van der Waals Epitaxy of MoS₂ Layers Usir

Nano Letters 12, 2784-2791 DOI: 10.1021/nl204562j

Citation Report

#	Article	IF	CITATIONS
2	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
3	Effects of confinement and environment on the electronic structure and exciton binding energy of MoS <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> from first principles. Physical Review B. 2012. 86.	1.1	539
4	Role of Boundary Layer Diffusion in Vapor Deposition Growth of Chalcogenide Nanosheets: The Case of GeS. ACS Nano, 2012, 6, 8868-8877.	7.3	137
5	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
6	Enhanced Li Adsorption and Diffusion on MoS ₂ Zigzag Nanoribbons by Edge Effects: A Computational Study. Journal of Physical Chemistry Letters, 2012, 3, 2221-2227.	2.1	390
7	Thickness-Dependent Interfacial Coulomb Scattering in Atomically Thin Field-Effect Transistors. Nano Letters, 2013, 13, 3546-3552.	4.5	285
8	Van der Waals heterostructures. Nature, 2013, 499, 419-425.	13.7	8,378
9	Epitaxial Monolayer MoS ₂ on Mica with Novel Photoluminescence. Nano Letters, 2013, 13, 3870-3877.	4.5	512
10	Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition. RSC Advances, 2013, 3, 17287.	1.7	41
11	Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Physical Review B, 2013, 88, .	1.1	400
12	Atomic structure and edge magnetism in MoS2+x parallelogram shaped platelets. Physical Chemistry Chemical Physics, 2013, 15, 13077.	1.3	3
13	Atomic-layer triangular WSe ₂ sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013, 24, 465705.	1.3	120
14	Control of Radiation Damage in MoS ₂ by Graphene Encapsulation. ACS Nano, 2013, 7, 10167-10174.	7.3	237
15	Optical and Vibrational Studies of Partially Edge-Terminated Vertically Aligned Nanocrystalline MoS2 Thin Films. Journal of Physical Chemistry C, 2013, 117, 26262-26268.	1.5	51
16	Lithium incorporation at the MoS ₂ /graphene interface: an <i>ab initio</i> investigation. Journal of Physics Condensed Matter, 2013, 25, 445301.	0.7	36
17	Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3, 21675.	1.7	62
18	DEFECT ENGINEERING OF 2D MONATOMIC-LAYER MATERIALS. Modern Physics Letters B, 2013, 27, 1330017.	1.0	35
19	From point to extended defects in two-dimensional MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>: Evolution of atomic structure under electron irradiation_Physical Review B_2013_88</mml:math 	1.1	408

#	Article	IF	CITATIONS
20	Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Letters, 2013, 13, 253-258.	4.5	310
21	Graphene-Like Two-Dimensional Materials. Chemical Reviews, 2013, 113, 3766-3798.	23.0	3,761
22	Electronic Hybridization of Large-Area Stacked Graphene Films. ACS Nano, 2013, 7, 637-644.	7.3	85
23	Metal dichalcogenide nanosheets: preparation, properties and applications. Chemical Society Reviews, 2013, 42, 1934.	18.7	1,809
24	Chemical Vapor Sensing with Monolayer MoS ₂ . Nano Letters, 2013, 13, 668-673.	4.5	1,008
25	Vapor–Solid Growth of High Optical Quality MoS ₂ Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013, 7, 2768-2772.	7.3	389
26	Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013, 13, 1852-1857.	4.5	612
27	The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5, 263-275.	6.6	8,051
28	Synthesis of MoS ₂ and MoSe ₂ Films with Vertically Aligned Layers. Nano Letters, 2013, 13, 1341-1347.	4.5	2,036
29	In _{<i>x</i>} Ga _{1–<i>x</i>} As Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation. Nano Letters, 2013, 13, 1153-1161.	4.5	101
30	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	6.6	655
31	Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors. Applied Physics Letters, 2013, 102, 043116.	1.5	35
32	Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano, 2013, 7, 2898-2926.	7.3	4,062
33	Substrate Mediation in Vapor Deposition Growth of Layered Chalcogenide Nanoplates: A Case Study of SnSe ₂ . Journal of Physical Chemistry C, 2013, 117, 6469-6475.	1.5	86
34	Twoâ€Dimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
35	Two-dimensional semiconductors: recent progress and future perspectives. Journal of Materials Chemistry C, 2013, 1, 2952.	2.7	317
36	Electrostatic properties of few-layer MoS2 films. AIP Advances, 2013, 3, .	0.6	46
37	Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale, 2013, 5, 3570.	2.8	144

# 38	ARTICLE Highly Efficient Electrocatalytic Hydrogen Production by MoS <i>_x</i> Grown on Grapheneâ€Protected 3D Ni Foams. Advanced Materials, 2013, 25, 756-760.	IF 11.1	Citations 693
39	Preparation of MoS ₂ oated Threeâ€Dimensional Graphene Networks for Highâ€Performance Anode Material in Lithiumâ€Ion Batteries. Small, 2013, 9, 3433-3438.	5.2	542
40	Graphene-analogous low-dimensional materials. Progress in Materials Science, 2013, 58, 1244-1315.	16.0	684
41	Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013, 12, 554-561.	13.3	1,896
42	Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. Chemical Communications, 2013, 49, 4884.	2.2	175
43	Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Scientific Reports, 2013, 3, 1839.	1.6	380
44	Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013, 3, 1866.	1.6	753
45	Probing Symmetry Properties of Few-Layer MoS ₂ and h-BN by Optical Second-Harmonic Generation. Nano Letters, 2013, 13, 3329-3333.	4.5	848
46	MoS ₂ Transistors Fabricated <i>via</i> Plasma-Assisted Nanoprinting of Few-Layer MoS ₂ Flakes into Large-Area Arrays. ACS Nano, 2013, 7, 5870-5881.	7.3	114
47	Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2013, 117, 15842-15848.	1.5	133
48	Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization. Journal of Physical Chemistry Letters, 2013, 4, 1730-1736.	2.1	142
49	Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 2013, 13, 2615-2622.	4.5	1,766
50	Repeated and Controlled Growth of Monolayer, Bilayer and Few-Layer Hexagonal Boron Nitride on Pt Foils. ACS Nano, 2013, 7, 5199-5206.	7.3	206
51	Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials, 2013, 12, 754-759.	13.3	1,590
52	Defect-induced conductivity anisotropy in MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>monolayers. Physical Review B, 2013, 88, .</mml:math 	1.1	144
53	Second harmonic microscopy of monolayer MoS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Physical Review B, 2013, 87, .</mml:math 	1.1	539
54	Controlling magnetism of MoS2 sheets by embedding transition-metal atoms and applying strain. Physical Chemistry Chemical Physics, 2013, 15, 18464.	1.3	89
55	Chemical Vapor Deposition of MoS2 Films. ECS Transactions, 2013, 58, 199-202.	0.3	3

#	Article	IF	CITATIONS
56	Self-assembly of hierarchical MoSx/CNT nanocomposites (2 <x<3): 2013,="" 2169.<="" 3,="" anode="" batteries.="" for="" high="" ion="" lithium="" materials="" performance="" reports,="" scientific="" td="" towards=""><td>1.6</td><td>290</td></x<3):>	1.6	290
57	Chemically exfoliated large-area two-dimensional flakes of molybdenum disulfide for device applications. APL Materials, 2013, 1, .	2.2	21
58	Isolated nanographene crystals for nano-floating gate in charge trapping memory. Scientific Reports, 2013, 3, 2126.	1.6	48
59	Van der Waals Epitaxial Double Heterostructure: InAs/Single‣ayer Graphene/InAs. Advanced Materials, 2013, 25, 6847-6853.	11.1	77
60	Electronic and transport properties of V-shaped defect zigzag MoS 2 nanoribbons. Chinese Physics B, 2014, 23, 047307.	0.7	11
61	Optical identification of MoS_2/graphene heterostructure on SiO_2/Si substrate. Optics Express, 2014, 22, 15969.	1.7	22
62	Epitaxial growth of large area single-crystalline few-layer MoS2 with high space charge mobility of 192 cm2 Vâ^'1 sâ ''1. Applied Physics Letters, 2014, 105, .	1.5	57
63	Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions. Applied Physics Letters, 2014, 105, .	1.5	41
64	Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials, 2014, 2, .	2.2	52
65	Determination of the adhesion energy of graphene on SiC(0001) via measurement of pleat defects. Applied Physics Letters, 2014, 105, 193109.	1.5	12
66	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22126-22137.	4.0	102
67	Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Materials, 2014, 2, .	2.2	93
68	Novel layered two-dimensional semiconductors as the building blocks for nano-electronic/photonic systems. Proceedings of SPIE, 2014, , .	0.8	0
69	Two-dimensional MoS\$_{2}\$ as a new material for electronic devices. Turkish Journal of Physics, 2014, 38, 478-496.	0.5	20
70	Investigations of an electrochemical platform based on the layered MoS2–graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosensors and Bioelectronics, 2014, 56, 137-143.	5.3	146
71	Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy, 2014, 7, 25-32.	8.2	121
72	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	11.1	579
73	Growth of Largeâ€Area 2D MoS _{2(1â€<i>x</i>)} Se _{2<i>x</i>} Semiconductor Alloys. Advanced Materials, 2014, 26, 2648-2653.	11.1	347

ARTICLE IF CITATIONS 2â€Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: 11.1 334 74 MoS_{2(1–x)}Se_{2x} Monolayers. Advanced Materials, 2014, 26, 1399-1404. Defect-Dominated Doping and Contact Resistance in MoS₂. ACS Nano, 2014, 8, 2880-2888. 76 Direct Synthesis of van der Waals Solids. ACS Nano, 2014, 8, 3715-3723. 7.3 253 Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review. Critical Reviews in 6.8 143 Solid State and Materials Sciences, 2014, 39, 231-252. Synthesis of MoSe₂/Reduced graphene oxide composites with improved tribological 78 0.6 43 properties for oilâ€based additives. Crystal Research and Technology, 2014, 49, 204-211. 79 Few-Layer MoS₂: A Promising Layered Semiconductor. ACS Nano, 2014, 8, 4074-4099. 7.3 1,181 Large-Area Synthesis of Monolayer and Few-Layer MoSe₂ Films on SiO₂ 80 4.5 376 Substrates. Nano Letters, 2014, 14, 2419-2425. Synthesis of MoS2-carbon composites with different morphologies and their application in hydrogen 3.8 evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 9638-9650. Twoâ€Dimensional Si Nanosheets with Local Hexagonal Structure on a MoS₂ Surface. 82 11.1 311 Advanced Materials, 2014, 26, 2096-2101. High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS₂ Transistors. ACS Nano, 2014, 8, 5304-5314. Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A 84 2.1 98 First-Principles Prediction. Journal of Physical Chemistry Letters, 2014, 5, 285-291. Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency 0.8 29 applications. Solid-State Electronics, 2014, 91, 87-90. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Materials 86 2.7 234 Research Bulletin, 2014, 50, 499-502. Role of the Seeding Promoter in MoS₂ Growth by Chemical Vapor Deposition. Nano Letters, 2014, 14, 464-472. 87 4.5 Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial 88 15.6 1,129 MoSe2. Nature Nanotechnology, 2014, 9, 111-115. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5, 2995. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. 90 5.2258 Journal of Materials Chemistry A, 2014, 2, 5979-5985. Interface properties of CVD grown graphene transferred onto MoS₂(0001). Nanoscale, 2.8 2014, 6, 1071-1078.

#	Article	IF	CITATIONS
92	Highly efficient and stable DSSCs of wet-chemically synthesized MoS ₂ counter electrode. Dalton Transactions, 2014, 43, 5256-5259.	1.6	77
93	Strong optical nonlinearity of CVD-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2as probed by wavelength-dependent second-harmonic generation. Physical Review B, 2014, 90, .</mml:mn></mml:msub></mml:math 	ጠ ዉ.ኣ <td>າl:ໝຣub></td>	າ l:ໝຣ ub>
94	Growth of Large-Scale and Thickness-Modulated MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2014, 6, 21215-21222.	4.0	140
95	Ultrafast Charge Separation and Indirect Exciton Formation in a MoS ₂ –MoSe ₂ van der Waals Heterostructure. ACS Nano, 2014, 8, 12717-12724.	7.3	585
96	Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16670-16675.	3.3	64
97	Pulsed Laser Deposition of Photoresponsive Twoâ€Dimensional GaSe Nanosheet Networks. Advanced Functional Materials, 2014, 24, 6365-6371.	7.8	108
98	Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene. Nano Letters, 2014, 14, 6936-6941.	4.5	132
99	Largeâ€Area Synthesis of Continuous and Uniform MoS ₂ Monolayer Films on Graphene. Advanced Functional Materials, 2014, 24, 6449-6454.	7.8	149
100	Raman Modes of MoS ₂ Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano, 2014, 8, 9914-9924.	7.3	201
101	Intriguing transmission electron microscopy images observed for perpendicularly oriented cylindrical microdomains of block copolymers. Nanoscale, 2014, 6, 10817-10823.	2.8	8
102	Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS ₂ nanosheets. RSC Advances, 2014, 4, 50981-50987.	1.7	62
103	Solid-state reaction synthesis of two-dimensional CuGaSe2nanosheets for high performance photodetectors. Physical Chemistry Chemical Physics, 2014, 16, 19340.	1.3	19
104	Impact of intrinsic atomic defects on the electronic structure of MoS ₂ monolayers. Nanotechnology, 2014, 25, 375703.	1.3	244
105	Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale, 2014, 6, 12250-12272.	2.8	323
106	Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2. Journal of Applied Physics, 2014, 116, .	1.1	92
107	Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets. ACS Nano, 2014, 8, 7497-7505.	7.3	259
108	Development of a novel method to grow mono-/few-layered MoS ₂ films and MoS ₂ –graphene hybrid films for supercapacitor applications. CrystEngComm, 2014, 16, 10845-10855.	1.3	118
109	Nanometer-Sized MoS ₂ Clusters on Graphene Flakes for Catalytic Formic Acid Decomposition. ACS Catalysis, 2014, 4, 3950-3956.	5.5	49

		CITATION REF	PORT	
#	Article		IF	CITATIONS
110	Graphene on hexagonal boron nitride. Journal of Physics Condensed Matter, 2014, 26,	303201.	0.7	76
111	The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures structure-sensitive properties. Journal of Materials Chemistry A, 2014, 2, 7680.	with	5.2	70
112	Stacking of Two-Dimensional Materials in Lateral and Vertical Directions. Chemistry of I 2014, 26, 4891-4903.	Materials,	3.2	96
113	Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS ₂ , WS <sub Their Bilayer Heterostructures. Nano Letters, 2014, 14, 5097-5103.</sub 	>>2, and	4.5	512
114	Structures, Energetics, and Electronic Properties of Multifarious Stacking Patterns for H and Low-Buckled Silicene on the MoS ₂ Substrate. Journal of Physical Cher 118, 19129-19138.	ligh-Buckled nistry C, 2014,	1.5	76
115	Structure and electronic properties of transition metal dichalcogenide MX2 (MÂ=ÂMo, monolayers with grain boundaries. Materials Chemistry and Physics, 2014, 147, 1068-1	W, Nb; XÂ=ÂS, Se) 073.	2.0	26
116	Pulsed laser fabricated few-layer MoS 2 on silver. Chemical Physics Letters, 2014, 610-6	11, 284-287.	1.2	24
117	Epitaxial Growth of Asymmetricallyâ€Doped Bilayer Graphene for Photocurrent Generat 10, 2245-2250.	ion. Small, 2014,	5.2	6
118	Chemical vapor sensing of two-dimensional MoS2 field effect transistor devices. Solid-S Electronics, 2014, 101, 2-7.	itate	0.8	47
119	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi>Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene. Phys Letters. 2014. 113. 156804.</mml:mrow></mml:msub></mml:mrow></mml:math>	nl:mrow> < mml:mrow> < mn ical Review	nl:mn>2 </td <td>mml:mn><</td>	mml:mn><
120	Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on § Nanoscale Research Letters, 2014, 9, 367.	graphene.	3.1	29
121	Towards large area and continuous MoS ₂ atomic layers via vapor-phase gr vapor sulfurization. Nanotechnology, 2014, 25, 405702.	owth: thermal	1.3	54
122	Van der Waals Epitaxial Growth of Transition Metal Dichalcogenides on Pristine and N-L Graphene. Crystal Growth and Design, 2014, 14, 4920-4928.	Joped	1.4	17
123	Mesoscale Imperfections in MoS2 Atomic Layers Grown by a Vapor Transport Techniqu 2014, 14, 4682-4686.	e. Nano Letters,	4.5	67
124	A direct comparison of CVD-grown and exfoliated MoS ₂ using optical spec Semiconductor Science and Technology, 2014, 29, 064008.	troscopy.	1.0	96
125	Facile synthesis of novel MoS ₂ @SnO ₂ hetero-nanoflowers a photocatalysis and field-emission properties. Dalton Transactions, 2014, 43, 13136-13	nd enhanced 144.	1.6	86
126	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemical Physics, 2014, 16, 14996.	Chemistry	1.3	56
127	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014,	1, 379-399.	6.4	303

#	Article	IF	CITATIONS
128	Synthesis of well-defined functional crystals by high temperature gas-phase reactions. Science Bulletin, 2014, 59, 2135-2143.	1.7	4
129	Mono- and Bilayer WS ₂ Light-Emitting Transistors. Nano Letters, 2014, 14, 2019-2025.	4.5	424
130	Electron-Doping-Enhanced Trion Formation in Monolayer Molybdenum Disulfide Functionalized with Cesium Carbonate. ACS Nano, 2014, 8, 5323-5329.	7.3	211
131	Synthesis of Atomically Thin <inline-formula><tex-math>\${f MoS}_{f 2}\$</tex-math></inline-formula> Triangles and Hexagrams and Their Electrical Transport Properties. IEEE Nanotechnology Magazine, 2014, 13, 749-754.	1.1	21
132	Controllable Growth and Transfer of Monolayer MoS ₂ on Au Foils and Its Potential Application in Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 10196-10204.	7.3	404
133	Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nature Communications, 2014, 5, 4836.	5.8	325
134	Tuning On–Off Current Ratio and Field-Effect Mobility in a MoS ₂ –Graphene Heterostructure <i>via</i> Schottky Barrier Modulation. ACS Nano, 2014, 8, 5790-5798.	7.3	240
135	Graphene grown on Ge(0 0 1) from atomic source. Carbon, 2014, 75, 104-112.	5.4	54
136	Vertical Heterostructures of Layered Metal Chalcogenides by van der Waals Epitaxy. Nano Letters, 2014, 14, 3047-3054.	4.5	135
137	Persistent Topological Surface State at the Interface of Bi ₂ Se ₃ Film Grown on Patterned Graphene. ACS Nano, 2014, 8, 1154-1160.	7.3	33
138	Phase Transformation Induced Capacitance Activation for 3D Graphene 00 Nanorod Pseudocapacitor. Advanced Energy Materials, 2014, 4, 1301788.	10.2	83
139	Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society, 2014, 2, 77-104.	1.2	25
140	Improved Photoelectrical Properties of MoS ₂ Films after Laser Micromachining. ACS Nano, 2014, 8, 6334-6343.	7.3	112
141	Probing substrate-dependent long-range surface structure of single-layer and multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> by low-energy electron microscopy and microprobe diffraction. Physical Review B, 2014, 89	1.1	16
142	Unusual Stacking Variations in Liquid-Phase Exfoliated Transition Metal Dichalcogenides. ACS Nano, 2014, 8, 3690-3699.	7.3	43
143	High-Throughput Synthesis of Single-Layer MoS ₂ Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano, 2014, 8, 6922-6933.	7.3	813
144	Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Materials Today, 2014, 17, 184-193.	8.3	143
145	Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS ₂ . Nano Letters, 2014, 14, 2730-2734.	4.5	210

	Сітатіо	n Report	
#	Article	IF	Citations
146	Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 566-576.	1.7	43
147	Selfâ€organized van der Waals epitaxy of layered chalcogenide structures. Physica Status Solidi (B): Basic Research, 2015, 252, 2151-2158.	0.7	61
148	Native defects in bulk and monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2first principles. Physical Review B, 2015, 91, .</mml:mn></mml:msub></mml:math 	mml:m n.x <td>nl:masab></td>	nl:m asa b>
149	van der Waals Heteroepitaxy of Semiconductor Nanowires. Semiconductors and Semimetals, 2015, , 125-172.	0.4	7
150	Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer. Scientific Reports, 2015, 5, 17877.	1.6	20
151	Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Scientific Reports, 2015, 5, 18712.	1.6	83
152	Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer. Scientific Reports, 2015, 5, 16374.	1.6	102
153	Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes. Small, 2015, 11, 5520-5527.	5.2	29
154	All Chemical Vapor Deposition Synthesis and Intrinsic Bandgap Observation of MoS ₂ /Graphene Heterostructures. Advanced Materials, 2015, 27, 7086-7092.	11.1	132
155	Graphene and Other 2D Material Components Dynamic Characterization and Nanofabrication at Atomic Scale. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	1
156	Monodisperse Magnesium Hydride Nanoparticles Uniformly Selfâ€Assembled on Graphene. Advanced Materials, 2015, 27, 5981-5988.	11.1	298
157	CVD Growth of MoS ₂ â€based Twoâ€dimensional Materials. Chemical Vapor Deposition, 2015, 21, 241-259.	1.4	167
158	Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics. Electronics (Switzerland), 2015, 4, 1033-1061.	1.8	21
159	Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures. Journal of Physical Chemistry C, 2015, 119, 13929-13936.	1.5	295
160	Substrate Facet Effect on the Growth of Monolayer MoS ₂ on Au Foils. ACS Nano, 2015, 9, 4017-4025.	7.3	97
161	Structural and Electrical Investigation of C ₆₀ –Graphene Vertical Heterostructures. ACS Nano, 2015, 9, 5922-5928.	7.3	151
162	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. Scientific Reports, 2015, 5, 10378.	1.6	28
163	Van der Waals Epitaxy of Two-Dimensional MoS ₂ –Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano, 2015, 9, 6502-6510.	7.3	153

#	Article	IF	CITATIONS
164	Energy landscape and band-structure tuning in realistic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MoS</mml:mi><mm Physical Review B, 2015, 91, .</mm </mml:msub></mml:mrow></mml:math 	ll:mnnı≱2 <td>nm#mnn></td>	nm #m nn>
165	Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electronic Materials Letters, 2015, 11, 323-335.	1.0	93
166	Emerging Energy Applications of Two-Dimensional Layered Materials. Canadian Chemical Transactions, 0, , 118-157.	0.2	11
167	Prospect of large scale 2D transition metal dichalcogenides nanophotonics for optical communications. , 2015, , .		0
168	Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells. Nanoscale Research Letters, 2015, 10, 446.	3.1	34
169	Chemical Vapor Deposition Growth of Graphene and Related Materials. Journal of the Physical Society of Japan, 2015, 84, 121013.	0.7	24
170	Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Advances, 2015, 5, 98700-98708.	1.7	42
171	Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: A first principles calculation. Journal of Solid State Chemistry, 2015, 231, 64-69.	1.4	55
172	Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy. Nanotechnology, 2015, 26, 485701.	1.3	7
173	Graphene and molybdenum disulfide hybrids: synthesis and applications. Materials Today, 2015, 18, 286-298.	8.3	145
174	Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4294-4301.	1.5	178
175	High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Letters, 2015, 15, 1911-1917.	4.5	495
176	Millisecond Laser Ablation of Molybdenum Target in Reactive Gas toward MoS ₂ Fullerene-Like Nanoparticles with Thermally Stable Photoresponse. ACS Applied Materials & Interfaces, 2015, 7, 1949-1954.	4.0	18
177	Graphene-Templated Bottom-up Fabrication of Ultralarge Binary CdS–TiO ₂ Nanosheets for Photocatalytic Selective Reduction. Journal of Physical Chemistry C, 2015, 119, 7184-7194.	1.5	59
178	Epitaxially Grown Strained Pentacene Thin Film on Graphene Membrane. Small, 2015, 11, 2037-2043.	5.2	53
179	Chemical Vapor Deposition of Thin Crystals of Layered Semiconductor SnS ₂ for Fast Photodetection Application. Nano Letters, 2015, 15, 506-513.	4.5	430
180	Electronic Structure of Twisted Bilayers of Graphene/MoS ₂ and MoS ₂ /MoS ₂ . Journal of Physical Chemistry C, 2015, 119, 4752-4758.	1.5	131
181	Oneâ€Pot, Facile, and Versatile Synthesis of Monolayer MoS ₂ /WS ₂ Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2015, 25, 1127-1136.	7.8	738

#	Article	IF	Citations
182	Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Advances, 2015, 5, 7495-7514.	1.7	288
183	Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small, 2015, 11, 2192-2199.	5.2	20
184	Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices. Journal of Power Sources, 2015, 280, 39-46.	4.0	51
185	Self-Induced Uniaxial Strain in MoS ₂ Monolayers with Local van der Waals-Stacked Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710.	7.3	47
186	Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6, 6293.	5.8	1,124
187	A Roadmap for Controlled Production of Topological Insulator Nanostructures and Thin Films. Small, 2015, 11, 3290-3305.	5.2	42
188	Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe ₂ . ACS Nano, 2015, 9, 3274-3283.	7.3	213
189	Amphiphilic graphene oxide stabilisation of hexagonal BN and MoS ₂ sheets. Chemical Communications, 2015, 51, 11709-11712.	2.2	34
190	Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 2015, 9, 8078-8088.	7.3	103
191	Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349, 528-532.	6.0	836
192	Epitaxial growth of a monolayer WSe ₂ -MoS ₂ lateral p-n junction with an atomically sharp interface. Science, 2015, 349, 524-528.	6.0	1,009
193	Synthesis and Development of Graphene–Inorganic Semiconductor Nanocomposites. Chemical Reviews, 2015, 115, 8294-8343.	23.0	227
194	Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles. Sensors and Actuators A: Physical, 2015, 232, 285-291.	2.0	18
195	Strain engineering in semiconducting two-dimensional crystals. Journal of Physics Condensed Matter, 2015, 27, 313201.	0.7	381
196	Influence of interface structures on the properties of molybdenum disulfide/graphene composites: A density functional theory study. Journal of Alloys and Compounds, 2015, 649, 961-967.	2.8	40
197	Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Scientific Reports, 2015, 5, 10440.	1.6	49
198	Developing Seedless Growth of ZnO Micro/Nanowire Arrays towards ZnO/FeS2/Cul P-I-N Photodiode Application. Scientific Reports, 2015, 5, 11377.	1.6	34
199	Energy Bands of the 1H-MoS2 over Reduced Graphene Oxide. Materials Today: Proceedings, 2015, 2, 108-112.	0.9	0

	CITATION	Report	
#	Article	IF	CITATIONS
200	Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015, 1, 33-44.	2.8	597
201	All Chemical Vapor Deposition Growth of MoS ₂ :h-BN Vertical van der Waals Heterostructures. ACS Nano, 2015, 9, 5246-5254.	7.3	326
202	Probing Defectâ€Induced Midgap States in MoS ₂ Through Graphene–MoS ₂ Heterostructures. Advanced Materials Interfaces, 2015, 2, 1500064.	1.9	17
203	Grain boundary in phosphorene and its unique roles on C and O doping. Europhysics Letters, 2015, 109, 47003.	0.7	12
204	Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 4882-4890.	7.3	157
205	Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode. Scientific Reports, 2015, 5, 9792.	1.6	86
206	Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annual Review of Materials Research, 2015, 45, 1-27.	4.3	537
207	Molecular Template Growth and Its Applications in Organic Electronics and Optoelectronics. Chemical Reviews, 2015, 115, 5570-5603.	23.0	198
208	New Strategy for the Growth of Complex Heterostructures Based on Different 2D Materials. Chemistry of Materials, 2015, 27, 4105-4113.	3.2	32
209	Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide*. Chinese Physics B, 2015, 24, 026501.	0.7	29
210	Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects. Applied Surface Science, 2015, 346, 470-476.	3.1	25
211	Controlled van der Waals Epitaxy of Monolayer MoS ₂ Triangular Domains on Graphene. ACS Applied Materials & Interfaces, 2015, 7, 5265-5273.	4.0	120
212	Growth and Optical Properties of High-Quality Monolayer WS ₂ on Graphite. ACS Nano, 2015, 9, 4056-4063.	7.3	162
213	Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10, 423-428.	15.6	75
214	A predictive approach to CVD of crystalline layers of TMDs: the case of MoS ₂ . Nanoscale, 2015, 7, 7802-7810.	2.8	117
215	CVD Growth of High-Quality Single-Layer Graphene. , 2015, , 3-20.		13
216	Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS 2 for Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 171, 72-80.	2.6	49
217	Stabilization and Band-Gap Tuning of the 1T-MoS ₂ Monolayer by Covalent Functionalization. Chemistry of Materials, 2015, 27, 3743-3748.	3.2	297

	CITATION	Report	
# 218	ARTICLE Synthesis and Transfer of Large-Area Monolayer WS ₂ Crystals: Moving Toward the Recyclable Use of Sapphire Substrates. ACS Nano, 2015, 9, 6178-6187.	IF 7.3	CITATIONS 200
219	Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale, 2015, 7, 8101-8109.	2.8	21
220	Two-dimensional ultrathin ZnCo ₂ O ₄ nanosheets: general formation and lithium storage application. Journal of Materials Chemistry A, 2015, 3, 9556-9564.	5.2	168
221	Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property. Scientific Reports, 2015, 5, 8722.	1.6	79
222	Vertical 2D Heterostructures. Annual Review of Materials Research, 2015, 45, 85-109.	4.3	153
223	Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	5.2	166
224	Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015, 73, 44-126.	16.0	1,152
225	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Đetectivity, Selfâ€Đriven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	7.8	554
226	Bandstructure modulation of two-dimensional WSe2 by electric field. Journal of Applied Physics, 2015, 117, .	1.1	29
227	Atomically Thin Epitaxial Template for Organic Crystal Growth Using Graphene with Controlled Surface Wettability. Nano Letters, 2015, 15, 2474-2484.	4.5	55
228	Large-Area Epitaxial Monolayer MoS ₂ . ACS Nano, 2015, 9, 4611-4620.	7.3	712
229	Chemical vapor deposition growth and transport properties of MoS2–2H thin layers using molybdenum and sulfur as precursors. Rare Metals, 2015, , 1.	3.6	8
230	Synthesis and Application of Monolayer Semiconductors (June 2015). IEEE Journal of Quantum Electronics, 2015, 51, 1-10.	1.0	13
231	Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy, 2015, 17, 366-383.	8.2	228
232	Ultrathin Two-Dimensional Nanomaterials. ACS Nano, 2015, 9, 9451-9469.	7.3	1,726
233	Lithium Intercalation in Graphene/MoS ₂ Composites: First-Principles Insights. Journal of Physical Chemistry C, 2015, 119, 25860-25867.	1.5	78
234	Carrier Injection and Scattering in Atomically Thin Chalcogenides. Journal of the Physical Society of Japan, 2015, 84, 121011.	0.7	7
235	Tellurium-Assisted Low-Temperature Synthesis of MoS ₂ and WS ₂ Monolayers. ACS Nano, 2015, 9, 11658-11666.	7.3	123

		CITATION REPORT		
#	Article		IF	CITATIONS
236	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9,	11509-11539.	7.3	2,069
237	Prediction of spin–orbital coupling effects on the electronic structure of two dimens Waals heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 31253-31259	ional van der	1.3	17
238	Graphite edge controlled registration of monolayer MoS2 crystal orientation. Applied I Letters, 2015, 106, 181904.	Physics	1.5	34
239	Nanoscale Mapping of Layer-Dependent Surface Potential and Junction Properties of C MoS ₂ Domains. Journal of Physical Chemistry C, 2015, 119, 20136-2014	VD-Grown 2.	1.5	54
240	Engineering Vertical Aligned MoS 2 on Graphene Sheet Towards Thin Film Lithium Ion Electrochimica Acta, 2015, 178, 476-483.	Battery.	2.6	50
241	Functional Nanomaterial Devices. , 2015, , 155-193.			0
242	Oriented Growth of Gold Nanowires on MoS ₂ . Advanced Functional Mate 6257-6264.	rials, 2015, 25,	7.8	21
243	Creating a Nanospace under an h-BN Cover for Adlayer Growth on Nickel(111). ACS Na 11589-11598.	ano, 2015, 9,	7.3	42
244	Synthesis and sensor applications of MoS ₂ -based nanocomposites. Nano 18364-18378.	scale, 2015, 7,	2.8	202
245	Synthesis of Epitaxial Single-Layer MoS ₂ on Au(111). Langmuir, 2015, 31	, 9700-9706.	1.6	119
246	Vertical heterostructures of MoS ₂ and graphene nanoribbons grown by t chemical vapor deposition for high-gain photodetectors. Physical Chemistry Chemical 25210-25215.	wo-step Physics, 2015, 17,	1.3	25
247	Modulation of Electronic Structure of Armchair MoS ₂ Nanoribbon. Journa Chemistry C, 2015, 119, 22164-22171.	I of Physical	1.5	39
248	Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanos of the American Chemical Society, 2015, 137, 12162-12174.	sheets. Journal	6.6	218
249	Manganese Doping of Monolayer MoS ₂ : The Substrate Is Critical. Nano L 6586-6591.	etters, 2015, 15,	4.5	357
250	Modulation of Electronic Structure of Armchair MoS2Nanoribbon. Journal of Physical C 2015, , 150902124434000.	hemistry A,	1.1	1
251	Organic Electronics Materials and Devices. , 2015, , .			35
252	Ambipolar Light-Emitting Transistors on Chemical Vapor Deposited Monolayer MoS <su Letters, 2015, 15, 8289-8294.</su 	ıb>2. Nano	4.5	67
253	Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High- Monolayer MoS ₂ . Journal of the American Chemical Society, 2015, 137, 1	Quality .5632-15635.	6.6	301

#	Article	IF	CITATIONS
254	Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Applied Surface Science, 2015, 359, 130-136.	3.1	120
255	Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS ₂ coated with cyclotriphosphazene polymer. RSC Advances, 2015, 5, 97883-97890.	1.7	25
256	Monolayer MoS ₂ Growth on Au Foils and On‧ite Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	7.8	66
257	An Open Canvas—2D Materials with Defects, Disorder, and Functionality. Accounts of Chemical Research, 2015, 48, 73-80.	7.6	119
258	Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers. Nano Letters, 2015, 15, 410-415.	4.5	285
259	Stabilities and electronic properties of monolayer MoS ₂ with one or two sulfur line vacancy defects. Physical Chemistry Chemical Physics, 2015, 17, 3813-3819.	1.3	37
260	Band Engineering for Novel Twoâ€Dimensional Atomic Layers. Small, 2015, 11, 1868-1884.	5.2	96
261	Equally Efficient Interlayer Exciton Relaxation and Improved Absorption in Epitaxial and Nonepitaxial MoS ₂ /WS ₂ Heterostructures. Nano Letters, 2015, 15, 486-491.	4.5	337
262	Morphological and structural evolution of WS ₂ nanosheets irradiated with an electron beam. Physical Chemistry Chemical Physics, 2015, 17, 2678-2685.	1.3	8
263	Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2015, 44, 2664-2680.	18.7	694
264	Embracing Structural Nonidealities and Asymmetries in Two-Dimensional Nanomechanical Resonators. Scientific Reports, 2015, 4, 3919.	1.6	38
265	Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Research, 2015, 8, 743-750.	5.8	52
266	Allâ€Metallic Vertical Transistors Based on Stacked Dirac Materials. Advanced Functional Materials, 2015, 25, 68-77.	7.8	59
267	Epitaxial growth of few-layer MoS ₂ (0001) on FeS ₂ {100}. Chemical Communications, 2015, 51, 537-540.	2.2	9
268	Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 2015, 81, 587-596.	5.4	45
269	Chemical Vapor Deposition of Two-Dimensional Crystals. , 2015, , 785-833.		2
270	Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015, 44, 2744-2756.	18.7	709
271	Heterojunction Hybrid Devices from Vapor Phase Grown MoS2. Scientific Reports, 2014, 4, 5458.	1.6	80

#	Article	IF	CITATIONS
272	Graphene and Two-Dimensional Materials for Optoelectronic Applications. Electronics (Switzerland), 2016, 5, 13.	1.8	72
273	Graphene and monolayer transition-metal dichalcogenides: properties and devices. Journal of Materials Research, 2016, 31, 845-877.	1.2	15
274	Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotechnology, 2016, 11, 954-959.	15.6	251
275	Band Engineering by Controlling vdW Epitaxy Growth Mode in 2D Gallium Chalcogenides. Advanced Materials, 2016, 28, 7375-7382.	11.1	28
276	Largeâ€Area, Ultrathin Inorganic Network Coverages–Graphene Hierarchical Electrodes for Flexible, Heatâ€Resistant Energy Storage Application. Advanced Energy Materials, 2016, 6, 1600146.	10.2	23
277	Lösungsprozessierte MoS ₂ â€Nanoplätchen: Herstellung, Hybridisierung und Anwendungen. Angewandte Chemie, 2016, 128, 8960-8984.	1.6	52
278	Largeâ€ s cale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	2.6	33
279	Hydrogen on hybrid MoS ₂ /graphene nanostructures. Physica Status Solidi - Rapid Research Letters, 2016, 10, 453-457.	1.2	5
280	Solutionâ€Processed Twoâ€Ðimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	7.2	557
281	Pressureâ€Induced Charge Transfer Doping of Monolayer Graphene/MoS ₂ Heterostructure. Small, 2016, 12, 4063-4069.	5.2	45
282	Large-Scale Synthesis of a Uniform Film of Bilayer MoS ₂ on Graphene for 2D Heterostructure Phototransistors. ACS Applied Materials & Interfaces, 2016, 8, 19004-19011.	4.0	68
283	Lithography-free plasma-induced patterned growth of MoS ₂ and its heterojunction with graphene. Nanoscale, 2016, 8, 15181-15188.	2.8	68
284	Atomically Thin MoS ₂ : A Versatile Nongraphene 2D Material. Advanced Functional Materials, 2016, 26, 2046-2069.	7.8	220
285	Anisotropic Growth of Nonlayered CdS on MoS ₂ Monolayer for Functional Vertical Heterostructures. Advanced Functional Materials, 2016, 26, 2648-2654.	7.8	118
286	Telluriumâ€Assisted Epitaxial Growth of Largeâ€Area, Highly Crystalline ReS ₂ Atomic Layers on Mica Substrate. Advanced Materials, 2016, 28, 5019-5024.	11.1	169
287	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
288	Grain boundary and its hydrogenated effect in stanene. AIP Advances, 2016, 6, .	0.6	2
289	Ripples near edge terminals in MoS2 few layers and pyramid nanostructures. Applied Physics Letters, 2016, 108, .	1.5	14

#	Article	IF	CITATIONS
290	Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe. Applied Physics Letters, 2016, 109, .	1.5	61
291	Low-temperature growth of layered molybdenum disulphide with controlled clusters. Scientific Reports, 2016, 6, 21854.	1.6	59
292	A two-step process for growth of highly oriented Sb2Te3 using sputtering. AIP Advances, 2016, 6, .	0.6	47
293	Structural Damage of a Î ² -Sheet Protein upon Adsorption onto Molybdenum Disulfide Nanotubes. Journal of Physical Chemistry C, 2016, 120, 6796-6803.	1.5	39
294	Synthesis and preservation of graphene-supported uranium dioxide nanocrystals. Journal of Nuclear Materials, 2016, 475, 113-122.	1.3	15
295	Enhancement of island size by dynamic substrate disorder in simulations of graphene growth. Physical Chemistry Chemical Physics, 2016, 18, 15102-15109.	1.3	4
296	Piezoelectric Nanomaterials for Energy Harvesting. Nanoscience and Technology, 2016, , 193-213.	1.5	0
297	Van der Waals stacked 2D layered materials for optoelectronics. 2D Materials, 2016, 3, 022001.	2.0	213
298	Formation of hexagonal boron nitride on graphene-covered copper surfaces. Journal of Materials Research, 2016, 31, 945-958.	1.2	17
299	Layered MoS ₂ –graphene composites for biosensor applications with sensitive electrochemical performance. Analytical Methods, 2016, 8, 3780-3787.	1.3	20
300	One-Step Synthesis of Water-Soluble MoS ₂ Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection. ACS Applied Materials & Interfaces, 2016, 8, 11272-11279.	4.0	258
301	Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets. ACS Nano, 2016, 10, 5006-5014.	7.3	9
302	Rise of silicene: A competitive 2D material. Progress in Materials Science, 2016, 83, 24-151.	16.0	713
303	Chemical vapor deposition of MoS ₂ layers from Mo–S–C–O–H system: thermodynamic modeling and validation. Physical Chemistry Chemical Physics, 2016, 18, 14918-14926.	1.3	19
304	Electronic properties and photoactivity of monolayer MoS ₂ /fullerene van der Waals heterostructures. RSC Advances, 2016, 6, 43228-43236.	1.7	28
305	STM study of the MoS2 flakes grown on graphite: A model system for atomically clean 2D heterostructure interfaces. Carbon, 2016, 105, 408-415.	5.4	29
306	Coincidence Lattices of 2D Crystals: Heterostructure Predictions and Applications. Journal of Physical Chemistry C, 2016, 120, 10895-10908.	1.5	68
307	3D MoS ₂ Composition Aerogels as Chemosensors and Adsorbents for Colorimetric Detection and High-Capacity Adsorption of Hg ²⁺ . ACS Sustainable Chemistry and Engineering, 2016, 4, 3398-3408.	3.2	132

CITATION REPORT ARTICLE IF CITATIONS Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide -1.2 11 boron nitride heterostructures. Journal of Materials Research, 2016, 31, 893-899. Uniform Deposition of Co3O4 Nanosheets on Exfoliated MoS2 Nanosheets as Advanced Catalysts for 2.6 34 Water Splitting. Electrochimica Acta, 2016, 212, 890-897. Tuning the structure of MoO₃nanoplates via MoS₂oxidation. Philosophical 0.513 Magazine Letters, 2016, 96, 347-354. Synchronous architecture of ring-banded and non-ring-banded morphology within one spherulite based on in situ ring-opening polymerization of cyclic butylene terephthalate oligomers. RSC Advances, 2016, 6, 94524-94530. Epitaxial growth of two-dimensional SnSe₂/MoS₂ misfit heterostructures. 2.7 33 Journal of Materials Chemistry C, 2016, 4, 10215-10222. From 3D to 2D: Fabrication Methods. Springer Series in Materials Science, 2016, , 79-107. 0.4 Recent progress in chemical vapor deposition growth of two-dimensional transition metal 1.8 66 dichalcogenides. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 9-28. 2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439. 6.0 4,958 Graphene Heterostructures., 2016, , 3-20. 0 Narrowâ€Gap Quantum Wires Arising from the Edges of Monolayer MoS₂ Synthesized on Graphene. Advanced Materials Interfaces, 2016, 3, 1600332. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped 1.4 28 WS2: A first-principles study. Superlattices and Microstructures, 2016, 98, 148-157. Dual functions of 2D WS₂and MoS₂â€"WS₂monolayers coupled with a Ag₃PO₄photocatalyst. Semiconductor Science and Technology, 2016, 31, 095013. 1.0 Photothermally Controllable Cytosolic Drug Delivery Based On Coreâ€"Shell 3.2 74 MoS₂-Porous Silica Nanoplates. Chemistry of Materials, 2016, 28, 6417-6424. Enhanced Exfoliation Effect of Solid Auxiliary Agent On the Synthesis of Biofunctionalized MoS₂Using Grindstone Chemistry. Particle and Particle Systems Characterization, 2016, 1.2 24 33, 825-832. Synthesis, Properties, and Stacking of Two-Dimensional Transition Metal Dichalcogenides. 12 0.4 Semiconductors and Semimetals, 2016, 95, 189-219. Step-induced faceting and related electronic effects for graphene on Ir(332). Carbon, 2016, 110, 267-277. Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets. 7.8 529 Advanced Functional Materials, 2016, 26, 6238-6245.

326	Layered-material WS ₂ /topological insulator Bi ₂ Te ₃ heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. Journal of Materials Chemistry C, 2016, 4, 7831-7840.	2.7	135
-----	---	-----	-----

308

309

311

313

315

316

317

319

321

323

324

ARTICLE IF CITATIONS # Controlling the thermal conductance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>graphene</mml:mtext><mml:mo>/</mml:mo>/</mml:mi>48 /mml:mi 327 interface with strain and structure engineering. Physical Review B, 2016, 93, . Patterned Growth of Pâ€Type MoS₂ Atomic Layers Using Sol–Gel as Precursor. Advanced 34 Functional Materials, 2016, 26, 6371-6379. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets. 329 1.6 19 Scientific Reports, 2016, 6, 26084. Vertically oriented MoS₂nanoflakes coated on 3D carbon nanotubes for next generation 24 Li-ion batteries. Nanotechnology, 2016, 27, 495401. Electrical and optical properties of Co-doped and undoped MoS₂. Japanese Journal of 331 0.8 11 Applied Physics, 2016, 55, 04EP06. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures. 1.6 Scientific Reports, 2016, 6, 26656. Two-dimensional GaSe/MoSe ₂ misfit bilayer heterojunctions by van der Waals epitaxy. 333 4.7 239 Science Advances, 2016, 2, e1501882. Preparation and adsorption capacity of porous MoS₂nanosheets. RSC Advances, 2016, 6, 334 1.7 66 105222-105230. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 335 1.3 259 27, 462001. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Science Advances, 2016, 2, e1600993. Sequential Solvent Exchange Method for Controlled Exfoliation of MoS₂ Suitable for 337 4.051 Phototransistor Fabrication. ACS Applied Materials & amp; Interfaces, 2016, 8, 31179-31191. Chemical vapour deposition and characterization of uniform bilayer and trilayer 2.7 MoS_{2'}crystals. Journal of Materials Chemistry C, 2016, 4, 11081-11087. Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide 339 5.8 34 hybrid nanostructures for oxygen reduction reaction. Nano Research, 2016, 9, 3795-3811. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nature 340 5.8 179 Communications, 2016, 7, 12206. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by 341 104 1.6 RF sputtering via post-deposition annealing method. Scientific Reports, 2016, 6, 30791. Phase crossover in transition metal dichalcogenide nanoclusters. Nanoscale, 2016, 8, 19154-19160. 342 Tribological Properties of Water-lubricated Rubber Materials after Modification by MoS2 343 1.6 66 Nanoparticles. Scientific Reports, 2016, 6, 35023. **Epitaxy of Layered Orthorhombic** SnS–SnS<í́>_x</i>Se_{(1â^'}<i>_x</i>>₎ Core–Shell 344 Heterostructures with Anisotropic Photoresponse. Advanced Functional Materials, 2016, 26, 4673-4679

#	Article	IF	CITATIONS
345	Observation of Strong Interlayer Coupling in MoS ₂ /WS ₂ Heterostructures. Advanced Materials, 2016, 28, 1950-1956.	11.1	225
346	Chemical Vapor Deposition of NbS ₂ from a Chloride Source with H ₂ Flow: Orientation Control of Ultrathin Crystals Directly Grown on SiO ₂ /Si Substrate and Charge Density Wave Transition. Crystal Growth and Design, 2016, 16, 4467-4472.	1.4	27
347	First principles kinetic Monte Carlo study on the growth patterns of WSe ₂ monolayer. 2D Materials, 2016, 3, 025029.	2.0	59
348	High hydrogen sensitivity of vertically standing layered MoS2/Si heterojunctions. Journal of Alloys and Compounds, 2016, 682, 29-34.	2.8	36
349	Monolayer transition metal disulfide: Synthesis, characterization and applications. Progress in Natural Science: Materials International, 2016, 26, 221-231.	1.8	16
350	Effect of MoO ₃ constituents on the growth of MoS ₂ nanosheets by chemical vapor deposition. Materials Research Express, 2016, 3, 065014.	0.8	22
351	MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Materials, 2016, 8, e268-e268.	3.8	113
352	Graphene Emerges as a Versatile Template for Materials Preparation. Small, 2016, 12, 2674-2688.	5.2	56
353	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
354	Mixed multilayered vertical heterostructures utilizing strained monolayer WS ₂ . Nanoscale, 2016, 8, 2639-2647.	2.8	27
355	Growing Vertical in the Flatland. ACS Nano, 2016, 10, 42-45.	7.3	41
356	Rotationally Commensurate Growth of MoS ₂ on Epitaxial Graphene. ACS Nano, 2016, 10, 1067-1075.	7.3	176
357	Self-powered broadband, high-detectivity and ultrafast photodetectors based on Pd-MoS ₂ /Si heterojunctions. Physical Chemistry Chemical Physics, 2016, 18, 1131-1139.	1.3	44
358	Heterostructures based on two-dimensional layered materials and their potential applications. Materials Today, 2016, 19, 322-335.	8.3	469
359	Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe ₂ Thin Films. Nano Letters, 2016, 16, 2485-2491.	4.5	147
360	Point Defects and Grain Boundaries in Rotationally Commensurate MoS ₂ on Epitaxial Graphene. Journal of Physical Chemistry C, 2016, 120, 20798-20805.	1.5	99
361	Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. ACS Nano, 2016, 10, 3580-3588.	7.3	207
362	Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction. Applied Materials Today, 2016, 3, 23-56.	2.3	335

#	Article	IF	CITATIONS
363	Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 7381-7388.	1.3	101
364	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	15.6	532
365	Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy and Environmental Science, 2016, 9, 1696-1705.	15.6	237
366	A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution. Nanoscale, 2016, 8, 7180-7188.	2.8	48
367	Thickness-dependent charge transport in few-layer MoS ₂ field-effect transistors. Nanotechnology, 2016, 27, 165203.	1.3	124
368	Assembled 3D electrocatalysts for efficient hydrogen evolution: WSe ₂ layers anchored on graphene sheets. Inorganic Chemistry Frontiers, 2016, 3, 313-319.	3.0	61
369	Interlayer coupling of a direct van der Waals epitaxial MoS ₂ /graphene heterostructure. RSC Advances, 2016, 6, 323-330.	1.7	42
370	Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film. Chemistry of Materials, 2016, 28, 549-555.	3.2	98
371	Fast and large-area growth of uniform MoS ₂ monolayers on molybdenum foils. Nanoscale, 2016, 8, 2234-2241.	2.8	104
372	Thickness-dependent native strain in graphene membranes visualized by Raman spectroscopy. Carbon, 2016, 100, 283-290.	5.4	27
373	Electric-field and strain-tunable electronic properties of MoS ₂ /h-BN/graphene vertical heterostructures. Physical Chemistry Chemical Physics, 2016, 18, 3159-3164.	1.3	42
374	2D layered group IIIA metal chalcogenides: synthesis, properties and applications in electronics and optoelectronics. CrystEngComm, 2016, 18, 3968-3984.	1.3	171
375	Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chemical Society Reviews, 2016, 45, 118-151.	18.7	423
376	Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nano-Micro Letters, 2016, 8, 70-79.	14.4	37
377	Preparing molybdenum disulphide by vapour deposition. Surface Engineering, 2016, 32, 245-251.	1.1	7
378	Two-dimensional MoS2: A promising building block for biosensors. Biosensors and Bioelectronics, 2017, 89, 56-71.	5.3	215
379	Highly Oriented SrTiO ₃ Thin Film on Graphene Substrate. ACS Applied Materials & Interfaces, 2017, 9, 3246-3250.	4.0	22
380	Frank–van der Merwe Growth versus Volmer–Weber Growth in Successive Stacking of a Few‣ayer Bi ₂ Te ₃ /Sb ₂ Te ₃ by van der Waals Heteroepitaxy: The Critical Roles of Finite Latticeâ€Mismatch with Seed Substrates. Advanced Electronic Materials, 2017, 3, 1600375.	2.6	25

#	ARTICLE	IF	CITATIONS
381	One-pot synthesis of reduced graphene oxide/molybdenum disulfide heterostructures with intrinsic incommensurateness for enhanced lubricating properties. Carbon, 2017, 115, 83-94.	5.4	84
382	Temperatureâ€Related Morphological Evolution of MoS ₂ Domains on Graphene and Electron Transfer within Heterostructures. Small, 2017, 13, 1603549.	5.2	20
383	Hydrogen functionalisation of transition metal dichalcogenide monolayers from first principles. Molecular Simulation, 2017, 43, 379-383.	0.9	6
384	Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9, 2398-2416.	2.8	121
385	Charge Transfer and Interface Engineering of the Pentacene and MoS ₂ Monolayer Complex. Advanced Materials Interfaces, 2017, 4, 1601083.	1.9	31
386	In situ growth of MoS2 on carbon nanofibers with enhanced electrochemical catalytic activity for the hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 9419-9427.	3.8	20
387	Synthesis of MoS 2 ribbons and their branched structures by chemical vapor deposition in sulfur-enriched environment. Applied Surface Science, 2017, 409, 396-402.	3.1	26
388	Atomic Defects in Twoâ€Dimensional Materials: From Singleâ€Atom Spectroscopy to Functionalities in Optoâ€{Electronics, Nanomagnetism, and Catalysis. Advanced Materials, 2017, 29, 1606434.	11.1	211
389	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	7.3	90
390	Recent progress in van der Waals heterojunctions. Nanoscale, 2017, 9, 4324-4365.	2.8	155
391	Three-dimensional structure of WS 2 /graphene/Ni as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 7811-7819.	3.8	76
392	Ultrasmall few-layered MoS ₂ nanosheets anchored on flower-like hierarchical carbons as a long-life electrode for lithium storage. Inorganic Chemistry Frontiers, 2017, 4, 683-691.	3.0	9
393	Precise Identification of Graphene's Crystal Structures by Removable Nanowire Epitaxy. Journal of Physical Chemistry Letters, 2017, 8, 1302-1309.	2.1	11
394	Work Function Tuning in Two-Dimensional MoS2 Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts. Scientific Reports, 2017, 7, 45546.	1.6	33
395	Progress in Controllable Construction and Energyâ€Related Applications of MX ₂ /Graphene and MX ₂ /MX ₂ Heterostructures. ChemNanoMat, 2017, 3, 340-351.	1.5	5
396	Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544, 340-343.	13.7	410
397	Two-dimensional large-scale bandgap-tunable monolayer MoS _{2(1â^'x)} Se _{2x} /graphene heterostructures for phototransistors. Journal of Materials Chemistry C, 2017, 5, 5887-5896.	2.7	38
	Epitovial growth and intrinsic nature of malubdanum disulfide on graphite. Applied Develop Everges		

#	Article	IF	CITATIONS
399	Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W _{<i>x</i>} Mo _{1–<i>x</i>} S ₂) and Graphene with Superior Catalytic Performance for Hydrogen Evolution. ACS Nano, 2017, 11, 5103-5112.	7.3	157
400	On-stack two-dimensional conversion of MoS ₂ into MoO ₃ . 2D Materials, 2017, 4, 014003.	2.0	51
401	Solution Processed Boron Nitride Nanosheets: Synthesis, Assemblies and Emerging Applications. Advanced Functional Materials, 2017, 27, 1701450.	7.8	160
402	Preparation of Nanowire like WSe2-Graphene Nanocomposite for Photocatalytic Reduction of CO2 into CH3OH with the Presence of Sacrificial Agents. Scientific Reports, 2017, 7, 1867.	1.6	51
403	Rapid and nondestructive layer number identification of two-dimensional layered transition metal dichalcogenides. Rare Metals, 2017, 36, 698-703.	3.6	12
404	Heterostructures containing dichalcogenides-new materials with predictable nanoarchitectures and novel emergent properties. Semiconductor Science and Technology, 2017, 32, 093004.	1.0	26
405	Computational Study of MoS ₂ /HfO ₂ Defective Interfaces for Nanometer-Scale Electronics. ACS Omega, 2017, 2, 2827-2834.	1.6	16
406	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4, .	5.5	476
407	Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017, 89, 411-478.	16.0	176
408	Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A, 2017, 5, 14950-14968.	5.2	38
409	Electronic and transport properties of heterophase compounds based on MoS2. JETP Letters, 2017, 105, 250-254.	0.4	9
410	Epitaxial Templating of Two-Dimensional Metal Chloride Nanocrystals on Monolayer Molybdenum Disulfide. ACS Nano, 2017, 11, 6404-6415.	7.3	20
411	2D transition metal dichalcogenides. Nature Reviews Materials, 2017, 2, .	23.3	3,689
412	Graphene-enhanced three-dimensional structures of MoS 2 nanosheets as a counter electrode for Pt-free efficient dye-sensitized solar cells. Journal of Power Sources, 2017, 351, 58-66.	4.0	58
413	Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 8616-8623.	5.2	80
414	The synthesis of hierarchical nanostructured MoS 2 /Graphene composites with enhanced visible-light photo-degradation property. Applied Surface Science, 2017, 412, 207-213.	3.1	68
415	Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS ₂ / <i>h</i> -BN van der Waals Heterostructures on Au Foils. ACS Nano, 2017, 11, 4328-4336.	7.3	87
416	The Prospect of Two-Dimensional Heterostructures: A Review of Recent Breakthroughs. IEEE Nanotechnology Magazine, 2017, 11, 6-17.	0.9	27

#	Article	IF	CITATIONS
417	Edge dominated electronic properties of MoS ₂ /graphene hybrid 2D materials: edge state, electron coupling and work function. Journal of Materials Chemistry C, 2017, 5, 4845-4851.	2.7	28
418	Printable Transfer-Free and Wafer-Size MoS ₂ /Graphene van der Waals Heterostructures for High-Performance Photodetection. ACS Applied Materials & Interfaces, 2017, 9, 12728-12733.	4.0	82
419	Dendritic growth of monolayer ternary WS _{2(1â^'x)} Se _{2x} flakes for enhanced hydrogen evolution reaction. Nanoscale, 2017, 9, 5641-5647.	2.8	31
420	Slidable atomic layers in van der Waals heterostructures. Applied Physics Express, 2017, 10, 045201.	1.1	22
421	Devices and applications of van der Waals heterostructures. Journal of Semiconductors, 2017, 38, 031005.	2.0	30
422	Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC Advances, 2017, 7, 17387-17397.	1.7	23
423	Elemental two-dimensional nanosheets beyond graphene. Chemical Society Reviews, 2017, 46, 2127-2157.	18.7	285
424	A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries. Applied Surface Science, 2017, 399, 237-244.	3.1	14
425	Prediction of electronic structure of van der Waals interfaces: Benzene adsorbed monolayer MoS 2 , WS 2 and WTe 2. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 88, 87-96.	1.3	8
426	Shape-Dependent Defect Structures of Monolayer MoS ₂ Crystals Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2017, 9, 763-770.	4.0	45
427	Graphene Substrate for van der Waals Epitaxy of Layerâ€Structured Bismuth Antimony Telluride Thermoelectric Film. Advanced Materials, 2017, 29, 1604899.	11.1	33
428	Substantial improvements of long-term stability in encapsulation-free WS ₂ using highly interacting graphene substrate. 2D Materials, 2017, 4, 011007.	2.0	20
429	MoS ₂ –Carbon Nanotube Hybrid Material Growth and Gas Sensing. Advanced Materials Interfaces, 2017, 4, 1700801.	1.9	73
430	Statistical Mechanics and Kinetics of Amyloid Fibrillation. World Scientific Lecture and Course Notes in Chemistry, 2017, , 113-186.	0.2	11
431	Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nature Communications, 2017, 8, 958.	5.8	191
432	Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory. Langmuir, 2017, 33, 12827-12837.	1.6	10
433	Tunable and laser-reconfigurable 2D heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi ₂ Se ₃ and MoS ₂ atomic layers. Science Advances, 2017, 3, e1601741.	4.7	39
434	Experimental study on an evaporation process to deposit MoO2 microflakes. Chemical Physics Letters, 2017, 687, 14-18.	1.2	5

#	Article	IF	CITATIONS
435	Molecular Epitaxy on Two-Dimensional Materials: The Interplay between Interactions. Industrial & Engineering Chemistry Research, 2017, 56, 10552-10581.	1.8	29
436	Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Scientific Reports, 2017, 7, 11182.	1.6	167
437	Progress of Large cale Synthesis and Electronic Device Application of Twoâ€Dimensional Transition Metal Dichalcogenides. Small, 2017, 13, 1700098.	5.2	54
438	Self-organized growth and self-assembly of nanostructures on 2D materials. FlatChem, 2017, 5, 50-68.	2.8	33
439	N-(4-Aminobutyl)-N-ethylisoluminol/CoFe ₂ O ₄ /graphene hybrids with unique chemiluminescence and magnetism. Journal of Materials Chemistry C, 2017, 5, 7612-7620.	2.7	12
440	Ultrathin MoS ₂ Nanosheets@Metal Organic Frameworkâ€Derived Nâ€Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability. Advanced Functional Materials, 2017, 27, 1702116.	7.8	447
441	Ultrathin Singleâ€Crystalline CdTe Nanosheets Realized via Van der Waals Epitaxy. Advanced Materials, 2017, 29, 1703122.	11.1	118
442	Production and Potential Applications of Elemental Twoâ€Dimensional Materials beyond Graphene. ChemNanoMat, 2017, 3, 604-613.	1.5	14
443	Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures. RSC Advances, 2017, 7, 34584-34590.	1.7	34
444	Selective and confined growth of transition metal dichalcogenides on transferred graphene. RSC Advances, 2017, 7, 37310-37314.	1.7	6
445	Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Letters, 2017, 9, 50.	14.4	141
446	Structural and electronic properties of MoS2, WS2, and WS2/MoS2 heterostructures encapsulated with hexagonal boron nitride monolayers. Journal of Applied Physics, 2017, 122, .	1.1	49
447	Van der Waals Epitaxial Growth of 2D Metallic Vanadium Diselenide Single Crystals and their Extraâ€High Electrical Conductivity. Advanced Materials, 2017, 29, 1702359.	11.1	191
448	Synthesis of Transition Metal Dichalcogenides. , 0, , 344-358.		0
449	Pulsed laser deposition for the synthesis of monolayer WSe2. Applied Physics Letters, 2017, 111, .	1.5	23
450	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
452	MoS ₂ quantum dots featured fluorescent biosensor for multiple detection of cancer. RSC Advances, 2017, 7, 54638-54643.	1.7	19
453	Hybrid Porous Molybdenum Disulfide Monolith for Liquid Removal of Dibenzothiophene. Industrial & Engineering Chemistry Research, 2017, 56, 15049-15057.	1.8	5

ARTICLE IF CITATIONS Fabrication of MoS₂/WO₃nanocomposite films for enhanced electro-chromic 454 1.4 30 performance. New Journal of Chemistry, 2017, 41, 15327-15333. Water-Assisted Synthesis of Molybdenum Disulfide Film with Single Organic Liquid Precursor. 1.6 Scientific Reports, 2017, 7, 1983. Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society 456 18.7 275 Reviews, 2017, 46, 4572-4613. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>InGaSe </mml:mi> <mml:mn>2 </mml:mn>/ mml:msub: Physical Review B. 2017, 96. Controlled growth of six-point stars MoS₂ by chemical vapor deposition and its shape 458 1.321 evolution mechanism. Nanotechnology, 2017, 28, 395601. Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets. Journal of Colloid and Interface Science, 2017, 505, 776-782. 5.0 Coincidence Lattices and Interlayer Twist in van der Waals Heterostructures: Application of the Coincidence Lattice Method on \$\$hbox {hBN/MoSe}_2\$\$ hBN/MoSe 2 Heterobilayer Systems. Journal 460 1.0 9 of Electronic Materials, 2017, 46, 3910-3916. Nanocomposite of ultrasmall Co3O4 nanoparticles deposited on ultrathin MoS2 surfaces for excellent performance anode materials in lithium ion batteries. Chemical Engineering Journal, 2017, 6.6 313, 1269-1277. Hydrothermal preparation of hierarchical MoS2-reduced graphene oxide nanocomposites towards 462 2.3 20 rémarkable enhanced visible-light photocatalytic activity. Ceramics International, 2017, 43, 2384-2388. Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. 5.1 Carbohydrate Polymers, 2017, 155, 40-48. Three-dimensional vertically aligned hybrid nanoarchitecture of two-dimensional molybdenum disulfide nanosheets anchored on directly grown one-dimensional carbon nanotubes for use as a 464 2.8 30 counter electrode in dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 692, 941-949. Quasiparticle band gaps and optical spectra of strained monolayer transition-metal dichalcogenides. 1.1 28 Physical Review B, 2017, 96, . Graphene for surface enhanced Raman scattering (SERS) molecular sensors., 2017,,. 466 0 MoS₂ materials synthesized on SiO₂/Si substrates via MBE. Journal of Physics: 0.3 Conference Series, 2017, 864, 012037. Piezoreflectance study of Nb-doped MoS2single crystals. IOP Conference Series: Materials Science and 468 0.3 0 Engineering, 2017, 237, 012041. Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth. ACS Applied Materials & amp; Interfaces, 2017, 9, 27102-27110. Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An 470 1.2 26 Aberration-Corrected STEM Study. Inorganics, 2017, 5, 1. Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) 471 Current Developments and Future Trends., 2017, , .

# 472	ARTICLE Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications. , 0, , .	IF	Citations 9
473	Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles. Nanoscale Research Letters, 2017, 12, 567.	3.1	32
474	Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today, 2018, 19, 16-40.	6.2	142
475	Inâ€Plane Heterostructures Enable Internal Stress Assisted Strain Engineering in 2D Materials. Small, 2018, 14, e1703512.	5.2	9
476	Recent progress in Van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon, 2018, 133, 78-89.	5.4	83
477	Electronic and optical properties of boron phosphide/blue phosphorus heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 12053-12060.	1.3	53
478	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	18.7	303
479	The vertical growth of MoS2 layers at the initial stage of CVD from first-principles. Journal of Chemical Physics, 2018, 148, 134704.	1.2	18
480	Epitaxial growth of single-orientation high-quality MoS ₂ monolayers. 2D Materials, 2018, 5, 035012.	2.0	65
481	Moiré structure of MoS2 on Au(111): Local structural and electronic properties. Surface Science, 2018, 678, 136-142.	0.8	45
482	Syntheses and bandgap alterations of MoS2 induced by stresses in graphene-platinum substrates. Carbon, 2018, 131, 26-30.	5.4	12
483	Controllable Chemical Vapor Deposition Growth of Two-Dimensional Heterostructures. CheM, 2018, 4, 671-689.	5.8	84
484	Remarkable hydrogen storage properties and mechanisms of the shell–core MgH2@carbon aerogel microspheres. International Journal of Hydrogen Energy, 2018, 43, 3731-3740.	3.8	45
485	A comparison study of hydrogen storage properties of as-milled Sm 5 Mg 41 alloy catalyzed by CoS 2 and MoS 2 nano-particles. Journal of Materials Science and Technology, 2018, 34, 1851-1858.	5.6	27
486	Hydrogen-Assisted Growth of Large-Area Continuous Films of MoS ₂ on Monolayer Graphene. ACS Applied Materials & Interfaces, 2018, 10, 7304-7314.	4.0	47
487	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
488	Synthesis and properties of MoCl ₄ complexes with thio- and seleno-ethers and their use for chemical vapour deposition of MoSe ₂ and MoS ₂ films. Dalton Transactions, 2018, 47, 2406-2414.	1.6	18
489	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	23.0	1,000

#	Article	IF	CITATIONS
490	Diffusion-Controlled Epitaxy of Large Area Coalesced WSe ₂ Monolayers on Sapphire. Nano Letters, 2018, 18, 1049-1056.	4.5	197
491	Highly efficient computer algorithm for identifying layer thickness of atomically thin 2D materials. Journal Physics D: Applied Physics, 2018, 51, 11LT03.	1.3	6
492	Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film. Mikrochimica Acta, 2018, 185, 155.	2.5	26
493	Nanoscale Probing of Interaction in Atomically Thin Layered Materials. ACS Central Science, 2018, 4, 288-297.	5.3	6
494	Gate-Tunable WSe ₂ /SnSe ₂ Backward Diode with Ultrahigh-Reverse Rectification Ratio. ACS Applied Materials & Interfaces, 2018, 10, 5657-5664.	4.0	65
495	Epitaxial growth of hybrid nanostructures. Nature Reviews Materials, 2018, 3, .	23.3	318
496	Novel synthesis of WSe2-Graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrasonics Sonochemistry, 2018, 42, 738-746.	3.8	48
497	Novel Optoelectronic Devices: Transitionâ€Metalâ€Dichalcogenideâ€Based 2D Heterostructures. Advanced Electronic Materials, 2018, 4, 1700335.	2.6	91
498	One-Step Synthesis of Metal/Semiconductor Heterostructure NbS ₂ /MoS ₂ . Chemistry of Materials, 2018, 30, 4001-4007.	3.2	85
499	Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate. AIP Advances, 2018, 8, 045024.	0.6	14
500	Towards high-performance polarity-controllable FETs with 2D materials. , 2018, , .		4
501	Doping-stabilized two-dimensional black phosphorus. Nanoscale, 2018, 10, 7898-7904.	2.8	20
502	Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Progress in Materials Science, 2018, 96, 51-85.	16.0	132
503	In situ growth of 1T-MoS2 on liquid-exfoliated graphene: A unique graphene-like heterostructure for superior lithium storage. Carbon, 2018, 133, 162-169.	5.4	45
504	Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. Chemical Reviews, 2018, 118, 6134-6150.	23.0	285
505	GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 149-153.	1.3	70
506	Pressure-dependent large area synthesis and electronic structure of MoS 2. Materials Research Bulletin, 2018, 97, 265-271.	2.7	5
507	Nucleation mechanism during WS2 plasma enhanced atomic layer deposition on amorphous Al2O3 and sapphire substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	30

#	Article	IF	CITATIONS
508	Sputtered MoS ₂ layer as a promoter in the growth of MoS ₂ nanoflakes by TCVD. Materials Research Express, 2018, 5, 015032.	0.8	11
509	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
510	Synthesis and optoelectronic applications of graphene/transition metal dichalcogenides flat-pack assembly. Carbon, 2018, 127, 602-610.	5.4	15
511	Fabrication and Characterization of Graphene Heterostructures with Nitride Semiconductors for High Frequency Vertical Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700653.	0.8	14
512	Single-site point defects in semimetal WTe ₂ : A density functional theory study. AIP Advances, 2018, 8, 125323.	0.6	8
513	Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors. RSC Advances, 2018, 8, 38945-38954.	1.7	65
515	Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. Journal of Innovative Optical Health Sciences, 2018, 11, .	0.5	70
516	Site‧elective and van der Waals Epitaxial Growth of Rhenium Disulfide on Graphene. Small, 2019, 15, e1804133.	5.2	23
517	Effects of Multiple Stacking Faults on the Electronic and Optical Properties of Armchair MoS \$\$_{2}\$\$ 2 Nanoribbons: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 7114-7128.	1.0	0
518	Recent Advances in Synthesis and Assembly of van der Waals Materials. Journal of the Korean Physical Society, 2018, 73, 805-816.	0.3	11
519	The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures. Nanoscale, 2018, 10, 19212-19219.	2.8	10
520	Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS ₂ van der Waals Heterostructures and Their Application in Solid-State Bulk Lasers. ACS Nano, 2018, 12, 11376-11385.	7.3	113
521	Synthesis and Properties of 2D Semiconductors. Springer Theses, 2018, , 21-43.	0.0	1
523	Growth of WS2 flakes on Ti3C2Tx Mxene Using Vapor Transportation Routine. Coatings, 2018, 8, 281.	1.2	12
524	Direct Chirality Recognition of Singleâ€Crystalline and Singleâ€Walled Transition Metal Oxide Nanotubes on Carbon Nanotube Templates. Advanced Materials, 2018, 30, e1803368.	11.1	14
525	Recent Progress of Janus 2D Transition Metal Chalcogenides: From Theory to Experiments. Small, 2018, 14, e1802091.	5.2	247
526	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	1.2	5
527	First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures. Physical Chemistry Chemical Physics, 2018, 20, 24726-24734.	1.3	77

#	Article	IF	CITATIONS
528	Atomically sharp interlayer stacking shifts at anti-phase grain boundaries in overlapping MoS ₂ secondary layers. Nanoscale, 2018, 10, 16692-16702.	2.8	22
529	Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2. Electrocatalysis, 2018, 9, 744-751.	1.5	22
530	CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018, 65, 4040-4052.	1.6	47
531	Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes. Journal of Solid State Electrochemistry, 2018, 22, 2801-2809.	1.2	5
532	Epitaxial growth of <i>γ</i> -InSe and <i>α</i> , <i>β</i> , and <i>γ</i> -In ₂ Se ₃ on <i>ε</i> -GaSe. 2D Materials, 2018, 5, 035026.	2.0	98
533	Controllable solution-fabrication of triphasic 2H@1T-MoS2/graphene heterostructure with assistance of supercritical CO2. Surfaces and Interfaces, 2018, 12, 41-49.	1.5	9
534	Controllable, eco-friendly, synthesis of highly crystalline 2D-MoS ₂ and clarification of the role of growth-induced strain. 2D Materials, 2018, 5, 035035.	2.0	23
535	Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries. Journal of Electroanalytical Chemistry, 2018, 823, 67-72.	1.9	46
536	Strainâ€Driven and Layerâ€Numberâ€Dependent Crossover of Growth Mode in van der Waals Heterostructures: 2D/2D Layerâ€Byâ€Layer Horizontal Epitaxy to 2D/3D Vertical Reorientation. Advanced Materials Interfaces, 2018, 5, 1800382.	1.9	35
537	First-principles studies of SnS2, MoS2 and WS2 stacked van der Waals hetero-multilayers. Computational Condensed Matter, 2018, 16, e00303.	0.9	5
538	Electronic Properties of Armchair \$\$hbox {MoS}_{2}\$\$ MoS 2 Nanoribbons with Stacking Faults: First-Principles Calculations. Journal of Electronic Materials, 2018, 47, 5498-5508.	1.0	8
539	Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. Journal of the American Chemical Society, 2018, 140, 9001-9019.	6.6	34
540	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	2.7	121
541	Magnetron Sputter-Coated Nanoparticle MoS ₂ Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 7235-7242.	1.6	22
542	Selective Growth of Two-Dimensional Heterostructures of Gallium Selenide on Monolayer Graphene and the Thickness Dependent <i>p-</i> and <i>n-</i> Type Nature. ACS Applied Nano Materials, 2018, 1, 3293-3302.	2.4	9
543	Chemical Growth of 1 <i>T</i> â€₹aS ₂ Monolayer and Thin Films: Robust Charge Density Wave Transitions and High Bolometric Responsivity. Advanced Materials, 2018, 30, e1800074.	11.1	68
544	Near-infrared absorbers based on the heterostructures of two-dimensional materials. Applied Optics, 2018, 57, 1358.	0.9	5
545	Dislocation driven spiral and non-spiral growth in layered chalcogenides. Nanoscale, 2018, 10, 15023-15034.	2.8	24

#	Article	IF	CITATIONS
546	Etch track-directed growth of carbon nanotubes on graphite. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 165-172.	1.3	1
547	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	7.3	51
548	Effect of alumina particles on structural changes in MoS2 during a ball milling process. International Journal of Materials Research, 2018, 109, 250-256.	0.1	2
549	Lowâ€Temperature Heteroepitaxy of 2D Pbl ₂ /Graphene for Largeâ€Area Flexible Photodetectors. Advanced Materials, 2018, 30, e1803194.	11.1	93
550	Multimodal spectromicroscopy of monolayer WS ₂ enabled by ultra-clean van der Waals epitaxy. 2D Materials, 2018, 5, 045010.	2.0	40
551	Vertical Transistors Based on 2D Materials: Status and Prospects. Crystals, 2018, 8, 70.	1.0	71
552	Effect of interlayer space on the structure and Poisson's ratio of a graphene/MoS2 tubular van der Waals heterostructure. Journal of Applied Physics, 2018, 124, .	1.1	4
553	Oriented Attachment and Nanorod Formation in Atomic Layer Deposition of TiO ₂ on Graphene Nanoplatelets. Journal of Physical Chemistry C, 2018, 122, 19981-19991.	1.5	10
554	In-Plane Homojunctions and Their Dominant Effects on Charge Transport in Vertical van der Waals Heterostructures. Journal of Physical Chemistry C, 2018, 122, 20513-20520.	1.5	2
555	Electronic properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures under in-plane biaxial strains. Journal of Solid State Chemistry, 2018, 265, 257-265.	1.4	20
556	SiC/MoS2 layered heterostructures: Promising photocatalysts revealed by a first-principles study. Materials Chemistry and Physics, 2018, 216, 64-71.	2.0	63
557	Three-dimensionally integrated carbon tubes/MoS2 with reduced graphene oxide foam as a binder-free anode for lithium ion battery. Journal of Electroanalytical Chemistry, 2018, 823, 307-314.	1.9	18
558	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
559	Surface Engineering of Twoâ€Dimensional Materials. ChemNanoMat, 2019, 5, 6-23.	1.5	22
560	Functionalization of 2D materials by intercalation. Progress in Surface Science, 2019, 94, 1-20.	3.8	48
561	Van der Waals heterostructures for optoelectronics: Progress and prospects. Applied Materials Today, 2019, 16, 435-455.	2.3	117
562	Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials, 2019, 31, e1901694.	11.1	250
563	Multiple roles of a heterointerface in two-dimensional van der Waals heterostructures: insights into energy-related applications. Journal of Materials Chemistry A, 2019, 7, 23577-23603.	5.2	43

#	Article	IF	CITATIONS
564	Preparation Methods of Transition Metal Dichalcogenides. , 2019, , 29-68.		3
565	Strong-coupled hybrid structure of carbon nanotube and MoS ₂ monolayer with ultrafast interfacial charge transfer. Nanoscale, 2019, 11, 17195-17200.	2.8	17
566	A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Research, 2019, 12, 2655-2694.	5.8	283
567	Synthesis Methods For 2D Nanostructured Materials, Nanoparticles (NPs), Nanotubes (NTs) and Nanowires (NWs). Advanced Structured Materials, 2019, , 393-456.	0.3	2
568	Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Applied Surface Science, 2019, 494, 591-599.	3.1	25
569	Sizable bandgaps of graphene in 3d transition metal intercalated defective graphene/WSe ₂ heterostructures. RSC Advances, 2019, 9, 18157-18164.	1.7	8
570	Functionalized Hybridization of 2D Nanomaterials. Advanced Science, 2019, 6, 1901837.	5.6	77
571	A van der Waals epitaxial growth of ultrathin two-dimensional Sn film on graphene covered Cu(111) substrate. Applied Physics Letters, 2019, 115, .	1.5	7
572	Pulsed Laser Deposition Assisted van der Waals Epitaxial Large Area Quasiâ€2D ZnO Single rystal Plates on Fluorophlogopite Mica. Advanced Materials Interfaces, 2019, 6, 1901156.	1.9	15
573	Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate. Nano Research, 2019, 12, 2712-2717.	5.8	5
574	Cluster–Nuclei Coassembled into Two-Dimensional Hybrid CuO-PMA Sub-1 nm Nanosheets. Journal of the American Chemical Society, 2019, 141, 18754-18758.	6.6	58
576	Mechanism of Alkali Metal Compound-Promoted Growth of Monolayer MoS ₂ : Eutectic Intermediates. Chemistry of Materials, 2019, 31, 873-880.	3.2	59
577	Vertically Stacked CVD-Grown 2D Heterostructure for Wafer-Scale Electronics. ACS Applied Materials & Interfaces, 2019, 11, 35444-35450.	4.0	27
578	Monolayer MoS2 growth at the Au–SiO2 interface. Nanoscale, 2019, 11, 19700-19704.	2.8	7
579	Atomically Sharp Dual Grain Boundaries in 2D WS ₂ Bilayers. Small, 2019, 15, e1902590.	5.2	13
580	Growth of highly oriented MoS ₂ <i>via</i> an intercalation process in the graphene/SiC(0001) system. Physical Chemistry Chemical Physics, 2019, 21, 20641-20646.	1.3	8
581	A Hydrothermal-Assisted Ball Milling Approach for Scalable Production of High-Quality Functionalized MoS2 Nanosheets for Polymer Nanocomposites. Nanomaterials, 2019, 9, 1400.	1.9	18
582	Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS ₂ Flakes Through Femtosecond Laser Direct Writing. ACS Applied Materials & Interfaces, 2019, 11, 39334-39341.	4.0	21

#	Article	IF	CITATIONS
583	Photodefined In-Plane Heterostructures in Two-Dimensional In ₂ Se ₃ Nanolayers for Ultrathin Photodiodes. ACS Applied Nano Materials, 2019, 2, 6774-6782.	2.4	25
584	van der Waals epitaxy of highly (111)-oriented BaTiO3 on MXene. Nanoscale, 2019, 11, 622-630.	2.8	7
585	High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS ₂ :Graphene Photodetectors Using Direct CVD Growth. ACS Applied Materials & Interfaces, 2019, 11, 6421-6430.	4.0	78
586	Engineering a 3D MoS2 foam using keratin exfoliated nanosheets. Chemical Engineering Journal, 2019, 374, 254-262.	6.6	22
587	Alkali Metal-Assisted Growth of Single-Layer Molybdenum Disulfide. Journal of the Korean Physical Society, 2019, 74, 1032-1038.	0.3	8
588	Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures. ACS Nano, 2019, 13, 8303-8311.	7.3	24
589	Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. Advanced Materials Interfaces, 2019, 6, 1900220.	1.9	42
590	One-step hydrothermal synthesis of SnO2-MoS2 composite heterostructure for improved visible light photocatalytic performance. Chemical Physics, 2019, 525, 110398.	0.9	34
591	Growth of Complex 2D Material-Based Structures with Naturally Formed Contacts. ACS Omega, 2019, 4, 9557-9562.	1.6	5
592	Direct Mapping of the Gate Response of a Multilayer WSe2/MoS2 Heterostructure with Locally Different Degrees of Charge Depletion. Journal of Physical Chemistry Letters, 2019, 10, 4010-4016.	2.1	9
593	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
594	The Effect of Nickel on MoS ₂ Growth Revealed with <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2019, 13, 7117-7126.	7.3	48
595	Robust C–S bond integrated graphdiyne-MoS2 nanohybrids for enhanced lithium storage capability. Chemical Engineering Journal, 2019, 373, 660-667.	6.6	50
596	Recent progress in MoS2 for solar energy conversion applications. Frontiers in Energy, 2019, 13, 251-268.	1.2	11
597	Immobilized Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Hydrogen Evolution Reaction. ACS Nano, 2019, 13, 6720-6729.	7.3	40
599	Broadband photodetection in wide temperature range: Layer-by-layer exfoliation monitoring of WS2 bulk using microscopy and spectroscopy. Journal of Applied Physics, 2019, 125, .	1.1	12
600	Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar Cells. Advanced Materials, 2019, 31, e1807689.	11.1	185
601	Full orientation control of epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2on hBN assisted by substrate defects. Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	:m @. % <td>າl:ເສເຣub></td>	າ l:ເສ ເຣub>

	CITATION	REPORT	
#	Article	IF	CITATIONS
602	Magnetism in two-dimensional materials beyond graphene. Materials Today, 2019, 27, 107-122.	8.3	127
603	Effects of Stone–Wales Defect on the Electronic and Optical Properties of Armchair MoS2 Nanoribbon: First-Principles Calculations. Journal of Electronic Materials, 2019, 48, 3763-3776.	1.0	7
604	Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019, 4, 840-858.	4.1	207
605	Phonon-assisted carrier transport through a lattice-mismatched interface. NPG Asia Materials, 2019, 11, .	3.8	5
606	Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures. Npj Computational Materials, 2019, 5, .	3.5	39
607	A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 2019, 128, 274-297.	1.4	225
608	Healing of Planar Defects in 2D Materials via Grain Boundary Sliding. Advanced Materials, 2019, 31, e1900237.	11.1	38
609	Spatially Precise Transfer of Patterned Monolayer WS ₂ and MoS ₂ with Features Larger than 10 ⁴ μm ² Directly from Multilayer Sources. ACS Applied Electronic Materials, 2019, 1, 407-416.	2.0	23
610	Interfaceâ€Driven Partial Dislocation Formation in 2D Heterostructures. Advanced Materials, 2019, 31, e1807486.	11.1	11
611	Facile and cost-effective growth of MoS2 on 3D porous graphene-coated Ni foam for robust and stable hydrogen evolution reaction. Journal of Alloys and Compounds, 2019, 788, 267-276.	2.8	27
612	Defect-Controlled Nucleation and Orientation of WSe ₂ on hBN: A Route to Single-Crystal Epitaxial Monolayers. ACS Nano, 2019, 13, 3341-3352.	7.3	107
613	Synthesis of WS1.76Te0.24 alloy through chemical vapor transport and its high-performance saturable absorption. Scientific Reports, 2019, 9, 19457.	1.6	5
614	Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: opportunities and challenges. Journal of Materials Chemistry A, 2019, 7, 25227-25246.	5.2	44
615	Intercalation-Mediated Synthesis and Interfacial Coupling Effect Exploration of Unconventional Graphene/PtSe ₂ Vertical Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 48221-48229.	4.0	7
616	Methane-Mediated Vapor Transport Growth of Monolayer WSe2 Crystals. Nanomaterials, 2019, 9, 1642.	1.9	1
617	Epitaxial Growth of Two-Dimensional Metal–Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe ₂ /MX ₂) and Their Band Alignments. ACS Nano, 2019, 13, 885-893.	7.3	102
618	An in-situ growth approach to 2D MoS2-2D PbS heterojunction composites with improved photocatalytic activity. Journal of Solid State Chemistry, 2019, 270, 98-103.	1.4	16
619	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science, 2019, 470, 129-134.	3.1	44

#	Article	IF	CITATIONS
620	Theory of optically induced Förster coupling in van der Waals coupled heterostructures. Physical Review B, 2019, 99, .	1.1	20
621	A roadmap for electronic grade 2D materials. 2D Materials, 2019, 6, 022001.	2.0	205
622	Valley and spin splitting in monolayer <i>TX</i> ₂ /antiferromagnetic MnO (<i>T</i> =	Mo,) 1.3	Tj ETQq0 0

623	Band Alignment of MoTe ₂ /MoS ₂ Nanocomposite Films for Enhanced Nonlinear Optical Performance. Advanced Materials Interfaces, 2019, 6, 1801733.	1.9	41
624	Na-assisted fast growth of large single-crystal MoS ₂ on sapphire. Nanotechnology, 2019, 30, 034002.	1.3	34
625	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Research, 2019, 12, 339-344.	5.8	32
626	Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Advanced Materials, 2019, 31, e1804828.	11.1	142
627	MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon, 2019, 142, 504-512.	5.4	41
628	Enhanced Liâ€lonâ€Storage Performance of MoS ₂ through Multistage Structural Design. ChemElectroChem, 2019, 6, 1475-1484.	1.7	12
629	Nonlinear manipulation of surface plasmons on graphene-TMDC Bragg reflectors. Optical and Quantum Electronics, 2019, 51, 1.	1.5	10
630	Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Research, 2019, 12, 149-157.	5.8	22
631	Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Progress in Materials Science, 2019, 100, 99-169.	16.0	235
632	Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. Proceedings of the IEEE, 2020, 108, 676-703.	16.4	19
633	Atomistic mechanisms of seeding promoter-controlled growth of molybdenum disulphide. 2D Materials, 2020, 7, 015013.	2.0	11
634	Stimuli-enabled reversible switched aclonifen electrochemical sensor based on smart PNIPAM/PANI-Cu hybrid conducting microgel. Sensors and Actuators B: Chemical, 2020, 304, 127232.	4.0	41
635	Effect of thickness-dependent structural defects on electrical stability of MoS2 thin film transistors. Journal of Alloys and Compounds, 2020, 814, 152134.	2.8	12
636	The spin-transport properties of single edge oxidized zigzag MoS2 nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113783.	1.3	7
637	Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. Journal of Power Sources, 2020, 446, 227319.	4.0	64

#	Article	IF	CITATIONS
638	2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020, 8, 845-883.	5.2	83
639	Reducedâ€Grapheneâ€Oxideâ€Guided Directional Growth of Planar Lithium Layers. Advanced Materials, 2020, 32, e1907079.	11.1	70
640	Temperature-reversible switched antineoplastic drug 5-fluorouracil electrochemical sensor based on adaptable thermo-sensitive microgel encapsulated PEDOT. Sensors and Actuators B: Chemical, 2020, 304, 127361.	4.0	34
642	Graphene–Transition Metal Dichalcogenide Heterojunctions for Scalable and Low-Power Complementary Integrated Circuits. ACS Nano, 2020, 14, 985-992.	7.3	46
643	CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65, 343-349.	4.3	72
644	Atomic insight into the solidification of Cu melt confined in graphene nanoslits. Journal of Crystal Growth, 2020, 532, 125382.	0.7	11
646	Chemical vapor deposition growth of 2D semiconductors. , 2020, , 81-101.		2
647	Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118467.	10.8	93
648	Controllable Design of MoS 2 Nanosheets Grown on Nitrogenâ€Doped Branched TiO 2 /C Nanofibers: Toward Enhanced Sodium Storage Performance Induced by Pseudocapacitance Behavior. Small, 2020, 16, 1904589.	5.2	20
649	Production and Properties of Molybdenum Disulfide/Graphene Oxide Hybrid Nanostructures for Catalytic Applications. Nanomaterials, 2020, 10, 1865.	1.9	13
650	A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorganic Chemistry Communication, 2020, 121, 108200.	1.8	155
651	Ultrathin Quasibinary Heterojunctioned ReS ₂ /MoS ₂ Film with Controlled Adhesion from a Bimetallic Co-Feeding Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 43311-43319.	4.0	10
652	Enhanced Performance of Planar Perovskite Solar Cells Induced by Van Der Waals Epitaxial Growth of Mixed Perovskite Films on WS ₂ Flakes. Advanced Functional Materials, 2020, 30, 2002358.	7.8	73
653	Discovery and characterization of 2D materials and their heterostructures. , 2020, , 1-11.		4
654	Design and synthesis of two-dimensional materials and their heterostructures. , 2020, , 13-54.		1
655	Two-dimensional MoSe2/graphene heterostructure thin film with wafer-scale continuity via van der Waals epitaxy. Chemical Physics Letters, 2020, 755, 137762.	1.2	3
656	Leaning on a ledge. Nature Materials, 2020, 19, 1260-1261.	13.3	0
657	Framed by depletion. Nature Materials, 2020, 19, 1261-1263.	13.3	2

#	Article	IF	CITATIONS
658	Complementary growth of 2D transition metal dichalcogenide semiconductors on metal oxide interfaces. Applied Physics Letters, 2020, 117, 213104.	1.5	2
659	Formation of Coherent 1H–1T Heterostructures in Single-Layer MoS ₂ on Au(111). ACS Nano, 2020, 14, 16939-16950.	7.3	29
660	Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550.	1.3	6
661	Large-area growth of high-quality graphene/MoS2 vertical heterostructures by chemical vapor deposition with nucleation control. Carbon, 2020, 168, 580-587.	5.4	20
662	Controlled growth of atomically thin transition metal dichalcogenides via chemical vapor deposition method. Materials Today Advances, 2020, 8, 100098.	2.5	28
663	<i>Ab initio</i> insights into the stabilization and binding mechanisms of MoS ₂ nanoflakes supported on graphene. Physical Chemistry Chemical Physics, 2020, 22, 26865-26875.	1.3	2
664	Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal–Organic Vapor-Phase Epitaxy and Their Application in Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 44335-44344.	4.0	28
665	Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis. Journal of Communications Technology and Electronics, 2020, 65, 1062-1104.	0.2	9
666	Substrate-Induced Variances in Morphological and Structural Properties of MoS ₂ Grown by Chemical Vapor Deposition on Epitaxial Graphene and SiO ₂ . ACS Applied Materials & Interfaces, 2020, 12, 45101-45110.	4.0	20
667	Exploring the Stability of Twisted van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2020, 12, 45214-45221.	4.0	14
668	Atomicâ€Scale Edge Morphology, Stability, and Oxidation of Singleâ€Layer 2Hâ€TaS ₂ . ChemPlusChem, 2020, 85, 2557-2564.	1.3	5
669	Limiting Domain Size of MoS ₂ : Effects of Stoichiometry and Oxygen. Journal of Physical Chemistry C, 2020, 124, 27571-27579.	1.5	8
670	Van der Waals Epitaxial Growth of Mosaicâ€Like 2D Platinum Ditelluride Layers for Roomâ€Temperature Midâ€Infrared Photodetection up to 10.6 µm. Advanced Materials, 2020, 32, e2004412.	11.1	202
671	Solution-processable two-dimensional ultrathin nanosheets induced by self-assembling geometrically-matched alkane. Nano Energy, 2020, 72, 104689.	8.2	8
672	Nanoprobing of MoS2 by Synchrotron Radiation When van der Waals Epitaxy Is Locally Invalid. ACS Applied Materials & Interfaces, 2020, 12, 32041-32053.	4.0	1
673	Epitaxial Growth of Two-Dimensional Layered Transition Metal Dichalcogenides. Annual Review of Materials Research, 2020, 50, 155-177.	4.3	57
674	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e2002584.	11.1	82
675	Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111162.	2.5	41

#	Article	IF	CITATIONS
676	Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: One-Step synthesis and highly efficient catalytic hydrogen generation. Chemical Engineering Journal, 2020, 397, 125470.	6.6	72
677	Hollow MoS ₃ Nanospheres as Electrode Material for "Waterâ€inâ€Salt―Li–Ion Batteries. Batteries and Supercaps, 2020, 3, 747-756.	2.4	15
678	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie, 2020, 132, 15864-15870.	1.6	0
679	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie - International Edition, 2020, 59, 15734-15740.	7.2	18
680	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	6.2	49
681	Modulating flow near substrate surface to grow clean and large-area monolayer MoS ₂ . Nanotechnology, 2020, 31, 415706.	1.3	5
682	Antiphase Boundaries as Faceted Metallic Wires in 2D Transition Metal Dichalcogenides. Advanced Science, 2020, 7, 2000788.	5.6	3
683	Macro van der Waals p-n heterojunction based on SnSe and SnSe ₂ . Nanotechnology, 2020, 31, 385203.	1.3	12
684	Self-assembly synthesis of flower-like CeO2/MoS2 heterojunction with enhancement of visible light photocatalytic activity for methyl orange. Journal of Materials Science: Materials in Electronics, 2020, 31, 6690-6697.	1.1	16
685	Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe ₂ /MoS ₂ Heterobilayer. Journal of Physical Chemistry Letters, 2020, 11, 2637-2646.	2.1	19
686	Hybridizing Plasmonic Materials with 2Dâ€Transition Metal Dichalcogenides toward Functional Applications. Small, 2020, 16, e1904271.	5.2	74
687	Twoâ€Ðimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage. ChemSusChem, 2020, 13, 1114-1154.	3.6	69
688	Effects of the Intercalant and the Temperature in Hybrid-MoS2 Nanodots Fabrication and Their Photoluminescence Enhancement. Journal of the Korean Physical Society, 2020, 76, 980-984.	0.3	4
689	Ultrathin High-Quality SnTe Nanoplates for Fabricating Flexible Near-Infrared Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 31810-31822.	4.0	49
690	Oxygen atom adsorbed on the sulphur vacancy of monolayer MoS2: A promising method for the passivation of the vacancy defect. Computational and Theoretical Chemistry, 2020, 1187, 112906.	1.1	11
691	Transport and Thermoelectric Properties of SnX (X = S or Se) Bilayers and Heterostructures. ACS Applied Energy Materials, 2020, 3, 6946-6955.	2.5	13
692	Growth of monolayer and bilayer MoS2 through the solution precursor for high-performance photodetectors. Current Applied Physics, 2020, 20, 643-647.	1.1	9
693	Multiple Regulation over Growth Direction, Band Structure, and Dimension of Monolayer WS ₂ by a Quartz Substrate. Chemistry of Materials, 2020, 32, 2508-2517.	3.2	21

#	Article	IF	CITATIONS
694	Adsorption Behavior of the Hydroxyl Radical and Its Effects on Monolayer MoS ₂ . ACS Omega, 2020, 5, 1982-1986.	1.6	9
695	MoS ₂ â€Based Nanomaterials for Roomâ€Temperature Gas Sensors. Advanced Materials Technologies, 2020, 5, 1901062.	3.0	138
696	A comparative computational study of tunneling transistors based on vertical graphene–hBCN heterostructures. Journal of Applied Physics, 2020, 127, .	1.1	10
697	Nanowire templated CVD synthesis and morphological control of MoS ₂ nanotubes. Journal of Materials Chemistry C, 2020, 8, 4133-4138.	2.7	12
698	MOVPE of Large-Scale MoS2/WS2, WS2/MoS2, WS2/Graphene and MoS2/Graphene 2D-2D Heterostructures for Optoelectronic Applications. MRS Advances, 2020, 5, 1625-1633.	0.5	10
699	Grain-Boundary-Induced Strain and Distortion in Epitaxial Bilayer MoS ₂ Lattice. Journal of Physical Chemistry C, 2020, 124, 6472-6478.	1.5	12
700	Graphene-Supported 2D transition metal dichalcogenide van der waals heterostructures. Applied Materials Today, 2020, 19, 100600.	2.3	64
701	Enabling highly effective underwater oxygen-consuming reaction at solid-liquid-air triphasic interface. Applied Surface Science, 2020, 512, 145747.	3.1	5
702	Giant tunneling electroresistance in two-dimensional ferroelectric tunnel junctions with out-of-plane ferroelectric polarization. Physical Review B, 2020, 101, .	1.1	52
703	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
704	Field emission from nanotubes and flakes of transition metal dichalcogenides. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032801.	0.6	9
705	How a trapeziform flake of monolayer WS2 formed on SiO2(1Â0Â0)? A first-principle study. Applied Surface Science, 2020, 517, 145864.	3.1	2
706	Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain. Physical Chemistry Chemical Physics, 2020, 22, 9647-9655.	1.3	32
707	Layered transition metal dichalcogenide/carbon nanocomposites for electrochemical energy storage and conversion applications. Nanoscale, 2020, 12, 8608-8625.	2.8	32
708	The Large-Scale Preparation and Optical Properties of MoS2/WS2 Vertical Hetero-Junction. Molecules, 2020, 25, 1857.	1.7	7
709	Exotic Two-Dimensional Structure: The First Case of Hexagonal NaCl. Journal of Physical Chemistry Letters, 2020, 11, 3821-3827.	2.1	38
710	Preparation of Few-Layered Wide Bandgap MoS2 with Nanometer Lateral Dimensions by Applying Laser Irradiation. Crystals, 2020, 10, 164.	1.0	29
711	Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. Journal of Power Sources, 2020, 456, 227998.	4.0	23

#	Article	IF	Citations
712	3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Applied Surface Science, 2021, 536, 147794.	3.1	15
713	Structure, Preparation, and Applications of 2D Materialâ€Based Metal–Semiconductor Heterostructures. Small Structures, 2021, 2, 2000093.	6.9	71
714	Monolayer MoS2 epitaxy. Nano Research, 2021, 14, 1598-1608.	5.8	11
715	In Situ Characterization of Transformations in Nanoscale Layered Metal Chalcogenide Materials: A Review. ChemNanoMat, 2021, 7, 208-222.	1.5	6
716	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
717	Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 027901-027901.	0.2	5
718	Thermal Annealing Effects on Naturally Contacted Monolayer MoS 2. Physica Status Solidi (B): Basic Research, 2021, 258, 2000426.	0.7	1
719	Liquid metal intercalation of epitaxial graphene: Large-area gallenene layer fabrication through gallium self-propagation at ambient conditions. Physical Review Materials, 2021, 5, .	0.9	10
720	Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage. Journal of Alloys and Compounds, 2021, 857, 157626.	2.8	15
721	Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. Materials, 2021, 14, 1192.	1.3	48
722	Compostos à base de molibdênio para remediação ambiental: uma revisão. Research, Society and Development, 2021, 10, e12410313187.	0.0	0
723	Molybdenum sulfideâ€based supercapacitors: From synthetic, bibliometric, and qualitative perspectives. International Journal of Energy Research, 2021, 45, 12665-12692.	2.2	19
724	Toward Waferâ€Scale Production of 2D Transition Metal Chalcogenides. Advanced Electronic Materials, 2021, 7, 2100278.	2.6	16
725	Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Research, 2022, 15, 677-684.	5.8	30
726	Direct CVD growth of MoS2 on chemically and thermally reduced graphene oxide nanosheets for improved photoresponse. APL Materials, 2021, 9, .	2.2	6
727	MoS2/graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries. Chemical Engineering Journal, 2021, 412, 128736.	6.6	30
728	Tribological Properties of a Mesh-Like Nanostructured Diamond-Like Carbon (DLC) Lubricated with a Fully Formulated Oil at DLC/Steel Contacts under Boundary Lubrication. Coatings, 2021, 11, 746.	1.2	3
729	Approaching strain limit of two-dimensional MoS2 via chalcogenide substitution. Science Bulletin, 2022, 67, 45-53.	4.3	12

# 730	ARTICLE Twoâ€Dimensional Metal Chalcogenide Heterostructures: Designed Growth and Emerging Novel Applications. Advanced Materials Interfaces. 2021. 8, 2100515.	IF 1.9	CITATIONS 3
731	Narrow-bandgap materials for optoelectronics applications. Frontiers of Physics, 2022, 17, 1.	2.4	28
732	Preparation Engineering of Two-Dimensional Heterostructures <i>via</i> Bottom-Up Growth for Device Applications. ACS Nano, 2021, 15, 11040-11065.	7.3	22
733	Chemical Vapor Deposition Growth of 2D Transition Metal Dichalcogenides on 3D Substrates toward Electrocatalyticâ€Related Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100089.	2.8	7
734	Bi2O3/BiVO4@graphene oxide van der Waals heterostructures with enhanced photocatalytic activity toward oxygen generation. Journal of Colloid and Interface Science, 2021, 593, 196-203.	5.0	34
735	MoS ₂ based ternary composites: review on heterogeneous materials as catalyst for photocatalytic degradation. Catalysis Reviews - Science and Engineering, 2023, 65, 620-693.	5.7	28
736	Two-dimensional heterostructures and their device applications: progress, challenges and opportunities—review. Journal Physics D: Applied Physics, 2021, 54, 433001.	1.3	30
737	In Situ Scanning Transmission Electron Microscopy Study of MoS ₂ Formation on Graphene with a Deep-Learning Framework. ACS Omega, 2021, 6, 21623-21630.	1.6	6
738	Gateâ€Ðefined Quantum Confinement in CVD 2D WS ₂ . Advanced Materials, 2022, 34, e2103907.	11.1	18
739	Preparation and electronic structure of the WSe2/graphene/NiSex/Ni(111) heterostructure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 052201.	0.9	0
740	Insights into the reinforcibility and multifarious role of WS2 in polymer matrix. Journal of Alloys and Compounds, 2021, 876, 160107.	2.8	21
741	Recent progress in the synthesis of novel two-dimensional van der Waals materials. National Science Review, 2022, 9, nwab164.	4.6	50
742	Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells. Microchemical Journal, 2021, 169, 106583.	2.3	45
743	The synthesis and identification of complete stacking bilayer MoS2 flakes with unconventional shapes via chemical vapor deposition. Superlattices and Microstructures, 2021, 158, 107023.	1.4	5
744	Graphene nanoplatelets (GNPs)-templated synthesis of oriented TiB and the inspiration for tailoring three-dimensional (3D) interface structure in GNPs/Ti matrix composites. Materials Characterization, 2021, 181, 111447.	1.9	11
745	Two-dimensional quantum dots for highly efficient heterojunction solar cells. Journal of Colloid and Interface Science, 2021, 603, 48-57.	5.0	31
746	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
747	Deterministic synthesis of Cu9S5 flakes assisted by single-layer graphene arrays. Nanoscale Advances, 2021, 3, 1352-1361.	2.2	1

#	Article	IF	CITATIONS
748	Enhanced Reversible Sodiumâ€lon Intercalation by Synergistic Coupling of Few‣ayered MoS ₂ and Sâ€Doped Graphene. Advanced Functional Materials, 2017, 27, 1702562.	7.8	132
749	Optical Characterization, Low-Temperature Photoluminescence, and Photocarrier Dynamics in MoS2. Lecture Notes in Nanoscale Science and Technology, 2014, , 217-236.	0.4	7
750	Measurement of the Second-Order Nonlinear Susceptibility and Probing Symmetry Properties of Few-Layer MoS2 and h-BN by Optical Second-Harmonic Generation. Springer Theses, 2016, , 45-54.	0.0	1
751	Van der Waals epitaxy between the highly lattice mismatched Cu-doped FeSe and Bi2Te3. NPG Asia Materials, 2017, 9, e402-e402.	3.8	21
752	Synthetic Techniques and Functionalization Approaches of 2D Transition Metal Dichalcogenides. RSC Smart Materials, 2019, , 245-282.	0.1	2
753	Monolayer MoS ₂ on sapphire: an azimuthal reflection high-energy electron diffraction perspective. 2D Materials, 2021, 8, 025003.	2.0	26
754	Interactions between copper and transition metal dichalcogenides: A density functional theory study. Physical Review Materials, 2017, 1, .	0.9	7
755	Growth and structure of singly oriented single-layer tungsten disulfide on Au(111). Physical Review Materials, 2019, 3, .	0.9	18
756	Recent progress of two-dimensional layered molybdenum disulfide. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 018102.	0.2	6
757	Steering on Degrees of Freedom of 2D Van der Waals Heterostructures. Small Science, 2022, 2, 2100033.	5.8	13
758	MoTe2 quantum dots-based all-optical switching. Optics Communications, 2022, 506, 127573.	1.0	7
759	Printed Flexible Thin-Film Transistors. Springer Series in Materials Science, 2022, , 257-345.	0.4	1
762	Tunneling Transport Between Transition Metal Dichalcogenides. Springer Theses, 2017, , 49-64.	0.0	0
763	Low voltage scanning transmission electron microscopy for two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 217303.	0.2	0
765	Reliable and High Spatial Resolution Method to Identify the Number of MoS2 Layers Using a Scanning Electron Microscopy. Korean Journal of Materials Research, 2017, 27, 705-709.	0.1	3
766	Direct Synthesis of van der Waals Solids. Springer Theses, 2018, , 73-87.	0.0	0
767	Effect of substrate symmetry on the orientations of MoS ₂ monolayers. Nanotechnology, 2021, 32, 095601.	1.3	9
768	Anisotropic strain in epitaxial single-layer molybdenum disulfide on Ag(110). Nanoscale, 2021, 13, 18789-18798.	2.8	5

ARTICLE IF CITATIONS Controllable Synthesis of Two-dimensional Layered Transition Metal Chalcogenides and Their 770 0.1 0 Heterostructures. RSC Smart Materials, 2020, , 241-255. Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small 771 6.9 Structures, 2022, 3, 2100120. Heterostructures of two-dimensional transition metal dichalcogenides: Formation, ab initio 772 0.9 0 modelling and possible applications. Materials Today: Proceedings, 2021, , . Nano-foam architectures of polymer and graphene. , 2022, , 67-90. 774 Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices. Applied 775 3.1 16 Surface Science, 2022, 581, 151858. One-dimensional metallic grain boundary in transition metal dichalcogenides. Computational Materials Science, 2022, 203, 111115. 1.4 777 Synthesis, properties, and applications of MoS2 semiconductor., 2022, , 155-189. 2 Effect of growth temperature on the morphology control and optical behavior of monolayer MoS2 1.1 778 on SiO2 substrate. Journal of Materials Science: Materials in Electronics, 2022, 33, 9549-9557. Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial growth. Chemical Society 779 18.7 18 Reviews, 2022, 51, 803-811. Epitaxy of 2D Materials toward Single Crystals. Advanced Science, 2022, 9, e2105201. 5.6 24 Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chemical Society 781 18.7 45 Reviews, 2022, 51, 1253-1276. Plasmonic nanostructure integrated two-dimensional materials for optoelectronic devices. Journal 1.3 Physics D: Applied Physics, 2022, 55, 243001. Dry and hydrated defective molybdenum Disulfide/Graphene bilayer heterojunction under strain for hydrogen evolution from water Splitting: A First-principle study. Computational Materials Science, 783 1.4 4 2022, 205, 111234. Morphological Evolution of Monolayer MoS₂ Single-Crystalline Flakes. Journal of Physical Chemistry C, 2022, 126, 3549-3559. 784 1.5 van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates 785 7 7.6 for Optoelectronic Applications. Accounts of Chemical Research, 2022, 55, 673-684. Realization of electronic-grade two-dimensional transition metal dichalcogenides by thin-film deposition techniques. , 2022, , 159-193. Recent progress on Schottky sensors based on two-dimensional transition metal dichalcogenides. 788 5.238 Journal of Materials Chemistry A, 2022, 10, 8107-8128. 2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Advanced Photonics Research, 2022, 3, .

#	Article	IF	CITATIONS
790	Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. Small, 2022, 18, e2107059.	5.2	15
791	Exfoliation of MoS ₂ Nanosheets Enabled by a Redox-Potential-Matched Chemical Lithiation Reaction. Nano Letters, 2022, 22, 2956-2963.	4.5	35
792	Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Science and Technology of Advanced Materials, 2022, 23, 275-299.	2.8	32
793	Exploring the structural stability, electronic and thermal attributes of synthetic 2D materials and their heterostructures. Applied Surface Science, 2022, 590, 153131.	3.1	15
794	Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance. Applied Surface Science, 2022, 589, 152934.	3.1	19
795	Preparation of Double-Layer Crossed Silver Nanowire Film and Its Application to OLED. Coatings, 2022, 12, 26.	1.2	3
796	Valley-symmetry-broken magnetic topological responses in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo>(and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow. b,<br="" physical="" review="">2022, 105, .</mml:mrow.></mml:math></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math 	l:mo> <mr 1.1</mr 	nl:mi>Pt
798	Fabrication of devices featuring covalently linked MoS2–graphene heterostructures. Nature Chemistry, 2022, 14, 695-700.	6.6	23
799	Polymer/graphene nanofoam nanocomposites: Properties and potential. Journal of Plastic Film and Sheeting, 2022, 38, 542-561.	1.3	3
800	Unveiling the Electrocatalytic Activity of 1T′-MoSe ₂ on Lithium-Polysulfide Conversion Reactions. ACS Applied Materials & Interfaces, 2022, 14, 24486-24496.	4.0	11
802	Review—Recent Developments in the Applications of 2D Transition Metal Dichalcogenides as Electrocatalysts in the Generation of Hydrogen for Renewable Energy Conversion. Journal of the Electrochemical Society, 2022, 169, 064504.	1.3	19
803	The Role of Steps on Silver Nanoparticles in Electrocatalytic Oxygen Reduction. Catalysts, 2022, 12, 576.	1.6	9
805	Introduction to graphene-based materials and their composites. , 2022, , 1-47.		0
806	On-Site Synthesis and Characterizations of Atomically-Thin Nickel Tellurides with Versatile Stoichiometric Phases through Self-Intercalation. ACS Nano, 2022, 16, 11444-11454.	7.3	10
807	Experimental Realization and Computational Investigations of B ₂ S ₂ as a New 2D Material with Potential Applications. ACS Applied Materials & Interfaces, 2022, 14, 32330-32340.	4.0	8
808	Metal Hydroxide Salt Monolayer Nanoparticles: Synthesis, Redox Characterization, and Electrochemical Catalytic Performance. , 2022, 4, 1430-1435.		8
809	Directed synthesis of an unusual uniform trimetallic hydrogen evolution catalyst by a predesigned cobalt-bipy modified bivanadyl capped polymolybdate. Journal of Solid State Chemistry, 2022, 314, 123403.	1.4	3
810	Facile preparation of SnO2/MoS2 nanocomposites with high electrochemical performance for energy storage applications. Inorganic Chemistry Communication, 2022, 143, 109802.	1.8	8

#	Article	IF	Citations
811	Mechanisms of Quasi van der Waals Epitaxy of Three-Dimensional Metallic Nanoislands on Suspended Two-Dimensional Materials. Nano Letters, 2022, 22, 5849-5858.	4.5	15
812	In-situ Transmission Electron Microscopy Study of 2D Transition Metal Oxide Nanosheets Formation Inside the Liquid Sandwiched Between Graphene Layers. Microscopy and Microanalysis, 2022, 28, 1862-1863.	0.2	0
813	Construction Si–O–Mo bond via etching method: enhancing selective adsorption capacity of MoS2/montmorillonite to Pb2+. Materials Today Chemistry, 2022, 26, 101056.	1.7	4
814	CHAPTER 3. Synthesis of Two-dimensional Hybrid Materials, Unique Properties, and Challenges. , 2022, , 64-125.		0
815	Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nature Communications, 2022, 13, .	5.8	29
816	Formation and Characterization of Three-Dimensional Tetrahedral MoS ₂ Thin Films by Chemical Vapor Deposition. Crystal Growth and Design, 0, , .	1.4	3
817	Van der Waals heterostructures in ultrathin 2D solar cells: State-of-the-art review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115936.	1.7	7
818	Synthesis and characterization of in-situ MoS2-graphene hybrid nanostructured material. , 2022, , 122-127.		0
819	One-Step Epitaxial Growth of Multilayer MoS ₂ /SnS ₂ Vertical Nanosheets for High-Performance Photodetectors. ACS Applied Nano Materials, 2022, 5, 14978-14986.	2.4	1
820	Comparative study on the hydrogen storage performance of as-milled MgRENi rapid quenched alloy catalyzed by metal sulfides. Journal of Magnesium and Alloys, 2022, , .	5.5	3
821	Two-dimensional van der Waals heterostructures (vdWHs) with band alignment transformation in multi-functional devices. RSC Advances, 2022, 12, 31456-31465.	1.7	2
822	Recent progress on PEDOTâ€based wearable bioelectronics. View, 2022, 3, .	2.7	8
823	Directly growth of highly uniform MnS–MoS2 on carbon cloth for advanced H2 evolution electrocatalyst in different pH electrolytes. International Journal of Hydrogen Energy, 2022, 47, 40872-40880.	3.8	5
824	MX family: an efficient platform for topological spintronics based on Rashba and Zeeman-like spin splittings. Journal of Physics Condensed Matter, 2023, 35, 015001.	0.7	3
825	Interface characteristics of graphene/ZnS hybrid-dimensional heterostructures. Optics Express, 2022, 30, 42605.	1.7	1
826	Direct growth and properties of few-layer MoS2 on multilayer graphene prepared by chemical vapor deposition. Journal of Materials Science, 2022, 57, 19704-19715.	1.7	2
827	Recent Advances in Two-dimensional p-type Metal Chalcogenides: synthesis, doping strategies and applications. Journal Physics D: Applied Physics, 0, , .	1.3	0
828	A computational framework for guiding the MOCVD-growth of wafer-scale 2D materials. Npj Computational Materials, 2022, 8, .	3.5	7

#	Article	IF	CITATIONS
829	Recent progress in mid-infrared photodetection devices using 2D/nD (n=0, 1, 2, 3) heterostructures. Materials and Design, 2023, 225, 111446.	3.3	4
830	Graphene Barristors for De Novo Optoelectronics. Chemical Communications, 0, , .	2.2	1
831	Structural and electronic properties of the Te-Si(111) surface from first principles. Physical Review B, 2022, 106, .	1.1	1
832	Surface and Physical Properties Modifications of Electron Beam-Irradiated Monolayer MoS2-Au Heterointerface at Nanoscale. Journal of Electronic Materials, 0, , .	1.0	0
833	Growth Mechanism of Single-Domain Monolayer MoS ₂ Nanosheets on Au(111) Revealed by <i>In Situ</i> Microscopy: Implications for Optoelectronics Applications. ACS Applied Nano Materials, 2022, 5, 17702-17710.	2.4	2
834	Spin Coating Promotes the Epitaxial Growth of AgCN Microwires on 2D Materials. ACS Nano, 2022, 16, 20521-20532.	7.3	0
835	Recent progress of two-dimensional heterostructures for thermoelectric applications. Journal of Physics Condensed Matter, 2023, 35, 073001.	0.7	27
836	Two-Dimensional Nanomaterial-Templated Composites. Accounts of Chemical Research, 2022, 55, 3581-3593.	7.6	25
837	Enhancement in photocatalytic water splitting using van der Waals heterostructure materials based on penta-layers. Physical Chemistry Chemical Physics, 2023, 25, 3401-3412.	1.3	3
838	Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 2023, 156, 107273.	1.9	13
839	General Synthesis of 2D Magnetic Transition Metal Dihalides via Trihalide Reduction. ACS Nano, 2023, 17, 363-371.	7.3	10
840	Van der Waals Layer Transfer of 2D Materials for Monolithic 3D Electronic System Integration: Review and Outlook. ACS Nano, 2023, 17, 1831-1844.	7.3	22
841	Exploring 2D materials at surfaces through synchrotron-based core-level photoelectron spectroscopy. Surface Science Reports, 2023, 78, 100586.	3.8	1
842	Two Dimensional Heterostructures for Optoelectronics: Current Status and Future Perspective. Molecules, 2023, 28, 2275.	1.7	2
843	Oxygen-assisted growth of monolayer MoS2 films on graphene by chemical vapor deposition. Vacuum, 2023, 211, 111941.	1.6	0
844	Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano Energy, 2023, 108, 108228.	8.2	36
845	hBN-Layer-Promoted Heteroepitaxy in Reactively Sputter-Deposited MoS _{<i>x</i>â‰^2} (0001)/Al ₂ O ₃ (0001) Thin Films: Implications for Nanoelectronics. ACS Applied Nano Materials, 2023, 6, 2908-2916.	2.4	5
846	Bright and Efficient Lightâ€Emitting Devices Based on 2D Transition Metal Dichalcogenides. Advanced Materials, 2023, 35, .	11.1	10

		CITATION REPORT	
#	Article	IF	CITATIONS
847	Effects of surface defects on mechanical properties and fracture mechanism of gallium selenide/graphene heterostructure. Mechanics of Materials, 2023, 180, 104610.	1.7	0
848	Tailoring the Angular Mismatch in MoS ₂ Homobilayers through Deformation Fields. Small, 2023, 19, .	5.2	2