The banana (Musa acuminata) genome and the evolution

Nature

488, 213-217

DOI: 10.1038/nature11241

Citation Report

#	Article	IF	CITATIONS
1	Intelligent Control Using Neural Networks. , 1991, , .		14
2	Dynamic Modeling and Simulation of PEM Fuel Cells. , 2010, , .		1
3	Cytogenetic evidence of mixed disomic and polysomic inheritance in an allotetraploid (AABB) Musa genotype. Annals of Botany, 2012, 110, 1593-1606.	1.4	28
4	Plant & Plant & Physiology Research Highlights. Plant and Cell Physiology, 2012, 53, 1985-1988.	1.5	1
5	Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16969-16973.	3.3	221
6	PGDD: a database of gene and genome duplication in plants. Nucleic Acids Research, 2012, 41, D1152-D1158.	6.5	544
7	Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop. AoB PLANTS, 2012, 2012, pls041-pls041.	1.2	9
8	Induction, rapid fixation and retention of mutations in vegetatively propagated banana. Plant Biotechnology Journal, 2012, 10, 1056-1066.	4.1	83
9	The tomato genome: implications for plant breeding, genomics and evolution. Genome Biology, 2012, 13, 167.	13.9	37
10	De Novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. BMC Genomics, 2012, 13, 650.	1.2	74
11	Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. Plant Molecular Biology, 2013, 83, 591-606.	2.0	11
12	Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics, 2013, 14, 78.	1.2	46
13	Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa) Tj ETQq0 0 (ე rgBT /Ov 2.8	erlock 10 Tf 5
14	The Ins and Outs of the Rice AGAMOUS Subfamily. Molecular Plant, 2013, 6, 650-664.	3.9	29
15	Assembly and Validation of the Genome of the Nonmodel Basal Angiosperm <i>Amborella</i> . Science, 2013, 342, 1516-1517.	6.0	89
17	Young, intact and nested retrotransposons are abundant in the onion and asparagus genomes. Annals of Botany, 2013, 112, 881-889.	1.4	29
18	"A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids― BMC Genomics, 2013, 14, 683.	1.2	159
19	Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Science, 2013, 11, 41.	0.7	46

#	ARTICLE	IF	Citations
20	Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. BMC Evolutionary Biology, 2013, 13, 202.	3.2	51
21	Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics, 2013, 14, 851.	1,2	112
22	Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genetics and Genomes, 2013, 9, 1529-1535.	0.6	23
23	Genomics reveals new landscapes for crop improvement. Genome Biology, 2013, 14, 206.	3.8	99
24	Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 2013, 11, 269-278.	4.1	156
25	Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2898-2903.	3.3	351
26	Endogenous pararetroviruses—a reservoir of virus infection in plants. Current Opinion in Virology, 2013, 3, 615-620.	2.6	64
27	A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes. Annual Review of Plant Biology, 2013, 64, 47-70.	8.6	326
28	Mango - Postharvest Biology and Biotechnology. Critical Reviews in Plant Sciences, 2013, 32, 217-236.	2.7	145
29	Fruit Development and Ripening. Annual Review of Plant Biology, 2013, 64, 219-241.	8.6	492
30	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	2.8	70
31	Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biology, 2013, 13, 41.	1.6	61
32	Arguments for standardizing transposable element annotation in plant genomes. Trends in Plant Science, 2013, 18, 367-376.	4.3	26
33	DNA marker applications to molecular genetics and genomics in tomato. Breeding Science, 2013, 63, 21-30.	0.9	35
34	Heavy traffic in the fast lane: longâ€distance signalling by macromolecules. New Phytologist, 2013, 198, 33-51.	3.5	82
35	Plant proteomics: Current status and future prospects. Journal of Proteomics, 2013, 88, 34-36.	1.2	4
36	Tapping the Promise of Genomics in Species with Complex, Nonmodel Genomes. Annual Review of Plant Biology, 2013, 64, 89-110.	8.6	53
37	Function of a citrate synthase gene (MaGCS) during postharvest banana fruit ripening. Postharvest Biology and Technology, 2013, 84, 43-50.	2.9	14

#	Article	IF	Citations
38	Biology and biotechnology of fruit flavor and aroma volatiles. Stewart Postharvest Review, 0, 9, 1-13.	0.7	1
39	Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. Journal of Experimental Botany, 2013, 64, 2219-2229.	2.4	33
40	Three Infectious Viral Species Lying in Wait in the Banana Genome. Journal of Virology, 2013, 87, 8624-8637.	1.5	80
41	Molecular Evolution and Patterns of Duplication in the SEP/AGL6-Like Lineage of the Zingiberales: A Proposed Mechanism for Floral Diversification. Molecular Biology and Evolution, 2013, 30, 2401-2422.	3.5	42
42	The Banana Genome Hub. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat035.	1.4	151
43	Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research. International Journal of Molecular Sciences, 2013, 14, 11444-11483.	1.8	8
44	Crop plants as models for understanding plant adaptation and diversification. Frontiers in Plant Science, 2013, 4, 290.	1.7	80
45	Functional Diversification of FD Transcription Factors in Rice, Components of Florigen Activation Complexes. Plant and Cell Physiology, 2013, 54, 385-397.	1.5	69
46	Genomics and fruit crop selection. Nature Genetics, 2013, 45, 9-10.	9.4	39
47	Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 2013, 500, 335-339.	13.7	468
48	Recent Advances in Temperate Fruit Crops. , 2013, , 251-284.		0
49	Melhoramento genético da bananeira: estratégias e tecnologias disponÃveis. Revista Brasileira De Fruticultura, 2013, 35, 919-931.	0.2	16
50	BANANA IN LATIN AMERICA AND THE CARIBBEAN: CURRENT STATE, CHALLENGES AND PERSPECTIVES. Acta Horticulturae, 2013, , 365-380.	0.1	19
51	Germplasm diversity and genetics to drive plant breeding for Africa., 0,, 82-94.		0
52	The First 50 Plant Genomes. Plant Genome, 2013, 6, plantgenome2013.03.0001in.	1.6	228
53	Molecular Analysis and Genomic Organization of Major DNA Satellites in Banana (Musa spp.). PLoS ONE, 2013, 8, e54808.	1.1	49
54	Phylogenomic Analyses of Nuclear Genes Reveal the Evolutionary Relationships within the BEP Clade and the Evidence of Positive Selection in Poaceae. PLoS ONE, 2013, 8, e64642.	1.1	37
55	Phylogenomics of MADS-Box Genes in Plants â€" Two Opposing Life Styles in One Gene Family. Biology, 2013, 2, 1150-1164.	1.3	70

#	Article	IF	CITATIONS
56	Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of <i>Musa </i> Location in the Banana Genome. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	10
58	A Draft Genome Sequence for Ensete ventricosum, the Drought-Tolerant "Tree Against Hunger― Agronomy, 2014, 4, 13-33.	1.3	21
59	Evaluation of four different strategies to characterize plasma membrane proteins from banana roots. Ciencia E Agrotecnologia, 2014, 38, 424-434.	1.5	1
60	Targeted parallel sequencing of the Musa species: Searching for an alternative model system for polyploidy studies. African Journal of Biotechnology, 2014, 13, 4052-4060.	0.3	0
61	<i>Musa</i> spp. Germplasm Management: Microsatellite Fingerprinting of USDA–ARS National Plant Germplasm System Collection. Crop Science, 2014, 54, 2140-2151.	0.8	12
63	Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses. Plant Signaling and Behavior, 2014, 9, e28242.	1.2	13
64	Evolution of endogenous non-retroviral genes integrated into plant genomes. Current Plant Biology, 2014, 1, 55-59.	2.3	20
66	Lineage-Specific Conserved Noncoding Sequences of Plant Genomes: Their Possible Role in Nucleosome Positioning. Genome Biology and Evolution, 2014, 6, 2527-2542.	1.1	15
67	The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps. Journal of Experimental Botany, 2014, 65, 5077-5092.	2.4	54
69	Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology, 2014, 15, 512.	3.8	475
70	Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC Plant Biology, 2014, 14, 316.	1.6	84
71	The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis. Genome Biology and Evolution, 2014, 6, 572-579.	1.1	10
74	Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots. Frontiers in Plant Science, 2014, 5, 615.	1.7	41
75	Genome Elimination: Translating Basic Research into a Future Tool for Plant Breeding. PLoS Biology, 2014, 12, e1001876.	2.6	21
76	The Evolution of Plant Gene and Genome Sequencing. Advances in Botanical Research, 2014, , 47-90.	0.5	6
77	A Backdrop. Advances in Botanical Research, 2014, 69, 1-11.	0.5	2
78	P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Research, 2014, 42, D1176-D1181.	6.5	121
79	UpSet: Visualization of Intersecting Sets. IEEE Transactions on Visualization and Computer Graphics, 2014, 20, 1983-1992.	2.9	1,549

#	Article	IF	Citations
80	A ripening-induced transcription factor MaBSD1 interacts with promoters of MaEXP1/2 from banana fruit. Plant Cell Reports, 2014, 33, 1913-1920.	2.8	21
81	The diversification and activity of hAT transposons in Musa genomes. Chromosome Research, 2014, 22, 559-571.	1.0	14
82	The genome of <scp>A</scp> frican yam (<i><scp>D</scp>ioscorea cayenensisâ€rotundata</i> complex) hosts endogenous sequences from four distinct badnavirus species. Molecular Plant Pathology, 2014, 15, 790-801.	2.0	28
83	The X Chromosome Is Necessary for Somatic Development in the Dioecious <i>Silene latifolia</i> : Cytogenetic and Molecular Evidence and Sequencing of a Haploid Genome. Cytogenetic and Genome Research, 2014, 143, 96-103.	0.6	5
84	The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nature Communications, 2014, 5, 3311.	5.8	262
85	Assessment of RNAi-induced silencing in banana (Musa spp.). BMC Research Notes, 2014, 7, 655.	0.6	9
86	The First Monocot Genome Sequence. Advances in Botanical Research, 2014, , 119-135.	0.5	1
87	Plant genome sequencing — applications for crop improvement. Current Opinion in Biotechnology, 2014, 26, 31-37.	3.3	164
88	The common evolutionary history of badnaviruses and banana. Infection, Genetics and Evolution, 2014, 21, 83-89.	1.0	31
89	Occurrence, prevalence and molecular diversity of banana streak viruses in Cuba. European Journal of Plant Pathology, 2014, 138, 157-166.	0.8	11
90	Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening. Functional and Integrative Genomics, 2014, 14, 161-175.	1.4	47
91	Plant genome size variation: bloating and purging DNA. Briefings in Functional Genomics, 2014, 13, 308-317.	1.3	137
92	Early History of the Angiosperms. Advances in Botanical Research, 2014, 69, 195-222.	0.5	6
93	Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Molecular Biology, 2014, 85, 63-80.	2.0	91
94	Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Molecular Biology Reports, 2014, 41, 4261-4271.	1.0	80
95	Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. Plant Cell, Tissue and Organ Culture, 2014, 116, 387-402.	1.2	29
96	Genetic relationships among a collection of Musa germplasm by fluorescent-labeled SRAP. Tree Genetics and Genomes, 2014, 10, 465-476.	0.6	12
97	Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of <i><scp>M</scp>ycosphaerella fijiensis</i> , causal agent of the black leaf streak disease of banana. Molecular Plant Pathology, 2014, 15, 447-460.	2.0	36

#	Article	IF	Citations
98	From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnology Advances, 2014, 32, 158-169.	6.0	135
99	Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nature Communications, 2014, 5, 3722.	5.8	224
100	The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. Journal of Experimental Botany, 2014, 65, 859-870.	2.4	88
101	Profiling of extensively diversified plant <scp>LINE</scp> s reveals distinct plantâ€specific subclades. Plant Journal, 2014, 79, 385-397.	2.8	35
102	Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta, 2014, 239, 735-751.	1.6	83
103	Detecting and Locating Whole Genome Duplications on a Phylogeny: A Probabilistic Approach. Molecular Biology and Evolution, 2014, 31, 750-762.	3.5	73
104	Evolutionary history of plant microRNAs. Trends in Plant Science, 2014, 19, 175-182.	4.3	182
105	Phenalenone-type phytoalexins mediate resistance of banana plants (<i>Musa</i> spp.) to the burrowing nematode <i>Radopholus similis</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 105-110.	3.3	130
106	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	9.4	867
107	Two Evolutionarily Distinct Classes of Paleopolyploidy. Molecular Biology and Evolution, 2014, 31, 448-454.	3.5	159
108	Templated Biomineralization on Self-Assembled Protein Nanofibers Buried in Calcium Oxalate Raphides of <i>Musa</i> spp Chemistry of Materials, 2014, 26, 3862-3869.	3.2	17
109	The Most Deeply Conserved Noncoding Sequences in Plants Serve Similar Functions to Those in Vertebrates Despite Large Differences in Evolutionary Rates. Plant Cell, 2014, 26, 946-961.	3.1	38
110	The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014, 345, 1181-1184.	6.0	520
111	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	13.7	725
112	Comparative Genomics as a Time Machine: How Relative Gene Dosage and Metabolic Requirements Shaped the Time-dependent Resolution of Yeast Polyploidy. Molecular Biology and Evolution, 2014, 31, 3184-3193.	3.5	38
113	Expansion of banana (<i>Musa acuminata</i>) gene families involved in ethylene biosynthesis and signalling after lineageâ€specific wholeâ€genome duplications. New Phytologist, 2014, 202, 986-1000.	3.5	47
114	Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Research, 2014, 24, 1334-1347.	2.4	381
115	Integrated Syntenic and Phylogenomic Analyses Reveal an Ancient Genome Duplication in Monocots. Plant Cell, 2014, 26, 2792-2802.	3.1	220

#	ARTICLE	IF	CITATIONS
116	Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany, 2014, 65, 4527-4541.	2.4	296
117	Doubling down on genomes: Polyploidy and crop plants. American Journal of Botany, 2014, 101, 1711-1725.	0.8	336
118	SeqControl: process control for DNA sequencing. Nature Methods, 2014, 11, 1071-1075.	9.0	10
119	Polyploidy-associated genome modifications during land plant evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130355.	1.8	90
120	Genome-wide identification, classification and expression analysis of the heat shock transcription factor family in Chinese cabbage. Molecular Genetics and Genomics, 2014, 289, 541-551.	1.0	59
121	The Banana MaLBD (LATERAL ORGAN BOUNDARIES DOMAIN) Transcription Factors Regulate EXPANSIN Expression and Are Involved in Fruit Ripening. Plant Molecular Biology Reporter, 2014, 32, 1103-1113.	1.0	34
122	Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant Cell, Tissue and Organ Culture, 2014, 119, 247-255.	1.2	39
123	Comparative transcriptome analysis of eggplant (Solanum melongena L.) and turkey berry (Solanum) Tj ETQq $1\ 1$	0.78431 <i>4</i>	1 rgBT /Overl
124	Impact of recurrent gene duplication on adaptation of plant genomes. BMC Plant Biology, 2014, 14, 151.	1.6	32
125	Genomics: A potential panacea for the perennial problem. American Journal of Botany, 2014, 101, 1780-1790.	0.8	49
126	Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species. DNA Research, 2014, 21, 169-181.	1.5	201
127	Evasion of Short Interfering RNA-Directed Antiviral Silencing in Musa acuminata Persistently Infected with Six Distinct Banana Streak Pararetroviruses. Journal of Virology, 2014, 88, 11516-11528.	1.5	27
128	Single nucleotide polymorphisms in partial sequences of the gene encoding the large sub-units of ADP-glucose pyrophosphorylase within a representative collection of 10 Musa genotypes. Electronic Journal of Biotechnology, 2014, 17, 137-147.	1.2	1
129	A possible scenario for the evolution of Banana streak virus in banana. Virus Research, 2014, 186, 155-162.	1.1	29
130	The bright side of transposons in crop evolution. Briefings in Functional Genomics, 2014, 13, 276-295.	1.3	106
131	Engineering Complex Metabolic Pathways in Plants. Annual Review of Plant Biology, 2014, 65, 187-223.	8.6	117
132	Understanding development and ripening of fruit crops in an †omics†era. Horticulture Research, 2014, 1, 14034.	2.9	53
133	Gene families as soft cliques with backbones: Amborella contrasted with other flowering plants. BMC Genomics, 2014, 15, S8.	1.2	1

#	Article	IF	CITATIONS
134	Computational prediction, identification, and expression profiling of microRNAs in banana (<i>Musa</i> spp.) during soil moisture deficit stress. Journal of Horticultural Science and Biotechnology, 2014, 89, 208-214.	0.9	15
135	Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Gene, 2015, 4, 78-82.	1.4	26
136	Paralogue Interference Affects the Dynamics after Gene Duplication. Trends in Plant Science, 2015, 20, 814-821.	4.3	31
138	An integrated database of wood-formation related genes in plants. Scientific Reports, 2015, 5, 11422.	1.6	3
139	Sequencing of plant genomes – a review. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 361-376.	0.8	20
141	High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Scientific Reports, 2015, 5, 13387.	1.6	41
142	InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 2015, 16, 169.	1.2	1,609
143	Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics, 2015, 16, 776.	1.2	61
144	Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 2015, 16, 823.	1,2	74
145	Molecular cloning and expression analysis of KIN10 and cold-acclimation related genes in wild banana â€~Huanxi' (Musa itinerans). SpringerPlus, 2015, 4, 829.	1.2	7
146	Nonâ€canonical structure, function and phylogeny of the B sister MADS â€box gene O s MADS 30 of rice () Tj ET	Qq <u>0</u> ,000 rş	gBT/Overlock
147	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	3 . 5	122
148	Genetic Diversity in Bananas and Plantains (Musa spp.)., 0,,.		6
149	Transcriptome analysis of banana (Musa balbisiana) basedon next-generation sequencing technology. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 705-717.	0.8	13
150	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	1.7	243
151	Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana. International Journal of Molecular Sciences, 2015, 16, 19728-19751.	1.8	69
152	Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening. PLoS ONE, 2015, 10, e0123870.	1.1	24
153	Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants. PLoS ONE, 2015, 10, e0127179.	1.1	19

#	Article	IF	Citations
154	De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes. PLoS ONE, 2015, 10, e0129016.	1.1	27
155	Comprehensive Evolutionary and Expression Analysis of FCS-Like Zinc finger Gene Family Yields Insights into Their Origin, Expansion and Divergence. PLoS ONE, 2015, 10, e0134328.	1.1	22
156	Worse Comes to Worst: Bananas and Panama Diseaseâ€"When Plant and Pathogen Clones Meet. PLoS Pathogens, 2015, 11, e1005197.	2.1	167
157	The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science, 2015, 6, 742.	1.7	131
158	Loss of YABBY2-Like Gene Expression May Underlie the Evolution of the Laminar Style in Canna and Contribute to Floral Morphological Diversity in the Zingiberales. Frontiers in Plant Science, 2015, 6, 1106.	1.7	19
159	Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement. Genetics Research International, 2015, 2015, 1-15.	2.0	18
160	Genetics in Genomic Era. Genetics Research International, 2015, 2015, 1-2.	2.0	10
162	Impact of Diseases on Export and Smallholder Production of Banana. Annual Review of Phytopathology, 2015, 53, 269-288.	3.5	81
163	Whole Genome Sequencing of Fruit Tree Species. Advances in Botanical Research, 2015, , 1-37.	0.5	13
164	Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics, 2015, 16, 446.	1.2	105
165	Next-Generation Sequencing and Assembly of Plant Genomes. , 2015, , 53-64.		1
166	Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.). DNA Research, 2015, 22, 19-27.	1.5	59
167	OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2015, 43, W78-W84.	6.5	612
168	Mutant-Based Reverse Genetics for Functional Genomics of Non-model Crops., 2015,, 473-487.		1
169	Utilization of Diverse Sequencing Panels for Future Plant Breeding. , 2015, , 539-561.		0
170	Genome-wide analysis of LTR-retrotransposons in oil palm. BMC Genomics, 2015, 16, 795.	1.2	18
171	Differential Colonization Patterns of Bananas (<i>Musa</i> spp.) by Physiological Race 1 and Race 4 Isolates of <i>Fusarium oxysporum</i> f.sp. <i>cubense</i> Journal of Phytopathology, 2015, 163, 807-817.	0.5	27
172	A look behind the screens: Characterization of the HSP70 family during osmotic stress in a non-model crop. Journal of Proteomics, 2015, 119, 10-20.	1.2	19

#	Article	IF	CITATIONS
173	Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. Journal of Experimental Botany, 2015, 66, 1489-1498.	2.4	46
174	PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 2015, 43, D974-D981.	6.5	329
175	Evolutionary divergence of β–expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant Journal, 2015, 81, 108-120.	2.8	53
176	Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. Gene, 2015, 559, 129-136.	1.0	17
177	Discovery of Novel Genes Derived from Transposable Elements Using Integrative Genomic Analysis. Molecular Biology and Evolution, 2015, 32, 1487-1506.	3.5	49
178	Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 2015, 24, 71-81.	3.5	197
179	Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology, 2015, 88, 41-52.	2.0	72
180	Co-option of the polarity gene network shapes filament morphology in angiosperms. Scientific Reports, 2014, 4, 6194.	1.6	37
181	The Bimodal Distribution of Genic GC Content Is Ancestral to Monocot Species. Genome Biology and Evolution, 2015, 7, 336-348.	1.1	42
182	A SCAR marker for identifying susceptibility to Fusarium oxysporum f. sp. cubense in banana. Scientia Horticulturae, 2015, 191, 108-112.	1.7	12
183	Proteomic analysis of conidia germination in Fusarium oxysporum f. sp. cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Applied Microbiology and Biotechnology, 2015, 99, 7189-7207.	1.7	52
184	Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA) Tj ETQq1 Physiologiae Plantarum, 2015, 37, 1.	1 0.78431 1.0	.4 rgBT /Ov 14
185	Identification of defense-related genes in banana roots infected by Fusarium oxysporum f. sp. cubense tropical race 4. Euphytica, 2015, 205, 837-849.	0.6	13
186	Positive selection on the K domain of the AGAMOUS protein in the Zingiberales suggests a mechanism for the evolution of androecial morphology. EvoDevo, 2015, 6, 7.	1.3	15
187	Transcriptome-Wide Analysis of SAMe Superfamily to Novelty Phosphoethanolamine N-Methyltransferase Copy in Lonicera japonica. International Journal of Molecular Sciences, 2015, 16, 521-534.	1.8	9
188	Resistance sources to <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4 in banana wild relatives. Plant Pathology, 2015, 64, 1061-1067.	1.2	56
189	Analysis of Genetic Diversity in 21 Genotypes of Indian Banana Using RAPDs and IRAPs Markers. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 1027-1038.	0.4	4
190	Development of SSR markers and genetic diversity analysis in enset (Ensete ventricosum (Welw.)) Tj ETQq1 1 0.7	84314 rgB 2.7	ST ₄ Overlock

#	Article	IF	CITATIONS
191	DNA Sequencing, Other Omics and Synthetic Biology., 2015, , 125-140.		0
192	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	9.4	472
193	Efficient transformation of Mycosphaerella fijiensis by underwater shock waves. Journal of Microbiological Methods, 2015, 119, 98-105.	0.7	8
194	Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H. B. K.) G. Don. DNA Research, 2015, 22, 171-179.	1.5	107
195	Molecular basis of angiosperm tree architecture. New Phytologist, 2015, 206, 541-556.	3.5	81
196	Genome-wide screening for novel, drought stress-responsive long non-coding RNAs in drought-stressed leaf transcriptome of drought-tolerant and -susceptible banana (Musa spp) cultivars using Illumina high-throughput sequencing. Plant Biotechnology Reports, 2015, 9, 279-286.	0.9	39
197	Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. Plant Molecular Biology, 2015, 89, 83-97.	2.0	10
198	Plant Breeding in the Omics Era. , 2015, , .		46
199	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2015, , .	1.0	1
200	The gap in research on polyploidization between plants and vertebrates: model systems and strategic challenges. Science Bulletin, 2015, 60, 1471-1478.	4.3	4
201	Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome Research, 2015, 23, 571-582.	1.0	41
202	Data for the characterization of the HSP70 family during osmotic stress in banana, a non-model crop. Data in Brief, 2015, 3, 78-84.	0.5	10
203	Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Molecular Genetics and Genomics, 2015, 290, 257-271.	1.0	21
204	Telomereâ€eentric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytologist, 2015, 205, 378-389.	3.5	64
205	Status of duckweed genomics and transcriptomics. Plant Biology, 2015, 17, 10-15.	1.8	21
206	Genomic resources in fruit plants: an assessment of current status. Critical Reviews in Biotechnology, 2015, 35, 438-447.	5.1	16
207	Complete Chloroplast Genome Sequence of <i>Musa balbisiana</i> Corroborates Structural Heterogeneity of Inverted Repeats in Wild Progenitors of Cultivated Bananas and Plantains. Plant Genome, 2016, 9, plantgenome2015.09.0089.	1.6	34
208	Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics. Current Genomics, 2016, 17, 460-475.	0.7	27

#	Article	IF	CITATIONS
209	Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana. International Journal of Molecular Sciences, 2016, 17, 1632.	1.8	5
210	Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach. Proteomes, 2016, 4, 9.	1.7	7
211	Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution. Advances in Agronomy, 2016, 135, 181-223.	2.4	4
212	Dietary Administration of Banana (<i>Musa acuminata</i>) Peel Flour Affects the Growth, Antioxidant Status, Cytokine Responses, and Disease Susceptibility of Rohu, <i>Labeo rohita</i> . Journal of Immunology Research, 2016, 2016, 1-11.	0.9	47
213	Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao. International Journal of Molecular Sciences, 2016, 17, 441.	1.8	11
214	Application of Genomic Technologies to the Breeding of Trees. Frontiers in Genetics, 2016, 7, 198.	1.1	45
215	Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant. BMC Plant Biology, 2016, 16, 123.	1.6	26
216	Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing. PLoS ONE, 2016, 11, e0147499.	1.1	20
217	A Genome-Wide Association Study on the Seedless Phenotype in Banana (Musa spp.) Reveals the Potential of a Selected Panel to Detect Candidate Genes in a Vegetatively Propagated Crop. PLoS ONE, 2016, 11, e0154448.	1.1	61
218	Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae. PLoS ONE, 2016, 11, e0162013.	1.1	17
219	Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ) Tj ETQo	10.00 rgB1	「 <mark>Q</mark> verlock
220	Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress. Frontiers in Plant Science, 2016, 7, 299.	1.7	55
221	The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening. Frontiers in Plant Science, 2016, 7, 1021.	1.7	47
222	Temporal-Spatial Transcriptome Analyses Provide Insights into the Development of Petaloid Androecium in Canna indica. Frontiers in Plant Science, 2016, 7, 1194.	1.7	12
223	Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Frontiers in Plant Science, 2016, 7, 1442.	1.7	21
224	Translating the "Banana Genome―to Delineate Stress Resistance, Dwarfing, Parthenocarpy and Mechanisms of Fruit Ripening. Frontiers in Plant Science, 2016, 7, 1543.	1.7	31
225	Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. Frontiers in Plant Science, 2016, 7, 1609.	1.7	65
226	Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening. Frontiers in Plant Science, 2016, 7, 1778.	1.7	19

#	Article	IF	CITATIONS
227	Badnaviruses: The Current Global Scenario. Viruses, 2016, 8, 177.	1.5	135
228	Preliminary analysis on the transcripts involved in resistance responses to eumusae leaf spot disease of banana caused by Mycosphaerella eumusae, a recent add-on of the sigatoka disease complex. Turkish Journal of Botany, 2016, 40, 461-471.	0.5	7
229	Marker-assisted breeding of Musa balbisiana genitors devoid of infectious endogenous Banana streak virus sequences. Molecular Breeding, 2016 , 36 , 1 .	1.0	16
230	A genetic delineation of Patchouli (<i>Pogostemon cablin</i>) revealed by specificâ€locus amplified fragment sequencing. Journal of Systematics and Evolution, 2016, 54, 491-501.	1.6	16
231	GMOs in horticulture – exciting opportunities or a dead end? A case study on banana. Acta Horticulturae, 2016, , 49-58.	0.1	1
232	Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Scientific Reports, 2016, 6, 18878.	1.6	75
233	Evolutionary Histories of Gene Families in Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, 2016, , 121-137.	0.3	0
234	Fruit Ripening in Melon. Plant Genetics and Genomics: Crops and Models, 2016, , 345-375.	0.3	4
235	DNA methylation patterns of banana leaves in response to Fusarium oxysporum f. sp. cubense tropical race 4. Journal of Integrative Agriculture, 2016, 15, 2736-2744.	1.7	12
236	Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Scientific Reports, 2016, 6, 23632.	1.6	82
237	Identification of Mycosphaerella eumusaeresponsive unique genes/transcripts from a resistant banana cultivar. Acta Horticulturae, 2016, , 111-118.	0.1	6
238	Abiotic stress research in crops using -omics approaches: drought stress and banana in the spotlight. Acta Horticulturae, 2016, , 81-90.	0.1	15
239	Defense Gene Expression Associated with Biotrophic Phase of <i>Mycosphaerella fijiensis</i> M. Morelet Infection in Banana. Plant Disease, 2016, 100, 1170-1175.	0.7	22
240	The South Green portal: a comprehensive resource for tropical and Mediterranean crop genomics. Current Plant Biology, 2016, 7-8, 6-9.	2.3	6
241	Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Scientific Reports, 2016, 6, 31586.	1.6	51
242	Development of microsatellite markers for genes related to defense responses inMusa acuminata. Acta Horticulturae, 2016, , 91-94.	0.1	0
243	Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Scientific Reports, 2016, 6, 22583.	1.6	34
244	Role of Genomics in Enhancing Nutrition Content of Cereals. , 2016, , 77-96.		1

#	Article	IF	CITATIONS
245	The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes. Journal of Experimental Botany, 2016, 67, 2263-2275.	2.4	98
246	Evolution of the <i>APETALA2 </i> Gene Lineage in Seed Plants. Molecular Biology and Evolution, 2016, 33, 1818-1832.	3.5	26
247	Progress in Botany 77. Progress in Botany Fortschritte Der Botanik, 2016, , .	0.1	2
248	Chromosome segregation in an allotetraploid banana hybrid (AAAB) suggests a translocation between the A and B genomes and results in eBSV-free offsprings. Molecular Breeding, 2016, 36, 1.	1.0	19
249	Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant species in various habitats in the Hawaiian Islands with remarkable phenotypic variations. Journal of Plant Research, 2016, 129, 727-736.	1.2	18
250	The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group ⟨i⟩Musa⟨ i⟩ Cultivar. Journal of Agricultural and Food Chemistry, 2016, 64, 3176-3185.	2.4	34
251	Comparative Analysis of GC Content Variations in Plant Genomes. Tropical Plant Biology, 2016, 9, 136-149.	1.0	54
252	Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biology and Technology, 2016, 122, 11-21.	2.9	136
253	Hybridization among distantly related species: Examples from the polyploid genus Curcuma (Zingiberaceae). Molecular Phylogenetics and Evolution, 2016, 100, 303-321.	1.2	17
254	Deep sequencing of banana bract mosaic virus from flowering ginger (Alpinia purpurata) and development of an immunocapture RT-LAMP detection assay. Archives of Virology, 2016, 161, 1783-1795.	0.9	10
255	Molecular cloning and expression of four phenylalanine ammonia lyase genes from banana interacting with Fusarium oxysporum. Biologia Plantarum, 2016, 60, 459-468.	1.9	11
256	Banana: Genomics and Transgenic Approaches for Genetic Improvement. , 2016, , .		7
257	Biofortification for Alleviating Iron Deficiency Anemia. , 2016, , 301-337.		4
258	Identification of miRNAs differentially expressed in Fusarium wilt-resistant and susceptible banana varieties. South African Journal of Botany, 2016, 106, 244-249.	1.2	17
259	DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (<i>Musa</i> spp.). Annals of Botany, 2016, 118, 1269-1278.	1.4	44
260	The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Research, 2016, 23, 427-439.	1.5	35
261	Enhancing Abiotic Stress Tolerance. , 2016, , 181-196.		1
262	Current Status of Banana Genome in the Age of Next Generation Sequencing. , 2016, , 51-59.		5

#	Article	IF	CITATIONS
263	Transcriptome sequencing of Mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes. BMC Genomics, 2016, 17, 690.	1.2	20
264	Field Guide to Plant Model Systems. Cell, 2016, 167, 325-339.	13.5	99
265	Biotechnology of Tropical Tree Crops. , 2016, , 245-295.		1
267	Expression of MfAvr4 in banana leaf sections with black leaf streak disease caused by Mycosphaerella fijiensis: a technical validation. Australasian Plant Pathology, 2016, 45, 481-488.	0.5	5
268	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	2.3	88
269	Genome: Origins and evolution of the term. Molecular Biology, 2016, 50, 542-550.	0.4	6
270	Interactions Among Host and Plant Pararetroviruses: An Ever Evolving Evolutionary Dogma. , 2016, , 73-87.		1
271	Repeat Sequences in the Tomato Genome. Compendium of Plant Genomes, 2016, , 173-199.	0.3	1
272	The banana salt stress transcriptome: large and small RNA expression in stressed banana. Acta Horticulturae, 2016, , 125-132.	0.1	1
273	The Tomato Genome. Compendium of Plant Genomes, 2016, , .	0.3	9
274	Genome Analysis of Plants. , 2016, , 1-27.		0
275	Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome, 2016, 59, 1085-1100.	0.9	25
276	Genes and Markers: Application in Banana Crop Improvement. , 2016, , 35-50.		1
277	Abiotic Stress Tolerance Research Using-Omics Approaches. , 2016, , 77-91.		1
278	Revisiting the phosphatidylethanolamineâ€binding protein (<scp>PEBP)</scp> gene family reveals cryptic <i>FLOWERING LOCUS T</i> gene homologs in gymnosperms and sheds new light on functional evolution. New Phytologist, 2016, 212, 730-744.	3.5	77
279	The Case of the Missing Ancient Fungal Polyploids. American Naturalist, 2016, 188, 602-614.	1.0	38
280	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	4.7	311
282	Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Scientific Reports, 2016, 6, 30203.	1.6	65

#	Article	IF	CITATIONS
283	Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana. Scientific Reports, 2016, 6, 31361.	1.6	52
284	Effects of short-term exposure to low temperature on survival, development and reproduction of banana-associated Oulenziella bakeri (Acari: Winterschmidtiidae). Systematic and Applied Acarology, 2016, 21, 1078.	0.5	5
285	Development of SSR markers from Musa balbisiana for genetic diversity analysis among Thai bananas. Plant Systematics and Evolution, 2016, 302, 739-761.	0.3	12
286	Database of predicted SCAR markers in five fruit and three vegetable crops. Journal of Genetics, 2016, 95, 171-175.	0.4	0
287	Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data. Genome Biology and Evolution, 2016, 8, 1023-1037.	1.1	53
288	The Small Nuclear Genomes of <i>Selaginella < /i>Are Associated with a Low Rate of Genome Size Evolution. Genome Biology and Evolution, 2016, 8, 1516-1525.</i>	1.1	29
289	Evolution of Gene Duplication in Plants. Plant Physiology, 2016, 171, 2294-2316.	2.3	1,094
290	Advances in Genetic Diversity Analysis in Fruit Tree Crops. Progress in Botany Fortschritte Der Botanik, 2016, , 245-264.	0.1	4
291	Identification and expression analysis of genes related to calyx persistence in Korla fragrant pear. BMC Genomics, 2016, 17, 132.	1.2	31
292	Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biology, 2016, 17, 7.	3.8	50
293	Evolution of plant genome architecture. Genome Biology, 2016, 17, 37.	3.8	331
294	Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening. Plant Physiology, 2016, 171, pp.00301.2016.	2.3	157
295	Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Science, 2016, 242, 47-64.	1.7	60
296	MaJAZ1 Attenuates the MaLBD5-Mediated Transcriptional Activation of Jasmonate Biosynthesis Gene <i>MaAOC2</i> in Regulating Cold Tolerance of Banana Fruit. Journal of Agricultural and Food Chemistry, 2016, 64, 738-745.	2.4	46
297	Evolutionary Dynamics of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) Subfamily in Angiosperms. Plant Physiology, 2016, 170, 1595-1610.	2.3	114
298	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	13.7	460
299	Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biology and Technology, 2016, 116, 8-15.	2.9	37
300	Plantain cultivars (Musa spp. AAB) grown at different altitudes demonstrate cool temperature and photoperiod responses relevant to genetic improvement. Field Crops Research, 2016, 194, 103-111.	2.3	13

#	Article	IF	Citations
301	How endogenous plant pararetroviruses shed light on <i>Musa </i> evolution. Annals of Botany, 2016, 117, 625-641.	1.4	18
302	Ancestors of modern plant crops. Current Opinion in Plant Biology, 2016, 30, 134-142.	3.5	54
303	A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution, 2016, 8, evw060.	1,1	117
304	Improvement of the banana "Musa acuminata―reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 2016, 17, 243.	1,2	129
305	Ethylene treatment induces changes in folate profiles in climacteric fruit during postharvest ripening. Postharvest Biology and Technology, 2016, 118, 43-50.	2.9	23
306	Molecular characterization of CONSTANS-Like (COL) genes in banana (Musa acuminata L. AAA Group,) Tj ETQq1	1 0.78431 1:4	.4 ggBT /Ove
307	Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). South African Journal of Botany, 2016, 104, 134-141.	1.2	9
308	Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales – POR 1 is missing. Molecular Phylogenetics and Evolution, 2016, 98, 21-28.	1.2	9
309	Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns. Plant Physiology, 2016, 170, 2095-2109.	2.3	269
310	Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 462-475.	9.7	41
311	The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. Plant Science, 2016, 245, 11-24.	1.7	16
312	The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theoretical and Applied Genetics, 2016, 129, 547-561.	1.8	45
313	What makes up plant genomes: The vanishing line between transposable elements and genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 366-380.	0.9	67
314	Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Science, 2016, 242, 37-46.	1.7	33
315	Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 2016, 1374, 115-140.	0.4	216
316	Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways. Methods in Molecular Biology, 2016, 1374, 141-163.	0.4	15
317	Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal, 2016, 14, 1070-1085.	4.1	303
318	Comparative genomics of two jute species and insight into fibre biogenesis. Nature Plants, 2017, 3, 16223.	4.7	95

#	Article	IF	CITATIONS
319	ERAMOSA controls lateral branching in snapdragon. Scientific Reports, 2017, 7, 41319.	1.6	10
320	The Epigenome and Transcriptional Dynamics of Fruit Ripening. Annual Review of Plant Biology, 2017, 68, 61-84.	8.6	335
321	Evolution and Challenges of Varietal Improvement Strategies. , 2017, , 141-152.		1
322	Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Scientific Reports, 2017, 7, 40852.	1.6	40
323	Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana. Scientific Reports, 2017, 7, 43007.	1.6	65
324	Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Annual Review of Plant Biology, 2017, 68, 457-483.	8.6	64
325	Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 2017, 26, 801-824.	1.2	108
326	Phylogenetic analysis of 25 plant species representing 19 angiosperm families and one gymnosperm family based on 390 orthologous genes. Plant Systematics and Evolution, 2017, 303, 413-417.	0.3	9
327	DNA Remodeling by Strict Partial Endoreplication in Orchids, an Original Process in the Plant Kingdom. Genome Biology and Evolution, 2017, 9, 1051-1071.	1.1	23
328	Comprehensive identification and clustering of CLV3/ESRâ€related (CLE) genes in plants finds groups withApotentially shared function. New Phytologist, 2017, 216, 605-616.	3.5	101
329	Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Scientific Reports, 2017, 7, 3536.	1.6	80
330	The MAPKKK and MAPKK gene families in banana: identification, phylogeny and expression during development, ripening and abiotic stress. Scientific Reports, 2017, 7, 1159.	1.6	44
331	Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Scientific Reports, 2017, 7, 3806.	1.6	46
332	The landscape and structural diversity of LTR retrotransposons in Musa genome. Molecular Genetics and Genomics, 2017, 292, 1051-1067.	1.0	2
333	Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations. Molecular Biology and Evolution, 2017, 34, 2140-2152.	3. 5	23
334	Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics. GigaScience, 2017, 6, 1-14.	3.3	103
335	Biochemical analysis and activity profiling of fruit ripening enzymes in banana cultivars from Kerala. Journal of Food Measurement and Characterization, 2017, 11, 1274-1283.	1.6	5
336	Repetitive DNA: A Versatile Tool for Karyotyping in <i> Festuca pratensis</i> Huds Cytogenetic and Genome Research, 2017, 151, 96-105.	0.6	24

#	Article	IF	CITATIONS
337	The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics, 2017, 18, 225.	1.2	342
338	Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics, 2017, 49, 490-496.	9.4	203
339	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	13.7	301
340	Evidence for Ancient Origins of Bowman-Birk Inhibitors from <i>Selaginella moellendorffii</i> Cell, 2017, 29, 461-473.	3.1	18
341	The transcriptional regulatory network mediated by banana (<i>Musa acuminata</i>) dehydrationâ€responsive element binding (MaDREB) transcription factors in fruit ripening. New Phytologist, 2017, 214, 762-781.	3.5	68
342	Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomic Data. Methods in Molecular Biology, 2017, 1533, 1-31.	0.4	189
343	Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): A review. Journal of Ethnopharmacology, 2017, 196, 124-140.	2.0	80
344	Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, 2017, , .	0.3	22
345	Evolution of the Aux/IAA Gene Family in Hexaploid Wheat. Journal of Molecular Evolution, 2017, 85, 107-119.	0.8	7
346	The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications, 2017, 8, 1279.	5.8	240
347	Genetic Improvement of Tropical Crops. , 2017, , .		23
348	Development of NBS-related microsatellite (NRM) markers in hexaploid wheat. Euphytica, 2017, 213, 1.	0.6	0
349	Reciprocally Retained Genes in the Angiosperm Lineage Show the Hallmarks of Dosage Balance Sensitivity. Plant Cell, 2017, 29, 2766-2785.	3.1	81
350	Evolutionarily Conserved Alternative Splicing Across Monocots. Genetics, 2017, 207, 465-480.	1.2	47
351	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	9.4	356
352	The Apostasia genome and the evolution of orchids. Nature, 2017, 549, 379-383.	13.7	305
353	Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany, 2017, 120, 183-194.	1.4	306
354	Flowering time in banana (Musa spp.), a day neutral plant, is controlled by at least three FLOWERING LOCUS T homologues. Scientific Reports, 2017, 7, 5935.	1.6	16

#	Article	IF	CITATIONS
355	UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics, 2017, 33, 2938-2940.	1.8	2,255
356	Sugarcane Biotechnology: Challenges and Prospects. , 2017, , .		3
357	Novel Potential Candidate Promoters and Advanced Strategies for Sugarcane Transformation. , 2017, , 75-85.		0
358	MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	41
359	The Plant Orthology Browser: An Orthology and Geneâ€Order Visualizer for Plant Comparative Genomics. Plant Genome, 2017, 10, plantgenome2016.08.0078.	1.6	10
360	Long noncoding RNAs that respond to Fusarium oxysporum infection in â€~Cavendish' banana (Musa) Tj ETÇ	2q1.1 0.78	34314 rgBT (
362	Genome-wide Analysis of the CCCH Zinc-Finger Gene Family in Banana (Musa acuminata): An Insight Into Motif and Gene Structure Arrangement, Evolution and Salt Stress Responses. Tropical Plant Biology, 2017, 10, 177-193.	1.0	11
363	Bananas and Plantains (Musa spp.)., 2017, , 219-240.		35
364	Genome-wide analysis of banana MADS-box family closely related to fruit development and ripening. Scientific Reports, 2017, 7, 3467.	1.6	36
365	Differential gene expression in banana roots in response to Fusarium wilt. Canadian Journal of Plant Pathology, 2017, 39, 163-175.	0.8	21
366	Development of gene-based identification markers for Phalaenopsis †KS Little Gem' based on comparative genome analysis. Horticulture Environment and Biotechnology, 2017, 58, 162-169.	0.7	2
367	Origin and domestication of cultivated banana. Ecological Genetics and Genomics, 2017, 2, 1-2.	0.3	3
368	Identification of alternatively spliced MsRan transcripts involved in low temperature response in Musa spp Biologia Plantarum, 2017, 61, 483-493.	1.9	2
369	The <scp>ABC</scp> s of flower development: mutational analysis of <i><scp>AP</scp>1</i> <scp>FUL</scp> â€like genes in rice provides evidence for a homeotic (A)â€lunction in grasses. Plant Journal, 2017, 89, 310-324.	2.8	76
370	Chitin elicitor receptor kinase 1 (CERK1) is required for the non-host defense response of Arabidopsis to Fusarium oxysporum f. Sp. cubense. European Journal of Plant Pathology, 2017, 147, 571-578.	0.8	14
371	Genetically modified bananas: To mitigate food security concerns. Scientia Horticulturae, 2017, 214, 91-98.	1.7	25
372	A Contig-Based Computational Prediction of Conserved miRNAs and Their Probable Role in Regulation of Cuticular Wax Biosynthesis in Banana. Plant Molecular Biology Reporter, 2017, 35, 203-214.	1.0	15
373	Identification, transcriptional and functional analysis of heatâ€shock protein 90s in banana (<i><scp>M</scp>usa acuminata </i> <scp>L</scp> .) highlight their novel role in melatoninâ€mediated plant response to <scp>F</scp> usarium wilt. Journal of Pineal Research, 2017, 62, e12367.	3.4	91

#	Article	IF	CITATIONS
374	Genome Sequence-Based Marker Development and Genotyping in Potato. Compendium of Plant Genomes, 2017, , 307-326.	0.3	3
375	The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biology, 2017, 17, 145.	1.6	51
376	Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Using Mitochondrial and Nuclear Markers. Genome Biology and Evolution, 2017, 9, 2510-2521.	1.1	3
377	Challenges to genome sequence dissection in sweetpotato. Breeding Science, 2017, 67, 35-40.	0.9	23
378	Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Frontiers in Plant Science, 2017, 8, 273.	1.7	89
379	Transcriptome Analysis of the Melon-Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants. Frontiers in Plant Science, 2017, 8, 362.	1.7	43
380	New Insights on Leucine-Rich Repeats Receptor-Like Kinase Orthologous Relationships in Angiosperms. Frontiers in Plant Science, 2017, 08, 381.	1.7	54
381	Soluble Starch Synthase III-1 in Amylopectin Metabolism of Banana Fruit: Characterization, Expression, Enzyme Activity, and Functional Analyses. Frontiers in Plant Science, 2017, 8, 454.	1.7	19
382	Regulation of Banana Phytoene Synthase (MaPSY) Expression, Characterization and Their Modulation under Various Abiotic Stress Conditions. Frontiers in Plant Science, 2017, 8, 462.	1.7	30
383	Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages. Frontiers in Plant Science, 2017, 8, 603.	1.7	31
384	Expressed Centromere Specific Histone 3 (CENH3) Variants in Cultivated Triploid and Wild Diploid Bananas (Musa spp.). Frontiers in Plant Science, 2017, 8, 1034.	1.7	8
385	Genome-Wide Identification and Expression, Protein–Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific BIG GRAIN and BIG GRAIN LIKE Gene Family. Frontiers in Plant Science, 2017, 8, 1812.	1.7	11
386	Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics, 2017, 18, 503.	1.2	90
387	World Agriculture and Impact ofÂBiotechnology. , 2017, , 1-22.		1
388	The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses. International Journal of Molecular Sciences, 2017, 18, 1581.	1.8	34
389	Effects of Aqueous Extract of Three Cultivars of Banana (Musa acuminata) Fruit Peel on Kidney and Liver Function Indices in Wistar Rats. Medicines (Basel, Switzerland), 2017, 4, 77.	0.7	6
390	Modifying Bananas: From Transgenics to Organics?. Sustainability, 2017, 9, 333.	1.6	50
391	Auxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses. Genes, 2017, 8, 202.	1.0	16

#	Article	IF	CITATIONS
392	Codon usage and codon pair patterns in non-grass monocot genomes. Annals of Botany, 2017, 120, 893-909.	1.4	52
393	Carotenoid Profiling in the Peel and Pulp of 36 Selected <i>Musa</i> Varieties. Food Science and Technology Research, 2017, 23, 603-611.	0.3	14
394	Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE, 2017, 12, e0178734.	1.1	36
395	Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS ONE, 2017, 12, e0182242.	1.1	33
396	Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evolutionary Biology, 2017, 17, 238.	3.2	3
397	Overview of Next-generation Sequencing Platforms Used in Published Draft Plant Genomes in Light of Genotypization of Immortelle Plant (Helichrysium Arenarium). Medicinski Arhiv = Medical Archives = Archives De Médecine, 2017, 71, 288.	0.4	28
398	Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Current Opinion in Plant Biology, 2018, 42, 37-48.	3. 5	74
399	Induction and recovery of copy number variation in banana through gamma irradiation and lowâ€coverage wholeâ€genome sequencing. Plant Biotechnology Journal, 2018, 16, 1644-1653.	4.1	22
400	Phylotranscriptomic analysis and genome evolution of the Cypripedioideae (Orchidaceae). American Journal of Botany, 2018, 105, 631-640.	0.8	25
401	Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics. Scientific Reports, 2018, 8, 1353.	1.6	34
402	The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Current Opinion in Genetics and Development, 2018, 49, 1-7.	1.5	186
403	Genome-wide searches and molecular analyses highlight the unique evolutionary path of flavone synthase I (FNSI) in Apiaceae. Genome, 2018, 61, 103-109.	0.9	7
404	Functional Divergence between Subgenomes and Gene Pairs after Whole Genome Duplications. Molecular Plant, 2018, 11, 388-397.	3.9	73
405	Widespread Whole Genome Duplications Contribute to Genome Complexity and Species Diversity in Angiosperms. Molecular Plant, 2018, 11, 414-428.	3.9	251
406	Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). European Journal of Plant Pathology, 2018, 151, 723-734.	0.8	54
407	Progress in understanding <i>Pseudocercospora</i> banana pathogens and the development of resistant <i>Musa</i> germplasm. Plant Pathology, 2018, 67, 759-770.	1.2	38
408	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	1.2	167
409	Differential expression of histone deacetylases during banana ripening and identification of MaHDA6 in regulating ripening-associated genes. Postharvest Biology and Technology, 2018, 141, 24-32.	2.9	25

#	Article	IF	CITATIONS
410	BanSatDB, a whole-genome-based database of putative and experimentally validated microsatellite markers of three Musa species. Crop Journal, 2018, 6, 642-650.	2.3	5
411	A comprehensive investigation of starch degradation process and identification of a transcriptional activator Mab <scp>HLH</scp> 6 during banana fruit ripening. Plant Biotechnology Journal, 2018, 16, 151-164.	4.1	131
412	Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnology Journal, 2018, 16, 520-529.	4.1	22
413	Early regulation of primary metabolism, antioxidant, methyl cycle and phenylpropanoid pathways during the Mycosphaerella fijiensis-Musa spp. interaction. Tropical Plant Pathology, 2018, 43, 1-9.	0.8	7
414	Comparative epigenomics reveals evolution of duplicated genes in potato and tomato. Plant Journal, 2018, 93, 460-471.	2.8	33
415	CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional and Integrative Genomics, 2018, 18, 89-99.	1.4	203
416	Duplication and Diversification of REPLUMLESS – A Case Study in the Papaveraceae. Frontiers in Plant Science, 2018, 9, 1833.	1.7	10
417	MaMADS2 repression in banana fruits modifies hormone synthesis and signalling pathways prior to climacteric stage. BMC Plant Biology, 2018, 18, 267.	1.6	7
418	Using Genomic Sequence Information to Increase Conservation and Sustainable Use of Crop Diversity and Benefit-Sharing. Biopreservation and Biobanking, 2018, 16, 368-376.	0.5	20
419	Transposable Elements in theÂPineapple Genome. Plant Genetics and Genomics: Crops and Models, 2018, , 155-165.	0.3	1
420	Water stress in Musa spp.: A systematic review. PLoS ONE, 2018, 13, e0208052.	1.1	19
421	High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). BMC Plant Biology, 2018, 18, 308.	1.6	26
422	The complex distribution of plantain cultivars (Musa sp., AAB subgroup) in the Bas-Uele province of the Democratic Republic of Congo. African Journal of Agricultural Research Vol Pp, 2018, 13, 1358-1373.	0.2	1
423	Eukaryote Genomes. Computational Biology, 2018, , 221-240.	0.1	0
425	Comparative Genomics of Pineapple and Other Angiosperm Genomes. Plant Genetics and Genomics: Crops and Models, 2018, , 131-153.	0.3	0
426	Glycosyltransferase Family 61 in Liliopsida (Monocot): The Story of a Gene Family Expansion. Frontiers in Plant Science, 2018, 9, 1843.	1.7	10
427	Genome-Wide Identification and Analysis of U-Box E3 Ubiquitin–Protein Ligase Gene Family in Banana. International Journal of Molecular Sciences, 2018, 19, 3874.	1.8	30
428	Multiplex detection of three banana viruses by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Tropical Plant Pathology, 2018, 43, 543-551.	0.8	20

#	Article	IF	CITATIONS
429	Molecular and Cytogenetic Study of East African Highland Banana. Frontiers in Plant Science, 2018, 9, 1371.	1.7	50
430	Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 2018, 4, 784-791.	4.7	256
431	Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC Plant Biology, 2018, 18, 256.	1.6	13
432	Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 2018, 4, 879-887.	4.7	316
433	Overexpression of a Novel ROP Gene from the Banana (MaROP5g) Confers Increased Salt Stress Tolerance. International Journal of Molecular Sciences, 2018, 19, 3108.	1.8	22
434	Three new genome assemblies support a rapid radiation in Musa acuminata (wild banana). Genome Biology and Evolution, 2018, 10, 3129-3140.	1.1	29
435	PGD: Pineapple Genomics Database. Horticulture Research, 2018, 5, 66.	2.9	25
436	Characterization and Expression Patterns of Auxin Response Factors in Wheat. Frontiers in Plant Science, 2018, 9, 1395.	1.7	40
437	Transcriptional profiling and genes involved in acquired thermotolerance in Banana: a non-model crop. Scientific Reports, 2018, 8, 10683.	1.6	14
438	Fault Monitoring System for Photovoltaic Modules in Solar Panels using LabVIEW. , 2018, , .		0
439	ICDIM 2018 Copyright Page., 2018,,.		0
440	Study on Quantum Imaging Experimental Methods based on the Light String Theory. , 2018, , .		0
442	Identification of Two Transcriptional Activators MabZIP4/5 in Controlling Aroma Biosynthetic Genes during Banana Ripening. Journal of Agricultural and Food Chemistry, 2018, 66, 6142-6150.	2.4	39
443	Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. Annals of Botany, 2018, 122, 279-290.	1.4	17
444	Banana MaABI5 is involved in ABA-induced cold tolerance through interaction with a RING E3 ubiquitin ligase, MaC3HC4-1. Scientia Horticulturae, 2018, 237, 239-246.	1.7	14
445	TriPoly: haplotype estimation for polyploids using sequencing data of related individuals. Bioinformatics, 2018, 34, 3864-3872.	1.8	28
446	Expansion and diversification of the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) family in land plants. Plant Molecular Biology, 2018, 97, 435-449.	2.0	22
447	Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10 $\!\!/$ 11 genes during banana fruit ripening. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 613-622.	0.9	24

#	Article	IF	Citations
448	Genome-wide identification and characterization of the CKII gene family in the cultivated banana cultivar (Musa spp. cv Tianbaojiao) and the wild banana (Musa itinerans). PLoS ONE, 2018, 13, e0200149.	1.1	2
449	Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. â€~Dajiao'). Frontiers in Plant Science, 2018, 9, 282.	1.7	38
450	New Geographical Insights of the Latest Expansion of Fusarium oxysporum f.sp. cubense Tropical Race 4 Into the Greater Mekong Subregion. Frontiers in Plant Science, 2018, 9, 457.	1.7	96
451	Tools for Genetic Studies in Experimental Populations of Polyploids. Frontiers in Plant Science, 2018, 9, 513.	1.7	175
452	Comparative Genomics, Whole-Genome Re-sequencing and Expression Profile Analysis of Nucleobase:Cation Symporter 2 (NCS2) Genes in Maize. Frontiers in Plant Science, 2018, 9, 856.	1.7	6
453	The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evolutionary Biology, 2018, 18, 76.	3.2	23
454	Genomics-Assisted Breeding in the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Agriculture (Switzerland), 2018, 8, 89.	1.4	16
455	Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivars in Response to Fusarium oxysporum. International Journal of Molecular Sciences, 2018, 19, 350.	1.8	24
456	Genome-Wide Regulatory Network Mapping of miRNA and Transcription Factors in Banana Roots. Tropical Plant Biology, 2018, 11, 141-153.	1.0	5
457	Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLoS ONE, 2018, 13, e0200002.	1.1	61
458	Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 2018, 27, 451-460.	1.3	121
459	Comparative genomic and transcriptomic analysis of selected fatty acid biosynthesis genes and CNL disease resistance genes in oil palm. PLoS ONE, 2018, 13, e0194792.	1.1	16
460	Sequencing Plant Genomes. Progress in Botany Fortschritte Der Botanik, 2018, , 109-193.	0.1	4
461	Pedigree analyses and next-generation sequencing reveal critically low regeneration in extremely threatened Zingiber singapurense (Zingiberaceae). Botanical Journal of the Linnean Society, 2018, 187, 346-361.	0.8	9
462	The Repetitive Landscape of the Barley Genome. Compendium of Plant Genomes, 2018, , 123-138.	0.3	6
463	Genomic organization, phylogeny, and functional analysis of the banana MaRAR1 gene that encodes a cochaperone of HSP90. Plant Gene, 2018, 16, 19-31.	1.4	0
464	Banana Fusarium Wilt (Fusarium oxysporum f. sp. cubense) Control and Resistance, in the Context of Developing Wilt-resistant Bananas Within Sustainable Production Systems. Horticultural Plant Journal, 2018, 4, 208-218.	2.3	46
465	The 2016 Global Strategy for the conservation and use of Musa genetic resources – key strategic elements. Acta Horticulturae, 2018, , 71-78.	0.1	5

#	Article	IF	CITATIONS
466	The Genomes of Rosaceous Berries and Their Wild Relatives. Compendium of Plant Genomes, 2018, , .	0.3	17
467	Current Status of Octoploid Strawberry (Fragaria × ananassa) Genome Study. Compendium of Plant Genomes, 2018, , 129-137.	0.3	4
468	Proteomic profiling of 24-epibrassinolide-induced chilling tolerance in harvested banana fruit. Journal of Proteomics, 2018, 187, 1-12.	1.2	29
469	Comparative transcriptome analysis reveals a role for anthocyanin biosynthesis genes in the formation of purple peel in Minhou wild banana (Musa itinerans Cheesman). Journal of Horticultural Science and Biotechnology, 2019, 94, 184-200.	0.9	12
470	Recent advances in banana (<i>musa</i> spp.) biofortification to alleviate vitamin A deficiency. Critical Reviews in Food Science and Nutrition, 2019, 59, 3498-3510.	5.4	24
471	Genetically engineered bananas—From laboratory to deployment. Annals of Applied Biology, 2019, 175, 282-301.	1.3	3
472	The use of a fertile doubled haploid apple line for QTL analysis of fruit traits. Breeding Science, 2019, 69, 410-419.	0.9	7
473	Cucumber mosaic virus-induced gene silencing in banana. Scientific Reports, 2019, 9, 11553.	1.6	28
474	A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 2019, 9, 11769.	1.6	179
475	Developmental changes in the composition of leaf cuticular wax of banana influenced by wax biosynthesis gene expression: a case study in Musa acuminata and Musa balbisiana. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	6
476	Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants, 2019, 5, 810-821.	4.7	132
477	Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. Frontiers in Plant Science, 2019, 10, 858.	1.7	18
478	MaMYB4 Recruits Histone Deacetylase MaHDA2 and Modulates the Expression of ω-3 Fatty Acid Desaturase Genes during Cold Stress Response in Banana Fruit. Plant and Cell Physiology, 2019, 60, 2410-2422.	1.5	53
479	Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns. PLoS ONE, 2019, 14, e0219698.	1.1	12
480	A polyketide synthase gene cluster associated with the sexual reproductive cycle of the banana pathogen, Pseudocercospora fijiensis. PLoS ONE, 2019, 14, e0220319.	1.1	7
481	Molecular Characterization, DNA Finger Printing, and Genomics in Horticultural Crops. , 2019, , 595-618.		1
482	Small RNA profiling of Cavendish banana roots inoculated with Fusarium oxysporum f. sp. cubense race 1 and tropical race 4 . Phytopathology Research, 2019, 1 , .	0.9	10
483	Two large reciprocal translocations characterized in the disease resistance-rich burmannica genetic group of Musa acuminata. Annals of Botany, 2019, 124, 319-329.	1.4	15

#	Article	IF	CITATIONS
484	The Plant Ontology Facilitates Comparisons of Plant Development Stages Across Species. Frontiers in Plant Science, 2019, 10, 631.	1.7	36
485	Stable reference genes for RT-qPCR analysis of gene expression in the Musa acuminata-Pseudocercospora musae interaction. Scientific Reports, 2019, 9, 14592.	1.6	15
486	Austin Sarat (ed.), <i>Human Rights and Legal Judgments: The American Story</i> Review, 2019, 19, 193-198.	0.3	1
490	Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via l-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-l-Methionine. Antioxidants, 2019, 8, 358.	2,2	10
491	Genome-wide identification and interactome analysis of members of two-component system in Banana. BMC Genomics, 2019, 20, 674.	1.2	13
492	Current status in whole genome sequencing and analysis of Ipomoea spp Plant Cell Reports, 2019, 38, 1365-1371.	2.8	16
493	Association genetics of bunch weight and its component traits in East African highland banana (Musa) Tj ETQq0	0 0 rgBT /	Overlock 10 1
494	Identification of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) responsive miRNAs in banana root. Scientific Reports, 2019, 9, 13682.	1.6	23
495	Combination of Transcriptomic, Proteomic, and Metabolomic Analysis Reveals the Ripening Mechanism of Banana Pulp. Biomolecules, 2019, 9, 523.	1.8	26
496	Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f. sp. cubense race 4 strains. PLoS ONE, 2019, 14, e0222727.	1.1	34
497	Enset in Ethiopia: a poorly characterized but resilient starch staple. Annals of Botany, 2019, 123, 747-766.	1.4	119
498	Functional Annotation of Hypothetical Proteins Derived from Suppressive Subtraction Hybridization (SSH) Analysis Shows NPR1 (Non-Pathogenesis Related)-Like Activity. Agronomy, 2019, 9, 57.	1.3	2
499	Genetic Consequences of Interspecific Hybridization, Its Role in Speciation and Phenotypic Diversity of Plants. Russian Journal of Genetics, 2019, 55, 278-294.	0.2	20
500	Transcriptome Analysis of Banana (Musa acuminate L.) in Response to Low-Potassium Stress. Agronomy, 2019, 9, 169.	1.3	10
501	Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports, 2019, 9, 8199.	1.6	40
502	Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana 'Guijiao 9' in response to Fusarium wilt. Plant Physiology and Biochemistry, 2019, 141, 83-94.	2.8	44
503	Genetic insights into the modification of the pre-fertilization mechanisms during plant domestication. Journal of Experimental Botany, 2019, 70, 3007-3019.	2.4	9
504	<i>De Novo</i> Genome Sequence Assembly of Dwarf Coconut (<i>Cocos nucifera</i> L. †Catigan Green) Tj ET Genes, Genomes, Genetics, 2019, 9, 2377-2393.	Qq1 1 0.7 0.8	784314 rg <mark>8T</mark> 55

#	Article	IF	Citations
505	Integrated Transcriptomic, Proteomic, and Metabolomics Analysis Reveals Peel Ripening of Harvested Banana under Natural Condition. Biomolecules, 2019, 9, 167.	1.8	38
506	Genome-wide Analysis of the MADS-Box Gene Family in Watermelon. Computational Biology and Chemistry, 2019, 80, 341-350.	1.1	25
507	Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Critical Reviews in Biotechnology, 2019, 39, 680-692.	5.1	32
508	Assessing Variations in Host Resistance to Fusarium oxysporum f sp. cubense Race 4 in Musa Species, With a Focus on the Subtropical Race 4. Frontiers in Microbiology, 2019, 10, 1062.	1.5	30
509	Effect of paleopolyploidy and allopolyploidy on gene expression in banana. BMC Genomics, 2019, 20, 244.	1.2	22
510	Ancient Polyploidy and Genome Evolution in Palms. Genome Biology and Evolution, 2019, 11, 1501-1511.	1.1	25
511	Meiosis Research in Orphan and Non-orphan Tropical Crops. Frontiers in Plant Science, 2019, 10, 74.	1.7	3
512	Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 2019, 10, 616.	1.5	179
513	The Starch Is (Not) Just Another Brick in the Wall: The Primary Metabolism of Sugars During Banana Ripening. Frontiers in Plant Science, 2019, 10, 391.	1.7	57
514	Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. Journal of Experimental Botany, 2019, 70, 2651-2664.	2.4	20
516	Functional conservation of EXA1 among diverse plant species for the infection by a family of plant viruses. Scientific Reports, 2019, 9, 5958.	1.6	14
517	Application of Genetic Engineering for Control of Bacterial Wilt Disease of Enset, Ethiopia's Sustainability Crop. Frontiers in Plant Science, 2019, 10, 133.	1.7	8
518	A novel polyketide synthase gene cluster in the plant pathogenic fungus Pseudocercospora fijiensis. PLoS ONE, 2019, 14, e0212229.	1.1	10
519	Genome-wide identification, characterization and expression analysis of NF-Y gene family in relation to fruit ripening in banana. Postharvest Biology and Technology, 2019, 151, 98-110.	2.9	29
520	A Brain Inspired View of Life: The Scientific, Social and Cultural Implications of Interconnectivity and Complexity., 2019,,.		7
521	Analysis of Rotated Corrugated Parallel Plate Waveguide Using Asymptotic Corrugation Boundary Conditions. , 2019, , .		0
522	Optimal Energy Storage Siting and Sizing to Mitigate Voltage Deviation in Distribution Networks. , 2019, , .		1
523	REPLAN: Multi-Region Power System Planning Approach for Nigeria. , 2019, , .		3

#	Article	IF	CITATIONS
524	User Grouping based Structured Joint Sparse Channel Estimation for 3D MIMO System., 2019,,.		0
525	Experimental Study of the Amplitude-Frequency Characteristics of a Waveguide Filter with a Resonant Waveguide-Slot Membrane at Subcritical Waveguide Frequencies. , 2019, , .		1
526	Android App Merging for Benchmark Speed-Up and Analysis Lift-Up. , 2019, , .		1
527	Automated Detection of Microaneurysm using Textural Analysis. , 2019, , .		O
528	Correlation-Based Sensor Activity Scheduling Mechanisms for Wireless Sensor Networks. , 2019, , .		1
529	Multi-Hop D2D Assisted Real-Time Video Streaming Transmission System in Infrastructure-Less Networks. , 2019, , .		O
530	Distributed zone MPC of pressure management for water distribution network systems. IET Control Theory and Applications, 2019, 13, 1704-1717.	1.2	4
531	Runway Edge Light Photometry by Vertical Scanning Method Using Drone Mounted Photodiode Array. , 2019, , .		2
532	Attribute Selection for Detection of Soybean Plant Disease and Pests., 2019,,.		1
534	Power System Black-Start and Restoration with High Share of Power-Electronic Converters. , 2019, , .		5
535	ComTech 2019 Organization Committee. , 2019, , .		0
536	An Approach to Longtime Safety and Resilience Prediction of Critical Infrastructure Influenced by Weather Change Processes. , 2019, , .		1
537	Effectiveness of online experimentation to change conceptual knowledge in non-formal learning. , 2019, , .		0
539	Radar Cross Section of Wind Turbine with Cone Covered Pillar. , 2019, , .		O
540	Fusion of Evidences for Edge Detection in PolSAR Images., 2019,,.		3
541	Encrypted Cooperative Control Revisited. , 2019, , .		25
542	Features of Signal Processing by Means of LoRa Technology. , 2019, , .		2
543	DND: The Controllability of Dynamic Temporal Network in Smart Transportations., 2019,,.		3

#	Article	IF	CITATIONS
544	Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. Biotechnology Research and Innovation, 2019, 3, 80-94.	0.3	28
545	Modeling of $1/\!\!f$ Phase Noise on Ultra-Stable Quartz Crystal Resonators Using Mittag-Leffler Distribution. , 2019, , .		0
546	A Fuzzy Logic Controller for Electric Powered Wheelchair based on Lagrange Model., 2019,,.		1
547	Disaster Management From Social Media Using Machine Learning. , 2019, , .		3
548	Attentive Relational Networks for Mapping Images to Scene Graphs. , 2019, , .		91
549	A medicine cold chain monitor system based on LoRa wireless technology. , 2019, , .		4
550	A Novel Structural Design Serving as a Stress Relief Layer for Flexible LTPS TFTs., 2019, , .		3
551	ANN based Interwell Connectivity Analysis in Cyber-Physical Petroleum Systems. , 2019, , .		3
552	A Transient Stability Prediction Method based on Multi-Channel Convolutional Neural Networks Using Time Series of PMU Measurements. , 2019, , .		1
553	A Novel Wind Power Time Series Modeling Method for Multiple Wind Farms Based on Copulas. , 2019, , .		1
554	Oscillation Damping Controller Design Using Ringdown Measurements for the Italian Power Grid. , 2019, , .		3
555	Video Demo: Unsupervised Learning of Depth and Ego-Motion from Cylindrical Panoramic Video. , 2019,		0
556	A Hardware Inference Accelerator for Temporal Convolutional Networks. , 2019, , .		1
557	Remodeling Hospitality Industry through Artificial Intelligence. , 2019, , .		3
558	Human mitochondrial genome compression using machine learning techniques. Human Genomics, 2019, 13, 49.	1.4	7
559	Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503.	1.7	59
560	Asian Crop Dispersal in Africa and Late Holocene Human Adaptation to Tropical Environments. Journal of World Prehistory, 2019, 32, 353-392.	1,1	14
561	Plant Polyploidy: Origin, Evolution, and Its Influence on Crop Domestication. Horticultural Plant Journal, 2019, 5, 231-239.	2.3	85

#	Article	IF	Citations
562	Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. Progress in Biophysics and Molecular Biology, 2019, 145, 19-39.	1.4	15
563	Recombination and Large Structural Variations Shape Interspecific Edible Bananas Genomes. Molecular Biology and Evolution, 2019, 36, 97-111.	3.5	58
564	Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics, 2019, 20, 33.	1.2	78
565	Long non-coding RNAs in banana: prediction, mapping and their comparative studies using Musa balbisiana and Musa acuminata transcriptome. Trees - Structure and Function, 2019, 33, 359-369.	0.9	3
566	East African diploid and triploid bananas: a genetic complex transported from South-East Asia. Annals of Botany, 2019, 123, 19-36.	1.4	52
567	Dynamic gene amplification and function diversification of grass-specific O-methyltransferase gene family. Genomics, 2019, 111, 687-695.	1.3	7
568	MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum, 2019, 165, 555-568.	2.6	43
569	Identification, Expression, and Interaction Network Analyses of the CDPK Gene Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Biochemical Genetics, 2020, 58, 40-62.	0.8	18
570	Expansin gene loss is a common occurrence during adaptation to an aquatic environment. Plant Journal, 2020, 101, 666-680.	2.8	12
571	Use of genome editing technologies for genetic improvement of crops of tropical origin. Plant Cell, Tissue and Organ Culture, 2020, 140, 215-244.	1.2	13
572	RainBio: Proportional Visualization of Large Sets in Biology. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 3285-3298.	2.9	9
573	Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnology Journal, 2020, 18, 373-388.	4.1	51
574	A highâ€throughput BAC end analysis protocol (<scp>BAC</scp> â€anchor) for profiling genome assembly and physical mapping. Plant Biotechnology Journal, 2020, 18, 364-372.	4.1	6
575	Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. Molecular Plant, 2020, 13, 59-71.	3.9	178
576	Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology, 2020, 21, 100128.	2.3	57
577	Production of selectable marker gene-free Cavendish banana (Musa spp.) using a steroid-inducible recombinase platform. Transgenic Research, 2020, 29, 81-93.	1.3	11
578	Independent origin of <i>MIRNA</i> genes controlling homologous target genes by partial inverted duplication of antisenseâ€transcribed sequences. Plant Journal, 2020, 101, 401-419.	2.8	7
580	The polyploid origins of crop genomes and their implications: A case study in legumes. Advances in Agronomy, 2020, 159, 275-313.	2.4	5

#	Article	IF	CITATIONS
581	Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. Plant Journal, 2020, 101, 1258-1268.	2.8	35
582	The water lily genome and the early evolution of flowering plants. Nature, 2020, 577, 79-84.	13.7	238
583	The basic helix-loop-helix transcription factor MabHLH7 positively regulates cell wall-modifying-related genes during banana fruit ripening. Postharvest Biology and Technology, 2020, 161, 111068.	2.9	25
584	Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes. Plant Cell Reports, 2020, 39, 351-362.	2.8	19
585	Identification and functional analysis of the CorA/MGT/MRS2-type magnesium transporter in banana. PLoS ONE, 2020, 15, e0239058.	1.1	6
586	Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Computational Biology, 2020, 16, e1008318.	1.5	8
587	The landscape of microsatellites in the enset (Ensete ventricosum) genome and web-based marker resource development. Scientific Reports, 2020, 10, 15312.	1.6	11
588	Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. Nature Food, 2020, 1, 599-604.	6.2	32
589	The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification and expression patterns. PLoS ONE, 2020, 15, e0239275.	1.1	39
590	Fruit Breeding in Regard to Color and Seed Hardness: A Genomic View from Pomegranate. Agronomy, 2020, 10, 991.	1.3	9
591	Genome sequencing data for wild and cultivated bananas, plantains and abac \tilde{A}_i . Data in Brief, 2020, 33, 106341.	0.5	5
592	Expression and Function Studies of CYC/TB1-Like Genes in the Asymmetric Flower Canna (Cannaceae,) Tj ETQq1	l 0.78431 1:7	4 rgBT /Ove
593	Molecular Evolution of Maize Ascorbate Peroxidase Genes and Their Functional Divergence. Genes, 2020, 11, 1204.	1.0	5
594	Chromosome Painting in Cultivated Bananas and Their Wild Relatives (Musa spp.) Reveals Differences in Chromosome Structure. International Journal of Molecular Sciences, 2020, 21, 7915.	1.8	17
595	Chromosome reciprocal translocations have accompanied subspecies evolution in bananas. Plant Journal, 2020, 104, 1698-1711.	2.8	35
596	Genome Sequencing of <i>Musa acuminata</i> Dwarf Cavendish Reveals a Duplication of a Large Segment of Chromosome 2. G3: Genes, Genomes, Genetics, 2020, 10, 37-42.	0.8	10
597	Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theoretical and Applied Genetics, 2020, 133, 3409-3418.	1.8	35
598	Genome-Wide Novel Genic Microsatellite Marker Resource Development and Validation for Genetic Diversity and Population Structure Analysis of Banana. Genes, 2020, 11, 1479.	1.0	13

#	ARTICLE	IF	CITATIONS
599	Accumulation of mutations in genes associated with sexual reproduction contributed to the domestication of a vegetatively propagated staple crop, enset. Horticulture Research, 2020, 7, 185.	2.9	10
600	Characteristics of banana B genome MADS-box family demonstrate their roles in fruit development, ripening, and stress. Scientific Reports, 2020, 10, 20840.	1.6	2
601	Exploring diverse roles of micro RNAs in banana: Current status and future prospective. Physiologia Plantarum, 2021, 173, 1323-1334.	2.6	8
602	Safeguarding and using global banana diversity: a holistic approach. CABI Agriculture and Bioscience, 2020, $1,\ldots$	1.1	26
603	Paleo-polyploidization in Lycophytes. Genomics, Proteomics and Bioinformatics, 2020, 18, 333-340.	3.0	16
604	Model-Based Detection of Whole-Genome Duplications in a Phylogeny. Molecular Biology and Evolution, 2020, 37, 2734-2746.	3.5	9
605	Fusarium Wilt in Banana: Epidemics and Management Strategies. , 2020, , .		1
606	Endophyte mediated activation of defense enzymes in banana plants pre-immunized with covert endophytes. Indian Phytopathology, 2020, 73, 433-441.	0.7	13
607	Evaluation of banana cultivars for resistance to Fusarium wilt Tropical Race 4. Acta Horticulturae, 2020, , 73-82.	0.1	0
608	Genome-Wide Analysis of Basic Helix-Loop-Helix Transcription Factors to Elucidate Candidate Genes Related to Fruit Ripening and Stress in Banana (Musa acuminata L. AAA Group, cv. Cavendish). Frontiers in Plant Science, 2020, 11 , 650.	1.7	15
609	Role of NGS and SNP genotyping methods in sugarcane improvement programs. Critical Reviews in Biotechnology, 2020, 40, 865-880.	5.1	14
610	What Can Long Terminal Repeats Tell Us About the Age of LTR Retrotransposons, Gene Conversion and Ectopic Recombination?. Frontiers in Plant Science, 2020, 11, 644.	1.7	29
611	The Oil Palm Genome. Compendium of Plant Genomes, 2020, , .	0.3	4
612	The Citrus Genome. Compendium of Plant Genomes, 2020, , .	0.3	16
613	Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Molecular Phylogenetics and Evolution, 2020, 147, 106778.	1.2	8
614	Genomic and Transcriptional Analysis of Banana Ovate Family Proteins Reveals Their Relationship with Fruit Development and Ripening. Biochemical Genetics, 2020, 58, 412-429.	0.8	8
615	On the Capacity of Computation Broadcast. IEEE Transactions on Information Theory, 2020, 66, 3417-3434.	1.5	4
616	Multiport DC–DC Converter With Step-Up Capability and Reduced Voltage Stress on Switches/Diodes. IEEE Transactions on Power Electronics, 2020, 35, 11902-11915.	5.4	39

#	Article	IF	CITATIONS
617	Computing-in-Memory Architecture Using Energy-Efficient Multilevel Voltage-Controlled Spin-Orbit Torque Device. IEEE Transactions on Electron Devices, 2020, 67, 1972-1979.	1.6	28
618	Eva-CiM: A System-Level Performance and Energy Evaluation Framework for Computing-in-Memory Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 5011-5024.	1.9	27
619	The structure, functional evolution, and evolutionary trajectories of the H+-PPase gene family in plants. BMC Genomics, 2020, 21, 195.	1.2	7
620	Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports, 2020, 39, 693-708.	2.8	17
621	Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits. Horticulture Research, 2020, 7, 101.	2.9	18
622	Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on Coffea canephora (Robusta coffee). Molecular Phylogenetics and Evolution, 2020, 151, 106906.	1.2	13
623	NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. European Journal of Plant Pathology, 2020, 157, 549-563.	0.8	7
624	Energy-Aware Task Scheduling on Heterogeneous Computing Systems With Time Constraint. IEEE Access, 2020, 8, 23936-23950.	2.6	16
625	Deep RNA-seq analysis reveals key responding aspects of wild banana relative resistance to Fusarium oxysporum f. sp. cubense tropical race 4. Functional and Integrative Genomics, 2020, 20, 551-562.	1.4	10
626	Multimode VCSEL Enables 42-GBaud PAM-4 and 35-GBaud 16-QAM OFDM for 100-m OM5 MMF Data Link. IEEE Access, 2020, 8, 36963-36973.	2.6	12
627	Active Fault-Tolerant Control for Discrete Vehicle Active Suspension Via Reduced-Order Observer. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 6701-6711.	5.9	21
628	Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant Journal, 2020, 102, 1008-1025.	2.8	48
629	Novel microRNAs regulating ripening-associated processes in banana fruit. Plant Growth Regulation, 2020, 90, 223-235.	1.8	14
630	Transcriptome analyses provide insights into development of the Zingiber zerumbet flower, revealing potential genes related to floral organ formation and patterning. Plant Growth Regulation, 2020, 90, 331-345.	1.8	10
631	CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for \hat{l}^2 -carotene biosynthesis in banana fruit. Metabolic Engineering, 2020, 59, 76-86.	3.6	144
632	Equalizer Circuit [Circuit Intuitions]. IEEE Solid-State Circuits Magazine, 2020, 12, 6-7.	0.5	2
633	LPV Scheme for Robust Adaptive Output Feedback Consensus of Lipschitz Multiagents Using Lipschitz Nonlinear Protocol. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7040-7050.	5.9	19
634	Evolutionary strategies drive a balance of the interacting gene products for the <i>CBL</i> and <i>CIPK</i> gene families. New Phytologist, 2020, 226, 1506-1516.	3.5	52

#	Article	IF	CITATIONS
636	Latent postharvest pathogens of pome fruit and their management: from single measures to a systems intervention approach. European Journal of Plant Pathology, 2020, 156, 663-681.	0.8	61
637	Genome-Wide Identification and Characterization of the NAC Transcription Factor Family in Musa Acuminata and Expression Analysis during Fruit Ripening. International Journal of Molecular Sciences, 2020, 21, 634.	1.8	34
638	The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Scientific Reports, 2020, 10, 1590.	1.6	52
639	Advances of Whole Genome Sequencing in Strawberry with NGS Technologies. Horticulture Journal, 2020, 89, 108-114.	0.3	3
640	The potency of a novel fermented unripe banana powder as a functional immunostimulatory food ingredient. Journal of Functional Foods, 2020, 70, 103980.	1.6	11
641	Formation of a Community: in the Case of a Particular Non-profit Sports Organization., 2020,,.		1
642	Identification and evolution of C4 photosynthetic pathway genes in plants. BMC Plant Biology, 2020, 20, 132.	1.6	6
643	ECG Heartbeat Classification Based on Multi-Scale Wavelet Convolutional Neural Networks., 2020,,.		19
644	Genome-Wide Identification and Comparative Analysis of MYB Transcription Factor Family in Musa acuminata and Musa balbisiana. Plants, 2020, 9, 413.	1.6	18
645	Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. Annals of Botany, 2021, 127, 7-20.	1.4	27
646	The banana (<i>Musa acuminata</i>) <i>MYB</i> gene family and <i>MaMYB14</i> , <i>MaMYB63</i> and <i>MaMYB110</i> expression in response to salinity-stress in cv. Berangan. Plant Biosystems, 2021, 155, 856-870.	0.8	3
647	Badnaviruses and banana genomes: a long association sheds light on Musa phylogeny and origin. Molecular Plant Pathology, 2021, 22, 216-230.	2.0	12
648	Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. Plant Biotechnology Journal, 2021, 19, 477-489.	4.1	59
649	Agri/Bioinformatics: Shaping Next-Generation Agriculture. , 2021, , 111-134.		1
650	RECENT ADVANCES IN THE REGULATION OF CLIMACTERIC FRUIT RIPENING: HORMONE, TRANSCRIPTION FACTOR AND EPIGENETIC MODIFICATIONS. Frontiers of Agricultural Science and Engineering, 2021, .	0.9	2
651	A Comprehensive Review on Phytochemical, Nutritional, and Therapeutic Importance of Musa acuminate. International Journal of Current Research and Review (discontinued), 2021, 13, 114-124.	0.1	7
652	Genomic-assisted breeding for abiotic stress tolerance in horticultural crops., 2021,, 91-118.		0
653	Genomics, Proteomics, and Metabolomics. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 328-400.	0.3	0

#	Article	IF	Citations
654	Molecular Markers: Potential Facilitators in Plant Breeding and Germplasm Conservation. , 2021, , 611-646.		1
655	How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22, 3.	3.8	142
656	MaMYB4, an R2R3-MYB Repressor Transcription Factor, Negatively Regulates the Biosynthesis of Anthocyanin in Banana. Frontiers in Plant Science, 2020, 11, 600704.	1.7	34
657	SPEULER: Semantics-preserving Euler Diagrams. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 433-442.	2.9	5
658	Genome-wide identification, characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana (Musa acuminata). International Journal of Biological Macromolecules, 2021, 170, 636-651.	3.6	16
659	Genome-Wide Identification and Comprehensive Analyses of TCP Gene Family in Banana (Musa L.). Tropical Plant Biology, 2021, 14, 180-202.	1.0	8
660	MaMAPK3-MalCE1-MaPOD P7 pathway, a positive regulator of cold tolerance in banana. BMC Plant Biology, 2021, 21, 97.	1.6	13
662	Transcriptome and metabolome profiling provide insights into molecular mechanism of pseudostem elongation in banana. BMC Plant Biology, 2021, 21, 125.	1.6	11
663	Evaluating Wild Germplasm Introgression into Autotetraploid Blueberry. Agronomy, 2021, 11, 614.	1.3	9
664	A digital catalog of highâ€density markers for banana germplasm collections. Plants People Planet, 2022, 4, 61-67.	1.6	7
665	Improvements in the Resistance of the Banana Species to Fusarium Wilt: A Systematic Review of Methods and Perspectives. Journal of Fungi (Basel, Switzerland), 2021, 7, 249.	1.5	16
666	Male meiosis and pollen morphology in diploid Indonesian wild bananas and cultivars. Nucleus (India), 2021, 64, 181-191.	0.9	7
668	Genome-scale analyses of polyketide synthases in banana: Phylogenetics and expression profiling forecast their candidacy in specialized metabolism. Gene, 2021, 778, 145472.	1.0	5
669	Genetic Diversity and Population Assessment of Musa L. (Musaceae) Employing CDDP Markers. Plant Molecular Biology Reporter, 2021, 39, 801-820.	1.0	15
670	Genome editing in fruit, ornamental, and industrial crops. Transgenic Research, 2021, 30, 499-528.	1.3	13
671	Root Endophytism by Pochonia chlamydosporia Affects Defense-Gene Expression in Leaves of Monocot and Dicot Hosts under Multiple Biotic Interactions. Plants, 2021, 10, 718.	1.6	15
672	Genetic Improvement for Resistance to Black Sigatoka in Bananas: A Systematic Review. Frontiers in Plant Science, 2021, 12, 657916.	1.7	15
674	Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana. Scientific Reports, 2021, 11, 9948.	1.6	24

#	Article	IF	Citations
677	Editorial: Genomics-Enabled Crop Genetics. Frontiers in Genetics, 2021, 12, 687160.	1.1	2
678	In silico Characterization of the Structure of Genes and Proteins related to β-carotene Degradation in Musa acuminata  DH-Pahang' and Musa balbisiana  Pisang Klutuk Wulung'. Pertanika Journal of Scie and Technology, 2021, 44, .	nœ1	1
679	Genome-wide Identification and Analysis of Late Embryogenesis Abundant (LEA) Genes in Musa acuminata. Tropical Plant Biology, 2021, 14, 295-312.	1.0	3
680	The Origin and Resource Potential of Wild and Cultivated Species of the Genus of Oats (Avena L.). Russian Journal of Genetics, 2021, 57, 642-661.	0.2	8
681	Current progress and challenges in crop genetic transformation. Journal of Plant Physiology, 2021, 261, 153411.	1.6	43
682	Genome-Wide Identification and Transcript Analysis of TCP Gene Family in Banana (Musa acuminata L.). Biochemical Genetics, 2021, , 1.	0.8	10
683	Infectivity of an Infectious Clone of Banana Streak CA Virus in A-Genome Bananas (Musa acuminata) Tj ETQq0 0 () rgBT /Ov £5	erlock 10 Tf
684	Chromosomeâ€scale genome assembly of areca palm (<i>Areca catechu</i>). Molecular Ecology Resources, 2021, 21, 2504-2519.	2.2	20
685	The pangenome of banana highlights differences between genera and genomes. Plant Genome, 2022, 15, e20100.	1.6	37
686	Comparative transcriptome analysis of unripe and ripe banana (cv. Nendran) unraveling genes involved in ripening and other related processes. PLoS ONE, 2021, 16, e0254709.	1.1	5
687	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	5.8	51
688	A Draft Genome of the Ginger Species Alpinia nigra and New Insights into the Genetic Basis of Flexistyly. Genes, 2021, 12, 1297.	1.0	6
689	Identification and characterization of early Fusarium wilt responsive mRNAs and long non-coding RNAs in banana root using high-throughput sequencing. Scientific Reports, 2021, 11, 16363.	1.6	2
690	Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger. Horticulture Research, 2021, 8, 188.	2.9	31
691	Functional Characterisation of Banana (Musa spp.) 2-Oxoglutarate-Dependent Dioxygenases Involved in Flavonoid Biosynthesis. Frontiers in Plant Science, 2021, 12, 701780.	1.7	20
692	Sequencing and de Novo Assembly of Abaca (Musa textilis Née) var. Abuab Genome. Genes, 2021, 12, 1202.	1.0	9
693	Comparative assessment of microsatellite and retrotransposonâ€based markers for genetic characterization of commercial banana cultivars (<i>Musa</i>). Plant Breeding, 2021, 140, 968-980.	1.0	3
694	Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. Frontiers in Plant Science, 2021, 12, 670369.	1.7	47

#	Article	IF	CITATIONS
695	Maximizing genetic representation in seed collections from populations of self and cross-pollinated banana wild relatives. BMC Plant Biology, 2021, 21, 415.	1.6	6
696	Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS ONE, 2021, 16, e0256873.	1.1	14
697	The <i>Euscaphis japonica</i> genome and the evolution of malvids. Plant Journal, 2021, 108, 1382-1399.	2.8	6
698	A highâ€quality genome assembly of <i>Jasminum sambac</i> provides insight into floral trait formation and Oleaceae genome evolution. Molecular Ecology Resources, 2022, 22, 724-739.	2.2	18
699	Biological Control of Fusarium oxysporum f. sp. cubense Tropical Race 4 Using Natively Isolated Bacillus spp. YN0904 and YN1419. Journal of Fungi (Basel, Switzerland), 2021, 7, 795.	1.5	12
700	Early Response to Dehydration Six-Like Transporter Family: Early Origin in Streptophytes and Evolution in Land Plants. Frontiers in Plant Science, 2021, 12, 681929.	1.7	11
701	Two <i>TOBAMOVIRUS MULTIPLICATION 2A</i> homologs in tobacco control asymptomatic response to tobacco mosaic virus. Plant Physiology, 2021, 187, 2674-2690.	2.3	7
702	Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology, 2021, 4, 1047.	2.0	86
703	Current approaches in horticultural crops to mitigate the effect of drought stress., 2021,, 213-240.		0
704	Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. Frontiers in Plant Science, 2020, 11, 617528.	1.7	24
705	Design of Banana Ripeness Classification Device Based on Alcohol Level and Color Using a Hybrid Adaptive Neuro-Fuzzy Inference System Method. Lecture Notes in Electrical Engineering, 2021, , 107-117.	0.3	1
706	Long noncoding RNAs in fruit crops. , 2021, , 225-242.		0
707	Deep genetic structure of a ground-herb along contrasting environments of seasonally dry understories in Amazonia and Cerrado as revealed from targeted genomic sequencing. Botanical Journal of the Linnean Society, 2022, 199, 196-209.	0.8	3
708	Ploidy Manipulation for Citrus Breeding, Genetics, and Genomics. Compendium of Plant Genomes, 2020, , 75-105.	0.3	10
709	Citrus Genomes: From Sequence Variations to Epigenetic Modifications. Compendium of Plant Genomes, 2020, , 141-165.	0.3	1
711	Induced Genetic Diversity in Banana. Sustainable Development and Biodiversity, 2019, , 273-297.	1.4	4
712	Breeding Climate-Resilient Bananas. , 2020, , 91-115.		10
713	Rethinking Plant Breeding. , 2013, , 91-140.		5

#	Article	IF	CITATIONS
714	Identification and evaluation of resistance to Fusarium oxysporum f. sp. cubense tropical race 4 in Musa acuminata Pahang. Euphytica, 2018, 214, 1.	0.6	137
715	<i>Fusarium</i> wilt: a threat to banana cultivation and its management CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-24.	0.6	13
716	Understanding polyploid banana origins. A commentary on: â€~Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas'. Annals of Botany, 2021, 127, iv-v.	1.4	3
717	Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. Plant Physiology, 2021, 185, 857-875.	2.3	20
725	Omics Approaches in Tropical Fruit Crops. , 2013, , 285-324.		1
726	In vitro tetraploid induction of the blackcurrant (Ribes nigrum L.) and preliminary phenotypic observations. Zemdirbyste, 2019, 106, 151-158.	0.3	8
727	Ten simple rules for drawing scientific comics. PLoS Computational Biology, 2018, 14, e1005845.	1.5	19
728	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	1.5	77
729	The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution. PLoS ONE, 2013, 8, e67350.	1.1	88
730	Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing. PLoS ONE, 2013, 8, e69909.	1.1	52
731	Transcriptome and Expression Profile Analysis of Highly Resistant and Susceptible Banana Roots Challenged with Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS ONE, 2013, 8, e73945.	1.1	78
732	MusaWRKY71 Overexpression in Banana Plants Leads to Altered Abiotic and Biotic Stress Responses. PLoS ONE, 2013, 8, e75506.	1.1	63
733	Analyses of Hypomethylated Oil Palm Gene Space. PLoS ONE, 2014, 9, e86728.	1.1	26
734	Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit. PLoS ONE, 2014, 9, e88077.	1.1	27
735	A Contig-Based Strategy for the Genome-Wide Discovery of MicroRNAs without Complete Genome Resources. PLoS ONE, 2014, 9, e88179.	1.1	11
736	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	1.1	54
737	Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets. PLoS ONE, 2015, 10, e0123083.	1.1	31
738	Transcripts and MicroRNAs Responding to Salt Stress in Musa acuminata Colla (AAA Group) cv. Berangan Roots. PLoS ONE, 2015, 10, e0127526.	1.1	47

#	Article	IF	CITATIONS
739	Genome-Wide Computational Analysis of Musa Microsatellites: Classification, Cross-Taxon Transferability, Functional Annotation, Association with Transposons & miRNAs, and Genetic Marker Potential. PLoS ONE, 2015, 10, e0131312.	1.1	15
740	Recent advances in fruit crop genomics. Frontiers of Agricultural Science and Engineering, 2014, 1, 21.	0.9	2
741	Cold stress responsive microRNAs and their targets in Musa balbisiana. Frontiers of Agricultural Science and Engineering, 2016, 3, 335.	0.9	4
742	Genome-wide identification and expression analysis of the & beta; -amylase genes strongly associated with fruit development, ripening, and abiotic stress response in two banana cultivars. Frontiers of Agricultural Science and Engineering, 2016, 3, 346.	0.9	18
743	Genome wide analysis of heat responsive microRNAs in banana during acquired thermo tolerance. Journal of Horticultural Sciences, 2018, 13, 61-71.	0.1	6
744	Evaluation of microsatellite loci from libraries derived from the wild diploid 'Calcutta 4' and 'Ouro' banana cultivars. Genetics and Molecular Research, 2015, 14, 11410-11428.	0.3	4
745	Identification of functional SNPs in genes and their effects on plant phenotypes. Journal of Plant Biotechnology, 2016, 43, 1-11.	0.1	43
746	Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. PeerJ, 2016, 4, e1584.	0.9	72
747	Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ, 2018, 6, e5490.	0.9	5
748	Oil plant genomes: current state of the science. Journal of Experimental Botany, 2022, 73, 2859-2874.	2.4	16
749	GreeNC 2.0: a comprehensive database of plant long non-coding RNAs. Nucleic Acids Research, 2022, 50, D1442-D1447.	6.5	33
750	Genome sequencing of turmeric provides evolutionary insights into its medicinal properties. Communications Biology, 2021, 4, 1193.	2.0	23
751	Analysis of banana and cocoa export commodities in food system transformation, with special reference to certification schemes as drivers of change. Food Security, 2021, 13, 1555-1575.	2.4	4
752	Combining novel technologies with interdisciplinary basic research to enhance horticultural crops. Plant Journal, 2022, 109, 35-46.	2.8	17
753	Molecularly Imprinted Photonic Crystals Based on Fusaric Acid for the Detection of Banana Fusarium Wilt. ACS Applied Polymer Materials, 2021, 3, 5818-5825.	2.0	5
754	Comparative Genomics of Copia and Gypsy Retroelements in Three Banana Genomes: A, B, and S Genomes. Pertanika Journal of Science and Technology, 2021, 44, .	0.1	2
755	Banana genome sequencing. Fruits, 2012, 67, 397-398.	0.3	0
756	Eukaryote Genomes. Computational Biology, 2013, , 193-222.	0.1	0

#	ARTICLE	IF	CITATIONS
757	Focused Plant Biotechnological Research to Preserve Biodiversity. Journal of Biodiversity Management $\&$ Forestry, 2013, 01, .	0.3	1
758	Transgenic Crops to Preserve Biodiversity. Sustainable Development and Biodiversity, 2014, , 3-15.	1.4	0
759	DNA Markers in Tree Improvement of Tropical Plantation Species. , 2014, , 568-592.		0
760	Transcriptome Analysis in Banana. Transcriptomics: Open Access, 2015, 03, .	0.2	1
761	Exploring the Potential of Genetic Diversity via Proteomics: Past, Present, and Future Perspectives for Banana. Sustainable Development and Biodiversity, 2015, , 311-323.	1.4	0
762	Synteny with Allied and Model Genomes. Compendium of Plant Genomes, 2016, , 117-136.	0.3	0
763	Plant functional genomics: Approaches and applications. , 2016, , 157-186.		2
764	Rediscovery of haploid breeding in the genomics era. Journal of Plant Biotechnology, 2016, 43, 12-20.	0.1	1
765	Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research. , 2016, , 137-165.		0
766	Research Progress on the Cold Resistance of Banana (<i>Musa nana</i> L.). Botanical Research, 2017, 06, 193-200.	0.0	0
767	Genetic variability in banana diploids and nonparametric statistics of fragments associated with natural fruit finger drop. Genetics and Molecular Research, $2017, 16, \ldots$	0.3	3
768	Applications of Genomics in Weed Science. , 2017, , 185-217.		0
770	Salinity Stress: "Omics―Approaches. , 2017, , 295-310.		1
772	Monocultures: A Blight on Human and Planetary Health. , 2017, , .		0
773	Applications of Genomics in Weed Science. , 2017, , 185-217.		0
775	Biofortification of Crops with Folates: From Plant Metabolism to Table. Concepts and Strategies in Plant Sciences, 2019, , 137-175.	0.6	1
776	Fruit Morphological Characteristics and \hat{l}^2 -carotene Content of Three Indonesian Dessert and Cooking Banana Cultivars. Biosaintifika: Journal of Biology & Biology Education, 2019, 11, 171-177.	0.1	0
779	In Silico Prediction of Cell Wall Remodeling Genes in Tomato, Banana, Melon and Grape. International Journal of Life Sciences and Biotechnology, 2019, 2, 108-121.	0.2	2

#	Article	IF	CITATIONS
780	Identification of putative origin of Iris pumila L. karyotype. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 25, 20-25.	0.0	0
781	Genome group classification and diversity analysis of talas and rutai banana, two local cultivars from East Kalimantan, based on morphological characters. Biodiversitas, 2019, 20, .	0.2	2
786	A polyketide synthase gene cluster required for pathogenicity of Pseudocercospora fijiensis on banana. PLoS ONE, 2021, 16, e0258981.	1.1	7
787	Tropical fruit genomes and postharvest technologies. Acta Horticulturae, 2020, , 113-122.	0.1	0
788	Venn Diagram for Three or More Categories in Occupational Health. Journal of Occupational and Environmental Medicine, 2021, 63, e157-e158.	0.9	0
789	Effect of Seasonal Drought on the Agronomic Performance of Four Banana Genotypes (Musa spp.) in the East African Highlands. Agronomy, 2021, 11, 4.	1.3	11
790	Detection of dynamic QTLs for traits related to organoleptic quality during banana ripening. Scientia Horticulturae, 2022, 293, 110690.	1.7	6
791	Genetic and Genomic Resources and Their Exploitation for Unlocking Genetic Potential from the Wild Relatives. , 2020, , 193-210.		3
792	The Journey of Spirodela Whole-Genome Sequencing. Compendium of Plant Genomes, 2020, , 77-85.	0.3	1
793	The Use of Proteomics in Search of Allele-Specific Proteins in (Allo)polyploid Crops. Methods in Molecular Biology, 2020, 2139, 297-308.	0.4	0
794	Oil Palm Genome: Strategies and Applications. Compendium of Plant Genomes, 2020, , 83-115.	0.3	2
795	GridSet: Visualizing Individual Elements and Attributes for Analysis of Set-Typed Data. IEEE Transactions on Visualization and Computer Graphics, 2020, PP, 1-1.	2.9	1
798	High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biology, 2021, 22, 304.	3.8	32
799	Extrachromosomal viral DNA produced by transcriptionally active endogenous viral elements in non-infected banana hybrids impedes quantitative PCR diagnostics of banana streak virus infections in banana hybrids. Journal of General Virology, 2021, 102, .	1.3	2
800	Transcriptome analysis reveals MYB and WRKY transcription factors involved in banana (Musa) Tj ETQq0 0 0 rgBT	'/Qyerlock	10 Tf 50 18
801	Positive effect of in vitro embryo rescue on breaking the dormancy of wild banana seeds compared to direct sowing in the greenhouse. Fruits, 2020, 75, 194-203.	0.3	3
802	Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture. Tropical Life Sciences Research, 2016, 27, 93-114.	0.5	15
803	Centromere-Specific Retrotransposons and Very-Long-Chain Fatty Acid Biosynthesis in the Genome of Yellowhorn (Xanthoceras sorbifolium, Sapindaceae), an Oil-Producing Tree With Significant Drought Resistance. Frontiers in Plant Science, 2021, 12, 766389.	1.7	6

#	Article	IF	CITATIONS
804	Organelle DNA sequence data provide new insights into the maternal and paternal lineages of Musa species germplasms. Genetic Resources and Crop Evolution, 2022, 69, 737-754.	0.8	2
805	Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes, 2021, 12, 1881.	1.0	21
806	Continuous Mapping Identifies Loci Associated With Weevil Resistance [Cosmopolites sordidus (Germar)] in a Triploid Banana Population. Frontiers in Plant Science, 2021, 12, 753241.	1.7	3
807	Twenty years of plant genome sequencing: achievements and challenges. Trends in Plant Science, 2022, 27, 391-401.	4.3	125
809	A- and B-subgenome characterisation of sucrose synthase family proteins and functional identification of <i>MaSUS2.2</i> reveals its involvement in the starch accumulation in banana fruit. New Zealand Journal of Crop and Horticultural Science, 2023, 51, 489-508.	0.7	0
810	Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Molecular Biology and Evolution, 2022, 39, .	3.5	31
812	Vacuolar Processing Enzymes Modulating Susceptibility Response to Fusarium oxysporum f. sp. cubense Tropical Race 4 Infections in Banana. Frontiers in Plant Science, 2021, 12, 769855.	1.7	5
813	Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways. Methods in Molecular Biology, 2022, 2443, 101-131.	0.4	23
814	Piper DNA virus 1 and 2 are endogenous pararetroviruses integrated into chromosomes of black pepper (Piper nigrum L). VirusDisease, 2022, 33, 114-118.	1.0	3
815	Engineering Apomixis: Clonal Seeds Approaching the Fields. Annual Review of Plant Biology, 2022, 73, 201-225.	8.6	24
816	Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. Plants, 2022, 11, 482.	1.6	7
819	Changes in Homogalacturonan Metabolism in Banana Peel during Fruit Development and Ripening. International Journal of Molecular Sciences, 2022, 23, 243.	1.8	5
821	Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress. Plants, 2022, 11, 662.	1.6	14
822	Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Frontiers in Microbiology, 2022, 13, 809126.	1.5	5
823	Exogenous Melatonin Enhances Cold Resistance by Improving Antioxidant Defense and Cold-Responsive Genes' Expression in Banana. Horticulturae, 2022, 8, 260.	1.2	7
824	Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses. 3 Biotech, 2022, 12, 101.	1.1	1
825	RNA-Seq Reveals Differentially Expressed Genes Associated with High Fiber Quality in Abaca (Musa) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
826	Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. International Journal of Biological Macromolecules, 2022, 204, 661-676.	3.6	24

#	Article	IF	Citations
827	Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. International Journal of Molecular Sciences, 2022, 23, 3976.	1.8	1
828	Integrated Studies of Banana on Remote Sensing, Biogeography, and Biodiversity: An Indonesian Perspective. Diversity, 2022, 14, 277.	0.7	3
829	Genome-Wide Analysis of the LRR-RLP Gene Family in a Wild Banana (Musa acuminata ssp. malaccensis) Uncovers Multiple Fusarium Wilt Resistance Gene Candidates. Genes, 2022, 13, 638.	1.0	1
830	Metaboloepigenetics in cancer, immunity, and cardiovascular disease. Cardiovascular Research, 2023, 119, 357-370.	1.8	5
831	Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene, 2022, 821, 146334.	1.0	18
832	Evolution of 14-3-3 Proteins in Angiosperm Plants: Recurring Gene Duplication and Loss. Plants, 2021, 10, 2724.	1.6	8
833	Benchmarking small-variant genotyping in polyploids. Genome Research, 2022, 32, 403-408.	2.4	4
835	Chromosome-level genome assembly and characterization of <i>Sophora Japonica</i> . DNA Research, 2022, 29, .	1.5	3
836	Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry, 2022, 182, 104-123.	2.8	38
837	Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications, 2022, 13, 2001.	5. 8	35
899	Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nature Plants, 2022, 8, 373-388.	4.7	36
900	A chromosome-level reference genome of <i>Ensete glaucum</i> gives insight into diversity and chromosomal and repetitive sequence evolution in the Musaceae. GigaScience, 2022, 11, .	3.3	19
901	NAC-mediated membrane lipid remodeling negatively regulates fruit cold tolerance. Horticulture Research, 2022, 9, uhac039.	2.9	15
903	The genome of <i>Corydalis</i> reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant Journal, 2022, 111, 217-230.	2.8	19
904	Genomic and Bioinformatic Resources for Perennial Fruit Species. Current Genomics, 2022, 23, .	0.7	0
905	Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Scientific Reports, 2022, 12, 7979.	1.6	26
906	Evolution and co-evolution: insights into the divergence of plant heat shock factor genes. Physiology and Molecular Biology of Plants, 0, , .	1.4	2
909	A Protocol for Detection of Large Chromosome Variations in Banana Using Next Generation Sequencing., 2022,, 129-148.		1

#	Article	IF	Citations
910	Differential timing of gene expression and recruitment in independent origins of <scp>CAM</scp> in the Agavoideae (Asparagaceae). New Phytologist, 2022, 235, 2111-2126.	3.5	12
911	Next-Generation Sequencing Technologies: Approaches and Applications for Crop Improvement. Springer Protocols, 2022, , 31-94.	0.1	3
912	Preliminary characterization of methanolic and ethanolic extract of Musa acuminata leaves. AIP Conference Proceedings, 2022, , .	0.3	0
913	An Update on Progress and Challenges of Crop Genomes. Springer Protocols, 2022, , 1-11.	0.1	1
914	Genome-wide identification and characterization of glutathione S-transferase gene family in Musa acuminata L. AAA group and gaining an insight to their role in banana fruit development. Journal of Applied Genetics, 2022, 63, 609-631.	1.0	5
915	Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 2022, 23, .	1.2	4
916	The Origin and Evolution of RNase T2 Family and Gametophytic Self-incompatibility System in Plants. Genome Biology and Evolution, 2022, 14, .	1.1	5
917	Evolution of the DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN subfamily in green plants. Plant Physiology, 2022, 190, 421-440.	2.3	7
918	Genome wide identification of MADS box gene family in Musa balbisiana and their divergence during evolution. Gene, 2022, 836, 146666.	1.0	7
919	Molecular Approaches in Conservation and Restoration of Agrobiodiversity. , 2022, , 169-216.		1
920	Genome Assembly and Analysis of the Flavonoid and Phenylpropanoid Biosynthetic Pathways in Fingerroot Ginger (Boesenbergia rotunda). International Journal of Molecular Sciences, 2022, 23, 7269.	1.8	1
921	Analysis of TCP Transcription Factors Revealed Potential Roles in Plant Growth and Fusarium oxysporum f.sp. cubense Resistance in Banana (cv. Rasthali). Applied Biochemistry and Biotechnology, 2022, 194, 5456-5473.	1.4	5
922	A lineage-specific Exo70 is required for receptor kinase–mediated immunity in barley. Science Advances, 2022, 8, .	4.7	13
923	Genome-wide identification and expression of <i>CYP71</i> gene family in response to low-temperature stress in banana. Journal of Horticultural Science and Biotechnology, 2023, 98, 159-177.	0.9	0
924	Interplay between <scp>R2R3 MYB</scp> â€type activators and repressors regulates proanthocyanidin biosynthesis in banana (<i>Musa acuminata</i>). New Phytologist, 2022, 236, 1108-1127.	3.5	14
925	Chromosome-scale genome assemblies and annotations for Poales species <i>Carex cristatella</i> , <i>Carex scoparia</i> , <i>Juncus effusus</i> , and <i>Juncus inflexus</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	9
926	Assessing Loss of Regulatory Divergence, Genome–Transcriptome Incongruence, and Preferential Expression Switching in Abaca × Banana Backcrosses. Genes, 2022, 13, 1396.	1.0	0
927	The Musa troglodytarum L. genome provides insights into the mechanism of non-climacteric behaviour and enrichment of carotenoids. BMC Biology, 2022, 20, .	1.7	7

#	Article	IF	CITATIONS
930	Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.). Gene, 2022, 845, 146849.	1.0	5
931	Wild banana (genus Ensete) – an underutilised plant as source of food, fodder, fibre and medicine and need for biotechnological interventions. Crop and Pasture Science, 2022, , .	0.7	1
932	Application of "omics―in banana improvement. , 2022, , 165-191.		0
933	State of the art of omics technologies in horticultural crops. , 2022, , 1-14.		1
934	The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L Frontiers in Plant Science, 0, 13 , .	1.7	3
935	Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. IScience, 2022, 25, 105026.	1.9	16
936	Molecular, Histological and Histochemical Responses of Banana Cultivars Challenged with Fusarium oxysporum f. sp. cubense with Different Levels of Virulence. Plants, 2022, 11, 2339.	1.6	2
937	Genome assembly and chemogenomic profiling of National Flower of Singapore Papilionanthe Miss Joaquim  Agnes' reveals metabolic pathways regulating floral traits. Communications Biology, 2022, 5, .	2.0	2
938	Chromosomeâ€level genome assembly and functional characterization of terpene synthases provide insights into the volatile terpenoid biosynthesis of <i>Wurfbainia villosa</i> . Plant Journal, 2022, 112, 630-645.	2.8	13
939	A chromosome-scale genome assembly of turmeric provides insights into curcumin biosynthesis and tuber formation mechanism. Frontiers in Plant Science, 0, 13, .	1.7	3
940	The banana genome hub: a community database for genomics in the Musaceae. Horticulture Research, 2022, 9, .	2.9	12
941	The genomic and bulked segregant analysis of Curcuma alismatifolia revealed its diverse bract pigmentation. ABIOTECH, 2022, 3, 178-196.	1.8	10
942	A chromosome-level genome assembly for Dracaena cochinchinensis reveals the molecular basis of its longevity and formation of dragon's blood. Plant Communications, 2022, 3, 100456.	3.6	6
943	Molecular and morphological characterization of Musa spp. (Zingiberales : Musaceae) cultivars Boletin Cientifico Del Centro De Museos, 2020, 24, 33-47.	0.0	2
944	Genome Resources for Ensete ventricosum (Enset) and Related Species. Compendium of Plant Genomes, 2022, , 355-371.	0.3	1
945	The Banana MaWRKY18, MaWRKY45, MaWRKY60 and MaWRKY70 Genes Encode Functional Transcription Factors and Display Differential Expression in Response to Defense Phytohormones. Genes, 2022, 13, 1891.	1.0	4
947	Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes confer their roles in somatic embryogenesis, growth and abiotic stresses in banana. 3 Biotech, 2022, 12, .	1.1	4
948	Establishment of a Protoplasts-Based Transient Expression System in Banana (Musa spp.). Agronomy, 2022, 12, 2648.	1.3	3

#	Article	IF	Citations
949	Tree2GD: a phylogenomic method to detect large-scale gene duplication events. Bioinformatics, 2022, 38, 5317-5321.	1.8	5
950	Polyploidy: its consequences and enabling role in plant diversification and evolution. Annals of Botany, 2023, 131, 1-10.	1.4	25
951	Active compounds in kepok banana peel as anti-inflammatory in acne vulgaris: Review article. Annals of Medicine and Surgery, 2022, 84, .	0.5	1
952	Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. International Journal of Molecular Sciences, 2022, 23, 13589.	1.8	3
953	Cyto-nuclear incompatibilities across a bluebell hybrid zone in northern Spain do not prevent genome-wide introgression of neutral markers. , 2022, 1 , .		1
954	On the features of evolutionary process in plants: diploidization of the genomes and karyotypes. , 2022, 21, 166-170.	0.1	0
955	WRKY transcription factor MaWRKY49 positively regulates pectate lyase genes during fruit ripening of Musa acuminata. Plant Physiology and Biochemistry, 2023, 194, 643-650.	2.8	5
956	Biotechnological interventions in reducing losses of tropical fruits and vegetables. Current Opinion in Biotechnology, 2023, 79, 102850.	3.3	7
957	Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Molecular Phylogenetics and Evolution, 2023, 179, 107678.	1.2	1
958	Harnessing stress-tolerant wild bananas for crop improvement. Crop and Pasture Science, 2022, , .	0.7	3
959	The genome of the king protea, <i>Protea cynaroides</i> . Plant Journal, 2023, 113, 262-276.	2.8	4
960	Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp Functional and Integrative Genomics, 2023, 23, .	1.4	2
961	Genome-Wide Identification and Characterization of TCP Gene Family Members in Melastoma candidum. Molecules, 2022, 27, 9036.	1.7	8
962	Fusarium Yellows of Ginger (Zingiber officinale Roscoe) Caused by Fusarium oxysporum f. sp. zingiberi Is Associated with Cultivar-Specific Expression of Defense-Responsive Genes. Pathogens, 2023, 12, 141.	1.2	6
963	Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes. Frontiers in Plant Science, 0, 13, .	1.7	10
964	Genome-Wide Characterization and Analysis of R2R3-MYB Genes Related to Fruit Ripening and Stress Response in Banana (Musa acuminata L. AAA Group, cv. †Cavendish'). Plants, 2023, 12, 152.	1.6	1
965	Integrated metabolomic and transcriptomic analyses of regulatory mechanisms associated with uniconazole-induced dwarfism in banana. BMC Plant Biology, 2022, 22, .	1.6	0
966	A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes, 2023, 14, 370.	1.0	5

#	Article	IF	CITATIONS
968	Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana. International Journal of Biological Macromolecules, 2023, 237, 124124.	3.6	8
969	Transcriptomics analysis of mangosteen ripening revealed active regulation of ethylene, anthocyanin and xanthone biosynthetic genes. Postharvest Biology and Technology, 2023, 198, 112257.	2.9	1
970	Transcriptome and Gene Co-Expression Network Analysis Identifying Differentially Expressed Genes and Signal Pathways Involved in the Height Development of Banana (Musa spp.). International Journal of Molecular Sciences, 2023, 24, 2628.	1.8	1
971	Identification of a Major QTL-Controlling Resistance to the Subtropical Race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis. Pathogens, 2023, 12, 289.	1.2	4
972	Genome assembly of <i>i>Musa</i> beccarii <i>i>shows</i> extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes. GigaScience, 2022, 12, .	3.3	4
973	Genetic Diversity Analysis of Banana Cultivars (Musa sp.) in Saudi Arabia Based on AFLP Marker. Current Issues in Molecular Biology, 2023, 45, 1810-1819.	1.0	2
974	Genomic characterization supporting the development of new food and crop options from the Australian flora., 2023, 1, 337-347.		2
975	Green preparation of bract extract (<i>Musa acuminate</i>) doped magnesium oxide nanoparticles and their bioefficacy. Applied Organometallic Chemistry, 2023, 37, .	1.7	2
976	Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. Frontiers in Plant Science, 0, 14, .	1.7	0
977	A review on adaptation of banana (<i>Musa</i> spp.) to cold in subtropics. Plant Breeding, 2023, 142, 269-283.	1.0	4
978	Identification and analysis of lignin biosynthesis genes related to fruit ripening and stress response in banana (Musa acuminata L. AAA group, cv. Cavendish). Frontiers in Plant Science, 0, 14, .	1.7	0
979	Characterization of microRNAs and Target Genes in Musa acuminata subsp. burmannicoides, var. Calcutta 4 during Interaction with Pseudocercospora musae. Plants, 2023, 12, 1473.	1.6	0
981	Characterization of Banana SNARE Genes and Their Expression Analysis under Temperature Stress and Mutualistic and Pathogenic Fungal Colonization. Plants, 2023, 12, 1599.	1.6	0
982	DNA methylation signatures of duplicate gene evolution in angiosperms. Plant Physiology, 2023, 192, 2883-2901.	2.3	1
983	Metapangenomics of wild and cultivated banana microbiome reveals a plethora of host-associated protective functions. Environmental Microbiomes, 2023, 18, .	2.2	3
996	Insight into the Molecular Breeding Research Status for Crop Improvement in India: Prospects and Achievements. Plant Molecular Biology Reporter, 0, , .	1.0	1
997	Improvement of Nutraceutical Traits of Banana: New Breeding Techniques., 2023,, 1-33.		0
1015	Fusarium wilt in banana: unraveling molecular aspects of host–pathogen interaction and resistance mechanism. Vegetos, 0, , .	0.8	O

#	Article	IF	CITATIONS
1031	Genetics and evolutionary insights from Solanaceae genome sequences. Plant Systematics and Evolution, 2024, 310, .	0.3	0
1034	Improvement of Nutraceutical Traits of Banana: New Breeding Techniques. , 2023, , 809-841.		0
1035	Germplasm screening of diploid Musa spp. collection for fusarium wilt disease resistance using multiplex-SCAR markers. AIP Conference Proceedings, 2023, , .	0.3	0
1036	Ploidy investigation using flow cytometry of Indonesian bananas (Musa spp) collected from explorations program of research center for biology-LIPI (currently national research and) Tj ETQq1 1 0.784314 rg	gB ō.¦ Overl	oda 10 Tf 50
1038	Genetic Improvement of Banana. , 2023, , 305-329.		0
1041	The first report of screening for parthenocarpy of a wild banana species Musa acuminata. AIP Conference Proceedings, 2024, , .	0.3	0
1048	Genomics, Proteomics, and Metabolomics., 2023, , 881-932.		0
1049	Editing of banana, apple, and grapevine genomes using the CRISPR-Cas9 system. , 2024, , 349-364.		0