Evaluating competing hypotheses for the origin and dy

Earth Surface Processes and Landforms 37, 1337-1351 DOI: 10.1002/esp.3282

Citation Report

#	Article	IF	CITATIONS
1	Splitting rivers at their seams: bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38, 47-61.	1.2	204
2	Flow separation at the inner (convex) and outer (concave) banks of constantâ€width and widening openâ€channel bends. Earth Surface Processes and Landforms, 2013, 38, 696-716.	1.2	92
3	River bifurcations and avulsion. Earth Surface Processes and Landforms, 2013, 38, 317-318.	1.2	4
4	Network concepts to describe channel importance and change in multichannel systems: test results for the Jamuna River, Bangladesh. Earth Surface Processes and Landforms, 2014, 39, 766-778.	1.2	57
5	Multichannel rivers: their definition and classification. Earth Surface Processes and Landforms, 2014, 39, 26-37.	1.2	110
6	Reconstruction of anastomosing river course by means of geophysical and remote sensing surveys (the middle obra valley, western poland). Geografiska Annaler, Series A: Physical Geography, 2014, 96, 195-216.	0.6	11
7	Near-bed and surface flow division patterns in experimental river bifurcations. Water Resources Research, 2014, 50, 1506-1530.	1.7	40
8	Bifurcation instability and chute cutoff development in meandering gravel-bed rivers. Geomorphology, 2014, 213, 277-291.	1.1	87
9	Anastamosing channels in the lower Neches River valley, Texas. Earth Surface Processes and Landforms, 2014, 39, 1888-1899.	1.2	35
10	A unified framework for stability of channel bifurcations in gravel and sand fluvial systems. Geophysical Research Letters, 2015, 42, 7521-7536.	1.5	86
11	Is history of rivers important in restoration projects? The example of human impact on a lowland river valley (the Obra River, Poland). Geomorphology, 2015, 251, 50-63.	1.1	26
12	Water flow and sediment transport in a 90° channel diversion: an experimental study. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 253-263.	0.7	30
13	Can bed load transport drive varying depositional behaviour in river delta environments?. Sedimentary Geology, 2016, 345, 19-32.	1.0	24
14	Archimetrics: a quantitative tool to predict threeâ€dimensional meander belt sandbody heterogeneity. Depositional Record, 2016, 2, 22-46.	0.8	21
15	Morphodynamics of the erosional phase of crevasse-splay evolution and implications for river sediment diversion function. Geomorphology, 2016, 259, 12-29.	1.1	63
16	Upstream control of river anastomosis by sediment overloading, upper Columbia River, British Columbia, Canada. Sedimentology, 2017, 64, 1488-1510.	1.6	55
17	Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation. Science of the Total Environment, 2017, 609, 1544-1555.	3.9	38
18	The role of floodplain width and alluvial bar growth as a precursor for the formation of anabranching rivers. Geomorphology, 2017, 278, 78-90.	1.1	38

	CITATION RI	PORT	
#	Article	IF	CITATIONS
19	Tipping points in Texas rivers. Earth Surface Processes and Landforms, 2018, 43, 1768-1781.	1.2	6
20	Control of Delta Avulsion by Downstream Sediment Sinks. Journal of Geophysical Research F: Earth Surface, 2018, 123, 142-166.	1.0	30
21	A philosophy of rivers: Equilibrium states, channel evolution, teleomatic change and least action principle. Geomorphology, 2018, 302, 3-19.	1.1	60
22	The formation of an anabranching planform in a sandy floodplain by increased flows and sediment load. Earth Surface Processes and Landforms, 2018, 43, 623-638.	1.2	34
23	Electrical resistivity imaging of anastomosing river subsurface stratigraphy and possible controls of fluvial style change in a graben-like basin, Czech Republic. Geomorphology, 2018, 317, 139-156.	1.1	16
24	Flood energy dissipation in anabranching channels. River Research and Applications, 2018, 34, 709-720.	0.7	15
25	A characterization of side channel development. River Research and Applications, 2019, 35, 1597-1603.	0.7	8
26	Flow and Suspended Sediment Division at Two Highly Asymmetric Bifurcations in a River Delta: Implications for Channel Stability. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2358-2380.	1.0	19
27	Ecohydraulic modelling of anabranching rivers. River Research and Applications, 2019, 35, 353-364.	0.7	17
28	Model-based evaluation of restoration measures efficiency in the anastomosing section of the River Narew. Ecological Engineering, 2019, 130, 213-227.	1.6	4
29	Free and forced morphodynamics of river bifurcations. Earth Surface Processes and Landforms, 2019, 44, 973-987.	1.2	26
30	Explaining artificial side channel dynamics using data analysis and model calculations. Geomorphology, 2019, 327, 93-110.	1.1	16
31	The evolution and disappearance of "false delta―multi-channel systems in postglacial areas (Central) Tj ETQ	q0,0,0 rg 1.6	BT <u>/</u> Overlock
32	Natural levee evolution in vegetated fluvialâ€ŧidal environments. Earth Surface Processes and Landforms, 2020, 45, 3824-3841.	1.2	11
33	Chaos in a simple model of a delta network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27179-27187.	3.3	8
35	The Dynamics of Drainage Basins and Stream Networks. , 2020, , 15-46.		1
36	Sediment Dynamics at Global and Drainage-Basin Scales. , 2020, , 47-71.		0
37	Flow Dynamics in Rivers. , 2020, , 72-96.		0

	Сітаті	ION REPORT	
#	ARTICLE Sediment Transport Dynamics in Rivers. , 2020, , 97-133.	IF	CITATIONS
39	Magnitude-Frequency Concepts and the Dynamics of Channel-Forming Events. , 2020, , 134-163.		Ο
40	The Shaping of Channel Geometry. , 2020, , 164-185.		0
41	Channel Planform – Controls on Development and Change. , 2020, , 186-196.		3
42	The Dynamics of Meandering Rivers. , 2020, , 197-233.		0
43	The Dynamics of Braided Rivers. , 2020, , 234-251.		1
44	The Dynamics of Anabranching Rivers. , 2020, , 252-268.		0
45	The Dynamics of River Confluences. , 2020, , 269-293.		5
46	The Vertical Dimension of Rivers: Longitudinal Profiles, Profile Adjustments, and Step-Pool Morphology. , 2020, , 294-318.		2
47	The Dynamics of Floodplains. , 2020, , 319-342.		1
48	Human Impacts on River Dynamics. , 2020, , 343-368.		0
49	River Dynamics and Management. , 2020, , 369-403.		0
56	Morphodynamic Modeling of Alluvial Rivers and Floodplains. , 2021, , .		0
57	Coupled Morphodynamics of River Bifurcations and Confluences. Water Resources Research, 2021, 57, .	1.7	11
58	Morphodynamic Modeling of River-Dominated Deltas: A Review and Future Perspectives. , 2022, , 110-140).	2
59	Quantifying bankfull flow width using preserved bar clinoforms from fluvial strata. Geology, 2021, 49, 1038-1043.	2.0	8
60	Influences on Discharge Partitioning on a Large River Delta: Case Study of the Mississippiâ€Atchafalaya Diversion, 1926–1950. Water Resources Research, 2021, 57, e2020WR028090.	1.7	5
61	Effects of sediment grain size and channel slope on the stability of river bifurcations. Earth Surface Processes and Landforms, 2021, 46, 2004-2018.	1.2	8

#	Article	IF	CITATIONS
62	Anthropogenic Effects on the Contemporary Sediment Budget of the Lower Rhineâ€Meuse Delta Channel Network. Earth's Future, 2021, 9, e2020EF001869.	2.4	21
64	Fifty-year dynamics of the Lena River islands (Russia): Spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Science of the Total Environment, 2021, 783, 147020.	3.9	23
65	Granulometric characterization of sediments in the anastomosed system of the Apure river Venezuela. Journal of South American Earth Sciences, 2021, 109, 103274.	0.6	2
66	Rivers in reverse: Upstream-migrating dechannelization and flooding cause avulsions on fluvial fans. Geology, 2022, 50, 37-41.	2.0	9
67	Living landscapes: Muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surface Processes and Landforms, 2018, 43, 2948-2963.	1.2	82
69	Where Might the Hands-off Protection Strategy of Anastomosing Rivers Lead? A Case Study of Narew National Park. Polish Journal of Environmental Studies, 2018, 27, 2647-2658.	0.6	8
70	Modelling of climate change impact on flow conditions in the lowland anastomosing river. PeerJ, 2020, 8, e9275.	0.9	3
72	Conditions to Preserve the Sedimentary Record of Channel Planforms in Temperate Rivers of the Northern Hemisphere. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	1
73	Review and outlook of river morphology expression. Journal of Water and Climate Change, 2022, 13, 1725-1747.	1.2	6
74	Interplay of River and Tidal Forcings Promotes Loops in Coastal Channel Networks. Geophysical Research Letters, 2022, 49, .	1.5	11
75	Stability and Asymmetry of Tideâ€Influenced River Bifurcations. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	10
76	The evolution of meandering and anabranching rivers in postglacial and loess landscapes of Europe. Holocene, 0, , 095968362211317.	0.9	2
78	The influence of the development of dunes on the stability of bifurcations in sandâ€bed rivers. Earth Surface Processes and Landforms, 2023, 48, 1540-1556.	1.2	1