 14, 2286-2301.	2.6	21
1373	Acute toxicity of titanium dioxide nanoparticles on some serum parameters and enzyme activities of Cyprinus carpio. Journal of Anatolian Environmental and Animal Sciences, 0, , .	0.2	1
1374	Impact of food additive titanium dioxide on the polyphenol content and antioxidant activity of the apple juice. LWT - Food Science and Technology, 2022, 154, 112574.	2.5	7
1375	Interaction of nanomaterials with microbes. , 2022, , 31-59.		0
1376	Development of Data Analysis Software for Nanoparticle Measurements by ICP-Mass Spectrometry. Journal of the Mass Spectrometry Society of Japan, 2019, 67, 147-153.	0.0	7
1377	Effect of Some Antioxidants on Rats Treated With Titanium Dioxide Nanoparticles. Egyptian Journal of Food Science, 2019, .	0.0	0
1378	Titanium Dioxide Nanoparticles Promote Root Growth by Interfering with Auxin Pathways in Arabidopsis thaliana. Phyton, 2020, 89, 883-891.	0.4	7
1379	Current challenges and coming opportunities in nanoparticle risk assessment. Frontiers of Nanoscience, 2020, 16, 353-371.	0.3	0
1380	Functional nanomaterial in energy and environmental science. , 2020, , 1-23.		2
1381	Titanium dioxide nanotubes incorporated into bleaching agents: physicochemical characterization and enamel color change. Journal of Applied Oral Science, 2020, 28, e20190771.	0.7	14

# 1382	ARTICLE Nanotechnology and Food Microbiology. , 2020, , 109-114.	IF	CITATIONS
1383	Trickling of Itinerant Nanoparticles in Wastewater Effluents. Environmental Chemistry for A Sustainable World, 2020, , 1-21.	0.3	0
1384	Nanotechnology Applications to Improve Solubility of Bioactive Constituents of Foods for Health-Promoting Purposes. Food Engineering Series, 2020, , 189-257.	0.3	1
1385	Potential Applications of Nanotechnology in Agriculture: A Smart Tool for Sustainable Agriculture. , $0,,.$		1
1386	Influence of TiO2 and ZrO2 Nanoparticles on Adhesive Bond Strength and Viscosity of Dentin Polymer: A Physical and Chemical Evaluation. Polymers, 2021, 13, 3794.	2.0	16
1387	ATR FTIR Study of the Interaction of TiO ₂ Nanoparticle Films with β-Lactoglobulin and Bile Salts. Langmuir, 2021, 37, 13278-13290.	1.6	7
1388	Size Effect of TiO2 Nanoparticles as Food Additive and Potential Toxicity. Food Biophysics, 2022, 17, 75-83.	1.4	5
1390	Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development. International Journal of Reproductive BioMedicine, 2018, 16, 397-404.	0.5	12
1391	Release and toxicity comparison between industrial- and sunscreen-derived nano-ZnO particles. International Journal of Environmental Science and Technology, 2016, 13, 2485-2494.	1.8	2
1394	Effects of oral administration of titanium dioxide particles on sperm parameters and fertilization potential in mice: A comparison between nano- and fine-sized particles. Veterinary Research Forum, 2020, 11, 401-408.	0.3	2
1395	Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation. NanoImpact, 2021, 24, 100369.	2.4	11
1396	Black titania; novel researches in synthesis and applications. Inorganic Chemistry Communication, 2022, 135, 109092.	1.8	8
1397	Toxicokinetics of zinc oxide nanoparticles and food grade bulk-sized zinc oxide in rats after oral dosages. NanoImpact, 2022, 25, 100368.	2.4	3
1398	Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon, 2021, 7, e08456.	1.4	7
1399	Occurrence of titanium dioxide nanoparticle in Taihu Lake (China) and its removal at a full-scale drinking water treatment plant. Environmental Science and Pollution Research, 2022, 29, 23352-23360.	2.7	3
1400	Biobased materials for active food packaging: A review. Food Hydrocolloids, 2022, 125, 107419.	5.6	110
1401	TiO2-NPs and cadmium co-exposure: in vitro assessment of genetic and genomic DNA damage on Dicentrarchus labrax embryonic cells. Environmental Science and Pollution Research, 2022, 29, 62208-62218.	2.7	3
1402	Bioaccumulation and depuration of TiO2 nanoparticles by zebrafish through dietary exposure: Size- and number concentration-resolved analysis using single-particle ICP-MS. Journal of Hazardous Materials, 2022, 426, 127801.	6.5	11

#	Article	IF	CITATIONS
1403	History of titanium dioxide regulation as a food additive: a review. Environmental Chemistry Letters, 2022, 20, 1017-1033.	8.3	21
1404	Nano White Food and the Reproduction of Whiteness. , 2021, 20, 207-235.		Ο
1405	Role of necroptosis of alveolar macrophages in acute lung inflammation of mice exposed to titanium dioxide nanoparticles. Nanotoxicology, 2021, 15, 1312-1330.	1.6	10
1406	Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: Review. Progress in Organic Coatings, 2022, 163, 106660.	1.9	32
1407	Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends in Food Science and Technology, 2022, 120, 75-87.	7.8	29
1408	THE POTENTIAL MODULATORY EFFECT OF RUTIN ON TITANIUM DIOXIDE NANOPARTICLES-INDUCED RENAL INJURY IN MALE MICE. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 17-21.	0.3	0
1409	Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cellular and Molecular Biology, 2020, 66, 111-117.	0.3	10
1411	Comparative study of the transcriptomes of Caco-2 cells cultured under dynamic <i>vs.</i> static conditions following exposure to titanium dioxide and zinc oxide nanomaterials. Nanotoxicology, 2021, 15, 1233-1252.	1.6	5
1412	Occurrences and impacts of engineered nanoparticles in soils and groundwater. , 2022, , 165-204.		1
1413	Nanobiotechnology in fermented dairy products. , 2022, , 347-355.		0
1414	Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. , 2022, 235, 108120.		11
1415	Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact, 2022, 25, 100377.	2.4	17
1416	Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating Its Photocatalytic and In Vitro Antimicrobial Activity. Catalysts, 2022, 12, 181.	1.6	64
1417	Impact of nanoparticles in wastewater treatment. Comprehensive Analytical Chemistry, 2022, , 213-240.	0.7	1
1418	Antimicrobial Applications of Nanoparticles. Advances in Chemical and Materials Engineering Book Series, 2022, , 269-288.	0.2	1
1419	Nanomaterials in the cosmetics industry: A greener approach. , 2022, , 207-253.		1
1420	Oral administration of TiO2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Particle and Fibre Toxicology, 2022, 19, 3.	2.8	5
1422	Recent advances in understanding the effects of nanomaterials on gut microbiota. Chemical Engineering Journal, 2022, 435, 134976.	6.6	9

ARTICLE IF CITATIONS # Extraction and characterization of sub-micron sized TiO2 from toothpaste: evaluation of their toxic effects in marine microalgae Chlorella sp.. Toxicology and Environmental Health Sciences, 2022, 14, 1423 1.1 1 147-155. Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells. 1424 1.8 Food and Chemical Toxicology, 2022, 161, 112841. Effects of neutron irradiation at different fluencies on nanosized anatase titanium dioxide. Radiation 1425 1.4 5 Physics and Chemistry, 2022, 194, 109988. Single-particle inductively coupled plasma mass spectrometry using ammonia reaction gas as a reliable 1426 2.9 and free-interference determination of metallic nanoparticles. Talanta, 2022, 242, 123286. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: 1427 Disorders of gut microbiota–host co-metabolites and intestinal barrier damage. Science of the Total 3.9 13 Environment, 2022, 821, 153279. Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic and bacteriological investigation in Escherichia coli. Frontiers of Environmental Science and 3.3 Engineering, 2022, 16, 1. Foodâ€grade titanium dioxide decreases hematocrit and hemoglobin and increases compulsiveâ€like 1429 1.4 1 behavior in male mice. Journal of Applied Toxicology, 2022, , . Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula 1430 1.6 40 leaf extract. Journal of King Saud University - Science, 2022, 34, 101896. 1431 Nanotechnology Toolkit for Combating COVIDâ€19 and Beyond. ChemNanoMat, 2022, 8, e202100505. 7 1.5 Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere, 2022, 297, 1432 4.2 133932. Enhanced Transport of TiO₂ in Unsaturated Sand and Soil after Release from Biodegradable Plastic during Composting. Environmental Science & amp; Technology, 2022, 56, 1433 6 4.6 2398-2406. Effects of Metal Oxide Nanoparticles in Zebrafish. Oxidative Medicine and Cellular Longevity, 2022, 1434 1.9 2022, 1-37. The Effect of Ingested Titanium Dioxide Nanoparticles on the Course and Prognosis of Ulcerative 1437 0.4 0 Colitis in Mice. SSRN Electronic Journal, 0, , . A systematic review on the effects of nanomaterials on gut microbiota. Current Research in Microbial 1438 1.4 Sciences, 2022, 3, 100118. Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on 1439 2.2 17 human and environmental health. Environmental Science: Nano, 2022, 9, 1199-1211. Nanoparticles in dentistry., 2022, , 335-358. 1441 The theory of relativity effect in nanoparticles: Deciphering of unknown effects with nano-puzzle and 1443 0 nano-domini., 2022, , 35-48. Detection and Characterization of TiO2 Nanomaterials in Sludge from Wastewater Treatment Plants 1444 of Chihuahua State, Mexico. Nanomaterials, 2022, 12, 744.

#	Article	IF	CITATIONS
1445	Could Iron-Nitrogen Doping Modulate the Cytotoxicity of TiO2 Nanoparticles?. Nanomaterials, 2022, 12, 770.	1.9	1
1446	The effect and underlying mechanisms of titanium dioxide nanoparticles on glucose homeostasis: A literature review. Journal of Applied Toxicology, 2023, 43, 22-31.	1.4	4
1447	Following the Occurrence and Origin of Titanium Dioxide Nanoparticles in the Sava River by Single Particle ICP-MS. Water (Switzerland), 2022, 14, 959.	1.2	8
1448	Estimation of Titanium Dioxide Intake by Diet and Stool Assessment among US Healthy Adults. Journal of Nutrition, 2022, 152, 1525-1537.	1.3	3
1449	A Comprehensive Review of the Development of Carbohydrate Macromolecules and Copper Oxide Nanocomposite Films in Food Nanopackaging. Bioinorganic Chemistry and Applications, 2022, 2022, 1-28.	1.8	19
1450	A General Design Strategy Enabling the Synthesis of Hydrolysisâ€Resistant, Waterâ€Stable Titanium(IV) Complexes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
1451	Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. Nanomaterials, 2022, 12, 1099.	1.9	12
1452	Tracing Seal Predation Back to the Source Colony of Their Penguin Prey: A Trace Element and Stable Isotope Analysis. Frontiers in Marine Science, 2022, 9, .	1.2	0
1453	Impact of desensitizing/whitening toothpastes on tooth color change after abrasion and erosion–abrasion. Journal of Esthetic and Restorative Dentistry, 2022, , .	1.8	1
1454	A General Design Strategy Enabling the Synthesis of Hydrolysisâ€Resistant, Waterâ€6table Titanium(IV) Complexes. Angewandte Chemie, 2022, 134, .	1.6	1
1455	Evaluation of Zebrafish DNA Integrity after Individual and Combined Exposure to TiO2 Nanoparticles and Lincomycin. Toxics, 2022, 10, 132.	1.6	2
1456	The Intestinal Barrier—Shielding the Body from Nano- and Microparticles in Our Diet. Metabolites, 2022, 12, 223.	1.3	12
1457	A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials, 2022, 12, 1247.	1.9	13
1458	TiO2 Nanoparticles Dispersion in Block-Copolymer Aqueous Solutions: Nanoarchitectonics for Self-Assembly and Aggregation. Journal of Functional Biomaterials, 2022, 13, 39.	1.8	4
1459	Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. Journal of Applied Toxicology, 2023, 43, 32-46.	1.4	15
1460	Removal of Cibacron Blue P-6B dye from aqueous solution using synthesized anatase titanium dioxide nanoparticles: Thermodynamic, kinetic, and theoretical investigations. Journal of Molecular Liquids, 2022, 357, 119102.	2.3	6
1461	Inorganic food additive nanomaterials alter the allergenicity of milk proteins. Food and Chemical Toxicology, 2022, 162, 112874.	1.8	3
1462	The physicochemical mechanism of iron removal of aluminum sulfate solution by a novel synthesis process. Chemical Engineering Research and Design, 2022, 181, 162-172.	2.7	2

#	Article	IF	CITATIONS
1463	Photodynamic inactivation of Staphylococcus aureus in the system of titanium dioxide nanoparticles sensitized by hypocrellin B and its application in food preservation. Food Research International, 2022, 156, 111141.	2.9	9
1464	Effect of organic acids on the morphology and particle size of titanium dioxide (E171) in processed food. Journal of Hazardous Materials, 2022, 432, 128666.	6.5	6
1465	NANOPARTÃCULAS: EFECTOS EN LA SALUD HUMANA Y EL MEDIO AMBIENTE. Epistemus, 2021, 15, .	0.0	0
1466	Chitosan attenuated the neurotoxicityâ€induced titanium dioxide nanoparticles in brain of adult rats. Environmental Toxicology, 2022, 37, 612-626.	2.1	11
1467	Phytonanotechnology applications in modern agriculture. Journal of Nanobiotechnology, 2021, 19, 430.	4.2	57
1468	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	2.2	0
1469	Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Review, 2022, 31, 210112.	3.0	49
1470	Composite of Layered Double Hydroxide with Casein and Carboxymethylcellulose as a White Pigment for Food Application. Foods, 2022, 11, 1120.	1.9	7
1471	Spirulina and C-phycocyanin mitigate titanium dioxide nanoparticle-induced hematobiochemical and hepatorenal disorders through antioxidative pathway. , 2022, 1, 100035.		3
1472	Nanotechnologyâ€enhanced edible coating application on climacteric fruits. Food Science and Nutrition, 2022, 10, 2149-2167.	1.5	22
1483	"Nano-ghosts": Risk assessment of submicron-sized particles in food biased towards fictional "nano" EXCLI Journal, 2022, 21, 279-299.	0.5	0
1485	Seasonal Distributions of Ti-Containing Nps in the Main Tributaries of the Tamsuei River Basin in Northern Taiwan. SSRN Electronic Journal, 0, , .	0.4	0
1486	Effects, uptake, translocation and toxicity of Ti-based nanoparticles in plants. , 2022, , 211-239.		1
1488	Synthesis of new C,N,S,Fe-multidoping nanoparticles with potential photochemical response. Journal of Dispersion Science and Technology, 0, , 1-10.	1.3	0
1489	Cellulose-Based Scattering Enhancers for Light Management Applications. ACS Nano, 2022, 16, 7373-7379.	7.3	9
1490	Titanium Dioxide: Structure, Impact, and Toxicity. International Journal of Environmental Research and Public Health, 2022, 19, 5681.	1.2	33
1491	A review of research on the impact of E171/TiO2 NPs on the digestive tract. Journal of Trace Elements in Medicine and Biology, 2022, 72, 126988.	1.5	4
1492	The effect of 100–200Ânm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112536.	2.5	15

#	Article	IF	CITATIONS
1493	Food-Grade Titanium Dioxide Induces Toxicity in the Nematode Caenorhabditis elegans and Acute Hepatic and Pulmonary Responses in Mice. Nanomaterials, 2022, 12, 1669.	1.9	6
1494	Analyzing the TiO ₂ surface reactivity based on oxygen vacancies computed by DFT and DFTB methods. Journal of Physics Condensed Matter, 2022, 34, 314004.	0.7	3
1495	Chronic effects of two rutile TiO2 nanomaterials in human intestinal and hepatic cell lines. Particle and Fibre Toxicology, 2022, 19, 37.	2.8	5
1496	Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. Advances in Experimental Medicine and Biology, 2022, 1357, 225-257.	0.8	3
1497	Impact of Heat Treatment on the Structure and Properties of the Plant Protein Corona Formed around TiO ₂ Nanoparticles. Journal of Agricultural and Food Chemistry, 2022, 70, 6540-6551.	2.4	10
1498	Heterogeneous carbon metal-free catalysts. , 2022, , 195-212.		Ο
1499	Effects of Particle Size and Surface Charge on Mutagenicity and Chicken Embryonic Toxicity of New Silver Nanoclusters. ACS Omega, 2022, 7, 17703-17712.	1.6	2
1500	Current Trends and Future Perspectives of Nanomaterials in Food Packaging Application. Journal of Nanomaterials, 2022, 2022, 1-32.	1.5	31
1501	Mechano-bactericidal anisotropic particles for oral biofilm treatment. Journal of Materials Chemistry B, 0, , .	2.9	1
1502	Coupled impact of proteins with different molecular weights and surface charges on TiO ₂ mobility. Environmental Science: Nano, 2022, 9, 2773-2787.	2.2	1
1503	The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity—In Vitro Correlation Analysis on THP-1 Macrophages. International Journal of Molecular Sciences, 2022, 23, 6197.	1.8	9
1504	Toxicity of green synthesized TiO2 nanoparticles (TiO2 NPs) on zebra fish. Environmental Research, 2022, 212, 113542.	3.7	9
1505	Dietary titanium dioxide particles (E171) promote diet-induced atherosclerosis through reprogramming gut microbiota-mediated choline metabolism in APOE-/- mice. Journal of Hazardous Materials, 2022, 436, 129179.	6.5	3
1506	Apoptotic and histopathological defects enhanced by titanium dioxide nanoparticles in male mice after short-term exposure. Toxicology Reports, 2022, 9, 1331-1346.	1.6	Ο
1507	Titanium wear from magnetically controlled growing rods (MCGRs) for the treatment of spinal deformities in children. Scientific Reports, 2022, 12, .	1.6	5
1508	A Review of Moisturizers; History, Preparation, Characterization and Applications. Cosmetics, 2022, 9, 61.	1.5	17
1509	Ti Ions Induce IL-1Î ² Release by Activation of the NLRP3 Inflammasome in a Human Macrophage Cell Line. Inflammation, 2022, 45, 2027-2037.	1.7	8
1510	Applications of Titanium Dioxide Nanostructure in Stomatology. Molecules, 2022, 27, 3881.	1.7	11

#	Article	IF	CITATIONS
1511	Nanoparticles as Next-Generation Tooth-Whitening Agents: Progress and Perspectives. ACS Nano, 2022, 16, 10042-10065.	7.3	12
1512	Intestinal Microecology of Mice Exposed to TiO2 Nanoparticles and Bisphenol A. Foods, 2022, 11, 1696.	1.9	3
1513	Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics, 2022, 11, 794.	1.5	7
1514	A comparative proteomics study of Arabidopsis thaliana responding to the coexistence of BPA and TiO2-NPs at environmentally relevant concentrations. Ecotoxicology and Environmental Safety, 2022, 241, 113800.	2.9	4
1515	Tailoring the structural and optical properties of HiPIMS TiO2 thin films for photovoltaic applications. Optical Materials, 2022, 131, 112590.	1.7	4
1518	Bioaccumulation and biomagnification effects of nano-TiO2 in the aquatic food chain. Ecotoxicology, 2022, 31, 1023-1034.	1.1	8
1519	Capparis zeylanica L. conjugated TiO2 nanoparticles as bio-enhancers for antimicrobial and chronic wound repair. Biochemical and Biophysical Research Communications, 2022, 623, 127-132.	1.0	10
1520	Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. Chemical Papers, 2022, 76, 6073-6095.	1.0	7
1521	Synthesis of nanoparticles using microorganisms and their applications: a review. Environmental Chemistry Letters, 2022, 20, 3153-3197.	8.3	33
1522	Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Research International, 2022, 159, 111574.	2.9	8
1523	Microstructural view of anatase to rutile phase transformation examined by in-situ high-temperature X-ray powder diffraction. Journal of Solid State Chemistry, 2022, 314, 123377.	1.4	7
1524	The effect of multivalent anions on removal of Titanium dioxide nanoparticles from drinking water sources by coagulation-sedimentation processes: Efficacy and mechanisms. Separation and Purification Technology, 2022, 298, 121667.	3.9	1
1525	Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow. Nanotoxicology, 2022, 16, 425-449.	1.6	2
1526	Nanoparticle Effects on Stress Response Pathways and Nanoparticle–Protein Interactions. International Journal of Molecular Sciences, 2022, 23, 7962.	1.8	20
1528	Ingestion of titanium dioxide nanoparticles: a definite health risk for consumers and their progeny. Archives of Toxicology, 2022, 96, 2655-2686.	1.9	12
1529	Fabrication of TiO ₂ Spheres and a Visible Light Active α-Fe ₂ O ₃ /TiO ₂ -Rutile/TiO ₂ -Anatase Heterogeneous Photocatalyst from Natural Ilmenite. ACS Omega, 2022, 7, 27617-27637.	1.6	17
1530	Nephroprotective Effect of Cinnamon cassia and Azadirachta indica on Titanium Dioxide Nanoparticles. Current Nanoscience, 2022, 18, .	0.7	0
1531	Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle <i>In Vitro</i> : A Systematic Review and Meta-Analysis. Chemical Research in Toxicology, 2022, 35, 1435-1456.	1.7	7

ARTICLE IF CITATIONS On the fluidization of cohesive powders: Differences and similarities between micro―and nanoâ€sized 1533 0.9 9 particle gasâ€"solid fluidization. Canadian Journal of Chemical Engineering, 2023, 101, 227-243. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal 1534 of a 24-hour exposure. Toxicology, 2022, 478, 153280. Chronic maternal exposure to titanium dioxide nanoparticles alters breathing in newborn offspring. 1536 2.8 6 Particle and Fibre Toxicology, 2022, 19, . Synthesis and application of titanium dioxide photocatalysisÂfor energy, decontamination and viral disinfection: a review. Environmental Chemistry Letters, 2023, 21, 339-362. 70 Effects of Selected Metal Nanoparticles (Ag, ZnO, TiO2) on the Structure and Function of 1538 1.6 13 Reproductive Organs. Toxics, 2022, 10, 459. The role of foreign body response in <scp>periâ€implantitis</scp>: What is the evidence?. Periodontology 2000, 2022, 90, 176-185. 1539 6.3 Landscape of lipidomic metabolites in gut-liver axis of Spragueâ& Dawley rats after oral exposure to 1540 2.8 11 titanium dioxide nanoparticles. Particle and Fibre Toxicology, 2022, 19, . Baseline titanium levels of three highly consumed invertebrates from an eutrophic estuary in 1541 2.3 southeastern Brazil. Marine Pollution Bulletin, 2022, 183, 114038. Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake. Mutation 1542 0.9 3 Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 882, 5035'45. Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. 1543 Ecotoxicology and Environmental Safety, 2022, 244, 114048. Separation of TiO2 particles from suspension using indigenous low-cost ceramic microfiltration 1544 3 2.6 membrane. Journal of Water Process Engineering, 2022, 49, 103123. Oral exposure to Ag or TiO2 nanoparticles perturbed gut transcriptome and microbiota in a mouse 1545 1.8 model of ulcerative colitis. Food and Chemical Toxicology, 2022, 169, 113368. Characterization and assessment of potential risks of titanium dioxide nanoparticles isolated from 1546 4.6 0 gummy candies. Journal of Cleaner Production, 2022, 373, 133829. Biological toxicity and environmental hazards associated with polymeric micelles., 2022, 593-628. 1547 Nanoparticle-induced chemoresistance: the emerging modulatory effects of engineered nanomaterials 1548 2.8 4 on human intestinal cancer cell redox metabolic adaptation. Nanoscale, 2022, 14, 14491-14507. Antimicrobial nanoparticles: Synthesis, mechanism of actions., 2023, , 155-202. 1549 3D Printing of Bioinert Oxide Ceramics for Medical Applications. Journal of Functional Biomaterials, 1550 1.8 14 2022, 13, 155. Comprehensive Approaches of Nanoparticles for Growth Performance and Health Benefits in Poultry: An Update on the Current Scenario. BioMed Research International, 2022, 2022, 1-13.

#	Article	IF	CITATIONS
1552	Surface reactivity of anatase particles towards phosphated species. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 130232.	2.3	1
1554	Prenatal exposure to titanium dioxide nanoparticles induces persistent neurobehavioral impairments in maternal mice that is associated with microbiota-gut-brain axis. Food and Chemical Toxicology, 2022, 169, 113402.	1.8	5
1555	Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. Nanomaterials, 2022, 12, 3616.	1.9	7
1556	The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportunities. International Journal of Environmental Research and Public Health, 2022, 19, 13748.	1.2	1
1557	Renal tubular response to titanium dioxide nanoparticles exposure. Drug and Chemical Toxicology, 2023, 46, 1130-1137.	1.2	3
1558	Bacillus coagulans Alleviates Intestinal Damage Induced by TiO2 Nanoparticles in Mice on a High-Fat Diet. Foods, 2022, 11, 3368.	1.9	1
1559	Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	16
1560	Medical and Dental Applications of Titania Nanoparticles: An Overview. Nanomaterials, 2022, 12, 3670.	1.9	27
1561	Studying the Interaction Behavior of Protein Coronated Gold Nanorods with Polystyrene Nanoplastics. ChemistrySelect, 2022, 7, .	0.7	1
1562	In-Situ Functionalization of Cotton Fabric by TiO2: The Influence of Application Routes. Catalysts, 2022, 12, 1330.	1.6	5
1563	Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules, 2022, 12, 1516.	1.8	1
1564	Aggregation Kinetics of TiO ₂ Nanoparticles in Human and Artificial Sweat Solutions: Effects of Particle Properties and Sweat Constituents. Environmental Science & Technology, 2022, 56, 17153-17165.	4.6	5
1565	Effect of real food matrix on the behavior and toxicity of TiO2 nanoparticles. Journal of Nanoparticle Research, 2022, 24, .	0.8	3
1566	Characterization of titanium dioxide nanoparticles in confectionary products and estimation of dietary exposure level among the Chinese population. NanoImpact, 2022, 28, 100435.	2.4	6
1567	Wildland-urban interface fire ashes as a major source of incidental nanomaterials. Journal of Hazardous Materials, 2023, 443, 130311.	6.5	7
1568	A Comprehensive Review on the Classification, Uses, Sources of Nanoparticles (NPs) and Their Toxicity on Health. Aerosol Science and Engineering, 2023, 7, 69-86.	1.1	4
1569	Transcriptomic points of departure calculated from human intestinal cells exposed to dietary nanoparticles. Food and Chemical Toxicology, 2022, 170, 113501.	1.8	1
1570	Titanium dioxide nanoparticles and elderberry extract incorporated starch based polyvinyl alcohol films as active and intelligent food packaging wraps. Food Packaging and Shelf Life, 2022, 34, 100967.	3.3	17

#	Article	IF	CITATIONS
1571	Acute, sub-chronic and chronic exposures to TiO2 and Ag nanoparticles differentially affects neuronal function in vitro. NeuroToxicology, 2022, 93, 311-323.	1.4	4
1572	Prenatal titanium exposure and child neurodevelopment at 1 year of age: A longitudinal prospective birth cohort study. Chemosphere, 2023, 311, 137034.	4.2	2
1573	Potential human health effects following exposure to nano- and microplastics, lessons learned from nanomaterials. , 2023, , 590-605.		4
1574	Source, fate and transport of ENMs in the environment, especially those that may eventually reach plant systems. , 2023, , 25-49.		0
1575	The mechanistic effects of human digestion on magnesium oxide nanoparticles: implications for probiotics <i>Lacticaseibacillus rhamnosus GG</i> and <i>Bifidobacterium bifidum VPI 1124</i> . Environmental Science: Nano, 0, , .	2.2	1
1576	Role of nanotechnology in food supply chain. , 2023, , 415-434.		0
1577	Melatonin Protects Against Titanium Oxide-Induced Neurotoxicity: Neurochemical, Neurobehavioral, and Histopathological Evidences. Biological Trace Element Research, 0, , .	1.9	1
1578	Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases. Frontiers in Medicine, 0, 9, .	1.2	4
1579	Mycosynthesis of Metal-Containing Nanoparticles—Fungal Metal Resistance and Mechanisms of Synthesis. International Journal of Molecular Sciences, 2022, 23, 14084.	1.8	14
1580	Nanomaterials; Potential Antibacterial Agents. , 2023, , 125-139.		0
1581	Photocatalytic hydrogen generation using TiO ₂ : a state-of-the-art review. Zeitschrift Fur Physikalische Chemie, 2022, 236, 1697-1728.	1.4	2
1583	Emerging applications of nanotechnology in context to immunology: A comprehensive review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	9
1584	Gut microbiome modulation: Ancillary effects of inorganic nanoparticles on gut microflora. Biocell, 2023, 47, 245-260.	0.4	1
1585	Particles and microbiota: interaction to death or resilience?. , 2023, , 1-48.		Ο
1586	Distribution of microplastics in the catchment region of Pallikaranai marshland, a Ramsar site in Chennai, India. Environmental Pollution, 2023, 318, 120890.	3.7	9
1587	Genotoxicity testing of nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	6
1588	Toxicokinetics, dose–response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	10
1589	Particles in the Eluate from Double Filtration Plasmapheresis—A Case Study Using Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (FE-SEM/EDX). Compounds, 2022, 2, 367-377.	1.0	0

#	Article	IF	Citations
1590	Perinatal exposure to foodborne inorganic nanoparticles: A role in the susceptibility to food allergy?. Frontiers in Allergy, 0, 3, .	1.2	5
1591	Ameliorative effect of biosynthesized titanium dioxide nanoparticles using garlic extract on the body weight and developmental toxicity of liver in albino rats compared with chemically synthesized nanoparticles. Frontiers in Veterinary Science, 0, 9, .	0.9	7
1592	From high-volume industrial waste to new ceramic material: The case of red gypsum muds in the TiO2 industry. Ceramics International, 2023, 49, 15034-15043.	2.3	6
1593	Fate of TiO ₂ nanoparticles in the environment: a review on the transport and retention behavior in the soil compartment. New Journal of Chemistry, 2023, 47, 4145-4165.	1.4	3
1594	Protective effects of lycopene on TiO ₂ nanoparticleâ€induced damage in the liver of mice. Journal of Applied Toxicology, 2023, 43, 913-928.	1.4	5
1595	Subchronic Oral Toxicity Study of Food-Related Titanium Dioxide Nanoparticles in Rats Involved in Ti Biodistribution and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2023, 71, 1713-1726.	2.4	4
1596	Toxicity of titanium dioxide nanoparticles on the histology, liver physiological and metabolism, and intestinal microbiota of grouper. Marine Pollution Bulletin, 2023, 187, 114600.	2.3	7
1597	Impacts of dissolved organic matter on the aggregation and photo-dissolution of cadmium pigment nanoparticles in aquatic systems. Science of the Total Environment, 2023, 865, 161313.	3.9	4
1598	Nanomaterials in geopolymer composites: A review. Developments in the Built Environment, 2023, 13, 100114.	2.0	10
1599	Implant metals and their potential toxicity. , 2023, , 75-103.		0
1600	Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials, 2023, 13, 574.	1.9	65
1601	DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO2-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2. International Journal of Environmental Research and Public Health, 2023, 20, 2002.	1.2	4
1602	Markers of hip implant degradation: analytical considerations and clinical interpretation. , 2023, , 107-135.		0
1603	Occupational Exposure to Metal Engineered Nanoparticles: A Human Biomonitoring Pilot Study Involving Italian Nanomaterial Workers. Toxics, 2023, 11, 120.	1.6	5
1604	Review of Models for Titanium as a Foreign Body. Journal of the California Dental Association, 2014, 42, 829-833.	0.0	9
1605	Complementary <i>in vitro</i> and <i>in vivo</i> strategies to assess the biological effects of the nano enabled food additives E171 and E551. Environmental Science: Nano, 0, , .	2.2	0
1606	Behaviour and fate of Ag-NPs, TiO2-NPs and ZnO-NPs in the human gastrointestinal tract: Biopersistence rate evaluation. Food and Chemical Toxicology, 2023, , 113779.	1.8	0
1607	Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends in Food Science and Technology, 2023, 135, 144-172.	7.8	8

#	Article	IF	CITATIONS
1608	Complexation of turmeric and curcumin mediated silver nanoparticles with human serum albumin: Further investigation into the protein-corona formation, anti-bacterial effects and cell cytotoxicity studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122540.	2.0	3
1609	Dr. Ehrlich Meets the Poison Squad: Pigments in Food and Medicine. , 2022, , 407-425.		0
1610	Advantages of using nanobiotechnology in enhancing the economic status of the country. , 2023, , 369-392.		1
1611	Food-Grade Metal Oxide Nanoparticles Exposure Alters Intestinal Microbial Populations, Brush Border Membrane Functionality and Morphology, In Vivo (Gallus gallus). Antioxidants, 2023, 12, 431.	2.2	6
1612	Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles. Cell Proliferation, 2023, 56, .	2.4	2
1613	The Impact of Nanomaterials on the Environment and Perspectives for Sustainable Energy Generation. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 156-177.	0.3	0
1614	Titania Nanorod-Supported Mercaptoundecanoic Acid-Grafted Palladium Nanoparticles as a Highly Reusable Heterogeneous Catalyst for Substrate-Dependent Ullmann Coupling and Debromination of Aryl Bromides. Inorganic Chemistry, 2023, 62, 3993-4002.	1.9	0
1615	Nanotechnology and Food Safety. , 2024, , 770-777.		0
1616	Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon, 2023, 9, e14022.	1.4	1
1617	Washing and release of titanium nanoparticles from UV protective textiles. , 2023, , 447-466.		1
1618	Immunomodulatory and antioxidant effect of green synthesized titanium dioxide nanoparticles on pregnant female albino rats and their fetuses. Environmental Science and Pollution Research, 2023, 30, 55455-55470.	2.7	3
1619	Prospects and applications of nanotechnology for boosting the efficacy and stability of green products in the food system. , 2023, , 277-308.		0
1620	Mechanokinetics of the spontaneous contractions of smooth muscles in the stomach and large intestine of rats under chronic effect of Đ¢iĐž2 nanoparticles. Studia Biologica = БІОЛОГІЧĐІ Đ¡Đ¢f 17, 19-34.	D£ Ð ."ІЇ	S t udia Biolo
1621	MRC-5 Human Lung Fibroblasts Alleviate the Genotoxic Effect of Fe-N Co-Doped Titanium Dioxide Nanoparticles through an OGG1/2-Dependent Reparatory Mechanism. International Journal of Molecular Sciences, 2023, 24, 6401.	1.8	1
1623	TiO2 nanoparticles alter nutrients acquisition, growth, biomacromolecules, oil composition and modulate antioxidant defense system in Mentha arvensis L. , 2023, 3, 100029.		2
1624	Frontal fibrosing alopecia and personal care product use: a systematic review and meta-analysis. Archives of Dermatological Research, 0, , .	1.1	1
1625	Sensing and simulation of self-inductance of a flat, circular coil in the presence of four water-based nanofluids. Journal of Applied Physics, 2023, 133, 134302.	1.1	0
1626	Novel Antibacterial Metals as Food Contact Materials: A Review. Materials, 2023, 16, 3029.	1.3	1

#	Article	IF	CITATIONS
1627	Effect of titanium dioxide on <i>Streptococcus mutans</i> biofilm. Journal of Applied Biomaterials and Functional Materials, 2023, 21, 228080002211318.	0.7	0
1628	A natural whitening alternative from upcycled food waste (acid whey) and underutilized grains (millet). Scientific Reports, 2023, 13, .	1.6	1
1632	Toxicological Evaluation of TiO2 Engineered Nanoparticles in Soil Invertebrates: A Cue for Revisiting Standard Toxicity Testing for Nanomaterials. , 2023, , 2663-2683.		0
1635	Hopes, Hazards and Hype. , 2014, , 420-426.		0
1640	Occurrence of Toxic Elements in Foods. , 2024, , 490-497.		0
1645	Titanium Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity, and Defence Mechanisms. , 2023, , 263-284.		0
1646	Nanostructured Titanium Dioxide (NS-TiO ₂). , 0, , .		0
1652	Tubular nanomaterials for bone tissue engineering. Journal of Materials Chemistry B, 2023, 11, 6225-6248.	2.9	10
1654	Nanotechnology applications in food and bioprocess industries. , 2023, , 335-364.		0
1657	A Novel Method for Titanium Dioxide Quantification in Cosmetic Products via Borate Fusion by Flame Atomic Absorption Spectroscopy. , 0, , .		0
1684	Environmental Carriers for Metal Nanoparticles: Transport, Fate, and Eco-risks. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	0
1686	Overview of Nanomaterial Application in Food and Agriculture Sector. , 2023, , 1-41.		0
1687	Regulatory and Safety Concerns Regarding the Use of Active Nanomaterials in Food Industry. , 2023, , 269-306.		0
1693	Risk Assessment of Large-scale Nanoparticle Uses. , 2023, , 193-237.		Ο
1694	A perspective on biodegradable and non-biodegradable nanoparticles inÂindustrial sectors:Âapplications, challenges, and future prospects. Nanotechnology for Environmental Engineering, 2023, 8, 975-1013.	2.0	2
1709	Functionality and Applicability of Bionanotechnology in Food Preservation. , 2023, , 121-134.		Ο
1714	Biomass Valorization for Bioenergy Production. Green Energy and Technology, 2024, , 67-104.	0.4	0
1717	Uncertainties, phototoxicity, health impacts, and agricultural and environmental concerns of nanomaterials in the food industry. , 2024, , 361-390.		Ο

#	Article	IF	CITATIONS
1723	Antimicrobial nanoparticles in active food packaging applications. , 2024, , 21-32.		0
1730	Critical Review on Titania-Based Nanoparticles: Synthesis, Characterization, and Application as a Photocatalyst. Chemistry Africa, 0, , .	1.2	0
1740	Application of Nanoparticles to Enhance the Microbial Quality and Shelf Life of Food Products. , 2024, , 75-102.		0