Monocyte subpopulations and cardiovascular risk in ch

Nature Reviews Nephrology 8, 362-369 DOI: 10.1038/nrneph.2012.41

Citation Report

#	Article	IF	Citations
1	Monocyte heterogeneity in human cardiovascular disease. Immunobiology, 2012, 217, 1273-1284.	0.8	114
2	The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. British Journal of Pharmacology, 2012, 167, 990-999.	2.7	119
3	CD14++CD16+ Monocytes Independently Predict Cardiovascular Events. Journal of the American College of Cardiology, 2012, 60, 1512-1520.	1.2	449
4	Monocyte function and trafficking in cardiovascular disease. Thrombosis and Haemostasis, 2012, 108, 804-811.	1.8	19
5	Increased oxidative stress in foam cells obtained from hemodialysis patients. Hemodialysis International, 2013, 17, 266-274.	0.4	5
6	Proinflammatory CD14+CD16+ monocytes are associated with vascular stiffness in predialysis patients with chronic kidney disease. Kidney Research and Clinical Practice, 2013, 32, 147-152.	0.9	20
7	The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney International, 2013, 83, 1010-1016.	2.6	369
8	Differential TNF production by monocyte subsets under physical stress: Blunted mobilization of proinflammatory monocytes in prehypertensive individuals. Brain, Behavior, and Immunity, 2013, 27, 101-108.	2.0	27
9	Altered folate receptor 2 expression in uraemic patients on haemodialysis: implications for folate resistance. Nephrology Dialysis Transplantation, 2013, 28, 1214-1224.	0.4	11
10	Comparative Analysis of Monocyte Subsets in the Pig. Journal of Immunology, 2013, 190, 6389-6396.	0.4	91
11	Activation of Wnt/β-Catenin Pathway in Monocytes Derived from Chronic Kidney Disease Patients. PLoS ONE, 2013, 8, e68937.	1.1	23
12	Toward a Refined Definition of Monocyte Subsets. Frontiers in Immunology, 2013, 4, 23.	2.2	275
13	Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics, 2014, 9, 161-172.	1.3	107
14	Lower Apo A-I and Lower HDL-C Levels Are Associated With Higher Intermediate CD14 ⁺⁺ CD16 ⁺ Monocyte Counts That Predict Cardiovascular Events in Chronic Kidney Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2120-2127.	1.1	86
15	Sex differences in monocytes and TLR4 associated immune responses; implications for systemic lupus erythematosus (SLE). Journal of Immunotherapy Applications, 2014, 1, 1.	3.0	32
16	Blood Monocytes and Their Subsets in Health and Disease. , 2014, , 3-36.		1
17	Mitochondria in monocytes and macrophages-implications for translational and basic research. International Journal of Biochemistry and Cell Biology, 2014, 53, 202-207.	1.2	48
18	Involvement of monocytes/macrophages as key factors in the development and progression of cardiovascular diseases. Biochemical Journal, 2014, 458, 187-193.	1.7	51

TATION REDO

#	Article	IF	CITATIONS
19	Vascular Effects of Exercise Training in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1305-1318.	2.2	36
20	The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes. Scandinavian Journal of Immunology, 2015, 82, 163-173.	1.3	89
21	AB0044â€Assessment of Inflammasome Activation and Monocyte Subpopulations in Patients with Gout. Annals of the Rheumatic Diseases, 2015, 74, 904.3-905.	0.5	0
22	Monocyte subsets in atherosclerosis. Hamostaseologie, 2015, 35, 105-112.	0.9	20
23	Blood Monocytes and Their Subsets: Established Features and Open Questions. Frontiers in Immunology, 2015, 6, 423.	2.2	230
24	Intermediate Monocytes Lead to Enhanced Myocardial Remodelling in STEMI Patients With Diabetes. International Heart Journal, 2015, 56, 22-28.	0.5	25
25	Activated endothelial cells limit inflammatory response, but increase chemoattractant potential and bacterial clearance by human monocytes. Cell Biology International, 2015, 39, 721-732.	1.4	6
26	Enhanced M1 and Impaired M2 Macrophage Polarization and Reduced Mitochondrial Biogenesis via Inhibition of AMP Kinase in Chronic Kidney Disease. Cellular Physiology and Biochemistry, 2015, 36, 358-372.	1.1	61
27	Clinical significance of monocyte heterogeneity. Clinical and Translational Medicine, 2015, 4, 5.	1.7	136
28	Beta-adrenergic receptor mediated inflammation control by monocytes is associated with blood pressure and risk factors for cardiovascular disease. Brain, Behavior, and Immunity, 2015, 50, 31-38.	2.0	20
29	Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain, Behavior, and Immunity, 2015, 45, 1-12.	2.0	297
30	Immune Function in Chronic Kidney Disease. , 2015, , 285-297.		4
31	STAT3 Activation in Circulating Monocytes Contributes to Neovascular Age-Related Macular Degeneration. Current Molecular Medicine, 2016, 16, 412-423.	0.6	52
32	PCSK9 Plasma Concentrations Are Independent of GFR and Do Not Predict Cardiovascular Events in Patients with Decreased GFR. PLoS ONE, 2016, 11, e0146920.	1.1	35
33	Downregulation of kidney protective factors by inflammation: role of transcription factors and epigenetic mechanisms. American Journal of Physiology - Renal Physiology, 2016, 311, F1329-F1340.	1.3	52
34	Monocyte CD163 is altered in association with diabetic complications: possible protective role. Journal of Leukocyte Biology, 2016, 100, 1375-1383.	1.5	23
35	The hydrogen molecule as antioxidant therapy: clinical application in hemodialysis and perspectives. Renal Replacement Therapy, 2016, 2, .	0.3	9
36	Inflammation and Atherogenic Effects Due to Saturated Fatty Acids. , 2016, , 163-179.		0

#	Article	IF	CITATIONS
37	Two P2X1 receptor transcripts able to form functional channels are present in most human monocytes. European Journal of Pharmacology, 2016, 793, 82-88.	1.7	8
38	Monocyte subset distribution is associated with mortality in critically ill patients. Thrombosis and Haemostasis, 2016, 116, 949-957.	1.8	19
39	Cryopreservation of primary human monocytes does not negatively affect their functionality or their ability to be labelled with radionuclides: basis for molecular imaging and cell therapy. EJNMMI Research, 2016, 6, 77.	1.1	8
40	Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrology Dialysis Transplantation, 2016, 31, 737-746.	0.4	296
41	Severe Aortic Valve Stenosis in Adults is Associated with Increased Levels of Circulating Intermediate Monocytes. Journal of Cardiovascular Translational Research, 2017, 10, 27-34.	1.1	14
42	Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. American Journal of Physiology - Renal Physiology, 2017, 312, F748-F759.	1.3	22
43	M2 Monocyte Microparticles Are Increased in Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 2369-2375.	0.7	13
44	Monocyte subpopulations study in patients with plaque psoriasis. Medical Hypotheses, 2017, 104, 101-103.	0.8	6
45	Pretransplant Numbers of CD16 + Monocytes as a Novel Biomarker to Predict Acute Rejection After Kidney Transplantation: A Pilot Study. American Journal of Transplantation, 2017, 17, 2659-2667.	2.6	29
46	Predictors of Subclinical Inflammatory Obesity: Plasma Levels of Leptin, Very Low-Density Lipoprotein Cholesterol and CD14 Expression of CD16+ Monocytes. Obesity Facts, 2017, 10, 308-322.	1.6	10
47	Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Scientific Reports, 2017, 7, 3057.	1.6	87
48	Increased levels of inflammatory mediators and proinflammatory monocytes in patients with type I diabetes mellitus and nephropathy. Journal of Diabetes and Its Complications, 2017, 31, 245-252.	1.2	21
49	Regular exercise during haemodialysis promotes an anti-inflammatory leucocyte profile. CKJ: Clinical Kidney Journal, 2017, 10, 813-821.	1.4	22
50	Inflammatory Cytokines as Uremic Toxins: "Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son― Toxins, 2017, 9, 114.	1.5	58
51	Heterogeneity of Bovine Peripheral Blood Monocytes. Frontiers in Immunology, 2017, 8, 1875.	2.2	57
52	Proportions of Proinflammatory Monocytes Are Important Predictors of Mortality Risk in Hemodialysis Patients. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	12
53	Circulatory Immune Cells in Cushing Syndrome: Bystanders or Active Contributors to Atherometabolic Injury? A Study of Adhesion and Activation of Cell Surface Markers. International Journal of Endocrinology, 2017, 2017, 1-9.	0.6	6
54	Neutrophil and T-Cell Homeostasis in the Closed Eye. , 2017, 58, 6212.		32

#	Article	IF	CITATIONS
55	Increase in Peripheral Blood Intermediate Monocytes is Associated with the Development of Recent-Onset Type 1 Diabetes Mellitus in Children. International Journal of Biological Sciences, 2017, 13, 209-218.	2.6	25
56	The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. Journal of Leukocyte Biology, 2018, 103, 1021-1028.	1.5	26
57	The role of monocytosis and neutrophilia in atherosclerosis. Journal of Cellular and Molecular Medicine, 2018, 22, 1366-1382.	1.6	48
58	Correlation analysis of monocyte subsets and insulin resistance considering fetuinâ€A involvement in patients with type 2 diabetes. Clinical and Translational Medicine, 2018, 7, 9.	1.7	7
59	A comprehensive assessment of immunophenotyping performed in cryopreserved peripheral whole blood. Cytometry Part B - Clinical Cytometry, 2018, 94, 818-826.	0.7	30
60	Inflammation induces osteoclast differentiation from peripheral mononuclear cells in chronic kidney disease patients: crosstalk between the immune and bone systems. Nephrology Dialysis Transplantation, 2018, 33, 65-75.	0.4	41
61	Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis. Journal of Visualized Experiments, 2018, , .	0.2	33
62	Chronic Kidney Disease Severity Is Associated With Selective Expansion of a Distinctive Intermediate Monocyte Subpopulation. Frontiers in Immunology, 2018, 9, 2845.	2.2	30
63	The Phosphate Binder Ferric Citrate Alters the Gut Microbiome in Rats with Chronic Kidney Disease. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 452-460.	1.3	33
64	Cold shock Y-box binding protein-1 acetylation status in monocytes is associated with systemic inflammation and vascular damage. Atherosclerosis, 2018, 278, 156-165.	0.4	19
65	Exercise during hemodialysis does not affect the phenotype or prothrombotic nature of microparticles but alters their proinflammatory function. Physiological Reports, 2018, 6, e13825.	0.7	8
66	Endothelial Cell Senescence in the Pathogenesis of Endothelial Dysfunction. , 2018, , .		10
67	Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. Journal of Applied Physiology, 2018, 125, 2008-2018.	1.2	59
68	What is the Role of Soluble Urokinase-Type Plasminogen Activator in Renal Disease?. Nephron, 2018, 139, 334-341.	0.9	20
69	Updates on the Mechanisms and the Care of Cardiovascular Calcification in Chronic Kidney Disease. Seminars in Nephrology, 2018, 38, 233-250.	0.6	53
70	Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Scientific Reports, 2019, 9, 10236.	1.6	21
71	End-Stage Renal Disease-Associated Gut Bacterial Translocation: Evolution and Impact on Chronic Inflammation and Acute Rejection After Renal Transplantation. Frontiers in Immunology, 2019, 10, 1630.	2.2	24
72	Immunology of the ageing kidney. Nature Reviews Nephrology, 2019, 15, 625-640.	4.1	73

#	Article	IF	CITATIONS
73	Prognostic Value of Human Peripheral Monocyte Subsets for Future Coronary Events in Patients Without Significant Coronary Artery Stenosis. Circulation Journal, 2019, 83, 2250-2256.	0.7	3
74	New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease. Toxins, 2019, 11, 529.	1.5	37
75	Immune Dysfunction and Risk of Infection in Chronic Kidney Disease. Advances in Chronic Kidney Disease, 2019, 26, 8-15.	0.6	208
77	Vitamin D levels reverberate in monocytes modulation in hemodialysis patients. Journal of Cellular Physiology, 2019, 234, 16275-16280.	2.0	3
78	The effect of temperature and heat shock protein 72 on the ex vivo acute inflammatory response in monocytes. Cell Stress and Chaperones, 2019, 24, 461-467.	1.2	7
79	Abnormal Distribution and Function of Circulating Monocytes and Enhanced Bacterial Translocation in Major Depressive Disorder. Frontiers in Psychiatry, 2019, 10, 812.	1.3	53
80	Variety matters: Diverse functions of monocyte subtypes in vascular inflammation and atherogenesis. Vascular Pharmacology, 2019, 113, 9-19.	1.0	16
81	Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation, 2019, 139, 78-96.	1.6	126
82	Could there be Haemodynamic Stress Effects on Pro-Inflammatory CD14+CD16+ Monocytes during Convective-Diffusive Treatments? A Prospective Randomized Controlled Trial. Blood Purification, 2019, 47, 385-394.	0.9	5
83	The effect of chronic kidney disease on lipid metabolism. International Urology and Nephrology, 2019, 51, 265-277.	0.6	32
84	Relationship between Circulating Inflammatory Monocytes and Cardiovascular Disease Measures of Carotid Intimal Thickness. Journal of Atherosclerosis and Thrombosis, 2020, 27, 441-448.	0.9	23
85	Hematologic and Infectious Complications of Chronic Kidney Disease. , 2020, , 477-502.		1
86	Immune Function in Chronic Kidney Disease. , 2020, , 503-519.		3
87	Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 <i>in vivo</i> . Clinical and Experimental Immunology, 2019, 199, 97-108.	1.1	11
88	Inflammation, Senescence and MicroRNAs in Chronic Kidney Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 739.	1.8	16
89	Renal hyperfiltration as a risk factor for chronic kidney disease: A health checkup cohort study. PLoS ONE, 2020, 15, e0238177.	1.1	21
90	Lower HDL-C levels are associated with higher expressions of CD16 on monocyte subsets in coronary atherosclerosis. International Journal of Medical Sciences, 2020, 17, 2171-2179.	1.1	9
91	Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Frontiers in Immunology, 2020, 11, 1070.	2.2	54

#	Article	IF	CITATIONS
92	End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biology, 2020, 34, 101460.	3.9	62
93	Monocyte subsets in bone marrow grafts may contribute to a low incidence of acute graftâ€vsâ€host disease for young donors. Journal of Cellular and Molecular Medicine, 2020, 24, 9204-9216.	1.6	2
94	TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2026-2042.	3.0	8
95	Unstable Carotid Plaque as a Phenotype of Chronic Systemic Inflammation Enhances Renal Insufficiency. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104698.	0.7	2
96	Pattern of human monocyte subpopulations in health and disease. Scandinavian Journal of Immunology, 2020, 92, e12883.	1.3	108
97	Monocyte to high-density lipoprotein ratio and cardiovascular events in patients on peritoneal dialysis. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 1130-1136.	1.1	15
98	Mechanisms of Cardiovascular Disorders in Patients With Chronic Kidney Disease: A Process Related to Accelerated Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 185.	1.8	76
99	Human CD16+ monocytes promote a pro-atherosclerotic endothelial cell phenotype via CX3CR1–CX3CL1 interaction. Cardiovascular Research, 2021, 117, 1510-1522.	1.8	24
100	Systemic Markers of Monocyte Activation in Acute Pulmonary Oedema. Heart Lung and Circulation, 2021, 30, 404-413.	0.2	2
101	Outcomes of coronavirus 2019 infection in patients with chronic kidney disease: a systematic review and meta-analysis. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232199886.	1.1	5
102	DNA Methylation Sustains "Inflamed―Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Frontiers in Physiology, 2021, 12, 637480.	1.3	9
103	Characteristics of COVID-19 patients with preexisting CKD history. International Urology and Nephrology, 2021, 53, 2567-2575.	0.6	6
104	Periodontal health related–inflammatory and metabolic profiles of patients with end-stage renal disease: potential strategy for predictive, preventive, and personalized medicine. EPMA Journal, 2021, 12, 117-128.	3.3	12
105	Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nature Communications, 2021, 12, 2783.	5.8	35
106	Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell and Tissue Research, 2021, 385, 335-344.	1.5	28
107	Hemodialysis acutely altered interferon-gamma release assay test result and immune cell profile. Journal of Microbiology, Immunology and Infection, 2022, 55, 332-335.	1.5	1
108	Effect of Kidney Transplantation on Accelerated Immunosenescence and Vascular Changes Induced by Chronic Kidney Disease. Frontiers in Medicine, 2021, 8, 705159.	1.2	2
109	Protein-Bound Uremic Toxins and Immunity. Methods in Molecular Biology, 2021, 2325, 215-227.	0.4	10

		CITATION REPORT		
#	Article		IF	Citations
110	Coronavirus disease 2019 in chronic kidney disease. CKJ: Clinical Kidney Journal, 2020,	13, 297-306.	1.4	59
111	Phenotypic and Functional Heterogeneity of Bovine Blood Monocytes. PLoS ONE, 201	3, 8, e71502.	1.1	72
112	Sex Differences in Monocyte Activation in Systemic Lupus Erythematosus (SLE). PLoS e114589.	ONE, 2014, 9,	1.1	25
113	Intermediate CD14++CD16+ monocytes decline after transcatheter aortic valve replac correlate with functional capacity and left ventricular systolic function. PLoS ONE, 201	ement and .7, 12, e0183670.	1.1	12
114	Taking Risk Prediction to the Next Level. Advances in Biomarker Research for Atherosc Pharmaceutical Design, 2013, 19, 5929-5941.	lerosis. Current	0.9	2
115	The Innate Immune System and Cardiovascular Disease in ESKD: Monocytes and Natur Current Vascular Pharmacology, 2020, 19, 63-76.	al Killer Cells.	0.8	18
116	Immunological Aspects of Atherosclerosis. Physiological Research, 2014, 63, S335-S34	12.	0.4	13
117	The Association of Circulating CD14++CD16+ Monocytes, Natural Killer Cells and Reg Subpopulations With Phenotypes of Cardiovascular Disease in a Cohort of Peritoneal I Patients. Frontiers in Medicine, 2021, 8, 724316.	ulatory T Cells Dialysis	1.2	4
118	Increased Monocyte/Lymphocyte Ratio as Risk Marker for Cardiovascular Events and Ir Hospitalization in Dialysis Patients. Blood Purification, 2022, 51, 747-755.	ifectious Disease	0.9	6
119	Intradialytic cycling does not exacerbate microparticles or circulating markers of syste inflammation in haemodialysis patients. European Journal of Applied Physiology, 2022,	mic 122, 599-609.	1.2	3
120	The effect of probiotic supplementation on systemic inflammation in dialysis patients. and Clinical Practice, 2022, 41, 89-101.	Kidney Research	0.9	8
122	Association of Monocyte Count and Monocyte/Lymphocyte Ratio with the Risk of Card Outcomes in Patients with CKD. Kidney360, 2022, 3, 657-665.	diovascular	0.9	5
123	Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka: Hematological Chan Pro-Inflammation Suggest Likely Predictors of Advance Disease, as Renal Outcomes Sh Normoalbuminuria. Diseases (Basel, Switzerland), 2022, 10, 2.	ges and low Prevalent	1.0	4
129	Inflammatory biomarkers in staging of chronic kidney disease: elevated TNFR2 levels a function decline. Inflammation Research, 2022, 71, 591-602.	ccompanies renal	1.6	7
130	Inflammation in Children with CKD Linked to Gut Dysbiosis and Metabolite Imbalance. American Society of Nephrology: JASN, 2022, 33, 2259-2275.	Journal of the	3.0	18
131	Chronic kidney disease is associated with increased allâ€cause mortality in transvenou extraction: A systematic review and metaâ€analysis. PACE - Pacing and Clinical Electro	s lead physiology, 0, , .	0.5	1
132	Exercise and chronic kidney disease: potential mechanisms underlying the physiologica Nature Reviews Nephrology, 2023, 19, 244-256.	al benefits.	4.1	18
133	Chronic Kidney Disease Is Characterized by Expansion of a Distinct Proinflammatory In Monocyte Subtype and by Increased Monocyte Adhesion to Endothelial Cells. Journal o Society of Nephrology: JASN, 2023, 34, 793-808.	termediate of the American	3.0	4

#	Article	IF	CITATIONS
134	Persistent immunosuppressive effects of dibutyl phthalate exposure in adult male mice. Science of the Total Environment, 2023, 878, 162741.	3.9	6
135	Identification of immune-related molecular clusters and diagnostic markers in chronic kidney disease based on cluster analysis. Frontiers in Genetics, 0, 14, .	1.1	2
136	Clinical study on the correlation between monocyteâ€related ratios and calcification of the abdominal aorta in peritoneal dialysis patients. Therapeutic Apheresis and Dialysis, 2023, 27, 742-751.	0.4	2