Vector Competence of<i>Aedes aegypti</i>and<i>Aedes for Dengue Virus in the Florida Keys

Journal of Medical Entomology 49, 942-946

DOI: 10.1603/me11293

Citation Report

#	Article	IF	CITATIONS
1	Colonized Aedes albopictus and its sexual performance in the wild: implications for SIT technology and containment. Parasites and Vectors, 2013, 6, 206.	2.5	24
2	Evaluation of a New Formulation of Permethrin Applied by Water-Based Thermal Fogger Against <i>Aedes albopictus</i> in Residential Communities in St. Augustine, Florida. Journal of the American Mosquito Control Association, 2013, 29, 49-53.	0.7	15
3	Vertical Transmission of Key West Dengue-1 Virus by <l>Aedes aegypti</l> and <l>Aedes albopictus</l> (Diptera: Culicidae) Mosquitoes From Florida. Journal of Medical Entomology, 2013, 50, 1291-1297.	1.8	60
4	Extrinsic Incubation Period of Dengue: Knowledge, Backlog, and Applications of Temperature Dependence. PLoS Neglected Tropical Diseases, 2013, 7, e2207.	3.0	133
5	Human to Mosquito Transmission of Dengue Viruses. Frontiers in Immunology, 2014, 5, 290.	4.8	119
6	Field Evaluations of Topical Arthropod Repellents in North, Central, and South America. Journal of Medical Entomology, 2014, 51, 980-988.	1.8	9
7	Dengue Pathogenesis: A Disease Driven by the Host Response. Science Progress, 2014, 97, 197-214.	1.9	34
8	Susceptibility of Florida <i>Aedes aegypti</i> and <i>Aedes albopictus</i> to dengue viruses from Puerto Rico. Journal of Vector Ecology, 2014, 39, 406-413.	1.0	25
9	Dengue Vectors, Human Activity, and Dengue Virus Transmission Potential in the Lower Rio Grande Valley, Texas, United States. Journal of Medical Entomology, 2014, 51, 1019-1028.	1.8	19
10	Oral susceptibility of <i>Aedes aegypti</i> (Diptera: Culicidae) from Senegal for dengue serotypes 1 and 3 viruses. Tropical Medicine and International Health, 2014, 19, 1355-1359.	2.3	16
11	Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasites and Vectors, 2014, 7, 252.	2.5	32
12	Aedes aegypti and Aedes albopictus Habitat Preferences in South Texas, USA. Environmental Health Insights, 2014, 8s2, EHI.S16004.	1.7	19
13	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	28.6	145
14	Comparative Susceptibility of <i> Aedes albopictus < /i > and <i> Aedes aegypti < /i > to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health. Journal of Infectious Diseases, 2015, 212, 1182-1190.</i></i>	4.0	63
15	The effect of photoperiod on life history and blood-feeding activity in <i>Aedes albopictus</i> Aedes aegypti(Diptera: Culicidae). Journal of Vector Ecology, 2015, 40, 164-171.	1.0	40
16	Role of Aedes aegypti and Aedes albopictus during the 2011 dengue fever epidemics in Hanoi, Vietnam. Asian Pacific Journal of Tropical Medicine, 2015, 8, 543-548.	0.8	12
17	Developing Exonâ€Primed Intronâ€Crossing (EPIC) markers for population genetic studies in three <i>Aedes</i> disease vectors. Insect Science, 2015, 22, 409-423.	3.0	5
18	Dengue and Chikungunya Coinfection – The Emergence of an Underestimated Threat. , 2016, , .		5

#	Article	IF	CITATIONS
19	Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 2016, 1-11.	1.9	9
20	Public Health Responses to and Challenges for the Control of Dengue Transmission in High-Income Countries: Four Case Studies. PLoS Neglected Tropical Diseases, 2016, 10, e0004943.	3.0	29
21	Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecology and Evolution, 2016, 6, 3001-3011.	1.9	75
22	Highly divergent dengue virus type 1 genotype sets a new distance record. Scientific Reports, 2016, 6, 22356.	3.3	49
23	Evaluation of DeltaGard® Ground Application Against <i>Aedes albopictus</i> i>in a Residential Area in St. Augustine, Florida. Journal of the American Mosquito Control Association, 2016, 32, 160-162.	0.7	2
24	Effects of photoperiod on population performance and sexually dimorphic responses in two major arbovirus mosquito vectors, Aedes albopictus and Aedes aegypti (Diptera: Culicidae). International Journal of Tropical Insect Science, 2016, 36, 177-187.	1.0	3
25	Aedes (Stegomyia) albopictus ' dynamics influenced by spatiotemporal characteristics in a Brazilian dengue-endemic risk city. Acta Tropica, 2016, 164, 431-437.	2.0	15
26	Effects of Blood Coagulate Removal Method on <i>Aedes albopictus</i> Chiptera: Culicidae) Life Table Characteristics and Vector Competence for Dengue Virus. Journal of Medical Entomology, 2016, 53, 39-47.	1.8	3
27	Evaluation of Pyriproxyfen Dissemination viaAedes albopictusFrom a Point-Source Larvicide Application in Northeast Florida. Journal of the American Mosquito Control Association, 2017, 33, 151-155.	0.7	11
28	Comparative account of energy reserves in four co-occurring mosquito species in Kolkata, India (Diptera: Culicidae). Polish Journal of Entomology, 2017, 86, 49-67.	0.4	1
29	Potential for sublethal insecticide exposure to impact vector competence of Aedes albopictus (Diptera: Culicidae) for dengue and Zika viruses. Research and Reports in Tropical Medicine, 2017, Volume 8, 53-57.	1.4	9
30	Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 829-837.	1.6	25
31	Parental and offspring larval diets interact to influence life-history traits and infection with dengue virus in <i>Aedes aegypti</i> . Royal Society Open Science, 2018, 5, 180539.	2.4	22
32	Differing epidemiological dynamics of Chikungunya virus in the Americas during the 2014-2015 epidemic. PLoS Neglected Tropical Diseases, 2018, 12, e0006670.	3.0	23
33	The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis. Parasites and Vectors, 2018, 11, 79.	2.5	18
34	Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution, 2019, 67, 191-209.	2.3	251
35	Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens, 2020, 9, 728.	2.8	12
36	Clean up your rain gutters!': mosquito control, responsibility, and blame following the 2009–2010 dengue fever outbreak in Key West, Florida. Geo Journal, 2022, 87, 1335-1347.	3.1	1

3

#	Article	IF	CITATIONS
37	An Investigation of Human–Mosquito Contact Using Surveys and Its Application in Assessing Dengue Viral Transmission Risk. Journal of Medical Entomology, 2020, 57, 1942-1954.	1.8	4
38	A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses?. Pathogens, 2020, 9, 266.	2.8	62
39	Vector Competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for Epizootic Hemorrhagic Disease Virus Serotype-2. Viruses, 2021, 13, 410.	3.3	13
41	Transmission Potential of Floridian Aedes aegypti Mosquitoes for Dengue Virus Serotype 4: Implications for Estimating Local Dengue Risk. MSphere, 2021, 6, e0027121.	2.9	8
42	Ecological niche modeling for predicting the potential geographical distribution of Aedes species (Diptera: Culicidae): A case study of Enugu State, Nigeria. Parasite Epidemiology and Control, 2021, 15, e00225.	1.8	8
44	Aedes albopictus. , 2016, , 63-65.		1
47	Vector Competence of Aedes albopictus Populations from the Northeastern United States for Chikungunya, Dengue, and Zika Viruses. American Journal of Tropical Medicine and Hygiene, 2020, , .	1.4	16
48	Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses, 2021, 13, 2232.	3.3	8
49	A molecular surveillance-guided vector control response to concurrent dengue and West Nile virus outbreaks in a COVID-19 hotspot of Florida. The Lancet Regional Health Americas, 2022, 11, 100231.	2.6	4
50	Dengue Infection Susceptibility of Five Aedes aegypti Populations from Manaus (Brazil) after Challenge with Virus Serotypes 1–4. Viruses, 2022, 14, 20.	3.3	3
51	Confirmed presence of aedes (rusticoidus) refiki Medschid, 1928 in a continental dry Mediterranean peri-urban environment in south-central Spain. BMC Zoology, 2022, 7, .	1.0	1
52	Experimental evaluation of a metofluthrin passive emanator against Aedes albopictus. PLoS ONE, 2022, 17, e0267278.	2.5	2
53	Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. Current Research in Parasitology and Vector-borne Diseases, 2023, 4, 100139.	1.9	0