Inferring gene regulatory logic from high-throughput n systematically designed promoters

Nature Biotechnology 30, 521-530 DOI: 10.1038/nbt.2205

Citation Report

#	Article	IF	CITATIONS
1	Interpreting noncoding genetic variation in complex traits and human disease. Nature Biotechnology, 2012, 30, 1095-1106.	9.4	445
2	Rapid Synthesis of Defined Eukaryotic Promoter Libraries. ACS Synthetic Biology, 2012, 1, 483-490.	1.9	7
3	DNA Sequence Preferences of Transcriptional Activators Correlate More Strongly than Repressors with Nucleosomes. Molecular Cell, 2012, 47, 183-192.	4.5	26
4	Nanopores as protein sensors. Nature Biotechnology, 2012, 30, 506-507.	9.4	58
5	Dissecting genomic regulatory elements in vivo. Nature Biotechnology, 2012, 30, 504-506.	9.4	9
6	Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nature Genetics, 2013, 45, 1021-1028.	9.4	226
7	Mapping the fine structure of a eukaryotic promoter input-output function. Nature Genetics, 2013, 45, 1207-1215.	9.4	53
8	Synthetic biology: lessons from engineering yeast <scp>MAPK</scp> signalling pathways. Molecular Microbiology, 2013, 88, 5-19.	1.2	28
9	Composability of regulatory sequences controlling transcription and translation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14024-14029.	3.3	377
10	Positive and Negative Design for Nonconsensus Protein-DNA Binding Affinity in the Vicinity of Functional Binding Sites. Biophysical Journal, 2013, 105, 1653-1660.	0.2	20
11	Genetic Sensor for Strong Methylating Compounds. ACS Synthetic Biology, 2013, 2, 614-624.	1.9	29
12	Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach. Genome Research, 2013, 23, 1928-1937.	2.4	12
13	Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nature Methods, 2013, 10, 774-780.	9.0	55
14	A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design. Genome Biology, 2013, 14, R72.	13.9	19
15	Synthetic Gene Circuit-Mediated Monitoring of Endogenous Metabolites: Identification of <i>GAL11</i> as a Novel Multicopy Enhancer of <i>S</i> -Adenosylmethionine Level in Yeast. ACS Synthetic Biology, 2013, 2, 425-430.	1.9	43
16	Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotechnology, 2013, 31, 170-174.	9.4	551
17	Deciphering the transcriptional cis-regulatory code. Trends in Genetics, 2013, 29, 11-22.	2.9	112
18	Genotype to phenotype: lessons from model organisms for human genetics. Nature Reviews Genetics, 2013, 14, 168-178.	7.7	197

#	Article	IF	CITATIONS
19	<i>Cis</i> -regulatory logic in archaeal transcription. Biochemical Society Transactions, 2013, 41, 326-331.	1.6	49
20	Probing Allostery Through DNA. Science, 2013, 339, 816-819.	6.0	243
21	Engineering the <i>esaR</i> Promoter for Tunable Quorum Sensing-Dependent Gene Expression. ACS Synthetic Biology, 2013, 2, 568-575.	1.9	31
22	Mapping Yeast Transcriptional Networks. Genetics, 2013, 195, 9-36.	1.2	72
23	Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Research, 2013, 23, 1908-1915.	2.4	99
24	Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Research, 2013, 23, 800-811.	2.4	298
25	High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast. Genome Research, 2013, 23, 698-704.	2.4	53
26	A hierarchical model of transcriptional dynamics allows robust estimation of transcription rates in populations of single cells with variable gene copy number. Bioinformatics, 2013, 29, 1519-1525.	1.8	6
27	Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2792-801.	3.3	231
28	Constraint and Contingency in Multifunctional Gene Regulatory Circuits. PLoS Computational Biology, 2013, 9, e1003071.	1.5	33
29	The Molecular Mechanism of a Cis-Regulatory Adaptation in Yeast. PLoS Genetics, 2013, 9, e1003813.	1.5	35
30	Promoter decoding of transcription factor dynamics involves a tradeâ€off between noise and control of gene expression. Molecular Systems Biology, 2013, 9, 704.	3.2	138
31	Models of signalling networks – what cell biologists can gain from them and give to them. Journal of Cell Science, 2013, 126, 1913-1921.	1.2	78
32	Promoters maintain their relative activity levels under different growth conditions. Molecular Systems Biology, 2013, 9, 701.	3.2	181
33	Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library. BMC Plant Biology, 2013, 13, 164.	1.6	6
34	Spatial Promoter Recognition Signatures May Enhance Transcription Factor Specificity in Yeast. PLoS ONE, 2013, 8, e53778.	1.1	2
35	Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models. PLoS ONE, 2013, 8, e57180.	1.1	22
36	Quantitative Design of Regulatory Elements Based on High-Precision Strength Prediction Using Artificial Neural Network. PLoS ONE, 2013, 8, e60288.	1.1	39

#	Article	IF	CITATIONS
37	High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. ELife, 2014, 3, e04094.	2.8	66
38	Comparison of the theoretical and real-world evolutionary potential of a genetic circuit. Physical Biology, 2014, 11, 026005.	0.8	14
39	Physical constraints determine the logic of bacterial promoter architectures. Nucleic Acids Research, 2014, 42, 4196-4207.	6.5	23
40	Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genetics, 2014, 10, e1004264.	1.5	67
41	Systematic Dissection of Coding Exons at Single Nucleotide Resolution Supports an Additional Role in Cell-Specific Transcriptional Regulation. PLoS Genetics, 2014, 10, e1004592.	1.5	36
42	Discrimination between thermodynamic models of <i>cis</i> -regulation using transcription factor occupancy data. Nucleic Acids Research, 2014, 42, 2224-2234.	6.5	10
43	D-Tailor: automated analysis and design of DNA sequences. Bioinformatics, 2014, 30, 1087-1094.	1.8	31
44	Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity. PLoS Genetics, 2014, 10, e1004060.	1.5	59
45	Towards Structural Systems Pharmacology to Study Complex Diseases and Personalized Medicine. PLoS Computational Biology, 2014, 10, e1003554.	1.5	61
46	A unified model for yeast transcript definition. Genome Research, 2014, 24, 154-166.	2.4	20
47	Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters. Genome Research, 2014, 24, 1991-1999.	2.4	17
48	Large-scale mapping of sequence-function relations in small regulatory RNAs reveals plasticity and modularity. Nucleic Acids Research, 2014, 42, 12177-12188.	6.5	36
49	Systematic Identification of Regulatory Elements in Conserved 3′ UTRs of Human Transcripts. Cell Reports, 2014, 7, 281-292.	2.9	58
50	Transcriptional enhancers: from properties to genome-wide predictions. Nature Reviews Genetics, 2014, 15, 272-286.	7.7	1,136
51	The Robustness and Evolvability of Transcription Factor Binding Sites. Science, 2014, 343, 875-877.	6.0	139
52	The grammar of transcriptional regulation. Human Genetics, 2014, 133, 701-711.	1.8	78
53	Evolution of transcription factor binding in metazoans — mechanisms and functional implications. Nature Reviews Genetics, 2014, 15, 221-233.	7.7	207
54	Function-based identification of mammalian enhancers using site-specific integration. Nature Methods, 2014, 11, 566-571.	9.0	71

		EPORT	
#	Article	IF	CITATIONS
55	Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 2014, 11, 499-507.	9.0	644
56	Distal enhancers: new insights into heart development and disease. Trends in Cell Biology, 2014, 24, 294-302.	3.6	42
57	Quantitative analysis of mammalian translation initiation sites by <scp>FACS</scp> â€seq. Molecular Systems Biology, 2014, 10, 748.	3.2	158
58	The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	56
59	Enhanced killing of antibiotic-resistant bacteria enabled by massively parallel combinatorial genetics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12462-12467.	3.3	35
60	Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis. Genes and Development, 2014, 28, 1721-1732.	2.7	58
61	Biopharmaceutical protein production by <i>Saccharomyces cerevisiae</i> : current state and future prospects. Pharmaceutical Bioprocessing, 2014, 2, 167-182.	0.8	40
62	High-throughput functional testing of ENCODE segmentation predictions. Genome Research, 2014, 24, 1595-1602.	2.4	232
63	Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression. Computational and Structural Biotechnology Journal, 2014, 10, 63-69.	1.9	56
64	Probing the effect of promoters on noise in gene expression using thousands of designed sequences. Genome Research, 2014, 24, 1698-1706.	2.4	118
65	Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Research, 2014, 42, e48-e48.	6.5	87
66	Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction. Genome Research, 2014, 24, 1686-1697.	2.4	21
67	Latent phenotypes pervade gene regulatory circuits. BMC Systems Biology, 2014, 8, 64.	3.0	16
68	Design of synthetic yeast promoters via tuning of nucleosome architecture. Nature Communications, 2014, 5, 4002.	5.8	123
69	In pursuit of design principles of regulatory sequences. Nature Reviews Genetics, 2014, 15, 453-468.	7.7	196
70	Using TRIP for genome-wide position effect analysis in cultured cells. Nature Protocols, 2014, 9, 1255-1281.	5.5	34
71	Mechanisms Underlying Nucleosome Positioning In Vivo. Annual Review of Biophysics, 2014, 43, 41-63.	4.5	117
72	Function does not follow form in gene regulatory circuits. Scientific Reports, 2015, 5, 13015.	1.6	40

#	Article	IF	CITATIONS
73	Mechanisms of mutational robustness in transcriptional regulation. Frontiers in Genetics, 2015, 6, 322.	1.1	89
74	A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0129357.	1.1	4
75	DNA Structure and Promoter Engineering. , 2015, , 241-254.		10
76	Decoupling of divergent gene regulation by sequence-specific DNA binding factors. Nucleic Acids Research, 2015, 43, 7292-7305.	6.5	18
77	Dissecting the target specificity of RNase H recruiting oligonucleotides using massively parallel reporter analysis of short RNA motifs. Nucleic Acids Research, 2015, 43, 8476-8487.	6.5	7
78	Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics. MBio, 2015, 6, e00686-15.	1.8	40
79	Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression. Integrative Biology (United Kingdom), 2015, 7, 1622-1632.	0.6	13
80	cis Determinants of Promoter Threshold and Activation Timescale. Cell Reports, 2015, 12, 1226-1233.	2.9	39
81	Identifying transcriptional <i>cis</i> â€regulatory modules in animal genomes. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 59-84.	5.9	54
82	Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Current Opinion in Biotechnology, 2015, 32, 216-222.	3.3	99
83	SORTCERY—A High–Throughput Method to Affinity Rank Peptide Ligands. Journal of Molecular Biology, 2015, 427, 2135-2150.	2.0	58
84	High throughput technologies for the functional discovery of mammalian enhancers: New approaches for understanding transcriptional regulatory network dynamics. Genomics, 2015, 106, 151-158.	1.3	31
85	STARR-seq $\hat{a} \in$ "Principles and applications. Genomics, 2015, 106, 145-150.	1.3	76
86	Decoding enhancers using massively parallel reporter assays. Genomics, 2015, 106, 159-164.	1.3	208
87	The development and characterization of synthetic minimal yeast promoters. Nature Communications, 2015, 6, 7810.	5.8	201
88	Understanding how cis -regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics, 2015, 106, 165-170.	1.3	60
89	Systematic Dissection of the Sequence Determinants of Gene 3' End Mediated Expression Control. PLoS Genetics, 2015, 11, e1005147.	1.5	70
90	Unraveling determinants of transcription factor binding outside the core binding site. Genome Research, 2015, 25, 1018-1029.	2.4	146

CITATI	ION	RF	PO	DT.

#	Article	IF	CITATIONS
91	Core promoter sequence in yeast is a major determinant of expression level. Genome Research, 2015, 25, 1008-1017.	2.4	94
92	YeastFab: the design and construction of standard biological parts for metabolic engineering in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2015, 43, e88-e88.	6.5	93
93	Enhanced Protein Production in <i>Escherichia coli</i> by Optimization of Cloning Scars at the Vector–Coding Sequence Junction. ACS Synthetic Biology, 2015, 4, 959-965.	1.9	46
94	Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS. Computational Biology and Chemistry, 2015, 59, 117-125.	1.1	10
95	Learning the Sequence Determinants of Alternative Splicing from Millions of Random Sequences. Cell, 2015, 163, 698-711.	13.5	223
96	High-throughput cellular RNA device engineering. Nature Methods, 2015, 12, 989-994.	9.0	100
97	Systems and Synthetic Biology. , 2015, , .		7
98	Speeding up Directed Evolution: Combining the Advantages of Solid-Phase Combinatorial Gene Synthesis with Statistically Guided Reduction of Screening Effort. ACS Synthetic Biology, 2015, 4, 317-331.	1.9	46
99	Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. Journal of Biological Chemistry, 2016, 291, 14526-14539.	1.6	56
100	A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of <i>cis</i> -regulatory activity in neural cells. Nucleic Acids Research, 2017, 45, gkw942.	6.5	48
101	A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors. Cell Reports, 2016, 17, 1247-1254.	2.9	75
102	Progress and challenges in bioinformatics approaches for enhancer identification. Briefings in Bioinformatics, 2016, 17, 967-979.	3.2	81
103	Barcode Sequencing Screen Identifies <i>SUB1</i> as a Regulator of Yeast Pheromone Inducible Genes. G3: Genes, Genomes, Genetics, 2016, 6, 881-892.	0.8	9
104	Interactions between pluripotency factors specify <i>cis</i> -regulation in embryonic stem cells. Genome Research, 2016, 26, 778-786.	2.4	46
105	The Determinants of Directionality in Transcriptional Initiation. Trends in Genetics, 2016, 32, 322-333.	2.9	31
106	Generating High-Accuracy Peptide-Binding Data in High Throughput with Yeast Surface Display and SORTCERY. Methods in Molecular Biology, 2016, 1414, 233-247.	0.4	13
107	The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Developmental Biology, 2016, 413, 128-144.	0.9	18
108	Epigenomic Consequences of Coding and Noncoding Driver Mutations. Trends in Cancer, 2016, 2, 585-605.	3.8	8

#	Article	IF	CITATIONS
110	Deciphering Combinatorial Genetics. Annual Review of Genetics, 2016, 50, 515-538.	3.2	16
111	A Survey of the Computational Methods for Enhancers and Enhancer-target Predictions. , 2016, , 3-27.		1
112	Ubiquitinâ€like domains can target to the proteasome but proteolysis requires a disordered region. EMBO Journal, 2016, 35, 1522-1536.	3.5	52
113	How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. BioEssays, 2016, 38, 605-612.	1.2	48
114	Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. BioEssays, 2016, 38, 881-893.	1.2	39
115	The power of multiplexed functional analysis of genetic variants. Nature Protocols, 2016, 11, 1782-1787.	5.5	115
116	Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells. Cell Reports, 2016, 16, 2525-2537.	2.9	40
117	Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness. Cell, 2016, 166, 1282-1294.e18.	13.5	168
118	Systems Metabolic Engineering of <i>Escherichia coli</i> . EcoSal Plus, 2016, 7, .	2.1	31
119	Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering. Biotechnology and Bioprocess Engineering, 2016, 21, 483-490.	1.4	11
120	Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biology, 2016, 13, 927-933.	1.5	8
121	A part toolbox to tune genetic expression in <i>Bacillus subtilis</i> . Nucleic Acids Research, 2016, 44, gkw624.	6.5	157
122	Engineering an NADPH/NADP ⁺ Redox Biosensor in Yeast. ACS Synthetic Biology, 2016, 5, 1546-1556.	1.9	66
123	Assembly PCR synthesis of optimally designed, compact, multi-responsive promoters suited to gene therapy application. Scientific Reports, 2016, 6, 29388.	1.6	7
124	Robustness and Evolvability in Molecular Evolution. , 2016, , 484-488.		0
125	Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discovery, 2016, 6, 1215-1229.	7.7	81
126	Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nature Communications, 2016, 7, 12621.	5.8	48
127	Rapid Verification of Terminators Using the pGR-Blue Plasmid and Golden Gate Assembly. Journal of Visualized Experiments, 2016, , .	0.2	3

#	Article	IF	CITATIONS
128	Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression. Nature Communications, 2016, 7, 10407.	5.8	11
129	Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations. BMC Genomics, 2016, 17, 206.	1.2	60
130	Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44, e136-e136.	6.5	99
131	Transcriptomics-Guided Design of Synthetic Promoters for a Mammalian System. ACS Synthetic Biology, 2016, 5, 1455-1465.	1.9	24
132	Learning Quantitative Sequence–Function Relationships from Massively Parallel Experiments. Journal of Statistical Physics, 2016, 162, 1203-1243.	0.5	25
133	Promoter and Terminator Discovery and Engineering. Advances in Biochemical Engineering/Biotechnology, 2016, 162, 21-44.	0.6	25
134	Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnology Advances, 2016, 34, 492-503.	6.0	29
135	Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2016, 5, 224-233.	1.9	131
136	Systematic discovery of cap-independent translation sequences in human and viral genomes. Science, 2016, 351, .	6.0	258
137	Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Research, 2016, 44, e43-e43.	6.5	48
138	Antisense transcription as a tool to tune geneÂexpression. Molecular Systems Biology, 2016, 12, 854.	3.2	96
139	No tradeoff between versatility and robustness in gene circuit motifs. Physica A: Statistical Mechanics and Its Applications, 2016, 449, 192-199.	1.2	2
140	Mapping regulatory elements. Nature Biotechnology, 2016, 34, 151-152.	9.4	5
141	Categorical spectral analysis of periodicity in nucleosomal DNA. Nucleic Acids Research, 2016, 44, 2047-2057.	6.5	26
142	Using synthetic biology to make cells tomorrow's test tubes. Integrative Biology (United Kingdom), 2016, 8, 431-450.	0.6	9
143	Predictable tuning of protein expression in bacteria. Nature Methods, 2016, 13, 233-236.	9.0	116
144	Epistatic Interactions in the Arabinose <i>Cis</i> -Regulatory Element. Molecular Biology and Evolution, 2016, 33, 761-769.	3.5	16
145	Hill functionâ€based models of transcriptional switches: impact of specific, nonspecific, functional and nonfunctional binding. Biological Reviews, 2017, 92, 953-963.	4.7	23

#	Article	IF	CITATIONS
146	Probing the Cooperativity of Binding Networks with High-Throughput Thermophoresis. Analytical Chemistry, 2017, 89, 2592-2597.	3.2	3
147	A thousand empirical adaptive landscapes and their navigability. Nature Ecology and Evolution, 2017, 1, 45.	3.4	79
148	Predicting gene expression in massively parallel reporter assays: A comparative study. Human Mutation, 2017, 38, 1240-1250.	1.1	39
149	Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays. Molecular Cell, 2017, 65, 604-617.e6.	4.5	48
150	Towards combinatorial transcriptional engineering. Biotechnology Advances, 2017, 35, 390-405.	6.0	17
151	Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human Genetics, 2017, 18, 45-63.	2.5	115
152	A Cas9-based toolkit to program gene expression in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2017, 45, 496-508.	6.5	215
153	A new computational method to predict transcriptional activity of a DNA sequence from diverse datasets of massively parallel reporter assays. Nucleic Acids Research, 2017, 45, e124-e124.	6.5	1
154	Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11, 107-116.	2.3	20
155	Genome-wide mapping of autonomous promoter activity in human cells. Nature Biotechnology, 2017, 35, 145-153.	9.4	97
156	Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Systems, 2017, 4, 97-108.e9.	2.9	63
157	A Precise Genome Editing Method Reveals Insights into the Activity of Eukaryotic Promoters. Cell Reports, 2017, 18, 275-286.	2.9	9
158	Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research, 2017, 27, 87-94.	2.4	28
159	Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences. Genome Research, 2017, 27, 2015-2024.	2.4	166
160	Noise reduction as an emergent property of single-cell aging. Nature Communications, 2017, 8, 680.	5.8	29
161	A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ 54 Promoters. Cell Reports, 2017, 21, 845-858.	2.9	23
162	DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Research, 2017, 45, 11121-11130.	6.5	53
163	Transposable elements are the primary source of novelty in primate gene regulation. Genome Research, 2017, 27, 1623-1633.	2.4	197

ARTICLE IF CITATIONS # Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35, 9.4 79 164 732-746. Hidden Secrets of Sigma54 Promoters Revealed. Trends in Biochemical Sciences, 2017, 42, 931-932. 3.7 Genome-wide Mapping of the Nucleosome Landscape by Micrococcal Nuclease and Chemical Mapping. 166 2.9 34 Trends in Genetics, 2017, 33, 495-507. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species. 1.9 ACS Synthetic Biology, 2017, 6, 471-484. MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments. 168 1.8 8 Bioinformatics, 2017, 33, 137-138. Translating natural genetic variation to gene expression in a computational model of the Drosophila gap gene regulatory network. PLoS ONE, 2017, 12, e0184657. 1.1 In silico design of context-responsive mammalian promoters with user-defined functionality. Nucleic 170 6.5 29 Acids Research, 2017, 45, 10906-10919. Systems biology of embryonic development: Prospects for a complete understanding of the <scp><i>Caenorhabditis elegans</i></scp> embryo. Wiley Interdisciplinary Reviews: Developmental 5.9 Biology, 2018, 7, e314. Unraveling the determinants of microRNA mediated regulation using a massively parallel reporter 172 5.8 36 assay. Nature Communications, 2018, 9, 529. PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs. Nature 5.8 Communications, 2018, 9, 301. Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome 174 2.4 93 Research, 2018, 28, 214-222. Systematic and synthetic approaches to rewire regulatory networks. Current Opinion in Systems 1.3 Biology, 2018, 8, 90-96. Timing of gene expression in a cellâ€fate decisionÂsystem. Molecular Systems Biology, 2018, 14, e8024. 176 3.2 31 A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain. Cell Systems, 2018, 6, 444-455.e6. Co-regulation analysis of co-expressed modules under cold and pathogen stress conditions in 179 1.0 4 tomato. Molecular Biology Reports, 2018, 45, 335-345. Promoter architecture determines cotranslational regulation of mRNA. Genome Research, 2018, 28, 2.4 509-518. Metagenomic mining of regulatory elements enables programmable species-selective gene expression. 181 9.0 80 Nature Methods, 2018, 15, 323-329. Emergent Properties in Complex Synthetic Bacterial Promoters. ACS Synthetic Biology, 2018, 7, 602-612.

#	ARTICLE	IF	Citations
183	QuASAR-MPRA: accurate allele-specific analysis for massively parallel reporter assays. Bioinformatics, 2018, 34, 787-794.	1.8	28
184	A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria. ACS Synthetic Biology, 2018, 7, 166-175.	1.9	50
185	Parts Characterization for Tunable Protein Expression. Methods in Molecular Biology, 2018, 1671, 3-14.	0.4	1
186	An <i>in Vivo</i> Binding Assay for RNA-Binding Proteins Based on Repression of a Reporter Gene. ACS Synthetic Biology, 2018, 7, 2765-2774.	1.9	16
187	A Visual Framework for Classifying Determinants of Cell Size. Cell Reports, 2018, 25, 3519-3529.e2.	2.9	11
188	High-throughput characterization of genetic effects on DNA–protein binding and gene transcription. Genome Research, 2018, 28, 1701-1708.	2.4	34
189	Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nature Biotechnology, 2018, 36, 1005-1015.	9.4	182
190	Genome-wide analysis of fitness data and its application to improve metabolic models. BMC Bioinformatics, 2018, 19, 368.	1.2	3
191	Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2018, 7, 1773-1784.	1.9	38
192	Solidâ€Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution?. ChemBioChem, 2018, 19, 2023-2032.	1.3	24
193	A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Molecular Cell, 2018, 71, 178-190.e8.	4.5	177
194	Systematic Study of Nucleosome-Displacing Factors in Budding Yeast. Molecular Cell, 2018, 71, 294-305.e4.	4.5	85
195	Detection of cooperatively bound transcription factor pairs using ChIP-seq peak intensities and expectation maximization. PLoS ONE, 2018, 13, e0199771.	1.1	9
196	Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4796-E4805.	3.3	81
197	Scarless genome editing: progress towards understanding genotype–phenotype relationships. Current Genetics, 2018, 64, 1229-1238.	0.8	6
198	Impacts of uORF codon identity and position on translation regulation. Nucleic Acids Research, 2019, 47, 9358-9367.	6.5	46
199	Empirical mean-noise fitness landscapes reveal the fitness impact of gene expression noise. Nature Communications, 2019, 10, 3180.	5.8	35
200	Noise-precision tradeoff in predicting combinations of mutations and drugs. PLoS Computational Biology, 2019, 15, e1006956.	1.5	13

#	Article	IF	CITATIONS
201	A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nature Communications, 2019, 10, 2880.	5.8	42
202	Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Applied Microbiology and Biotechnology, 2019, 103, 8725-8736.	1.7	53
203	MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biology, 2019, 20, 223.	3.8	130
204	A comparative analysis of Smad-responsive motifs identifies multiple regulatory inputs for TGF-Î ² transcriptional activation. Journal of Biological Chemistry, 2019, 294, 15466-15479.	1.6	18
205	Data storage in DNA with fewer synthesis cycles using composite DNA letters. Nature Biotechnology, 2019, 37, 1229-1236.	9.4	110
206	Sequence determinants of polyadenylation-mediated regulation. Genome Research, 2019, 29, 1635-1647.	2.4	19
207	Metaâ€∎nalysis of massively parallel reporter assays enables prediction of regulatory function across cell types. Human Mutation, 2019, 40, 1299-1313.	1.1	15
208	A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation. Cell, 2019, 178, 91-106.e23.	13.5	141
209	Synthetic 5′ UTRs Can Either Up- or Downregulate Expression upon RNA-Binding Protein Binding. Cell Systems, 2019, 9, 93-106.e8.	2.9	11
210	Massively Parallel Assays and Quantitative Sequence–Function Relationships. Annual Review of Genomics and Human Genetics, 2019, 20, 99-127.	2.5	101
211	Cell-free gene-regulatory network engineering with synthetic transcription factors. Proceedings of the United States of America, 2019, 116, 5892-5901.	3.3	59
212	Mapping DNA sequence to transcription factor binding energy in vivo. PLoS Computational Biology, 2019, 15, e1006226.	1.5	36
213	Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures. Communications Biology, 2019, 2, 443.	2.0	26
214	A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity. Nature Biotechnology, 2019, 37, 90-95.	9.4	66
215	Systematic interrogation of human promoters. Genome Research, 2019, 29, 171-183.	2.4	92
216	The causes of evolvability and their evolution. Nature Reviews Genetics, 2019, 20, 24-38.	7.7	208
217	Bayesian estimation of genetic regulatory effects in high-throughput reporter assays. Bioinformatics, 2020, 36, 331-338.	1.8	0
218	Designing Eukaryotic Gene Expression Regulation Using Machine Learning. Trends in Biotechnology, 2020, 38, 191-201.	4.9	30

#	Article	IF	CITATIONS
219	Deciphering Gene Regulation Using Massively Parallel Reporter Assays. Trends in Biochemical Sciences, 2020, 45, 90-91.	3.7	11
220	Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nature Biotechnology, 2020, 38, 56-65.	9.4	188
221	5′ untranslated regions: the next regulatory sequence in yeast synthetic biology. Biological Reviews, 2020, 95, 517-529.	4.7	8
222	Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00149.	1.9	46
223	Cross-species regulatory sequence activity prediction. PLoS Computational Biology, 2020, 16, e1008050.	1.5	116
224	DropSynth 2.0: high-fidelity multiplexed gene synthesis in emulsions. Nucleic Acids Research, 2020, 48, e95-e95.	6.5	25
225	Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping. Nature Communications, 2020, 11, 3551.	5.8	36
226	Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nature Communications, 2020, 11, 6141.	5.8	83
227	Sequencing enabling design and learning in synthetic biology. Current Opinion in Chemical Biology, 2020, 58, 54-62.	2.8	18
228	Genetic circuit design automation for yeast. Nature Microbiology, 2020, 5, 1349-1360.	5.9	89
229	Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites, 2020, 10, 320.	1.3	57
230	Rational design of minimal synthetic promoters for plants. Nucleic Acids Research, 2020, 48, 11845-11856.	6.5	70
231	Evaluation of Davis etÂal.: Exploring Sequence of Determinants of Transcriptional Regulation—The Case of c-AMP Response Element. Cell Systems, 2020, 11, 2-4.	2.9	0
232	MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biology, 2020, 21, 134.	3.8	18
233	Quantitative analysis of transcription factor binding and expression using calling cards reporter arrays. Nucleic Acids Research, 2020, 48, e50-e50.	6.5	6
234	A Synthetic Malonyl-CoA Metabolic Oscillator in <i>Komagataella phaffii</i> . ACS Synthetic Biology, 2020, 9, 1059-1068.	1.9	16
235	Single-particle imaging of stress-promoters induction reveals the interplay between MAPK signaling, chromatin and transcription factors. Nature Communications, 2020, 11, 3171.	5.8	10
236	Dissection of c-AMP Response Element Architecture by Using Genomic and Episomal Massively Parallel Reporter Assays. Cell Systems, 2020, 11, 75-85.e7.	2.9	30

#	Article	IF	CITATIONS
237	A successful search for new, efficient, and silver-free manufacturing processes for key platinum(<scp>ii</scp>) intermediates applied in antibody–drug conjugate (ADC) production. Green Chemistry, 2020, 22, 2203-2212.	4.6	5
238	Model-driven generation of artificial yeast promoters. Nature Communications, 2020, 11, 2113.	5.8	87
239	Interpretation of deep learning in genomics and epigenomics. Briefings in Bioinformatics, 2021, 22, .	3.2	67
240	Molecular and evolutionary processes generating variation in gene expression. Nature Reviews Genetics, 2021, 22, 203-215.	7.7	154
241	Motif orientation matters: Structural characterization of TEAD1 recognition of genomic DNA. Structure, 2021, 29, 345-356.e8.	1.6	2
242	SOLQC: Synthetic Oligo Library Quality Control tool. Bioinformatics, 2021, 37, 720-722.	1.8	14
244	Predicted regulatory SNPs reveal potential drug targets and novel companion diagnostics in psoriasis. Journal of Translational Autoimmunity, 2021, 4, 100096.	2.0	8
245	Robustness and Evolvability in Transcriptional Regulation. , 2021, , 197-219.		1
246	Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems. Nature Communications, 2021, 12, 325.	5.8	27
250	Rational design and testing of abiotic stressâ€inducible synthetic promoters from poplar <i>cis</i> â€regulatory elements. Plant Biotechnology Journal, 2021, 19, 1354-1369.	4.1	27
251	Imaging-based screens of pool-synthesized cell libraries. Nature Methods, 2021, 18, 358-365.	9.0	15
252	Promoters adopt distinct dynamic manifestations depending on transcription factor context. Molecular Systems Biology, 2021, 17, e9821.	3.2	6
253	Base-resolution models of transcription-factor binding reveal soft motif syntax. Nature Genetics, 2021, 53, 354-366.	9.4	325
254	Tandem DNA repeats contain <i>cis</i> â€regulatory sequences that activate biotrophyâ€specific expression of <i>Magnaporthe</i> effector gene <i>PWL2</i> . Molecular Plant Pathology, 2021, 22, 508-521.	2.0	6
255	Massively parallel gene expression variation measurement of a synonymous codon library. BMC Genomics, 2021, 22, 149.	1.2	13
256	Heart Enhancers: Development and Disease Control at a Distance. Frontiers in Genetics, 2021, 12, 642975.	1.1	4
259	Spurious regulatory connections dictate the expressionâ€fitness landscape of translation factors. Molecular Systems Biology, 2021, 17, e10302.	3.2	8
261	MPRAdecoder: Processing of the Raw MPRA Data With a priori Unknown Sequences of the Region of Interest and Associated Barcodes. Frontiers in Genetics, 2021, 12, 618189.	1.1	1

#	Article	IF	CITATIONS
262	Importance of the 5′ regulatory region to bacterial synthetic biology applications. Microbial Biotechnology, 2021, 14, 2291-2315.	2.0	9
263	Saccharomyces cerevisiae Promoter Engineering before and during the Synthetic Biology Era. Biology, 2021, 10, 504.	1.3	12
264	Learning the Regulatory Code of Gene Expression. Frontiers in Molecular Biosciences, 2021, 8, 673363.	1.6	17
266	Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nature Plants, 2021, 7, 842-855.	4.7	78
268	Towards an engineering theory of evolution. Nature Communications, 2021, 12, 3326.	5.8	33
270	Application of Array-Based Oligonucleotides for Synthesis of Genetic Designs. Molecular Biology, 2021, 55, 487-500.	0.4	4
271	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	5.8	30
273	Advances in promoter engineering: Novel applications and predefined transcriptional control. Biotechnology Journal, 2021, 16, e2100239.	1.8	44
274	Mutational sources of trans-regulatory variation affecting gene expression in Saccharomyces cerevisiae. ELife, 2021, 10, .	2.8	12
275	A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors. ACS Chemical Biology, 2021, 16, 1709-1720.	1.6	8
276	Structured elements drive extensive circular RNA translation. Molecular Cell, 2021, 81, 4300-4318.e13.	4.5	108
278	A broad analysis of splicing regulation in yeast using a large library of synthetic introns. PLoS Genetics, 2021, 17, e1009805.	1.5	16
309	Benchmarking Bacterial Promoter Prediction Tools: Potentialities and Limitations. MSystems, 2020, 5, .	1.7	28
310	Homology-dependent recombination of large synthetic pathways into E. coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology. Microbial Cell Factories, 2020, 19, 108.	1.9	18
311	Measurements of the Impact of 3′ End Sequences on Gene Expression Reveal Wide Range and Sequence Dependent Effects. PLoS Computational Biology, 2013, 9, e1002934.	1.5	31
312	The Role of Genome Accessibility in Transcription Factor Binding in Bacteria. PLoS Computational Biology, 2016, 12, e1004891.	1.5	17
313	Noise Minimisation in Gene Expression Switches. PLoS ONE, 2013, 8, e84020.	1.1	3
314	Control of Relative Timing and Stoichiometry by a Master Regulator. PLoS ONE, 2015, 10, e0127339.	1.1	11

#	Article	IF	CITATIONS
315	Multiplex transcriptional characterizations across diverse bacterial species using cellâ€free systems. Molecular Systems Biology, 2019, 15, e8875.	3.2	54
316	Quantitative perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila embryo. ELife, 2016, 5, .	2.8	38
317	Measuring cis-regulatory energetics in living cells using allelic manifolds. ELife, 2018, 7, .	2.8	20
318	Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time. ELife, 2020, 9, .	2.8	31
319	Quantitative dissection of transcription in development yields evidence for transcription-factor-driven chromatin accessibility. ELife, 2020, 9, .	2.8	37
320	Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif. ELife, 2020, 9, .	2.8	17
321	Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross. ELife, 2020, 9, .	2.8	18
322	High-Throughput Quantitation of Yeast uORF Regulatory Impacts Using FACS-uORF. Methods in Molecular Biology, 2022, 2404, 331-351.	0.4	2
323	The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation. Nature Genetics, 2021, 53, 1564-1576.	9.4	45
325	Novel DNA and RNA Elements. , 2016, , 65-99.		1
325 333		0.4	1
	Novel DNA and RNA Elements. , 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic	0.4	
333	Novel DNA and RNA Elements. , 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic Journal, 0, , .	0.4	0
333 340	Novel DNA and RNA Elements. , 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic Journal, 0, , . Resource Integrated Urban Design Method in Regulatory Detailed Planning. , 0, , . Recombinant protein production in <i>Pichia pastoris</i>		0
333 340 349	Novel DNA and RNA Elements., 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic Journal, 0, , . Resource Integrated Urban Design Method in Regulatory Detailed Planning., 0, , . Recombinant protein production in <i>Pichia pastoris</i> from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Research, 2021, 21, . Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology,	1.1	0 0 21
333 340 349 351	Novel DNA and RNA Elements. , 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic Journal, 0, , . Resource Integrated Urban Design Method in Regulatory Detailed Planning. , 0, , . Recombinant protein production in <i>Pichia pastoris</i> from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Research, 2021, 21, . Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology, 2021, 17, e10512. Oligo Pools as an Affordable Source of Synthetic DNA for Costâ Effective Library Construction in	1.1 3.2	0 0 21 13
333 340 349 351 355	Novel DNA and RNA Elements. , 2016, , 65-99. Joker de Bruijn: Sequence Libraries to Cover All kkmers Using Joker Characters. SSRN Electronic Journal, 0, , . Resource Integrated Urban Design Method in Regulatory Detailed Planning. , 0, , . Recombinant protein production in <i>Pichia pastoris</i> from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Research, 2021, 21, . Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology, 2021, 17, e10512. Oligo Pools as an Affordable Source of Synthetic DNA for Costâ€Effective Library Construction in Proteinã€-and Metabolic Pathway Engineering. ChemBioChem, 2022, 23, . Massively parallel DNA target capture using long adapter single stranded oligonucleotide (LASSO) probes assembled through a novel DNA recombinase mediated methodology. Biotechnology Journal,	1.1 3.2 1.3	0 0 21 13 12

#	Article	IF	CITATIONS
362	Novel cis-regulatory elements as synthetic promoters to drive recombinant protein expression from the Chlamydomonas reinhardtii nuclear genome. New Biotechnology, 2022, 68, 9-18.	2.4	8
363	Prediction of Residue-specific Contributions to Binding and Thermal Stability Using Yeast Surface Display. Frontiers in Molecular Biosciences, 2021, 8, 800819.	1.6	17
364	Controlling gene expression timing through gene regulatory architecture. PLoS Computational Biology, 2022, 18, e1009745.	1.5	5
366	Resource Integrated Urban Design Method and Mathematical Model in Regulatory Detailed Planning. Journal of Physics: Conference Series, 2022, 2186, 012025.	0.3	0
367	Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Systems, 2022, 13, 334-345.e5.	2.9	58
368	Cloning of DNA oligo pools for inÂvitro expression. STAR Protocols, 2022, 3, 101103.	0.5	4
369	Multiplexed Analysis of Human uORF Regulatory Functions During the ISR Using PoLib-Seq. Methods in Molecular Biology, 2022, 2428, 41-62.	0.4	1
371	Sequence determinants of human gene regulatory elements. Nature Genetics, 2022, 54, 283-294.	9.4	87
372	Largeâ€scale analysis of <i>Drosophila</i> core promoter function using synthetic promoters. Molecular Systems Biology, 2022, 18, e9816.	3.2	15
373	Elucidation of Sequence–Function Relationships for an Improved Biobutanol In Vivo Biosensor in E. coli. Frontiers in Bioengineering and Biotechnology, 2022, 10, 821152.	2.0	1
374	Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation. Nature Communications, 2022, 13, 1504.	5.8	16
375	The evolution, evolvability and engineering of gene regulatory DNA. Nature, 2022, 603, 455-463.	13.7	126
377	Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biology, 2021, 22, 348.	3.8	3
378	Both Binding Strength and Evolutionary Accessibility Affect the Population Frequency of Transcription Factor Binding Sequences in <i>Arabidopsis thaliana</i> . Genome Biology and Evolution, 2021, 13, .	1.1	2
379	Molecular and experimental tools to design synthetic enhancers. Current Opinion in Biotechnology, 2022, 76, 102728.	3.3	4
380	Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential. Nature Structural and Molecular Biology, 2022, 29, 613-620.	3.6	19
381	From genetics to biotechnology: Synthetic biology as a flexible courseâ€embedded research experience. Biochemistry and Molecular Biology Education, 2022, 50, 580-591.	0.5	4
382	Randomized gates eliminate bias in sortâ€seq assays. Protein Science, 2022, 31, .	3.1	6

#	Article	IF	CITATIONS
383	Controlling gene expression with deep generative design of regulatory DNA. Nature Communications, 2022, 13, .	5.8	27
385	On the incongruence of genotype-phenotype and fitness landscapes. PLoS Computational Biology, 2022, 18, e1010524.	1.5	5
386	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	1.4	4
388	A massively parallel reporter assay reveals focused and broadly encoded RNA localization signals in neurons. Nucleic Acids Research, 2022, 50, 10643-10664.	6.5	4
389	Design and Analysis of Massively Parallel Reporter Assays Using FORECAST. Methods in Molecular Biology, 2023, , 41-56.	0.4	0
391	Mechanisms of regulatory evolution in yeast. Current Opinion in Genetics and Development, 2022, 77, 101998.	1.5	3
395	Identifying the Gene Regulatory Network of the Starvation-Induced Transcriptional Activator Nla28. Journal of Bacteriology, 2022, 204, .	1.0	1
396	Accuracy and data efficiency in deep learning models of protein expression. Nature Communications, 2022, 13, .	5.8	19
397	Natural promoters and promoter engineering strategies for metabolic regulation in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2023, 50, .	1.4	7
398	A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nature Genetics, 2023, 55, 346-354.	9.4	18
400	oFlowSeq: a quantitative approach to identify protein coding mutations affecting cell type enrichment using mosaic CRISPR-Cas9 edited cerebral organoids. Human Genetics, 2023, 142, 1281-1291.	1.8	2
404	Mutational scans reveal differential evolvability of <i>Drosophila</i> promoters and enhancers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	2
405	Chance promoter activities illuminate the origins of eukaryotic intergenic transcriptions. Nature Communications, 2023, 14, .	5.8	5
406	Multiplexed protein stability (MPS) profiling of terminal degrons using fluorescent timer libraries in Saccharomyces cerevisiae. Methods in Enzymology, 2023, , 321-344.	0.4	0
407	Challenges and advances towards the rational design of microalgal synthetic promoters in <i>Chlamydomonas reinhardtii</i> . Journal of Experimental Botany, 2023, 74, 3833-3850.	2.4	4
408	Deep Mutational Scanning of an Oxygen-Independent Fluorescent Protein CreiLOV for Comprehensive Profiling of Mutational and Epistatic Effects. ACS Synthetic Biology, 2023, 12, 1461-1473.	1.9	3
409	Effective design and inference for cell sorting and sequencing based massively parallel reporter assays. Bioinformatics, 0, , .	1.8	0
411	Deep learning for optimization of protein expression. Current Opinion in Biotechnology, 2023, 81, 102941.	3.3	7

#	Article	IF	CITATIONS
412	Transcription factor localization dynamics and DNA binding drive distinct promoter interpretations. Cell Reports, 2023, 42, 112426.	2.9	2
413	FACS-Based Sequencing Approach to Evaluate Cell Type to Genotype Associations Using Cerebral Organoids. Methods in Molecular Biology, 2023, , 193-199.	0.4	0
421	Promoters and introns as key drivers for enhanced gene expression in Saccharomyces cerevisiae. Advances in Applied Microbiology, 2023, , .	1.3	1
432	Hold out the genome: a roadmap to solving the cis-regulatory code. Nature, 2024, 625, 41-50.	13.7	1