A Histone Acetyltransferase Regulates Active DNA Dem

Science 336, 1445-1448

DOI: 10.1126/science.1219416

Citation Report

#	Article	IF	CITATIONS
1	All Packed Up and Ready to Go. Science, 2012, 336, 1391-1392.	6.0	2
2	Active DNA Demethylation in Plant Companion Cells Reinforces Transposon Methylation in Gametes. Science, 2012, 337, 1360-1364.	6.0	445
3	Plant & Plant & Physiology Research Highlights. Plant and Cell Physiology, 2012, 53, 1985-1988.	1.5	1
4	Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation: Figure 1 Genes and Development, 2012, 26, 1769-1773.	2.7	16
5	Active DNA Demethylation in Plants and Animals. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 161-173.	2.0	114
6	Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11425-11430.	3.3	83
7	A permissive chromatin structure is adopted prior to site-specific DNA demethylation of developmentally expressed genes involved in macronuclear differentiation. Epigenetics and Chromatin, 2013, 6, 5.	1.8	9
8	Gene silencing in plants: A diversity of pathways. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1300-1308.	0.9	140
9	siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein and Cell, 2013, 4, 656-663.	4.8	31
10	Genomic Imprinting: Insights From Plants. Annual Review of Genetics, 2013, 47, 187-208.	3.2	150
11	Epigenetic regulation of memory formation and maintenance. Learning and Memory, 2013, 20, 61-74.	0.5	294
12	DNA methylation dynamics in health and disease. Nature Structural and Molecular Biology, 2013, 20, 274-281.	3.6	503
13	The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 2013, 153, 193-205.	13.5	914
14	The stochastic silencing phenotype of Arabidopsis <i>morc6</i> mutants reveals a role in efficient <scp>RNA</scp> êdirected <scp>DNA</scp> methylation . Plant Journal, 2013, 75, 836-846.	2.8	38
15	A Conversation across Generations: Soma-Germ Cell Crosstalk in Plants. Developmental Cell, 2013, 24, 215-225.	3.1	65
16	DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8290-8295.	3.3	158
17	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	1.5	58
18	Unexplored Potentials of Epigenetic Mechanisms of Plants and Animals–-Theoretical Considerations. Genetics & Epigenetics, 2013, 5, GEG.S11752.	2.5	7

#	ARTICLE	IF	CITATIONS
19	Involvement of Histone Modifications in Plant Abiotic Stress Responses. Journal of Integrative Plant Biology, 2013, 55, 892-901.	4.1	133
20	RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene <i>IBM1</i> Ibase Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15467-15472.	3.3	91
21	Chemical probes in plant epigenetics studies. Plant Signaling and Behavior, 2013, 8, e25364.	1.2	16
22	An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 2013, 23, 1043-1054.	5.7	167
24	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60.	1.3	52
25	The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics, 2014, 15, 698.	1.2	40
26	Inheritance of Trans Chromosomal Methylation patterns from <i>Arabidopsis</i> F1 hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2017-2022.	3.3	69
27	Identification and characterization of Argonaute gene family and meiosisâ€enriched Argonaute during sporogenesis in maize. Journal of Integrative Plant Biology, 2014, 56, 1042-1052.	4.1	44
28	Non-coding RNAs and DNA methylation in plants. National Science Review, 2014, 1, 219-229.	4.6	23
29	Differential Methylation during Maize Leaf Growth Targets Developmentally Regulated Genes Â. Plant Physiology, 2014, 164, 1350-1364.	2.3	84
30	<i>Arabidopsis</i> EDM2 promotes <i>IBM1</i> distal polyadenylation and regulates genome DNA methylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 527-532.	3.3	102
31	DNA methylation as a system of plant genomic immunity. Trends in Plant Science, 2014, 19, 320-326.	4.3	197
32	V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. Journal of General Virology, 2014, 95, 225-230.	1.3	95
33	Functional Genomics of Drought Tolerance in Bioenergy Crops. Critical Reviews in Plant Sciences, 2014, 33, 205-224.	2.7	25
34	Multiplexed Parallel Reaction Monitoring Targeting Histone Modifications on the QExactive Mass Spectrometer. Analytical Chemistry, 2014, 86, 5526-5534.	3.2	59
35	<i>REPRESSOR OF SILENCING5</i> Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2014, 26, 2660-2675.	3.1	42
36	Genomic Imprinting in Plants. Advances in Genetics, 2014, 86, 1-25.	0.8	6
37	Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis. Molecular Cell, 2014, 55, 361-371.	4.5	44

#	ARTICLE	IF	Citations
38	Arabidopsis VIM Proteins Regulate Epigenetic Silencing by Modulating DNA Methylation and Histone Modification in Cooperation with MET1. Molecular Plant, 2014, 7, 1470-1485.	3.9	56
39	The Role of the Epigenome in Gene Expression Control and the Epimark Changes in Response to the Environment. Critical Reviews in Plant Sciences, 2014, 33, 64-87.	2.7	31
41	Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nature Communications, 2014, 5, 4062.	5.8	90
42	The Histone Acetylase Activator Pentadecylidenemalonate 1b Rescues Proliferation and Differentiation in the Human Cardiac Mesenchymal Cells of Type 2 Diabetic Patients. Diabetes, 2014, 63, 2132-2147.	0.3	66
43	An Rrp6-like Protein Positively Regulates Noncoding RNA Levels and DNA Methylation in Arabidopsis. Molecular Cell, 2014, 54, 418-430.	4.5	45
44	Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets. Scientific Reports, 2015, 5, 17832.	1.6	8
45	The Role of DNA Methylation in Transposable Element Silencing and Genomic Imprinting. , 2015, , 13-29.		13
46	Methyl-CpG-Binding Domain Protein MBD7 Is Required for Active DNA Demethylation in Arabidopsis Â. Plant Physiology, 2015, 167, 905-914.	2.3	51
47	The Methyl-CpG-Binding Protein MBD7 Facilitates Active DNA Demethylation to Limit DNA Hyper-Methylation and Transcriptional Gene Silencing. Molecular Cell, 2015, 57, 971-983.	4.5	112
48	Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cellular and Molecular Life Sciences, 2015, 72, 1261-1273.	2.4	83
49	Regulatory link between DNA methylation and active demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3553-3557.	3.3	204
50	Epigenetic variation and environmental change: Fig. 1 Journal of Experimental Botany, 2015, 66, 3541-3548.	2.4	84
51	Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Molecular Biology Reports, 2015, 42, 35-42.	1.0	38
52	Regulation of Active DNA Demethylation by a Methyl-CpG-Binding Domain Protein in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1005210.	1.5	39
53	An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis. PLoS Genetics, 2015, 11, e1004905.	1.5	53
54	Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Frontiers in Plant Science, 2015, 6, 114.	1.7	367
55	What Do You Mean, "Epigenetic�. Genetics, 2015, 199, 887-896.	1.2	397
56	CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii. Plant Science, 2015, 240, 120-129.	1.7	11

#	Article	IF	Citations
57	Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation. International Journal of Molecular Sciences, 2016, 17, 938.	1.8	9
58	DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening. Frontiers in Plant Science, 2016, 7, 807.	1.7	106
59	Epigenetic Control of Defense Signaling and Priming in Plants. Frontiers in Plant Science, 2016, 7, 1201.	1.7	139
60	The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant Journal, 2016, 88, 361-374.	2.8	196
61	The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene <i>CAP-D3</i> . Plant Cell, 2016, 28, 1894-1909.	3.1	46
62	The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nature Communications, 2016, 7, 11715.	5.8	16
63	SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis. Molecular Plant, 2016, 9, 1156-1167.	3.9	36
64	Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL. Molecular Plant, 2016, 9, 1018-1027.	3.9	58
65	DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. Plant Cell, 2016, 28, 2043-2059.	3.1	16
66	DNA Methylation and Demethylation in Plant Immunity. Annual Review of Phytopathology, 2016, 54, 579-603.	3 . 5	129
68	Characterization of histone modifications associated with DNA damage repair genes upon exposure to gamma rays in Arabidopsis seedlings. Journal of Radiation Research, 2016, 57, 646-654.	0.8	13
69	DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. Advances in Experimental Medicine and Biology, 2016, 945, 321-341.	0.8	37
70	The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Scientific Reports, 2016, 6, 26443.	1.6	42
71	The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nature Plants, 2016, 2, 16169.	4.7	147
72	Arabidopsis HOOKLESS1 regulates responses to pathogens and abscisic acid through interaction with MED18 and acetylation of WRKY33 and ABI5 chromatin. Plant Cell, 2016, 28, tpc.00105.2016.	3.1	63
73	The dynamic changes of DNA methylation in primordial germ cell differentiation. Gene, 2016, 591, 305-312.	1.0	12
74	Structure and function of histone methylation-binding proteins in plants. Biochemical Journal, 2016, 473, 1663-1680.	1.7	23
75	Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Research, 2016, 26, 66-82.	5.7	95

#	ARTICLE	IF	CITATIONS
76	Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling and Behavior, 2016, 11, e1117723.	1.2	215
77	Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in <i>Arabidopsis thaliana</i> Journal of Experimental Botany, 2016, 67, 905-918.	2.4	20
78	Regulation of maintenance DNA methylation via histone ubiquitylation. Journal of Biochemistry, 2016, 159, 9-15.	0.9	26
79	Epigenetic Modifications and Plant Hormone Action. Molecular Plant, 2016, 9, 57-70.	3.9	146
80	The roles of cross-talk epigenetic patterns in <i>Arabidopsis thaliana</i> . Briefings in Functional Genomics, 2016, 15, 278-287.	1.3	31
81	Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4511-E4519.	3.3	342
82	Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Research, 2017, 45, 6375-6387.	6.5	22
83	Mimic Phosphorylation of a \hat{I}^2 C1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant. Journal of Virology, 2017, 91, .	1.5	51
84	Efficient Generation of diRNAs Requires Components in the Posttranscriptional Gene Silencing Pathway. Scientific Reports, 2017, 7, 301.	1.6	34
85	A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Research, 2017, 27, 226-240.	5.7	80
86	SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in <i>Arabidopsis</i> Nucleic Acids Research, 2017, 45, 181-197.	6.5	21
87	Transcriptome profiles of sunflower reveal the potential role of microsatellites in gene expression divergence. Molecular Ecology, 2018, 27, 1188-1199.	2.0	10
88	FACT complex is required for DNA demethylation at heterochromatin during reproduction in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4720-E4729.	3.3	54
89	Analysis of the DNA methylation patterns and transcriptional regulation of the NB-LRR-encoding gene family in Arabidopsis thaliana. Plant Molecular Biology, 2018, 96, 563-575.	2.0	25
90	Active DNA demethylation: mechanism and role in plant development. Plant Cell Reports, 2018, 37, 77-85.	2.8	70
91	Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19, 212.	3.8	147
92	DNA demethylase ROS1 negatively regulates the imprinting of <i>DOGL4</i> and seed dormancy in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9962-E9970.	3.3	46
93	APURINIC/APYRIMIDINIC ENDONUCLEASE2 and ZINC FINGER DNA 3′-PHOSPHOESTERASE Play Overlapping Roles in the Maintenance of Epigenome and Genome Stability. Plant Cell, 2018, 30, 1954-1970.	3.1	20

#	Article	IF	CITATIONS
94	Retrospective and perspective of plant epigenetics in China. Journal of Genetics and Genomics, 2018, 45, 621-638.	1.7	45
95	Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. Cell Discovery, 2018, 4, 55.	3.1	22
96	CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications, 2018, 9, 1967.	5.8	178
97	Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 2018, 19, 489-506.	16.1	1,145
98	RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SIDML2 in tomato fruit ripening. Genome Biology, 2019, 20, 156.	3.8	174
99	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	3.3	73
100	Active DNA Demethylation in Plants. International Journal of Molecular Sciences, 2019, 20, 4683.	1.8	44
101	ROS1-Dependent DNA Demethylation Is Required for ABA-Inducible <i>NIC3</i> Physiology, 2019, 179, 1810-1821.	2.3	46
102	EXPORTIN 1A prevents transgene silencing in <i>Arabidopsis</i> by modulating nucleoâ€eytoplasmic partitioning of HDA6. Journal of Integrative Plant Biology, 2019, 61, 1243-1254.	4.1	11
103	Peroxisomal \hat{I}^2 -oxidation regulates histone acetylation and DNA methylation in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10576-10585.	3.3	32
104	Analysis of DNA Methylation Patterns Associated with In Vitro Propagated Globe Artichoke Plants Using an EpiRADseq-Based Approach. Genes, 2019, 10, 263.	1.0	7
105	A group of SUVH methylâ€DNA binding proteins regulate expression of the DNA demethylase ROS1 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2019, 61, 110-119.	4.1	44
106	Epigenetic changes and photosynthetic plasticity in response to environment. Environmental and Experimental Botany, 2019, 159, 108-120.	2.0	7
107	A methylatedâ€DNAâ€binding complex required for plant development mediates transcriptional activation of promoter methylated genes. Journal of Integrative Plant Biology, 2019, 61, 120-139.	4.1	45
108	<scp>EFFECTOR OF TRANSCRIPTION</scp> factors are novel plantâ€specific regulators associated with genomic <scp>DNA</scp> methylation in Arabidopsis. New Phytologist, 2019, 221, 261-278.	3.5	20
109	The mechanism and function of active DNA demethylation in plants. Journal of Integrative Plant Biology, 2020, 62, 148-159.	4.1	82
110	Characterization and fine mapping of Arabidopsis RLL3, a locus required for DNA demethylation pathway. Molecular Genetics and Genomics, 2020, 295, 81-93.	1.0	4
111	DNA Methylation Readers in Plants. Journal of Molecular Biology, 2020, 432, 1706-1717.	2.0	18

#	ARTICLE	IF	Citations
112	H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. Plant Communications, 2020, 1, 100015.	3.6	40
113	SIZ1-Mediated SUMOylation ofÂROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in Arabidopsis. Molecular Plant, 2020, 13, 1816-1824.	3.9	20
114	DNA demethylase ROS1 prevents inheritable DREB1A/CBF3 repression by transgene-induced promoter methylation in the Arabidopsis ice1-1 mutant. Plant Molecular Biology, 2020, 104, 575-582.	2.0	7
115	DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nature Plants, 2020, 6, 983-995.	4.7	48
116	Methylation moulds microbiomes. Nature Plants, 2020, 6, 910-911.	4.7	3
117	DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation. Nature Plants, 2020, 6, 942-956.	4.7	52
118	Contiguous and stochastic CHH methylation patterns of plant DRM2 and CMT2 revealed by single-read methylome analysis. Genome Biology, 2020, 21, 194.	3.8	15
119	A hypothetical trivalent epigenetic code that affects the nature of human ESCs. PLoS ONE, 2020, 15, e0238742.	1.1	2
120	Genes Modulating the Increase in Sexuality in the Facultative Diplosporous Grass Eragrostis curvula under Water Stress Conditions. Genes, 2020, 11, 969.	1.0	13
121	lonizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. International Journal of Molecular Sciences, 2020, 21, 5993.	1.8	59
122	Molecular Mechanism Underlying Derepressed Male Production in Hexaploid Persimmon. Frontiers in Plant Science, 2020, 11, 567249.	1.7	8
123	Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nature Plants, 2020, 6, 661-674.	4.7	52
124	Impact of DNA Demethylases on the DNA Methylation and Transcription of Arabidopsis NLR Genes. Frontiers in Genetics, 2020, 11, 460.	1.1	11
125	Small RNA and DNA methylation in plants. , 2020, , 353-376.		2
126	Involvement of MEM1 in DNA demethylation in Arabidopsis. Plant Molecular Biology, 2020, 102, 307-322.	2.0	10
127	Histone H3K4 methyltransferases SDG25 and ATX1 maintain heatâ€stress gene expression during recovery in Arabidopsis. Plant Journal, 2021, 105, 1326-1338.	2.8	41
128	A novel protein complex that regulates active DNA demethylation in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2021, 63, 772-786.	4.1	16
129	Molecular regulatory mechanisms underlying the adaptability of polyploid plants. Biological Reviews, 2021, 96, 394-407.	4.7	16

#	Article	IF	Citations
130	Genome-wide analysis of long non-coding RNAs responsive to multiple nutrient stresses in Arabidopsis thaliana. Functional and Integrative Genomics, 2021, 21, 17-30.	1.4	14
131	The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. ELife, 2021, 10, .	2.8	62
133	Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 3314.	1.8	12
135	Regulation of DNA (de)Methylation Positively Impacts Seed Germination during Seed Development under Heat Stress. Genes, 2021, 12, 457.	1.0	18
137	Identification of a Putative DNA-Binding Protein in <i>Arabidopsis</i> That Acts as a Susceptibility Hub and Interacts With Multiple <i>Pseudomonas syringae</i> Effectors. Molecular Plant-Microbe Interactions, 2021, 34, 410-425.	1.4	3
138	Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. Frontiers in Plant Science, 2021, 12, 596236.	1.7	84
139	Differential Methylation Patterns in Apomictic vs. Sexual Genotypes of the Diplosporous Grass Eragrostis curvula. Plants, 2021, 10, 946.	1.6	6
141	Roles of IDM3 and SDJ1/2/3 in Establishment and/or Maintenance of DNA Methylation in Arabidopsis. Plant and Cell Physiology, 2021, 62, 1409-1422.	1.5	4
142	Biological role and mechanism of chromatin readers in plants. Current Opinion in Plant Biology, 2021, 61, 102008.	3.5	16
143	DNA methylation: from model plants to vegetable crops. Biochemical Society Transactions, 2021, 49, 1479-1487.	1.6	13
144	AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Research, 2021, 49, 9755-9767.	6.5	6
145	Genetic analysis implicates a molecular chaperone complex in regulating epigenetic silencing of methylated genomic regions. Journal of Integrative Plant Biology, 2021, 63, 1451-1461.	4.1	5
146	A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement. Environmental and Experimental Botany, 2021, 188, 104479.	2.0	25
147	A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. ELife, 2021, 10, .	2.8	20
148	Role of Chromatin Architecture in Plant Stress Responses: An Update. Frontiers in Plant Science, 2020, 11, 603380.	1.7	56
150	Protein Purification. Materials and Methods, 0, 2, .	0.0	6
151	Kits for RNA Extraction, Isolation, and Purification. Materials and Methods, 0, 2, .	0.0	4
152	PCR Machines. Materials and Methods, 0, 3, .	0.0	1

#	Article	lF	Citations
153	MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genetics, 2015, 11, e1005559.	1.5	43
154	The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. ELife, $2017, 6, .$	2.8	18
155	蛋白/è,½æ‡ç¾. 实验ææ−™å'Œæ−¹æ³•, 0, cn2, .	0.0	0
156	Purification de Protéine par chromatographie sur colonne. Materials and Methods, 0, fr2, .	0.0	0
157	å¦,何选择第二抗体. 实鳌ææ−™å'Œæ−¹æ³•, 0, cn2, .	0.0	0
158	柱å±,æžè›‹ç™½è΅çº¯åŒ−æ−¹æ³•å¦ä¹‹ç»¼è¿°.实验ææ−™å'Œæ−¹æ³•, 0, cn2, .	0.0	0
159	Tags peptidiques/protéiques. Materials and Methods, 0, fr2, .	0.0	0
160	Protein/Peptide Tags. Materials and Methods, 0, 2, .	0.0	0
161	Secondary Antibody Review. Materials and Methods, 0, 2, .	0.0	0
163	Current status and prospects of epigenetic information in sexual reproductive processes of plants. Journal of Plant Biotechnology, 2017, 44, 19-26.	0.1	0
169	DNA methylation in plants and its role in abiotic stress tolerance. , 2022, , 539-564.		0
170	Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes and Genetic Systems, 2021, 96, 217-228.	0.2	4
172	Geminiviruses employ host DNA glycosylases to subvert DNA methylation-mediated defense. Nature Communications, 2022, 13, 575.	5.8	24
173	ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. Horticulture Research, 2022, 9, .	2.9	17
174	FDDM1 and FDDM2, Two SGS3-like Proteins, Function as a Complex to Affect DNA Methylation in Arabidopsis. Genes, 2022, 13, 339.	1.0	0
175	Dynamic profiles of DNA methylation and the interaction with histone acetylation during fiber cell initiation of Gossypium hirsutum. Journal of Cotton Research, 2022, 5, .	1.0	2
192	The C-terminal domain of Arabidopsis ROS1 DNA demethylase interacts with histone H3 and is required for DNA binding and catalytic activity. DNA Repair, 2022, , 103341.	1.3	4
193	Recent Advances in DNA Methylation and Their Potential Breeding Applications in Plants. Horticulturae, 2022, 8, 562.	1.2	5

#	Article	IF	CITATIONS
194	Mechanistic basis for maintenance of CHG DNA methylation in plants. Nature Communications, 2022, 13 , .	5.8	9
195	Insights into the molecular mechanisms of CRISPR/Cas9-mediated gene targeting at multiple loci in Arabidopsis. Plant Physiology, 2022, 190, 2203-2216.	2.3	5
196	DNA methylation underpins the epigenomic landscape regulating genome transcription in Arabidopsis. Genome Biology, 2022, 23, .	3.8	20
197	Fine mapping and characterization of RLL6 locus required for anti-silencing of a transgene and DNA demethylation in Arabidopsisthaliana. Frontiers in Genetics, $0,13,.$	1.1	0
198	A new demethylase gene, <i>OsDML4,</i> is involved in high temperature-increased grain chalkiness in rice. Journal of Experimental Botany, 2022, 73, 7273-7284.	2.4	2
199	The H3K9me2â€binding protein AGDP3 limits DNA methylation and transcriptional gene silencing in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 2385-2395.	4.1	5
200	Interplay of phytohormones and epigenetic regulation: A recipe for plant development and plasticity. Journal of Integrative Plant Biology, 2023, 65, 381-398.	4.1	7
202	DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes. Journal of Integrative Plant Biology, 2022, 64, 2344-2360.	4.1	2
203	Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. Advances in Experimental Medicine and Biology, 2022, , 295-315.	0.8	0
204	<i>Arabidopsis</i> Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. Journal of Integrative Plant Biology, 2022, 64, 2438-2454.	4.1	5
205	Active DNA demethylation in plants: 20 years of discovery and beyond. Journal of Integrative Plant Biology, 2022, 64, 2217-2239.	4.1	6
206	Histone variants and modifications during abiotic stress response. Frontiers in Plant Science, 0, 13, .	1.7	9
207	Loss of linker histone H1 in the maternal genome influences DEMETER-mediated demethylation and affects the endosperm DNA methylation landscape. Frontiers in Plant Science, 0, 13 , .	1.7	2
208	Plantâ€specific histone deacetylases associate with <scp>ARGONAUTE4</scp> to promote heterochromatin stabilization and plant heat tolerance. New Phytologist, 0, , .	3.5	0
211	Linker histone H1 modulates defense priming and immunity in plants. Nucleic Acids Research, 2023, 51, 4252-4265.	6.5	8
212	Epigenetic Regulation During Plant Development and the Capacity for Epigenetic Memory. Annual Review of Plant Biology, 2023, 74, 87-109.	8.6	7