Gut microbiota composition correlates with diet and he

Nature 488, 178-184 DOI: 10.1038/nature11319

Citation Report

#	Article	IF	CITATIONS
2	Hygiene and Other Early Childhood Influences on the Subsequent Function of the Immune System. Digestive Diseases, 2011, 29, 144-153.	1.9	49
3	Chapter 12: Human Microbiome Analysis. PLoS Computational Biology, 2012, 8, e1002808.	3.2	408
4	The microbiota link to irritable bowel syndrome. Gut Microbes, 2012, 3, 572-576.	9.8	102
5	Man and his spaceships. Mobile Genetic Elements, 2012, 2, 272-278.	1.8	5
6	Metabolic phenotyping in clinical and surgical environments. Nature, 2012, 491, 384-392.	27.8	450
7	Gut Microbiota Composition and Activity in Relation to Host Metabolic Phenotype and Disease Risk. Cell Metabolism, 2012, 16, 559-564.	16.2	438
8	Dietary and social modulation of gut microbiota in the elderly. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 563-564.	17.8	33
9	Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biology, 2012, 13, R101.	9.6	201
10	Exploring the genome sequence of Bifidobacterium bifidum S17 for potential players in host-microbe interactions. Symbiosis, 2012, 58, 191-200.	2.3	14
11	Impact majeur du microbiote digestif sur la santé du sujet âgé. Revue Francophone Des Laboratoires, 2012, 2012, 29.	0.0	0
12	Probiotics in Transition. Clinical Gastroenterology and Hepatology, 2012, 10, 1220-1224.	4.4	33
13	Microbiome: Cultural differences. Nature, 2012, 492, S14-S15.	27.8	14
14	Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 2012, 13, 701-712.	10.2	3,237
15	Categorization of the gut microbiota: enterotypes or gradients?. Nature Reviews Microbiology, 2012, 10, 591-592.	28.6	260
16	The human gut microbiome: the ghost in the machine. Future Microbiology, 2012, 7, 1235-1237.	2.0	11
17	Nous Sommes Tous des Bacteries: Implications for medicine, pharmacology and public health. Biochemical Pharmacology, 2012, 84, 1543-1550.	4.4	13
19	Immunosenescence and the gut microbiota: The role of probiotics and prebiotics. Nutrition and Aging (Amsterdam, Netherlands), 2012, 1, 167-180.	0.3	8
20	Diversified pattern of the human colorectal cancer microbiome. Gut Pathogens, 2013, 5, 2.	3.4	121

#	ARTICLE Omics technologies and the study of human ageing. Nature Reviews Genetics, 2013, 14, 601-607.	IF	CITATIONS
21		16.3	108
22	Lactobacilli and bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, The, 2013, 382, 1249-1257.	13.7	333
23	The Intestinal Microbiota in Chronic Liver Disease. Advances in Immunology, 2013, 117, 73-97.	2.2	48
24	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	5.1	62
25	Psychobiotics: A Novel Class of Psychotropic. Biological Psychiatry, 2013, 74, 720-726.	1.3	917
26	Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. ISME Journal, 2013, 7, 2116-2125.	9.8	194
27	Depression, antidepressant medications, and risk of Clostridium difficileinfection. BMC Medicine, 2013, 11, 121.	5.5	80
28	Meat Consumption, Diabetes, and Its Complications. Current Diabetes Reports, 2013, 13, 298-306.	4.2	185
29	Oral Colonization of Fungi. Current Fungal Infection Reports, 2013, 7, 152-159.	2.6	11
30	Functional profiling of the gut microbiome in disease-associated inflammation. Genome Medicine, 2013, 5, 65.	8.2	61
31	Two-stage microbial community experimental design. ISME Journal, 2013, 7, 2330-2339.	9.8	31
32	Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 2013, 1, 17.	11.1	256
33	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
34	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	27.8	1,485
35	Wealth management in the gut. Nature, 2013, 500, 538-539.	27.8	33
36	Dysbiosis—A consequence of Paneth cell dysfunction. Seminars in Immunology, 2013, 25, 334-341.	5.6	87
37	The gut microbiota and the liver. Pathophysiological and clinical implications. Journal of Hepatology, 2013, 58, 1020-1027.	3.7	119
38	The Neglected Spectrum of Diverticular-related Disorders. Clinical Gastroenterology and Hepatology, 2013, 11, 1620-1621.	4.4	3

TION

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
39	Colonic bacterial metabolites and human health. Current Opinion in Microbiology, 2013, 16, 246-254.	5.1	293
40	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	4.4	112
41	Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18360-18367.	7.1	574
42	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	4.1	174
43	Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: Is it due to synergies in probiotic mixtures or the specificity of single strains?. Anaerobe, 2013, 24, 60-65.	2.1	60
44	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	6.5	172
45	Age-dependent dysregulation of innate immunity. Nature Reviews Immunology, 2013, 13, 875-887.	22.7	847
46	Priority research questions for the UK food system. Food Security, 2013, 5, 617-636.	5.3	67
47	The Hologenome Concept: Human, Animal and Plant Microbiota. , 2013, , .		58
48	Understanding the interactions between bacteria in the human gut through metabolic modeling. Scientific Reports, 2013, 3, 2532.	3.3	224
49	Nutrition and the biology of human ageing: Bone health & osteoporosis / sarcopenia / immune deficiency. Journal of Nutrition, Health and Aging, 2013, 17, 712-716.	3.3	8
50	HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26.	11.1	184
51	The Intestinal Microbiota and Aging. World Review of Nutrition and Dietetics, 2013, , 25-31.	0.3	2
52	Human gut microbiota community structures in urban and rural populations in Russia. Nature Communications, 2013, 4, 2469.	12.8	233
53	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.6	384
54	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	2.9	70
55	Diet, the human gut microbiota, and IBD. Anaerobe, 2013, 24, 117-120.	2.1	105
56	Canonical Nlrp3 Inflammasome Links Systemic Low-Grade Inflammation to Functional Decline in Aging. Cell Metabolism, 2013, 18, 519-532.	16.2	494

#	Article	IF	CITATIONS
57	The gut microbiota and the liver: implications for clinical practice. Expert Review of Gastroenterology and Hepatology, 2013, 7, 723-732.	3.0	17
58	Nutrimetabonomics:Applications for Nutritional Sciences, with Specific Reference to Gut Microbial Interactions. Annual Review of Food Science and Technology, 2013, 4, 381-399.	9.9	45
59	The changing face of pathogen discovery and surveillance. Nature Reviews Microbiology, 2013, 11, 133-141.	28.6	145
60	The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagnostic Microbiology and Infectious Disease, 2013, 75, 245-251.	1.8	133
61	Next-generation sequencing technologies and their impact on microbial genomics. Briefings in Functional Genomics, 2013, 12, 440-453.	2.7	65
62	Therapeutic modulation of intestinal dysbiosis. Pharmacological Research, 2013, 69, 75-86.	7.1	142
63	The influence of diet on the gut microbiota. Pharmacological Research, 2013, 69, 52-60.	7.1	817
64	Biodiversity and functional genomics in the human microbiome. Trends in Genetics, 2013, 29, 51-58.	6.7	207
65	Waiting for the human intestinal Eukaryotome. ISME Journal, 2013, 7, 1253-1255.	9.8	64
66	Microbial endocrinology and nutrition: A perspective on new mechanisms by which diet can influence gut-to-brain communication. PharmaNutrition, 2013, 1, 35-39.	1.7	27
67	New food safety concerns associated with gut microbiota. Trends in Food Science and Technology, 2013, 34, 62-66.	15.1	8
68	Diet and Alternative Therapies in the Management of Stone Disease. Urologic Clinics of North America, 2013, 40, 31-46.	1.8	17
69	Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterology and Motility, 2013, 25, 4-15.	3.0	208
70	Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes, 2013, 4, 60-65.	9.8	108
71	Cellular changes in the enteric nervous system during ageing. Developmental Biology, 2013, 382, 344-355.	2.0	90
72	Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacological Research, 2013, 69, 11-20.	7.1	226
73	Malnutrition and microbiota—a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262.	17.8	15
74	Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects. Journal of Applied Microbiology, 2013, 114, 886-898.	3.1	43

		CITATION R	EPORT	
#	Article		IF	CITATIONS
75	Probiotics and prebiotics and health in ageing populations. Maturitas, 2013, 75, 44-50		2.4	157
76	Impact of <i>Bifidobacterium bifidum</i> MIMBb75 on mouse intestinal microorganism Microbiology Ecology, 2013, 85, 369-375.	s. FEMS	2.7	23
77	A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Communit Human Microbiome Datasets. PLoS Computational Biology, 2013, 9, e1002863.	y Structures in	3.2	446
78	The Hallmarks of Aging. Cell, 2013, 153, 1194-1217.		28.9	10,992
79	A Key to Understanding the Effects of Food Bioactives in Health, Gut Microbiota. Journ Agricultural and Food Chemistry, 2013, 61, 9755-9757.	al of	5.2	14
80	Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. Jour Antimicrobial Chemotherapy, 2013, 68, 214-221.	nal of	3.0	67
81	From molecules to dynamic biological communities. Biology and Philosophy, 2013, 28,	, 241-259.	1.4	12
82	Clinical trials for foods and supplements: Guidance for industry symposium report. Nut Bulletin, 2013, 38, 262-268.	rition	1.8	6
83	Challenges and Implications for Biomedical Research and Intervention Studies in Older Insights from the ELDERMET Study. Gerontology, 2013, 59, 114-121.	Populations:	2.8	21
84	Opportunities and challenges for gut microbiome studies in the Indian population. Mic 24.	robiome, 2013, 1,	11.1	51
85	<i>Escherichia coli</i> Sequence Type 131 Is a Dominant, Antimicrobial-Resistant Clona Associated with Healthcare and Elderly Hosts. Infection Control and Hospital Epidemio 361-369.		1.8	121
86	Introduction of Complementary Foods and the Relationship to Food Allergy. Pediatrics e1529-e1538.	, 2013, 132,	2.1	85
87	An Emerging Role for Metabolomics in Nutrition Science. Journal of Nutrigenetics and 2013, 6, 181-200.	Nutrigenomics,	1.3	71
89	Microbial â€~Old Friends', immunoregulation and stress resilience. Evolution, Medi Health, 2013, 2013, 46-64.	cine and Public	2.5	167
90	Comparison of Gut Microbiota between Sasang Constitutions. Evidence-based Comple Alternative Medicine, 2013, 2013, 1-9.	mentary and	1.2	11
91	2012 - That was the year that was. Age and Ageing, 2013, 42, 140-144.		1.6	6
92	The role of gut microbiota in nutritional status. Current Opinion in Clinical Nutrition ar Care, 2013, 16, 509-516.	id Metabolic	2.5	38
94	Stories of love and hate. Current Opinion in Gastroenterology, 2013, 29, 125-132.		2.3	35

#	Article	IF	CITATIONS
95	Metabolic endotoxaemia. Current Opinion in Lipidology, 2013, 24, 78-85.	2.7	70
96	The colonic microbiota in health and disease. Current Opinion in Gastroenterology, 2013, 29, 49-54.	2.3	81
97	Molecular signatures for the dynamic process of establishing intestinal host–microbial homeostasis. Current Opinion in Gastroenterology, 2013, 29, 621-627.	2.3	10
98	Nutrition, microbiomes, and intestinal inflammation. Current Opinion in Gastroenterology, 2013, 29, 603-607.	2.3	28
99	Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 2013, 23, 1715-1720.	5.5	151
100	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.8	65
101	Microbial Reprogramming Inhibits Western Diet-Associated Obesity. PLoS ONE, 2013, 8, e68596.	2.5	140
102	Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE, 2013, 8, e71108.	2.5	652
103	Metabolomics as a diagnostic tool in gastroenterology. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2013, 4, 97.	1.1	61
104	Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. American Journal of Clinical Nutrition, 2013, 98, 349-357.	4.7	91
105	Diet, Gut Enterotypes and Health: Is There a Link?. Nestle Nutrition Institute Workshop Series, 2013, 77, 65-73.	0.1	14
106	Microbial Composition of Human Appendices from Patients following Appendectomy. MBio, 2013, 4, .	4.1	114
107	Inflamm-ageing. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 14-20.	2.5	281
108	The interplay between the gut microbiota and the immune system in the mechanism of type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 265-270.	2.3	25
109	The Interplay Between Fiber and the Intestinal Microbiome in the Inflammatory Response. Advances in Nutrition, 2013, 4, 16-28.	6.4	146
110	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	5.9	413
111	Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Alimentary Pharmacology and Therapeutics, 2013, 38, 804-816.	3.7	112
112	Worms need microbes too: microbiota, health and aging in <i>Caenorhabditis elegans</i> . EMBO Molecular Medicine, 2013, 5, 1300-1310.	6.9	170

#	Article	IF	CITATIONS
113	Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. American Journal of Physiology - Renal Physiology, 2013, 305, G601-G610.	3.4	69
114	Commentary: synbiotics and gut microbiota in older people - a microbial guide to healthy ageing. Alimentary Pharmacology and Therapeutics, 2013, 38, 1141-1142.	3.7	10
115	Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microbial Biotechnology, 2013, 6, 335-340.	4.2	39
116	Microbiota and healthy ageing: observational and nutritional intervention studies. Microbial Biotechnology, 2013, 6, 326-334.	4.2	57
117	Segmented filamentous bacteria in human ileostomy samples after high-fiber intake. FEMS Microbiology Letters, 2013, 342, 24-29.	1.8	25
118	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	3.2	642
119	Influences of the Microbiome on the Early Origins of Allergic Asthma. Annals of the American Thoracic Society, 2013, 10, S165-S169.	3.2	17
120	What is health?. Microbial Biotechnology, 2013, 6, 341-348.	4.2	44
121	From biocontrol to cancer, probiotics and beyond. Bioengineered, 2013, 4, 185-190.	3.2	1
122	The role of the gastrointestinal microbiome in <i><i>Helicobacter pylori</i></i> pathogenesis. Gut Microbes, 2013, 4, 505-531.	9.8	178
123	Citizen microbiome. Nature Biotechnology, 2013, 31, 90-90.	17.5	6
124	Interactions of black tea polyphenols with human gut microbiota: implications for gut and cardiovascular health. American Journal of Clinical Nutrition, 2013, 98, 1631S-1641S.	4.7	86
125	Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. Journal of Medical Microbiology, 2013, 62, 457-466.	1.8	42
126	The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology, 2013, 218, R37-R47.	2.6	205
127	NOD2 prevents emergence of disease-predisposing microbiota. Gut Microbes, 2013, 4, 353-356.	9.8	10
129	Microbial biofilms and gastrointestinal diseases. Pathogens and Disease, 2013, 67, 25-38.	2.0	74
130	Relevance of Commensal Microbiota in the Treatment and Prevention of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2478-2489.	1.9	19
131	THE MICROBIOME: A MEDIATOR OF HUMAN WELLNESS. Technology and Innovation, 2013, 15, 5-15.	0.2	Ο

#	Article	IF	CITATIONS
132	Impact of Ethnicity, Geography, and Disease on the Microbiota in Health and Inflammatory Bowel Diseases, 2013, 19, 2906-2918.	1.9	79
133	Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 2013, 4, 15.	3.5	153
134	Gastrointestinal microorganisms in cats and dogs: a brief review. Archivos De Medicina Veterinaria, 2013, 45, 111-124.	0.2	12
135	Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE, 2013, 8, e66019.	2.5	641
136	Smell and Taste in Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e73454.	2.5	30
137	Macrophage Specific Caspase-1/11 Deficiency Protects against Cholesterol Crystallization and Hepatic Inflammation in Hyperlipidemic Mice. PLoS ONE, 2013, 8, e78792.	2.5	31
138	Depth-Dependent Differences in Community Structure of the Human Colonic Microbiota in Health. PLoS ONE, 2013, 8, e78835.	2.5	21
139	The Enterocyte-Associated Intestinal Microbiota of Breast-Fed Infants and Adults Responds Differently to a TNF-α-Mediated Pro-Inflammatory Stimulus. PLoS ONE, 2013, 8, e81762.	2.5	19
140	Functional Environmental Screening of a Metagenomic Library Identifies stlA; A Unique Salt Tolerance Locus from the Human Gut Microbiome. PLoS ONE, 2013, 8, e82985.	2.5	39
141	Comparison of the Bacterial Composition and Structure in Symptomatic and Asymptomatic Endodontic Infections Associated with Root-Filled Teeth Using Pyrosequencing. PLoS ONE, 2013, 8, e84960.	2.5	60
142	Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster. Frontiers in Cellular and Infection Microbiology, 2013, 3, 98.	3.9	69
143	Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging, 2013, 5, 902-912.	3.1	263
145	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e90731.	2.5	246
146	Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE, 2014, 9, e115142.	2.5	151
147	Culturable Bacterial Microbiota of the Stomach of <i>Helicobacter pylori</i> Positive and Negative Gastric Disease Patients. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	73
148	Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 147.	3.9	118
149	Archaea and the human gut: New beginning of an old story. World Journal of Gastroenterology, 2014, 20, 16062.	3.3	308
150	The Effects of Diet and the Microbiome on Reproduction and Longevity: A Comparative Review Across 5 Continents. Journal of Nutrition & Food Sciences, 2014, 05, .	1.0	19

#	Article	IF	CITATIONS
151	Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. Pathogens, 2014, 3, 187-210.	2.8	38
152	The Importance of Microbiota and Host Interactions Throughout Life. , 2014, , 489-511.		0
153	Metagenomics Health Claim: Are you Rich Enough in your Gut Micro biota?. Biology and Medicine (Aligarh), 2014, 07, .	0.3	0
154	Diversity: From Diet to Flora to Life. Global Advances in Health and Medicine, 2014, 3, 6-8.	1.6	2
155	Nonalcoholic fatty liver disease and aging: Epidemiology to management. World Journal of Gastroenterology, 2014, 20, 14185.	3.3	227
156	Tipping elements in the human intestinal ecosystem. Nature Communications, 2014, 5, 4344.	12.8	217
157	Metagenomics and novel gene discovery. Virulence, 2014, 5, 399-412.	4.4	103
158	Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 2014, 5, 3654.	12.8	1,067
159	The Loss of Topography in the Microbial Communities of the Upper Respiratory Tract in the Elderly. Annals of the American Thoracic Society, 2014, 11, 513-521.	3.2	163
160	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	9.8	105
161	The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine, 2014, 6, 263ra158.	12.4	1,589
162	Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?. Gut Microbes, 2014, 5, 74-82.	9.8	47
163	Reprograming of gut microbiome energy metabolism by the <i>FUT2</i> Crohn's disease risk polymorphism. ISME Journal, 2014, 8, 2193-2206.	9.8	182
164	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	3.3	64
165	Potential of fecal microbiota for earlyâ€stage detection of colorectal cancer. Molecular Systems Biology, 2014, 10, 766.	7.2	991
166	Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes, 2014, 5, 129-140.	9.8	22
167	Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. MBio, 2014, 5, e01548-14.	4.1	500
168	Metagenomic Data Utilization and Analysis (MEDUSA) and Construction of a Global Gut Microbial Gene Catalogue. PLoS Computational Biology, 2014, 10, e1003706.	3.2	55

		CITATION REPORT		
#	Article	IF	-	CITATIONS
169	Diet and the development of the human intestinal microbiome. Frontiers in Microbiology, 201	4, 5, 494. 3	.5	391
170	Variety more than quantity of fruit and vegetable intake varies by socioeconomic status and fi hardship. Findings from older adults in the EPIC cohort. Appetite, 2014, 83, 248-255.	nancial 3	.7	44
171	Hidden Diversity in Honey Bee Gut Symbionts Detected by Single-Cell Genomics. PLoS Genetic e1004596.	s, 2014, 10, 3	.5	131
172	The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to cou alterations. Frontiers in Genetics, 2014, 5, 406.	nteract 2	.3	124
173	Infectious Microecology. Advanced Topics in Science and Technology in China, 2014, , .	C	0.1	5
174	The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential. Ac Experimental Medicine and Biology, 2014, 817, 373-403.	vances in 1	.6	247
175	The effects of ageing on the onset and disappearance of unexplained abdominal pain: a popul study. Alimentary Pharmacology and Therapeutics, 2014, 39, 217-225.	ationâ€based 3	.7	9
176	Effect of a lowâ€flatulogenic diet in patients with flatulence and functional digestive sympton Neurogastroenterology and Motility, 2014, 26, 779-785.	IS. 3	.0	24
177	Genomics of ageing in twins. Proceedings of the Nutrition Society, 2014, 73, 526-531.	1	.0	4
178	Microbial shifts in the aging mouse gut. Microbiome, 2014, 2, 50.	1	1.1	354
179	Psychobiotics. Holistic Nursing Practice, 2014, 28, 329-333.	C).7	4
180	The gut microbiota and the metabolic health of the host. Current Opinion in Gastroenterology 30, 120-127.	, 2014, 2	.3	117
181	20 Things You Didn't Know About the Human Gut Microbiome. Journal of Cardiovascular № 2014, 29, 479-481.	lursing, 1	.1	12
182	Ageing, immunity and influenza: a role for probiotics?. Proceedings of the Nutrition Society, 20 309-317.	014, 73, 1	.0	35
183	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterolog 30, 189-195.	/, 2014, ₂	.3	74
184	Nutritional modulation of the metabonome. Current Opinion in Gastroenterology, 2014, 30, 1	96-207. 2	.3	19
185	The microbiota and helminths: sharing the same niche in the human host. Parasitology, 2014, 1255-1271.	141, 1	.5	88
186	Metagenomic analysis of organic matter degradation in methaneâ€rich Arctic Ocean sedimen Limnology and Oceanography, 2014, 59, 548-559.	ts. 3	.1	25

#	Article	IF	CITATIONS
187	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	3.5	250
188	Mycobacteria, Immunoregulation, and Autoimmunity. , 2014, , 1-26.		0
189	Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (<i>Molothrus ater</i>). PeerJ, 2014, 2, e321.	2.0	126
190	Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World Journal of Gastroenterology, 2014, 20, 908.	3.3	176
191	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	2.3	81
192	Diet, the Gut Microbiome and the Metabolome in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 73-82.	0.1	18
193	Antibiotics, Probiotics and Prebiotics in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 83-100.	0.1	28
194	Norovirus in healthcare settings. Current Opinion in Infectious Diseases, 2014, 27, 437-443.	3.1	50
195	The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women. Journal of Ethnopharmacology, 2014, 152, 532-539.	4.1	76
196	Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 2014, 38, 90-118.	8.6	174
197	Aging of the mammalian gastrointestinal tract: a complex organ system. Age, 2014, 36, 9603.	3.0	107
198	Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. Current Colorectal Cancer Reports, 2014, 10, 114-131.	0.5	5
199	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	2.8	204
200	The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2014, 2, 4.	11.1	607
201	Immune and genetic gardening of the intestinal microbiome. FEBS Letters, 2014, 588, 4102-4111.	2.8	47
202	Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet. Applied and Environmental Microbiology, 2014, 80, 1142-1149.	3.1	142
203	You are what you eat. Nature Biotechnology, 2014, 32, 243-245.	17.5	80
204	Cellular and molecular longevity pathways: the old and the new. Trends in Endocrinology and Metabolism, 2014, 25, 212-223.	7.1	12

			2
#		IF	CITATIONS
205	Rational identification of diet-derived postbiotics for improving intestinal microbiota function. Current Opinion in Biotechnology, 2014, 26, 85-90.	6.6	65
206	Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 256-266.	17.8	198
207	The future of skin metagenomics. Research in Microbiology, 2014, 165, 69-76.	2.1	23
208	The bacterial communities in plant phloemâ€sapâ€feeding insects. Molecular Ecology, 2014, 23, 1433-1444.	3.9	89
209	Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 2014, 146, 1449-1458.	1.3	386
210	Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease. Gastroenterology, 2014, 146, 1564-1572.	1.3	486
211	Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome. Beneficial Microbes, 2014, 5, 247-261.	2.4	37
212	4β-Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-κB signaling in diabetic mouse adipose tissue. International Journal of Obesity, 2014, 38, 1432-1439.	3.4	23
213	Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project's conceptual framework and design. Mechanisms of Ageing and Development, 2014, 136-137, 3-13.	4.6	131
214	Metagenomic insights into the human gut resistome and the forces that shape it. BioEssays, 2014, 36, 316-329.	2.5	76
215	The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 2014, 38, 996-1047.	8.6	923
216	Pharmacomicrobiomics: The Impact of Human Microbiome Variations on Systems Pharmacology and Personalized Therapeutics. OMICS A Journal of Integrative Biology, 2014, 18, 402-414.	2.0	122
217	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	1.0	33
218	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	2.2	361
219	Emerging roles of the microbiome in cancer. Carcinogenesis, 2014, 35, 249-255.	2.8	202
220	Gut microbiota modulation and implications for host health: Dietary strategies to influence the gut–brain axis. Innovative Food Science and Emerging Technologies, 2014, 22, 239-247.	5.6	50
221	Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease. Gastroenterology, 2014, 146, 46-62.	1.3	153
222	Symbiosis as a General Principle in Eukaryotic Evolution. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016113-a016113.	5.5	123

#	Article	IF	Citations
	Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach.		
223	Mechanisms of Ageing and Development, 2014, 136-137, 70-75.	4.6	72
224	Cognitive decline, dietary factors and gut–brain interactions. Mechanisms of Ageing and Development, 2014, 136-137, 59-69.	4.6	150
225	Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402.	2.3	371
226	PGRP-SC2 Promotes Gut Immune Homeostasis to Limit Commensal Dysbiosis and Extend Lifespan. Cell, 2014, 156, 109-122.	28.9	374
227	Impaired responses to gliadin and gut microbes of immune cells from mice with altered stress-related behavior and premature immune senescence. Journal of Neuroimmunology, 2014, 276, 47-57.	2.3	3
228	Diet-Microbiota-Health Interactions in Older Subjects: Implications for Healthy Aging. Interdisciplinary Topics in Gerontology, 2014, 40, 141-154.	3.6	27
229	NMR-based metabolomics: From sample preparation to applications in nutrition research. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 83, 42-49.	7.5	91
230	Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9768-9773.	7.1	126
231	Genomics of schizophrenia: time to consider the gut microbiome?. Molecular Psychiatry, 2014, 19, 1252-1257.	7.9	163
232	Utilizing "Omics―Tools to Study the Complex Gut Ecosystem. Advances in Experimental Medicine and Biology, 2014, 817, 25-38.	1.6	8
233	Archaebiotics. Gut Microbes, 2014, 5, 5-10.	9.8	201
234	Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips. Integrative Biology (United Kingdom), 2014, 6, 796-805.	1.3	47
235	The gut microbiota era marches on. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 647-649.	17.8	17
236	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	3.3	5
237	A longitudinal examination of anxiety disorders and physical health conditions in a nationally representative sample of U.S. older adults. Experimental Gerontology, 2014, 60, 46-56.	2.8	49
238	Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2014, 817, 319-356.	1.6	96
239	Microbial Determinants of Biochemical Individuality and Their Impact on Toxicology and Pharmacology. Cell Metabolism, 2014, 20, 761-768.	16.2	53
240	The microbial eukaryote <i>Blastocystis</i> is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology, 2014, 90, 326-330.	2.7	208

#	Article	IF	CITATIONS
241	Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 195-219.	1.6	321
242	Microbial genes, brain & behaviour–Âepigenetic regulation of the gut–brain axis. Genes, Brain and Behavior, 2014, 13, 69-86.	2.2	495
243	Minireview: Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology, 2014, 28, 1221-1238.	3.7	835
244	Understanding gut microbiota in elderly's health will enable intervention through probiotics. Beneficial Microbes, 2014, 5, 235-246.	2.4	65
245	Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	2.7	71
246	Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 585-597.	2.4	92
247	Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514, 181-186.	27.8	1,529
248	The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. Journal of Gastroenterology, 2014, 49, 785-798.	5.1	180
249	Gut Health in the era of the Human Gut Microbiota: from metaphor to biovalue. Medicine, Health Care and Philosophy, 2014, 17, 579-597.	1.8	9
250	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	1.6	59
251	Food and nutrient intake of Irish community-dwelling elderly subjects: Who is at nutritional risk?. Journal of Nutrition, Health and Aging, 2014, 18, 561-572.	3.3	61
252	Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models. Aging Clinical and Experimental Research, 2014, 26, 183-191.	2.9	65
253	Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Systems Biology, 2014, 8, 41.	3.0	88
254	454 pyrosequencing reveals changes in the faecal microbiota of adults consuming <i>Lactobacillus casei</i> Zhang. FEMS Microbiology Ecology, 2014, 88, 612-622.	2.7	64
255	The gut microbiota, dietary extremes and exercise. Gut, 2014, 63, 1838-1839.	12.1	41
256	Microbiota and neurodevelopmental windows: implications for brain disorders. Trends in Molecular Medicine, 2014, 20, 509-518.	6.7	852
257	The past 10 years of gastroenterology and hepatology—reflections and predictions. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 692-700.	17.8	2
258	Host–microbe interactions and spatial variation of cancer in the gut. Nature Reviews Cancer, 2014, 14, 511-512.	28.4	16

#	Article	IF	CITATIONS
259	An inÂvitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe, 2014, 27, 50-55.	2.1	58
260	Analyzing the Human Microbiome: A "How To―guide for Physicians. American Journal of Gastroenterology, 2014, 109, 983-993.	0.4	69
261	Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Research International, 2014, 63, 227-232.	6.2	38
262	The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clinical Nutrition, 2014, 33, 571-580.	5.0	52
263	Microbial â€~old friends', immunoregulation and socioeconomic status. Clinical and Experimental Immunology, 2014, 177, 1-12.	2.6	165
264	Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014, 63, 1913-1920.	12.1	987
265	Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 189-196.	5.7	192
266	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	9.8	489
267	Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014, 71, 183-203.	5.4	265
268	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	2.3	72
269	Microbiology: Microbiome science needs a healthy dose of scepticism. Nature, 2014, 512, 247-248.	27.8	172
270	Genetically identical co-housed pigs as models for dietary studies of gut microbiomes. Microbiome Science and Medicine, 2014, 1, .	0.3	3
271	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology. , 2014, , 171-218.		0
273	Impact of a Synbiotic Food on the Gut Microbial Ecology and Metabolic Profi les. , 2014, , 259-286.		0
275	Reviews and Perspectives. Canadian Journal of Psychiatry, 2014, 59, 1-2.	1.9	5
276	Microbial Reprogramming Inhibits Western Diet-Associated Obesity. , 2014, , 17-43.		0
277	Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study. British Journal of Nutrition, 2015, 114, 1226-1236.	2.3	78
278	Dietary Yeasts Reduce Inflammation in Central Nerve System via Microflora. Annals of Clinical and Translational Neurology, 2015, 2, 56-66.	3.7	41

#	Article	IF	CITATIONS
279	Quantitative analysis of commensal Escherichia coli populations reveals hostâ€specific enterotypes at the intraâ€species level. MicrobiologyOpen, 2015, 4, 604-615.	3.0	51
280	Integration of â€~omics' data in aging research: from biomarkers to systems biology. Aging Cell, 2015, 14, 933-944.	6.7	103
281	Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota. Microbiology and Immunology, 2015, 59, 643-652.	1.4	7
283	Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. British Journal of Nutrition, 2015, 114, 586-595.	2.3	235
284	Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Scientific Reports, 2015, 5, 16498.	3.3	153
285	Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Scientific Reports, 2015, 5, 16807.	3.3	44
286	Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science, 2015, 129, 515-527.	4.3	161
287	Identification of Reliable Components in Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS): a Data-Driven Approach across Metabolic Processes. Scientific Reports, 2015, 5, 15710.	3.3	48
288	Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Scientific Reports, 2015, 5, 16532.	3.3	277
289	Studying the Mammalian Intestinal Microbiome Using Animal Models. , 0, , 4.4.2-1-4.4.2-10.		1
290	In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit. Beneficial Microbes, 2015, 6, 829-839.	2.4	10
291	The association of hospital prevention processes and patient risk factors with the risk of <i>Clostridium difficile</i> infection: a population-based cohort study. BMJ Quality and Safety, 2015, 24, 435-443.	3.7	20
292	The impact of gut microbiota on brain and behaviour. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 552-558.	2.5	212
293	The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome, 2015, 3, 41.	11.1	81
294	The Tasmanian devil microbiome—implications for conservation and management. Microbiome, 2015, 3, 76.	11,1	114
295	Voluntary exercise protects against ulcerative colitis by upâ€regulating glucocorticoidâ€mediated <scp>PPAR</scp> â€ <i>γ</i> activity in the colon in mice. Acta Physiologica, 2015, 215, 24-36.	3.8	17
296	The intestinal microbiome and health. Current Opinion in Infectious Diseases, 2015, 28, 464-470.	3.1	136
297	A survey on the developmental intestinal microbiota research in <scp>C</scp> hina: The history, funding, and frontiers of gut bacteria. Journal of Digestive Diseases, 2015, 16, 421-430.	1.5	3

#	Article	IF	CITATIONS
298	Chemotherapyâ€driven dysbiosis in the intestinal microbiome. Alimentary Pharmacology and Therapeutics, 2015, 42, 515-528.	3.7	334
299	Colonic bacterial composition in Parkinson's disease. Movement Disorders, 2015, 30, 1351-1360.	3.9	932
300	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11
301	Anti-Inflammatory and Regenerative Potential of Probiotics to Combat Inflammatory Bowel Disease (IBD). Journal of Biotechnology & Biomaterials, 2015, 05, .	0.3	1
302	The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds. Gastroenterology Research and Practice, 2015, 2015, 1-6.	1.5	72
303	Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing. Healthcare (Switzerland), 2015, 3, 898-916.	2.0	67
304	U.S. Recreational Water Quality Criteria: A Vision for the Future. International Journal of Environmental Research and Public Health, 2015, 12, 7752-7776.	2.6	66
305	The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015, 7, 17-44.	4.1	1,108
306	Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine. Nutrients, 2015, 7, 45-73.	4.1	62
307	Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 2015, 9, 392.	3.7	757
308	Goals in Nutrition Science 2015–2020. Frontiers in Nutrition, 2015, 2, 26.	3.7	31
309	Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 2015, 6, 13858-13898.	1.8	195
310	Ablation of Tumor Necrosis Factor Is Associated with Decreased Inflammation and Alterations of the Microbiota in a Mouse Model of Inflammatory Bowel Disease. PLoS ONE, 2015, 10, e0119441.	2.5	56
311	Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett's Esophagus Cohort. PLoS ONE, 2015, 10, e0129055.	2.5	107
312	Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE, 2015, 10, e0137429.	2.5	609
313	Alterations of the Murine Gut Microbiome with Age and Allergic Airway Disease. Journal of Immunology Research, 2015, 2015, 1-8.	2.2	47
315	Review on microbiota and effectiveness of probiotics use in older. World Journal of Clinical Cases, 2015, 3, 156.	0.8	88
316	The Human Microbiome of Local Body Sites and Their Unique Biology. , 2015, , 11-18.		1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
317	Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 2	2015, 5, 8397.	3.3	221
318	Gastrointestinal microbiota, diet and brain functioning. Microbiology Australia, 2015, 3	86, 25.	0.4	0
319	Application of metagenomics in the human gut microbiome. World Journal of Gastroer 21, 803.	iterology, 2015,	3.3	292
321	Development and Application of a Blastocystis Subtype-Specific PCR Assay Reveals tha Infections Are Common in a Healthy Human Population. Applied and Environmental Mi 81, 4071-4076.		3.1	50
322	Composition and function of the undernourished neonatal mouse intestinal microbiom Nutritional Biochemistry, 2015, 26, 1050-1057.	ie. Journal of	4.2	75
323	Colon Cancer Prevention through Probiotics: An Overview. Journal of Cancer Science & 07, .	Therapy, 2015,	1.7	15
324	The composition of the gut microbiota throughout life, with an emphasis on early life. I Ecology in Health and Disease, 2015, 26, 26050.	Microbial	3.5	766
325	Prebiotics, gut microbiota and metabolic risks: Unveiling the relationship. Journal of Fu Foods, 2015, 17, 189-201.	nctional	3.4	54
326	Physiological mechanisms by which non-nutritive sweeteners may impact body weight Physiology and Behavior, 2015, 152, 381-388.	and metabolism.	2.1	98
327	A Cluster-Randomized Controlled Trial of a Multicomponent Intervention Protocol for F Prevention Among Nursing Home Elders. Clinical Infectious Diseases, 2015, 60, 849-85	Pneumonia 57.	5.8	54
328	The Mucosal Microbiome. , 2015, , 63-77.			2
329	Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatri 2015, 63, 1-9.	c Research,	3.1	410
330	The Epigenome and Aging. Molecular and Integrative Toxicology, 2015, , 155-195.		0.5	0
331	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and The 42, 158-179.	rapeutics, 2015,	3.7	430
332	The role of the microbiota in ageing: current state and perspectives. Wiley Interdiscipli Systems Biology and Medicine, 2015, 7, 131-138.	nary Reviews:	6.6	14
334	Interindividual differences in response to treatment with butyrate-producing Butyricicc pullicaecorum 25–3T studied in an in vitro gut model. FEMS Microbiology Ecology, 2	occus 015, 91, .	2.7	50
335	Intestinal Absorption and Metabolism of Epimedium Flavonoids in Osteoporosis Rats. I and Disposition, 2015, 43, 1590-1600.	Drug Metabolism	3.3	40
336	Gut microbiota and aging. Science, 2015, 350, 1214-1215.		12.6	801

\sim		<u>_</u>	
		Repo	DT
\sim	паг	KLPU	ALC L

#	Article	IF	CITATIONS
337	Age-associated changes of the intestinal epithelial barrier: local and systemic implications. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1467-1469.	3.0	49
338	SCFA Producing Gut Microbiota and its Effects on the Epigenetic Regulation of Inflammation. Microbiology Monographs, 2015, , 181-197.	0.6	3
339	Repurposing metformin: an old drug with new tricks in its binding pockets. Biochemical Journal, 2015, 471, 307-322.	3.7	224
340	Molecular characterisation of ABC-type multidrug efflux systems in Bifidobacterium longum. Anaerobe, 2015, 32, 63-69.	2.1	6
341	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	1.3	466
342	Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides, 2015, 64, 40-48.	2.4	98
343	Diet strongly influences the gut microbiota of surgeonfishes. Molecular Ecology, 2015, 24, 656-672.	3.9	194
344	Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Critical Reviews in Microbiology, 2015, 41, 326-340.	6.1	97
345	Stability of Gut Enterotypes in Korean Monozygotic Twins and Their Association with Biomarkers and Diet. Scientific Reports, 2014, 4, 7348.	3.3	124
346	Immunoprotective Effects of Probiotics in the Elderly. , 2015, , 363-372.		6
347	Metabolomic Analysis of Human Fecal Microbiota: A Comparison of Feces-Derived Communities and Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482.	3.7	66
347 348		3.7 4.2	66 6
	Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482. Human microbiota: †The philosophers have only interpreted the world in various ways. The point,		
348	 Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482. Human microbiota: †The philosophers have only interpreted the world in various ways. The point, however, is to change it'. Microbial Biotechnology, 2015, 8, 11-12. Dietary glycaemic load associated with cognitive performance in elderly subjects. European Journal of 	4.2	6
348 349	 Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482. Human microbiota: †The philosophers have only interpreted the world in various ways. The point, however, is to change it†M. Microbial Biotechnology, 2015, 8, 11-12. Dietary glycaemic load associated with cognitive performance in elderly subjects. European Journal of Nutrition, 2015, 54, 557-568. Exploring the physiology and pathology of aging in the intestine of <i>Drosophila melanogaster </i> 	4.2 3.9	6 22
348 349 350	 Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482. Human microbiota: †The philosophers have only interpreted the world in various ways. The point, however, is to change it†M. Microbial Biotechnology, 2015, 8, 11-12. Dietary glycaemic load associated with cognitive performance in elderly subjects. European Journal of Nutrition, 2015, 54, 557-568. Exploring the physiology and pathology of aging in the intestine of <i>Drosophila melanogaster </i> Invertebrate Reproduction and Development, 2015, 59, 51-58. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. 	4.2 3.9 0.8	6 22 33
348 349 350 351	Defined Mixed Communities. Journal of Proteome Research, 2015, 14, 1472-1482. Human microbiota: †The philosophers have only interpreted the world in various ways. The point, however, is to change it'. Microbial Biotechnology, 2015, 8, 11-12. Dietary glycaemic load associated with cognitive performance in elderly subjects. European Journal of Nutrition, 2015, 54, 557-568. Exploring the physiology and pathology of aging in the intestine of <i>Drosophila melanogaster </i> Invertebrate Reproduction and Development, 2015, 59, 51-58. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annual Review of Medicine, 2015, 66, 343-359. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of	4.2 3.9 0.8 12.2	6 22 33 350

#	Article	IF	CITATIONS
355	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology, 2015, , .	0.5	5
356	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	1.3	278
357	Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut, 2015, 64, 1553-1561.	12.1	226
358	Nutritional Epidemiology—There's Life in the Old Dog Yet!. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 323-330.	2.5	7
359	Hurrah for the increasing longevity: feasible strategies to counteract ageâ€related loss of skeletal muscle mass. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 1-2.	2.9	75
360	Neurogenic mechanisms in bladder and bowel ageing. Biogerontology, 2015, 16, 265-284.	3.9	20
361	Improving the bowel habits of elderly residents in a nursing home using probiotic fermented milk. Beneficial Microbes, 2015, 6, 397-403.	2.4	23
362	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	3.5	580
363	Mechanisms of Molecular Mimicry Involving the Microbiota in Neurodegeneration. Journal of Alzheimer's Disease, 2015, 45, 349-362.	2.6	259
364	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	2.3	350
365	Human gut microbiota: does diet matter?. Proceedings of the Nutrition Society, 2015, 74, 23-36.	1.0	112
366	Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling. PLoS ONE, 2015, 10, e0128669.	2.5	78
367	Kiwifruit fermentation drives positive gut microbial and metabolic changes irrespective of initial microbiota composition. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 37-45.	2.7	18
368	Social behavior and the microbiome. Current Opinion in Behavioral Sciences, 2015, 6, 28-34.	3.9	148
369	Personalized medicine going precise: from genomics to microbiomics. Trends in Molecular Medicine, 2015, 21, 461-462.	6.7	39
370	Metagenomics of the human intestinal tract: from who is there to what is done there. Current Opinion in Food Science, 2015, 4, 64-68.	8.0	12
371	The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews, 2015, 73, 359-375.	5.8	30
372	Foodomics for personalized nutrition: how far are we?. Current Opinion in Food Science, 2015, 4, 129-135.	8.0	12

#	Article	IF	CITATIONS
373	Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2015, 2, 968-984.	6.1	306
374	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	4.6	180
375	Aging and the human gut microbiotaââ,¬â€from correlation to causality. Frontiers in Microbiology, 2014, 5, 764.	3.5	122
376	Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting. PLoS Computational Biology, 2015, 11, e1004186.	3.2	24
377	Functional Dynamics of the Gut Microbiome in Elderly People during Probiotic Consumption. MBio, 2015, 6, .	4.1	126
378	Probiotics. Disease-a-Month, 2015, 61, 259-290.	1.1	33
379	Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. International Journal of Food Microbiology, 2015, 203, 109-121.	4.7	63
380	Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Frontiers in Microbiology, 2015, 6, 130.	3.5	152
382	Bacterial rose garden for metagenomic SNP-based phylogeny visualization. BioData Mining, 2015, 8, 10.	4.0	1
383	Could enteral nutrition improve the outcome of patients with haematological malignancies undergoing allogeneic haematopoietic stem cell transplantation? A study protocol for a randomized controlled trial (the NEPHA study). Trials, 2015, 16, 136.	1.6	28
384	Separating the microbiome from the hyperbolome. Genome Medicine, 2015, 7, 17.	8.2	12
385	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	8.2	92
386	Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Current Biology, 2015, 25, 1682-1693.	3.9	342
387	Aging and the microbiome: implications for asthma in the elderly?. Expert Review of Respiratory Medicine, 2015, 9, 125-128.	2.5	27
388	Mongolians core gut microbiota and its correlation with seasonal dietary changes. Scientific Reports, 2014, 4, 5001.	3.3	126
389	Red Wine Consumption Is Associated with Fecal Microbiota and Malondialdehyde in a Human Population. Journal of the American College of Nutrition, 2015, 34, 135-141.	1.8	26
390	Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574.	4.1	220
391	Inflammaging and Cancer: A Challenge for the Mediterranean Diet. Nutrients, 2015, 7, 2589-2621.	4.1	160

#	Article	IF	CITATIONS
392	Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 2015, 73, 376-385.	5.8	119
393	Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes, 2015, 6, 149-155.	9.8	152
394	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	1.9	112
395	Too Early to Determine Whether Fecal Microbiota Transplant has Therapeutic Promise for Ulcerative Colitis?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 3-3.	1.8	2
396	Fecal Microbiota Transplantation for Recurrent <i>Clostridium difficile</i> Infection in Pediatric Patients. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 1-3.	1.8	16
397	Reâ€CYCLing Rotavirus. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 1-1.	1.8	3
398	The gut microbiome and diet in psychiatry. Current Opinion in Psychiatry, 2015, 28, 1-6.	6.3	301
399	Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 2015, 23, 354-366.	7.7	474
400	Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307.	1.8	252
401	Exercise and the microbiota. Gut Microbes, 2015, 6, 131-136.	9.8	127
402	Novel Microbiome-Based Therapeutics for Chronic Rhinosinusitis. Current Allergy and Asthma Reports, 2015, 15, 504.	5.3	36
403	The microbiota in inflammatory bowel disease. Journal of Gastroenterology, 2015, 50, 495-507.	5.1	196
404	Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clinical Therapeutics, 2015, 37, 954-967.	2.5	163
405	Prebiotic effects of cocoa fibre on rats. Journal of Functional Foods, 2015, 19, 341-352.	3.4	29
406	Improving healthspan via changes in gut microbiota and fermentation. Age, 2015, 37, 98.	3.0	33
407	Oxidative Stress in the Aging Process: Fundamental Aspects and New Insights. ACS Symposium Series, 2015, , 177-219.	0.5	6
408	Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan. Journal of Nutrition, 2015, 145, 2789-2796.	2.9	47

		CITATION REPO	ORT	
#	ARTICLE		IF	CITATIONS
410	Microbiota of the indoor environment: a meta-analysis. Microbiome, 2015, 3, 49.		11.1	216
411	Delirium and other clinical factors with Clostridium difficile infection that predict mortality in hospitalized patients. American Journal of Infection Control, 2015, 43, 690-693.		2.3	21
412	Frailty and the Microbiome. Interdisciplinary Topics in Gerontology and Geriatrics, 2015, 41, 54-65.	:	2.6	12
413	The Microbiota and Microbiome in Aging: Potential Implications in Health and Ageâ€Related Disease Journal of the American Geriatrics Society, 2015, 63, 776-781.	S.	2.6	224
414	The metabolic role of the microbiota. Clinical Liver Disease, 2015, 5, 91-93.	:	2.1	2
415	The Gut Microbiota and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2015, 35, 262-2	69.	3.6	38
416	Gut Microbiome. Nutrition in Clinical Practice, 2015, 30, 734-746.	:	2.4	264
417	Effectiveness of probiotics for preventing infections in the elderly: Systematic review and metaâ€analysis – study protocol. Nutrition Bulletin, 2015, 40, 158-165.		1.8	1
418	Senior orienteering athletes as a model of healthy aging: a mixed-method approach. BMC Geriatrics, 2015, 15, 76.	:	2.7	15
419	Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutrition in Clinical Practice, 2015, 30 787-797.		2.4	187
420	The Microbiome and Osteosarcopenic Obesity in Older Individuals in Long-Term Care Facilities. Current Osteoporosis Reports, 2015, 13, 358-362.	:	3.6	32
421	Decompensated cirrhosis and microbiome interpretation. Nature, 2015, 525, E1-E2.		27.8	90
422	Qin et al. reply. Nature, 2015, 525, E2-E3.	:	27.8	3
423	Intestinal Microbiota in Animal Models of Inflammatory Diseases. ILAR Journal, 2015, 56, 179-191.		1.8	40
424	Manipulating the Gut Microbiota: Methods and Challenges: FigureÂ1. ILAR Journal, 2015, 56, 205-2	17.	1.8	114
425	Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality. Cell Reports, 2015, 12, 1656-1667.		6.4	382
426	COLLaboration on AGEing-COLLAGE: Ireland's three star reference site for the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA). European Geriatric Medicine, 2015, 6, 505-5	511.	2.8	16
427	Whole Plant Foods and Colon Cancer Risk. , 2015, , 195-207.			0

C		DERCET
	ION	Report
		ICLI OICI

#	Article	IF	CITATIONS
428	Probiotic Microorganisms for Shaping the Human Gut Microbiota – Mechanisms and Efficacy into the Future. , 2015, , 27-40.		1
429	Fiber man meets microbial man. American Journal of Clinical Nutrition, 2015, 101, 1-2.	4.7	26
430	The "psychomicrobiotic†Targeting microbiota in major psychiatric disorders: A systematic review. Pathologie Et Biologie, 2015, 63, 35-42.	2.2	158
431	Treatment of IBD: Where We Are and Where We Are Going. American Journal of Gastroenterology, 2015, 110, 114-126.	0.4	176
432	Adding fuel to the fire: the impact of stress on the ageing brain. Trends in Neurosciences, 2015, 38, 13-25.	8.6	107
433	MECHANISMS IN ENDOCRINOLOGY: Gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172, R167-R177.	3.7	183
434	The human microbiota associated with overall health. Critical Reviews in Biotechnology, 2015, 35, 129-140.	9.0	20
435	Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Research, 2015, 1617, 47-62.	2.2	78
436	Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical and Experimental Immunology, 2015, 179, 363-377.	2.6	218
437	Not all parasites are protective. Parasite Immunology, 2015, 37, 324-332.	1.5	22
437 438	Not all parasites are protective. Parasite Immunology, 2015, 37, 324-332. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48.	1.5 2.2	22 1,320
	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research,		
438	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48.	2.2	1,320
438 439	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48. Phylogenetics and the Human Microbiome. Systematic Biology, 2015, 64, e26-e41. Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial	2.2 5.6	1,320 36
438 439 440	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48. Phylogenetics and the Human Microbiome. Systematic Biology, 2015, 64, e26-e41. Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial Microbes, 2015, 6, 61-81.	2.2 5.6 2.4	1,320 36 28
438 439 440 441	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48. Phylogenetics and the Human Microbiome. Systematic Biology, 2015, 64, e26-e41. Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial Microbes, 2015, 6, 61-81. Aging and the mucosal immune system in the intestine. Biogerontology, 2015, 16, 133-145. Can Proton Pump Inhibitors Increase Incidence of Nonsteroidal Anti-inflammatory Drug-induced Small	2.2 5.6 2.4 3.9	1,320 36 28 76
438 439 440 441 443	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48. Phylogenetics and the Human Microbiome. Systematic Biology, 2015, 64, e26-e41. Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial Microbes, 2015, 6, 61-81. Aging and the mucosal immune system in the intestine. Biogerontology, 2015, 16, 133-145. Can Proton Pump Inhibitors Increase Incidence of Nonsteroidal Anti-inflammatory Drug-induced Small Bowel Injury?. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2016, 68, 123.	2.2 5.6 2.4 3.9	1,320 36 28 76 0

#	Article	IF	CITATIONS
447	Altering the Gut Microbiome for Cognitive Benefit?. , 2016, , 319-337.		3
448	Nutritional Status and Gastrointestinal Health in the Elderly. , 2016, , 363-373.		2
449	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
450	Prebiotics and Probiotics in Aging Population. , 2016, , 693-705.		0
451	Gut microbiome, surgical complications and probiotics. Annals of Gastroenterology, 2016, 30, 45-53.	0.6	45
452	Probiotics as an Adjuvant Therapy in Major Depressive Disorder. Current Neuropharmacology, 2016, 14, 952-958.	2.9	44
453	Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.		0
454	Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016, 2016, 1-9.	2.3	10
455	The Microbiome in Aging. , 2016, , 185-222.		1
456	Gut Microbiota and Metabolism. , 2016, , 391-401.		5
457	Pectic Oligosaccharides and Other Emerging Prebiotics. , 0, , .		23
458	The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Frontiers in Microbiology, 2016, 7, 1081.	3.5	315
459	Embracing Complexity beyond Systems Medicine: A New Approach to Chronic Immune Disorders. Frontiers in Immunology, 2016, 7, 587.	4.8	24
460	Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in Microbiology, 2016, 7, 1204.	3.5	409
461	Modeling-Enabled Systems Nutritional Immunology. Frontiers in Nutrition, 2016, 3, 5.	3.7	21
462	Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. International Journal of Molecular Sciences, 2016, 17, 932.	4.1	145
463	Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients, 2016, 8, 397.	4.1	85
465	Longitudinal survey of Clostridium difficile presence and gut microbiota composition in a Belgian nursing home. BMC Microbiology, 2016, 16, 229.	3.3	36

#	Article	IF	CITATIONS
466	Analysis of cultivable microbiota and diet intake pattern of the long-lived naked mole-rat. Gut Pathogens, 2016, 8, 25.	3.4	11
467	The Potential of Class II Bacteriocins to Modify Gut Microbiota to Improve Host Health. PLoS ONE, 2016, 11, e0164036.	2.5	102
468	On the Origins and Control of Community Types in the Human Microbiome. PLoS Computational Biology, 2016, 12, e1004688.	3.2	69
469	Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS ONE, 2016, 11, e0148952.	2.5	121
470	Food-Based Interventions to Modify Diet Quality and Diversity to Address Multiple Micronutrient Deficiency. Frontiers in Public Health, 2015, 3, 277.	2.7	84
471	Nutritional indicators and health aspects of fruit and vegetable consumption in aged adults. , 2016, , 57-75.		2
473	Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging, 2016, 8, 1049-1063.	3.1	127
474	Microbiota and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 26-30.	2.5	125
475	Impaired Ribosome Biogenesis and Skeletal Muscle Growth in a Murine Model of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 268-278.	1.9	15
476	Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during <i>Helicobacter Pylori</i> Treatment. Helicobacter, 2016, 21, 493-503.	3.5	27
477	A comparison of the gut microbiome between long-term users and non-users of proton pump inhibitors. Alimentary Pharmacology and Therapeutics, 2016, 43, 974-984.	3.7	126
478	Application of multivariate statistical techniques in microbial ecology. Molecular Ecology, 2016, 25, 1032-1057.	3.9	298
479	Microbial contributions to chronic inflammation and metabolic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 257-262.	2.5	19
480	Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutrition Research Reviews, 2016, 29, 91-101.	4.1	44
481	The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environmental Microbiology, 2016, 18, 2103-2116.	3.8	169
483	Links Between the Microbiome and Bone. Journal of Bone and Mineral Research, 2016, 31, 1638-1646.	2.8	151
484	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
485	The Gut Microbiome. , 2016, , 799-808.		2

#	Article	IF	CITATIONS
486	Doses Lactobacillus reuteri depend on adhesive ability to modulate the intestinal immune response and metabolism in mice challenged with lipopolysaccharide. Scientific Reports, 2016, 6, 28332.	3.3	28
487	Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium. Acta Microbiologica Et Immunologica Hungarica, 2016, 63, 171-184.	0.8	4
488	Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity. Scientific Reports, 2016, 6, 38599.	3.3	5
490	The Metabolic Role of the Microbiome: Implications for NAFLD and the Metabolic Syndrome. Seminars in Liver Disease, 2016, 36, 312-316.	3.6	21
491	The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 2016, 375, 2369-2379.	27.0	2,383
492	Microbes, Metabolites and Health. , 2016, , 13-48.		0
493	Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Scientific Reports, 2016, 6, 39026.	3.3	46
494	Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Scientific Reports, 2016, 6, 38481.	3.3	54
496	Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Research Reviews, 2016, 27, 108-124.	10.9	109
497	Gastrointestinal Microbiota and Their Contribution to Healthy Aging. Digestive Diseases, 2016, 34, 194-201.	1.9	30
498	Correlation between diet and gut bacteria in a population of young adults. International Journal of Food Sciences and Nutrition, 2016, 67, 470-478.	2.8	41
499	Metabolomics of fecal samples: A practical consideration. Trends in Food Science and Technology, 2016, 57, 244-255.	15.1	58
500	Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiology, 2016, 16, 90.	3.3	993
501	Microbial translocation and skeletal muscle in young and old vervet monkeys. Age, 2016, 38, 58.	3.0	16
502	Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents. Hormone and Metabolic Research, 2016, 48, 349-358.	1.5	104
503	The Comparison of Cinnamomi Cortex and Cinnamomum burmannii Blume Using 1H NMR and GC-MS Combined with Multivariate Data Analysis. Food Analytical Methods, 2016, 9, 2419-2428.	2.6	5
505	Oats—From Farm to Fork. Advances in Food and Nutrition Research, 2016, 77, 1-55.	3.0	56
506	From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry, 2016, 21, 738-748.	7.9	683

#	Article	IF	CITATIONS
507	Strain-level dissection of the contribution of the gut microbiome to human metabolic disease. Genome Medicine, 2016, 8, 41.	8.2	86
508	The interplay between regulated necrosis and bacterial infection. Cellular and Molecular Life Sciences, 2016, 73, 2369-2378.	5.4	36
509	Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proceedings of the Nutrition Society, 2016, 75, 306-318.	1.0	89
510	Speciation by Symbiosis: the Microbiome and Behavior. MBio, 2016, 7, e01785.	4.1	120
511	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	12.6	1,716
512	Gut microbiota: an Indicator to Gastrointestinal Tract Diseases. Journal of Gastrointestinal Cancer, 2016, 47, 232-238.	1.3	19
513	Microbiome in brain function and mental health. Trends in Food Science and Technology, 2016, 57, 289-301.	15.1	39
514	Microbial-Derived Metabolites Reflect an Altered Intestinal Microbiota during Catch-Up Growth in Undernourished Neonatal Mice. Journal of Nutrition, 2016, 146, 940-948.	2.9	19
515	The Gut Microbiota in Type 2 Diabetes. , 2016, , 275-293.		0
516	Gut Microbiota and Extreme Longevity. Current Biology, 2016, 26, 1480-1485.	3.9	668
517	Age-mediated changes in the gastrointestinal tract. International Journal of Pharmaceutics, 2016, 512, 382-395.	5.2	71
518	Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME Journal, 2016, 10, 2973-2977.	9.8	308
519			
	The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome. Advances in Experimental Medicine and Biology, 2016, 902, 33-44.	1.6	49
520		1.6 7.3	49 448
520 521	Experimental Medicine and Biology, 2016, 902, 33-44. Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology, 2016, 70,		
	Experimental Medicine and Biology, 2016, 902, 33-44. Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology, 2016, 70, 395-411.	7.3	448
521	Experimental Medicine and Biology, 2016, 902, 33-44. Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology, 2016, 70, 395-411. Gut microbiota signatures of longevity. Current Biology, 2016, 26, R832-R833. Heritable components of the human fecal microbiome are associated with visceral fat. Genome	7.3 3.9	448 265

ARTICLE IF CITATIONS Predictors of Clostridium difficile infectionâ€"related mortality among older adults. American Journal 525 2.3 7 of Infection Control, 2016, 44, 1219-1223. A clinical update on the significance of the gut microbiota in systemic autoimmunity. Journal of 6.5 Autoimmunity, 2016, 74, 85-93. An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative 529 0.5 10 Biology, 2016, 4, 192-206. Metabolic Control of Longevity. Cell, 2016, 166, 802-821. 28.9 591 Whey protein stories $\hat{a} \in A$ experiment in writing a multidisciplinary biography. Appetite, 2016, 107, 531 3.7 8 285-294. Lactulose Differently Modulates the Composition of Luminal and Mucosal Microbiota in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 6240-6247. 5.2 The Microbiome and Musculoskeletal Conditions of Aging: A Review of Evidence for Impact and 533 2.8 81 Potential Therapeutics. Journal of Bone and Mineral Research, 2016, 31, 261-269. Comparative analysis of the fecal bacterial community ofÂfive harbor seals (Phoca vitulina). 534 28 MicrobiologyOpen, 2016, 5, 782-792. The human gut microbiome, diet, and health: "Post hoc non ergo propter hoc― Trends in Food Science 535 15.1 7 and Technology, 2016, 57, 302-305. The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224. 11.7 158 The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochemical Research, 2016, 41, 2819-2835. 537 172 3.3 Alzheimer's disease and gut microbiota. Science China Life Sciences, 2016, 59, 1006-1023. 254 Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a 540 3.3 207 metagenomic study. Scientific Reports, 2016, 6, 25945. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. 541 5.8 Nutrition Reviews, 2016, 74, 624-634. Probiotics– the journey continues. International Journal of Dairy Technology, 2016, 69, 469-480. 543 2.8 39 Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. International 544 30 Journal of Food Microbiology, 2016, 239, 125-132. Serum pharmacokinetics of choline, trimethylamine, and trimethylamine-N-oxide after oral gavage of 545 phosphatidylcholines with different fatty acid compositions in mice. Bioscience, Biotechnology and 1.39 Biochemistry, 2016, 80, 2217-2223. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of 546 Neuroscience, 2016, 36, 7428-7440.

#	Article	IF	CITATIONS
547	Inorganic Nitrate Supplementation in Young and Old Obese Adults Does Not Affect Acute Glucose and Insulin Responses but Lowers Oxidative Stress. Journal of Nutrition, 2016, 146, 2224-2232.	2.9	33
548	Antibiotics and the Intestinal MicrobiomeIntestinal microbiome : Individual Responses, Resilience of the Ecosystem, and the Susceptibility to Infections. Current Topics in Microbiology and Immunology, 2016, 398, 123-146.	1.1	27
550	Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 2016, 7, 1111-1121.	6.4	51
551	Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City. MSphere, 2016, 1, .	2.9	28
552	The gut–brain connection: triggering of brain autoimmune disease by commensal gut bacteria. Rheumatology, 2016, 55, ii68-ii75.	1.9	30
553	Long-Term Implications of Antibiotic Use on Gut Health and Microbiota in Populations Including Patients With Cystic Fibrosis. , 2016, , 223-259.		1
554	Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 2016, 39, 763-781.	8.6	691
555	Fecal metabolome of the Hadza hunter-gatherers: a host-microbiome integrative view. Scientific Reports, 2016, 6, 32826.	3.3	88
556	Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Scientific Reports, 2016, 6, 30673.	3.3	153
557	An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Scientific Reports, 2016, 6, 26775.	3.3	164
558	Preface. International Review of Neurobiology, 2016, 131, xv-xxiii.	2.0	0
559	Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome. International Journal of Biochemistry and Cell Biology, 2016, 81, 393-402.	2.8	5
560	The Central Nervous System and the Gut Microbiome. Cell, 2016, 167, 915-932.	28.9	985
561	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	1.1	150
562	Impact of high fat diets, prebiotics and probiotics on gut microbiota and immune function, with relevance to elderly populations. Nutrition and Aging (Amsterdam, Netherlands), 2016, 3, 171-192.	0.3	2
563	Letter: faecal volatile organic metabolites, promising biomarkers in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2016, 43, 1240-1241.	3.7	3
564	The Importance of Diet and Gut Health to the Treatment and Prevention of Mental Disorders. International Review of Neurobiology, 2016, 131, 325-346.	2.0	33
565	Host genetics affect microbial ecosystems via host immunity. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 413-420.	2.3	9

#	Article	IF	CITATIONS
566	Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 2016, 231, 1688-1694.	4.1	98
567	The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 2016, 56, S44-S55.	1.6	42
568	A 52-week safety study in cynomolgus macaques for genetically modified rice expressing Cry1Ab/1Ac protein. Food and Chemical Toxicology, 2016, 95, 1-11.	3.6	18
569	New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clinical and Translational Immunology, 2016, 5, e87.	3.8	85
570	Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E886-E899.	3.5	55
571	Antibacterial metabolites secreted under glucose-limited environment of the mimicked proximal colon model by lactobacilli abundant in infant feces. Applied Microbiology and Biotechnology, 2016, 100, 7651-7664.	3.6	11
572	MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data. Bioinformatics, 2016, 32, 2760-2767.	4.1	35
573	Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiology, 2016, 16, 9.	3.3	148
574	Gut microbiota community adaption during young children fecal microbiota transplantation by 16s rDNA sequencing. Neurocomputing, 2016, 206, 66-72.	5.9	4
575	Human digestion–Âa processing perspective. Journal of the Science of Food and Agriculture, 2016, 96, 2275-2283.	3.5	68
576	The next step in translational research: lessons learned from the first preclinical randomized controlled trial. Journal of Neurochemistry, 2016, 139, 271-279.	3.9	45
577	Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspectives in Public Health, 2016, 136, 213-224.	1.6	206
578	Expanding role of gut microbiota in lipid metabolism. Current Opinion in Lipidology, 2016, 27, 141-147.	2.7	128
579	Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut, 2016, 65, 63-72.	12.1	428
580	The brain's Geppetto—microbes as puppeteers of neural function and behaviour?. Journal of NeuroVirology, 2016, 22, 14-21.	2.1	32
581	Fecal microbiota transplantation: in perspective. Therapeutic Advances in Gastroenterology, 2016, 9, 229-239.	3.2	302
582	Streptococcus pneumoniae Colonization Disrupts the Microbial Community within the Upper Respiratory Tract of Aging Mice. Infection and Immunity, 2016, 84, 906-916.	2.2	34
583	Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annual Review of Food Science and Technology, 2016, 7, 313-333.	9.9	161

#	Article	IF	Citations
584	The Aging Immune System. , 2016, , 407-431.		1
001			-
585	Infection in an aging population. Current Opinion in Microbiology, 2016, 29, 63-67.	5.1	167
587	Microbiota and lifestyle interactions through the lifespan. Trends in Food Science and Technology, 2016, 57, 265-272.	15.1	24
588	Fecal microbiota transplantation in children: a brief review. Pediatric Research, 2016, 80, 2-6.	2.3	43
589	Challenges of metabolomics in human gut microbiota research. International Journal of Medical Microbiology, 2016, 306, 266-279.	3.6	117
590	Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. , 2016, , 281-314.		6
591	Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 2016, 306, 302-309.	3.6	121
592	Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host and Microbe, 2016, 19, 240-253.	11.0	191
593	Dysbiosis in gastrointestinal disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 3-15.	2.4	86
594	Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clinical Nutrition Experimental, 2016, 6, 25-38.	2.0	163
595	Intestinal microbiome disruption in patients in a long-term acute care hospital: A case for development of microbiome disruption indices to improve infection prevention. American Journal of Infection Control, 2016, 44, 830-836.	2.3	43
596	Do Proton Pump Inhibitors Exacerbate Nonsteroidal Anti-Inflammatory Drug-Induced Small-Bowel Enteropathy?. Clinical Gastroenterology and Hepatology, 2016, 14, 816-817.	4.4	7
597	Signatures of early frailty in the gut microbiota. Genome Medicine, 2016, 8, 8.	8.2	297
598	Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME Journal, 2016, 10, 1656-1668.	9.8	145
599	Wine Safety, Consumer Preference, and Human Health. , 2016, , .		13
600	Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion, 2016, 93, 176-181.	2.3	107
601	Interactions Between Wine Polyphenols and Gut Microbiota. , 2016, , 259-278.		7
602	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 161-172.	2.4	26

#	Article	IF	CITATIONS
603	Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease. Cell Host and Microbe, 2016, 19, 12-20.	11.0	192
604	Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine, 2016, 5, 135-146.	6.1	328
605	Sex differences in the gut microbiome–brain axis across the lifespan. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150122.	4.0	211
606	Stochastic neutral modelling of the Gut Microbiota's relative species abundance from next generation sequencing data. BMC Bioinformatics, 2016, 17, 16.	2.6	19
607	Mediterranean Diet and Neurodegenerative Diseases. , 2016, , 153-164.		3
608	<i>Helicobacter pylori</i> and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice. Gut Microbes, 2016, 7, 48-53.	9.8	14
609	Nutritional advice for community patients: insights from a panel discussion. British Journal of Community Nursing, 2016, 21, 130-137.	0.4	3
611	Systems medicine of inflammaging. Briefings in Bioinformatics, 2016, 17, 527-540.	6.5	35
612	Complete ecological isolation and cryptic diversity in <i>Polynucleobacter</i> bacteria not resolved by 16S rRNA gene sequences. ISME Journal, 2016, 10, 1642-1655.	9.8	129
613	Probiotics in early life: a preventative and treatment approach. Food and Function, 2016, 7, 1752-1768.	4.6	35
614	Brain-gut-microbiota axis: challenges for translation in psychiatry. Annals of Epidemiology, 2016, 26, 366-372.	1.9	157
615	Proton pump inhibitors alter the composition of the gut microbiota. Gut, 2016, 65, 749-756.	12.1	682
616	Duodenal-Jejunal Bypass Preferentially Elevates Serum Taurine-Conjugated Bile Acids and Alters Gut Microbiota in a Diabetic Rat Model. Obesity Surgery, 2016, 26, 1890-1899.	2.1	26
617	Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Applied and Environmental Microbiology, 2016, 82, 1569-1576.	3.1	281
618	Beneficial Microbes: The pharmacy in the gut. Bioengineered, 2016, 7, 11-20.	3.2	77
619	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	9.8	149
620	Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype. Applied and Environmental Microbiology, 2016, 82, 671-679.	3.1	127
621	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	9.6	258

#	Article	IF	CITATIONS
622	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	1.6	50
623	Gut Microbiota. , 2016, , 515-523.		11
624	Potential Benefits of Probiotics, Prebiotics, and Synbiotics on the Intestinal Microbiota of the Elderly. , 2016, , 525-538.		3
625	Evidence and Rationale for Probiotics to Prevent Infections in the Elderly. , 2016, , 661-667.		Ο
626	Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME Journal, 2016, 10, 1002-1014.	9.8	104
627	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	12.1	1,092
628	Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2016, 10, 387-394.	1.3	256
629	Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis). Veterinary Journal, 2016, 209, 32-39.	1.7	24
630	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	12.1	1,719
632	Talking microbes: When gut bacteria interact with diet and host organs. Molecular Nutrition and Food Research, 2016, 60, 58-66.	3.3	125
633	Composition and temporal stability of the gut microbiota in older persons. ISME Journal, 2016, 10, 170-182.	9.8	305
634	Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2017, 57, 59-81.	10.3	178
635	Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. NeurologÃa, 2017, 32, 175-184.	0.7	27
636	Gut microbiota-bone axis. Critical Reviews in Food Science and Nutrition, 2017, 57, 1664-1672.	10.3	72
637	Gut microbiota and probiotics: Focus on diabetes mellitus. Critical Reviews in Food Science and Nutrition, 2017, 57, 2296-2309.	10.3	101
638	Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys. Journal of Nutrition, Health and Aging, 2017, 21, 354-361.	3.3	65
639	Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112, 399-412.	4.1	424
640	Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Research Reviews, 2017, 35, 36-45.	10.9	346

#	Article	IF	CITATIONS
641	Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 2017, 5, 4.	11.1	390
642	Microbiomes in respiratory health and disease: An Asiaâ€₽acific perspective. Respirology, 2017, 22, 240-250.	2.3	88
643	Gut microbiota and colorectal cancer. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 757-769.	2.9	157
644	Sustained fecal-oral human-to-human transmission following a zoonotic event. Current Opinion in Virology, 2017, 22, 1-6.	5.4	46
645	The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterology Clinics of North America, 2017, 46, 77-89.	2.2	678
646	Basic Definitions and Concepts: Organization of the Gut Microbiome. Gastroenterology Clinics of North America, 2017, 46, 1-8.	2.2	15
647	Inside Out: HIV, the Gut Microbiome, and the Mucosal Immune System. Journal of Immunology, 2017, 198, 605-614.	0.8	59
648	Motivations of participants in the citizen science of microbiomics: data from the British Gut Project. Genetics in Medicine, 2017, 19, 959-961.	2.4	19
649	<i>Roseburia</i> spp.: a marker of health?. Future Microbiology, 2017, 12, 157-170.	2.0	483
650	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	1.8	39
651	Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse. Brain, Behavior, and Immunity, 2017, 65, 20-32.	4.1	158
652	The gut microbiome in human neurological disease: A review. Annals of Neurology, 2017, 81, 369-382.	5.3	388
653	Heart Involvement in Osteoarthritis. Handbook of Systemic Autoimmune Diseases, 2017, , 461-488.	0.1	0
654	The microbiome and systemic lupus erythematosus. Immunologic Research, 2017, 65, 432-437.	2.9	53
655	Microbiome and Cardiac Health. , 2017, , 67-97.		0
656	The Role of the Immune System in Metabolic Health and Disease. Cell Metabolism, 2017, 25, 506-521.	16.2	223
657	Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes, 2017, 8, 75-81.	9.8	58
659	Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 2017, 66, 633-643.	12.1	623

	CITATION	Report	
# 660	ARTICLE Glycomacropeptide Sustains Microbiota Diversity and Promotes Specific Taxa in an Artificial Colon Model of Elderly Gut Microbiota. Journal of Agricultural and Food Chemistry, 2017, 65, 1836-1846.	IF 5.2	Citations 35
661	Application of targeted ¹ H NMR profiling to assess the seed vitality of soybean [Glycine max (L.) Merr.]. Analytical Methods, 2017, 9, 1792-1799.	2.7	3
662	Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host and Microbe, 2017, 21, 455-466.e4.	11.0	799
663	A psychology of the human brain–gut–microbiome axis. Social and Personality Psychology Compass, 2017, 11, e12309.	3.7	121
664	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
665	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology and Metabolism, 2017, 12, 215-226.	2.4	30
666	Blended foods for tube-fed children: a safe and realistic option? A rapid review of the evidence. Archives of Disease in Childhood, 2017, 102, 274-278.	1.9	38
667	Randomized clinical trial of biodegradeable intraluminal sheath to prevent anastomotic leak after stapled colorectal anastomosis. British Journal of Surgery, 2017, 104, 1010-1019.	0.3	33
668	Bacterial infections and hepatic encephalopathy in liver cirrhosis–prophylaxis and treatment. Advances in Medical Sciences, 2017, 62, 345-356.	2.1	23
669	The role of the microbiome in cancer development and therapy. Ca-A Cancer Journal for Clinicians, 2017, 67, 326-344.	329.8	447
670	Tackling the increasing problem of malnutrition in older persons: The Malnutrition in the Elderly (MaNu <scp>EL</scp>) Knowledge Hub. Nutrition Bulletin, 2017, 42, 178-186.	1.8	46
671	The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science. Nursing Research, 2017, 66, 184-197.	1.7	30
672	Biological Aging and the Human Gut Microbiota. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1474-1482.	3.6	159
673	The Microbiome in Neurogastroenterology. , 2017, , 53-70.		0
674	Microbial Genetic Composition Tunes Host Longevity. Cell, 2017, 169, 1249-1262.e13.	28.9	256
675	Introduction to the human gut microbiota. Biochemical Journal, 2017, 474, 1823-1836.	3.7	1,988
676	Interactions between gut bacteria and bile in health and disease. Molecular Aspects of Medicine, 2017, 56, 54-65.	6.4	341
677	The gut microbiome and hypertension. Current Opinion in Nephrology and Hypertension, 2017, 26, 1-8.	2.0	80

		CITATION R	EPORT	
#	Article		IF	CITATIONS
678	Variability in Human Host Susceptibility to Listeria monocytogenes Infections. , 2017, ,	419-449.		2
680	Hypothalamic Inflammation in Human Obesity Is Mediated by Environmental and Gene Diabetes, 2017, 66, 2407-2415.	tic Factors.	0.6	117
681	Antioxidant status and gut microbiota change in an aging mouse model as influenced l exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan k Dairy Science, 2017, 100, 6025-6041.	у efir. Journal of	3.4	106
682	Do Aging Factors Influence the Clinical Presentation and Management of Chronic Rhine Otolaryngology - Head and Neck Surgery, 2017, 156, 598-605.	osinusitis?.	1.9	19
683	Nutrition and aging successfully. Current Opinion in Clinical Nutrition and Metabolic Ca 1-3.	are, 2017, 20,	2.5	11
684	Protein Malnutrition During Juvenile Age Increases Ileal and Colonic Permeability in Rat Pediatric Gastroenterology and Nutrition, 2017, 64, 707-712.	s. Journal of	1.8	7
685	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 531-543.	2017, 15,	28.6	150
686	Temporal dynamics of the gut microbiota in people sharing a confined environment, a ground-based space simulation, MARS500. Microbiome, 2017, 5, 39.	520-day	11.1	89
687	The Gut Microbiota and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017,	58, 1-15.	2.6	624
688	Role of intestinal microbiota in the development of multiple sclerosis. NeurologÃa (Eng 2017, 32, 175-184.	lish Edition),	0.4	12
689	A Perspective on Brain–Gut Communication: The American Gastroenterology Associa American Psychosomatic Society Joint Symposium on Brain–Gut Interactions and the Microenvironment. Psychosomatic Medicine, 2017, 79, 847-856.		2.0	23
690	The Association Between Temperament and Microbiota in Healthy Individuals: A Pilot S Psychosomatic Medicine, 2017, 79, 898-904.	tudy.	2.0	7
691	The genetics of human longevity: an intricacy of genes, environment, culture and micro Mechanisms of Ageing and Development, 2017, 165, 147-155.	biome.	4.6	79
692	Changes in intestinal microbiota composition and metabolism coincide with increased permeability in young adults under prolonged physiological stress. American Journal of Renal Physiology, 2017, 312, G559-G571.		3.4	239
693	Association between urinary metabolic profile and the intestinal effects of cocoa in rate Journal of Nutrition, 2017, 117, 623-634.	s. British	2.3	17
694	Gut microbiome as a clinical tool in gastrointestinal disease management: are we there Reviews Gastroenterology and Hepatology, 2017, 14, 315-320.	yet?. Nature	17.8	96
695	Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiot feed efficiency. Scientific Reports, 2017, 7, 45308.	a in chicken	3.3	193
696	Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice F Western-Style Diet or Drinking Water Supplemented with Fructose. Journal of Nutrition 770-780.	ed a h, 2017, 147,	2.9	118

#	Article	IF	CITATIONS
697	Gut microbiota in chronic kidney disease. Nefrologia, 2017, 37, 9-19.	0.4	51
698	Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 2017, 139, 24-39.	4.4	247
699	Bacteria–Bacteriophage Coevolution in the Human Gut: Implications for Microbial Diversity and Functionality. Trends in Microbiology, 2017, 25, 614-623.	7.7	88
700	Ageing: Lessons from C. elegans. Healthy Ageing and Longevity, 2017, , .	0.2	14
701	Microbiota, Probiotic Bacteria and Ageing. Healthy Ageing and Longevity, 2017, , 411-429.	0.2	3
702	Investigating cholesterol metabolism and ageing using a systems biology approach. Proceedings of the Nutrition Society, 2017, 76, 378-391.	1.0	16
703	The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mechanisms of Ageing and Development, 2017, 165, 180-184.	4.6	125
704	The role of gut microbiota in health and disease: InÂvitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe, 2017, 44, 3-12.	2.1	130
705	Biology of the Microbiome 2. Gastroenterology Clinics of North America, 2017, 46, 37-47.	2.2	6
706	Impacts of canine distemper virus infection on the giant panda population from the perspective of gut microbiota. Scientific Reports, 2017, 7, 39954.	3.3	57
707	Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut, 2017, 66, 1623-1630.	12.1	69
708	Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer's Disease and Late-Life Cognitive Disorders: A Systematic Review. Journal of Alzheimer's Disease, 2017, 59, 815-849.	2.6	249
709	The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young. MSphere, 2017, 2, .	2.9	141
710	Intestinal Microbiota and Bone Health: The Role of Prebiotics, Probiotics, and Diet. Molecular and Integrative Toxicology, 2017, , 417-443.	0.5	8
711	Concordance of health states in couples: Analysis of self-reported, nurse administered and blood-based biomarker data in the UK Understanding Society panel. Journal of Health Economics, 2017, 56, 87-102.	2.7	37
712	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	12.8	1,029
713	Review article: changes in the epidemiology of inflammatory bowel disease—clues for aetiology. Alimentary Pharmacology and Therapeutics, 2017, 46, 911-919.	3.7	75
714	The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends in Food Science and Technology, 2017, 70, 20-33.	15.1	99

#	Article	IF	CITATIONS
715	Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 2017, 17, 94.	4.2	513
716	Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, 1241-1257.	2.6	319
717	Is there a relationship between intestinal microbiota, dietary compounds, and obesity?. Trends in Food Science and Technology, 2017, 70, 105-113.	15.1	53
718	Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME Journal, 2017, 11, 2834-2847.	9.8	96
719	Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science, 2017, 357, 802-806.	12.6	694
720	The Microbiota and Energy Balanc. Endocrinology, 2017, , 1-18.	0.1	0
721	Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 2017, 6, 121-130.	4.9	116
722	Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. Journal of Biological Rhythms, 2017, 32, 505-515.	2.6	95
723	Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neuroscience and Biobehavioral Reviews, 2017, 83, 458-471.	6.1	144
724	Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Scientific Reports, 2017, 7, 11102.	3.3	146
725	Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Scientific Reports, 2017, 7, 11079.	3.3	174
726	Review article: nextâ€generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Alimentary Pharmacology and Therapeutics, 2017, 46, 920-937.	3.7	21
727	Therapeutic interventions for gut dysbiosis and related disorders in the elderly: antibiotics, probiotics or faecal microbiota transplantation?. Beneficial Microbes, 2017, 8, 179-192.	2.4	55
729	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	8.1	408
730	Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific Reports, 2017, 7, 9523.	3.3	298
731	Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry. Expert Review of Proteomics, 2017, 14, 809-824.	3.0	36
732	Inflammaging and the Lung. Clinics in Geriatric Medicine, 2017, 33, 459-471.	2.6	40
733	Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends in Plant Science, 2017, 22, 842-856.	8.8	169

#	Article	IF	CITATIONS
734	Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutrition and Cancer, 2017, 69, 943-951.	2.0	82
735	Evolution, human-microbe interactions, and life history plasticity. Lancet, The, 2017, 390, 521-530.	13.7	178
736	Exercise and gut microbiota: clinical implications for the feasibility of Tai Chi. Journal of Integrative Medicine, 2017, 15, 270-281.	3.1	25
737	Identifying Predictors of Gastrointestinal Complications After Cardiovascular Surgery: How Do We Digest the Data?. Journal of Cardiothoracic and Vascular Anesthesia, 2017, 31, 1275-1277.	1.3	1
738	A clinician's guide to microbiome analysis. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 585-595.	17.8	124
739	Nutraceutical approaches to metabolic syndrome. Annals of Medicine, 2017, 49, 678-697.	3.8	24
740	Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME Journal, 2017, 11, 2644-2651.	9.8	83
741	Frailty Status in Older Adults Is Related to Alterations in Indoleamine 2,3-Dioxygenase 1 and Guanosine Triphosphate Cyclohydrolase IÂEnzymatic Pathways. Journal of the American Medical Directors Association, 2017, 18, 1049-1057.	2.5	40
742	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	3.3	9
744	Microbiota and Aging. A Review and Commentary. Archives of Medical Research, 2017, 48, 681-689.	3.3	76
745	Long-term stability in the gut microbiome over 46†years in the life of Billy Apple®. Human Microbiome Journal, 2017, 5-6, 7-10.	3.8	9
746	Mapping the ecological networks of microbial communities. Nature Communications, 2017, 8, 2042.	12.8	125
747	Our Gut Microbiome: The Evolving Inner Self. Cell, 2017, 171, 1481-1493.	28.9	462
748	Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180.	0.3	6
749	Deficiency of essential dietary n-3 PUFA disrupts the caecal microbiome and metabolome in mice. British Journal of Nutrition, 2017, 118, 959-970.	2.3	40
751	Bone Mechanical Function and the Gut Microbiota. Advances in Experimental Medicine and Biology, 2017, 1033, 249-270.	1.6	11
752	Dietary Impacts on the Composition of Microbiota in Human Health and Disease. , 2017, , 377-404.		0
753	Emerging Topics in Gastroenterology. Primary Care - Clinics in Office Practice, 2017, 44, 733-742.	1.6	0

#	Article	IF	CITATIONS
754	Microbiota-Gut-Brain Axis, Part 1. Holistic Nursing Practice, 2017, 31, 133-136.	0.7	5
755	Of Mice, Dirty Mice, and Men: Using Mice To Understand Human Immunology. Journal of Immunology, 2017, 199, 383-388.	0.8	197
756	Innate immunity orchestrates adipose tissue homeostasis. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.7	8
757	Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME Journal, 2017, 11, 2059-2074.	9.8	112
758	Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology, 2017, 38, 633-647.	6.8	219
759	Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. GigaScience, 2017, 6, 1-11.	6.4	75
760	Feeding the microbiota: transducer of nutrient signals for the host. Gut, 2017, 66, 1709-1717.	12.1	124
761	Microbial endocrinology: Why the intersection of microbiology and neurobiology matters to poultry health. Poultry Science, 2017, 96, 2501-2508.	3.4	37
762	Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Metaâ€Analysis of Prospective Studies. Journal of the American Heart Association, 2017, 6, .	3.7	376
764	Nutritional Correlates of Human Oral Microbiome. Journal of the American College of Nutrition, 2017, 36, 88-98.	1.8	87
765	Mechanisms of lung aging. Cell and Tissue Research, 2017, 367, 469-480.	2.9	111
766	Inflammaging and â€~Garb-aging'. Trends in Endocrinology and Metabolism, 2017, 28, 199-212.	7.1	624
767	Diet as a Trigger or Therapy for Inflammatory Bowel Diseases. Gastroenterology, 2017, 152, 398-414.e6.	1.3	272
768	Nutrition and the gut microbiome in the elderly. Gut Microbes, 2017, 8, 82-97.	9.8	191
769	Microbiota intestinal en la enfermedad renal crónica. Nefrologia, 2017, 37, 9-19.	0.4	92
770	Trimethylamine-N-oxide and its biological variations in vegetarians. European Journal of Nutrition, 2017, 56, 2599-2609.	3.9	29
771	Assessment of the Fecal Microbiota in Beef Calves. Journal of Veterinary Internal Medicine, 2017, 31, 176-185.	1.6	30
772	Life history and ecoâ€evolutionary dynamics in light of the gut microbiota. Oikos, 2017, 126, 508-531.	2.7	139

#	Article	IF	CITATIONS
773	Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 2017, 35, 81-89.	17.5	629
774	The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. American Journal of Clinical Nutrition, 2017, 105, 10-22.	4.7	347
775	Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 2017, 25, 140-151.	16.2	148
776	Use of metabotyping for optimal nutrition. Current Opinion in Biotechnology, 2017, 44, 35-38.	6.6	33
777	Nutrigenomics in the modern era. Proceedings of the Nutrition Society, 2017, 76, 265-275.	1.0	65
778	Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 2017, 595, 489-503.	2.9	520
779	The Gut Microbiome and Its Marriage to the Immune System: Can We Change It All?. Birkhauser Advances in Infectious Diseases, 2017, , 191-208.	0.3	0
780	Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 2017, 41, 182-199.	8.6	182
781	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	3.3	59
782	Food-grade cationic antimicrobial $\hat{l}\mu$ -polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	5.5	31
783	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	5.8	155
784	The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health1,2. Journal of Animal Science, 2017, 95, 3225-3246.	0.5	84
785	Effects of host traits and land-use changes on the gut microbiota of the Namibian black-backed jackal (Canis mesomelas). FEMS Microbiology Ecology, 2017, 93, .	2.7	40
786	The Microbiome in Primary Sclerosing Cholangitis: Current Evidence and Potential Concepts. Seminars in Liver Disease, 2017, 37, 314-331.	3.6	52
787	The role of leptin in health and disease. Temperature, 2017, 4, 258-291.	3.0	108
789	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	7.1	243
790	Archaebiotics: Archaea as Pharmabiotics for Treating Chronic Disease in Humans?. , 0, , .		5
791	The microbiome as a novel paradigm in studying stress and mental health American Psychologist, 2017, 72, 655-667.	4.2	59

щ	Article	IF	Citations
# 793	4.1. Einfluss des Alterns auf die Mukosa von Ösophagus und Magen. , 2017, , .	IF	O
793	4.1. Linnuss des Alterns auf die Mukosa von A-sopnagus und Magen., 2017, , .		0
794	Practical considerations for large-scale gut microbiome studies. FEMS Microbiology Reviews, 2017, 41, S154-S167.	8.6	142
795	4.2 Effekt des Alterns auf den Dünn- und Dickdarm – Klinische Implikationen. , 2017, , .		1
796	Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Frontiers in Physiology, 2017, 8, 1047.	2.8	83
797	Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [Glycine max (L.) Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection. Frontiers in Plant Science, 2017, 8, 508.	3.6	11
798	Potential of Health and Demographic Surveillance System in Asthma and Chronic Obstructive Pulmonary Disease Microbiome Research. Frontiers in Public Health, 2017, 5, 196.	2.7	5
799	Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats. Aging, 2017, 9, 1698-1720.	3.1	82
800	Identification of the Microbiota in the Aging Process. , 2017, , 37-56.		3
801	Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models. Nutrients, 2017, 9, 331.	4.1	46
802	â€~Young poo' makes aged fish live longer. Nature, 2017, 544, 147-147.	27.8	9
803	Toward a Personalized Approach in Prebiotics Research. Nutrients, 2017, 9, 92.	4.1	19
804	Microbiota and Probiotics in Health and HIV Infection. Nutrients, 2017, 9, 615.	4.1	53
805	The Role of Nutritional Aspects in Food Allergy: Prevention and Management. Nutrients, 2017, 9, 850.	4.1	29
806	Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut–Muscle Axis?. Nutrients, 2017, 9, 1303.	4.1	237
807	Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota?. Nutrients, 2017, 9, 633.	4.1	49
808	Assessment of Bifidobacterium Species Using groEL Gene on the Basis of Illumina MiSeq High-Throughput Sequencing. Genes, 2017, 8, 336.	2.4	38
809	Fecal Microbiota and Probiotic Yogurt Intake. , 2017, , 237-258.		3
810	Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. ELife, 2017, 6, .	6.0	317

#	Article	IF	CITATIONS
811	Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Frontiers in Immunology, 2017, 8, 1164.	4.8	77
812	Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets. Frontiers in Microbiology, 2017, 8, 300.	3.5	24
813	Association between Yogurt Consumption and Intestinal Microbiota in Healthy Young Adults Differs by Host Gender. Frontiers in Microbiology, 2017, 8, 847.	3.5	54
814	The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Frontiers in Microbiology, 2017, 8, 1221.	3.5	225
815	High Spatial and Temporal Variations of Microbial Community along the Southern Catfish Gastrointestinal Tract: Insights into Dynamic Food Digestion. Frontiers in Microbiology, 2017, 8, 1531.	3.5	29
816	Microbial Immuno-Communication in Neurodegenerative Diseases. Frontiers in Neuroscience, 2017, 11, 151.	2.8	46
817	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	3.7	31
818	Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. BioMed Research International, 2017, 2017, 1-10.	1.9	90
819	Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	326
820	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	2.2	52
821	Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens. BioMed Research International, 2017, 2017, 1-10.	1.9	53
822	Colonic Transit Time Is a Driven Force of the Gut Microbiota Composition and Metabolism: In Vitro Evidence. Journal of Neurogastroenterology and Motility, 2017, 23, 124-134.	2.4	89
823	Human Microbiome and Aging. , 2017, , 43-51.		1
824	The microbiota in inflammatory bowel disease: current and therapeutic insights. Journal of Inflammation Research, 2017, Volume 10, 63-73.	3.5	168
825	Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders. Journal of Neurogastroenterology and Motility, 2017, 23, 9-19.	2.4	19
826	Obesity and Metabolic Syndrome. , 2017, , 1-26.		2
827	The Importance of Microbial and Enzymatic Bioconversions of Isoflavones in Bioactive Compounds. , 2017, , 55-93.		4
828	Asthma and Obesity. , 2017, , 191-208.		0

#	Article	IF	CITATIONS
829	Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE, 2017, 12, e0171352.	2.5	336
830	Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE, 2017, 12, e0174099.	2.5	182
831	Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens. PLoS ONE, 2017, 12, e0188634.	2.5	75
832	Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females—Double isotope sequential single-blind studies in menstruating women. PLoS ONE, 2017, 12, e0189141.	2.5	36
833	The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis. Arthritis Research and Therapy, 2017, 19, 188.	3.5	35
834	Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions. Diabetology and Metabolic Syndrome, 2017, 9, 102.	2.7	51
835	(Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome, 2017, 5, 80.	11.1	292
836	Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome, 2017, 5, 91.	11.1	208
837	Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome, 2017, 5, 163.	11.1	148
838	Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microbial Ecology in Health and Disease, 2017, 28, 1348886.	3.5	78
839	The Influence of Fiber on Gut Microbiota: Butyrate as Molecular Player Involved in theÂBeneficial Interplay BetweenÂDietary Fiber and Cardiovascular Health. , 2017, , 61-71.		4
840	The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1456-1463.	2.4	44
841	The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms – an appraisal. Clinical and Experimental Gastroenterology, 2017, Volume 10, 91-103.	2.3	38
842	Colonic Slow Transit Can Cause Changes in the Gut Environment Observed in the Elderly. Journal of Neurogastroenterology and Motility, 2017, 23, 3-4.	2.4	7
843	Cancer and Aging - the Inflammatory Connection. , 2017, 8, 611.		107
844	Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Annals of Hepatology, 2017, 16, S87-S105.	1.5	76
845	Whole Plant Foods in Aging and Disease. , 2018, , 59-116.		0
846	Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. , 2018, , 119-144.		1

		EPORT	
# 847	ARTICLE Dietary Patterns, Foods and Fiber in Irritable Bowel Syndrome and Diverticular Disease. , 2018, , 165-192.	IF	Citations
848	Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359, 1151-1156.	12.6	1,521
849	Human Gut Microbiota in Health and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 549-560.	2.6	63
850	Gut-microbiome-related LCT genotype and 2-year changes in body composition and fat distribution: the POUNDS Lost Trial. International Journal of Obesity, 2018, 42, 1565-1573.	3.4	16
851	The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus leucogenys) varies with age and captive condition. Scientific Reports, 2018, 8, 3214.	3.3	12
852	Dissecting cause and effect in host-microbiome interactions using the combined worm-bug model system. Biogerontology, 2018, 19, 567-578.	3.9	10
853	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 2018, 26, 801-809.	3.0	110
854	Richness and ecosystem development across faecal snapshots of the gut microbiota. Nature Microbiology, 2018, 3, 526-528.	13.3	81
856	Volatile metabolites in breath strongly correlate with gut microbiome in CD patients. Analytica Chimica Acta, 2018, 1025, 1-11.	5.4	64
857	Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer's disease during lifespan. Letters in Applied Microbiology, 2018, 66, 464-471.	2.2	184
858	Impact of a vegan diet on the human salivary microbiota. Scientific Reports, 2018, 8, 5847.	3.3	93
859	Time for food: The impact of diet on gut microbiota and human health. Nutrition, 2018, 51-52, 80-85.	2.4	94
860	Inter-relationship of the Intestinal Microbiome, Diet, and Mental Health. Current Behavioral Neuroscience Reports, 2018, 5, 1-12.	1.3	2
861	Altered Microbiota and Their Metabolism in Host Metabolic Diseases. , 2018, , 129-165.		1
862	Inflammatory Diseases of the Gut. Journal of Medicinal Food, 2018, 21, 113-126.	1.5	20
863	Relative Abundances of Candida albicans and Candida glabrata in <i>In Vitro</i> Coculture Biofilms Impact Biofilm Structure and Formation. Applied and Environmental Microbiology, 2018, 84, .	3.1	25
864	Inflammation Strikes Again: Frailty and HIV. Current HIV/AIDS Reports, 2018, 15, 20-29.	3.1	29
865	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	8.0	244

		CITATION RE	EPORT	
#	Article		IF	Citations
866	Sieving through gut models of colonization resistance. Nature Microbiology, 2018, 3,	132-140.	13.3	54
867	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal Nutritional Biochemistry, 2018, 56, 1-15.	of	4.2	122
868	Enterotypes in the landscape of gut microbial community composition. Nature Microb 8-16.	iology, 2018, 3,	13.3	717
869	Volatile faecal components related to sex and age in domestic cats (<i>Felis catus</i>) Applied Animal Research, 2018, 46, 766-770.	. Journal of	1.2	9
870	Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic patients. Scientific Reports, 2018, 8, 635.	heart failure	3.3	218
871	Metatranscriptome of human faecal microbial communities in a cohort of adult men. N Microbiology, 2018, 3, 356-366.	lature	13.3	168
872	Influence of fruit and invertebrate consumption on the gut microbiota of wild whiteâ€ (<i>Cebus capucinus</i>). American Journal of Physical Anthropology, 2018, 165, 576		2.1	36
873	Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors, 2018,	44, 16-25.	5.4	190
874	A patientâ€specific approach to develop an exclusion diet to manage food allergy in in children. Clinical and Experimental Allergy, 2018, 48, 121-137.	fants and	2.9	43
875	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.		11.1	326
876	The impact of Rhodiola rosea on the gut microbial community of Drosophila melanoga Pathogens, 2018, 10, 12.	ster. Gut	3.4	9
877	Linking gut microbiota to cardiovascular disease and hypertension: Lessons from chron disease. Pharmacological Research, 2018, 133, 101-107.	nic kidney	7.1	38
878	Kernel-penalized regression for analysis of microbiome data. Annals of Applied Statistic 540-566.	cs, 2018, 12,	1.1	31
879	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2	2018, 76, 603-617.	5.8	47
880	Symposium review: Microbial endocrinology—Why the integration of microbes, epith neurochemical signals in the digestive tract matters to ruminant health. Journal of Dair 2018, 101, 5619-5628.	ielial cells, and y Science,	3.4	24
881	Fecal Microbiome Among Nursing Home Residents with Advanced Dementia and Clost Digestive Diseases and Sciences, 2018, 63, 1525-1531.	ridium difficile.	2.3	26
882	Frailty and the gut. Digestive and Liver Disease, 2018, 50, 533-541.		0.9	36
883	Lifelong calorie restriction affects indicators of colonic health in aging C57Bl/6J mice. Jo Nutritional Biochemistry, 2018, 56, 152-164.	ournal of	4.2	24

#	Article	IF	Citations
884	Destabilization of the gut microbiome marks the endâ€stage of simian immunodeficiency virus infection in wild chimpanzees. American Journal of Primatology, 2018, 80, e22515.	1.7	27
885	Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 2018, 58, 651-661.	10.3	84
886	Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system. Journal of Oceanology and Limnology, 2018, 36, 414-426.	1.3	59
887	The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2018, 73, 124-133.	3.9	15
888	Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine, 2018, 61, 76-82.	6.4	125
889	Impact of human aging and modern lifestyle on gut microbiota. Critical Reviews in Food Science and Nutrition, 2018, 58, 1557-1564.	10.3	36
890	A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clinical Nutrition, 2018, 37, 797-807.	5.0	110
891	Gut Microbiota Contribute to Age-Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcified Tissue International, 2018, 102, 433-442.	3.1	217
892	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	1.3	93
893	Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 571-578.	3.6	28
894	Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International, 2018, 103, 84-102.	6.2	136
895	Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Beneficial Microbes, 2018, 9, 333-344.	2.4	35
896	Influence of the intestinal microbiome on anastomotic healing in the colon and rectum. Seminars in Colon and Rectal Surgery, 2018, 29, 2-7.	0.3	2
897	Role of gut microbiota in aging-related health decline: insights from invertebrate models. Cellular and Molecular Life Sciences, 2018, 75, 93-101.	5.4	79
898	Characterization of the Stool Microbiome in Hispanic Preschool Children by Weight Status and Time. Childhood Obesity, 2018, 14, 122-130.	1.5	21
899	Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cellular and Molecular Life Sciences, 2018, 75, 129-148.	5.4	190
900	HIV and aging. Current Opinion in HIV and AIDS, 2018, 13, 22-27.	3.8	30
901	Microbiome–health interactions in older people. Cellular and Molecular Life Sciences, 2018, 75, 119-128.	5.4	80

ARTICLE IF CITATIONS Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. Microbiology 902 3.0 26 Spectrum, 2017, 5, . Clostridium difficile, Aging, and the Gut: Can Microbiome Rejuvenation Keep Us Young and Healthy?. 4.0 Journal of Infectious Diseases, 2018, 217, 174-176. Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 904 1.3 129 83, 214-223. Nutrition Therapy for Urolithiasis., 2018,,. 905 Gut colonization with extended-spectrum \hat{l}^2 -lactamase-producing Enterobacteriaceae may increase 906 disease activity in biologic-naive outpatients with ulcerative colitis: an interim analysis. European 10 1.6 Journal of Gastroenterology and Hepatology, 2018, 30, 92-100. Digestion and Absorption., 2018, , 43-57. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and 908 0.9 114 immune-based diseases. Digestive and Liver Disease, 2018, 50, 331-341. The twilight of immunity: emerging concepts in aging of the immune system. Nature Immunology, 2018, 909 14.5 708 19, 10-19. 910 Dietary Fiber in Health and Disease., 2018,,. 6 Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. 911 Ageing Research Reviews, 2018, 42, 40-55. Modeling metabolism of the human gut microbiome. Current Opinion in Biotechnology, 2018, 51, 90-96. 912 122 6.6 A bifunctional cellulase–xylanase of a new <i>Chryseobacterium</i> strain isolated from the dung of 4.2 a strawâ€fed cattle. Microbial Biotechnology, 2018, 11, 381-398. Neuromicrobiology: How Microbes Influence the Brain. ACS Chemical Neuroscience, 2018, 9, 141-150. 914 3.5 50 Fiber in Healthy Aging. , 2018, , 251-272. 916 Overview of the Health Benefits of Adequate Fiber Intake., 2018, , 19-40. 5 Insights on the Role of Fiber in Colonic Microbiota Health., 2018, , 41-66. Connection Between Fiber, Colonic Microbiota, and Health Across the Human Life Cycle., 2018, , 67-93. 918 1 919 Fiber and Diverticular Disease., 2018, , 149-162.

ARTICLE IF CITATIONS # Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between 920 3.4 48 obesity and gut microbiota. International Journal of Obesity, 2018, 42, 424-432. Adherence to Mediterranean diet and subjective cognitive function in men. European Journal of 921 5.7 Epidemiology, 2018, 33, 223-234. Food variety, dietary diversity, and type 2 diabetes in a multi-center cross-sectional study among 922 Ghanaian migrants in Europe and their compatriots in Ghana: the RODAM study. European Journal of 3.9 19 Nutrition, 2018, 57, 2723-2733. Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and 380 Molecular Life Sciences, 2018, 75, 149-160. Trimethylamine N -oxide: A harmful, protective or diagnostic marker in lifestyle diseases?. Nutrition, 924 2.4 92 2018, 46, 7-12. Association study of gut flora in Wilson's disease through high-throughput sequencing. Medicine (United States), 2018, 97, e11743. 1.0 926 Mycobacteria, Immunoregulation, and Autoimmunity., 2018, , 121-154. 1 A REVIEW ON ANTI-AGING PROPERTIES OF PROBIOTICS. International Journal of Applied Pharmaceutics, 927 0.3 2018, 10, 23. 928 The Gut Microbiota and Ageing. Sub-Cellular Biochemistry, 2018, 90, 351-371. 2.4 79 Nutrition and Ageing. Sub-Cellular Biochemistry, 2018, 90, 373-424. 2.4 Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian 930 3.055 and Chinese adults. AMB Express, 2018, 8, 104. Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics. 1.3 Journal of Veterinary Science, 2018, 19, 798. 932 Stem Cell Aging., 2018,,. 1 Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396. 5.6 128 Taxonomic classification for microbiome analysis, which correlates well with the metabolite milieu 934 3.3 38 of the gut. BMC Microbiology, 2018, 18, 188. Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically–relevant faecal environment, with implications for pathogenicity. Scientific Reports, 2018, 8, 16691. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science 936 12.4 121 Translational Medicine, 2018, 10, . Aging, inflammation and cancer. Seminars in Immunology, 2018, 40, 74-82. 5.6

#	Article	IF	CITATIONS
938	Probiotics-fermented Massa Medicata Fermentata ameliorates weaning stress in piglets related to improving intestinal homeostasis. Applied Microbiology and Biotechnology, 2018, 102, 10713-10727.	3.6	57
939	The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. , 2018, , 241-338.		2
940	An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Frontiers in Aging Neuroscience, 2018, 10, 398.	3.4	51
941	Qualitative modelling of the interplay of inflammatory status and butyrate in the human gut: a hypotheses about robust bi-stability. BMC Systems Biology, 2018, 12, 144.	3.0	5
943	Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio, 2018, 9, .	4.1	70
944	Effects of shortâ€ŧerm endurance exercise on gut microbiota in elderly men. Physiological Reports, 2018, 6, e13935.	1.7	89
945	Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 2018, 1, 222.	4.4	65
946	Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 276.	7.2	353
947	Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports, 2018, 8, 14384.	3.3	45
948	Systems Biology in Aging Research. Advances in Experimental Medicine and Biology, 2018, 1086, 1-15.	1.6	1
949	Microbiota and Aging. Advances in Experimental Medicine and Biology, 2018, 1086, 141-156.	1.6	9
950	Association between maternal gluten intake and type 1 diabetes in offspring: national prospective cohort study in Denmark. BMJ: British Medical Journal, 2018, 362, k3547.	2.3	41
951	Microbial Changes and Host Response in F344 Rat Colon Depending on Sex and Age Following a High-Fat Diet. Frontiers in Microbiology, 2018, 9, 2236.	3.5	38
952	Early life infection and host senescence. Experimental Gerontology, 2018, 114, 19-26.	2.8	3
953	Escherichia coli, a Versatile Pathogen. Current Topics in Microbiology and Immunology, 2018, , .	1.1	5
954	Food Science $\hat{a} \in \hat{V}$ Yesterday, Today and Tomorrow. , 2018, , .		4
955	Probiotics in human health and disease: from nutribiotics to pharmabiotics. Journal of Microbiology, 2018, 56, 773-782.	2.8	90
956	Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. Cell Host and Microbe, 2018, 24, 653-664.e6.	11.0	233

#	Article	IF	CITATIONS
957	Role of Nutraceuticals in Modulation of Gut-Brain Axis in Elderly Persons. , 2018, , .		2
958	The divergent restoration effects of Lactobacillus strains in antibiotic-induced dysbiosis. Journal of Functional Foods, 2018, 51, 142-152.		13
959	Advances in Enteric Neurobiology: The "Brain―in the Gut in Health and Disease. Journal of Neuroscience, 2018, 38, 9346-9354.	3.6	61
960	Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clinical Interventions in Aging, 2018, Volume 13, 1497-1511.	2.9	143
961	GePMI: A statistical model for personal intestinal microbiome identification. Npj Biofilms and Microbiomes, 2018, 4, 20.	6.4	7
962	Age-dependent changes in GI physiology and microbiota: time to reconsider?. Gut, 2018, 67, 2213-2222.	12.1	148
963	Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Frontiers in Microbiology, 2018, 9, 2209.	3.5	31
964	Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 2018, , .	1.6	15
965	Effects of Transgenic Bt Rice Containing the Cry1Ab Protein on the Gastrointestinal Health of Highly Inbred Wuzhishan Pigs after Two Generations of Feeding. Journal of Agricultural and Food Chemistry, 2018, 66, 10575-10587.	5.2	1
966	Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases (Basel,) Tj ETQq1 1 0.784314	rgBT /Ovei 2.5	[.] lock 10 Tf 50
967	Eating Habits in Combating Disease. , 2018, , 423-432.		1
968	Differential effects of dietary fibres on colonic barrier function in elderly individuals with gastrointestinal symptoms. Scientific Reports, 2018, 8, 13404.	3.3	23
969	Challenges and innovations of drug delivery in older age. Advanced Drug Delivery Reviews, 2018, 135, 3-38.	13.7	39
970	Gut microbiota, cannabinoid system and neuroimmune interactions: New perspectives in multiple sclerosis. Biochemical Pharmacology, 2018, 157, 51-66.	4.4	31
971	Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterology, 2018, 18, 131.	2.0	67
972	Control of <i>Clostridium difficile</i> Infection by Defined Microbial Communities. , 0, , 267-289.		1
973	Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Research Reviews, 2018, 46, 42-59.	10.9	111
974	The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 2018, 51, 80-101.	5.2	218

#	ARTICLE Drug–gut microbiota interactions: implications for neuropharmacology. British Journal of	IF	CITATIONS
975 976	Pharmacology, 2018, 175, 4415-4429. Gut Microbiota and Human Health: Insights From Ecological Restoration. Quarterly Review of Biology, 2018, 93, 73-90.	5.4 0.1	93 10
977	Longevity extension in Drosophila through gut-brain communication. Scientific Reports, 2018, 8, 8362.	3.3	72
978	Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncology, The, 2018, 19, e295-e304.	10.7	126
979	Gut Microbiota Throughout the Lifespan. , 2018, , 41-55.		4
980	Effects of Mediterranean Diet on Endothelial Function. , 2018, , 363-389.		1
981	Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 6326-6335.	5.2	65
982	Effects of the Administration of Probiotics on Fecal Microbiota Diversity and Composition in Healthy Individuals. Journal of Neurogastroenterology and Motility, 2018, 24, 452-459.	2.4	12
983	Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators of Inflammation, 2018, 2018, 1-15.	3.0	104
984	Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 2018, 1-8.	1.9	500
985	Interactions of Gut Microbiota, Endotoxemia, Immune Function, and Diet in Exertional Heatstroke. Hindawi Publishing Corporation, 2018, 2018, 1-33.	1.1	38
986	Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. ELife, 2018, 7, .	6.0	121
987	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	30.7	465
988	Microbial Quantity Impacts Drosophila Nutrition, Development, and Lifespan. IScience, 2018, 4, 247-259.	4.1	90
989	Effect of vitamin C on azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated early colon cancer in mice. Nutrition Research and Practice, 2018, 12, 101.	1.9	17
990	Origination, change, and modulation of geriatric disease-related gut microbiota during life. Applied Microbiology and Biotechnology, 2018, 102, 8275-8289.	3.6	25
991	Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews, 2018, 98, 1983-2023.	28.8	184
992	Chemical Compositions of Cold-Pressed Broccoli, Carrot, and Cucumber Seed Flours and Their in Vitro Gut Microbiota Modulatory, Anti-inflammatory, and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 9309-9317.	5.2	21

#	Article	IF	CITATIONS
994	Intestinal microbiota lipid metabolism varies across rainbow trout (<i>Oncorhynchus mykiss</i>) phylogeographic divide. Journal of Applied Microbiology, 2018, 125, 1614-1625.	3.1	13
995	Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Scientific Reports, 2018, 8, 11356.	3.3	82
996	Greater Microbial Translocation and Vulnerability to Metabolic Disease in Healthy Aged Female Monkeys. Scientific Reports, 2018, 8, 11373.	3.3	36
997	Intestinal Bacterial Flora and Alzheimer's Disease. Neurophysiology, 2018, 50, 140-148.	0.3	19
998	Dose-Dependent Effects of Multispecies Probiotic Supplementation on the Lipopolysaccharide (LPS) Level and Cardiometabolic Profile in Obese Postmenopausal Women: A 12-Week Randomized Clinical Trial. Nutrients, 2018, 10, 773.	4.1	118
999	Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients, 2018, 10, 929.	4.1	80
1000	The murine female intestinal microbiota does not shift throughout the estrous cycle. PLoS ONE, 2018, 13, e0200729.	2.5	22
1001	Pandemic Bacteremic Escherichia Coli Strains: Evolution and Emergence of Drug-Resistant Pathogens. Current Topics in Microbiology and Immunology, 2018, 416, 163-180.	1.1	16
1002	The effect of dietary lipid on gut microbiota in a senescence-accelerated prone mouse model (SAMP8). Biogerontology, 2018, 19, 367-383.	3.9	10
1003	The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms, 2018, 6, 78.	3.6	94
1004	Oropharyngeal Microbiota in Frail Older Patients Unaffected by Time in Hospital. Frontiers in Cellular and Infection Microbiology, 2018, 8, 42.	3.9	10
1005	Source of Chronic Inflammation in Aging. Frontiers in Cardiovascular Medicine, 2018, 5, 12.	2.4	267
1006	The Gut Microbiota of Marine Fish. Frontiers in Microbiology, 2018, 9, 873.	3.5	613
1007	Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice. Frontiers in Microbiology, 2018, 9, 1008.	3.5	52
1008	Counting the Countless: Bacterial Quantification by Targeting rRNA Molecules to Explore the Human Gut Microbiota in Health and Disease. Frontiers in Microbiology, 2018, 9, 1417.	3.5	35
1009	Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients, 2018, 10, 643.	4.1	113
1010	Pharmabiotic Manipulation of the Microbiota in Gastrointestinal Disorders: A Clinical Perspective. Journal of Neurogastroenterology and Motility, 2018, 24, 355-366.	2.4	13
1011	The microbial reproductive ecology of whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Primatology, 2018, 80, e22896.	1.7	36

#	Article	IF	CITATIONS
1012	Multitasking Paneth Cells in the Intestinal Stem Cell Niche. Advances in Stem Cells and Their Niches, 2018, 2, 41-75.		2
1014	The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology, 2018, 64, 513-520.	2.8	270
1015	Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 190.	7.2	76
1016	Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Frontiers in Microbiology, 2018, 9, 432.	3.5	137
1017	Ageing: from inflammation to cancer. Immunity and Ageing, 2018, 15, 1.	4.2	166
1018	Use of dietary indices to control for diet in human gut microbiota studies. Microbiome, 2018, 6, 77.	11.1	85
1019	Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat infection. Journal of Infection, 2018, 77, 107-118.	3.3	39
1020	Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 2018, 107, 965-983.	4.7	408
1021	Trimethylamineâ€ <i>N</i> â€oxide promotes brain aging and cognitive impairment in mice. Aging Cell, 2018, 17, e12768.	6.7	168
1022	A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Analytica Chimica Acta, 2018, 1030, 1-24.	5.4	187
1023	Procyanidin B2 protects against d-galactose-induced mimetic aging in mice: Metabolites and microbiome analysis. Food and Chemical Toxicology, 2018, 119, 141-149.	3.6	35
1024	Bacteria in the ageing gut: did the taming of fire promote a long human lifespan?. Environmental Microbiology, 2018, 20, 1966-1987.	3.8	12
1025	Functional Carbohydrate Polymers: Prebiotics. , 2018, , 651-691.		3
1026	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	6.5	169
1027	Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, 2018, 120, 149-163.	3.8	192
1028	Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Frontiers in Microbiology, 2018, 9, 1917.	3.5	82
1029	Gut Microbiology – A Relatively Unexplored Domain. , 2018, , 629-648.		0
1030	Composition and richness of the serum microbiome differ by age and link to systemic inflammation. GeroScience, 2018, 40, 257-268.	4.6	63

#	Article	IF	CITATIONS
1031	Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria. Cell Reports, 2018, 23, 3056-3067.		128
1032	Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 2018, 4, 267-285.	1.1	438
1033	The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 611-636.	7.8	148
1034	An Overview of the Human Microbiome. , 2018, , 1-16.		0
1035	An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). European Journal of Nutrition, 2019, 58, 2145-2156.	3.9	45
1037	Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes, 2019, 10, 210-215.	9.8	81
1038	Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes, 2019, 10, 216-227.	9.8	105
1039	Making Sense of … the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	2.1	142
1040	Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology, 2019, 58, 2295-2304.	1.9	106
1041	Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients, 2019, 11, 1765.	4.1	113
1042	Inflamm-aging microRNAs may integrate signals from food and gut microbiota by modulating common signalling pathways. Mechanisms of Ageing and Development, 2019, 182, 111127.	4.6	19
1043	Gut Microbiota Pattern of Centenarians. , 2019, , 149-160.		1
1044	Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology, 2019, 20, 837-848.	3.9	27
1045	Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Scientific Reports, 2019, 9, 11814.	3.3	96
1046	Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants, 2019, 8, 302.	5.1	39
1047	Comparative analysis of the gut microbial communities between two dominant amphipods from the Challenger Deep, Mariana Trench. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 151, 103081.	1.4	16
1048	<i>Lactobacillus</i> and <i>Bifidobacterium</i> Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Molecular Nutrition and Food Research, 2019, 63, e1900603.	3.3	156
1049	Pharmacomicrobiomics informs clinical pharmacogenomics. Pharmacogenomics, 2019, 20, 731-739.	1.3	7

# 1051	ARTICLE Microbiota, the brain and epigenetics. , 2019, , 423-443.	IF	Citations 0
1052	Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome, 2019, 7, 111.	11.1	50
1053	Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 2019, 11, 1613.	4.1	615
1054	Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics. Biomaterials, 2019, 218, 119360.	11.4	23
1055	Monocyte mobilisation, microbiota & amp; mental illness. Brain, Behavior, and Immunity, 2019, 81, 74-91.	4.1	35
1056	Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 605-616.	17.8	951
1057	Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients, 2019, 11, 1633.	4.1	204
1058	Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704.	4.6	28
1059	Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019, 7, 103.	11.1	65
1060	Probiotic Supplementation During Human Pregnancy Affects the Gut Microbiota and Immune Status. Frontiers in Cellular and Infection Microbiology, 2019, 9, 254.	3.9	21
1061	Current and emerging avenues for Alzheimer's disease drug targets. Journal of Internal Medicine, 2019, 286, 398-437.	6.0	102
1062	A Cross-Sectional Study of Compositional and Functional Profiles of Gut Microbiota in Sardinian Centenarians. MSystems, 2019, 4, .	3.8	95
1063	Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediators of Inflammation, 2019, 2019, 1-9.	3.0	47
1064	GeneHunt for rapid domain-specific annotation of glycoside hydrolases. Scientific Reports, 2019, 9, 10137.	3.3	15
1065	Gut Microbiomes and Their Impact on Human Health. , 2019, , 355-385.		0
1066	Marine Metagenomics. , 2019, , .		1
1067	<p>Evaluation of gut bacterial community composition and antimicrobial resistome in pregnant and non-pregnant women from Saudi population</p> . Infection and Drug Resistance, 2019, Volume 12, 1749-1761.	2.7	18
1068	The gut microbiome in psychiatry: A primer for clinicians. Depression and Anxiety, 2019, 36, 1004-1025.	4.1	27

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1069	New Aquaculture Technology Based on Host-Symbiotic Co-metabolism. , 2019, , 189-228.		0
1070	Enterotype-based Analysis of Gut Microbiota along the Conventional Adenoma-Carcinoma Colorectal Cancer Pathway. Scientific Reports, 2019, 9, 10923.	3.3	46
1071	Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients, 2019, 11, 1468.	4.1	50
1072	Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes, 2019, 7, 394.	2.8	18
1073	Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. International Journal of Tryptophan Research, 2019, 12, 117864691985299.	2.3	129
1074	Dissecting the role of the gut microbiota and diet on visceral fat mass accumulation. Scientific Reports, 2019, 9, 9758.	3.3	41
1075	Can we â€~seize' the gut microbiota to treat epilepsy?. Neuroscience and Biobehavioral Reviews, 2019, 107, 750-764.	6.1	60
1076	Mannan Oligosaccharide Suppresses Lipid Accumulation and Appetite in Westernâ€Dietâ€Induced Obese Mice Via Reshaping Gut Microbiome and Enhancing Shortâ€Chain Fatty Acids Production. Molecular Nutrition and Food Research, 2019, 63, e1900521.	3.3	48
1077	Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience, 2019, 41, 907-921.		89
1078	Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease. , 2019, , .		6
1079	An examination of data from the American Gut Project reveals that the dominance of the genus <i>Bifidobacterium</i> is associated with the diversity and robustness of the gut microbiota. MicrobiologyOpen, 2019, 8, e939.	3.0	27
1080	The Intestinal Microbiota as a Reservoir and a Therapeutic Target to Fight Multi-Drug-Resistant Bacteria: A Narrative Review of the Literature. Infectious Diseases and Therapy, 2019, 8, 469-482.	4.0	19
1081	Biomarkers of leaky gut are related to inflammation and reduced physical function in older adults with cardiometabolic disease and mobility limitations. GeroScience, 2019, 41, 923-933.	4.6	32
1082	Microbiota-gut-brain axis and toll-like receptors in Alzheimer's disease. Computational and Structural Biotechnology Journal, 2019, 17, 1309-1317.	4.1	62
1083	Caenorhabditis Elegans and Probiotics Interactions from a Prolongevity Perspective. International Journal of Molecular Sciences, 2019, 20, 5020.	4.1	43
1084	Effect of nutrition on neurodegenerative diseases. A systematic review. Nutritional Neuroscience, 2021, 24, 810-834.	3.1	104
1085	Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art. Journal of Clinical Medicine, 2019, 8, 1843.	2.4	54
1087	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	4.7	49

#	Article		CITATIONS
1088	Transgenerational epigenetic inheritance: from phenomena to molecular mechanisms. Current Opinion in Neurobiology, 2019, 59, 189-206.		57
1089	Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine, 2019, 48, 648-655.		72
1090	Enriched taxa were found among the gut microbiota of centenarians in East China. PLoS ONE, 2019, 14, e0222763.	2.5	26
1091	Gut microbes, ageing & organ function: a chameleon in modern biology?. EMBO Molecular Medicine, 2019, 11, e9872.	6.9	14
1092	Monocropping decouples plant–bacteria interaction and strengthens phytopathogenic fungi colonization in the rhizosphere of a perennial plant species. Plant and Soil, 2019, 445, 549-564.	3.7	11
1093	The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Research, 2019, 1724, 146385.	2.2	29
1094	Association of dietary patterns with the gut microbiota in older, community-dwelling men. American Journal of Clinical Nutrition, 2019, 110, 1003-1014.	4.7	55
1095	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	28.8	2,304
1096	The Microbiome and Aging. Annual Review of Genetics, 2019, 53, 239-261.	7.6	127
1097	Immunology of the ageing kidney. Nature Reviews Nephrology, 2019, 15, 625-640.	9.6	73
1098	N-Glycosylation Plays an Essential and Species-Specific Role in Anti-Infection Function of Milk Proteins Using <i>Listeria monocytogenes</i> as Model Pathogen. Journal of Agricultural and Food Chemistry, 2019, 67, 10774-10781.	5.2	14
1099	Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports, 2019, 9, 12674.	3.3	56
1100	Effect of nutrients and exhaustive exercise on brain function. Journal of Exercise Rehabilitation, 2019, 15, 341-345.	1.0	8
1101	Biomarkers of Human Aging. Healthy Ageing and Longevity, 2019, , .	0.2	11
1102	Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Experimental Gerontology, 2019, 127, 110722.	2.8	99
1103	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	28.6	514
1104	Time to test antibacterial therapy in Alzheimer's disease. Brain, 2019, 142, 2905-2929.	7.6	89
1105	The Gut Microbiome and Mental Health: What Should We Tell Our Patients?: Le microbiote Intestinal et la Santé Mentale : que Devrions-Nous dire à nos Patients?. Canadian Journal of Psychiatry, 2019, 64, 747 760	1.9	58

#	Article		CITATIONS
1106	Nutrients in the Prevention of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.		66
1107	Exploratory analysis of covariation of microbiota-derived vitamin K and cognition in older adults. American Journal of Clinical Nutrition, 2019, 110, 1404-1415.		26
1108	Diversity of vaginal microbiome and metabolome during genital infections. Scientific Reports, 2019, 9, 14095.	3.3	210
1109	Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. International Journal of Molecular Sciences, 2019, 20, 4704.	4.1	42
1110	Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients, 2019, 11, 2193.	4.1	35
1111	The challenges of primary biliary cholangitis: What is new and what needs to be done. Journal of Autoimmunity, 2019, 105, 102328.	6.5	86
1112	Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients, 2019, 11, 2216.	4.1	268
1113	Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Applied Microbiology and Biotechnology, 2019, 103, 2353-2365.	3.6	93
1114	Among older adults, age-related changes in the stool microbiome differ by HIV-1 serostatus. EBioMedicine, 2019, 40, 583-594.	6.1	23
1115	Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME Journal, 2019, 13, 1379-1390.	9.8	29
1116	Social dynamics modeling of chrono-nutrition. PLoS Computational Biology, 2019, 15, e1006714.	3.2	9
1117	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.	11.1	60
1118	Retention of Microbiota Diversity by Lactose-Free Milk in a Mouse Model of Elderly Gut Microbiota. Journal of Agricultural and Food Chemistry, 2019, 67, 2098-2112.	5.2	11
1119	Short-term probiotic supplementation enhances cellular immune function in healthy elderly: systematic review and meta-analysis of controlled studies. Nutrition Research, 2019, 64, 1-8.	2.9	43
1120	Nutritional influence on bone: role of gut microbiota. Aging Clinical and Experimental Research, 2019, 31, 743-751.	2.9	43
1121	Suppression of the gut microbiome ameliorates ageâ€related arterial dysfunction and oxidative stress in mice. Journal of Physiology, 2019, 597, 2361-2378.	2.9	106
1122	The Association between Objectively Measured Physical Activity and the Gut Microbiome among Older Community Dwelling Men. Journal of Nutrition, Health and Aging, 2019, 23, 538-546.	3.3	27
1123	A double-blind randomized placebo-controlled trial of probiotics in systemic sclerosis associated gastrointestinal disease. Seminars in Arthritis and Rheumatism, 2019, 49, 411-419.	3.4	27

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1124	Age-based dynamic changes of phylogenetic composition and interaction networks of hea microbiome feeding in a uniformed condition. BMC Veterinary Research, 2019, 15, 172.	alth pig gut	1.9	74
1125	Rapamycin modulates tissue aging and lifespan independently of the gut microbiota in Dr Scientific Reports, 2019, 9, 7824.	osophila.	3.3	66
1126	The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune Syschicken $\hat{a} \in \mathcal{C}^*$ A Review. Annals of Animal Science, 2019, 19, 305-318.	tem of	1.6	11
1127	Gut microbiota and physical frailty through the mediation of sarcopenia. Experimental Ger 2019, 124, 110639.	ontology,	2.8	43
1128	Dietary Support in Elderly Patients with Inflammatory Bowel Disease. Nutrients, 2019, 11,	1421.	4.1	9
1129	The Origins of Ageing. Practical Issues in Geriatrics, 2019, , 25-36.		0.8	0
1130	Can physical activity ameliorate immunosenescence and thereby reduce age-related multi Nature Reviews Immunology, 2019, 19, 563-572.	-morbidity?.	22.7	269
1131	Age-stratified comparative analysis of the differences of gut microbiota associated with b glucose level. BMC Microbiology, 2019, 19, 111.	ood	3.3	4
1132	Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poultry Science, 2019, 98, 3811-3817.		3.4	19
1133	Towards a Food Pharmacy: Immunologic Modulation through Diet. Nutrients, 2019, 11, 1	239.	4.1	28
1134	Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenc Nutrients, 2019, 11, 1251.	me.	4.1	35
1135	The administration of Escherichia coli Nissle 1917 ameliorates irinotecan–induced intes dysfunction and gut microbial dysbiosis in mice. Life Sciences, 2019, 231, 116529.	tinal barrier	4.3	36
1136	Sex-specific association between gut microbiome and fat distribution. Nature Communica 10, 2408.	tions, 2019,	12.8	74
1137	Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nature Communications, 2019, 10, 2443.		12.8	72
1138	Gut Microbiota and Aging: Targets and Anti-aging Interventions. , 2019, , .			0
1139	Alzheimer's disease and symbiotic microbiota: an evolutionary medicine perspective. Anna York Academy of Sciences, 2019, 1449, 3-24.	Is of the New	3.8	45
1140	Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host a 2019, 25, 789-802.e5.	nd Microbe,	11.0	441
1141	Fecal Microbial Diversity and Structure Are Associated with Diet Quality in the Multiethnic Adiposity Phenotype Study. Journal of Nutrition, 2019, 149, 1575-1584.	Cohort	2.9	48

	CITATION	CITATION REPORT	
#	ARTICLE Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut	IF	CITATIONS
1142	microbiota in rats. Pesticide Biochemistry and Physiology, 2019, 159, 68-79.	3.6	71
1143	Antibiotics, gut microbiota, and Alzheimer's disease. Journal of Neuroinflammation, 2019, 16, 108.	7.2	262
1144	Core Gut Bacteria Analysis of Healthy Mice. Frontiers in Microbiology, 2019, 10, 887.	3.5	96
1145	Applications of high-throughput â€~omics' data in the study of frailty. Translational Medicine of Aging, 2019, 3, 40-51.	1.3	5
1146	Immune Checkpoint Blockade for Advanced NSCLC: A New Landscape for Elderly Patients. International Journal of Molecular Sciences, 2019, 20, 2258.	4.1	31
1148	Surface glycan-binding proteins are essential for cereal beta-glucan utilization by the human gut symbiont Bacteroides ovatus. Cellular and Molecular Life Sciences, 2019, 76, 4319-4340.	5.4	35
1149	Gut Microbiota Changes in Patients with Bipolar Depression. Advanced Science, 2019, 6, 1900752.	11.2	98
1150	Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials, 2019, 212, 39-54.	11.4	181
1151	Alzheimer's Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. MBio, 2019, 10, .	4.1	269
1152	Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. MSystems, 2019, 4, .	3.8	214
1153	Household composition and the infant fecal microbiome: The INSPIRE study. American Journal of Physical Anthropology, 2019, 169, 526-539.	2.1	27
1154	Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neuroscience and Biobehavioral Reviews, 2019, 102, 13-23.	6.1	306
1155	Does exercise impact gut microbiota composition in men receiving androgen deprivation therapy for prostate cancer? A single-blinded, two-armed, randomised controlled trial. BMJ Open, 2019, 9, e024872.	1.9	8
1156	Age-related analysis of the gut microbiome in a purebred dog colony. FEMS Microbiology Letters, 2019, 366, .	1.8	28
1157	The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology, 2019, 236, 1559-1571.	3.1	35
1158	Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment, 2019, 676, 197-205.	8.0	28
1159	Inverse Association Between the Skin and Oral Microbiota in Atopic Dermatitis. Journal of Investigative Dermatology, 2019, 139, 1779-1787.e12.	0.7	31
1160	The Ageing Gut–Brain study: Exploring the role of the gut microbiota in dementia. Nutrition Bulletin, 2019, 44, 145-153.	1.8	3

# 1161	ARTICLE Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Applied Microbiology and Biotechnology, 2019, 103, 5311-5321.	IF 3.6	Citations 27
1162	Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. American Journal of Clinical Nutrition, 2019, 109, 1472-1483.	4.7	66
1163	Diversity and composition of the gut microbiota of Atlantic salmon (<i>Salmo salar</i>) farmed in Irish waters. Journal of Applied Microbiology, 2019, 127, 648-657.	3.1	36
1164	Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteomics and Bioinformatics, 2019, 17, 4-12.	6.9	97
1165	Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome, 2019, 7, 68.	11.1	212
1166	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	4.1	220
1167	The Microbiota and Ovarian Cancer. Current Cancer Research, 2019, , 205-245.	0.2	0
1168	Probiotic Yogurt for the Prevention of Antibiotic-associated Diarrhea in Adults. Journal of Clinical Gastroenterology, 2019, 53, 717-723.	2.2	12
1169	Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacological Reviews, 2019, 71, 198-224.	16.0	211
1170	Changes in Mouse Gut Microbial Community in Response to the Different Types of Commonly Consumed Meat. Microorganisms, 2019, 7, 76.	3.6	11
1171	Prebiotic Intake in Older Adults: Effects on Brain Function and Behavior. Current Nutrition Reports, 2019, 8, 66-73.	4.3	8
1172	Epidemiology, Pathophysiology, and Treatment of Diverticulitis. Gastroenterology, 2019, 156, 1282-1298.e1.	1.3	231
1173	Isolation and characterization of a high molecular mass β-glucan from Lactobacillus fermentum Lf2 and evaluation of its immunomodulatory activity. Carbohydrate Research, 2019, 476, 44-52.	2.3	16
1174	Gut Microbiota and Healthy Aging. , 2019, , .		0
1175	Utility of Probiotics for Maintenance or Improvement of Health Status in Older People — A Scoping Review. Journal of Nutrition, Health and Aging, 2019, 23, 364-372.	3.3	14
1176	Gut microbiota dysbiosis in a cohort of patients with psoriasis. British Journal of Dermatology, 2019, 181, 1287-1295.	1.5	128
1177	Microbes and the Mind: How Bacteria Shape Affect, Neurological Processes, Cognition, Social Relationships, Development, and Pathology. Perspectives on Psychological Science, 2019, 14, 397-418.	9.0	25
1178	Clinical Conditions Associated With Bacterial Overgrowth. , 2019, , 67-83.		7

# 1179	ARTICLE A More Robust Gut Microbiota in Calorie-Restricted Mice Is Associated with Attenuated Intestinal Injury Caused by the Chemotherapy Drug Cyclophosphamide. MBio, 2019, 10, .	IF 4.1	Citations
1180	Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome, 2019, 7, 39.	11.1	72
1181	Is the fountain of youth in the gut microbiome?. Journal of Physiology, 2019, 597, 2323-2324.	2.9	11
1182	Letter: low FODMAP diet—directions for future research. Alimentary Pharmacology and Therapeutics, 2019, 49, 1107-1108.	3.7	2
1183	Characterizing the Personalized Microbiota Dynamics for Disease Classification by Individual-Specific Edge-Network Analysis. Frontiers in Genetics, 2019, 10, 283.	2.3	13
1184	High intensity interval training promotes total and visceral fat mass loss in obese Zucker rats without modulating gut microbiota. PLoS ONE, 2019, 14, e0214660.	2.5	26
1185	Influences of stress hormones on microbial infections. Microbial Pathogenesis, 2019, 131, 270-276.	2.9	45
1186	The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition, 2019, 6, 47.	3.7	389
1187	Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone, 2019, 123, 265-273.	2.9	46
1188	Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research. American Journal of Primatology, 2019, 81, e22970.	1.7	46
1189	Oral Administration of Compound Probiotics Improved Canine Feed Intake, Weight Gain, Immunity and Intestinal Microbiota. Frontiers in Immunology, 2019, 10, 666.	4.8	53
1190	The Dimension of Time in Host-Microbiome Interactions. MSystems, 2019, 4, .	3.8	49
1191	Immune aging in diabetes and its implications in wound healing. Clinical Immunology, 2019, 200, 43-54.	3.2	60
1192	Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Frontiers in Endocrinology, 2019, 10, 82.	3.5	66
1193	Gut Microbiome in the Elderly Hospitalized Patient. , 2019, , 287-296.		1
1194	Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition, 2019, 63-64, 184-192.	2.4	41
1195	Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mechanisms of Ageing and Development, 2019, 179, 23-35.	4.6	59
1196	Differences in Systemic IgA Reactivity and Circulating Th Subsets in Healthy Volunteers With Specific Microbiota Enterotypes. Frontiers in Immunology, 2019, 10, 341.	4.8	15

		15	0
#	ARTICLE Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in	IF	CITATIONS
1197	Experimental Medicine and Biology, 2019, , .	1.6	6
1198	The Role of Biomarkers in Psychiatry. Advances in Experimental Medicine and Biology, 2019, 1118, 135-162.	1.6	29
1199	Methods in Metagenomics and Environmental Biotechnology. Environmental Chemistry for A Sustainable World, 2019, , 85-113.	0.5	3
1200	Personalized Nutrition Approach in Food Allergy: Is It Prime Time Yet?. Nutrients, 2019, 11, 359.	4.1	33
1201	Can Gut Microbiota and Lifestyle Help Us in the Handling of Anorexia Nervosa Patients?. Microorganisms, 2019, 7, 58.	3.6	10
1202	Ageâ€related changes in the marmoset gut microbiome. American Journal of Primatology, 2019, 81, e22960.	1.7	32
1203	Influence of a Cocoa-Enriched Diet on the Intestinal Immune System and Microbiota. , 2019, , 213-225.		2
1204	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	12.1	422
1205	Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host and Microbe, 2019, 25, 261-272.e5.	11.0	159
1206	Thirty Years of Lactobacillus rhamnosus GG. Journal of Clinical Gastroenterology, 2019, 53, S1-S41.	2.2	205
1207	Review article: dietary fibre in the era of microbiome science. Alimentary Pharmacology and Therapeutics, 2019, 49, 506-515.	3.7	97
1208	Nanoscience and Biotechnology for Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.5	5
1209	Chapter 17 Fibre and fibre breakdown products as microbial and immune defence modulators. , 2019, , 297-311.		0
1210	Fecal Components Modulate Human Astrovirus Infectivity in Cells and Reconstituted Intestinal Tissues. MSphere, 2019, 4, .	2.9	12
1211	Influence of Gut Microbiota on Behavior and Its Disturbances. , 0, , .		7
1212	The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Research, 2019, 47, D614-D624.	14.5	257
1213	Outlier Detection for Minor Compositional Variations in Taxonomic Abundance Data. Applied Sciences (Switzerland), 2019, 9, 1355.	2.5	3
1214	Systemic Sclerosis and Microbiota: Overview of Current Research Trends and Future Perspective. Journal of Rheumatic Diseases, 2019, 26, 235.	1.1	1

#	Article	IF	CITATIONS
1215	Microbial evolution and ecological opportunity in the gut environment. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191964.	2.6	26
1216	Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Research Reviews, 2019, 56, 100980.	10.9	107
1217	Ursolic Acid Improves Intestinal Damage and Bacterial Dysbiosis in Liver Fibrosis Mice. Frontiers in Pharmacology, 2019, 10, 1321.	3.5	36
1218	Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi. Npj Biofilms and Microbiomes, 2019, 5, 37.	6.4	60
1219	Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Scientific Reports, 2019, 9, 19620.	3.3	35
1220	Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2019, 29, 43-56.	1.0	11
1221	Habitual animal fat consumption in shaping gut microbiota and microbial metabolites. Food and Function, 2019, 10, 7973-7982.	4.6	22
1222	Airway microbiome composition correlates with lung function and arterial stiffness in an age-dependent manner. PLoS ONE, 2019, 14, e0225636.	2.5	26
1223	Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 2019, 11, 2862.	4.1	449
1224	Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. Scientific Reports, 2019, 9, 17904.	3.3	86
1225	Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Frontiers in Immunology, 2019, 10, 2608.	4.8	70
1226	The gut microbiota: a new perspective on the toxicity of malachite green (MG). Applied Microbiology and Biotechnology, 2019, 103, 9723-9737.	3.6	12
1227	Gut-Brain Axis and Stress Regulation. Holistic Nursing Practice, 2019, 33, 312-315.	0.7	0
1228	Diet, Health, and the Gut Microbiota. , 2019, , 815-829.		1
1229	The Skin and Intestinal Microbiota and Their Specific Innate Immune Systems. Frontiers in Immunology, 2019, 10, 2950.	4.8	63
1230	Characteristics of the gut microbiota in professional martial arts athletes: AÂcomparison between different competition levels. PLoS ONE, 2019, 14, e0226240.	2.5	20
1231	Colonic bacterial composition is sex-specific in aged CD-1 mice fed diets varying in fat quality. PLoS ONE, 2019, 14, e0226635.	2.5	9
1232	The effect of surgical fecal stream diversion of the healthy colon on the colonic microbiota. European Journal of Gastroenterology and Hepatology, 2019, 31, 451-457.	1.6	7

#	Article	IF	CITATIONS
1233	Transcriptional control of central carbon metabolic flux in Bifidobacteria by two functionally similar, yet distinct Lacl-type regulators. Scientific Reports, 2019, 9, 17851.	3.3	13
1234	Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International, 2019, 116, 637-644.	6.2	121
1235	Low nadir CD4+ T-cell counts predict gut dysbiosis in HIV-1 infection. Mucosal Immunology, 2019, 12, 232-246.	6.0	56
1236	Proteomics and the microbiome: pitfalls and potential. Expert Review of Proteomics, 2019, 16, 501-511.	3.0	24
1237	Effects of Dietary Supplementation of Probiotic Mix and Prebiotic on Growth Performance, Cecal Microbiota Composition, and Protection Against Escherichia coli O78 in Broiler Chickens. Probiotics and Antimicrobial Proteins, 2019, 11, 981-989.	3.9	35
1238	Prospective Views for Whey Protein and/or Resistance Training Against Age-related Sarcopenia. , 2019, 10, 157.		40
1239	Unraveling gut microbiota in Parkinson's disease and atypical parkinsonism. Movement Disorders, 2019, 34, 396-405.	3.9	252
1240	Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension, 2019, 73, 491-496.	2.7	84
1241	Assessing the Influence of Dietary History on Gut Microbiota. Current Microbiology, 2019, 76, 237-247.	2.2	10
1242	Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. Studies in Natural Products Chemistry, 2019, 61, 369-394.	1.8	3
1243	Functions of the Microbiota for the Physiology of Animal Metaorganisms. Journal of Innate Immunity, 2019, 11, 393-404.	3.8	56
1244	â€~Inside Out'– a dialogue between mitochondria and bacteria. FEBS Journal, 2019, 286, 630-641.	4.7	25
1245	Nutritional Influences on Bone Health. , 2019, , .		0
1246	Prevalence of malnutrition using harmonized definitions in older adults from different settings – A MaNuEL study. Clinical Nutrition, 2019, 38, 2389-2398.	5.0	56
1247	Resilience of human gut microbial communities for the long stay with multiple dietary shifts. Gut, 2019, 68, 2254-2255.	12.1	45
1248	Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health, 2019, 19, 13.	2.3	86
1249	Socioeconomic Status and the Gut Microbiome: A TwinsUK Cohort Study. Microorganisms, 2019, 7, 17.	3.6	93
1250	Excessive neutrophil levels in the lung underlie the age-associated increase in influenza mortality. Mucosal Immunology, 2019, 12, 545-554.	6.0	80

#	Article	IF	Citations
1251	The Microbiota and Energy Balance. Endocrinology, 2019, , 109-126.	0.1	2
1252	Probiotic characterization of Lactobacillus isolates from canine faeces. Journal of Applied Microbiology, 2019, 126, 1245-1256.	3.1	25
1253	The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. Journal of Neuroendocrinology, 2019, 31, e12684.	2.6	172
1254	Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. Journal of Autoimmunity, 2019, 98, 1-12.	6.5	39
1255	Adaptation to Fasting in Crucian Carp (Carassius auratus): Gut Microbiota and Its Correlative Relationship with Immune Function. Microbial Ecology, 2019, 78, 6-19.	2.8	20
1256	Cumulative effect of yeast extract and fructooligosaccharide supplementation on composition and metabolic activity of elderly colonic microbiota in vitro. Journal of Functional Foods, 2019, 52, 43-53.	3.4	12
1257	Marriage and Gut (Microbiome) Feelings: Tracing Novel Dyadic Pathways to Accelerated Aging. Psychosomatic Medicine, 2019, 81, 704-710.	2.0	23
1258	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	8.5	547
1259	Patient and carer experience of blended diet via gastrostomy: a qualitative study. Journal of Human Nutrition and Dietetics, 2019, 32, 391-399.	2.5	18
1260	Obesity and Metabolic Syndrome in Kidney Transplantation: The Role of Dietary Fructose and Systemic Endotoxemia. Transplantation, 2019, 103, 191-201.	1.0	5
1261	Lycium ruthenicum diet alters the gut microbiota and partially enhances gut barrier function in male C57BL/6 mice. Journal of Functional Foods, 2019, 52, 516-528.	3.4	38
1262	Diet, Microbiota, and Bone Health. , 2019, , 143-168.		2
1263	Effects of the 1975 Japanese diet on the gut microbiota in younger adults. Journal of Nutritional Biochemistry, 2019, 64, 121-127.	4.2	27
1264	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	17.8	980
1266	Dietary Directions Against Dementia Disorders. , 2019, , 265-278.		2
1267	Methods for Studying Gut Microbiota: A Primer for Physicians. Journal of Clinical and Experimental Hepatology, 2019, 9, 62-73.	0.9	35
1268	Vitamin K status and inflammation are associated with cognition in older Irish adults. Nutritional Neuroscience, 2020, 23, 591-599.	3.1	30
1269	Impact of plant extracts upon human health: A review. Critical Reviews in Food Science and Nutrition, 2020, 60, 873-886.	10.3	92

#	Article	IF	CITATIONS
1270	Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition, 2020, 60, 1025-1037.	10.3	73
1271	Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Molecular Psychiatry, 2020, 25, 2567-2583.	7.9	102
1272	Gut microbiota shape â€~inflamm-ageing' cytokines and account for age-dependent decline in DNA damage repair. Gut, 2020, 69, 1064-1075.	12.1	30
1273	The composition and stability of the faecal microbiota of Merino sheep. Journal of Applied Microbiology, 2020, 128, 280-291.	3.1	19
1274	Intestinal Stem Cell Aging: Origins and Interventions. Annual Review of Physiology, 2020, 82, 203-226.	13.1	100
1275	Unique and specific Proteobacteria diversity in urinary microbiota of tolerant kidney transplanted recipients. American Journal of Transplantation, 2020, 20, 145-158.	4.7	19
1276	Daily intake of wheat germ-enriched bread may promote a healthy gut bacterial microbiota: a randomised controlled trial. European Journal of Nutrition, 2020, 59, 1951-1961.	3.9	6
1277	Widespread sex dimorphism in aging and age-related diseases. Human Genetics, 2020, 139, 333-356.	3.8	76
1278	Gut microbiota combined with metabolomics reveals the metabolic profile of the normal aging process and the anti-aging effect of FuFang Zhenshu TiaoZhi(FTZ) in mice. Biomedicine and Pharmacotherapy, 2020, 121, 109550.	5.6	57
1279	The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, e1-e8.	3.6	16
1280	Exploration of the microbiota and metabolites within body fluids could pinpoint novel disease mechanisms. FEBS Journal, 2020, 287, 856-865.	4.7	14
1281	EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 497-523.	5.7	101
1282	Characterization of the gut microbiota in frail elderly patients. Aging Clinical and Experimental Research, 2020, 32, 2001-2011.	2.9	27
1283	Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. Journal of Leukocyte Biology, 2020, 107, 119-132.	3.3	14
1284	ls a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	10.3	47
1285	Nutraceuticals as modulators of gut microbiota: Role in therapy. British Journal of Pharmacology, 2020, 177, 1351-1362.	5.4	28
1286	The Kidney–Gut–Muscle Axis in End-Stage Renal Disease is Similarly Represented in Older Adults. Nutrients, 2020, 12, 106.	4.1	6
1287	Gutted! Unraveling the Role of the Microbiome in Major Depressive Disorder. Harvard Review of Psychiatry, 2020, 28, 26-39.	2.1	94

#	Article	IF	CITATIONS
1288	Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients, 2020, 12, 65.	4.1	98
1289	The gut microbiome in neurological disorders. Lancet Neurology, The, 2020, 19, 179-194.	10.2	669
1290	Gamma-aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods, 2020, 64, 103669.	3.4	124
1291	Carbohydrate-restricted diet alters the gut microbiota, promotes senescence and shortens the life span in senescence-accelerated prone mice. Journal of Nutritional Biochemistry, 2020, 78, 108326.	4.2	13
1292	A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in Nutrition, 2019, 6, 191.	3.7	76
1293	Gastrointestinal survival and adaptation of antibiotic-resistant enterococci subjected to an in vitro digestion model. Food Control, 2020, 110, 107033.	5.5	2
1294	The Gut Microbiome as a Therapeutic Target for Cognitive Impairment. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1242-1250.	3.6	39
1295	Seaweed and seaweed-derived metabolites as prebiotics. Advances in Food and Nutrition Research, 2020, 91, 97-156.	3.0	31
1296	The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharmaceutica Sinica B, 2020, 10, 19-32.	12.0	154
1297	Advanced Age Impairs Intestinal Antimicrobial Peptide Response and Worsens Fecal Microbiome Dysbiosis Following Burn Injury in Mice. Shock, 2020, 53, 71-77.	2.1	24
1298	Toxigenic gut bacteria, diet and colon carcinogenesis. Journal of the Royal Society of New Zealand, 2020, 50, 418-433.	1.9	3
1299	Dietary protein insufficiency: an important consideration in fatty liver disease?. British Journal of Nutrition, 2020, 123, 601-609.	2.3	34
1300	You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Frontiers in Neuroendocrinology, 2020, 56, 100815.	5.2	128
1301	Multi-omics approaches to human biological age estimation. Mechanisms of Ageing and Development, 2020, 185, 111192.	4.6	32
1302	What is the collective effect of aging and HIV on the gut microbiome?. Current Opinion in HIV and AIDS, 2020, 15, 94-100.	3.8	11
1303	Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 2020, 12, 17.	4.1	57
1304	Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 2020, 9, 1362.	4.3	61
1305	Gut microbiota composition in obese and non-obese adult relatives from the highlands of Papua New Guinea. FEMS Microbiology Letters, 2020, 367, .	1.8	4

ARTICLE IF CITATIONS Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 2020, 1306 5.1 40 6, 379-388. The human microbiome in the 21st century. Nature Communications, 2020, 11, 5256. 12.8 48 The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell 1308 11.0 352 Host and Microbe, 2020, 28, 724-740.e8. Postbiotics in human health: Possible new functional ingredients?. Food Research International, 2020, 1309 137, 109660. Gut microbiota and old age: Modulating factors and interventions for healthy longevity. 1310 2.8 61 Experimental Gerontology, 2020, 141, 111095. Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. Gut Microbes, 2020, 12, 1822729. 9.8 Microbiomes other than the gut: inflammaging and age-related diseases. Seminars in 1312 6.1 65 Immunopathology, 2020, 42, 589-605. Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and 1313 4.1 Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471. Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of 1314 9.8 35 the intestinal microbiota. Gut Microbes, 2020, 12, 1829962. <p>Progress in Research on Colorectal Cancer-Related Microorganisms and 1.9 Metabolites</p>. Cancer Management and Research, 2020, Volume 12, 8703-8720. Compromised Ecosystem Services From Urban Aerial Microbiomes: A Review of Impacts on Human 1316 2.2 15 Immune Function. Frontiers in Ecology and Evolution, 2020, 8, . Deciphering diet-gut microbiota-host interplay: Investigations of pectin. Trends in Food Science and 15.1 Technology, 2020, 106, 171-181. Modulation of the Microbiome in Parkinson's Disease: Diet, Drug, Stool Transplant, and Beyond. 1318 4.4 13 Neurotherapeutics, 2020, 17, 1406-1417. Identification of microbial interaction network: zero-inflated latent Ising model based approach. 4.0 BioData Mining, 2020, 13, 16. Age-Related Colonic Mucosal Microbiome Community Shifts in Monkeys. Journals of Gerontology -1320 3.6 7 Series A Biological Sciences and Medical Sciences, 2021, 76, 1906-1914. Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern 24 Population. Nutrients, 2020, 12, 2938. Nutrients and Nutraceuticals for Active & amp; Healthy Ageing., 2020, , . 1322 1 Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Experimental 2.8 Gerontology, 2020, 141, 111079.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1324	The role of stem cell niche in intestinal aging. Mechanisms of Ageing and Development, 202	0, 191, 111330.	4.6	20
1325	The Effect of Dietary Nitrate and Vitamin C on Endothelial Function and Oxidative Stress Bio Current Developments in Nutrition, 2020, 4, nzaa040_007.	markers.	0.3	0
1326	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Ag 4, 103-116.	şing, 2020,	1.3	76
1327	Association of Serum Indoxyl Sulfate Levels with Skeletal Muscle Mass and Strength in Chro Hemodialysis Patients: A 2-year Longitudinal Analysis. Calcified Tissue International, 2020, 10		3.1	9
1328	Cancer-protective effect of a synbiotic combination between <i>Lactobacillus gasseri</i> 50 <i>Cudrania tricuspidata</i> leaf extract on colitis-associated colorectal cancer. Gut Microbe 12, 1785803.	5 and a 2s, 2020,	9.8	85
1329	The Impact of Childhood Growth Stunting and Post-Migration Dysbiosis on the Developmen Metabolic Syndrome Among Indigenous Immigrant Mexican Women. Biological Research for 2020, 22, 552-560.		1.9	2
1330	Associations between Pro- and Anti-Inflammatory Gastro-Intestinal Microbiota, Diet, and Cog Functioning in Dutch Healthy Older Adults: The NU-AGE Study. Nutrients, 2020, 12, 3471.	gnitive	4.1	42
1331	Inflammaging in Endemic Areas for Infectious Diseases. Frontiers in Immunology, 2020, 11, 5	579972.	4.8	16
1332	Precision Nutrition in Chronic Inflammation. Frontiers in Immunology, 2020, 11, 587895.		4.8	13
1333	Dietary patterns and depression risk in older adults: systematic review and meta-analysis. NL Reviews, 2021, 79, 976-987.	itrition	5.8	27
1334	MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Frontiers in Immunology, 2 584521.	020, 11,	4.8	27
1335	Microbial Metabolites as Molecular Mediators of Host-Microbe Symbiosis in Colorectal Canc Results and Problems in Cell Differentiation, 2020, 69, 581-603.	er.	0.7	2
1336	Wine and Non-Dairy Fermented Beverages: A Novel Source of Pro- and Prebiotics. Fermentat 6, 113.	ion, 2020,	3.0	16
1337	The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?. Theraper Advances in Gastroenterology, 2020, 13, 175628482097491.	utic	3.2	50
1338	Capsaicin and Gut Microbiota in Health and Disease. Molecules, 2020, 25, 5681.		3.8	41
1339	The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients, 2020, 12, 3759.		4.1	207
1340	Pathogenicity and virulence regulation of <i>Vibrio cholerae</i> at the interface of host-gut microbiome interactions. Virulence, 2020, 11, 1582-1599.		4.4	28
1341	Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Translational Research, 2020, 226, 39-56.		5.0	29

	ITATION REPO	ORT	
Article		IF	CITATIONS
Microbiota–host interactions shape ageing dynamics. Philosophical Transactions of the Royal Soci B: Biological Sciences, 2020, 375, 20190596.	ety	4.0	27
Gut microbiota health closely associates with PCB153-derived risk of host diseases. Ecotoxicology a Environmental Safety, 2020, 203, 111041.	nd	6.0	6
Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6, e04097.		3.2	90
17β-Estradiol supplementation changes gut microbiota diversity in intact and colorectal cancer-induced ICR male mice. Scientific Reports, 2020, 10, 12283.		3.3	34
Gut Microbiota during Dietary Restrictions: New Insights in Non-Communicable Diseases. Microorganisms, 2020, 8, 1140.		3.6	35
Effects of high-intensity interval training on gut microbiota profiles in 12 months' old ICR mice. Journal of Physiology and Biochemistry, 2020, 76, 539-548.		3.0	8
Polyphenols, the new frontiers of prebiotics. Advances in Food and Nutrition Research, 2020, 94, 35	-89.	3.0	35
Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science and Technology, 2020, 104, 60-71.		15.1	14
Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose–response meta-analysis. Nutrition Journal, 2020, 19, 76.		3.4	44
Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective. Nutrients, 2020, 12, 2285.		4.1	47
Biomarkers of Physical Frailty and Sarcopenia: Coming up to the Place?. International Journal of Molecular Sciences, 2020, 21, 5635.		4.1	50
Gut Microbiota Associations with Metabolic Health and Obesity Status in Older Adults. Nutrients, 2020, 12, 2364.		4.1	34
The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host and Microbe, 2020, 28, 180-189.		11.0	175
Dysfunction of the Microbiota-Gut-Brain Axis in Neurodegenerative Disease: The Promise of Therapeutic Modulation With Prebiotics, Medicinal Herbs, Probiotics, and Synbiotics. Journal of Evidence-based Integrative Medicine, 2020, 25, 2515690X2095722.		2.6	58
Fecal Microbiota Changes in Patients With Postpartum Depressive Disorder. Frontiers in Cellular and Infection Microbiology, 2020, 10, 567268.	l	3.9	32
Oatmeal induced gut microbiota alteration and its relationship with improved lipid profiles: a secondary analysis of a randomized clinical trial. Nutrition and Metabolism, 2020, 17, 85.		3.0	10
GeneticÂdifferences and longevityâ€related phenotypes influenceÂlifespan and lifespan variationÂin sexâ€specific mannerÂin mice. Aging Cell, 2020, 19, e13263.	а	6.7	18

1359	A Guide to the Gut Microbiome and its Relevance to Critical Care. British Journal of Nursing, 2020, 29, 1106-1112.	0.7	Ο
------	--	-----	---

#

1342

1343

1344

1346

1348

1350

1352

1354

1356

#	Article	IF	CITATIONS
1360	Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an <i>in vitro</i> continuous colon model (TIM-2). Food and Function, 2020, 11, 9984-9999.	4.6	21
1361	Race, Obesity, and Mental Health Among Older Adults in the United States: A Literature Review. Innovation in Aging, 2020, 4, igaa031.	0.1	7
1362	Differences in Gut Microbiome Composition between Senior Orienteering Athletes and Community-Dwelling Older Adults. Nutrients, 2020, 12, 2610.	4.1	25
1363	The Role of Diet Diversity and Diet Indices on Allergy Outcomes. Frontiers in Pediatrics, 2020, 8, 545.	1.9	22
1364	Phytochemicals as modifiers of gut microbial communities. Food and Function, 2020, 11, 8444-8471.	4.6	85
1366	Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment. Molecular Neurobiology, 2020, 57, 5026-5043.	4.0	191
1367	Gut microbiota: a perspective of precision medicine in endocrine disorders. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1827-1834.	1.9	11
1368	Gut mycobiome and its interaction with diet, gut bacteria and alzheimer's disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine, 2020, 59, 102950.	6.1	98
1369	1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Induced Parkinson's Disease in Mouse: Potential Association between Neurotransmitter Disturbance and Gut Microbiota Dysbiosis. ACS Chemical Neuroscience, 2020, 11, 3366-3376.	3.5	25
1370	Type 2 Diabetes Mellitus Associated with Obesity (Diabesity). The Central Role of Gut Microbiota and Its Translational Applications. Nutrients, 2020, 12, 2749.	4.1	58
1371	Association of diet with circulating trimethylamine-N-oxide concentration. American Journal of Clinical Nutrition, 2020, 112, 1448-1455.	4.7	26
1372	Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 544235.	3.4	38
1373	Does probiotic supplementation aid weight loss? A randomized, single-blind, placebo-controlled study with Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02 supplementation. Eating and Weight Disorders, 2020, 26, 1719-1727.	2.5	3
1374	The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients, 2020, 12, 2402.	4.1	46
1375	Effect of regulating gut microbiota using probiotics on functional changes in the brain: protocol for a systematic review. BMJ Open, 2020, 10, e037582.	1.9	2
1376	Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines, 2020, 8, 287.	3.2	22
1377	Western Diet: Implications for Brain Function and Behavior. Frontiers in Psychology, 2020, 11, 564413.	2.1	62
1378	An association between chronic widespread pain and the gut microbiome. Rheumatology, 2021, 60, 3727-3737.	1.9	40

#	Article	IF	CITATIONS
1379	Aging and Chronic Liver Disease. Seminars in Liver Disease, 2020, 40, 373-384.	3.6	21
1380	Rumen and Hindgut Bacteria Are Potential Indicators for Mastitis of Mid-Lactating Holstein Dairy Cows. Microorganisms, 2020, 8, 2042.	3.6	12
1381	Aging in Male Wistar Rats Associates With Changes in Intestinal Microbiota, Gut Structure, and Cholecystokinin-Mediated Gut–Brain Axis Function. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1915-1921.	3.6	14
1382	Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS Journal, 2020, 21, 28-37.	4.3	14
1383	Diet, Microbioma, and Diabetes in Aging. Current Geriatrics Reports, 2020, 9, 261-274.	1.1	0
1384	Neighborhood disadvantage and 30-day readmission risk following Clostridioides difficile infection hospitalization. BMC Infectious Diseases, 2020, 20, 762.	2.9	7
1385	Exploring the Preventive Effect and Mechanism of Senile Sarcopenia Based on "Gut–Muscle Axis― Frontiers in Bioengineering and Biotechnology, 2020, 8, 590869.	4.1	22
1386	A Multi-Omic Analysis for Low Bone Mineral Density in Postmenopausal Women Suggests a Relationship between Diet, Metabolites, and Microbiota. Microorganisms, 2020, 8, 1630.	3.6	30
1387	Effects of probiotic supplementation on gut microbiota as well as metabolite profiles within Nile tilapia, Oreochromis niloticus. Aquaculture, 2020, 527, 735428.	3.5	24
1388	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	5.0	22
1389	Microbial Stimulation Reverses the Age-Related Decline in M Cells in Aged Mice. IScience, 2020, 23, 101147.	4.1	24
1390	Early Signs of Gut Microbiome Aging: Biomarkers of Inflammation, Metabolism, and Macromolecular Damage in Young Adulthood. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1258-1266.	3.6	19
1391	Viral metagenomic analysis of fecal samples reveals an enteric virome signature in irritable bowel syndrome. BMC Microbiology, 2020, 20, 123.	3.3	20
1392	Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunology, 2020, 13, 908-918.	6.0	33
1393	Can blocking inflammation enhance immunity during aging?. Journal of Allergy and Clinical Immunology, 2020, 145, 1323-1331.	2.9	50
1394	The role of inflammation and genetics in periodontal disease. Periodontology 2000, 2020, 83, 26-39.	13.4	242
1395	Age-related chemokine alterations affect IgA secretion and gut immunity in female mice. Biogerontology, 2020, 21, 609-618.	3.9	9
1396	Metabolome–Microbiome Crosstalk and Human Disease. Metabolites, 2020, 10, 181.	2.9	55

#	Article	IF	CITATIONS
1397	Reply to "ls physical performance (in mice) increased by Veillonella atypica or decreased by Lactobacillus bulgaricus?― Journal of Sport and Health Science, 2020, 9, 201-202.	6.5	2
1398	Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech, 2020, 10, 276.	2.2	24
1399	Esophageal microbiome signature in patients with Barrett's esophagus and esophageal adenocarcinoma. PLoS ONE, 2020, 15, e0231789.	2.5	58
1400	Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis, 2020, 80, 293-304.	2.3	12
1401	Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention and Health, 2020, 3, 74-92.	3.7	331
1402	Novel findings of the association between gut microbiota–derived metabolite trimethylamine <i>N-</i> oxide and inflammation: results from a systematic review and dose-response meta-analysis. Critical Reviews in Food Science and Nutrition, 2020, 60, 2801-2823.	10.3	39
1403	Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	4.0	90
1404	A Guide to Diet-Microbiome Study Design. Frontiers in Nutrition, 2020, 7, 79.	3.7	78
1405	Evaluation of antibiotic-induced behavioral changes in mice. Physiology and Behavior, 2020, 223, 113015.	2.1	11
1406	Diet, Digestive Health, and Autoimmunity: The Foundations to an Autoimmune Disease Food Pyramid—Part 1. Alternative and Complementary Therapies, 2020, 26, 112-118.	0.1	1
1407	Correlation and association analyses in microbiome study integrating multiomics in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 309-491.	1.7	103
1408	Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nature Food, 2020, 1, 426-436.	14.0	41
1409	The Association between Gut Microbiota and Uremia of Chronic Kidney Disease. Microorganisms, 2020, 8, 907.	3.6	32
1410	Age-Related Variation of Bacterial and Fungal Communities in Different Body Habitats across the Young, Elderly, and Centenarians in Sardinia. MSphere, 2020, 5, .	2.9	45
1411	Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. International Journal of Molecular Sciences, 2020, 21, 3976.	4.1	41
1412	Potential of High- and Low-Acetylated Galactoglucomannooligosaccharides as Modulators of the Microbiota Composition and Their Activity: A Comparison Using the <i>In Vitro</i> Model of the Human Colon TIM-2. Journal of Agricultural and Food Chemistry, 2020, 68, 7617-7629.	5.2	8
1413	Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624.	3.3	31
1414	<i>Bifidobacterium adolescentis</i> and <i>Lactobacillus rhamnosus</i> alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food and Function, 2020, 11, 6115-6127.	4.6	47

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1415	Trimethylamine-N-Oxide, More Red Meat for the Vascular Scientists. Hypertension, 202	20, 76, 40-41.	2.7	1
1416	Gut Microbiome Alterations Precede Cerebral Amyloidosis and Microglial Pathology in Model of Alzheimer's Disease. BioMed Research International, 2020, 2020, 1-15.	a Mouse	1.9	56
1417	Fish oil extracted from Coregonus peled improves obese phenotype and changes gut r high-fat diet-induced mouse model of recurrent obesity. Food and Function, 2020, 11,	nicrobiota in a 6158-6169.	4.6	11
1418	The role of bread in the UK diet: An update. Nutrition Bulletin, 2020, 45, 133-164.		1.8	30
1419	Immunometabolism: new insights and lessons from antigen-directed cellular immune r Seminars in Immunopathology, 2020, 42, 279-313.	esponses.	6.1	37
1420	Comparison of the gut microbiome composition among individuals with acute or long- cord injury vs. able-bodied controls. Journal of Spinal Cord Medicine, 2022, 45, 91-99.	-standing spinal	1.4	15
1421	Investigation of the Diet-Gut-Muscle Axis in the Osteoporotic Fractures in Men Study. Nutrition, Health and Aging, 2020, 24, 445-452.	Journal of	3.3	19
1422	Gut microbiota and aging-A focus on centenarians. Biochimica Et Biophysica Acta - Mo Disease, 2020, 1866, 165765.	lecular Basis of	3.8	45
1423	Diet Affects the Gastrointestinal Microbiota and Health. Journal of the Academy of Nut Dietetics, 2020, 120, 495-499.	rition and	0.8	15
1424	Colonic microbiota is associated with inflammation and host epigenomic alterations ir bowel disease. Nature Communications, 2020, 11, 1512.	ı inflammatory	12.8	167
1425	Nutrition and the Immune System: A Complicated Tango. Nutrients, 2020, 12, 818.		4.1	121
1426	Current explorations of nutrition and the gut microbiome: a comprehensive evaluation literature. Nutrition Reviews, 2020, 78, 798-812.	i of the review	5.8	71
1427	Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Co Frontiers in Nutrition, 2020, 7, 17.	ognitive Frailty.	3.7	25
1428	Mediterranean diet, gut microbiota and health: when age and calories do not add up!. 1167-1168.	Gut, 2020, 69,	12.1	35
1429	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome,	2020, 8, 36.	11.1	213
1430	Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correl High-Fat Diet-Fed ApoEâ^'/â^' Mice. Frontiers in Pharmacology, 2020, 11, 223.	ation in	3.5	129
1431	Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Fror Neuroscience, 2020, 12, 26.	itiers in Aging	3.4	50
1432	Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus o disruptors. FEMS Microbiology Letters, 2020, 367, .	n endocrine	1.8	11

	CHATION N	LPORT	
#	Article	IF	CITATIONS
1433	The equine gastrointestinal microbiome: impacts of weight-loss. BMC Veterinary Research, 2020, 16, 78.	1.9	21
1434	27-Hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction. Journal of Neuroinflammation, 2020, 17, 199.	7.2	52
1435	The Gut–CNS Axis in Multiple Sclerosis. Trends in Neurosciences, 2020, 43, 622-634.	8.6	64
1436	Relationship between hyperlipidemia and the gut microbiome of rats, characterized using high-throughput sequencing. Journal of Traditional Chinese Medical Sciences, 2020, 7, 154-161.	0.2	12
1437	Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. Journal of Agricultural and Food Chemistry, 2020, 68, 7745-7756.	5.2	39
1438	Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nature Medicine, 2020, 26, 1089-1095.	30.7	48
1439	Metagenomics Study Reveals Changes in Gut Microbiota in Centenarians: A Cohort Study of Hainan Centenarians. Frontiers in Microbiology, 2020, 11, 1474.	3.5	36
1440	Comparing Analytical Methods for the Gut Microbiome and Aging: Gut Microbial Communities and Body Weight in the Osteoporotic Fractures in Men (MrOS) Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1267-1275.	3.6	12
1441	Antihyperglycemic effect of rice husk derived xylooligosaccharides in highâ€fat diet and lowâ€dose streptozotocinâ€induced type 2 diabetic rat model. Food Science and Nutrition, 2020, 8, 428-444.	3.4	28
1442	Highâ€Salt Dietâ€Induced Gastritis in C57BL/6 Mice is Associated with Microbial Dysbiosis and Alleviated by a Buckwheat Diet. Molecular Nutrition and Food Research, 2020, 64, e1900965.	3.3	13
1443	Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research, 2020, 77, 12-28.	2.9	57
1444	Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. Journal of Nutritional Biochemistry, 2020, 81, 108363.	4.2	74
1445	Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host. Nutrients, 2020, 12, 597.	4.1	30
1446	Age-Related Differences in the Gut Microbiome of Rhesus Macaques. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1293-1298.	3.6	31
1447	Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69, 1218-1228.	12.1	465
1448	Enterotype <i>Bacteroides</i> Is Associated with a High Risk in Patients with Diabetes: A Pilot Study. Journal of Diabetes Research, 2020, 2020, 1-11.	2.3	61
1449	Antimicrobial Resistance Gene Prevalence in a Population of Patients with Advanced Dementia Is Related to Specific Pathobionts. IScience, 2020, 23, 100905.	4.1	7
1450	IPCO: Inference of Pathways from Co-variance analysis. BMC Bioinformatics, 2020, 21, 62.	2.6	4

#	Article	IF	CITATIONS
1451	Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments. Microbiological Research, 2020, 235, 126447.	5.3	39
1452	Effect of a polyphenol-rich dietary pattern on intestinal permeability and gut and blood microbiomics in older subjects: study protocol of the MaPLE randomised controlled trial. BMC Geriatrics, 2020, 20, 77.	2.7	39
1453	Investigation of the impact of gut microbiotas on fertility of stored sperm by types of hens. Poultry Science, 2020, 99, 1174-1184.	3.4	5
1454	Inhibitory effect of isomaltodextrin on tyrosine metabolite production in rat gut microbiota. Bioscience, Biotechnology and Biochemistry, 2020, 84, 824-831.	1.3	1
1455	It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome, 2020, 8, 15.	11.1	83
1456	A Critical Mutualism – Competition Interplay Underlies the Loss of Microbial Diversity in Sedentary Lifestyle. Frontiers in Microbiology, 2019, 10, 3142.	3.5	39
1457	Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 2020, 11, 125.	3.5	23
1458	Oral health of centenarians and supercentenarians. Journal of Oral Science, 2020, 62, 9-12.	1.7	7
1459	Alteration of the gut microbiome in first-episode drug-naÃ⁻ve and chronic medicated schizophrenia correlate with regional brain volumes. Journal of Psychiatric Research, 2020, 123, 136-144.	3.1	68
1460	Management of the Elderly Inflammatory Bowel Disease Patient. Digestion, 2020, 101, 105-119.	2.3	27
1461	Physical fitness in communityâ€dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. Aging Cell, 2020, 19, e13105.	6.7	41
1462	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	6.0	44
1463	Environmental and intrinsic factors shaping gut microbiota composition and diversity and its relation to metabolic health in children and early adolescents: A population-based study. Gut Microbes, 2020, 11, 900-917.	9.8	39
1464	All You Can Feed: Some Comments on Production of Mouse Diets Used in Biomedical Research with Special Emphasis on Non-Alcoholic Fatty Liver Disease Research. Nutrients, 2020, 12, 163.	4.1	16
1465	Improving Alzheimer's disease by altering gut microbiota in tree shrews with ginsenoside Rg1. FEMS Microbiology Letters, 2020, 367, .	1.8	28
1466	Effects of Probiotics and Prebiotics on Frailty and Ageing: A Narrative Review. Current Clinical Pharmacology, 2020, 15, 183-192.	0.6	20
1467	The microbiota and immuneâ€mediated diseases: Opportunities for therapeutic intervention. European Journal of Immunology, 2020, 50, 326-337.	2.9	39
1468	Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Research in Microbiology, 2020, 171, 107-114.	2.1	18

#	Article	IF	CITATIONS
1469	Dietary macronutrient intake and molecular-bacterial vaginosis: Role of fiber. Clinical Nutrition, 2020, 39, 3066-3071.	5.0	16
1470	Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota—Results from the PAGODA Trial. Nutrients, 2020, 12, 1257.	4.1	39
1471	Shifts in the gut microbiota of mice in response to dexamethasone administration. International Microbiology, 2020, 23, 565-573.	2.4	20
1472	Antipsychotics and the microbiota. Current Opinion in Psychiatry, 2020, 33, 225-230.	6.3	20
1473	Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics. Applied Microbiology and Biotechnology, 2020, 104, 4705-4716.	3.6	18
1474	Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology, 2020, 159, 200-213.e8.	1.3	67
1475	Characterizing the gut microbiota in patients with chronic kidney disease. Postgraduate Medicine, 2020, 132, 495-505.	2.0	57
1476	Intraluminal bypass devices as an alternative to protective ostomy for prevention of colorectal anastomotic leakage: a systematic review of the literature. Colorectal Disease, 2020, 22, 1496-1505.	1.4	3
1477	Shotgun Metagenomics of Gut Microbiota in Humans with up to Extreme Longevity and the Increasing Role of Xenobiotic Degradation. MSystems, 2020, 5, .	3.8	91
1478	The environment as a determinant of successful aging or frailty. Mechanisms of Ageing and Development, 2020, 188, 111244.	4.6	27
1479	The role of the gut microbiome in the development of schizophrenia. Schizophrenia Research, 2021, 234, 4-23.	2.0	60
1480	Perspective: Methionine Restriction–Induced Longevity—A Possible Role for Inhibiting the Synthesis of Bacterial Quorum Sensing Molecules. Advances in Nutrition, 2020, 11, 773-783.	6.4	4
1481	The Production of Listeriolysin O and Subsequent Intracellular Infections by Listeria monocytogenes Are Regulated by Exogenous Short Chain Fatty Acid Mixtures. Toxins, 2020, 12, 218.	3.4	3
1482	The potential role of interventions impacting on gut-microbiota in epilepsy. Expert Review of Clinical Pharmacology, 2020, 13, 423-435.	3.1	25
1483	Characterization of Gut Microbiota Composition in Hemodialysis Patients With Normal Weight Obesity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2006-2014.	3.6	8
1484	New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future?. Biomolecules, 2020, 10, 593.	4.0	85
1485	Are Probiotics the New Calcium and Vitamin D for Bone Health?. Current Osteoporosis Reports, 2020, 18, 273-284.	3.6	50
1486	Gut microbiota composition and frailty in elderly patients with Chronic Kidney Disease. PLoS ONE, 2020, 15, e0228530.	2.5	37

#	Article	IF	Citations
1487	Metagenomics analysis reveals features unique to Indian distal gut microbiota. PLoS ONE, 2020, 15, e0231197.	2.5	24
1488	Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. International Journal of Molecular Sciences, 2020, 21, 2473.	4.1	28
1489	Differences in the gut microbiota between Cercopithecinae and Colobinae in captivity. Journal of Microbiology, 2020, 58, 367-376.	2.8	9
1490	Association of subjective global assessment of nutritional status with gut microbiota in hemodialysis patients: a case–control study. Nephrology Dialysis Transplantation, 2021, 36, 1104-1111.	0.7	15
1491	Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology, 2021, 70, 24-36.	9.6	46
1492	Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut, 2021, 70, 499-510.	12.1	127
1493	Plant-Based Diets, the Gut Microbiota, and Trimethylamine N-Oxide Production in Chronic Kidney Disease: Therapeutic Potential and Methodological Considerations. , 2021, 31, 121-131.		14
1494	Interactions Between the Aging Gut Microbiome and Common Geriatric Giants: Polypharmacy, Frailty, and Dementia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1019-1028.	3.6	19
1495	The Efficacy of Dietary Fiber in Managing Gastrointestinal Toxicity Symptoms in Patients with Gynecologic Cancers undergoing Pelvic Radiotherapy: A Systematic Review. Journal of the Academy of Nutrition and Dietetics, 2021, 121, 261-277.e2.	0.8	9
1496	Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. American Journal of Kidney Diseases, 2021, 77, 235-244.	1.9	68
1497	Gut microbiota in dementia. Critical review of novel findings and their potential application. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110039.	4.8	38
1498	Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Seminars in Cancer Biology, 2021, 70, 61-70.	9.6	25
1499	The sweet side of dark chocolate for chronic kidney disease patients. Clinical Nutrition, 2021, 40, 15-26.	5.0	13
1500	Age-related changes in intestinal immunity and the microbiome. Journal of Leukocyte Biology, 2021, 109, 1045-1061.	3.3	33
1501	Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110097.	4.8	28
1502	Use of Metabotyping for Targeted Nutrition. , 2021, , 697-713.		0
1503	Targeting the perinatal diet to modulate the gut microbiota increases dietary variety and prebiotic and probiotic food intakes: results from a randomised controlled trial. Public Health Nutrition, 2021, 24, 1129-1141.	2.2	6
1504	The Healthy Microbiome—What Is the Definition of a Healthy Gut Microbiome?. Gastroenterology, 2021, 160, 483-494.	1.3	174

#	Article	IF	CITATIONS
1505	Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multiâ€Omics. Annals of Neurology, 2021, 89, 546-559.	5.3	99
1506	Understanding the impact of age-related changes in the gut microbiome on chronic diseases and the prospect of elderly-specific dietary interventions. Current Opinion in Biotechnology, 2021, 70, 48-55.	6.6	22
1507	Aging, Frailty, and the Microbiome—How Dysbiosis Influences Human Aging and Disease. Gastroenterology, 2021, 160, 507-523.	1.3	67
1508	Interactions of tea polyphenols with intestinal microbiota and their effects on cerebral nerves. Journal of Food Biochemistry, 2021, 45, e13575.	2.9	4
1509	Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Research Reviews, 2021, 66, 101235.	10.9	58
1510	The impact of ageing on monocytes and macrophages. Immunology Letters, 2021, 230, 1-10.	2.5	122
1511	Exploring Clinical Outcomes and Feasibility of Blended Tube Feeds in Children. Journal of Parenteral and Enteral Nutrition, 2021, 45, 685-698.	2.6	21
1512	The gut microbiome–derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience, 2021, 43, 377-394.	4.6	85
1513	Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110112.	4.8	115
1514	Ageing and atherosclerosis: vascular intrinsic and extrinsic factors and potential role of IL-6. Nature Reviews Cardiology, 2021, 18, 58-68.	13.7	187
1515	Early life microbial exposures and allergy risks: opportunities for prevention. Nature Reviews Immunology, 2021, 21, 177-191.	22.7	146
1516	Darwinian Medicine: We Evolved to Require Continuing Contact with the Microbiota of the Natural Environment. Evolution Turns the Inevitable into a Necessity. Advances in Environmental Microbiology, 2021, , 327-364.	0.3	3
1517	Gut Microbiome and Diet. , 2021, , 12-12.		0
1518	The gut microbiota–brain axis and role of probiotics. , 2021, , 175-191.		1
1519	The Microbiome-Gut-Brain Axis in Neurocognitive Development and Decline. Modern Trends in Psychiatry, 2021, 32, 12-25.	1.9	6
1520	DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet. Food and Function, 2021, 12, 4825-4841.	4.6	14
1521	Tracing the Trophic Plasticity of the Coral–Dinoflagellate Symbiosis Using Amino Acid Compound-Specific Stable Isotope Analysis. Microorganisms, 2021, 9, 182.	3.6	20
1522	The Aged Intestine: Performance and Rejuvenation. , 2021, 12, 1693.		11

#	Article	IF	CITATIONS
1523	Impact of healthy aging on active bacterial assemblages throughout the gastrointestinal tract. Gut Microbes, 2021, 13, 1966261.	9.8	7
1524	Medication and Health Risks Associated With Neglected Side Effects on Gut Microbiota. , 2021, , .		0
1525	The microbiota-gut-brain axis and bipolar disorder. , 2021, , 275-284.		0
1527	The high prevalence of <i>Clostridioides difficile</i> among nursing home elders associates with a dysbiotic microbiome. Gut Microbes, 2021, 13, 1-15.	9.8	10
1528	Dynamics of Microbiomes. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 57-99.	0.6	0
1529	The Interface of <i>Vibrio cholerae</i> and the Gut Microbiome. Gut Microbes, 2021, 13, 1937015.	9.8	27
1530	The aging immune system: Dysregulation, compensatory mechanisms, and prospects for intervention. , 2021, , 345-366.		1
1531	A synthetic consortium of 100 gut commensals modulates the composition and function in a colon model of the microbiome of elderly subjects. Gut Microbes, 2021, 13, 1-19.	9.8	8
1532	Metagenomic Analysis of the Gut Microbiome Reveals Enrichment of Menaquinones (Vitamin K2) Pathway in Diabetes Mellitus. Diabetes and Metabolism Journal, 2021, 45, 77-85.	4.7	22
1533	Comparisons of oral, intestinal, and pancreatic bacterial microbiomes in patients with pancreatic cancer and other gastrointestinal diseases. Journal of Oral Microbiology, 2021, 13, 1887680.	2.7	17
1534	Associations of faecal microbiota with influenza-like illness in participants aged 60 years or older: an observational study. The Lancet Healthy Longevity, 2021, 2, e13-e23.	4.6	17
1535	Gut microbiota as the key controllers of "healthy―aging of elderly people. Immunity and Ageing, 2021, 18, 2.	4.2	161
1536	The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes, 2021, 13, 1966262.	9.8	4
1537	The Fecal and Serum Metabolomics of Giant Pandas Based on Untargeted Metabolomics. Zoological Science, 2021, 38, 179-186.	0.7	2
1538	Alterations in the intestinal microbiome and mental health status of workers in an underground tunnel environment. BMC Microbiology, 2021, 21, 7.	3.3	5
1539	Nutrition and sulfur. Advances in Food and Nutrition Research, 2021, 96, 123-174.	3.0	4
1540	The microbiota in pneumonia: From protection to predisposition. Science Translational Medicine, 2021, 13, .	12.4	43
1541	Probiotics, Microbiome and the Concept of Cross-Feeding. , 2022, , 199-220.		2

#	Article	IF	CITATIONS
1542	The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology, 2021, 14, 296-304.	6.0	160
1543	Carrageenan Oligosaccharides Extend Life Span and Health Span in Male <i>Drosophila Melanogaster</i> by Modulating Antioxidant Activity, Immunity, and Gut Microbiota. Journal of Medicinal Food, 2021, 24, 101-109.	1.5	12
1544	Heterochronic Fecal Microbiota Transfer Reverses Hallmarks of the Aging Murine Gut, Eye and Brain. SSRN Electronic Journal, 0, , .	0.4	3
1545	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.6	0
1546	Diet and Microbiota in the Elderly. , 2021, , 55-55.		0
1547	Changes in the Microbiota Composition and Function in Relation to Aging. , 2022, , 85-96.		3
1549	Microbiome changes in aging. , 2021, , 367-389.		1
1550	Bone and the microbiome. , 2021, , 969-988.		0
1551	A cross-sectional analysis from the Mykinso Cohort Study: establishing reference ranges for Japanese gut microbial indices. Bioscience of Microbiota, Food and Health, 2021, 40, 123-134.	1.8	14
1552	Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death and Differentiation, 2021, 28, 505-521.	11.2	32
1553	The Human Gut Microbiota in all its States: From Disturbance to Resilience. , 2022, , 161-178.		4
1554	The aging microbiome and response to immunotherapy: Considerations for the treatment of older adults with cancer. Journal of Geriatric Oncology, 2021, 12, 985-989.	1.0	2
1555	Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Scientific Reports, 2021, 11, 4628.	3.3	69
1557	Features of the gut microbiota in ulcerative colitis patients with depression. Medicine (United States), 2021, 100, e24845.	1.0	19
1558	Ramadan Fasting Leads to Shifts in Human Gut Microbiota Structured by Dietary Composition. Frontiers in Microbiology, 2021, 12, 642999.	3.5	32
1559	Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Medicine, 2021, 13, 22.	8.2	83
1561	Effects of the antibiotic rifaximin on cortical functional connectivity are mediated through insular cortex. Scientific Reports, 2021, 11, 4479.	3.3	3
1562	Prospective Analysis of Fruit and Vegetable Variety on Health Outcomes in Community-Dwelling Chinese Older Adults. Journal of Nutrition, Health and Aging, 2021, 25, 735-741.	3.3	5

#	Article	IF	CITATIONS
1563	Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Frontiers in Neuroscience, 2021, 15, 613120.	2.8	32
1564	Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients, 2021, 13, 706.	4.1	19
1565	Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Frontiers in Immunology, 2021, 12, 638867.	4.8	61
1566	Microbiota-Derived Metabolites, Indole-3-aldehyde and Indole-3-acetic Acid, Differentially Modulate Innate Cytokines and Stromal Remodeling Processes Associated with Autoimmune Arthritis. International Journal of Molecular Sciences, 2021, 22, 2017.	4.1	21
1567	Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nature Metabolism, 2021, 3, 274-286.	11.9	278
1568	Conducting research on diet–microbiome interactions: A review of current challenges, essential methodological principles, and recommendations for best practice in study design. Journal of Human Nutrition and Dietetics, 2021, 34, 631-644.	2.5	23
1569	Seasonal Changes in Microbial Communities Associated With the Jewel Anemone Corynactis viridis. Frontiers in Marine Science, 2021, 8, .	2.5	6
1570	The composition of the gut microbiome differs among community dwelling older people with good and poor appetite. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 368-377.	7.3	19
1571	Ginsenoside Rg1 improves cognitive capability and affects the microbiota of large intestine of tree shrew model for Alzheimer's disease. Molecular Medicine Reports, 2021, 23, .	2.4	26
1572	Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	4.0	54
1573	Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging, 2021, 13, 6330-6345.	3.1	35
1574	Emerging approaches to polypharmacy among older adults. Nature Aging, 2021, 1, 347-356.	11.6	26
1575	Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome, 2021, 9, 68.	11.1	42
1576	Dynamics of Gut Microbiota Recovery after Antibiotic Exposure in Young and Old Mice (A Pilot Study). Microorganisms, 2021, 9, 647.	3.6	15
1577	Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovascular Research, 2022, 118, 785-797.	3.8	102
1578	SARS-CoV-2 infection represents a high risk for the elderly: analysis of pathogenesis. Archives of Virology, 2021, 166, 1565-1574.	2.1	16
1579	Circulating fatty acids and endocannabinoidome-related mediator profiles associated to human longevity. GeroScience, 2021, 43, 1783-1798.	4.6	9
1580	The gut reaction to couples' relationship troubles: A route to gut dysbiosis through changes in depressive symptoms. Psychoneuroendocrinology, 2021, 125, 105132.	2.7	11

#	Article	IF	CITATIONS
1581	A Mouse Model Suggests That Heart Failure and Its Common Comorbidity Sleep Fragmentation Have No Synergistic Impacts on the Gut Microbiome. Microorganisms, 2021, 9, 641.	3.6	4
1582	Bacterial processing of glucose modulates C. elegans lifespan and healthspan. Scientific Reports, 2021, 11, 5931.	3.3	15
1583	Differences in the gut microbiota between young and elderly persons in Korea. Nutrition Research, 2021, 87, 31-40.	2.9	12
1584	Gut Microbiota Interaction with the Central Nervous System throughout Life. Journal of Clinical Medicine, 2021, 10, 1299.	2.4	47
1586	The Role of the Gut Microbiota in the Gut–Brain Axis in Obesity: Mechanisms and Future Implications. International Journal of Molecular Sciences, 2021, 22, 2993.	4.1	26
1587	Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers, 2021, 13, 1400.	3.7	83
1588	Dietary Gluten Intake Is Not Associated With Risk of Inflammatory Bowel Disease in US Adults Without Celiac Disease. Clinical Gastroenterology and Hepatology, 2022, 20, 303-313.e6.	4.4	6
1589	The microbiome links between aging and lupus. Autoimmunity Reviews, 2021, 20, 102765.	5.8	6
1590	Interactions between gut microbiota and metabolites modulate cytokine network imbalances in women with unexplained miscarriage. Npj Biofilms and Microbiomes, 2021, 7, 24.	6.4	37
1591	Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome, 2021, 9, 74.	11.1	25
1592	Characterization of the gutâ€liverâ€muscle axis in cirrhotic patients with sarcopenia. Liver International, 2021, 41, 1320-1334.	3.9	51
1593	A Unique Gut Microbiome–Physical Function Axis Exists in Older People with HIV: An Exploratory Study. AIDS Research and Human Retroviruses, 2021, 37, 542-550.	1.1	4
1595	Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 653651.	2.8	30
1596	The Influence of Candida spp. in Intestinal Microbiota; Diet Therapy, the Emerging Conditions Related to Candida in Athletes and Elderly People. , 0, , .		2
1597	The microbiome and rodent models of immune mediated diseases. Mammalian Genome, 2021, 32, 251-262.	2.2	9
1598	Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Frontiers in Microbiology, 2021, 12, 659465.	3.5	4
1599	Metabolic syndrome cannot mask the changes of faecal microbiota compositions caused by primary hepatocellular carcinoma. Letters in Applied Microbiology, 2021, 73, 73-80.	2.2	10
1600	Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland. International Journal of Environmental Research and Public Health, 2021, 18, 3742.	2.6	6

#	Article	IF	CITATIONS
1601	High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. Immunity and Ageing, 2021, 18, 20.	4.2	5
1602	Western-style diet impedes colonization and clearance of Citrobacter rodentium. PLoS Pathogens, 2021, 17, e1009497.	4.7	25
1603	Effects of dietary fibers, micronutrients, and phytonutrients on gut microbiome: a review. Applied Biological Chemistry, 2021, 64, .	1.9	13
1604	Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. International Journal of Molecular Sciences, 2021, 22, 3723.	4.1	31
1605	Immune response and gut microbiota of mice on a diet mimicking eating habits of elderly with risk of malnutrition development. International Journal of Food Sciences and Nutrition, 2021, 72, 1-12.	2.8	1
1606	Gut Dysbiosis and Western Diet in the Pathogenesis of Essential Arterial Hypertension: A Narrative Review. Nutrients, 2021, 13, 1162.	4.1	20
1608	Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E–Deficient Mice. Journal of the American Heart Association, 2021, 10, e019820.	3.7	18
1609	High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. MSystems, 2021, 6, .	3.8	69
1610	Neuroinflammation in Alzheimer's Disease. Biomedicines, 2021, 9, 524.	3.2	120
1611	Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role?. Nutrition Reviews, 2022, 80, 271-281.	5.8	24
1612	A biomimetic natural sciences approach to understanding the mechanisms of ageing in burden of lifestyle diseases. Clinical Science, 2021, 135, 1251-1272.	4.3	7
1613	Evolving Interplay Between Dietary Polyphenols and Gut Microbiota—An Emerging Importance in Healthcare. Frontiers in Nutrition, 2021, 8, 634944.	3.7	42
1614	Contribution of Gut Microbiota to Immunological Changes in Alzheimer's Disease. Frontiers in Immunology, 2021, 12, 683068.	4.8	25
1615	Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. Science of the Total Environment, 2021, 770, 145316.	8.0	27
1616	Association of oral microbiota profile with sugar-sweetened beverages consumption in school-aged children. International Journal of Food Sciences and Nutrition, 2022, 73, 82-92.	2.8	7
1617	Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxidants and Redox Signaling, 2021, 35, 1426-1448.	5.4	56
1618	Take a Walk to the Wild Side of <i>Caenorhabditis elegans</i> -Pathogen Interactions. Microbiology and Molecular Biology Reviews, 2021, 85, .	6.6	9
1619	Galacto-oligosaccharides supplementation in prefrail older and healthy adults increased faecal bifidobacteria, but did not impact immune function and oxidative stress. Clinical Nutrition, 2021, 40, 3019-3031	5.0	25

		CITATION REPORT	
#	Article	IF	CITATIONS
1620	The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients, 2021, 13, 1654.	4.1	74
1621	Gut microbiota in healthy and unhealthy long-living people. Gene, 2021, 779, 145510.	2.2	17
1622	Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutrition Research, 2021, 89, 10-22.	2.9	17
1623	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker a mediator of metabolic health. Gut, 2021, 70, 2105-2114.	nd 12.1	58
1624	A review on the concept of aging in Ayurveda literature. Journal of Complementary and Integrative Medicine, 2022, 19, 173-179.	0.9	1
1625	Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. no isolated from human faeces. Scientific Reports, 2021, 11, 11340.	ov., 3.3	42
1627	Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Frontiers i Nutrition, 2021, 8, 656730.	n 3.7	16
1628	The anti-oxidative effect of Lingzhi protein hydrolysates on lipopolysaccharide-stimulated A549Âcel Food Bioscience, 2021, 41, 101093.	ls. 4.4	14
1629	Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model. BMC Microbiology, 2021, 21, 163.	3.3	7
1630	Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men. Nutrients, 2021, 13, 1905.	4.1	4
1631	Diet–Microbiota Interactions Alter Mosquito Development. Frontiers in Microbiology, 2021, 12, 6	50743. 3.5	19
1632	Physical frailty as an important indicator of accelerated biological aging in serious mental illnesses. International Psychogeriatrics, 2022, 34, 955-957.	1.0	1
1633	In vitro cytotoxic effects of lactobacilli grown with lime honey on human breast and colon cancer cells. Food Bioscience, 2021, 41, 101020.	4.4	9
1634	The Effect of Probiotics on Health Outcomes in the Elderly: A Systematic Review of Randomized, Placebo-Controlled Studies. Microorganisms, 2021, 9, 1344.	3.6	17
1635	The Nursing Home Older Adult Gut Microbiome Composition Shows Time-dependent Dysbiosis and Influenced by Medication Exposures, Age, Environment, and Frailty. Journals of Gerontology - Series Biological Sciences and Medical Sciences, 2021, 76, 1930-1938.		7
1636	Sex- and age-specific variation of gut microbiota in Brandt's voles. PeerJ, 2021, 9, e11434.	2.0	12
1637	The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients, 2021, 13, 2045.	4.1	53
1638	Different aspects of frailty and COVID-19: points to consider in the current pandemic and future on BMC Geriatrics, 2021, 21, 389.	es. 2.7	42

#	Article	IF	CITATIONS
1639	Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduction and Targeted Therapy, 2021, 6, 245.	17.1	119
1640	Strenuous Physical Training, Physical Fitness, Body Composition and Bacteroides to Prevotella Ratio in the Gut of Elderly Athletes. Frontiers in Physiology, 2021, 12, 670989.	2.8	19
1641	Flavonoids and cellular stress: a complex interplay affecting human health. Critical Reviews in Food Science and Nutrition, 2022, 62, 8535-8566.	10.3	10
1642	Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacological Research, 2021, 168, 105587.	7.1	25
1643	Validity and safety of ID-JPL934 in lower gastrointestinal symptom improvement. Scientific Reports, 2021, 11, 13046.	3.3	6
1644	Alterations to the gut microbiome impair bone tissue strength in aged mice. Bone Reports, 2021, 14, 101065.	0.4	8
1645	Effect of High-Fat Diet  on  the Intestinal Flora in Letrozole-Induced Polycystic Ovary Syndrome Rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-13.	1.2	6
1646	Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Medicine, 2021, 13, 102.	8.2	62
1647	Magnesium in joint health and osteoarthritis. Nutrition Research, 2021, 90, 24-35.	2.9	18
1648	Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Frontiers in Aging Neuroscience, 2021, 13, 671142.	3.4	20
1649	Focus on gut microbiota in age-associated body changes. Medical Alphabet, 2021, , 44-51.	0.2	0
1650	Gut Microbiota as an Emerging Therapeutic Avenue for the Treatment of Nonalcoholic Fatty Liver Disease. Current Pharmaceutical Design, 2021, 27, 4677-4685.	1.9	7
1653	Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neuroscience and Biobehavioral Reviews, 2021, 125, 698-761.	6.1	80
1654	Sex- and Gender-related Issues of Gut Microbiota in Gastrointestinal Tract Diseases. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2021, 78, 9-23.	0.4	2
1655	Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients, 2021, 13, 2402.	4.1	34
1656	Does chronic inflammation cause acute inflammation to spiral into hyperâ€inflammation in a manner modulated by diet and the gut microbiome, in severe Covidâ€19?. BioEssays, 2021, 43, 2000211.	2.5	3
1657	Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Research Reviews, 2021, 68, 101323.	10.9	62
1658	Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients, 2021, 13, 2514.	4.1	28

\sim			<u> </u>	
CI	ITATI	ON	REPO	JRT

#	Article	IF	CITATIONS
1659	Infants' First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts. Nutrients, 2021, 13, 2639.	4.1	22
1660	Colorectal Cancer Patients Have Four Specific Bacterial Species in Oral and Gut Microbiota in Common—A Metagenomic Comparison with Healthy Subjects. Cancers, 2021, 13, 3332.	3.7	22
1661	Spatial Characteristics of Colonic Mucosa-Associated Gut Microbiota in Humans. Microbial Ecology, 2021, , 1.	2.8	10
1662	Network Topology of Biological Aging and Geroscience-Guided Approaches to COVID-19. Frontiers in Aging, 2021, 2, .	2.6	3
1663	Physical Frailty/Sarcopenia as a Key Predisposing Factor to Coronavirus Disease 2019 (COVID-19) and Its Complications in Older Adults. BioMed, 2021, 1, 11-40.	1.1	17
1664	Manipulating the exposome to enable better ageing. Biochemical Journal, 2021, 478, 2889-2898.	3.7	26
1665	Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Frontiers in Microbiology, 2021, 12, 680101.	3.5	45
1666	The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Frontiers in Cellular and Infection Microbiology, 2021, 11, 675414.	3.9	18
1667	The Risk of Alzheimer's Disease After Acute Appendicitis With or Without Appendectomy. Journal of the American Medical Directors Association, 2022, 23, 601-607.e2.	2.5	2
1668	Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599, 458-464.	27.8	251
1668 1669	Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873.	27.8 4.1	251 21
	599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All		
1669	 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. 	4.1	21
1669 1670	 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Frontiers in Neuroscience, 2021, 15, 677777. 	4.1 2.8	21 5
1669 1670 1671	 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Frontiers in Neuroscience, 2021, 15, 677777. Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice. Toxins, 2021, 13, 612. 	4.1 2.8 3.4	21 5 3
1669 1670 1671 1672	 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Frontiers in Neuroscience, 2021, 15, 677777. Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice. Toxins, 2021, 13, 612. Microbiota intestinal y salud. GastroenterologÃa Y HepatologÃa, 2021, 44, 519-535. Drivers of change and stability in the gut microbiota of an omnivorous avian migrant exposed to 	4.1 2.8 3.4 0.5	21 5 3 21
1669 1670 1671 1672 1673	 599, 458-464. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients, 2021, 13, 2873. The Influence of Nutrition in Alzheimer's Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Frontiers in Neuroscience, 2021, 15, 677777. Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice. Toxins, 2021, 13, 612. Microbiota intestinal y salud. GastroenterologÃa Y HepatologÃa, 2021, 44, 519-535. Drivers of change and stability in the gut microbiota of an omnivorous avian migrant exposed to artificial food supplementation. Molecular Ecology, 2021, 30, 4723-4739. Synbiotics Containing Nanoprebiotics: A Novel Therapeutic Strategy to Restore Gut Dysbiosis. 	4.1 2.8 3.4 0.5 3.9	21 5 3 21 16

#	Article	IF	CITATIONS
1677	The gut microbiota and nervous system: Age-defined and age-defying. Seminars in Cell and Developmental Biology, 2021, 116, 98-107.	5.0	5
1678	Microbial Reconstitution Improves Aging-Driven Lacrimal Gland Circadian Dysfunction. American Journal of Pathology, 2021, 191, 2091-2116.	3.8	11
1680	Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 2021, 13, 2795.	4.1	183
1681	Oral frailty and its determinants in older age: a systematic review. The Lancet Healthy Longevity, 2021, 2, e507-e520.	4.6	89
1682	Gut Microbiota Dynamics during Chemotherapy in Epithelial Ovarian Cancer Patients Are Related to Therapeutic Outcome. Cancers, 2021, 13, 3999.	3.7	23
1683	Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Frontiers in Nutrition, 2021, 8, 688086.	3.7	27
1684	The Gut Microbiome, Metformin, and Aging. Annual Review of Pharmacology and Toxicology, 2022, 62, 85-108.	9.4	28
1685	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	4.1	7
1686	The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. British Journal of Nutrition, 2022, 128, 1299-1314.	2.3	10
1687	Metagenomic analysis revealed the potential role of gut microbiome in gout. Npj Biofilms and Microbiomes, 2021, 7, 66.	6.4	91
1688	The associations of butyrate-producing bacteria of the gut microbiome with diet quality and muscle health. Gut Microbiome, 2021, 2, .	3.2	8
1689	A qPCR-based method for rapid quantification of six intestinal homeostasis-relevant bacterial genera in feces. Future Microbiology, 2021, 16, 895-906.	2.0	1
1690	Genome-Resolved Metagenomics of the Chicken Gut Microbiome. Frontiers in Microbiology, 2021, 12, 726923.	3.5	30
1691	Association of Increased Serum Lipopolysaccharide, But Not Microbial Dysbiosis, With <scp>Obesityâ€Related</scp> Osteoarthritis. Arthritis and Rheumatology, 2022, 74, 227-236.	5.6	21
1692	Microbiota from young mice counteracts selective age-associated behavioral deficits. Nature Aging, 2021, 1, 666-676.	11.6	132
1693	Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease. Neurobiology of Disease, 2021, 156, 105403.	4.4	39
1694	Young microbiota rejuvenates the aging brain. Nature Aging, 2021, 1, 625-627.	11.6	4
1695	The Challenge of ICIs Resistance in Solid Tumours: Could Microbiota and Its Diversity Be Our Secret Weapon?. Frontiers in Immunology, 2021, 12, 704942.	4.8	4

#	Article	IF	CITATIONS
1696	The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontology 2000, 2021, 87, 107-131.	13.4	195
1697	Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. , 2022, 231, 107978.		37
1698	Gut Microbiota and Alzheimer's Disease: Pathophysiology and Therapeutic Perspectives. Journal of Alzheimer's Disease, 2021, 83, 963-976.	2.6	4
1699	Bidirectional Cell-Cell Communication via Indole and Cyclo(Pro-Tyr) Modulates Interspecies Biofilm Formation. Applied and Environmental Microbiology, 2021, 87, e0127721.	3.1	7
1700	Microbiomes and Resistomes in Biopsy Tissue and Intestinal Lavage Fluid of Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 736994.	3.7	9
1701	Relevance of organ(s)-on-a-chip systems to the investigation of food-gut microbiota-host interactions. Critical Reviews in Microbiology, 2022, 48, 463-488.	6.1	20
1702	Marked Seasonal Variation in Structure and Function of Gut Microbiota in Forest and Alpine Musk Deer. Frontiers in Microbiology, 2021, 12, 699797.	3.5	44
1704	NAFLD in the Elderly. Clinical Interventions in Aging, 2021, Volume 16, 1633-1649.	2.9	43
1705	The Impact of IgA and the Microbiota on CNS Disease. Frontiers in Immunology, 2021, 12, 742173.	4.8	5
1706	The Endocannabinoid System: A Bridge between Alzheimer's Disease and Gut Microbiota. Life, 2021, 11, 934.	2.4	9
1707	Early intervention and prevention of allergic diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 416-441.	5.7	44
1708	Antiaging Potential of Peptides from Underused Marine Bioresources. Marine Drugs, 2021, 19, 513.	4.6	4
1709	Host and microbiota metabolic signals in aging and longevity. Nature Chemical Biology, 2021, 17, 1027-1036.	8.0	22
1710	Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Research Reviews, 2021, 70, 101405.	10.9	22
1711	Higher dietary fibre intake is associated with increased skeletal muscle mass and strength in adults aged 40Âyears and older. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 2134-2144.	7.3	34
1712	Pathobiological Relationship of Excessive Dietary Intake of Choline/L-Carnitine: A TMAO Precursor-Associated Aggravation in Heart Failure in Sarcopenic Patients. Nutrients, 2021, 13, 3453.	4.1	9
1713	Substitution of Sugar-Sweetened Beverages for Other Beverages: Can It Be the Next Step Towards Healthy Aging?. Current Nutrition Reports, 2021, 10, 399-412.	4.3	4
1714	Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice. Nutrients, 2021, 13, 3290.	4.1	10

#	Article	IF	CITATIONS
1715	Serum trimethylamine-N-oxide and gut microbiome alterations are associated with cholesterol deposition in the liver of laying hens fed with rapeseed meal. Animal Nutrition, 2021, 7, 1258-1270.	5.1	6
1716	Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 721249.	2.8	3
1717	Changes in the Gut Microbiome Contribute to the Development of Behcet's Disease via Adjuvant Effects. Frontiers in Cell and Developmental Biology, 2021, 9, 716760.	3.7	9
1718	Interactions between dietary polyphenols and aging gut microbiota: A review. BioFactors, 2022, 48, 274-284.	5.4	24
1719	Astilbin ameliorates oxidative stress and apoptosis in D-galactose-induced senescence by regulating the PI3K/Akt/m-TOR signaling pathway in the brains of mice. International Immunopharmacology, 2021, 99, 108035.	3.8	17
1720	Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition, 2021, 90, 111273.	2.4	12
1721	Significance of gut microbiota in alcoholic and non-alcoholic fatty liver diseases. World Journal of Gastroenterology, 2021, 27, 6161-6179.	3.3	12
1722	Immunosenescence and inflammaging in the aging process: age-related diseases or longevity?. Ageing Research Reviews, 2021, 71, 101422.	10.9	178
1723	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	5.4	12
1724	The gut microbiome: implications for neurogenesis and neurological diseases. Neural Regeneration Research, 2022, 17, 53.	3.0	14
1725	Gut Dysbiosis and Neurological Disorders—An Eclectic Perspective. , 2022, , 489-500.		0
1726	Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet–induced obese mice. Nutrition, 2022, 93, 111439.	2.4	11
1727	Microbiota-Brain-Gut Axis and Neurodegenerative Disorders. , 2022, , 412-422.		1
1728	Contribution of neuroinflammation, resolution, and neuroprotection in neuropsychiatric diseases. , 2022, , 161-186.		0
1729	Regulation of neuroinflammation, resolution, and neuroprotection by diet and gut microbiota. , 2022, , 187-219.		0
1730	Gut Bacterial Dysbiosis and Its Clinical Implications. , 2021, , 1-27.		0
1731	Metabolomics Signatures of Aging: Recent Advances. , 2021, 12, 646.		39
1732	Dietary habits and the gut microbiota in military Veterans: results from the United States-Veteran Microbiome Project (US-VMP). Gut Microbiome, 2021, 2, .	3.2	6

#	Article	IF	CITATIONS
1733	Diet and the Gut Microbiota in the Adulthood. , 2021, , 39-39.		0
1734	The Sporobiota of the Human Gut. Gut Microbes, 2021, 13, 1-17.	9.8	34
1735	Gut Microbiota and Aging: A Broad Perspective. , 2021, , 1543-1563.		0
1736	Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics, 2021, 11, 4155-4170.	10.0	84
1737	Elevated gut microbiome abundance of <i>Christensenellaceae, Porphyromonadaceae and Rikenellaceae</i> is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes, 2021, 13, 1-19.	9.8	127
1738	Regulation of Intestinal Barrier Function by Microbial Metabolites. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1463-1482.	4.5	235
1739	The gut microbiome in neurodegenerative disorders. , 2021, , 101-121.		0
1740	Microbiota-Gut-Brain Axis. , 2021, , 423-423.		0
1741	Microbiomes in Medicine and Agriculture. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 353-412.	0.6	0
1742	Gut lactate-producing bacteria promote CD4 T cell recovery on Anti-retroviral therapy in HIV-infected patients. Computational and Structural Biotechnology Journal, 2021, 19, 2928-2937.	4.1	3
1743	Maternal n-3 polyunsaturated fatty acids restructure gut microbiota of offspring mice and decrease their susceptibility to mammary gland cancer. Food and Function, 2021, 12, 8154-8168.	4.6	5
1744	Gut Microbiome and Obesity. , 2014, , 73-82.		2
1745	Gut Microbiome and Obesity. , 2014, , 73-82.		3
1746	Gut Microbiota and Aging. Healthy Ageing and Longevity, 2019, , 263-278.	0.2	1
1747	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, , 63-79.	0.9	4
1748	Gut Microbiota and Aging: A Broad Perspective. , 2020, , 1-21.		2
1749	Advancements in Microbial Genome Sequencing and Microbial Community Characterization. , 2019, , 87-113.		1
1750	Nutrition and the ageing brain: Moving towards clinical applications. Ageing Research Reviews, 2020, 62, 101079.	10.9	56

#	Article	IF	Citations
1751	The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 2017, 38, 59-65.	5.1	111
1752	Blood pressure management in an ecosystem context. Hypertension Research, 2020, 43, 989-994.	2.7	12
1753	CHAPTER 17. Polysaccharides as Major Carbon Sources in Environmental Biodiversity. New Developments in NMR, 0, , 369-395.	0.1	2
1754	Gut microbiota and aging. Critical Reviews in Food Science and Nutrition, 2022, 62, 3509-3534.	10.3	53
1755	The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes, 2021, 13, 1-11.	9.8	63
1756	Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis, 2017, 38, 231-240.	2.8	125
1757	Fecal Microbiota Transplantation. Journal of Pediatric Gastroenterology and Nutrition, 2015, 61, 4-7.	1.8	7
1758	The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. Journal of General Virology, 2016, 97, 1725-1738.	2.9	14
1759	An overview of the bacterial contribution to Crohn disease pathogenesis. Journal of Medical Microbiology, 2016, 65, 1049-1059.	1.8	53
1760	The nursing home elder microbiome stability and associations with age, frailty, nutrition and physical location. Journal of Medical Microbiology, 2018, 67, 40-51.	1.8	69
1761	Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in England and Wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids. Microbial Genomics, 2019, 5, .	2.0	16
1778	Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight, 2020, 5, .	5.0	66
1779	Interactions between gut microbiota and skeletal muscle. Nutrition and Metabolic Insights, 2020, 13, 117863882098049.	1.9	23
1781	Metabolic phenotyping of the human microbiome. F1000Research, 2019, 8, 1956.	1.6	12
1782	Recent advances in modulating the microbiome. F1000Research, 2020, 9, 46.	1.6	36
1783	SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539.	3.2	154
1784	Dietary Diversity, Diet Cost, and Incidence of Type 2 Diabetes in the United Kingdom: A Prospective Cohort Study. PLoS Medicine, 2016, 13, e1002085.	8.4	90
1785	The Human Gut Chip "HuGChipâ€, an Explorative Phylogenetic Microarray for Determining Gut Microbiome Diversity at Family Level. PLoS ONE, 2013, 8, e62544.	2.5	46

#	Article	IF	CITATIONS
1786	Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans. PLoS ONE, 2013, 8, e68919.	2.5	42
1787	Microbial Diversity and Evidence of Novel Homoacetogens in the Gut of Both Geriatric and Adult Giant Pandas (Ailuropoda melanoleuca). PLoS ONE, 2014, 9, e79902.	2.5	53
1788	A Modular Organization of the Human Intestinal Mucosal Microbiota and Its Association with Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e80702.	2.5	147
1789	Architectural Design Drives the Biogeography of Indoor Bacterial Communities. PLoS ONE, 2014, 9, e87093.	2.5	166
1790	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	2.5	109
1791	Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries. PLoS ONE, 2015, 10, e0132892.	2.5	52
1792	Type 2 Diabetes Biomarkers of Human Gut Microbiota Selected via Iterative Sure Independent Screening Method. PLoS ONE, 2015, 10, e0140827.	2.5	41
1793	Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis. PLoS ONE, 2016, 11, e0148028.	2.5	234
1794	Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats. PLoS ONE, 2016, 11, e0148118.	2.5	21
1795	Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations. PLoS ONE, 2016, 11, e0148386.	2.5	41
1796	Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes. PLoS ONE, 2016, 11, e0155863.	2.5	70
1797	Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy. PLoS ONE, 2016, 11, e0156773.	2.5	66
1798	An In Vitro Approach to Study Effects of Prebiotics and Probiotics on the Faecal Microbiota and Selected Immune Parameters Relevant to the Elderly. PLoS ONE, 2016, 11, e0162604.	2.5	56
1799	Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms. PLoS ONE, 2016, 11, e0162919.	2.5	10
1800	Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS ONE, 2017, 12, e0176554.	2.5	53
1801	Gut microbiota ecology: Biodiversity estimated from hybrid neutral-niche model increases with health status and aging. PLoS ONE, 2020, 15, e0237207.	2.5	4
1802	The role of microbial amyloid in neurodegeneration. PLoS Pathogens, 2017, 13, e1006654.	4.7	270
1803	CURRENT NUTRITIONAL RECOMMENDATIONS AND NOVEL DIETARY STRATEGIES TO MANAGE SARCOPENIA. Journal of Frailty & amp; Aging,the, 0, , 1-16.	1.3	66

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1804	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolism, 2	.015, 12, 3-9.	1.2	2
1805	Microbiotic Factor, Health and Stress-Induced Mental Disorders. Bulletin of the South Ural S University Series Psychology, 2018, 11, 75-87.	State	0.1	4
1806	A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Reviews in the Neurosciences, 2021, 32, 143-157.		2.9	35
1807	Gut Microbiome-Brain Communications Regulate Host Physiology and Behavior. Journal of M Health & Food Science, 2015, 3, .	lutritional	0.3	3
1808	Diverticular Disease: a Gut Microbiota Perspective. Journal of Gastrointestinal and Liver Dise 2019, 28, 327-337.	ases,	0.9	30
1809	Comparative Analysis of Ileal and Cecal Microbiota in Aged Rats. Journal of Cancer Preventio 23, 70-76.	on, 2018,	2.0	25
1810	Beyond cells – The virome in the human holobiont. Microbial Cell, 2019, 6, 373-396.		3.2	17
1811	Consensus document on exclusion diets in irritable bowel syndrome (IBS). Revista Espanola Enfermedades Digestivas, 2018, 110, 806-824.	De	0.3	6
1812	Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential microbiota-modulating therapeutic approaches. Bosnian Journal of Basic Medical Sciences, 270-283.		1.0	21
1813	The temporal variations of gut microbiota composition in overwintering Hooded Crane (<i></i>	Grus) Tj ETQq1 1 0.784	314 rgBT 0.8	/Overlock 1
1814	The role of hydrogen sulfide in aging and age-related pathologies. Aging, 2016, 8, 2264-228	39.	3.1	65
1815	Circulating glucuronic acid predicts healthspan and longevity in humans and mice. Aging, 2 7694-7706.	019, 11,	3.1	21
1816	Transplant of microbiota from long-living people to mice reduces aging-related indices and t beneficial bacteria. Aging, 2020, 12, 4778-4793.	ransfers	3.1	38
1817	Age-related shifts in gut microbiota contribute to cognitive decline in aged rats. Aging, 202 7801-7817.	0, 12,	3.1	61
1818	Mental awareness improved mild cognitive impairment and modulated gut microbiome. Agi 24371-24393.	ng, 2020, 12,	3.1	33
1819	Differential susceptibility to colorectal cancer due to naturally occurring gut microbiota. Oncotarget, 2015, 6, 33689-33704.		1.8	57
1820	The integration of biodiversity into One Health. OIE Revue Scientifique Et Technique, 2014,	33, 487-496.	1.2	13
1822	FROM GREAT GENETICS TO NEUROPSYCHOLOGY – OUTLINE OF THE RESEARCH ON THE BETWEEN MICROBIOTA AND HUMAN BEHAVIOUR. Postepy Mikrobiologii, 2020, 59, 3-10.	ASSOCIATION	0.1	1

#	Article	IF	CITATIONS
1823	<p>Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite, is Associated with Frailty in Older Adults with Cardiovascular Disease</p> . Clinical Interventions in Aging, 2020, Volume 15, 1809-1820.	2.9	28
1824	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	2.4	74
1825	Gut Inflammation: Current Update on Pathophysiology, Molecular Mechanism and Pharmacological Treatment Modalities. Current Pharmaceutical Design, 2014, 20, 1063-1081.	1.9	45
1826	Intestinal Barrier Dysfunction in Human Pathology and Aging. Current Pharmaceutical Design, 2016, 22, 4645-4650.	1.9	32
1827	Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Current Pharmaceutical Design, 2020, 26, 2630-2641.	1.9	11
1828	Targeting the Infant Gut Microbiota Through a Perinatal Educational Dietary Intervention: Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 2019, 8, e14771.	1.0	11
1829	The impact of intestinal microbiota on bio-medical research: definitions, techniques and physiology of a "new frontier". Acta Biomedica, 2018, 89, 52-59.	0.3	12
1830	Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Life Science Alliance, 2018, 1, e201800164.	2.8	29
1831	Assessment of Probiotics Mixture on Memory Function, Inflammation Markers, and Oxidative Stress in an Alzheimer's Disease Model of Rats. Iranian Biomedical Journal, 2020, 24, 220-228.	0.7	49
1832	Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight. Acta Naturae, 2013, 5, 116-125.	1.7	38
1833	Dietary Patterns Impact Temporal Dynamics of Fecal Microbiota Composition in Children With Autism Spectrum Disorder. Frontiers in Nutrition, 2019, 6, 193.	3.7	21
1834	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	2.5	121
1835	Multi-Omic Analysis Reveals Different Effects of Sulforaphane on the Microbiome and Metabolome in Old Compared to Young Mice. Microorganisms, 2020, 8, 1500.	3.6	14
1836	Aging, Gut Microbiota and Metabolic Diseases: Management through Physical Exercise and Nutritional Interventions. Nutrients, 2021, 13, 16.	4.1	24
1837	The Microbiota–Gut–Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame?. Nutrients, 2021, 13, 37.	4.1	130
1838	The Impact of Whole Grain Intake on Gastrointestinal Tumors: A Focus on Colorectal, Gastric, and Esophageal Cancers. Nutrients, 2021, 13, 81.	4.1	23
1839	Prospective observational multicenter study to define a diagnostic algorithm for biliary candidiasis. World Journal of Gastroenterology, 2014, 20, 12260.	3.3	15
1840	Sarcopenia and Muscle Aging: A Brief Overview. Endocrinology and Metabolism, 2020, 35, 716-732.	3.0	84

#	Article	IF	CITATIONS
1841	Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups. Journal of Microbiology and Biotechnology, 2019, 29, 429-440.	2.1	87
1842	The Microbiome Studies in Metabolic Diseases have Advanced but are Poorly Standardized and Lack a Mechanistic Perspective. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	2
1843	Exercise, the Gut Microbiome, and Frailty. Annals of Geriatric Medicine and Research, 2019, 23, 105-114.	1.8	17
1844	Chemopreventive Potential of Probiotics and Prebiotics. Food and Nutrition Sciences (Print), 2014, 05, 1800-1809.	0.4	6
1845	Good adherence to mediterranean diet can prevent gastrointestinal symptoms: A survey from Southern Italy. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2016, 7, 564.	1.1	50
1846	5-Aminosalicylic acid intolerance is associated with a risk of adverse clinical outcomes and dysbiosis in patients with ulcerative colitis. Intestinal Research, 2020, 18, 69-78.	2.6	19
1847	Human gut microbiota plays a role in the metabolism of drugs. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 317-326.	0.6	58
1848	Medical and alternative therapies in urinary tract stone disease. World Journal of Nephrology, 2015, 4, 492.	2.0	11
1849	Effect of Overgrowth or Decrease in Gut Microbiota on Health and Disease. Archives of Pediatric Infectious Diseases, 2016, 4, .	0.3	12
1850	Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model. Food Science of Animal Resources, 2020, 40, 1014-1032.	4.1	21
1851	Adjusting for age improves identification of gut microbiome alterations in multiple diseases. ELife, 2020, 9, .	6.0	113
1852	Optogenetic control of gut bacterial metabolism to promote longevity. ELife, 2020, 9, .	6.0	43
1853	Effect of Diet Change on Gut Microbiota: Observational Pilot Study of Four Urban Couples. Journal of Obesity and Metabolic Syndrome, 2017, 26, 257-265.	3.6	3
1854	Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ, 2016, 4, e1854.	2.0	89
1855	Noninvasive analysis of metabolic changes following nutrient input into diverse fish species, as investigated by metabolic and microbial profiling approaches. PeerJ, 2014, 2, e550.	2.0	42
1856	Early-life intestinal microbiome in <i>Trachemys scripta elegans</i> analyzed using 16S rRNA sequencing. PeerJ, 2020, 8, e8501.	2.0	15
1857	Gut microbiota changes in airway diseases: a systematic review. Revista De Ciências Médicas E Biológicas, 2020, 19, 353.	0.1	1
1858	Research progress of gut microbiota and frailty syndrome. Open Medicine (Poland), 2021, 16, 1525-1536.	1.3	7

# 1859	ARTICLE Assessment the of Anti-Obesity Effects and Safety of <i>Lactobacillus paracasei</i> AO356. Journal of the Korean Society of Food Science and Nutrition, 2021, 50, 904-911.	IF 0.9	Citations
1860	The contrasting human gut microbiota in early and late life and implications for host health and disease. Nutrition and Healthy Aging, 2021, 6, 157-178.	1.1	5
1861	The diversity and composition of the human gut lactic acid bacteria and bifidobacterial microbiota vary depending on age. Applied Microbiology and Biotechnology, 2021, 105, 8427-8440.	3.6	13
1862	Quantity and variety of food groups consumption and the risk of diabetes in adults: A prospective cohort study. Clinical Nutrition, 2021, 40, 5710-5717.	5.0	20
1863	The microbiome and IgA nephropathy. Seminars in Immunopathology, 2021, 43, 649-656.	6.1	12
1864	Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes. FASEB Journal, 2021, 35, e22011.	0.5	23
1865	Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Frontiers in Physiology, 2021, 12, 770455.	2.8	39
1866	The role played by bacterial infections in the onset and metastasis of cancer. Current Research in Microbial Sciences, 2021, 2, 100078.	2.3	10
1867	Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie, 2022, 193, 38-63.	2.6	18
1868	Changes in Blood Metabolites, Intestinal Microbiota Composition and Gene Expression of 95 Weeks Old Laying Hens Differing in Egg Production and Egg Breaking Strength. Animals, 2021, 11, 3012.	2.3	0
1869	A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. American Journal of Clinical Nutrition, 2022, 115, 432-443.	4.7	28
1870	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
1874	Darmmikrobiota: Kleine Organismen – große Wirkung. , 2014, , 53-68.		0
1875	Pro- and Prebiotics for Elderly. , 2013, , 156-178.		0
1876	Probiotics and Prebiotics and the Gut Microbiota. , 2013, , 258-268.		2
1877	Modulation of the Gut Ecosystem in Irritable Bowel Syndrome. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 55-73.	0.6	0
1878	Pathophysiological responses from human gut microbiome. World Journal of Translational Medicine, 2014, 3, 133.	3.5	0
1879	Hypothalamic Pathophysiology in the Neuroimmune,Dysmetabolic and Longevity Complications of Chronic Opiate Dependency. Journal of Forensic Toxicology and Pharmacology, 2014, 03, .	0.1	Ο

#	Article	IF	Citations
1880	Infectious Microecology in Immunodeficiency Diseases. Advanced Topics in Science and Technology in China, 2014, , 593-609.	0.1	0
1881	Metabonomics and Gut Microbial Paradigm in Healthy Aging. Molecular and Integrative Toxicology, 2015, , 169-184.	0.5	0
1882	Commensal Bugs from the Gut-Shaping Human Health and Disease. Journal of Investigative Genomics, 2014, 1, .	0.2	0
1884	The Aging Superorganism. , 2016, , 265-290.		0
1885	MicroRNAs: Decoders of Dysbiosis into Metabolic Diseases?. Journal of Diabetes & Metabolism, 2016, 7, .	0.2	1
1887	Biomedical Applications of Gut Stem Cells: Gaining First-Hand Insights for Developing Therapy for the Future. Journal of Stem Cell Research & Therapeutics, 2016, 1, .	0.1	0
1888	Microbiota: A Key for Healthy Aging. Annals of Geriatric Medicine and Research, 2016, 20, 168-176.	1.8	6
1889	Gut Microbiota, a Key Factor Relating Diet and Inflammation with the Progression of Cognitive Impairment in Older People. Journal of Nutritional Health & Food Engineering, 2017, 6, .	0.5	1
1890	A Review on Bifidobacteria for Human Health. Journal of Milk Science and Biotechnology, 2017, 35, 73-83.	0.3	0
1892	Modifying the Gut Microbiome Through Diet: Effects on the Immune System of Elderly Subjects. , 2018, , 1-31.		1
1893	Gut Microbiota, a Rising Star in Hypertension. MOJ Anatomy & Physiology, 2017, 4, .	0.2	0
1894	Gut Microbiota in Elderly's Health. , 2018, , 1-32.		0
1895	The Microbiota and Energy Balance. Endocrinology, 2018, , 1-18.	0.1	0
1896	Effect of water-extract Mekabu powder on defecation and fecal bacterial flora of elderly people in nursing homes. Journal for the Integrated Study of Dietary Habits, 2018, 29, 157-166.	0.0	0
1899	The Aging Gut Microbiota. , 2019, , 285-307.		0
1900	Modifying the Gut Microbiome Through Diet: Effects on the Immune System of Elderly Subjects. , 2019, , 2575-2605.		0
1901	Bacteria—Human Interactions: Leads for Personalized Medicine. Europeanization and Globalization, 2019, , 89-98.	0.1	0
1902	Epigenomic, Transcriptome and Image-Based Biomarkers of Aging. Healthy Ageing and Longevity, 2019, , 47-66.	0.2	0

#	Article	IF	Citations
1904	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
1905	Gut Microbiota in Elderly's Health. , 2019, , 2607-2638.		0
1906	A Review of the Relationship Between Gut Microbiota and Memory. , 2019, , 151-165.		1
1907	Microbiota: Current Research and Emerging Trends. , 2019, , .		0
1908	Intestinal Microbiota and Allergy. Probiotics and Prebiotics in Prevention and Treatment of Allergic Diseases. PediatriÄeskaâ Farmakologiâ, 2019, 16, 7-18.	0.4	5
1909	The effect of diet on the fluctuations of human gut microbiota. Y Hoc Thanh Pho Ho Chi Minh, 2017, 3, 22-24.	0.0	0
1914	Bacterial overgrowth syndrome in patients with chronic diffuse liver diseases depending on the etiology and morphological features. Gastroenterologia, 2019, 53, 162-169.	0.3	0
1916	Physical activity regulates the intestinal microbiota composition. Annales Kinesiologiae, 2020, 10, 99-114.	0.1	0
1918	Pets and Immunomodulation. , 2020, , 209-243.		0
1919	Intestinal microbiome and 2 type diabetes mellitus. Ukrainian Therapeutical Journal, 2019, .	0.0	0
1920	Microbiome and human aging (literature review). Journal of the National Academy of Medical Sciences of Ukraine, 2019, , 463-475.	0.3	1
1922	Polifenollerin Bağırsak Mikrobiyota Kompozisyonunu Düzenleyici ve Nöroprotektif Etkileri. Akademik Gıda, 0, , 190-208.	0.8	2
1924	Effect of acidified milk feeding on the intake, average daily gain and fecal microbiological diversity of Holsten dairy calves. Asian-Australasian Journal of Animal Sciences, 2020, 33, 1265-1272.	2.4	5
1928	Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients, 2021, 13, 3839.	4.1	27
1929	Compositional changes in human gut microbiota reveal a putative role of intestinal mycobiota in metabolic and biological decline during aging. Nutrition and Healthy Aging, 2021, , 1-15.	1.1	4
1930	Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics, 2021, 22, 775.	2.8	12
1931	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0
1933	Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: a systematic literature review. Nutrition Reviews, 2021, 79, 1274-1292.	5.8	4

# 1935	ARTICLE The role of intestinal microbiota in the colorectal carcinogenesis. , 2022, , 495-512.	IF	CITATIONS 0
1936	Gut Microbiota and Health. , 2020, , 31-79.		0
1937	Gut microbiota modification as an option in multiple sclerosis management. Polish Annals of Medicine, 0, , .	0.3	1
1938	The developing microbiome and inflammatory bowel diseases. , 2020, , 95-114.		0
1939	Sarcopenia. , 2020, , 1781-1803.e19.		0
1940	Dietary Fiber and Aging. , 2020, , 111-145.		2
1941	The importance of nutrition in the forming of intestinal microbiome. Journal International Academy of Refrigeration, 2020, 19, 52-59.	0.1	1
1942	Determinants of the Gut Microbiota. , 2020, , 19-62.		0
1943	Human Microbiome: age-related changes and functions. Russian Journal of Evidence-Based Gastroenterology, 2020, 9, 42.	0.4	8
1944	Involvement of Oral Microbiota in the Gut Microbiota of Colorectal Cancer. SSRN Electronic Journal, 0, , .	0.4	0
1951	The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms, 2021, 9, 2310.	3.6	15
1952	Dietary Addition With Clostridium butyricum and Xylo-Oligosaccharides Improves Carcass Trait and Meat Quality of Huanjiang Mini-Pigs. Frontiers in Nutrition, 2021, 8, 748647.	3.7	6
1953	Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats. Scientific Reports, 2021, 11, 21569.	3.3	12
1955	Differences in the gut microbiota composition of rats fed with soybean protein and their derived peptides. Journal of Food Science, 2021, 86, 5452-5465.	3.1	2
1958	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
1959	Abundance and Diversity of Microbiota. , 2013, , 23-40.		1
1960	Variation in Holobionts. , 2013, , 81-94.		1
1961	Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight. Acta Naturae, 2013, 5, 116-25.	1.7	22

#	Article	IF	CITATIONS
1962	Gut bacteria in health and disease. Gastroenterology and Hepatology, 2013, 9, 560-9.	0.1	120
1963	Irritable bowel syndrome: the role of food in pathogenesis and management. Gastroenterology and Hepatology, 2014, 10, 164-74.	0.1	52
1964	Current nutritional recommendations and novel dietary strategies to manage sarcopenia. Journal of Frailty & Aging,the, 2013, 2, 38-53.	1.3	94
1965	Scratching Responses to Epidermal Injury in C57BL/6, DBA/2, BALB/c, and CD1 Mice. Comparative Medicine, 2016, 66, 208-15.	1.0	1
1966	Metagenomic Assembly: Overview, Challenges and Applications. Yale Journal of Biology and Medicine, 2016, 89, 353-362.	0.2	71
1967	What are the characteristics of vitamin D metabolism in opioid dependence? An exploratory longitudinal study in Australian primary care. BMJ Open, 2018, 8, e016806.	1.9	0
1968	Organ transplantation and gut microbiota: current reviews and future challenges. American Journal of Translational Research (discontinued), 2018, 10, 3330-3344.	0.0	12
1969	The effect of saturated and unsaturated fatty acids on the production of outer membrane vesicles from and. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, 155-162.	0.6	8
1971	Postbiotic Metabolites: How Probiotics Regulate Health. Integrative Medicine, 2020, 19, 25-30.	0.1	0
1972	The microbiome: an emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	1.3	23
1973	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. Surgical Neurology International, 2021, 12, 210.	0.2	0
1974	Probiotic supplementation attenuates ageâ€related sarcopenia via the gut–muscle axis in SAMP8 mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 515-531.	7.3	38
1975	The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet. Scientific Reports, 2021, 11, 21602.	3.3	12
1976	Metagenomic Analysis of Intestinal Microbiota in Florated Rats. Biological Trace Element Research, 2022, 200, 3275-3283.	3.5	4
1977	A Possible Perspective about the Compositional Models, Evolution, and Clinical Meaning of Human Enterotypes. Microorganisms, 2021, 9, 2341.	3.6	12
1978	Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients, 2021, 13, 4337.	4.1	14
1979	A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection. Cells, 2021, 10, 3234.	4.1	14
1980	Current and future applications of fecal microbiota transplantation for children. Biomedical Journal, 2022, 45, 11-18.	3.1	11

#	Article	IF	CITATIONS
1981	Lactobacillus rhamnosus GG Colonization in Early Life Ameliorates Inflammaging of Offspring by Activating SIRT1/AMPK/PGC-11 [±] Pathway. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-27.	4.0	17
1982	Potential Reasons for Unresponsiveness to Anti-PD1 Immunotherapy in Young Patients with Advanced Melanoma. Life, 2021, 11, 1318.	2.4	7
1983	Microbiota Targeted Interventions of Probiotic Lactobacillus as an Anti-Ageing Approach: A Review. Antioxidants, 2021, 10, 1930.	5.1	12
1984	Autism-related dietary preferences mediate autism-gut microbiome associations. Cell, 2021, 184, 5916-5931.e17.	28.9	172
1985	Microbiote intestinal et santéÂ: une nécessaire refonte de notre système agri-alimentaire. Cahiers De Nutrition Et De Dietetique, 2022, 57, 18-27.	0.3	2
1986	The Urinary Microbiome of Older Adults Residing in a Nursing Home Varies with Duration of Residence and Shows Increases in Potential Pathogens. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, , .	3.6	4
1987	On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Frontiers in Microbiology, 2021, 12, 784797.	3.5	15
1988	Effect of stocking density and age on physiological performance and dynamic gut bacterial and fungal communities in Langya hens. Microbial Cell Factories, 2021, 20, 218.	4.0	11
1989	Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncolmmunology, 2021, 10, 1988403.	4.6	28
1990	Mikrobiota jelitowa a leki. Interakcje wpÅ,ywajÄce na skuteczność i bezpieczeÅ,,stwo farmakoterapii. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 762-772.	0.1	0
1991	A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 2022, 35, e0033820.	13.6	138
1993	The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	9.9	11
1994	Mortality risk and antibiotic use for COVID-19 in hospitalized patients over 80. Biomedicine and Pharmacotherapy, 2022, 146, 112481.	5.6	6
1995	As inter-relações entre a depressão e a disbiose intestinal: uma revisão integrativa. Research, Society and Development, 2020, 9, e149108063.	0.1	Ο
1997	Targeting gut dysbiosis as a means to enhance recovery from surgical brain injury. , 2021, 12, 210.		0
1998	Characterization of the consensus mucosal microbiome of colorectal cancer. NAR Cancer, 2021, 3, zcab049.	3.1	9
1999	Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort—The HELIUS Study. Metabolites, 2021, 11, 858.	2.9	6
2000	Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids, 2022, 54, 57-70.	2.7	34

#	Article	IF	CITATIONS
2001	Home-Based Hematopoietic Cell Transplantation in the United States. Transplantation and Cellular Therapy, 2022, 28, 207.e1-207.e8.	1.2	3
2002	Higher fruit and vegetable variety associated with lower risk of cognitive impairment in Chinese community-dwelling older men: a 4-year cohort study. European Journal of Nutrition, 2022, , 1.	3.9	6
2004	Can data-driven approaches for dietary pattern assessment improve microbiome epidemiology research?. American Journal of Clinical Nutrition, 2022, 115, 329-331.	4.7	1
2005	Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Molecular Ecology, 2022, 31, 1577-1594.	3.9	22
2006	Phylogenetic relationship and habitat both impact the gut microbiome in two microendemic gastropods. Journal of Molluscan Studies, 2022, 88, .	1.2	4
2007	Chestnut polysaccharides restore impaired spermatogenesis by adjusting gut microbiota and the intestinal structure. Food and Function, 2022, 13, 425-436.	4.6	3
2008	Gut Microbiota Composition Is Related to AD Pathology. Frontiers in Immunology, 2021, 12, 794519.	4.8	57
2009	Ontology-aware neural network: a general framework for pattern mining from microbiome data. Briefings in Bioinformatics, 2022, , .	6.5	1
2010	SER-109, an Oral Microbiome Therapy for Recurrent <i>Clostridioides difficile</i> Infection. New England Journal of Medicine, 2022, 386, 220-229.	27.0	205
2011	Age-Related Changes in the Composition of Intestinal Microbiota in Elderly Chinese Individuals. Gerontology, 2022, 68, 976-988.	2.8	4
2012	The Beneficial Effects of Combining Anti-Aβ Antibody NP106 and Curcumin Analog TML-6 on the Treatment of Alzheimer's Disease in APP/PS1 Mice. International Journal of Molecular Sciences, 2022, 23, 556.	4.1	4
2013	Effects of probiotics on cognitive and emotional functions in healthy older adults: Protocol for a doubleâ€blind randomized placeboâ€controlled crossover trial. Research in Nursing and Health, 2022, 45, 274-286.	1.6	2
2014	Association Between Long-Term Regular Exercise and Gut Microbiota Among Middle-Aged and Older Urban Chinese. International Journal of Sport Nutrition and Exercise Metabolism, 2022, , 1-9.	2.1	1
2015	Mutual Links between the Endocannabinoidome and the Gut Microbiome, with Special Reference to Companion Animals: A Nutritional Viewpoint. Animals, 2022, 12, 348.	2.3	8
2017	The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells, 2022, 11, 382.	4.1	24
2019	Potential effects of mung bean protein and a mung bean protein–polyphenol complex on oxidative stress levels and intestinal microflora in aging mice. Food and Function, 2022, 13, 186-197.	4.6	18
2020	Glycan profiling of the gut microbiota by Glycan-seq. ISME Communications, 2022, 2, .	4.2	4
2022	The Ketogenic Diet: Is It an Answer for Sarcopenic Obesity?. Nutrients, 2022, 14, 620.	4.1	12

#	Article	IF	CITATIONS
2023	Recent Advances in Understanding the Structure and Function of the Human Microbiome. Frontiers in Microbiology, 2022, 13, 825338.	3.5	32
2024	Analysis of colonic mucosa-associated microbiota using endoscopically collected lavage. Scientific Reports, 2022, 12, 1758.	3.3	12
2025	The gut microbiota as a biomarker for realistic exposures to pesticides: A critical consideration. Neurotoxicology and Teratology, 2022, 91, 107074.	2.4	6
2027	A Guide to Dietary Pattern–Microbiome Data Integration. Journal of Nutrition, 2022, 152, 1187-1199.	2.9	12
2028	Systematic Review of the Effects of Exercise and Physical Activity on the Gut Microbiome of Older Adults. Nutrients, 2022, 14, 674.	4.1	28
2029	Performance determinants of unsupervised clustering methods for microbiome data. Microbiome, 2022, 10, 25.	11.1	15
2030	Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804733.	3.9	11
2031	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	6.5	25
2032	The links between gut microbiota and obesity and obesity related diseases. Biomedicine and Pharmacotherapy, 2022, 147, 112678.	5.6	86
2033	A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. Biology, 2021, 10, 1354.	2.8	10
2034	The Gut Microbiome. , 2022, , .		0
2036	Biotransformation of toxic xenobiotics by human gut microbiota. , 2022, , 217-243.		0
2039	Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Frontiers in Nutrition, 2022, 9, 814269.	3.7	14
2040	Collateral Damage in the Human Gut Microbiome - Blastocystis Is Significantly Less Prevalent in an Antibiotic-Treated Adult Population Compared to Non-Antibiotic Treated Controls. Frontiers in Cellular and Infection Microbiology, 2022, 12, 822475.	3.9	3
2042	PAYCS Alleviates Scopolamine-Induced Memory Deficits in Mice by Reducing Oxidative and Inflammatory Stress and Modulation of Gut Microbiota-Fecal Metabolites-Brain Neurotransmitter Axis. Journal of Agricultural and Food Chemistry, 2022, 70, 2864-2875.	5.2	11
2043	Microbiome Resilience and Health Implications for People in Half-Year Travel. Frontiers in Immunology, 2022, 13, 848994.	4.8	2
2044	A Comprehensive Review of the Current and Future Role of the Microbiome in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 1020.	3.7	10
2045	<i>Paraphocaeicola brunensis</i> gen. nov., sp. nov., Carrying Two Variants of <i>nimB</i> Resistance Gene from Bacteroides fragilis, and <i>Caecibacteroides pullorum</i> gen. nov., sp. nov., Two Novel Genera Isolated from Chicken Caeca. Microbiology Spectrum, 2022, 10, e0195421.	3.0	2

#	Article	IF	CITATIONS
2046	Novel Role of Ghrelin Receptor in Gut Dysbiosis and Experimental Colitis in Aging. International Journal of Molecular Sciences, 2022, 23, 2219.	4.1	11
2047	Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells, 2022, 11, 743.	4.1	36
2048	The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients, 2022, 14, 924.	4.1	9
2049	Cytoprotective Effects of Lactobacilli on Mouse Epithelial Cells during Salmonella Infection. Fermentation, 2022, 8, 101.	3.0	1
2050	ARZIMM: A Novel Analytic Platform for the Inference of Microbial Interactions and Community Stability from Longitudinal Microbiome Study. Frontiers in Genetics, 2022, 13, 777877.	2.3	1
2051	Effects of Fumonisin B and Hydrolyzed Fumonisin B on Growth and Intestinal Microbiota in Broilers. Toxins, 2022, 14, 163.	3.4	10
2052	Microbiotaâ€microglia connections in ageâ€related cognition decline. Aging Cell, 2022, 21, e13599.	6.7	27
2053	Intake and Sources of Dietary Fiber, Inflammation, and Cardiovascular Disease in Older US Adults. JAMA Network Open, 2022, 5, e225012.	5.9	15
2054	Metformin attenuated sepsis-related liver injury by modulating gut microbiota. Emerging Microbes and Infections, 2022, 11, 815-828.	6.5	58
2055	Comparative Analysis of Gut Microbiota in Centenarians and Young People: Impact of Eating Habits and Childhood Living Environment. Frontiers in Cellular and Infection Microbiology, 2022, 12, 851404.	3.9	14
2056	Roles of Microbiota in Cancer: From Tumor Development to Treatment. Journal of Oncology, 2022, 2022, 2022, 1-15.	1.3	8
2057	Type, Intensity, and Duration of Exercise as Regulator of Gut Microbiome Profile. Current Sports Medicine Reports, 2022, 21, 84-91.	1.2	8
2058	Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. Microbiome, 2022, 10, 41.	11.1	12
2059	Understanding the mechanism underlying the anti-diabetic effect of dietary component: a focus on gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 7378-7398.	10.3	11
2060	Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Frontiers in Cellular and Infection Microbiology, 2022, 12, 804644.	3.9	40
2061	Environmental and Human Microbiome for Health. Life, 2022, 12, 456.	2.4	15
2062	Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. Journal of Nanomaterials, 2022, 2022, 1-19.	2.7	38
2063	Gut microbes and muscle function: can probiotics make our muscles stronger?. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1460-1476.	7.3	54

CITATION	REPORT
CHAHON	KLPOKI

#	Article	IF	CITATIONS
2064	Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomaterialia, 2022, 144, 81-95.	8.3	27
2066	The Association Between Dietary Diversity Score and Odds of Diabetic Nephropathy: A Case-Control Study. Frontiers in Nutrition, 2022, 9, 767415.	3.7	3
2067	Acupuncture Effect Assessment in APP/PS1 Transgenic Mice: On Regulating Learning-Memory Abilities, Gut Microbiota, and Microbial Metabolites. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-20.	1.3	9
2068	Maintaining oral health for a hundred years and more? - An analysis of microbial and salivary factors in a cohort of centenarians. Journal of Oral Microbiology, 2022, 14, 2059891.	2.7	2
2069	Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutrition & Dietetics, 0, , 1-16.	0.3	2
2070	The role of nutrition in inflammaging. Ageing Research Reviews, 2022, 77, 101596.	10.9	65
2071	Anti-aging effect of phlorizin on D-galactose–induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota. Experimental Gerontology, 2022, 163, 111769.	2.8	28
2072	Imbalance of the Gut Microbiota May Be Associated with Missed Abortions: A Perspective Study from a General Hospital of Hunan Province. Journal of Immunology Research, 2021, 2021, 1-13.	2.2	3
2073	Colorectal Cancer-Associated Microbiome Patterns and Signatures. Frontiers in Genetics, 2021, 12, 787176.	2.3	22
2074	Gut microbiome in hemodialysis patients treated with calcium acetate or treated with sucroferric oxyhydroxide: a pilot study. International Urology and Nephrology, 2022, 54, 2015-2023.	1.4	5
2075	Role of the Microbiome in Regulating Bone Metabolism and Susceptibility to Osteoporosis. Calcified Tissue International, 2022, 110, 273-284.	3.1	22
2076	Tree-Based Analysis of Dietary Diversity Captures Associations Between Fiber Intake and Gut Microbiota Composition in a Healthy US Adult Cohort. Journal of Nutrition, 2022, 152, 779-788.	2.9	20
2077	Gut Metabolite Trimethylamine N-Oxide Protects INS-1 β-Cell and Rat Islet Function under Diabetic Glucolipotoxic Conditions. Biomolecules, 2021, 11, 1892.	4.0	11
2078	Association of the gut microbiota and fecal shortâ€chain fatty acids with skeletal muscle mass and strength in children. FASEB Journal, 2022, 36, e22109.	0.5	7
2079	The Relationship between Gut Microbiome and Cognition in Older Australians. Nutrients, 2022, 14, 64.	4.1	8
2080	Restoring an adequate dietary fiber intake by inulin supplementation: a pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes, 2022, 14, 2007042.	9.8	15
2081	Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules, 2022, 12, 39.	4.0	20
2082	Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Animal Nutrition, 2022, 9, 84-99.	5.1	14

		CITATION REPORT		
#	Article		IF	Citations
2084	Dietary diversity contributes to microbiome associations in autism. Cell Metabolism, 20	021, 33, 2311-2313.	16.2	1
2085	Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fi Journal of Cancer Prevention, 2021, 26, 277-288.	ischer-344 Rats.	2.0	1
2086	Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism Clinical Reviews in Allergy and Immunology, 2022, 63, 499-529.	, and Epigenetics.	6.5	17
2088	Gut Microbiota: The Servant of Human Being and the Accessary of Tumorigenesis. Tren 2020, 2, 37-51.	ıds in Oncology,	0.0	0
2089	The influence of gut microbiota alteration on age-related neuroinflammation and cogn Neural Regeneration Research, 2022, 17, 2407.	itive decline.	3.0	19
2090	Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome. Circulation Research, 202	22, 130, 1112-1144.	4.5	40
2091	Gut bacteriobiota and mycobiota are both associated with Day-28 mortality among cripatients. Critical Care, 2022, 26, 105.	tically ill	5.8	15
2092	Murine Gut Microbiome Meta-analysis Reveals Alterations in Carbohydrate Metabolism Aging. MSystems, 2022, 7, e0124821.	in Response to	3.8	5
2093	Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and personalized interventions. Journal of Translational Medicine, 2022, 20, 173.	therapies to	4.4	19
2132	The gut microbiome as a modulator of healthy ageing. Nature Reviews Gastroenterolog Hepatology, 2022, 19, 565-584.	gy and	17.8	162
2133	What are the characteristics of vitamin D metabolism in opioid dependence? An explor longitudinal study in Australian primary care. BMJ Open, 2018, 8, e016806.	atory	1.9	2
2134	Third Jesús Culebras Lecture - Molecular biology and clinical nutrition; where do we sta do we go?. Nutricion Hospitalaria, 2013, 28, 241-9.	and and where	0.3	4
2135	Utilization of Host and Microbiome Features in Determination of Biological Aging. Micr 2022, 10, 668.	roorganisms,	3.6	8
2136	Prevalence of Undernutrition and Related Dietary Factors among People Aged 75 Years China during 2010-2012. Biomedical and Environmental Sciences, 2018, 31, 425-437.	s or Older in	0.2	4
2137	Convergent pathways of the gut microbiota–brain axis and neurodegenerative disore Gastroenterology Report, 2022, 10, goac017.	ders.	1.3	16
2138	Research Progress of Gut Microbiota in the Pathogenesis of Postoperative Cognitive D Advances in Clinical Medicine, 2022, 12, 3542-3549.	ysfunction.	0.0	0
2139	Nutrition, Immunosenescence, and Infectious Disease: An Overview of the Scientific Ev Micronutrients and on Modulation of the Gut Microbiota. Advances in Nutrition, 2022,		6.4	31
2140	Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity a of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Molecular Sciences, 2022, 23, 4768.	nd Pathogenesis Journal of	4.1	22

#	Article	IF	CITATIONS
2141	Microbial Dark Matter: from Discovery to Applications. Genomics, Proteomics and Bioinformatics, 2022, 20, 867-881.	6.9	20
2142	Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome, 2022, 10, 68.	11.1	107
2143	Comprehensive 16S rRNA and metagenomic data from the gut microbiome of aging and rejuvenation mouse models. Scientific Data, 2022, 9, 197.	5.3	1
2144	Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3096-3128.	11.7	6
2145	Higher Consumption of Fruit and Vegetables Is Associated With Lower Worries, Tension and Lack of Joy Across the Lifespan. Frontiers in Nutrition, 2022, 9, 837066.	3.7	5
2146	Eco-Evolutionary Dynamics of the Human-Gut Microbiota Symbiosis in a Changing Nutritional Environment. Evolutionary Biology, 2022, 49, 255-264.	1.1	3
2147	The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Frontiers in Nutrition, 2022, 9, 887019.	3.7	8
2148	Synbiotics intake improves disturbed metabolism in a rat model of high fat diet-induced obesity; A potential role of adipose tissue browning. Obesity Medicine, 2022, 32, 100414.	0.9	2
2149	The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy?. Neurobiology of Disease, 2022, 170, 105746.	4.4	7
2151	Goat milk fermented with combined lactic acid bacterium alter microbial community structures and levels of the targeted short-chain fatty acids in the large intestine of mice. Food Research International, 2022, 157, 111352.	6.2	3
2152	Synergy of Dietary Quercetin and Vitamin E Improves Cecal Microbiota and Its Metabolite Profile in Aged Breeder Hens. Frontiers in Microbiology, 2022, 13, .	3.5	1
2153	Sex Difference of Gut Microbiota. , 2022, , 363-377.		14
2154	Gut Microbiota and Depression, Anxiety, and Cognitive Disorders. , 2022, , 379-391.		1
2155	Pectin with various degrees of esterification differentially alters gut microbiota and metabolome of healthy adults. EFood, 2022, 3, .	3.1	10
2156	High prevalence of Pseudomonas aeruginosa carriage in residents of French and German long-term care facilities. Clinical Microbiology and Infection, 2022, 28, 1353-1358.	6.0	9
2157	Role of C-Reactive Protein in Diabetic Inflammation. Mediators of Inflammation, 2022, 2022, 1-15.	3.0	22
2160	Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 435-460.	7.3	12
2161	Centenarians Alleviate Inflammaging by Changing the Ratio and Secretory Phenotypes of T Helper 17 and Regulatory T Cells. Frontiers in Pharmacology, 0, 13, .	3.5	11

#	Article	IF	Citations
2164	Practical approach to irritable bowel syndrome-diarrhea beyond low-FODMAP diet. Revista Espanola De Enfermedades Digestivas, 2022, 114, .	0.3	1
2166	Gut Microbiome Signatures of Progression in Alzheimer's Disease: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
2167	Probiotics and gut-brain axis modulation. , 2022, , 373-410.		0
2168	Probiotics in old age. , 2022, , 329-344.		0
2169	Analysis of Gut Microbiota in Patients with Breast Cancer and Benign Breast Lesions. Polish Journal of Microbiology, 2022, 71, 217-226.	1.7	9
2171	A rarefaction-without-resampling extension of PERMANOVA for testing presence–absence associations in the microbiome. Bioinformatics, 2022, 38, 3689-3697.	4.1	6
2172	The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nature Reviews Neurology, 2022, 18, 476-495.	10.1	94
2173	How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. Life, 2022, 12, 936.	2.4	11
2174	Gut Microbiota Markers and Dietary Habits Associated with Extreme Longevity in Healthy Sardinian Centenarians. Nutrients, 2022, 14, 2436.	4.1	18
2175	Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Critical Reviews in Food Science and Nutrition, 2023, 63, 11185-11210.	10.3	2
2176	Pathophysiology of Diverticular Disease: From Diverticula Formation to Symptom Generation. International Journal of Molecular Sciences, 2022, 23, 6698.	4.1	15
2177	Can probiotics and prebiotics contribute to healthy ageing?. Nutrition and Healthy Aging, 2022, , 1-7.	1.1	0
2178	Aging gut microbiota of wild macaques are equally diverse, less stable, but progressively personalized. Microbiome, 2022, 10, .	11.1	9
2179	Gut microbial characteristics in poor appetite and undernutrition: a cohort of older adults and microbiota transfer in germâ€free mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2188-2201.	7.3	8
2180	Is there any association between adherence to the Mediterranean Diet and Dietary Total Antioxidant Capacity with Bacterial Vaginosis? Results from a Case–Control study. BMC Women's Health, 2022, 22,	2.0	2
2181	Increased number of children in households may protect against inflammatory bowel disease. Pediatric Research, 2023, 93, 535-540.	2.3	3
2182	Gut microbiota dysbiosis induced by polychlorinated biphenyl 126 contributes to increased brain proinflammatory cytokines: Landscapes from the gut-brain axis and fecal microbiota transplantation. Ecotoxicology and Environmental Safety, 2022, 241, 113726.	6.0	9
2184	Aging, Cutaneous Burn Injury and Multi-Organ Complications: The Role of the Gut. Advances in Geriatric Medicine and Research, 0, , .	0.6	0

#	Article	IF	CITATIONS
2185	Horizons in Human Aging Neuroscience: From Normal Neural Aging to Mental (Fr)Agility. Frontiers in Human Neuroscience, 0, 16, .	2.0	4
2187	Longâ€Term Dietary Effects on Human Gut Microbiota Composition Employing Shotgun Metagenomics Data Analysis. Molecular Nutrition and Food Research, 2023, 67, .	3.3	4
2188	Mapping the global research landscape on nutrition and the gut microbiota: Visualization and bibliometric analysis. World Journal of Gastroenterology, 2022, 28, 2981-2993.	3.3	12
2189	A protocol for the cultivation and monitoring of ileal gut microbiota surrogates. Journal of Applied Microbiology, 0, , .	3.1	0
2191	Gut Microbes and Neuropathology: Is There a Causal Nexus?. Pathogens, 2022, 11, 796.	2.8	6
2192	Pharmacological Approaches to Decelerate Aging: A Promising Path. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-25.	4.0	5
2193	The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients, 2022, 14, 2872.	4.1	16
2194	Comprehensive 16S rRNA sequencing based microbiomes and 1H NMR based metabolomics reveal the relationships of aging and constipation. Experimental Gerontology, 2022, 166, 111882.	2.8	1
2195	Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mechanisms of Ageing and Development, 2022, 206, 111711.	4.6	14
2196	Akkermansia muciniphila, an important link between dietary fiber and host health. Current Opinion in Food Science, 2022, 47, 100905.	8.0	6
2197	Neuronutraceuticals Combating Neuroinflammaging: Molecular Insights and Translational Challenges—A Systematic Review. Nutrients, 2022, 14, 3029.	4.1	3
2198	Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. NeuroMolecular Medicine, 2023, 25, 14-26.	3.4	9
2200	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , 109-124.		1
2201	Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology, 2022, 20, 707-720.	28.6	66
2202	Gut microbiome and aging nexus and underlying mechanism. Applied Microbiology and Biotechnology, 2022, 106, 5349-5358.	3.6	15
2203	Gut microbiota profile of patients on peritoneal dialysis: comparison with household contacts. European Journal of Clinical Nutrition, 2023, 77, 90-97.	2.9	5
2204	Blenderised Tube Feeds vs. Commercial Formula: Which Is Better for Gastrostomy-Fed Children?. Nutrients, 2022, 14, 3139.	4.1	11
2205	Effect of aging on acute pancreatitis through gut microbiota. Frontiers in Microbiology, 0, 13, .	3.5	3

CITATION REPORT ARTICLE IF CITATIONS The impact of dietary nutrient intake on gut microbiota in the progression and complications of 5.2 8 chronic kidney disease. Kidney International, 2022, 102, 728-739. Role of the Gut–Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's 3.6 Disease. Microorganisms, 2022, 10, 1544. Lacticaseibacillus casei CNCM I-5663 supplementation maintained muscle mass in a model of frail 3.7 4 rodents. Frontiers in Nutrition, 0, 9, . Neuroprotective Natural Products' Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients, 2022, 14, 3270. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes 12.1 45 in early-onset colorectal cancer. Gut, 2023, 72, 1129-1142. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and 3.7 Neck Squamous Cell Cancers. Cancers, 2022, 14, 4116. Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. Evidence-based Complementary and Alternative Medicine, 2022, 1.2 4 2022, 1-16. Chronic diarrhoea in older adults and the role of dietary interventions. Nutrition and Healthy Aging, 1.1 2022, , 1-12. Food for healthier aging: power on your plate. Critical Reviews in Food Science and Nutrition, 2024, 10.3 7 64, 603-616. Dysbiosis and Migraine Headaches in Adults With Celiac Disease. Cureus, 2022, , . Specific enterotype of gut microbiota predicted clinical effect of methotrexate in patients with 1.9 6 rheumatoid arthritis. Rheumatology, 2023, 62, 1087-1096. New Trends in Aging Drug Discovery. Biomedicines, 2022, 10, 2006. 3.2 Serum cholesterol increase in statin users associated with antibiotic use: Case-crossover study. 3.5 1 European Journal of Pharmacology, 2022, 932, 175209. Evaluating the clinical relevance of the enterotypes in the Estonian microbiome cohort. Frontiers in 2.3 Genetics, 0, 13, . Colorectal Cancer and Microbiota Modulation for Clinical Use. A Systematic Review. Nutrition and 2.0 1 Cancer, 0, , 1-17. Computational approach to modeling microbiome landscapes associated with chronic human disease 3.2

2224	The gut microbiota – A vehicle for the prevention and treatment of hepatocellular carcinoma. Biochemical Pharmacology, 2022, 204, 115225.	4.4	4
2225	Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a	3.7	4

progression. PLoS Computational Biology, 2022, 18, e1010373.

Re-Emerging Therapy for Autoimmune Diseases. Antibiotics, 2022, 11, 1093.

#

2206

2208

2209

2210

2214

2216

2218

2219

2220

2222

#	Article	IF	CITATIONS
2226	Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling. Microorganisms, 2022, 10, 1687.	3.6	20
2227	A gut entric view of aging: Do intestinal epithelial cells contribute to ageâ€associated microbiota changes, inflammaging, and immunosenescence?. Aging Cell, 2022, 21, .	6.7	15
2228	Microbial and immune factors regulate brain maintenance and aging. Current Opinion in Neurobiology, 2022, 76, 102607.	4.2	2
2229	Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochemical Pharmacology, 2022, 204, 115213.	4.4	4
2230	Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Experimental Gerontology, 2022, 167, 111927.	2.8	10
2231	Reaching and maintaining higher dietary diversity is associated with decreased risk of all-cause mortality: A longitudinal study from the China Health and Nutrition Survey. Frontiers in Nutrition, 0, 9, .	3.7	5
2232	Host-mycobiome metabolic interactions in health and disease. Gut Microbes, 2022, 14, .	9.8	11
2233	Changes in gut microbiome correlate with intestinal barrier dysfunction and inflammation following a 3-day ethanol exposure in aged mice. Alcohol, 2023, 107, 136-143.	1.7	3
2235	Gut microbiome in multiple sclerosis-related cognitive impairment. Multiple Sclerosis and Related Disorders, 2022, 67, 104165.	2.0	2
2236	Consumption of golden berries (Physalis peruviana L.) might reduce biomarkers of oxidative stress and alter gut permeability in men without changing inflammation status or the gut microbiota. Food Research International, 2022, 162, 111949.	6.2	5
2237	Population-weighted exposure to green spaces tied to lower COVID-19 mortality rates: A nationwide dose-response study in the USA. Science of the Total Environment, 2022, 851, 158333.	8.0	10
2238	The oral microbiota as part of the human microbiota $\hat{a} \in $ links to general health. , 2020, 131, .		0
2239	Linking Anorexia Nervosa with the Gut Microbiota. , 2022, , 1-27.		0
2240	Gut Microbiota Regulation of Cerebral Stroke. , 2022, , 47-70.		0
2241	An introduction to human microbiome. Progress in Molecular Biology and Translational Science, 2022, , .	1.7	0
2242	Biotechnology applications in precision food. , 2022, , 197-222.		1
2243	Increased plasma trimethylamine- <i>N</i> -oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population. Food and Function, 2022, 13, 10013-10022.	4.6	1
2244	Impact of polyphenols on human gut microbiome and associated biomarkers. , 2022, , 25-40.		1

# 2245	ARTICLE The connection between diet, gut microbes, and cognitive decline. , 2022, , 265-271.	IF	Citations 0
2246	Combined Non-Invasive Prediction and New Biomarkers of Oral and Fecal Microbiota in Patients With Gastric and Colorectal Cancer. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	17
2247	Obesity, inflammation, and aging. , 2023, , 83-99.		0
2248	Micro- and nanoencapsulation of omega-3 and other nutritional fatty acids: challenges and novel solutions. , 2023, , 481-506.		0
2249	Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2022, 23, 9777.	4.1	22
2250	Clostridium butyricum Potentially Improves Immunity and Nutrition through Alteration of the Microbiota and Metabolism of Elderly People with Malnutrition in Long-Term Care. Nutrients, 2022, 14, 3546.	4.1	8
2251	Akkermansia muciniphila Reduces Peritonitis and Improves Intestinal Tissue Wound Healing after a Colonic Transmural Defect by a MyD88-Dependent Mechanism. Cells, 2022, 11, 2666.	4.1	9
2252	Cellular senescence is a key mediator of lung aging and susceptibility to infection. Frontiers in Immunology, 0, 13, .	4.8	8
2254	The neurovascular unit and systemic biology in stroke — implications for translation and treatment. Nature Reviews Neurology, 2022, 18, 597-612.	10.1	30
2255	Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites, 2022, 12, 911.	2.9	2
2256	Is Stomach a Sterile Environment. Awareness and Practices of Rabies and Animal Bite Management Among Victims Who Attended the OPD Services at Avissawella Base Hospital Sri Lanka, 0, , 81-89.	0.0	0
2258	Probiotics Treatment Can Improve Cognition in Patients with Mild Cognitive Impairment: A Systematic Review. Journal of Alzheimer's Disease, 2022, 89, 1173-1191.	2.6	4
2259	Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. American Journal of Clinical Nutrition, 2022, 116, 1049-1058.	4.7	14
2260	Short- and Long-Term Effects of a Prebiotic Intervention with Polyphenols Extracted from European Black Elderberry—Sustained Expansion of Akkermansia spp Journal of Personalized Medicine, 2022, 12, 1479.	2.5	7
2261	Polypharmacy With High Drug Burden Index (DBI) Alters the Gut Microbiome Overriding Aging Effects and Is Reversible With Deprescribing. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 213-222.	3.6	9
2263	Effects of Lactobacillus curvatus HY7602-Fermented Antlers in Dexamethasone-Induced Muscle Atrophy. Fermentation, 2022, 8, 454.	3.0	5
2264	Ionizing Radiation from Radiopharmaceuticals and the Human Gut Microbiota: An Ex Vivo Approach. International Journal of Molecular Sciences, 2022, 23, 10809.	4.1	4
2265	Mechanisms of Influence of Intestinal Microbiota on the Processes of Aging of the CNS and the Formation of Cognitive Disorders in Alzheimer's Disease. Psychiatry, 2022, 20, 98-111.	0.7	2

#	Article	IF	CITATIONS
2269	Diversifying your diet portfolio: potential impacts of dietary diversity on the gut microbiome and human health. American Journal of Clinical Nutrition, 2022, 116, 844-845.	4.7	3
2270	Anti-inflammatory Streptococcus thermophilus CNRZ160 limits sarcopenia induced by low-grade inflammation in older adult rats. Frontiers in Nutrition, 0, 9, .	3.7	4
2271	Tutorial: Microbiome studies in drug metabolism. Clinical and Translational Science, 2022, 15, 2812-2837.	3.1	2
2272	Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plasticity, 2022, 8, 97-119.	3.5	21
2273	Differential gut microbiota and intestinal permeability between frail and healthy older adults: A systematic review. Ageing Research Reviews, 2022, 82, 101744.	10.9	18
2274	Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Scientific Reports, 2022, 12, .	3.3	5
2275	Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Frontiers in Aging Neuroscience, 0, 14, .	3.4	3
2276	Relation Between Dietary Protein Intake and Gut Microbiome Composition in Community-Dwelling Older Men: Findings from the Osteoporotic Fractures in Men Study (MrOS). Journal of Nutrition, 2022, 152, 2877-2887.	2.9	6
2277	Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metabolism and Disposition, 2023, 51, 219-227.	3.3	5
2278	Flavonoids bridging the gut and the brain: Intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochemical Pharmacology, 2022, 205, 115257.	4.4	8
2279	Research Progress of Gut Microbiota's Function in Metabolic and Immunological Diseases. Open Journal of Natural Science, 2022, 10, 949-959.	0.0	0
2280	STUDYING THE GUT MICROBIOME IN PEOPLE OVER 60. , 2022, 32, 81-87.		0
2281	Skin Barrier Function and the Microbiome. International Journal of Molecular Sciences, 2022, 23, 13071.	4.1	42
2283	Perturbation of the gut microbiome and association with outcomes following autologous stem cell transplantation in patients with multiple myeloma. Leukemia and Lymphoma, 2023, 64, 87-97.	1.3	7
2284	Trimethylamine N-oxide: role in cell senescence and age-related diseases. European Journal of Nutrition, 0, , .	3.9	3
2285	Starvation and refeeding influence the growth, biochemical index, intestinal microbiota, and transcriptomic profiles of golden pompano Trachinotus ovatus (Linnaeus 1758). Frontiers in Marine Science, 0, 9, .	2.5	3
2286	Dietary acid load, alternative healthy eating index score, and bacterial vaginosis: is there any association? A case-control study. BMC Infectious Diseases, 2022, 22, .	2.9	2
2288	Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in <i>Drosophila sechellia</i> . Journal of Experimental Biology, 2022, 225, .	1.7	0

#	Article	IF	CITATIONS
2289	Effectiveness of a Novel Food Composed of Leucine, Omega-3 Fatty Acids and Probiotic Lactobacillus paracasei PS23 for the Treatment of Sarcopenia in Elderly Subjects: A 2-Month Randomized Double-Blind Placebo-Controlled Trial. Nutrients, 2022, 14, 4566.	4.1	9
2290	Systematic analysis of microbiota in pregnant Chinese women and its association with miscarriage. Annals of Translational Medicine, 2022, 10, 1099-1099.	1.7	4
2291	The gut microbiota of silkworm are altered by antibiotic exposure. FEBS Open Bio, 2022, 12, 2203-2212.	2.3	2
2292	Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults. Nature Aging, 2022, 2, 941-955.	11.6	21
2293	Exploratory studies of oral and fecal microbiome in healthy human aging. Frontiers in Aging, 0, 3, .	2.6	5
2294	Crosstalk between the Gut and Brain in Ischemic Stroke: Mechanistic Insights and Therapeutic Options. Mediators of Inflammation, 2022, 2022, 1-17.	3.0	2
2295	Frailty-associated dysbiosis of human microbiotas in older adults in nursing homes. Nature Aging, 2022, 2, 876-877.	11.6	0
2296	Gut Health and Its Association with Wellbeing and Nutrient Intake in Community-Dwelling Older Adults. Gastroenterology Insights, 2022, 13, 349-364.	1.2	1
2297	Long-Term Food Variety and Dietary Patterns Are Associated with Frailty among Chinese Older Adults: A Cohort Study Based on CLHLS from 2014 to 2018. Nutrients, 2022, 14, 4279.	4.1	8
2298	Comparison between frail and non-frail older adults' gut microbiota: A systematic review and meta-analysis. Ageing Research Reviews, 2022, 82, 101773.	10.9	7
2299	The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and neurodegenerative disorders. Frontiers in Neuroscience, 0, 16, .	2.8	5
2300	Cross-sectional observational study protocol: missing microbes in infants born by caesarean section (MiMIC): antenatal antibiotics and mode of delivery. BMJ Open, 2022, 12, e064398.	1.9	1
2301	Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunology Letters, 2022, 251-252, 91-102.	2.5	14
2302	New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	5
2303	The multisensory regulation of unconventional T cell homeostasis. Seminars in Immunology, 2022, 61-64, 101657.	5.6	4
2304	The microbiota and aging microenvironment in pancreatic cancer: Cell origin and fate. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188826.	7.4	5
2305	Polysaccharide ORP-1 isolated from Oudemansiella raphanipes ameliorates age-associated intestinal epithelial barrier dysfunction in Caco-2 cells monolayer. Food Research International, 2022, 162, 112038.	6.2	5
2306	A framework for health equity in people living with epilepsy. Epilepsy Research, 2022, 188, 107038.	1.6	5

ARTICLE IF CITATIONS Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. 2307 4.0 1 Chemico-Biological Interactions, 2022, 368, 110223. Precision Nutrition from the View of the Gut Microbiome., 2022, , 67-96. Nutrition in Brain Aging: Its Relevance to Age-Associated Neurodegeneration., 2022, , 869-897. 0 2309 The schizophrenia and gut microbiota: A bibliometric and visual analysis. Frontiers in Psychiatry, 0, 13, Gut microbial response to host metabolic phenotypes. Frontiers in Nutrition, 0, 9, . 2311 3.7 3 The mechanism of the gut microbiota affecting the development of Alzheimer's disease and expectations on therapeutic methods. , 0, , 45-60. Gut microbiota affects brain development and behavior. Clinical and Experimental Pediatrics, 2023, 66, 2313 2.2 3 274-280. Microbiome assembly and maintenance across the lifespan of bumble bee workers. Molecular Ecology, 3.9 2314 2023, 32, 724-740. Relationships between dietary diversity and gut microbial diversity in the elderly. Beneficial Microbes, 2316 2.4 7 2022, 13, 453-464. Prebiotic supplementation modulates selective effects of stress on behavior and brain metabolome in aged mice. Neurobiology of Stress, 2022, 21, 100501. Influential factors of saliva microbiota composition. Scientific Reports, 2022, 12, . 2318 3.3 3 Potentially Beneficial Effects on Healthy Aging by Supplementation of the EPA-Rich Microalgae Phaeodactylum tricornutum or Its Supernatant—A Randomized Controlled Pilot Trial in Elderly 4.6 Individuals. Marine Drugs, 2022, 20, 716. The role and therapeutic potential of gut microbiome in severe burn. Frontiers in Cellular and 2320 3.9 1 Infection Microbiology, 0, 12, . The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Medicine, 6.5 2022, 52, 119-128. Toward an improved definition of a healthy microbiome for healthy aging. Nature Aging, 2022, 2, 2322 11.6 27 1054-1069. Microbiota-immune-brain interactions: A lifespan perspective. Current Opinion in Neurobiology, 2023, 19 78, 102652. Research Progress on the Relationship between Intestinal Flora and Cognitive Func-tion in Patients 2324 0.00 with Schizophrenia. Advances in Clinical Medicine, 2022, 12, 11145-11153. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. 2.8 Frontiers in Oncology, 0, 12, .

#	Article	IF	Citations
2327	Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. Children, 2022, 9, 1834.	1.5	2
2328	Sex-specific gut microbiome profiles among preterm infants during the neonatal intensive care hospitalization. , 2022, 1, 6-13.		3
2329	Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites, 2022, 12, 1149.	2.9	3
2330	The Potential Health Benefits of Brown Rice. , 0, , .		0
2331	The Connection between Gut and Lung Microbiota, Mast Cells, Platelets and SARS-CoV-2 in the Elderly Patient. International Journal of Molecular Sciences, 2022, 23, 14898.	4.1	4
2332	Healthy microbiome – a mere idea or a sound concept?. Physiological Research, 2022, 71, 719-738.	0.9	6
2333	Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. British Journal of Cancer, 2023, 128, 528-536.	6.4	3
2334	Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: a cross-sectional study. Journal of Translational Medicine, 2022, 20, .	4.4	5
2335	Gut-microbiome-based predictive model for ST-elevation myocardial infarction in young male patients. Frontiers in Microbiology, 0, 13, .	3.5	2
2336	Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Current Gastroenterology Reports, 2023, 25, 31-44.	2.5	13
2337	Administration of Ligilactobacillus salivarius CECT 30632 to elderly during the COVID-19 pandemic: Nasal and fecal metataxonomic analysis and fatty acid profiling. Frontiers in Microbiology, 0, 13, .	3.5	2
2338	Interventions on Gut Microbiota for Healthy Aging. Cells, 2023, 12, 34.	4.1	13
2339	Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota. Gut Microbes, 2023, 15, .	9.8	18
2340	Facilitating a high-quality dietary pattern induces shared microbial responses linking diet quality, blood pressure, and microbial sterol metabolism in caregiver-child dyads. Gut Microbes, 2022, 14, .	9.8	1
2341	Longitudinal Analysis of the Microbiome and Metabolome in the 5xfAD Mouse Model of Alzheimer's Disease. MBio, 2022, 13, .	4.1	12
2342	Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19?. Nutrients, 2022, 14, 5274.	4.1	5
2343	The gut microbiota is an emerging target for improving brain health during ageing. Gut Microbiome, 2023, 4, .	3.2	9
2344	Psychobiotics and Elderly Health. Current Approaches in Psychiatry, 2022, 14, 469-476.	0.4	0

#	Article	IF	Citations
2345	Dietary Polyphenols in Relation to Gut Microbiota Composition in Saudi Arabian Females. Metabolites, 2023, 13, 6.	2.9	1
2346	The role of the microbiota–gut–brain axis in longâ€ŧerm neurodegenerative processes following traumatic brain injury. European Journal of Neuroscience, 2023, 57, 400-418.	2.6	8
2347	Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Frontiers in Medicine, 0, 9, .	2.6	6
2348	The Microbiome in Neurogastroenterology. , 2022, , 73-93.		0
2349	Gut Microbes: Gateway to Reshaping Biological Aging. , 2023, , 1-21.		0
2350	Ageing of the Gut Microbiome and Its Potential Contribution Towards Immunesenescence and Inflammaging. Healthy Ageing and Longevity, 2023, , 41-63.	0.2	0
2351	High-intensity mechanical bowel preparation before curative colorectal surgery is associated with poor long-term prognosis. International Journal of Colorectal Disease, 2023, 38, .	2.2	1
2352	Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients, 2023, 15, 259.	4.1	10
2353	Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells, 2023, 12, 249.	4.1	12
2354	Human Gut Microbiota Plasticity throughout the Life Course. International Journal of Environmental Research and Public Health, 2023, 20, 1463.	2.6	11
2355	"Aging Gut Microbiota and Colorectal Cancer Pathways Correlations― Healthy Ageing and Longevity, 2023, , 335-354.	0.2	0
2356	Gut Microbiota and Eating Disorders on the Extremes of Aging. Healthy Ageing and Longevity, 2023, , 99-127.	0.2	0
2357	Characterization of the Gut Microbiota in Urban Thai Individuals Reveals Enterotype-Specific Signature. Microorganisms, 2023, 11, 136.	3.6	2
2358	Ageing and Human Gut Microbiome: The Taxonomic and Functional Transition Towards an Elderly-Type Microbiome. Healthy Ageing and Longevity, 2023, , 23-39.	0.2	0
2359	Supplementation with goat meat extract improves exercise performance, reduces physiological fatigue, and modulates gut microbiota in mice. Journal of Functional Foods, 2023, 101, 105410.	3.4	0
2360	Microbiome and Metabolomics in Liver Cancer: Scientific Technology. International Journal of Molecular Sciences, 2023, 24, 537.	4.1	13
2361	Compositional Differences of Meconium Microbiomes of Preterm and Term Infants, and Infants That Developed Necrotizing Enterocolitis or Feeding Intolerance. Pathogens, 2023, 12, 55.	2.8	1
2362	Multi-omics gut microbiome signatures in obese women: role of diet and uncontrolled eating behavior. BMC Medicine, 2022, 20, .	5.5	11

#	Article	IF	CITATIONS
2363	Using the Gut Microbiome to Assess Stocking Efforts of the Endangered Pallid Sturgeon, Scaphirhynchus albus. Life, 2023, 13, 309.	2.4	0
2364	Effect of Clostridium butyricum on High-Fat Diet-Induced Intestinal Inflammation and Production of Short-Chain Fatty Acids. Digestive Diseases and Sciences, 2023, 68, 2427-2440.	2.3	6
2365	Messages from the Seventh International Conference on Clinical Metagenomics (ICCMg7). Microbes and Infection, 2023, , 105105.	1.9	0
2366	The human microbiome: A promising target for lung cancer treatment. Frontiers in Immunology, 0, 14, .	4.8	4
2367	A Machine Learning Approach Reveals a Microbiota Signature for Infection with Mycobacterium avium subsp. <i>paratuberculosis</i> in Cattle. Microbiology Spectrum, 2023, 11, .	3.0	2
2369	The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs, 2023, 37, 117-132.	5.9	0
2370	The <scp>Food4Years</scp> Ageing Network: Improving foods and diets as a strategy for supporting quality of life, independence and healthspan in older adults. Nutrition Bulletin, 2023, 48, 124-133.	1.8	3
2372	Host Factors Associated with Gut Mycobiome Structure. MSystems, 2023, 8, .	3.8	9
2373	Microbiota-directed biotherapeutics: considerations for quality and functional assessment. Gut Microbes, 2023, 15, .	9.8	5
2374	Can probiotics decrease the risk of postmenopausal osteoporosis in women?. PharmaNutrition, 2023, 24, 100336.	1.7	6
2375	SMRT sequencing and ddPCR reveal the complexity of developmental trajectories and temporal dynamics of gut bifidobacterial communities in infants. Food Science and Human Wellness, 2023, 12, 1743-1750.	4.9	0
2376	The modulation effect of lotus (Nelumbo nucifera Gaertn.) seeds oligosaccharides with different structures on intestinal flora and action mode of growth effects on Bifidobacterium in vivo and in vitro. Food Chemistry, 2023, 419, 136057.	8.2	0
2377	A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiological Research, 2023, 271, 127346.	5.3	3
2379	Primary nephrotic syndrome relapse within 1Âyear after glucocorticoid therapy in children is associated with gut microbiota composition at syndrome onset. Nephrology Dialysis Transplantation, 2023, 38, 1969-1980.	0.7	3
2380	Microorganisms in Pathogenesis and Management of Multiple Sclerosis (MS). , 2022, , 151-175.		0
2381	Tracing human life trajectory using gut microbial communities by context-aware deep learning. Briefings in Bioinformatics, 2023, 24, .	6.5	0
2382	Older adults and healthcare professionals have limited awareness of the link between the Mediterranean diet and the gut microbiome for healthy aging. Frontiers in Nutrition, 0, 10, .	3.7	1
2383	Association of serum homocysteine levels with intestinal flora and cognitive function in schizophrenia. Journal of Psychiatric Research, 2023, 159, 258-265.	3.1	2

#	Article	IF	CITATIONS
2384	Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines, 2023, 11, 431.	3.2	7
2385	Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 133-196.	0.6	3
2386	Growth Stages and Inter-Species Gut Microbiota Composition and Function in Captive Red Deer (Cervus elaphus alxaicus) and Blue Sheep (Pseudois nayaur). Animals, 2023, 13, 553.	2.3	3
2387	Gut microbiota intervention strategies using active components from medicinal herbs to evaluate clinical efficacy of type 2 diabetesÅ– A review. Clinical and Translational Discovery, 2023, 3, .	0.5	2
2388	Network topologies for maximal organismal health span and lifespan. Chaos, 2023, 33, 023124.	2.5	1
2389	Assessment of Energy and Nutrient Intake and the Intestinal Microbiome (ErNst Study): Protocol and Methods of a Cross-sectional Human Observational Study. JMIR Research Protocols, 0, 12, e42529.	1.0	1
2390	Microbial–Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. Journal of Crohn's and Colitis, 2023, 17, 1309-1325.	1.3	1
2391	Composition and biodiversity of soil and root-associated microbiome in Vitis vinifera cultivar Lambrusco distinguish the microbial terroir of the Lambrusco DOC protected designation of origin area on a local scale. Frontiers in Microbiology, 0, 14, .	3.5	7
2392	Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology, 2023, 41, 1633-1644.	17.5	132
2393	Comparing the gut microbiome of obese, African American, older adults with and without mild cognitive impairment. PLoS ONE, 2023, 18, e0280211.	2.5	6
2394	What the Gut Tells the Brain—Is There a Link between Microbiota and Huntington's Disease?. International Journal of Molecular Sciences, 2023, 24, 4477.	4.1	4
2395	The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology, 2023, 164, 1069-1085.	1.3	14
2396	Age-Dependent and Body Composition–Dependent Association of Child Gut Microbial Enterotype With Puberty Timing: A Chinese Cohort. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 2363-2370.	3.6	1
2397	Microbiotaâ€related metabolites fueling the understanding of ischemic heart disease. , 2023, 2, .		3
2398	Emerging Relationship between the Gut Microbiome and Prostate Cancer. World Journal of Men?s Health, 2023, 41, 759.	3.3	7
2399	The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods, 2023, 12, 1023.	4.3	10
2400	Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiology, 2023, 23, .	3.3	1
2401	Older patients benefit more from sequential courses of washed microbiota transplantation than younger population with ulcerative colitis. Scandinavian Journal of Gastroenterology, 2023, 58, 890-899.	1.5	1

#	Article	IF	Citations
2402	The Gut Microbiota of Young Asian Elephants with Different Milk-Containing Diets. Animals, 2023, 13, 916.	2.3	2
2403	COVID-19 and Frailty. Vaccines, 2023, 11, 606.	4.4	4
2404	Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut–Bone Physiology. International Journal of Molecular Sciences, 2023, 24, 5161.	4.1	3
2405	Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
2406	Oral and intestinal dysbiosis in Parkinson's disease. Revue Neurologique, 2023, 179, 937-946.	1.5	4
2407	Comparative Gut Microbiome Differences between High and Low Aortic Arch Calcification Score in Patients with Chronic Diseases. International Journal of Molecular Sciences, 2023, 24, 5673.	4.1	4
2408	Linking Anorexia Nervosa with the Gut Microbiota. , 2023, , 487-512.		1
2409	A comprehensive assessment of the antimicrobial and immunomodulatory effects of frequently consumed fermented foods: insights in the management of COVID-19. Journal of Applied Microbiology, 2023, 134, .	3.1	1
2410	The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	4
2411	Probiotic Fermentation of Kelp Enzymatic Hydrolysate Promoted its Antiâ€Aging Activity in Dâ€Galactoseâ€Induced Aging Mice by Modulating Gut Microbiota. Molecular Nutrition and Food Research, 2023, 67, .	3.3	0
2412	Gut microbiota in relation to frailty and clinical outcomes. Current Opinion in Clinical Nutrition and Metabolic Care, 2023, 26, 219-225.	2.5	3
2413	HIV Tat Expression and Cocaine Exposure Lead to Sex- and Age-Specific Changes of the Microbiota Composition in the Gut. Microorganisms, 2023, 11, 799.	3.6	1
2414	The Microbiota–Gut–Brain Axis: Psychoneuroimmunological Insights. Nutrients, 2023, 15, 1496.	4.1	8
2415	Dysbiosis of gut microbiota due to diet, alcohol intake, body mass index, and gastrointestinal diseases in India. Applied Microbiology and Biotechnology, 2023, 107, 2547-2560.	3.6	0
2416	Microbiota and probiotics: chances and challenges – a symposium report. Gut Microbiome, 2023, 4, .	3.2	1
2417	Impact of Gut Microbiota in Brain Ageing: Polyphenols as Beneficial Modulators. Antioxidants, 2023, 12, 812.	5.1	4
2418	Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review. Journal of Clinical Medicine, 2023, 12, 2558.	2.4	16
2419	Discrete patterns of microbiome variability across timescales in a wild rodent population. BMC Microbiology, 2023, 23, .	3.3	1

#	Article	IF	CITATIONS
2420	SARS-CoV-2 Infection, Inflammation, Immunonutrition, and Pathogenesis of COVID-19. Current Medicinal Chemistry, 2023, 30, 4390-4408.	2.4	2
2421	Maternal gut microbiota in the postpartum Period: A Systematic review. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2023, 285, 130-147.	1.1	1
2422	SYNBIO® Probiotic and Antioxidant Dietary Supplementation: Clinical Trial Evaluation of Potential Effects on Airline Flight Crew Members' Well-Being. Microorganisms, 2023, 11, 924.	3.6	0
2423	Bridging gut microbiota composition with extended-spectrum beta-lactamase Enterobacteriales faecal carriage in critically ill patients (microbe cohort study). Annals of Intensive Care, 2023, 13, .	4.6	2
2424	Ketogenic Diet as a Promising Non-Drug Intervention for Alzheimer's Disease: Mechanisms and Clinical Implications. Journal of Alzheimer's Disease, 2023, 92, 1173-1198.	2.6	3
2425	Forging the microbiome to help us live long and prosper. PLoS Biology, 2023, 21, e3002087.	5.6	1
2426	Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nature Aging, 2023, 3, 436-449.	11.6	11
2427	Geroprotective Effect of Levilactobacillus brevis and Weizmannia coagulans in Caenorhabditis elegans. Probiotics and Antimicrobial Proteins, 0, , .	3.9	2
2428	Nutritional support in a comprehensive program of prevention and treatment of sarcopenia. Russian Journal of Geriatric Medicine, 2023, , 29-38.	0.6	1
2429	Differences in the post-stroke innate immune response between young and old. Seminars in Immunopathology, 2023, 45, 367-376.	6.1	8
2430	16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Veterinary Sciences, 2023, 10, 288.	1.7	0
2431	Role of Dietary Fiber and Energy Intake on Gut Microbiome in Vegans, Vegetarians, and Flexitarians in Comparison to Omnivores—Insights from the Nutritional Evaluation (NuEva) Study. Nutrients, 2023, 15, 1914.	4.1	2
2432	Volatile Markers for Cancer in Exhaled Breath—Could They Be the Signature of the Gut Microbiota?. Molecules, 2023, 28, 3488.	3.8	7
2433	Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome. Frontiers in Sports and Active Living, 0, 5, .	1.8	6
2434	The Fountain of Youth. Holistic Nursing Practice, 2023, 37, 172-173.	0.7	0
2435	Biomarkers of aging. Science China Life Sciences, 2023, 66, 893-1066.	4.9	60
2436	An Evaluation Method of Human Gut Microbial Homeostasis by Testing Specific Fecal Microbiota. Engineering, 2023, 29, 110-119.	6.7	0
2437	The Muscleâ€Gutâ€Brain Axis and Psychiatric Illness. Advanced Biology, 2023, 7, .	2.5	0

	CITATION	LPORT	
# 2438	ARTICLE Translating the Microbiome: What's the Target?. Gastroenterology, 2023, 165, 317-319.	IF 1.3	CITATIONS
2439	Association of Non-alcoholic Fatty Liver Disease With Salt Intake and Dietary Diversity in Chinese Medical Examination Adults Aged 18–59 Years: A Cross-Sectional Study. Frontiers in Nutrition, 0, 9, .	3.7	6
2440	Gut-specific telomerase expression counteracts systemic aging in telomerase-deficient zebrafish. Nature Aging, 2023, 3, 567-584.	11.6	9
2441	Deciphering the mechanism of jujube vinegar on hyperlipoidemia through gut microbiome based on 16S rRNA, BugBase analysis, and the stamp analysis of KEEG. Frontiers in Nutrition, 0, 10, .	3.7	1
2442	Temporary consumption of western diet trains the immune system to reduce future gut inflammation. IScience, 2023, 26, 106915.	4.1	1
2444	Early life exposure to low-dose perfluorooctane sulfonate disturbs gut barrier homeostasis and increases the risk of intestinal inflammation in offspring. Environmental Pollution, 2023, 329, 121708.	7.5	2
2445	Dietary inflammatory potential and biological aging among US adults: a population-based study. Aging Clinical and Experimental Research, 2023, 35, 1273-1281.	2.9	16
2446	The future of food allergy: Challenging existing paradigms of clinical practice. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 1847-1865.	5.7	6
2447	Gut-muscle axis and sepsis-induced myopathy: The potential role of gut microbiota. Biomedicine and Pharmacotherapy, 2023, 163, 114837.	5.6	4
2448	Butyrate promotes C2C12 myoblast proliferation by activating ERK/MAPK pathway. Molecular Omics, 2023, 19, 552-559.	2.8	3
2449	Human gut microbiome: A primer for the clinician. JGH Open, 2023, 7, 337-350.	1.6	1
2450	Personalized nutrition, personalized medicine, and microbiome therapeutics. , 2023, , 387-399.		0
2451	Gut microbiota diversity of hospitalized older adult patients with and without antibiotic-associated diarrhea. Aging Clinical and Experimental Research, 2023, 35, 1541-1555.	2.9	3
2452	Could Microbiota Edit Oxalate Nephrolithiasis' Story?. Current Nutrition and Food Science, 2024, 20, 271-282.	0.6	0
2453	Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites, 2023, 13, 722.	2.9	2
2454	Microbes, metabolites and muscle: Is the gut–muscle axis a plausible therapeutic target in Duchenne muscular dystrophy?. Experimental Physiology, 2023, 108, 1132-1143.	2.0	2
2456	It's all relative: analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: Challenges and opportunities for disease intervention. Archives of Microbiology, 2023, 205, .	2.2	3
2457	Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers—A Narrative Review. Foods, 2023, 12, 2286.	4.3	4

#	Article	IF	CITATIONS
2458	Inflammation and aging: signaling pathways and intervention therapies. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	63
2459	Probiotics and their Beneficial Health Effects. Mini-Reviews in Medicinal Chemistry, 2024, 24, 110-125.	2.4	4
2460	Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. International Journal of Molecular Sciences, 2023, 24, 10083.	4.1	1
2461	Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clinical Interventions in Aging, 0, Volume 18, 963-986.	2.9	6
2462	Ischaemic stroke patients present sex differences in gut microbiota. European Journal of Neurology, 2023, 30, 3497-3506.	3.3	0
2463	Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Frontiers in Endocrinology, 0, 14, .	3.5	14
2464	Introduction to the Gut Microbiome and Its Impact on Health and Disease. Topics in Clinical Nutrition, 2023, 38, 183-195.	0.4	1
2465	<i>Tractidigestivibacter montrealensis</i> sp. nov., a new member of human gut microbiota isolated from a healthy volunteer. FEMS Microbiology Letters, 0, , .	1.8	0
2466	Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms, 2023, 11, 1635.	3.6	1
2467	The Latest Research Progress on Application of <i>Lactobacillus acidophilus</i> . Advances in Bioscience and Biotechnology (Print), 2023, 14, 298-307.	0.7	1
2468	Differences in the gut microbiome across typical ageing and in Parkinson's disease. Neuropharmacology, 2023, 235, 109566.	4.1	4
2469	The emerging role of the gut mycobiome in liver diseases. Gut Microbes, 2023, 15, .	9.8	5
2470	Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Frontiers in Neurology, 0, 14, .	2.4	9
2471	Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients, 2023, 15, 2365.	4.1	3
2472	Gender-specific changes of the gut microbiome correlate with tumor development in murine models of pancreatic cancer. IScience, 2023, 26, 106841.	4.1	1
2473	An integrated analysis of fecal microbiome and metabolomic features distinguish non-cirrhotic NASH from healthy control populations. Hepatology, 2023, 78, 1843-1857.	7.3	2
2474	Gut microbiome dysbiosis in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. PLoS ONE, 2023, 18, e0285346.	2.5	11
2475	Potential mechanisms of multimodal prehabilitation effects on surgical complications: a narrative review. Applied Physiology, Nutrition and Metabolism, 2023, 48, 639-656.	1.9	4

#	Article	IF	CITATIONS
2476	Dietary components regulate chronic diseases through gut microbiota: a review. Journal of the Science of Food and Agriculture, 2023, 103, 6752-6766.	3.5	5
2477	Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods, 2023, 12, 2140.	4.3	7
2478	Effects of diet shift on the gut microbiota of the critically endangered Siberian Crane. Avian Research, 2023, 14, 100108.	1.2	1
2479	Highlights of the first edition of the European Conference on Microbiota & Virology: A hybrid event, Paris, 23 March 2023. Journal of Virus Eradication, 2023, 9, 100332.	0.5	0
2480	Fecal microbiota transplantation: A new strategy to delay aging. , 2023, 1, 8-11.		2
2481	An Overview of the Human Microbiome. , 2023, , 1-19.		0
2482	Gut Microbiota Throughout the Lifespan. , 2023, , 61-82.		0
2483	Chronoâ€Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Advanced Biology, 2023, 7, .	2.5	0
2484	Fecal fermentation and gut microbiota modulation of dietary fibre and polyphenols from Gnetum gnemon Linn. leaves. Bioactive Carbohydrates and Dietary Fibre, 2023, 30, 100380.	2.7	1
2485	The rosetta stone of successful ageing: does oral health have a role?. Biogerontology, 2023, 24, 867-888.	3.9	1
2486	The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients, 2023, 15, 3082.	4.1	0
2487	Gut microbiota in muscular atrophy development, progression, and treatment: New therapeutic targets and opportunities. Innovation(China), 2023, 4, 100479.	9.1	1
2488	Gut microbiota modulate distal symmetric polyneuropathy in patients with diabetes. Cell Metabolism, 2023, 35, 1548-1562.e7.	16.2	7
2489	Measuring healthy ageing: current and future tools. Biogerontology, 2023, 24, 845-866.	3.9	1
2490	Changes in the Human Gut Microbiome during Dietary Supplementation with Modified Rice Bran Arabinoxylan Compound. Molecules, 2023, 28, 5400.	3.8	0
2491	Diversity and Co-Occurrence Pattern Analysis of Cecal and Jejunal Microbiota in Two Rabbit Breeds. Animals, 2023, 13, 2294.	2.3	0
2492	Examining the Mechanisms behind Exercise's Multifaceted Impacts on Body Composition, Cognition, and the Gut Microbiome in Cancer Survivors: Exploring the Links to Oxidative Stress and Inflammation. Antioxidants, 2023, 12, 1423.	5.1	0
2493	Characterization of gut microbiota in mouse models of aging and sarcopenia. Microbiological Research, 2023, 275, 127462.	5.3	0

#	Article	IF	CITATIONS
2494	Fecal microbial biomarkers in older adults with autoimmune diseases. Future Microbiology, 0, , .	2.0	0
2495	Transplantation of gut microbiota from old mice into young healthy mice reduces lean mass but not bone mass. Gut Microbes, 2023, 15, .	9.8	0
2496	The impact of antimicrobial food additives and sweeteners on the growth and metabolite production of gut bacteria. Folia Microbiologica, 0, , .	2.3	1
2497	Association of Dietary Live Microbes and Nondietary Prebiotic/Probiotic Intake With Cognitive Function in Older Adults: Evidence From NHANES. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2024, 79, .	3.6	5
2498	A qualitative study of older adults' and healthcare professionals' perspectives on the potential of functional food products to support healthy ageing. Journal of Functional Foods, 2023, 107, 105689.	3.4	1
2500	How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy?. International Journal of Molecular Sciences, 2023, 24, 11855.	4.1	2
2501	Exploring the Effects of a Mediterranean Diet and Weight Loss on the Gut Microbiome and Cognitive Performance in Older, African American Obese Adults: A Post Hoc Analysis. Nutrients, 2023, 15, 3332.	4.1	1
2502	The impact of respiratory infections and probiotic use on the nasal microbiota of frail residents in long-term care homes. ERJ Open Research, 0, , 00212-2023.	2.6	0
2503	Bacterial, short-chain fatty acid and gas profiles of partially hydrolyzed guar gum in vitro fermentation by human fecal microbiota. Food Chemistry, 2024, 430, 137006.	8.2	3
2504	The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 0, 17, .	2.8	8
2505	Remote burn injury in aged mice induces colonic lymphoid aggregate expansion and dysbiosis of the fecal microbiome which correlates with neuroinflammation. Shock, 0, , .	2.1	0
2506	Aging characteristics of colorectal cancer based on gut microbiota. Cancer Medicine, 2023, 12, 17822-17834.	2.8	1
2507	Immunology and microbiome: Implications for motor systems. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 135-157.	1.8	0
2508	The Effect of COVID-19 on Gut Microbiota: Exploring the Complex Interplay and Implications for Human Health. Gastrointestinal Disorders, 2023, 5, 340-355.	0.8	1
2509	Age-associated changes in the gut microbiome impact efficacy of tumor immunomodulatory treatments. Experimental Gerontology, 2023, 181, 112268.	2.8	1
2510	Gut microbiome diversity, variability, and latent community types compared with shifts in body weight during the freshman year of college in dormitory-housed adolescents. Gut Microbes, 2023, 15, .	9.8	0
2511	Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature, 2023, 621, 389-395.	27.8	26
2512	Clustering Disease of Clostridioides Difficile Infection: Implication for the Management in Internal Medicine. Microbiology Research, 2023, 14, 1376-1397.	1.9	0

# 2513	ARTICLE Smart capsules for sensing and sampling the gut: status, challenges and prospects. Gut, 2024, 73, 186-202.	IF 12.1	CITATIONS 3
2514	Mechanisms and pathology of protein misfolding and aggregation. Nature Reviews Molecular Cell Biology, 2023, 24, 912-933.	37.0	5
2515	<scp><i>Prevotella copri</i></scp> alleviates sarcopenia via attenuating muscle mass loss and function decline. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 2275-2288.	7.3	1
2516	Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines, 2023, 11, 2574.	3.2	0
2517	Food allergy prevention: Where are we in 2023?. Asia Pacific Allergy, 2023, 13, 15-27.	1.3	1
2518	Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Computational and Structural Biotechnology Journal, 2023, 21, 4777-4789.	4.1	1
2519	Uncovering the relationship between gut microbial dysbiosis, metabolomics, and dietary intake in type 2 diabetes mellitus and in healthy volunteers: a multi-omics analysis. Scientific Reports, 2023, 13, .	3.3	1
2520	Dietary Diversity and Mild Cognitive Impairment in Middle-Aged and Older Chinese People: A Cross-Sectional Study. Journal of Alzheimer's Disease Reports, 2023, 7, 1045-1053.	2.2	0
2521	Comparative analysis of gut microbiota between common (Macaca fascicularis fascicularis) and Burmese (M. f. aurea) long-tailed macaques in different habitats. Scientific Reports, 2023, 13, .	3.3	2
2522	The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. Frontiers in Allergy, 0, 4, .	2.8	0
2523	Alteration in Gut Microbiota Composition of Older Adults Is Associated with Obesity and Its Indices: A Systematic Review. Journal of Nutrition, Health and Aging, 2023, 27, 817-823.	3.3	2
2526	Absence of enterotypes in the human gut microbiomes reanalyzed with non-linear dimensionality reduction methods. PeerJ, 0, 11, e15838.	2.0	1
2527	Obesity management for the hepatologist $\hat{a} \in \hat{~}$ what to do, how to do it and why. Hepatology, 0, , .	7.3	0
2529	Effect of burdock on the regulation of gut microbiota in hyperglycemic rats and its in vitro digestion and fermentation characteristics. Food Bioscience, 2023, 56, 103191.	4.4	1
2530	A two-cohort study on the association between the gut microbiota and bone density, microarchitecture, and strength. Frontiers in Endocrinology, 0, 14, .	3.5	1
2531	INFLAMMATORY BOWEL DISEASE AND SARCOPENIA: A FOCUS ON MUSCLE STRENGTH - NARRATIVE REVIEW. Arquivos De Gastroenterologia, 2023, 60, 373-382.	0.8	0
2532	Trial in Elderly with Musculoskeletal Problems due to Underlying Sarcopenia—Faeces to Unravel the Gut and Inflammation Translationally (TEMPUS-FUGIT): protocol of a cross-sequential study to explore the gut-muscle axis in the development and treatment of sarcopenia in community-dwelling older adults. BMC Geriatrics, 2023, 23, .	2.7	0
2533	Immunonutrition: Diet Diversity, Gut Microbiome and Prevention of Allergic Diseases. Allergy, Asthma and Immunology Research, 2023, 15, 545.	2.9	4

#	Article	IF	CITATIONS
2534	Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations?. European Journal of Internal Medicine, 2023, , .	2.2	3
2535	Lactobacillus paracasei HII01 enhances lifespan and promotes neuroprotection in Caenorhabditis elegans. Scientific Reports, 2023, 13, .	3.3	1
2536	Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes, 2023, 15, .	9.8	3
2537	Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes, 2023, 15, .	9.8	1
2538	TLR2 deficiency is beneficial at the late phase in MPTP-induced Parkinson' disease mice. Life Sciences, 2023, 333, 122171.	4.3	2
2539	The biology of aging in a social world: Insights from free-ranging rhesus macaques. Neuroscience and Biobehavioral Reviews, 2023, 154, 105424.	6.1	1
2540	Systemic inflammatory and gut microbiota responses to fracture in young and middle-aged mice. GeroScience, 0, , .	4.6	0
2541	Associations between dietary habits, socio-demographics and gut microbial composition in adolescents. British Journal of Nutrition, 2024, 131, 809-820.	2.3	0
2542	Systems and synthetic biology-driven engineering of live bacterial therapeutics. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1
2543	The role of the microbiota in glaucoma. Molecular Aspects of Medicine, 2023, 94, 101221.	6.4	3
2545	Causal effect of gut microbiota on DNA methylation phenotypic age acceleration: a two-sample Mendelian randomization study. Scientific Reports, 2023, 13, .	3.3	0
2546	Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
2547	Diet diversity and food allergy. , 2023, , .		0
2548	The Ageing Microbiome, Pharmaceutical Considerations, and Therapeutic Opportunities. AAPS Advances in the Pharmaceutical Sciences Series, 2023, , 191-230.	0.6	0
2549	Ageâ€dependent changes in the gut microbiota and serum metabolome correlate with renal function and human aging. Aging Cell, 2023, 22, .	6.7	0
2550	Collembolans maintain a core microbiome responding to diverse soil ecosystems. Soil Ecology Letters, 2024, 6, .	4.5	0
2551	Seasonal Effects on the Fecal Microbial Composition of Wild Greater Thick-Tailed Galagos (Otolemur) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf

Bugs as features (part 1): concepts and foundations for the compositional data analysis of the microbiome–gut–brain axis. , 2023, 1, 930-938.

#	Article	IF	CITATIONS
2553	Blend of natural and natural identical essential oil compounds as a strategy to improve the gut health of weaning pigs. Animal, 2023, 17, 101031.	3.3	0
2556	Dietary Marine Hydrolysate Improves Memory Performance and Social Behavior through Gut Microbiota Remodeling during Aging. Foods, 2023, 12, 4199.	4.3	0

2557 通所ãfªãf**ã**f"ãfªãf†ãf¼ã, ãf§ãf³å^©ç" é« é½¢è€...ã«ãŠã'ã, 食ç" Ÿæ´»ç¿ æ...£ã ec...,å†...ç et et at a a banese Jour

2559	The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Frontiers in Immunology, 0, 14, .	4.8	0
2560	Prebiotics Plus Probiotics May Favorably Impact on Gut Permeability, Endocannabinoid Receptors, and Inflammatory Biomarkers in Patients with Coronary Artery Diseases: A Clinical Trial. Food Science and Nutrition, 2024, 12, 1207-1217.	3.4	0
2561	Engraftment of aging-related human gut microbiota and the effect of a seven-species consortium in a pre-clinical model. Gut Microbes, 2023, 15, .	9.8	0
2562	Characterising the gut microbiome of stranded harbour seals (Phoca vitulina) in rehabilitation. PLoS ONE, 2023, 18, e0295072.	2.5	0
2564	Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin. Cells, 2023, 12, 2789.	4.1	0
2565	Maternal diet and complementary food diversity on allergy prevention. BMJ Nutrition, Prevention and Health, 2023, 6, s20-s29.	3.7	1
2566	Gut-brain axis and Alzheimer's disease: Therapeutic interventions and strategies. Journal of Functional Foods, 2024, 112, 105915.	3.4	1
2567	The influence of Helicobacter pylori, proton pump inhibitor, and obesity on the gastric microbiome in relation to gastric cancer development. Computational and Structural Biotechnology Journal, 2024, 23, 186-198.	4.1	0
2568	Winds of change a tale of: asthma and microbiome. Frontiers in Microbiology, 0, 14, .	3.5	1
2569	Editorial: Edible mushrooms and the gut microbiota. Frontiers in Nutrition, 0, 10, .	3.7	0
2570	Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiologica, 0, , .	2.3	1
2571	Role of Microbiome in Reproductive Health: An Expanding Dimension. , 2023, , 361-394.		0
2572	Influence of the Gut Microbiome on Cardiovascular Health and Hypertension. , 2023, , 335-359.		0
2573	Modulation of the Altered Intestinal Microbiota by Use of Antibiotics with a Novel Synbiotic on Wistar Rats. Probiotics and Antimicrobial Proteins, 0, , .	3.9	0
2574	Advances in microbial decorations and its applications in drug delivery. , 2023, 2, .		0

#	Article	IF	CITATIONS
2575	Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology, 0, , .	3.9	0
2576	Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutritional Neuroscience, 0, , 1-16.	3.1	0
2577	Potential roles of the interactions between gut microbiota and metabolites in LPS-induced intrauterine inflammation (IUI) and associated preterm birth (PTB). Journal of Translational Medicine, 2024, 22, .	4.4	0
2578	Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules, 2024, 14, 78.	4.0	0
2579	Dietary mung bean as promising food for human health: gut microbiota modulation and insight into factors, regulation, mechanisms and therapeutics—an update. Food Science and Biotechnology, 0, , .	2.6	0
2580	The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. Annals of Microbiology, 2024, 74, .	2.6	0
2581	Bridging the gap: associations between gut microbiota and psychiatric disorders. Middle East Current Psychiatry, 2024, 31, .	1.2	0
2582	Microbial transmission in the social microbiome and host health and disease. Cell, 2024, 187, 17-43.	28.9	1
2584	Daily skin-to-skin contact alters microbiota development in healthy full-term infants. Gut Microbes, 2024, 16, .	9.8	1
2587	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144.		0
2587 2588			0
	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144.	1.2	
2588	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144. The Microbiome and Aging. , 2024, , 77-93. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transplant Immunology, 2024, 83,	1.2	0
2588 2590	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144. The Microbiome and Aging. , 2024, , 77-93. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transplant Immunology, 2024, 83, 102000. Neurotoxicity induced by the microbial metabolite Î ² -methylamino-L-alanine: pathways and mechanisms. ,	1.2	0
2588 2590 2591	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144. The Microbiome and Aging. , 2024, , 77-93. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transplant Immunology, 2024, 83, 102000. Neurotoxicity induced by the microbial metabolite Î ² -methylamino-L-alanine: pathways and mechanisms. , 2024, , 747-778. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke. Neuroscience, 2024,		0 0 0
2588 2590 2591 2592	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144. The Microbiome and Aging. , 2024, , 77-93. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transplant Immunology, 2024, 83, 102000. Neurotoxicity induced by the microbial metabolite β-methylamino-L-alanine: pathways and mechanisms. , 2024, , 747-778. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke. Neuroscience, 2024, 541, 91-100. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes.	2,3	0 0 0
2588 2590 2591 2592 2593	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144. The Microbiome and Aging. , 2024, , 77-93. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transplant Immunology, 2024, 83, 102000. Neurotoxicity induced by the microbial metabolite Î ² -methylamino-L-alanine: pathways and mechanisms. , 2024, , 747-778. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke. Neuroscience, 2024, 541, 91-100. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes. Nutrition, 2024, 122, 112369. Ecological and metabolic shifts of synthetic bacterial communities using sea cucumber sulfated	2.3 2.4	

#	Article	IF	CITATIONS
2597	The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: a systematic review and meta-analysis. Nutrition Reviews, 0, , .	5.8	0
2598	Gut microbiome dynamics and Enterobacterales infection in liver transplant recipients: A prospective observational study. JHEP Reports, 2024, 6, 101039.	4.9	0
2599	Gut Microbes: The Gut Brain Connection. , 2023, , 33-59.		0
2600	From the Friend to the Foe—Enterococcus faecalis Diverse Impact on the Human Immune System. International Journal of Molecular Sciences, 2024, 25, 2422.	4.1	0
2601	Microbiota–brain interactions in aging and neurodegeneration. , 2024, , 175-193.		0
2602	Host-pathogen interactions with special reference to microbiota analysis and integration of systems biology approaches. , 2024, , 191-211.		0
2603	What is a healthy microbiome?. , 2024, , 17-43.		0
2604	The Gut Microbiota and NDG: What Is the Interplay. , 2024, , 1-34.		0
2605	The effects of ambient temperature and feeding regimens on cecum bacteria composition and circadian rhythm in growing rabbits. Frontiers in Microbiology, 0, 15, .	3.5	0
2606	Association of dietary live microbe intake with frailty in US adults: evidence from NHANES. Journal of Nutrition, Health and Aging, 2024, 28, 100171.	3.3	0
2607	Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Current Issues in Molecular Biology, 2024, 46, 1810-1831.	2.4	0
2608	Streptococcal quorum sensing peptide CSP-7 contributes to muscle inflammation and wasting. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 167094.	3.8	0
2609	Shortâ€Term Ingestion of Essential Amino Acid Based Nutritional Supplements or Whey Protein Improves the Physical Function of Older Adults Independently of Gut Microbiome. Molecular Nutrition and Food Research, 2024, 68, .	3.3	0
2610	Chronic Liver Disease and Promising †Therapeutic Strategy: A Concise Review. Pharmacognosy Magazine, 0, , .	0.6	0
2611	Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. Frontiers in Aging, 0, 5, .	2.6	0
2612	Integration of 16S rRNA sequencing and metabolomics to investigate the modulatory effect of ginsenoside Rb1 on atherosclerosis. Heliyon, 2024, 10, e27597.	3.2	0
2613	Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Critical Care, 2024, 28, .	5.8	0
2614	Lactobacillus paracasei ZFM54 alters the metabolomic profiles of yogurt and the co-fermented yogurt improves the gut microecology of human adults. Journal of Dairy Science, 2024, , .	3.4	0

#	Article	IF	CITATIONS
2615	Intestinal stem cells: guardians of homeostasis in health and aging amid environmental challenges. Experimental and Molecular Medicine, 2024, 56, 495-500.	7.7	0
2616	The Role of Gut Microbiota in Neuromyelitis Optica Spectrum Disorder. International Journal of Molecular Sciences, 2024, 25, 3179.	4.1	0
2617	Geographical distribution and species variation of gut microbiota in small rodents from the agroâ€pastoral transition ecotone in northern China. Ecology and Evolution, 2024, 14, .	1.9	0
2618	A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. Advanced Science, 0, , .	11.2	0